January 2002 LIDS Publication # 2510

Research supported in part by:

Army Research Office Award
DAAD19-00-1-0466, Air Force
Aerospace Research Award
FA9550-04-1-0351

Stochastic processes on graphs with cycles:
geometric and variational approaches

Martin Wainwright

Stochastic processes on graphs with cycles: geometric and
variational approaches

by

Martin J. Wainwright

Submitted to the Department of Electrical Engineering and Computer Science in
partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in
Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

January, 2002

(© 2002 Massachusetts Institute of Technology
All Rights Reserved.

Signature of Author:

Department of Electrical Engineering and Computer Science
January 28, 2002

Certified by:

Alan S. Willsky
Professor of EECS
Thesis Supervisor

Certified by:

Tommi S. Jaakkola
Assistant Professor of EECS
Thesis Supervisor

Accepted by:

Arthur C. Smith
Professor of Electrical Engineering
Chair, Committee for Graduate Students

Stochastic processes on graphs with cycles: geometric and

variational approaches
by Martin J. Wainwright

Submitted to the Department of Electrical Engineering
and Computer Science on January 28, 2002
in Partial Fulfillment of the Requirements for the Degree
of Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract
Stochastic processes defined on graphs arise in a tremendous variety of fields, including
statistical physics, signal processing, computer vision, artificial intelligence, and infor-
mation theory. The formalism of graphical models provides a useful language with
which to formulate fundamental problems common to all of these fields, including esti-
mation, model fitting, and sampling. For graphs without cycles, known as trees, all of
these problems are relatively well-understood, and can be solved efficiently with algo-
rithms whose complexity scales in a tractable manner with problem size. In contrast,
these same problems present considerable challenges in general graphs with cycles.

The focus of this thesis is the development and analysis of methods, both exact and
approximate, for problems on graphs with cycles. Our contributions are in developing
and analyzing techniques for estimation, as well as methods for computing upper and
lower bounds on quantities of interest (e.g., marginal probabilities; partition functions).
In order to do so, we make use of exponential representations of distributions, as well
as insight from the associated information geometry and Legendre duality. Our results
demonstrate the power of exponential representations for graphical models, as well as
the utility of studying collections of modified problems defined on trees embedded within
the original graph with cycles.

The specific contributions of this thesis include the following. We develop a method
for performing exact estimation of Gaussian processes on graphs with cycles by solving a
sequence of modified problems on embedded spanning trees. We present the tree-based
reparameterization framework for approximate estimation of discrete processes. This
framework leads to a number of theoretical results on belief propagation and related
algorithms, including characterizations of their fixed points and the associated approxi-
mation error. Next we extend the notion of reparameterization to a much broader class
of methods for approximate inference, including Kikuchi methods, and present results
on their fixed points and accuracy. Finally, we develop and analyze a novel class of up-
per bounds on the log partition function based on convex combinations of distributions
in the exponential domain. In the special case of combining tree-structured distribu-
tions, the associated dual function gives an interesting perspective on the Bethe free
energy.

Thesis Supervisors: Alan S. Willsky and Tommi S. Jaakkola
Title: Professors of Electrical Engineering and Computer Science

Notational Conventions

Symbol Definition

General Notation
|- | absolute value

|- | L? norm

\Y% gradient operator

V2 Hessian operator

a; the ith component of the vector A

Ajj element in the ith row and jth column of matrix A

ek indicator vector with 1 in the kth component and 0 every-
where else

R real numbers

RN vector space of real-valued N-dimensional vectors

[0, 1]V closed unit hypercube in RY

(0,1)N open unit hypercube in RY

Ra(F) range of the mapping F'

FoQG composition of mappings F’ and G

1 identity operator

X random vector

xN sample space of N-dimensional random vector x

y observation vector

p(x) probability distribution on x

p(x|y) conditional probability distribution of x given y

H(p) entropy of distribution p

D(p | q) Kullback-Leibler divergence between p and ¢

N(p, A) Gaussian distribution with mean p and covariance A

Ula, b uniform distribution on [a, b]

L Lagrangian of a constrained optimization problem

NOTATIONAL CONVENTIONS

Symbol

Definition

Graphs and graphical models

undirected graph

vertex or node set of graph
edge set of graph

graph clique

set of all cliques of G
triangulated version of G
set of all clique of G
separator set in a junction tree
set of all separator sets
subset of vertex set V
subset of edge set
node-induced subgraph
edge-induced subgraph
compatibility function on clique C
partition function

number of nodes (i.e., |V])
number of discrete states
indices for nodes

edge between nodes s and ¢
indices for discrete states
neighbors of node s in G
spanning tree of G

edge set of T

complete graph on NV nodes

NOTATIONAL CONVENTIONS 7

Symbol Definition

Exponential families and information geometry

0 exponential parameter vector

d(0) number of components in 6

¢c potential function

(o) collection of potential functions

p(x;0) exponential distribution on x defined by 6
) log partition function

Y negative entropy function (dual to @)

n mean parameters (dual variables)

A Legendre mapping between 6 and n

M, e-flat manifold

M, m-flat manifold

D6 6%) Kullback-Leibler divergence between p(x;6) and p(x;60*)
Ey[f] expectation of f(x) under p(x;0)

covp{f, g} covariance of f(x) and g(x) under p(x;0)

cump{ f1,..., fx} k' -order cumulant of fi(x),... fx(x) under p(x;0)

NOTATIONAL CONVENTIONS

Symbol

Definition

Tree-based reparameterization

Tt

1

L

Mst;k

Ps;ja st;jk
Ts;ja Tst;jk
K

P'(x)

q'(x)

6(zs = J)
A

Ai

C

(Cz'

D

Dz'

C)
R
II

0}

embedded spanning tree

index for embedded spanning trees

total number of spanning trees used

belief propagation message from node s to ¢
exact marginal probabilities

approximate marginal probabilities
arbitrary normalization constant
tree-structured component of p(x)

set of residual terms (i.e., p(x)/p’(x))
indicator function for z; to take value j

set of composite indices (s;7) and (st; jk)
composite indices corresponding to T*
constraint set for pseudomarginals
constraint set based on tree 7"

constraint set for exponential parameters
constraint set based on tree 7"

mapping from T" to 6

reparameterization operator

projection operator onto tree 7

injection operator from 7 to full set
combined reparameterization-identity mapping based on 7*
sequence of TRP iterates

step-size at iteration n

spanning tree index at iteration n

cost function (approximation to KL divergence)
log error log T.; — log Ps.;

NOTATIONAL CONVENTIONS

Symbol

Definition

Advanced methods for approximate inference

A
G(A)
Qa(x)

Pa (x)
CmaX (A)
Csep (A)
R

A
QAua(x)

Pp ya(x)

core structure

graph induced by the core structure

approximating distribution defined by the core structure
components of original distribution over the core structure
set of maximal cliques in A

set of separator sets associated with A

residual partition

particular residual element of R

auxiliary distribution on augmented structure A U A
components of original distribution on augmented structure

AUA

augmented residual partition

elements of R

marginalization operator

approximation to KL divergence based on A and R
collection of approximating distributions

core structure valued messages

exponential parameter for target distribution
indices associated with elements of B

{ ¢a | € A(B) }
> acB ada

projection operator of an exponential parameter onto B
injection operator into full set A

exponential parameter for QA

exponential parameter for Qa y a

10

NOTATIONAL CONVENTIONS

Symbol

Definition

Convex upper bounds

T

—

I
n(T)
supp(i)

set of all spanning trees of G

probability distribution over trees 7
probability of spanning tree T

support of the distribution i

edge appearance probabilities Prgz{e € T}

exponential parameter vector structured according to tree T
collection of tree-structured exponential parameter vectors

convex combination Y, .c u(7)0(T)

set of feasible pairs (0; ji) such that Ez[0] = 0*
Lagrangian dual function

dual parameters

projection operator onto tree 7

set of tree-consistent mean parameters

set of globally consistent mean parameters
single-node entropy at x;

mutual information between z; and
spanning tree polytope

rank function on subsets F' of edge set F
number of vertices adjacent to edges in F C
number of connected components of G(F)
function for optimal upper bounds

optimal set of mean parameters (as a function of)
optimal set of edge appearance probabilities

edge incidence vector corresponding to spanning tree 7

Acknowledgments

During the course of my Ph.D., I have benefited from significant interactions with
people both within MIT and throughout the greater academic community. [am grateful
to be able to acknowledge these people and their contributions here.

First of all, I have been fortunate enough to have enjoyed the support and encour-
agement of not one but two thesis supervisors: Alan Willsky and Tommi Jaakkola.
I doubt that anyone who interacts significantly with Alan Willsky can fail to be im-
pressed (if not infected) by his tremendous intellectual energy and enthusiasm. T first
met Alan as a student in his MIT graduate course on stochastic processes (6.432). This
course greatly fueled my interest in problems of a stochastic nature, primarily due to
the extraordinary clarity of his teaching, as well as his evident passion for the mate-
rial. The following year, I was fortunate enough to have the opportunity to join Alan’s
Stochastic Systems Group (SSG) as a Ph.D. candidate. As an advisor, Alan has the
impressive capacity of being able to provide the guidance and direction that graduate
students (as beginning researchers) require, while simultaneously allowing them free
rein to explore their developing interests. Alan also demonstrates a remarkable talent
for rapidly distilling the essence of a problem, and suggesting ways of attacking it.

After my first year at MIT and as my interest in graphical models grew, I started
to interact with Tommi Jaakkola more frequently. During many subsequent hours im-
mersed in research discussions with him, I have benefited from the powerful combination
of intuition and rigor in his thinking. As an advisor, he offers a rare mixture of quali-
ties that I have appreciated: although always supportive and encouraging of my work,
he is at the same time extremely exacting in assessing when our understanding of a
problem is complete. His incisive questions and counterexamples have sent me back to
the drawing boards more than once.

I also benefited from helpful interactions with the other members of my thesis com-
mittee. Prof. Sanjoy Mitter, after listening to one of my ideas, invariably offered sage
advice as well as insightful pointers to related research. His work in organizing the
6.291 seminar in Fall 2001 was instrumental in bringing together many people within
and outside LIDS, all of whom were interested in the connections between statistical
physics, coding theory, and convex analysis. Prof. David Karger was a valuable resource
as a resident expert on graph theory, combinatorial optimization, and randomized al-
gorithms. In particular, I am grateful to him for directing me to the literature on
the spanning tree polytope (and more generally, on matroid theory), which plays an
important role in Chapter 7 of this thesis.

Earlier in my graduate career, I was fortunate to spend a summer working with
Eero Simoncelli at New York University. The work that we initiated that summer

11

12 ACKNOWLEDGMENTS

formed the basis of a productive collaboration (and friendship) that continues today.
Our joint work with Alan on natural image models provided significant motivation for
me to investigate graphical models, especially those with cycles, more deeply. Eero also
provided me with the elderly but trusty IBM laptop on which much of this thesis was
written.

I would also like to thank Prof. G. David Forney Jr., who has gone far out of his way
to support my work. I am particularly indebted to him for organizing and inviting me
to attend the Trieste meeting (May 2001), which gave insight into the exciting interplay
between statistical physics, coding theory, and graphical models. He has also been very
helpful in pointing out relevant work in the coding literature, isolating unclear aspects
of my presentation, and suggesting how to clarify them.

I have enjoyed working together with Erik Sudderth; the results of Chapter 4 rep-
resent part of the fruits of this collaboration. Erik was also helpful in proofreading
various parts of this thesis. Michael Schneider has been invaluable as the local expert
on various topics, ranging from numerical linear algebra to public transport. Dewey
Tucker has been unreasonably willing to listen to my half-baked proofs with a healthy
skepticism. (If only his diet were half as healthy.) I thank Andrew Kim for his patience
in providing technical assistance. Andy Tsai (PK) kept me company during countless
late-night work sessions, and should be commended when he finally “does the right
thing”. T thank John Richards for his pellucid exposition of the James-Stein estimator,
as well as for introducing me to Bug-Eyed Earl. Alex Thler’s no-nonsense approach to
technical support as well as his refreshing frankness will not be forgotten. Last but
never least in the SSG is Taylore Kelly, a remarkable person who is the glue holding
the group together. I am thankful for her wacky sense of humor, fruit delivery service,
and too many other things to list here. I have enjoyed many discussions, research and
otherwise, with my late-night workmate Constantine Caramanis. I also thank him for
lending his keen grammatical sense to the task of proofreading. Thank you to Yee
Whye Teh and Max Welling for their generosity in sharing code for junction trees on
grids. I have also benefited from interactions and discussions with numerous other peo-
ple, including Andrea Montanari, Michael Jordan, David MacKay, Nati Srebro, Sekhar
Tatikonda, Yair Weiss, Jonathan Yedidia, and Alan Yuille. T apologize in advance to
anyone whom I have neglected to mention.

Finally, T would like to thank my parents, John and Patricia Wainwright, for their
love and support throughout the years.

Contents

Abstract 3
Acknowledgments 11
List of Figures 19
1 Introduction 23
1.1 Research areas related to graphical models 24
1.1.1 Estimation or inference 24

1.1.2 Model selection 25

1.1.3 Sampling 25

1.2 Principal methods o 26

1.3 Main problems and contributions 0oL 27
1.3.1 Inference in graphs with cycles 28

1.3.2 Exact inference for Gaussian processes 29

1.3.3 Approximate inference for discrete-valued processes 30

1.3.4 Upper and lower bounds, 32

1.4 Thesis overview Lo e e e e e 33

2 Background 37
2.1 Graphical models L 37
2.1.1 Basicsof graph theory, 38

2.1.2 Basics of graphical models 41

2.1.3 State estimation or inference 43

2.1.4 Exact inference in trees L oo 44

2.1.5 Junction tree representation 44

2.2 Exponential families and information geometry 47
2.2.1 Exponential representations 48

222 Propertiesof @ oL 52

2.2.3 Riemannian geometry of exponential families 53

2.2.4 Legendre transform and dual variables 95

13

5.1 Introduction.

14 CONTENTS
2.2.5 Geometric consequences for graphical models o7

2.2.6 Kullback-Leibler divergence and Fisher information. 58

2.2.7 I-projections onto flat manifolds 60

2.2.8 Geometry of I-projection 63

2.3 Variational methods and mean field 65
2.3.1 Mean field as a variational technique 66

2.3.2 Stationarity conditions for mean field 68

3 Perturbations and Bounds 71
3.1 Introduction 71
3.1.1 Use of exponential representations 71

3.2 Perturbations and sensitivity analysis 73
3.2.1 Expansions of the expectation Ep-[f] 73

3.2.2 Expansions for logEg«[f] 76

3.3 Bounds on expectations Lo oo 78
3.3.1 Relation to previous worko oL 78

3.3.2 Basic bounds based on a single approximating point 79

3.3.3 Bounds based on multiple approximating distributions 81

3.4 Extension to the basicbounds 0oL 85
3.4.1 Tighter single point bounds 86

3.4.2 Tighter multiple point bounds 87

3.5 Results on bounding the log partition function 87
3.5.1 Unoptimized bounds 0oL 88

3.5.2 Bounds with optimal mean field vector 91

3.6 Discussion 92

4 Embedded trees algorithm for Gaussian processes 93
4.1 Introduction. e 93
4.2 Estimation of Gaussian processesol 94
4.2.1 Prior model and observations 94

4.2.2 Linear-Gaussian estimation 95

4.2.3 Gauss-Markov processes and sparse inverse covariance 95

4.2.4 Estimation techniques oL, 96

4.3 Embedded trees algorithm o oL 97
4.3.1 Embedded trees and matrix splitting 97

4.3.2 Recursions for computing the conditional mean 98

4.3.3 Convergence analysis 100

4.3.4 Calculation of error covariances 103

435 Results 105

4.4 Discussiono e e e e e 105

5 Tree-based reparameterization for approximate estimation 107

CONTENTS

6

5.2 Estimation in graphical models
5.2.1 Exact estimation on trees as reparameterization
5.2.2 Belief propagation for graphs with cycles

5.3 Tree-based reparameterization framework
5.3.1 Exponential families of distributions
5.3.2 Basicoperators Lo oL
5.3.3 Tree-based reparameterization updates
5.3.4 Belief propagation as reparameterization
5.3.5 Empirical comparisons of BP versus TRP

5.4 Analysis of fixed points and convergence
5.4.1 Geometry and invariance of TRP updates
5.4.2 Approximation to the Kullback-Leibler divergence
5.4.3 'Tree reparameterization updates as projections
5.4.4 Characterization of fixed points
5.4.5 Sufficient conditions for convergence for two spanning trees
5.4.6 Implications for continuous processes
5.4.7 When does TRP/BP yield exact marginals?

5.5 Analysis of the approximation error 0oL
5.50.1 Exact expression o
5.5.2 Errorboundso
5.5.3 Illustrative examples of bounds

5.6 Discussion e e e

Exploiting higher-order structure for approximate estimation

6.1 Introduction.
6.1.1 Variational formulation
6.1.2 Related work
6.1.3 Overview of the chapter

6.2 Elements of the approximations
6.2.1 Basic definitions and notation00 L.
6.2.2 Core structures and distributions
6.2.3 Residual partition L 0oL
6.2.4 Auxiliary distributions Lo oL oL
6.2.5 Marginalization operators

6.3 Approximations to the Kullback-Leibler divergence
6.3.1 Disjoint and non-disjoint residual partitions
6.3.2 Approximation for a disjoint partition
6.3.3 Approximation for a non-disjoint partition.
6.3.4 Properties of the approximation
6.3.5 TIllustrativeexamples

6.4 Properties of optimal points o000
6.4.1 Existence of local minima.

CONTENTS

6.4.2 Invariance of optimal pointso
6.4.3 Generalized message-passing for minimization
6.4.4 Largest globally consistent substructure
6.5 Characterization of the error o oo
6.5.1 Reformulation in exponential parameters
6.5.2 Exact error expressiono
6.5.3 Exact expression for larger substructures
6.5.4 Boundsontheerror oL
6.6 Empirical simulations Lo 0oL
6.6.1 When to use an approximation with more complex structure? . .
6.6.2 Choice of core structure 0oL
6.7 Discussion

Upper bounds based on convex combinations

7.1 Introduction
711 Set-up e
7.1.2 Basicformof bounds. 0oL

7.2 Dual formulation with fixed £ oL
7.2.1 Explicit form of dual function oo
7.2.2 Characterization of optimal points
7.2.3 Decomposition of entropy termso
7.2.4 Spanning tree polytopeo oL

7.3 Jointly optimal upper boundso oo
7.3.1 Optimal upper bounds on ®(0*)
7.3.2 Alternative proof L
7.3.3 Characterization of joint optima
7.3.4 Relation to Bethe free energy

7.4 Algorithms and simulation results.
7.4.1 Inner minimizationover Ao
7.4.2 Outer maximization over fte
7.4.3 Empirical simulations,

7.5 Discussion

Contributions and Suggestions

8.1 High-level view

8.2 Suggestions for futureresearch o oL
8.2.1 Exact inference for Gaussian processes
8.2.2 Approximate inference for discrete processes.
823 Bounds

8.3 Possible implications for related fields
8.3.1 Network information theory
8.3.2 Analysis of iterative decoding
8.3.3 Application to large deviations analysis

195
195
197
198
200
201
203
205
206
210
210
213
214
217
217
218
218
220
223

CONTENTS 17

A Algorithms for optimal estimation on trees 237
A.1 Partial ordering inscale L. 237
A.2 Basic notation 237
A.3 Markov decomposition 238
A4 Upward sweep o o e 239
A5 Downward sweep 240

B Proofs for Chapter 3 243
B.1 Proof of Proposition 3.3.1 243
B.2 Proof of Proposition 3.3.2 243
B.3 Proof of Proposition 3.4.1 244
B.4 Proof of Proposition 3.4.2 244

C Proofs for Chapter 5 247
C.1 Proof of Proposition 5.3.1 247
C.2 Proof of Proposition 5.4.2 oo 248
C.3 Proof of Theorem 5.4.2 e 250
C.4 Proof of Theorem 5.4.3 e 251
C.5 Proof of Proposition 5.4.1 L L. 255

D Proofs for Chapter 7 257
D.1 Proof of Proposition 7.2.2 257
D.2 Proof of Proposition 7.3.1, 258

Bibliography 260

18

CONTENTS

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8

List of Figures

Node and edge induced subgraphs. 38
Forests and spanning trees oL 40
Graph cliques of size one through four 40
Mustration of triangulation 40
Cut vertices and bridges Lo 41
Graph separation and conditional independence 42
Necessity of running intersection for probabilistic consistency 45
Junction tree for 3 x 3 grid oo 47
Differential manifold of log distributions logp(x;6) 54
Geometry of graph-structured distributions 58
KL divergence as a Bregman distance 59
Geometry of I-projection onto an e-flat manifold 64
Graphical consequence of mean field 67
Error in zero'-order approximation on a single cycle 76
Convex combination of exponential parameters 83
Effect of refining the partition for unoptimized point 90
Effect of refining the partition for mean field solution 91
Gauss-Markov processes and sparse inverse covariance 96
Ilustration of embedded spanning trees 98
Tlustration of tree-cutting operation for Gaussian processes 99
Convergence rates for ET 105
Simple example of a graphical model 112
Mlustration of spanning treeson a grid 113
Graphical illustration of TRP updates 114
Message-free version of belief propagation 121
Convergence rates for TRP versus BP on a 40 x 40 grid 123
Comparison of TRP versus BP frequency of convergence 125
Geometry of tree-reparameterization updates 128
Mustration of the Pythagorean result for G 131

20

LIST OF FIGURES

5.9

5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8

Al

[llustration of tree-consistency condition 133
Degeneracy of compatibility functions for a 4-state process. 138
Analysis of exactness on single cycle L. 139
Nearly exact problem for TRP/BP 141
Behavior of TRP and bounds for different clique potentials 147
Dependence of bounds on spanning tree choice 148
Ilustration of triangulated and non-triangulated graphs G (A)...... 156
Core and residual structures for 3 x 3 grid. 158
Augmented subgraph and its triangulation for 3 x 3 grid 160
Non-disjointness of augmented residual sets 163
4-plaque Kikuchi approximationona 3 x 3 grid 166
Exactness of Ga,r approximation for a 2-square graph 170
Kikuchi approximation on 2-square graph 171
Necessity of disjointness of augmented residual sets 172
Non-exactness of Ga,r for a simple 5-node graph 173
Core and augmented structures for BP00 180
Flow of message-passing 182
Largest globally consistent substructure for BP 183
Largest globally consistent substructures for a Kikuchi approximation . 185
Error bounds for TRP/BP compared to a spanning tree approximation 191
Effect of tree choice in spanning tree approximation 192
Convex combination of distributions 199
[lustration of optimal 5(7;) onasinglecycle 205
[lustration of edge appearance probabilities 207
Non-critical edge subsets for a singlecycle, 210
[ustration of optimal edge appearance probabilities on single cycle . . . 212
Geometry of optimal fre in T(G) 216
Upper and lower bounds for grids of various sizes 222
Upper and lower bounds for complete graph Ko 223

Definitions of quantities on trees, 238

List of Tables

5.1 Number of iterations of TRP versus BP 123

21

22

LIST OF TABLES

Chapter 1

Introduction

A fundamental problem in applied probability theory is that of constructing, repre-
senting and manipulating a global probability distribution that is based on relatively
local constraints. This issue arises in a tremendous variety of fields. For example, in
statistical image processing or computer vision [e.g., 67,74,127,173], one relevant set of
random variables are the grey-scale values of the image pixels. Of course, since images
are locally smooth, neighboring pixels are likely to share similar intensity values. This
fact imposes a large set of local constraints on the grey-scale values. In order to form a
model suitable for applications like image coding or denoising, it is necessary to combine
these local constraints so as to form a global distribution on images. Similar issues arise
in building models of natural language [e.g., 139] or speech signals [e.g., 144]. In chan-
nel coding [e.g., 72,167], reliable transmission of a binary signal over a noisy channel
requires a redundant representation or code. Linear codes can be defined by requiring
that certain subsets of the bits have even parity (i.e., their sum is zero in modulo two
arithmetic). Each of these parity-checks typically involves only a relatively small frac-
tion of the transmitted bits. The problem of decoding or estimating the transmitted
codeword, however, requires a global distribution on all possible codewords. Finally,
in statistical mechanics [e.g., 136,165], the behavior of many physical phenomena (e.g.,
gases, crystals, magnets) is well-described by positing local interactions among a large
set of quantities (e.g., particles or magnets) viewed as random variables. Of interest
to the physicist, however, are global properties of the system as a whole (e.g., phase
transitions, magnetization).

The development of methods to attack problems of this nature has varied from field
to field. Statistical physicists, dating back to Boltzmann and Gibbs [e.g., 76], made
the first inroads. For example, Ising [91] in 1925, seeking to qualitatively understand
phase transitions in ferromagnetic materials, introduced the model that now bears his
name. In coding theory, Gallager [70,71] in the early 1960s proposed and analyzed
low-density parity check codes. Although they received relatively little attention at the
time, they have since become the subject of considerable research [e.g., 38,125,130,
148,149]. Onwards from the 1970s, statisticians and probability theorists have studied
the relations among Markov fields, contingency tables, and log-linear models [e.g., 21,
50, 51,54, 77,80, 123,160]. Markov random field models and the Gibbs sampler were
introduced to image processing in the late 1970s and early 1980s [e.g., 74,85,113,180].

23

24 CHAPTER 1. INTRODUCTION

Pearl [138] spearheaded the use of probabilistic network models in artificial intelligence,
and also studied the formal semantics of both directed and undirected networks.

Since this pioneering work, it has become clear that the approaches of these different
fields — though ostensibly disparate — can be unified by the formalism of graphical
models. Graphical models provide a powerful yet flexible framework for representing and
manipulating probability distributions defined by local constraints [51,69,102,105,122].
Indeed, models in a wide variety of fields, including the Ising and Potts models of
statistical physics [e.g., 15,91], error-correcting codes defined by graphs, among them
turbo codes [e.g, 18,131] and low-density parity check codes [e.g., 71,125, 149], and
various models for image processing and computer vision [e.g., 21,74,180], can all be
viewed as particular cases of a graphical model.

At the core of any graphical model is a graph — that is, a collection of nodes joined
by certain edges. Nodes in the graph represent random variables, whereas the edge
structure encodes particular statistical relations among these variables. These models
derive their power from fundamental correspondences between graph-theoretic ideas,
and concepts in probability theory [105,122]. A special case of such a correspondence
will be known by any reader familiar with (discrete-time) Markov processes. The defin-
ing feature of such processes is that the random variables in the past and future are
conditionally independent given the present state. In graphical terms, samples of the
Markov process can be viewed as living at nodes of a linear chain. The graphical prop-
erty corresponding to conditional independence is that removing any single node will
break the chain into two components (past and future). For graphs with more structure
than a chain, there exists a correspondingly more general set of Markov properties. The
well-known Hammersley-Clifford theorem [39,80] is a precise specification of the general
correspondence between Markov properties and graph structure.

B 1.1 Research areas related to graphical models

Graphical models, while providing a unifying framework, are by no means a panacea.
Indeed, it could be argued that these models pose more problems than they solve.
Undoubtedly, however, graphical models provide a convenient language with which to
formulate precisely a number of problems common to many fields. In this section, we
provide a high-level overview of a subset of these problems.

B 1.1.1 Estimation or inference

In many applications, it is desirable to estimate or make inferences about a collection
x = {z5} of random variables, based on a set of noisy observations y = {ys}. A
Bayesian approach to this problem entails combining any prior information about x
with the new information introduced by the observations. In the context of this thesis,
the prior information about x is represented by a distribution specified by a graphical
model.

Sec. 1.1. Research areas related to graphical models 25

For example, in image processing, each y; could correspond to a noise-corrupted ob-
servation of the grey-scale intensity x5 at image location s. Any statistical dependency
among the grey-scale values {z;} — that is, the prior information — is specified by
a particular graphical model. Denoising an image refers to the procedure of using the
noisy observations y so as to infer the true grey-scale values x. The resulting estimate
can be thought of as a “denoised” image. A similar task arises in channel coding: here
the elements of y correspond to the received bits, which may have been corrupted by
transmission through the channel. We use these received bits to estimate the transmit-
ted codeword x, where the structure of the code (i.e., the set of permissible codewords)
is represented by a graphical model.

H 1.1.2 Model selection

A related problem is that of model fitting. Suppose that we are given a set of samples
x ... x(" drawn independently from some unknown distribution. Presumably these
samples provide some information about the structure of the underlying distribution.
The problem of model selection, then, is to make use of these samples so as to infer
or fit an appropriate model for the underlying distribution. Any procedure for model
selection depends, of course, on the criterion of model fidelity that is specified.

As an example drawn from image processing, each x(* might correspond to a sample
of a particular image texture (e.g., wood or grass). On the basis of these samples, we
want to select a model that captures the statistical structure of the given texture.

W 1.1.3 Sampling

Given a distribution defined by a graphical model, an important problem is how to draw
random samples from this distribution. Although this sampling problem might appear
straightforward at first blush, it is, in general, an exceedingly difficult problem for large-
dimensional problems. The tutorial paper by MacKay [129] gives helpful insight into
the nature of the difficulties; see also Ripley [150].

Returning to our image processing example, suppose that we have specified a model
for a particular texture — for example, wood. The ability to draw samples would allow
us to assess whether or not the model captures the visually salient features of wood. If
indeed the model were realistic, then an efficient sampling procedure would allow us to
synthesize patches of wood texture.

Of course, these research areas are all interconnected. Indeed, the process of model
selection typically entails performing inference as a subroutine. Moreover, any proce-
dure for drawing random samples from a distribution forms the basis for a Monte Carlo
method [29,150] for performing (approximate) inference. The bulk of this thesis focuses
on estimation and inference; due to these interconnections, however, our results have
implications for other research areas as well.

26 CHAPTER 1. INTRODUCTION

B 1.2 Principal methods

In this section, we provide a broad overview of the principal methods used in this thesis.
In particular, our analysis draws primarily from the following four bodies of theory:

e graph theory

e exponential families and information geometry
e convex analysis and duality

e variational theory and methods

The foundation of any graphical model is a graph, and graph theory is the study of
these objects and their properties [e.g., 27]. An interesting fact is that the complexity of
solving various problems (e.g., inference, model fitting, sampling) in a graphical model
depends critically on the structure of the underlying graph. For graphs without cycles
(i.e., trees), most of these problems can be solved quickly by very efficient algorithms,
whereas these same problems are often intractable for general graphs with cycles.

The set of distributions defined by a graphical model can be formulated as an expo-
nential family. These families and their associated geometry have been studied exten-
sively in applied probability theory and statistics [e.g., 5,7,13,34,45,47,83]. Exponential
families have a rich geometric structure, in which the Fisher information matrix plays
the role of a Riemannian metric [145]. Indeed, an exponential family constitutes a
differential manifold of distributions, for which the exponential variables constitute a
particular parameterization. A distinguishing feature of manifolds formed by exponen-
tial families is the existence of a second set of parameters, which are coupled to the
exponential variables. From this dual parameterization arises a considerable amount
of additional geometric structure, in which the Kullback-Leibler divergence assumes a
central role. This body of theory is known collectively as information geometry.

At a broad level, convex analysis [e.g., 61,87,151] is the study of convex sets and
functions. Ideas and techniques from convex analysis play important roles in various
fields, from statistical physics [136] to information theory [42]. Especially important is
the notion of convex duality, of which there are various related forms (e.g., Fenchel, Leg-
endre, Lagrangian). Convex duality not only provides conceptual and geometric insight,
but also has important practical consequences for developing optimization algorithms.

Variational formulations, along with the associated body of theory and methods, are
integral to many disciplines of science and engineering [e.g., 93,153,182]. At the heart
of such methods is the idea of specifying a quantity of interest in a variational fashion
— that is, as the minimizing (or maximizing) argument of an optimization problem.
A variational formulation makes it possible to study or approximate the quantity of
interest by studying or approximating the corresponding optimization problem.

As will become clear later in the thesis, there exist deep connections between these
four areas. For example, exponential families arise most naturally as maximum entropy

Sec. 1.3. Main problems and contributions 27

distributions [182] subject to linear constraints — that is, in a variational fashion. More-
over, the two sets of parameters for an exponential family are coupled by a particular
form of convex duality, namely the Legendre transform [151]. This Legendre mapping
strongly reflects the structure of the underlying graph: the transform is quite simple for
tree-structured graphs, but very complicated for a graph with cycles. Convex analysis
is also intimately linked to many variational methods [see, e.g., 61].

B 1.3 Main problems and contributions

In this section, we discuss the problems that are addressed by this thesis, as well as the
nature of our specific contributions. The main problems tackled in this thesis are the
following:

e estimation or inference for distributions defined by graphs with cycles:

(a) exact inference for Gaussian processes

(b) approximate inference for discrete processes

e computable bounds on quantities associated with a graphical distribution, includ-
ing marginal probabilities and the partition function®

Before proceeding to an in-depth discussion of these problems, we pause to discuss
the unifying theme of this thesis. Graphs without cycles, known as trees, are an im-
portant subclass of graphs. One fact highlighted by our work is that a distribution
that arises from a graphical model with cycles is fundamentally different than a tree-
structured distribution. As we will see, for tree-structured graphical models, all three of
the problems described in Section 1.1 are relatively well-understood, and can be solved
by very fast algorithms. In contrast, these same problems are intractable for general
graphs with cycles.

At a very high level, all the work described in this thesis is based on the following
simple observation: embedded within any graph with cycles are a large number of trees.
Given a problem on a graph with cycles, it is tempting, therefore, to consider modified
problems defined on trees. As demonstrated by our results, the remarkable fact is that
studying this simpler set of modified tree problems can lead to considerable insight
about the original problem on the graph with cycles. Although the work described here
focuses primarily on tree-structured subgraphs, it should be clear that similar ideas can
be applied to subgraphs of higher treewidth? embedded within the original graph.

! As we will see in the sequel, the partition function plays an important role in graphical models.

2An ordinary tree is a graph of treewidth one; roughly speaking, graphs of higher treewidth corre-
spond to trees on clusters of nodes from the original graph. See the book [17] and tutorial paper [25]
for further discussion of hypergraphs and treewidth.

28 CHAPTER 1. INTRODUCTION

We now turn to discussion of the main problems addressed in this thesis.

H 1.3.1 Inference in graphs with cycles

As noted above, a fundamental fact is that the complexity of inference depends very
strongly on graph structure. A simple case, one which may be familiar to many readers,
should help to illuminate the role of graph structure in inference. Suppose that we wish
to estimate a discrete-time Markov process x = {z; |t =0,... ,N — 1 }, based on an
associated set of noisy observations y = {y;} where each y; is a measurement of the
corresponding z;. For this Markov chain problem, there exist well-known and very
efficient algorithms for carrying out standard estimation tasks [e.g., 101,110, 144, 146].
For example, in one version of the so-called smoothing problem, we want to compute, for
each time ¢t = 0,... , N — 1, the marginal distribution of z; conditioned on the full set
y of observations. Any efficient algorithm for this task has a recursive form, typically
involving a forward and backward sweep. For example, in the Gauss-Markov case, the
forward sweep corresponds to the Kalman filter [101,110,111], whereas one version of
the backward sweep corresponds to the Rauch-Tung-Striebel smoother [146]. Going
through the derivation reveals that Markov properties of the chain — namely, that past
and future are conditionally independent given the present — are exploited heavily.

Interestingly, recursive algorithms for exact estimation, rather than being limited to
chain-structured graphs, are more generally applicable to the class of acyclic graphs or
trees. (Note that a simple chain is a special case of a tree). An important fact is that
the nodes of any tree-structured graph can be put into a partial order by arbitrarily
designating one node as the root, and then measuring the scale of other nodes in terms
of their distance from the root. This partial ordering, in conjunction with Markov
properties of a tree, permit the derivation of efficient recursive techniques for exact
estimation on a tree [e.g., 36,138]. The most efficient implementation of such algorithms
again have a two-pass form, in which the computation first sweeps from outer nodes
towards the root node, and then from the root node outwards.

Graphs with cycles, on the other hand, are fundamentally different than acyclic
graphs. In the presence of cycles, nodes cannot be partially ordered, so that it is no
longer possible to exploit Markov properties of the graph to derive recursive algorithms.
As we will discuss in Chapter 2, although there exist general-purpose algorithms for
exact inference on graphs with cycles, they are all based on suitably modifying the graph
so as to form a tree. Moreover, the complexity of these exact methods, in general, scales
poorly with problem size.

It is therefore of considerable interest to develop efficient algorithms for exact or
approximate inference on graphs with cycles. Although a great deal of work has been
devoted to this area, there remain a variety of open problems. In the following sections,
we discuss the open problems addressed in this thesis, first for Gaussian and then for
discrete-valued processes.

Sec. 1.3. Main problems and contributions 29

B 1.3.2 Exact inference for Gaussian processes

In the Gaussian case, exact inference refers to the computation of both the conditional
means and error covariances at each node of the graph. The complexity of the brute
force approach to this computation — namely, matrix inversion — scales cubically as
a function of the number of nodes N. In many applications [e.g., 64,127], the number
of nodes may be on the order of 10° or 108, so that an O(N?3) cost is unacceptable.

Tree-structured Gaussian processes are especially attractive due to the tractability
of inference. In particular, the computational complexity of a two-pass algorithm for
exact inference on a tree is O(N) (see Chou et al. [36]). In order to leverage these
fast algorithms for problems in signal or image processing, one strategy is to use a
multiscale tree in order to model dependencies among a collection of random variables,
representing a time series or 2-D random field, in an approximate fashion. The variables
to be modeled are viewed as lying at the finest scale of the tree. In the context of
image processing, these fine scale variables might correspond to grey-scale intensity
values at each pixel, whereas coarser scale variables might correspond to aggregate
quantities (e.g., wavelet coefficients). Instead of modeling dependencies among the fine
scale variables directly, the approach is to build a tree model on top of them, in which
variables at higher levels of the tree capture dependencies among subsets of the fine scale
variables. This general modeling philosophy, in conjunction with efficient techniques
for stochastic realization of these multiscale tree models [e.g., 65,89,90], have been
applied successfully to various problems [e.g., 49,64,88,127].

It turns out that these tree-structured models tend to capture long-range depen-
dencies well, but may not be as effective at modeling short-range interactions. To
understand the source of this problem, consider again the example of image processing,
in which fine scale variables correspond to grey-scale intensity values. Of course, inten-
sity values at spatially adjacent pixels tend to be highly dependent. However, certain
pairs of such pixels are mapped to pairs of tree nodes that are separated by a very large
tree distance. A tree model will fail to capture the dependency between such a pair of
variables, a deficiency which manifests itself with abrupt jumps (or boundary artifacts)
in samples drawn from the approximate tree model [see, e.g., 90,127].

A number of methods [e.g., 89] have been proposed to deal with boundary artifacts,
but none are entirely satisfactory. Indeed, the most natural solution is to add extra
edges to the tree as necessary. With the addition of these edges, however, the new
graph is not a tree, meaning that efficient inference algorithms for trees [36] are no
longer applicable. This fact necessitates the development of efficient algorithms for
exact estimation of Gaussian processes on graphs with cycles.

There are a variety of methods for efficiently computing the conditional means of a
Gaussian problem on a graph with cycles, including techniques from numerical linear
algebra [56], as well as the belief propagation algorithm [138], which will be discussed
at more length in the following section. However, none of these methods compute the
(correct) error covariances. This is a serious deficiency, since in many applications [e.g.,
64,127], these error statistics are as important as the means themselves.

30 CHAPTER 1. INTRODUCTION

In Chapter 4, we develop a new iterative algorithm for exact estimation of Gaussian
processes on graphs with cycles. As a central engine, it exploits the existence of efficient
algorithms [36] for solving any Gaussian estimation problem defined on a tree embedded
within the original graph. For this reason, we call it the embedded trees (ET) algorithm.
At each iteration, the next iterate is generated by solving an appropriately modified
Gaussian estimation problem on a spanning tree of the graph. We will prove that if
the sequence of tree problems is suitably constructed, then the sequence of iterates
converges geometrically to the true means and error covariances on the graph with
cycles.

B 1.3.3 Approximate inference for discrete-valued processes

For discrete-valued Markov processes on graphs, one important inference problem is to
compute marginal distributions at each node of the graph. It can be shown [40] that
this problem is NP-hard. As a result, techniques for approximate inference are the focus
of a great deal of current research.

The belief propagation algorithm [138], also known as the sum-product algorithm
in coding theory [e.g., 118, 131], is a well-known and widely studied method [e.g.,
3,131,147,175,183] for approximate inference. This algorithm is used in a wide variety
of fields, ranging from artificial intelligence and computer vision [e.g., 67,68, 134] to
coding theory, where it shows up as a highly successful iterative decoding method for
turbo codes [18,131] and low-density parity check codes [72,125,130,149]. As a result,
belief propagation has generated tremendous excitement in a number of communities.

Belief propagation (BP) is a technique for computing approximate marginal dis-
tributions at each node of the graph. It is an iterative algorithm, in which so-called
messages are passed from node to node along edges of the graph. On a tree-structured
graph, it is guaranteed to compute the correct marginals in a finite number of iterations.
On a graph with cycles, in contrast, the algorithm may not converge, and even when it
does, the resulting approximations are of variable accuracy. Accordingly, the behavior
of BP in application to graphs with cycles has been the subject of a great deal of recent
research [e.g., 2,8,147,175,183]. We provide a brief review of this work in Section 5.1
of Chapter 5. For now we highlight the recent results of Yedidia et al. [183], who pro-
vided a variational interpretation of BP. In particular, their analysis established that
points to which BP can converge (i.e., fixed points) correspond to extremal points of the
so-called Bethe free energy from statistical physics. Nonetheless, despite the advances
of recent work, there remain a number of open questions associated with belief prop-
agation, perhaps the most important of which being the nature of the approximation
error.

This area is the focus of Chapter 5, in which we advocate a conceptual shift away
from the traditional message-passing view of approximate inference (as in standard BP).
In lieu, we develop the notion of reparameterization. Any graphical model is specified
by a product of so-called compatibility functions defined over cliques of the graph;
however, this representation is not necessarily unique. This lack of uniqueness suggests

Sec. 1.3. Main problems and contributions 31

the goal of seeking an alternative parameterization in which the functions on cliques
correspond to (exact or approximate) marginal distributions. It is well-known [e.g.,
43] that any tree-structured distribution can be reparameterized in terms of its exact
marginal distributions (corresponding to single nodes and edges). For a graph with
cycles, we consider the idea of obtaining a similar reparameterization in terms of an
approximate set of marginal distributions. As a conceptual vehicle for studying the
reparameterization concept, we introduce the class of tree-based reparameterization
(TRP) updates. At one level, these updates are equivalent to a particular tree-based
schedule for message-passing; conversely, we show that synchronous BP updates can be
re-formulated as a very local form of such reparameterization.

The class of reparameterization algorithms is rich, including BP and TRP, as well as
variants thereof. The interpretation of these algorithms as performing reparameteriza-
tion gives rise, in a natural way, to a number of new theoretical insights. First of all, an
especially important property is the “obvious” one — namely, that any reparameteriza-
tion algorithm does not alter the original distribution on the graph with cycles. Rather,
it simply specifies an alternative factorization in terms of compatibility functions that
represent approximations to the marginal distributions. Secondly, the perspective of
tree-based updates gives rise to an intuitive characterization of fixed points: they must
be consistent, in a suitable way to be defined, with respect to every acyclic substructure
embedded within the original graph.? The invariance and fixed point characterization
have a number of consequences, of which the most important is the resulting insight
into the approximation error — i.e., the difference between the TRP/BP approximate
marginals, and the actual marginals. Results pertaining to this error have been ob-
tained in certain special cases: single cycle graphs [175], and the graphs corresponding
to turbo codes [147]. The reparameterization perspective allows us to give an exact ex-
pression of the approximation error for an arbitrary graph, which is the starting point
for deriving improved approximations and/or error bounds. Interestingly, although our
insights emerge naturally from the formulation of the TRP updates, most of them apply
in an algorithm-independent manner to any constrained local minimum of the Bethe
free energy, regardless of how it is obtained.

It is well-known that belief propagation tends to give poor results on certain kinds
of graphs (e.g., those with many short cycles). It is therefore desirable to develop
principled methods for improving the BP approximation. In Chapter 6, we present a
framework for developing and analyzing such extensions. The basis of this framework
is a decomposition of the graph with cycles into a core structure, over which exact com-
putations can be performed, and a set of residual elements (e.g., edges and/or cliques)
not captured by the core. We show that the notion of reparameterization, as developed
in Chapter 5, extends in a natural way to all approximations in this class. As a conse-
quence, most of our results on TRP have corresponding generalizations. First of all,we
show how these algorithms can be interpreted as computing a particular reparame-
terization of the distribution. We then establish that fixed points are characterized by

3Spanning trees are maximal acyclic subgraphs.

32 CHAPTER 1. INTRODUCTION

consistency conditions over certain embedded substructures. For example, in the case of
Kikuchi approximations, we find that hypertrees* embedded within the original graph
play the same role that spanning trees do for the Bethe free energy of belief propaga-
tion. As with our analysis of BP/TRP, we provide an exact expression for the error in
any of these approximations, and provide a set of upper and lower bounds on the error.
An ancillary contribution of Chapter 6 is to unify two previously proposed extensions:
the Kikuchi approximations of Yedidia et al. [183], and the expectation-propagation
technique of Minka [132].

B 1.3.4 Upper and lower bounds

It is often desirable to obtain upper and lower bounds on various quantities associated
with a probability distribution, including marginal probabilities at particular subsets
of nodes, as well as the partition function. In the context of estimation, a set of upper
and lower bounds on a particular marginal provides much stronger information than
a mere approximation — namely, the guarantee that the desired marginal probability
must lie within the specified window. Bounds on the partition function are important
for a variety of problems, including model selection [106] and large deviations analy-
sis [158]. Given a set of data points, the partition function has the interpretation as
the likelihood of observing that particular set of data under the given model. Selecting
a model according to the principle of maximum likelihood [114,119], then, corresponds
to choosing model parameters so as to maximize the partition function. The theory of
large deviations [e.g., 55,158] deals with the exponential rate at which the probability
of observing an unlikely event (a so-called large deviation: e.g., 900 or more heads in
1000 tosses of a fair coin) decays asymptotically as the number of samples tends to
infinity. In this context, the (log) partition function is well-known to play the role of a
rate function — that is, it specifies these exponential error rates.

Mean field theory [e.g., 106], as described in Section 2.3, provides a well-known
lower bound on the partition function. This lower bound, in conjunction with the
EM algorithm [57], forms the basis of an important method for approximate model
fitting [106]. In comparison, upper bounds appear to be much more difficult to derive.
For the case of binary-valued nodes with pairwise interactions, Jaakkola and Jordan [95]
exploited ideas from convex analysis to derive a recursive node-elimination procedure
for upper bounding the partition function.

In Chapter 3, we derive both lower and upper bounds on the expectation of an
arbitrary function (say f). The lower bounds are closely related to standard mean
field, in that they follow from exploiting the convexity of the log partition function —
in our case, a partition function modified in a way dependent on f. We then derive a
new set of upper bounds that are based on taking convex combinations of exponential
parameters. We also develop a technique for strengthening an arbitrary bound, based

‘Hypertrees are a generalization of ordinary trees. One way to define them is via the notion of a
junction tree, which is an acyclic graph in which the nodes consist of certain clusters of nodes (i.e.,
cliques) from the original graph, satisfying a certain consistency condition. See Section 2.1.5 for details.

Sec. 1.4. Thesis overview 33

on the idea of decomposing the function f in an additive manner. We prove that for
both the lower and upper bounds developed in Chapter 3, this technique is guaranteed
to yield (in general) strictly tighter bounds. The bounds developed in Chapter 3 play
a fundamental role in our analysis of the error in approximate inference techniques, as
described in Chapters 5 and 6.

The new class of upper bounds based on convex combinations are studied more
extensively in Chapter 7. We consider, in particular, the set of convex combinations
formed from all spanning trees embedded within a graph with cycles. A crucial fact
here is that the number of such spanning trees is typically extremely large. (E.g., the
complete graph K has N =2 spanning trees [168].) Despite the apparent intractability
of optimizing over such a huge number of trees, we show that exploiting ideas from La-
grangian duality leads to a drastic reduction in problem complexity. This simplification
enables us to develop an efficient method for optimizing both the choice of exponential
parameters as well as the choice of convex combination over all spanning trees. More-
over, this dual formulation of the problem gives a new and interesting perspective on
the Bethe free energy.® In particular, our analysis leads to functions which, though
closely related to the Bethe free energy, have the following attractive properties. First
of all, they are strictly convex, so we are guaranteed a unique global minimum that can
be found by standard methods from nonlinear programming [20]. Secondly, this global
minimum yields an upper bound on the log partition function.

B 1.4 Thesis overview

In summary, the primary contributions of the thesis are as follows:

e a new iterative algorithm for exact estimation of Gaussian processes on graphs
with cycles

e the tree-based reparameterization framework for analysis of belief propagation
and related algorithms for approximate estimation of discrete-valued processes on
graphs with cycles

e a unifying framework for the development and analysis of more advanced tech-
niques for approximate inference

e a new class of upper bounds on the log partition function

The remainder of the thesis is organized, on a chapter by chapter basis, in the
following manner:
Chapter 2: Background

This chapter sets out the background that underlies developments in the sequel. It
begins with an overview of basic concepts in graph theory, followed by a self-contained

5 As discussed in Section 1.3.3, the Bethe free energy plays an important role in the belief propagation
algorithm for approximate estimation on graphs with cycles.

34 CHAPTER 1. INTRODUCTION

but brief introduction to graphical models. We include a discussion of the junction tree
representation of distributions [122,123], as well as the exact inference technique of the
same name. We then introduce exponential families of distributions, and develop the
associated theory of information geometry. The final section treats variational methods,
with particular emphasis on mean field theory as an illustrative example.

Chapter 3: Perturbations and Bounds

This chapter illustrates the use of exponential representations in developing perturba-
tion expansions and bounds on expectations of an arbitrary function (e.g., single-node
marginal distributions). The perturbation expansions yield helpful information about
the sensitivity of various quantities (e.g., marginal distributions) to changes in the model
parameters. We then turn to the development of bounds on expectations of arbitrary
functions.

We show how to apply the lower bound from mean field theory to a tilted log
partition function® in order to obtain lower bounds on the expectation of an arbitrary
function. We also derive a new class of upper bounds, based on the idea of taking
convex combinations of exponential parameters. For the expectation of an arbitrary
function, we develop a method for strengthening the bounds by performing an additive
decomposition. We illustrate these bounds with some simple examples.

Chapter 4: Embedded trees algorithm for Gaussian processes

This chapter develops and analyzes the embedded trees (ET) algorithm for exact estima-
tion of Gaussian processes defined on graphs with cycles. The ET algorithm generates
a sequence of iterates (means and error covariances) by exactly solving a sequence of
modified problems defined on trees embedded within the graph. We prove that when
the sequence of modified tree problems is appropriately chosen, the sequence of iterates
converges to the correct mean and covariances for the original problem on the graph
with cycles. The algorithm is illustrated in application to a problem on a nearest-
neighbor grid. Theoretical extensions of this work as well as related empirical results
can be found in the Master’s thesis [163].

Chapter 5: Tree-based reparameterization for approximate estimation

This chapter develops the tree-based reparameterization (TRP) framework for approx-
imate inference on graphs with cycles. We show that belief propagation (BP) can be
re-formulated as a special case of reparameterization, and establish that more global
tree updates have superior convergence properties. We prove that fixed points of
TRP updates satisfy the necessary conditions to be local minima of a cost function
that is an approximation to the Kullback-Leibler divergence. Although this cost func-
tion is distinct from the Bethe free energy [183], the two functions coincide on the

5This tilted partition function arises from a tilted distribution, which is a standard idea in large
deviations analysis [e.g., 157].

Sec. 1.4. Thesis overview 35

constraint set, which allows us to prove equivalence of TRP and BP fixed points. The
TRP perspective leads to a new characterization of TRP/BP fixed points in terms of
consistency over embedded acyclic subgraphs. As particular examples of reparameteri-
zation algorithms, the updates of TRP or BP updates leave invariant the distribution on
the graph with cycles; this invariance has a number of important consequences. Finally,
we use the fixed point characterization and invariance to analyze the approximation er-
ror. We first develop an exact expression for the error in an arbitrary graph with cycles.
This expression, though conceptually interesting, is not tractable to compute in gen-
eral. This difficulty motivates us to develop computable upper and lower bounds on
the approximation error using the results from Chapters 3 and 7. We illustrate these
bounds with some simple empirical examples.

Chapter 6: Exploiting higher-order structure for approximate estimation

This chapter provides a unified framework for developing and analyzing more advanced
techniques for computing approximations to the marginals of a target distribution. Each
approximation in this framework is specified by a cost function that depends on a set
of so-called pseudomarginals. These pseudomarginals implicitly define a distribution,
and the associated cost function constitutes an approximation to the Kullback-Leibler
divergence between this distribution and the target distribution. We construct these
approximations by decomposing the graph with cycles into a core structure, over which
the pseudomarginals are updated by exact computations, and a set of residual terms
(e.g., edges or cliques) not covered by the core structure. We demonstrate that various
known approximations, including the Bethe free energy, Kikuchi approximations [183],
and the proposal of Minka [132], are special cases of this framework. Moreover, we
develop algorithms, analogous to the tree-based reparameterization updates of Chap-
ter 5, for performing constrained minimization of the cost functions. The minimizing
arguments constitute approximations to the actual marginals of the target distribution.
Significantly, most of the theoretical results from Chapter 5 have natural generalizations
to all of the approximations in this framework. In particular, the ideas of reparameter-
ization and invariance are generally applicable. We use these principles to characterize
fixed points, and to analyze the approximation error.

Chapter 7: Upper bounds based on convex combinations

This chapter presents a new class of computable upper bounds on the log partition
function that are applicable to an arbitrary undirected graphical model. The bounds
are formed by taking a convex combination of tree-structured exponential parameters.
The weight on each tree can be viewed as its probability under a distribution over all
spanning trees of the graph. We consider the problem of optimizing these bounds with
respect to both the tree-structured exponential parameters as well as the distribution
over spanning trees. We show that a Lagrangian dual reformulation of the problem
leads to substantial simplification. As a result, despite the extremely large number of
spanning trees embedded in a general graph, we are able to develop an efficient algorithm

36 CHAPTER 1. INTRODUCTION

for implicitly optimizing the bounds over all spanning trees. This dual reformulation
also gives a new perspective on the Bethe free energy of approximate estimation. We
illustrate the use of these bounds in application to random choices of distributions on
various graphs. The methods developed in this chapter are broadly applicable. For
instance, there are natural extensions to convex combinations of hypertree-structured
distributions, which in turn provides a new perspective on Kikuchi and related free
energies.

Chapter 8: Contributions and Suggestions

This chapter summarizes the contributions of the thesis, and points out a number of
directions for future research. We also consider briefly the possible implications of
the perspective and results of this thesis for related research areas, including network
information theory, computing large deviations exponents, and iterative decoding.

Chapter 2

Background

This chapter outlines the background necessary for subsequent developments in this
thesis. Graphical models provide a flexible framework for specifying globally consistent
probability models based on local constraints. The primary focus of this thesis is
problems that arise in using such models. We begin in Section 2.1 with an introduction
to the basics of graphical models, and the relevant problems of inference and estimation.
As a prelude to introducing graphical models, this section also contains a brief primer
on graph theory. Section 2.2 introduces a particular representation of distributions
defined by graphical models — namely, the exponential family. Associated with such
families are a variety of elegant results, known collectively as information geometry. A
third concept central to this thesis is that of a variational formulation. Accordingly, we
devote Section 2.3 to an overview of variational methods, with a particular emphasis
on mean field theory.

B 2.1 Graphical models

Graphical models are a powerful framework for representing and manipulating prob-
ability distributions over sets of random variables. Indeed, stochastic processes de-
fined on graphs arise in a variety of fields, including coding theory [72], statistical
physics [15,32,136], artificial intelligence [138], computer vision [67], system theory [14]
and statistical image processing [127]. The power of graphical models derives from
the correspondence that they establish between the probabilistic concept of conditional
independence, and the graph-theoretic notion of node separation.

We begin in Section 2.1.1 with a brief but self-contained introduction to the basics
of graph theory. There are many books available to the reader interested in more
background on graph theory [e.g., 16,22,26,27]. In Section 2.1.2, we turn to the basics of
graphical models. More background on graphical models can be found in the books [69,
102,105,122]; another helpful source is the edited collection of papers [104]. Section 2.1.3
introduces the problem of estimation or inference in graphical models, which is central
to many parts of this thesis. Section 2.1.4 briefly discusses exact inference algorithms
for tree-structured graphs; more details can be found in Appendix A. In Section 2.1.5,
we describe the notion of a junction tree, which is important both in a purely graph-
theoretic context and for the purposes of inference in graphical models.

37

38 CHAPTER 2. BACKGROUND

H 2.1.1 Basics of graph theory

A graph G = (V, E) consists of a set of nodes or vertices V = {1,... , N} that are joined
by a set of edges E. Edges in a graph can either be directed or undirected; this thesis
will focus exclusively on undirected graphs. For an undirected graph, the notation (s, t)
(or equivalently, (¢, s)) denotes an undirected edge between nodes s and ¢ in the vertex
set. Throughout this thesis, we will focus on simple graphs, for which self-loops (i.e.,
an edge from a node back to itself), and multiple edges between the same pair of nodes
are both forbidden.

A subgraph H = (V(H), E(H)) of a graph G is formed by a particular subset V (H)
of the vertices, and a particular subset E(H) of the edges of G. It is often convenient
to consider subgraphs induced by particular subsets of the vertex set, or by particular
subsets of the edge set. First of all, given a subset S of the vertex set V', the subgraph
induced by S is given by G[S] = (S, E[S]) where E[S]={ (s,t) € E | s,t € S }. The
graph G[S] is called a node-induced subgraph. Similarly, given a subset F' C E of the
edge set, the subgraph induced by F'is given by G(F) = (V(F), F'), where

VIF)2{u eV |3veV st (uv) € F}

This graph G(F) is called an edge-induced subgraph. Examples of node and edge-
induced subgraphs are given in Figure 2.1.

(a) (b) ()
Figure 2.1. Illustration of node and edge-induced subgraphs. Vertices and edges in the
subgraph are shown in dark circles and solid lines (respectively), while those not in the
subgraph are shown with dotted open circles and dotted lines (respectively). (a) Graph
G with cycles. (b) The node-induced subgraph G[S] for S = {1,2,3,5,6,8}. (c) The
edge-induced subgraph G(F) with F = {(1,2),(2,3),(3,5), (4,6),(6,8)}.

For any s € V', the set of neighbors of s in G is given by
N()E{teV|(st)eE} (2.1)

The degree of a node s, denoted d(s), corresponds to the number of neighbors (i.e., the
cardinality [N (s)| of the neighbor set).

A path is a graph P consisting of the vertex set V(P) = {s¢, s1,... , sk} and a set of
distinct edges E(P) = {(s0,51), ... (Sk—1,5k) }- The vertices sy and sj are the end ver-
tices of the path, and [(P) = k is the length of the path. We say that P is a path from sg

Sec. 2.1. Graphical models 39

to sg. A cycleis a path from a node s back to itself formed of a sequence of distinct edges.
Le., a cycle consists of a sequence of distinct edges { (s1,s2), (s2,83), ..., (Sk—1,Sk) }
such that s; = s;. We say that a graph is connected if for each pair {s,t} of distinct
vertices, there is a path from s to t. A component of the graph is a maximal connected
subgraph. The notation ¢(G) denotes the number of (connected) components in the
graph G.

Of particular interest are graphs without cycles:

Definition 2.1.1 (Forests and trees). A tree T is a cycle-free graph consisting of a
single connected component. A forest is formed by the union of a collection of trees.
Given a graph G, a spanning tree is an embedded tree (i.e., a tree-structured subgraph
of G) that reaches each vertex. See Figure 2.2. for illustration of these concepts.

Definition 2.1.2 (Cliques). A clique of a graph G is any fully connected subset of
the vertex set V. A clique is mazimal if it is not properly contained within any other
clique.

Figure 2.3 illustrates the structure of cliques of sizes one through four. Note that any
single node is itself a clique, but not a maximal clique unless it has no neighbors. If
we return to Figure 2.1(a), nodes {1,2,5} form a 3-clique, but nodes {1,2,5,3} do not
form a 4-clique, since node 1 is not connected (directly) to node 3.

Let C = C(G) denote the set of all cliques in a graph G. For instance, given a tree
T, the clique set C(7) consists of the union V' U E of the vertex set with the edge set.
We use C to denote an arbitrary member of C (i.e., a particular clique of G). Given
a subset of the clique set C, it is natural to define the following generalization of an
edge-induced subgraph:

Definition 2.1.3 (Clique-induced subgraphs). Given a subset B C C of the clique
set, let G(B) denote the subgraph of G induced by the cliques in B. More precisely,
G(B) = (V(B); E(B)) where

{seV |seC for some C€B} (2.2a)
{(s,t) e E'|s,teC for some C € B} (2.2b)

> 1>

Note the clique set of G(B) can be strictly larger than B. For example, if we consider
a single cycle G on three nodes with B = {(1,2),(2,3),(1,3)}, then the clique set of
G(B) includes the 3-clique {1,2,3} ¢ B.

The notion of triangulation will play a central role in the junction tree representation
of graphical models, to be discussed in Section 2.1.5.

Definition 2.1.4 (Triangulated). A graph G is triangulated if every cycle of length
4 or greater has a chord (i.e., an edge joining two vertices not adjacent in the cycle).
See Figure 2.4 for illustrations of triangulated versus non-triangulated graphs.

40 CHAPTER 2. BACKGROUND

(a) (b) (c)

Figure 2.2. (a) Graph G with cycles. (b) A forest embedded within G. (c) Embedded
spanning tree that reaches each vertex of G.

N

Figure 2.3: Graph cliques of size 1 through 4.

(a) (b)
Figure 2.4. Illustration of a non-triangulated versus triangulated graph. (a) This
3 x 3 grid is not triangulated; it has many four cycles (e.g., the cycle formed by nodes
1—-2-5—4-1) that lack a chord. (b) Here is one triangulated version of the 3 x 3

grid, formed by adding the extra edges {(2,4), (4, 8),(2,6), (6,8),(2,8)}. The extra edge
(2,8) is added as a chord for the 4-cycle formed by nodes 2 —4 —8 — 6 — 2.

Sec. 2.1. Graphical models 41

Given a graph that is not triangulated, it is always possible to form a triangulated
version G by adding chords to cycles as necessary. However, this triangulated version
need not be unique; that is, a given untriangulated graph G may have a number of
possible triangulations.

It is useful to distinguish vertices (and edges), that if removed from the graph,
increase the number of connected components:

Definition 2.1.5 (Cut vertices and bridges). A vertex is a cut vertez if its deletion
from the graph increases the number of connected components. A bridge is an edge
whose deletion increases the number of connected components. (See Figure 2.5).

% %
S

Figure 2.5: Vertex s is a cut vertex in the graph shown, whereas edge c is a bridge.

W 2.1.2 Basics of graphical models

Given a graph G = (V, F), a probabilistic graphical model is formed by associating
with each node s € V a random variable z; taking values in the sample space X.
This sample space can be either a continuum (e.g., X = R), or the discrete alphabet
X ={0,... ,m — 1}. In this latter discrete case, the underlying sample space X is the
set of all N vectors x = {z, | s € V} over m symbols, so that | x| =m".

In a graphical model, the edges of the underlying graph represent probabilistic
dependencies between variables, and come in two varieties — directed or undirected.
Although the probabilistic interpretation of directed and undirected edges is different,
any directed graph can be converted to an equivalent! undirected graph [see, e.g., 138].
In this thesis, we restrict our attention to undirected graphs.

The stochastic processes of interest are those which are Markov with respect to the
underlying graph. To define this concept, let A, B and C be subsets of the vertex set V.
Let x 45 be the random variables in A conditioned on those in B. The set B separates
A and C if in the modified graph with B removed, there are no paths between nodes in
the sets A and C (see Figure 2.6).

Definition 2.1.6. A stochastic process x is Markov with respect to the graph G if
x 4|5 and x¢|p are conditionally independent whenever B separates A and C.

'However, it may no longer be possible to read directly certain conditional independencies from the
undirected graph.

42 CHAPTER 2. BACKGROUND

A C

Figure 2.6. Illustration of the relation between conditional independence and graph
separation. Here the set of nodes B separates A and C, so that x4 5 and x¢|5 are
conditionally independent.

This definition of Markovianity constitutes a generalization of the concept as applied
to a discrete time series. Indeed, a time series sampled at discrete instants can be viewed
as a stochastic process defined on a chain. For such a graph, Definition 2.1.6 corresponds
to the usual notion that the past and future are conditionally independent given the
present.

A graph strongly constrains the distribution of a Markov process. Indeed, the
Hammersley-Clifford theorem [21,80] guarantees that distributions of Markov processes
over graphs can be expressed in factorized form as products of so-called compatibility
functions defined over the cliques:

Theorem 2.1.1 (Hammersley-Clifford). Let G be a graph with a set of cliques C.
Suppose that a distribution® p over a discrete random vector X is formed as a normalized
product of nonnegative functions over the cliques:

p) = [et (2.3

ceC

where e (x) is a compatibility function depending only on the subvector x¢ = {zs | s €
C}; and Z £ Y, [eec ¥e(x) is the partition function. Then the underlying process x is
Markov with respect to the graph. Conversely, the distribution p of any Markov random
field over G that is strictly positive (i.e., p(x) > 0 for all x € XN) can be represented
in this factorized form.

Remarks: There a variety of proofs of this result [e.g., 21, 80]; see Clifford [39] for
a historical overview. One of the most elegant proofs [80] uses the M&bius inversion
formula [see, e.g., 29]. Note that this theorem generalizes the usual factorizations
of Markov chains, for which the compatibility functions are formed by forward (or
backward) transition functions defined on the edges (i.e., maximal cliques for a chain).
See Lauritzen [122] for an example of a non-positive distribution (i.e., p(x) = 0 for some
x € XN) for which the converse is false.

2Strictly speaking, p is a probability mass function for discrete random variables; however, we will
use distribution to mean the same thing.

Sec. 2.1. Graphical models 43

B 2.1.3 State estimation or inference

A problem that arises in many applications of interest is that of estimating the random
vector x = {z | s € V'} based on a set of noisy observations y = {ys | s € V'}. For
instance, in image processing or computer vision [67,127], the vector x could represent
an image defined on a grid, and y could represent a noisy or blurred version of this
image. Similarly, in the context of channel coding [69,72], the vector x would represent
message bits, whereas y would correspond to the received bits.

In all cases, the goal is to estimate or to draw statistical inferences about the
unobserved x based on the observations y. The observation model can be formulated
mathematically in the form of a conditional distribution. In particular, we assume
that for each node s € V, the variable y, is a noisy observation of x,, specified by
the conditional density p(ys|zs). We assume that the observations y are conditionally
independent given the hidden variables® x, so that p(y|x) = [I,cy p(ys|zs).

Of central interest for problems of estimation or inference is the posterior density
p(x|y), which defines a variety of estimators:

1. The mazimum a posteriori (MAP) estimate corresponds to the peak or mode of
the posterior density — that is: Xy ap = arg max,c yn p(x|y)

2. Also of interest are posterior marginals of a subset of variables. For instance, for
a discrete process x, the single node marginals are given by

pady) = 3 p]y) (2.4)

{x' | zi=zs }

Here the notation means summing over all configurations x’ € XY such that
z!, = xs. For a continuous-valued process, this summation should be replaced by
integration.

By combining the prior in equation (2.3) with the observation density via Bayes
rule, we have:

x|y H 'QbC Hp ys|$s (25)

CGC

Note that each individual node forms a singleton clique, meaning that some of the
factors in (2.3) may involve functions of each individual variable. As a consequence,
the transformation from the prior distribution p(x) of equation (2.3) to the condi-
tional distribution p(x|y) of equation (2.5) is simply to modify the singleton factors of
equation (2.3). As a result, from here onwards, we suppress explicit mention of mea-
surements, since problems of estimation or inference for either p(x) or p(x|y) are of
identical structure and complexity.

3This assumption entails no loss of generality, since any observation that is a function of variables
at multiple nodes can be merged into a clique potential that includes those nodes.

44 CHAPTER 2. BACKGROUND

The computations of the MAP estimate or of the single-node marginals are both
well-defined tasks. The latter task will be of primary interest in this thesis. Difficulties
arise from different sources, depending on whether x is a discrete or continuous-valued
process. For a continuous process, it may not be possible to evaluate analytically the
necessary integrals. This difficulty is relevant even for small problems. For a discrete
process, on the other hand, computing a marginal simply involves a discrete summation,
which is a straightforward operation for small problems. Here the difficulty arises as
the problem size grows. In particular, given a discrete-valued process on N nodes
with m > 2 states, the number of terms in the summation of equation (2.4) explodes
exponentially as m™N~!. Consequently, for sufficiently large graphs, it will be impossible
to perform the discrete summation. A similar curse of dimensionality applies to the
computation of the MAP estimate.

B 2.1.4 Exact inference in trees

For a Markov chain, there exist highly efficient algorithms for computing the MAP esti-
mate, or the single-node marginals at each node. These algorithms exploit the Markov
properties of a chain — namely, that the past and future are conditionally independent
given the present — to perform the necessary computations in a recursive and hence
efficient manner. For the linear-Gaussian problem, this formulation leads to the Rauch-
Tung-Striebel smoother [146]. For a discrete-state hidden Markov chain, the resulting
algorithm is known as the o — 8 algorithm in the speech processing literature [143].

Interestingly, these recursive algorithms can be generalized to trees, which are singly-
connected graphs without cycles. (A chain is a special case of a tree.) An important
property of trees is that their nodes can be assigned a partial ordering in terms of their
depth in relation to an arbitrary node designated as the root. That is, the root is scale
0; the immediate descendants (i.e., children) of the root are scale 1; and so on down to
the leaves (terminal nodes) of the tree. With this partial ordering, the most efficient
implementation of a tree inference algorithm follows a two-pass form, first sweeping
up from the leaves to the root, and then downwards from the root to the leaves. For
a discrete process, the computational complexity of these algorithms is O(m2N). See
Appendix A for more details about such tree algorithms.

M 2.1.5 Junction tree representation

The set of cliques of a Markov chain are single nodes and pairs of adjacent nodes. In
this case, the compatibility functions {1¢} of equation (2.3) can always be written as a
function of local marginal and conditional distributions. For example, the standard for-
ward factorization of a Markov chain on three nodes is in terms of an initial distribution
and transitions:

p(x) = p(z1) p(z2 | 71) p(T3 | T2)

There is an alternative factorization that is symmetric with respect to the nodes —
namely p(x) = [p(z1,22)/p(z1)p(z2)] [p(22,23)/p(x2)p(23)]p(21)p(z2)p(23). More gen-

Sec. 2.1. Graphical models 45

erally, the same kind of symmetric factorization holds for any tree-structured graph

T:
p(x) = [[o)] % (2.6)

seV (st)eE

That is, for a tree, the compatibility functions of equation (2.3) can always be repre-
sented directly in terms of local marginal distributions: vs(zs) = p(zs) for each node
s € V; and yi(ws, 31) = [p(s, 71) /p(ws)p(a1)] for each edge (s,) € E.

In contrast, for a graph with cycles, the compatibility functions do not, in general,
have any direct correspondence with local marginal distributions on those same cliques.*
However, such a correspondence does hold on a graph formed of suitably aggregated
nodes, which is the subject of the junction tree representation. The basic idea is to
cluster nodes within the original graph G so as to form a clique tree — that is, an
acyclic graph whose nodes are formed by cliques of G. We use the calligraphic C to
refer to a given node of the clique tree (i.e., a given clique of G).

Having formed a tree, it is tempting to simply apply a standard tree inference
algorithm. However, the clique tree must satisfy an additional restriction so as to
ensure consistency of probabilistic inference on the tree. To understand the source of
this problem, consider the single loop on 4 nodes shown in Figure 2.7(a), as well as
the clique tree (one of many possible) shown in Figure 2.7(b). Here ellipses represent
nodes of the clique tree (i.e., cliques of the original graph), whereas the boxes represent
separator sets, which correspond to intersections of nodes adjacent on the clique tree.
Observe that node 3 occurs twice in the clique tree, once in each of the cliques {1, 3}

1

4

(a) (b)
Figure 2.7. A simple example showing the necessity of the running intersection prop-

erty for probabilistic consistency. (a) Single loop on 4 nodes. (b) One possible clique
tree for the graph in (a). This clique tree fails the running intersection property.

and {3,4}. However, any tree inference algorithm applied to the clique tree of (b) will
not enforce the implicit constraint that the corresponding random variable x3 in clique
{1, 3} must match the z3 in clique {3,4}. As a result, running a tree inference algorithm
on the graph in (b) will not yield the correct results for the single loop of (a).

“The simplest example to consider is the single cycle on 4 nodes; here the pairwise compatibility
functions can never correspond to Ps:/PsP;. See Proposition 5.4.4 in Chapter 5.

46 CHAPTER 2. BACKGROUND

What is required is a mechanism for enforcing consistency among the different ap-
pearances of the same random variable. Note that the same problem does not arise
for node 2, although it also appears in both of the two cliques {1,2} and {2,4}. The
difference is that node 2 also appears in all separator sets in the path between these
two cliques, which provides a pipeline for transmitting and enforcing the associated
consistency constraints. This motivates the following definition:

Definition 2.1.7. A clique tree has the running intersection property if for any two
clique nodes C; and Cs, all nodes on the unique path joining them contain the intersec-
tion C1 NCy. A clique tree with this property is known as a junction tree.

For what type of graphs can one build junction trees? It is clear that no clique tree of
the single loop in Figure 2.7(a) has the running intersection property. (Since the clique
tree of Figure 2.7(b) does not satisfy running intersection, by a symmetry argument
neither can any other clique tree.) An important result in graph theory establishes a
correspondence between junction trees and triangulated graphs (see Definition 2.1.4).

Proposition 2.1.1. A graph G has a junction tree <= it is triangulated.
Proof. See Lauritzen [122]. O

This proposition leads to a method for exact inference on arbitrary graphs:

Algorithm 2.1.1 (Junction tree).
1. Given a graph with cycles G, triangulate it by adding edges as necessary.
2. Form a junction tree associated with the triangulated graph G.

3. Run a tree inference algorithm on the junction tree.

Although this procedure is sound in principle, its practical use is limited. For most
applications of interest, the size of the cliques in the triangulated version G grows
with problem size. As a result, the state cardinality of the supernodes in the junction
tree grows exponentially, meaning that applying tree algorithms rapidly becomes pro-
hibitively complex. This explosion in the state cardinality is another demonstration of
the intrinsic complexity of exact computations for graphs with cycles.

Example 2.1.1. To illustrate the junction tree procedure and its associated complex-
ities, we consider the 3 x 3 grid shown in Figure 2.8(a). The first step is to form a
triangulated version G, as shown in Figure 2.8(b). Note that the graph would not be
triangulated if the additional edge joining nodes 2 and 8 (shown in a dashed line) were
not present. Without this edge, the 4-cycle (2 —4 — 8 — 6 — 2) would lack a chord. As
a result of this additional edge, the junction tree has two 4-cliques in the middle, as

Sec. 2.2. Exponential families and information geometry 47

1 2 3
4 6
7 8 9

(a) (b) (c)
Figure 2.8. Tllustration of junction tree procedure. (a) Original graph is a 3 x 3 grid.
(b) Triangulated version of original graph. Note the two 4-cliques in the middle. (c)
Corresponding junction tree for triangulated graph in (b), with maximal cliques depicted
within ellipses, and separator sets within rectangles.

shown in Figure 2.8(c). Consequently, running a tree inference algorithm on the junc-
tion tree involves dealing with variables with state cardinalities of m*. This difficulty
only worsens as the grid size grows.

Despite its limited practical use, the junction tree procedure provides conceptual
insight into the inherent complexity of a given distribution on a graph. In particular, it
gives rise to an alternative representation of the distribution, in terms of local marginal
distributions on maximal cliques and separator sets. That is,

. HCeC p(xc)

- HSGS p(xs) (27)

p(x)

where C is the set of all maximal cliques of é, and S is the associated set of separators.
Unlike the representation of equation (2.3), equation (2.7) provides a decomposition
directly in terms of local marginal distributions. The price to be paid is that the
decomposition involves functions defined over larger clusters of variables. Note that
equation (2.6) is a particular case of this decomposition, where the maximal cliques are
the edges of the ordinary tree, and the separator sets correspond to nodes with degree
greater than one.

B 2.2 Exponential families and information geometry

Exponential families of distributions and their associated geometry have been studied
extensively in applied probability theory and statistics. Work in this area dates back to
Rao [145] in 1945, who developed the geometric role of the Fisher information matrix.
Subsequent contributions were made by a variety of people, including Chentsov [33,34],
Csiszar [44-47], Barndorff-Nielson [13] and Amari [5-7]. This section contains a brief

48 CHAPTER 2. BACKGROUND

introduction to this body of theory, which is often referred to as information geometry.
We emphasize only those concepts necessary for our subsequent development; see the
references above, or the edited collection of papers in [83] for further details. Although
information geometry applies to any exponential family of distributions, we focus here
on such distributions in the specific context of graphical models.

H 2.2.1 Exponential representations

Equation (2.3) decomposes a graph distribution as a product of compatibility func-
tions defined on the cliques. A related representation is the Gibbs form, in which a
distribution is specified as the exponential of a sum of functions on the cliques. In
the context of graphical models, an exponential family constitutes a collection of such
Gibbs distributions:

p(x;0) = exp{D Oada(x) — ®(0)} (2.8a)
o(0) = log(Y, exp{D)_ bada(x)}) (2.8b)
xeXN e

The quantity ® defined in equation (2.8b) is the log partition function that serves to
normalize the distribution; when the sample space XV is continuous, the summation
defining ® should be replaced by an integral.

Any exponential family is specified by a collection of potential functions {¢,, | a € A},
where A is a finite index set. The domain of the ezponential parameter vector 6 is the
set

0 2 {hecRA | ®0) <o}
In the discrete case, this imposes no restrictions (i.e., © = RHAI); in continuous examples,
O can be a strict subset of RMI. In this thesis, we focus primarily on the discrete case.
Each parameter vector § € © indexes a particular member p(x;6) of the family,
assuming that the set of clique potentials ¢ = {¢,} is fixed. With some abuse of
notation, we will often use the parameter vector 6 itself as a shorthand for the associated
distribution.

Minimal representations

It is typical to define an exponential family with a collection of functions ¢ = {¢pq}
that are linearly independent. Indeed, if there were any linear dependencies, they could
be eliminated without sacrificing any expressive power of the exponential model. This
condition gives rise to a so-called minimal representation [e.g., 13], in which there is a
unique parameter vector # associated with each distribution. In this case, the dimension
of the exponential family, denoted by d(0), is given by |A|.

To illustrate these definitions, we consider some simple examples:

Sec. 2.2. Exponential families and information geometry 49

Example 2.2.1. Consider a scalar Gaussian random variable z ~ N (i1,02). Then its
density has the exponential representation

p(z;0) = exp{fiz + Or2° — B(0)} (2.9)
Le. here we have ¢;(z) = z and ¢9(x) = z2. By completing the square, we obtain
relations between the exponential parameters (61,62) and the mean and variance —
namely, 0y = —1/[20?] and 6; = p/o?. Here the dimension of the family is d(f) = 2.
Moreover, the domain of € is the half plane

O = {(61,6:) € R* | 0, < 0}

The restriction on 6 is required so that the associated integral defining the log partition
function — namely, ®(0) = [exp{f1z + 027 }dz — is finite.

Example 2.2.2. Now consider a binary process (i.e., x € {0,1}"V) defined on a graph
with pairwise maximal cliques (i.e., whose maximal cliques are pairs of nodes). The
standard (minimal) representation corresponds to the Boltzmann machine [e.g., 106],
also known as the Ising model in statistical physics [15,32]:

p(x;0) = exp { Z Osxs + Z Osezsze — ©(0)} (2.10)

seV (st)eE

where 6 is the strength of edge (s,t), and 6 is the node parameter for node s. In this
case, d(0) = |V|+|E| = N + |E|, and the domain © of 6 is all of R¥?),

Examples 2.2.1 and 2.2.2 illustrate that the sample space X is critical in assessing
the linear independence of a set of functions {¢$,}, and hence the minimality of the
representation. In Example 2.2.1, the functions z and z? are linearly independent over
R, so that equation (2.9) constitutes a minimal representation. In contrast, these same
functions are not linearly independent over {0, 1}.

Example 2.2.3. We now consider an extension of Example 2.2.2, with x € {0, 1}".
The Ising model corresponds to pairwise maximal cliques. To incorporate higher-order
cliques (e.g., the 3-clique {s,t,u}), we add a multinomial of the form zsz;x,, with
corresponding exponential parameter 6. Cliques of higher order are incorporated in
a similar fashion, so that the minimal representation of the most general distribution
(i.e., possibly on the complete graph) is of the form:

n
p(x;60) = exp { Z Oz, + Z Ostxxs + Z Ot TsTiTy + . ..
s=1

s<t s<t<u
oo+ 01NN — @(9)} (2.11)

50 CHAPTER 2. BACKGROUND

It can be verified that the set of functions {zs}Y | U {zszi}s<i U... U {1 - 2, } are
linearly dependent over {0, I}N , and span the space of all real-valued functions on
{0,1}". Hence the dimension of the family is given by:

a0 = (V) () + e (§) =2v 1

Since any distribution on the binary vector x € {0,1}" has 2" — 1 degrees of freedom,’
we see that any distribution can be represented in the form equation (2.11).

Of course, the Ising model of equation (2.10) arises as a particular case of equa-
tion (2.11), where we place the restriction that #; = 0 for all subsets J C {1,... ,N}
of size |J| > 2. Indeed, a nested sequence of exponential families Fj can be defined
by imposing restrictions of the form 6; = 0 for all |J| > k, for k =1,... ,N — 1. See
Amari [6] for details on such nested families. In the context of graphical models, these
restrictions correspond to a limit on the maximal clique size in the associated graph.

Examples 2.2.2 and 2.2.3 can be extended to minimal exponential representations
of m-ary processes (m > 2) as well. In particular, the analog of the Ising model for an
m~ary process is specified in terms of the functions

R(s)Z{z%la=1,..., m—1} forseV (2.12a)
R(s,t) & {z%% |a,b=1,... ,m —1} for (s,t) € E (2.12b)

The dimension of this exponential family is given by d(6) = (m—1) N +(m—1)?|E|. In-
corporating higher order cliques entails adding higher degree multinomials to the clique
functions of equation (2.12). This procedure, though conceptually straightforward, can
lead to cumbersome notation. See Amari [6] for further details.

Overcomplete representations

In addition to such a minimal parameterization, parts of our analysis (especially Chap-
ter 5) make use of an overcomplete representation, in which the {¢,} are linearly de-
pendent. In this case, the lack of linear independence means that there exists an entire
linear subspace of parameter vectors @, each associated with the same distribution.

Example 2.2.4 (Overcomplete representation of binary process). One natural
overcomplete representation of a binary process on a graph with pairwise cliques entails
specifying a 2-vector for each node s € V, and a 2 x 2 matrix of values for each edge
(s,t) in the graph. To do so, we choose our clique potentials as indicator functions:
that is, the collection of functions {d(zs = j)| 7 = 0,1} for each node s € V, and
{6(xs = 7)0(xt = k)| 4,k = 0,1 } for each edge (s,t) € E. Here, the indicator or delta

5 Any distribution can be represented by a 2V vector, and we lose one degree of freedom due to the
normalization) p(x) = 1.

Sec. 2.2. Exponential families and information geometry 51

function d(xs = j) is equal to 1 when node z, takes the state value j, and 0 otherwise.
The corresponding representation would be of the form

1 1
p(x;0) = exp { Z Zos;jé(xs =Jj)+ Z Z Ost;jkd (x5 = J)0(ze = k) — @(9)}
sCV j=0 (s,1)€E j,k=0
(2.13)

where 6 is the corresponding overcomplete parameter vector.

It is straightforward to generalize this type of overcomplete representation in terms
of indicator functions to m-ary processes.

Different types of binary potentials

Given a distribution over a binary vector defined by a graph with pairwise cliques, it
will often be useful to specify potential types from one of the following classes:

(a) in a graph with attractive potentials, all pairs of neighboring random variables are
more likely to take the same values than opposite values.

(b) conversely, in a graph with repulsive potentials, all neighboring variables are en-
couraged to take opposite values.

(c) a graph with mized or frustrated potentials consists of a combination of attractive
and repulsive potentials.

In the statistical physics literature [e.g., 15,32], these types of distributions are referred
to as ferromagnetic, anti-ferromagnetic, and paramagnetic respectively.

The convention of this thesis will be that a binary random variable x, takes values
in {0,1}. In order to specify potential types, it is useful to consider a so-called spin
representation in which a binary random variable u, takes values in {—1,+1}. The term
“spin” comes from the statistical physics literature [32]; for instance, one can think of
us as giving the orientation (up or down) of a magnet at node s. We let

p(u;w) = exp{ Z Wsls + Z wsttsuy — P(w)} (2.14)
s (s:t)

be a minimal exponential representation corresponding to the spin vector u € {—1,1}",
where w is the associated vector of exponential parameters. In this spin representation,
the nature of the interaction between us and wu; is determined entirely by the sign of
wse. In particular, the potential is attractive (respectively repulsive) if and only if wg
is positive (respectively negative).b

5Note that the same statement does not hold for the exponential parameter 5 in a {0, 1} represen-
tation (see, e.g., equation (2.10)). For this representation, if we disregard the single node parameters
05, setting 0s¢ > 0 places higher weight on the configuration (zs,z¢) = (1,1), but equal weights on the
remaining configurations {(0,0), (1,0), (0,1) }.

52 CHAPTER 2. BACKGROUND

Thus, a spin representation is convenient for constructing random distributions on
graphs with particular types of potentials. Moreover, any spin parameter w specifies a
unique exponential parameter 6. In particular, we substitute the relation us = 2z, — 1,
which converts from {0,1} variables to spins, into equation (2.14), and then equate
coefficients with the Ising model of equation (2.10). In this way, we obtain the following
relations:

O, = 2[wi— Y wy] (2.15a)
03,5 = 4wst (215]:))

We now define for future reference a few ensembles of random potentials. In all
cases, we set the node parameters ws, = 0 for all nodes s € V. Let U[a,b] denote the
uniform distribution on the interval [a,b]. Given a particular edge weight d > 0, we
then choose the edge parameters as follows:

(a) for the wuniform attractive ensemble with edge weight d > 0, set wg ~ U]0,d]
independently for each edge (s,t) € E

(b) for the uniform repulsive ensemble, set wg ~ U[—d, 0] independently for each edge
(s,t) € E

(c) for the uniform mized ensemble, set wg ~ U[—d,d] independently for each edge
(s,t) € E

Given the (randomly-chosen) distribution p(u;w) specified in terms of the spin param-
eter w, we then convert to the distribution p(x;#), where 6 is obtained from w via
equation (2.15).

W 2.2.2 Properties of ¢

In this section, we develop some important properties of the log partition function ®
defined in equation (2.8b), including its convexity. Given a distribution p(x;) and a
function f : XV — R, we define the expectation of f(x) with respect to p(x;#) as
follows:

Eo[f(x)] = > p(x;0) f(x) (2.16)

xcxN

When the sample space X is continuous, this summation should be replaced by an
integral.

With this notation, we can show that the function @ is closely related to the cumu-
lant generating function” associated with the random variables {¢$,(x)}. In particular,

TAnother interpretation of ® arises in statistical physics, where it is known as the Helmholtz free
energy [32,136].

Sec. 2.2. Exponential families and information geometry 53

given a parameter vector 6 € RY® and another vector ¢ € RU?) | we compute:
log (]E(, [exp{) eaqﬁa(x)}]) = ®(0+e)— 0(0) (2.17)

The quantity on the left-hand side is the cumulant generating function (or the logarithm
of the moment generating function) [81]. Equation (2.17) shows that this cumulant
generating function is equal to the difference between the function ® at two distinct
values.

Using this relation, it can be shown that derivatives of ® with respect to € correspond
to the cumulants of {¢,(x)}. For example,

) = Folga] (2182)

2
7391396(9) = covp{¢a, g} = EH{(¢a—E0[¢a])(¢ﬂ—E0[¢ﬂ])} (2.18b)

are the first and second order cumulants. In general, let cumy{¢,,,... ,$q, } denote
the k'"-order cumulant of {¢q,,...,¢a,} under p(x;0). Then higher order cumu-
lants are defined recursively by successive differentiation of lower order cumulants; e.g.,
Cum9{¢a1v ¢O¢2a ¢a3} [Cum9{¢a1 ’ ¢Cz2 }]

The second order cumulant in equation (2.18b) reveals an important property of
the log partition function:

Lemma 2.2.1. The function ® is convex as a function of 6. The convexity is strict
when the representation is minimal.

Proof. Note that the quantity in (2.18b) is an element of the Fisher information ma-
trix (Eg{a loggzx) }). Therefore, the Hessian V2?® is positive semi-definite (strictly
p081t1ve definite for a minimal representation), so that ® is convex (respectively strictly
convex). O

The convexity of ® will play a central role in subsequent geometric developments.

H 2.2.3 Riemannian geometry of exponential families

An important feature of exponential families of distributions is their geometric struc-
ture. In this section, we provide a very brief introduction to the differential geometry
of these families. See Amari [5-7] and the edited collection of papers [83] for further
details.

Consider an exponential representation in terms of the d(f)-dimensional parameter
6, assumed to be minimal. For each § € ©, we have p(x;0) > 0 for all x € XV,
Therefore, we can associate with each point § € © a function — namely, the log dis-
tribution log p(x;#). Under suitable regularity conditions [13], this association defines
a d(f)-dimensional differential manifold M of functions {logp(x;6) | # € ©}. When

54 CHAPTER 2. BACKGROUND

the sample space X'V is discrete and hence finite, we can view M as embedded within
RA N'; otherwise, it is embedded within an infinite-dimensional function space. The
mapping 6 — logp(x;0) is the co-ordinate mapping of the manifold, as illustrated in
Figure 2.9.

Figure 2.9. The exponential parameters € serve as the co-ordinates for the d(6)-
dimensional differential manifold of log distributions logp(x;). Associated with each
0 € O is a log distribution logp(x;6); the association 8 +— logp(x;6) defines the co-
ordinate mapping.

Given a line 0(t) in ©, we can consider the curve in M defined by its image
log p(x;0(t)) under the co-ordinate mapping. The set of all tangent vectors to such
curves at a particular value of 8 defines the tangent space of M at the point log p(x;0).
It can be seen that this tangent space is a d(f)-dimensional vector space. In particular,
letting e, be a d(f)-vector of zeros with a single one in element « and zero elsewhere,
consider the co-ordinate line 0(s;) = (1 — $)0 + se,. By straightforward calculations,
the tangent vector t, to the curve log p(x;0(s; a)) is given by

to = 8%1ogp<x; 0) = bal(x) — Eglpa] 1(x) (2.19)

where 1(x) = 1 for all x € XN. In computing this derivative, we have used equa-
tion (2.18a). It can be shown that the set {t, | @ € A} spans the tangent space at
log p(x;0).

We now use p(x;0) to define a weighted inner product on the tangent space. Of
course, it suffices to specify the inner product for any pair {t,,ts}, which we do as
follows:

0 0
(bas)0 = Eo |- Lo p(x;0) - Lo ploxi0)] = covo{das 6} (2:20

where we have used equations (2.18b) and (2.19) to see the equivalence to a covariance.

Sec. 2.2. Exponential families and information geometry 55

The quantities gos(6) 2 covp{da, ¢g} are elements of the Fisher information ma-
triz, denoted by G(6). For a minimal f-representation, it can be seen that the Fisher
information matrix is strictly positive definite for all §. It therefore defines a Rieman-
nian metric, with the squared distance between the distribution 6 and an infinitesimally
perturbed distribution # + A given by

[d(0,0 + D) = Y gas(0)Aalg = ATGO)A = |Al%, (2.21)
o,

The Fisher information matrix and the induced distance function of equation (2.21)
also play important roles in other contexts, as we will explore in subsequent sections.

B 2.2.4 Legendre transform and dual variables

The aspect of information geometry that sets it apart from classical Riemannian ge-
ometry is the existence of a dual parameterization, coupled to the exponential 6-
parameterization. The coupling arises from convex duality associated with the log
partition function ®. The monograph of Rockafellar [151] provides a comprehensive
treatment of convex duality; a more elementary and geometric treatment of duality
can be found in Bertsekas [20]. In this section, we exploit the convexity of ® to apply
notions from convex analysis — in particular, the Legendre transform — from which
we obtain a second set of parameters dual to the exponential #-representation. In a
later section, we use the Legendre duality to develop a geometric interpretation of the
presence or absence of certain cliques in a graph-structured distribution.

The convexity of @ allows us to apply the Legendre transform. Here we assume that
the domain © of @ is either all of R, or some convex subset. The Legendre dual of @
is defined as:

U(n) = Slelp{nT9 — ®(0)} (2.22)

where 7 is a vector of the same dimension as the exponential parameter 6. Since the
quantity to be maximized (i.e., 7’0 — ®(0)) is strictly concave as a function of 6, the
supremum in equation (2.22) is attained at some point 6. Taking derivatives to find
stationary points, and making use of equation (2.18a) yields the defining equation:

~

Na = Na(0) = E§[¢a] (2.23)

Since they are obtained by taking expectations, these dual variables n are often referred
to as the mean parameters. Substituting the relation in (2.23) back into equation (2.22)
yields the relation

T(n(0) = Y 0uBjlpa] — 2(0) = Ejllogp(x;0)] (2.24)

so that the Legendre dual ¥ is the negative entropy. Note that W is itself a convex
function, so that we can again apply the Legendre transform. It is not difficult to show

56 CHAPTER 2. BACKGROUND

that applying the Legendre transform twice in this manner recovers the log partition
function; that is,

o(0) = sgp{OTn —¥(n)} (2.25)

The Legendre duality of ® gives rise to a mapping A : 8 — 7, defined explicitly by

A = 0

= Eg[a] (2.26)

For a minimal representation, Lemma 2.2.1 guarantees that ® is strictly convex, in
which case the mapping is one-to-one [151]. It is therefore invertible on its image, with
the inverse map A~! :) — 6 defined by the corresponding relation

—1 9¥(n)
A e = 55 (2.27)
On the basis of these mappings, we can specify distributions either in terms of the expo-
nential parameter 0, or the associated dual parameter 7. Given a valid dual parameter
7 in a minimal representation, the quantity p(x;n) denotes the equivalent exponential
distribution p(x; A~1(n)).
A few examples help to give intuition for the Legendre mapping:

Example 2.2.5 (Legendre transform for Gaussian). Let x ~ AN(0, P) be a zero-
mean Gaussian random vector with covariance P. Then the density has an exponential
representation of the form:

N
1
p(x;60) = exp {5 Z 05522 + Z Osizsxr — @(9)} (2.28)
s=1 s<t
Here 6 specifies elements of the inverse covariance (i.e., Psgl = —04).2 From equa-

tion (2.26), the dual variables are given by:

Tlss = Eg[xg]:var(xs)
TNst = Eg[xsxt]:cov(xs,xt)

so that n specifies elements of the covariance matrix P. That is, the Legendre transform
maps back and forth between the matrix inverse pair P and —P L.

Example 2.2.6. We now return to the Ising model (see Example 2.2.2), where the
random vector x € {0,1}" has a distribution of the form

p(x;0) = exp { Z Osxs + Z Osezsze — ©(0) }

seV (s,t)eE
8We require that @ belongs to the set for which P~'(#) > 0.

Sec. 2.2. Exponential families and information geometry 57

In this case, the dual variables are given by the expectations:

Ns = Eﬂ[xs] = p($s:1;9)
Nst = Eﬂ[xs$t] = p($s:17$t:1;0)

That is, the dual variables correspond to particular marginal probabilities at individual
nodes, and pairs of nodes (s,t). Note that the dual variables fully specify the single
node marginals, and pairwise marginals for (s,t) € E:

14y — 775 — -
plosi0) = [(L—m) 75 plagm0) = |70 7 e =) T e
Tls — Tst st

When the underlying graph G of the Ising model is a tree, these local marginals de-
termine the full distribution p(x;0) explicitly via the tree factorization given in equa-
tion (2.6). For a graph with cycles, such a local construction is not possible; however,
whenever the dual variables {ns,7ns} belong to the range of the Legendre transform,
then the invertibility of this transform guarantees that the dual variables still completely
specify the distribution.

The Legendre mapping is also closely related to the Fisher information matrix.
In particular, by differentiating equation (2.23) with respect to 63, we see that the
Jacobian of the mapping A : 6 — 1) is given by the Fisher information matrix [G(0)]as =
covg{¢a, ¢3}. That is,

n(0 + Af) —n(0) = G(0)Ab (2.29)

up to first order in the perturbation Af. Similarly, the inverse Fisher information
matrix G~', which is guaranteed to exist when @ is strictly convex, corresponds to the
Jacobian of the inverse mapping A~ : 5+ 6.

B 2.2.5 Geometric consequences for graphical models

In the specific context of graphical models, the Legendre duality also leads to an inter-
esting geometric interpretation of the presence or absence of given clique potentials. In
particular, consider the constrained maximum entropy problem:

{maxp H(p)
> x P(X)da(x) < 14

Geometrically, the maximization takes place over a polyhedral set, formed by the inter-
section of the probability simplex P = {p(x) | 0 < p(x) < 1; >, p(x) =1 } with the
hyperplane constraints {p(x) | >, p(X)pa(x) < 1o }. It is well-known [42] that the
solution to this problem assumes the familiar Gibbs form of equation (2.8), where the
exponential parameter 6, now corresponds to the Lagrange multiplier associated with

(2.30)

58 CHAPTER 2. BACKGROUND

the constraint) p(x)¢pa(x) < 1o. That is, it reflects the sensitivity of the problem to
perturbations in the associated 7, constraint.

By the Karush-Kuhn-Tucker conditions [20], the Lagrange multiplier 6, is zero
whenever the 7,-constraint is inactive (i.e., not met with equality.) On this basis, the
presence or absence of particular cliques in a graphical model can be related to hyper-
plane constraints. In particular, we can add a given clique potential ¢g by imposing
a hyperplane constraint of the form) p(x)¢g(x) < nz. Progressively lowering 7z so
as to tighten the constraint will eventually ensure that the associated Lagrange mul-
tiplier is non-zero, meaning that the clique potential ¢z appears in the exponential
representation with a non-zero weight 3. Conversely, we can remove a given clique
from the graphical distribution by loosening the associated constraint. Eventually, the
constraint will become inactive, so that the Lagrange multiplier 63 is zero and the clique
is effectively absent from the graph.

Yo P(X)Pp(x) =g
> P(X)Pa(x) = na

Figure 2.10. Geometry of graph-structured distributions. Distributions p(x) are re-
stricted to the simplex P = {p(x) | 0 < p(x) < 1; Y p(x) =1}, and lie on the
intersections of hyperplane constraint sets { p(x) | >, p(X)¢a(X) = no } imposed by
the clique potentials {¢, }.

H 2.2.6 Kullback-Leibler divergence and Fisher information

The Kullback-Leibler divergence [119] can be viewed as a measure of the “distance”
between two distributions. For a discrete random vector, its usual definition [see, e.g.,
42]is D(p ||) = > ycxn P(x)[logp(x) — log g(x)]. The definition shows that it is not a
true distance, since (for example) it is not symmetric in p and q. However, it can be
shown using Jensen’s inequality that D(p || ¢) > 0 for all p and ¢, with equality if and
only if p =gq.

With a minor abuse of notation?, we let D(6 || #*) denote the KL divergence between
two distributions in exponential form p(x;€) and p(x;6*). The exponential parameter-

9Strictly speaking, the divergence applies to distributions p(x;6) and p(x;6*), and not to the pa-
rameters 6 and 6* themselves.

Sec. 2.2. Exponential families and information geometry 59

ization leads to an alternative representation of this KL divergence:
D@6 = Y Eglgal[0—07], +2(6%) — 2(6)
«
= 0l -0+ d(6*) — B(H) (2.31)

where 7, = [A(0)]o. That is, the pair (0,n) are dually coupled via the Legendre
transform.

Equation (2.31) shows that the KL divergence D (0 || 6*) can be viewed as a Breg-
man distance, induced by the convex log partition function ®. In particular, since

8(;}0(5) = Ey[pa], the KL divergence D(0 || 6*) is equivalent to the difference between

®(6*) and the first-order tangent approximation ®(8) + V' ®(0)(#* —), as illustrated

o(0)

0 g 0

Figure 2.11. Kullback-Leibler divergence as a Bregman distance induced by the log
partition function ®. The KL divergence D(6 || 8*) is equal to the difference between
®(6*) and the tangent approximation ®(#) + VI ®(8)(0* — 6).

in Figure 2.11. Bregman distances are defined in precisely this manner; see Censor and
Zenios [31] for more details on Bregman distances and their properties. For a minimal
representation, the strict convexity of ® guarantees that this tangent approximation is
always an underestimate of ®(6*), so that the KL divergence is positive for 6 # §*.1
It is also possible to re-write the KL divergence in terms of the dual variables n. In
particular, from the Legendre duality between ® and ¥, we have for all dually coupled

pairs (0,n):
n'0 = &) + ¥(n) (2.32)

Substituting this relation into equation (2.31), we obtain an alternative representation

0For overcomplete representations, it is possible to have distinct parameters 6 # #* that induce the
same distribution, in which case D(@ || 8*) = 0.

60 CHAPTER 2. BACKGROUND

of the KL divergence:
D@ %) = (") " = n] + ¥(n) = ¥(n") (2.33)

Comparing equations (2.33) and (2.31), we see that the former is obtained from the
latter by replacing ® with its dual ¥, and interchanging the roles of # and 6* (and their
associated dual parameters n and n*). Equation (2.33) gives rise to the notion of the
dual of the KL divergence, as studied by Chentsov [33,34].

The Kullback-Leibler divergence is very closely related to the Riemannian metric
defined in equation (2.21). In particular, by Taylor series expansion of log p(x;#), we
obtain

D@ 6") ~5l0-0 "Go)6 -6 = L &0y (2.34)

where the approximate equality holds up to second order. In this sense, the squared dis-
tance induced by the Fisher information G(#) is an approximation to the KL divergence.
This notion will arise again in Section 2.2.8.

W 2.2.7 l-projections onto flat manifolds

In this section, we define a pair of optimization problems canonical to information ge-
ometry. In particular, they entail projecting (where the KL divergence serves as the
“distance”) a given distribution onto certain types of “flat” manifolds. The dual param-
eterizations allow us to specify two types of flat manifold, depending on whether distri-
butions are specified in terms of the exponential parameters 6, or the mean parameters
1. This procedure of projecting onto a flat manifold, known as an I-projection, consti-
tutes the basic building block for a variety of well-known optimization algorithms [e.g.,
44,135].
We begin with definitions of e and m-flat manifolds:

Definition 2.2.1. Given a linear subset of ©, an e-flat manifold corresponds to its
image under the coordinate mapping € — p(x;6). That is,

Me={p(x;0) | A0 =a } (2.35)

for some matrix A and vector a.
An e-geodesic is a 1-dimensional e-flat manifold — that is, a family of distributions
specified by a line in the exponential coordinates:

{p(x;0()) | 0(t)=(1—1t)bo+tb:, teR}
for some fixed 6y and 6.

With a minor abuse of notation, we shall often use # € M, to mean that 6 belongs to
the linear subset defining the e-flat manifold. To illustrate, we consider a few examples:

Sec. 2.2. Exponential families and information geometry 61

Example 2.2.7. For the Ising model (Example 2.2.2), an important type of e-flat
manifold is induced by the linear subset 7o = { 0 | 0 =0 V (s,t) € E }. Any
distribution in this family has the representation

N
p(x;60) = exp { Z Osxs — CI)(H)}

s=1

That is, these distributions are fully factorized, with no interactions between different
components s of the random vector x.

We specify an m-flat manifold in a similar fashion:

Definition 2.2.2. An m-flat manifold is the set of distributions corresponding to a
linear subset of the dual variables:

Mm ={p(x; n) | Bn=>} (2.36)

Recall that p(x;7) refers to the exponential distribution given by p(x; A~(n)).

We define an m-geodesic in a similar fashion to an e-geodesic: that is, as a 1-
dimensional family of distributions specified by a line in the dual coordinates. Again,
we shall often abuse notation by writing n € M,, to mean that n belongs to the linear
subset defining M,,.

Note that an m-geodesic corresponds to the familiar type of mixture of distributions.
That is, given the line n(t) = (1 — t)ny + tn1, the induced m-geodesic corresponds to
mixtures of distributions in the form

p(xsn(t)) = (1 —¢) p(xsm0) + ¢ p(x;m)
We consider a few examples of m-flat manifolds:

Example 2.2.8. Consider a scalar Gaussian random variable with exponential repre-
sentation p(z;0) = exp{fiz + O22 — ®(0)}. Here the dual parameters are given by
m = Eylx] = p, and ny = Fy[2?] = p? + 02, where p and o are the mean and standard
deviation respectively. Thus, we see that the set of scalar Gaussian distributions with
fixed mean corresponds to an m-flat manifold.

Example 2.2.9. Consider the Ising model (see Example 2.2.2). The mean parameters
consist of the probabilities s = p(zs = 1;0) and ny = p(xs = 1,2, = 1;0). Thus, the
set of all distributions with a specified set of single-node marginals

{p(xsn) [ns =75 }
forms an m-flat manifold.

The notions of e-flat and m-flat manifolds give rise to a pair of canonical optimization
problems in information geometry. We begin by considering the problem of projecting
onto an e-flat manifold.

62 CHAPTER 2. BACKGROUND

Projection onto an e-flat manifold

For a fixed reference distribution #* and e-flat manifold M., consider the constrained
optimization problem:

(2.37)

miny D(0* || 9)
s.t 0 € M,

From equation (2.31) and the convexity of ®, we see that the KL divergence D(6* || 6)
is a convex function of its second argument. Therefore, problem (2.37) is a convex
optimization problem with linear constraints, so that it has a unique global optimum
— say 0 = arg mingepq, D(6* || €). Using equations (2.18a), and (2.31), we compute the
gradient VyD(0* || 0) = n — n*. By the standard condition for a global minimum of a
convex function over a linear manifold [20], we obtain:

"= a7 10 -6]=0 (2.38)

for all & € M,. Equation (2.38) is the defining condition for B, which is known as the
I-projection of the point 8* onto M,.

Many e-flat manifolds of interest are obtained by zeroing a subset of the exponential
parameters — that is:

Fr={010,=0 Vag¢gJ}

The set of fully factorized distributions, described in Example 2.2.7, is an important
case. The optimality condition of equation (2.38) has strong consequences for projec-
tions onto such manifolds. In particular, for any index # € J, we can form a perturba-
tion Af = eg of all zeros except for a one in the S-entry. This perturbation A@ lies in
the e-flat manifold F7, so that it must be orthogonal to [p* —7]. Using equation (2.38),
this implies that

ng =g VB eJ (2.39)

That is, the dual parameters of the projection 7 must agree with the dual parameters
n* of the original distribution for all indices S that are free to vary.

Example 2.2.10. Consider again the Ising model (Example 2.2.2), and consider the
problem of projecting 6* onto the set 7o = { 0 | 4 =0 V (s,) € E } of fully
factorized distributions (see Example 2.2.7). Then equation (2.39) ensures that the
I-projection 0 satisfies:

]Eg[xs] = ;]\s = 7]: = [y~ [xs]

Since x € {0,1}" is a binary random variable, the dual variables are equivalent to
node marginal probabilities. Therefore, the single node marginals of the I-projection
p(x; 9\) agree with those of p(x;0*). This type of property holds for more general nested
families of distributions, as described in Amari [6].

Sec. 2.2. Exponential families and information geometry 63

Projection onto a m-flat manifold

The problem of projecting onto an m-flat manifold M,, is effectively dual to the problem
of projecting onto an e-flat manifold. In this case, the relevant optimization problem is

{mingD(O | 6%)

(2.40)
s.t 0 € M,

Note that in contrast to problem (2.37), here we optimize over the first argument of the
KL divergence. This change should be understandable, in light of the relation between
the KL divergence in (2.31), and its alternative formulation in equation (2.33).

On the basis of equation (2.33), it can be shown that problem (2.40) is convex and
linearly constrained in the dual variables 7, and so has a unique global optimum 7.
Again, straightforward computations yield the defining condition for this optimum:

0" =0 [n—5]=0 Vg € Mp (2.41)

H 2.2.8 Geometry of I-projection

Associated with equations (2.38) and (2.41) is an elegant geometric picture. Here we
present this viewpoint for the I-projection onto an e-flat manifold, noting that a similar
picture holds for I-projection onto an m-flat manifold. The Pythagorean results of this
section (Theorems 2.2.1 and 2.2.2) date back to Kullback [119,120] and Csiszdr [44,45].

To develop the geometry, note first of all that for any 8 € M., the vector [# — 0] can
be viewed as the tangent vector to some e-geodesic lying within M., as illustrated in
Figure 2.12. Secondly, consider the m-geodesic joining the points * and 6. Although it
is linear by definition in 7-coordinates, it will be a curve in the #-coordinates — namely:

0(t) = A" (7 + tln* — 7)) (2.42)

This curved m-geodesic is illustrated in Figure 2.12. We calculate the tangent vector to
the curve (2.42) at 7 (i.e., at t = 0) as G~1(7) [n* — 7], where we have recalled that the
Jacobian of the inverse mapping A~! is given by the inverse Fisher information G~!.

~

Now consider the inner product, as defined by the Fisher information matrix G(

);
between these two tangent vectors. In particular, using the fact that G(0)G () = I,
we compute:

~

(00, G [Mg = =" 00 (2.43)

which must vanish by equation (2.38). Therefore, the geometric consequence of equa-
tion (2.38) is that the m-geodesic joining 6* and f forms an orthogonal intersection
with the e-flat manifold M., as illustrated in Figure 2.12. Here orthogonality on the
left side of equation (2.43) is measured using the Riemannian inner product (,) 0
induced by the Fisher information matrix (see Section 2.2.3), whereas the right side
corresponds to Euclidean inner product of two vectors in R*?) . Since the I-projection

64 CHAPTER 2. BACKGROUND

)

N—geodesic

0 S

e—geodesic

M,

Figure 2.12. The point 6* is projected onto the e-flat manifold M, by following an
m-geodesic. This yields the I-projection 8. The tangent vector to the m-geodesic joining
#* and @ is orthogonal to the manifold M.,.

of 8* onto an e-flat manifold is obtained by following an m-geodesic, it is often called
an m-projection.

Recall from equation (2.34) that the KL divergence is closely related to the Rie-
mannian metric induced by the Fisher information matrix. The geometric picture of
I-projection allows us to further develop this relation by showing that, as with Hilbert
space norms, the KL divergence satisfies a type of Pythagorean relation:

Theorem 2.2.1 (Pythagoras for m-projection). Let 0 be the I-projection of a point
0* onto an e-flat manifold M.. Then for all 0 € M., we have:

D(6" || 6) = D(0" ||) + D@ | 0) (2.44)

Proof. We provide the proof here, since it follows in a straightforward manner from our
earlier development. We first use the form of the KL divergence in (2.31) to write:

D@ 1) +D@) 0) = 176" -6+ 7"10— 6] + B(6) — B(0)

We then use the optimality condition of equation (2.38) to rewrite the second term on
the RHS as [n*]7[f — 0]. Cancelling out the [7*]7 terms then yields the result. O

Figure 2.12 again illustrates this geometry, where the points 0, 9 and 6* correspond
to the vertices of a “right” triangle, with the segment between 6 and 6* corresponding
to the hypotenuse. The “distances” between these three points are related by the
Pythagorean relation!! of equation (2.44).

We note that a geometric picture similar to that of Figure 2.12 also holds for the I-
projection of 8* (or alternatively, n*) onto an m-flat manifold. The primary difference is
that the picture holds in the dual coordinates 7, rather than the exponential coordinates.

1Tn passing, we note that this Pythagorean relation holds more generally for projections onto linear
sets, where the projection is defined by any Bregman distance. See [31] for further details on Bregman
distances and their properties.

Sec. 2.3. Variational methods and mean field 65

In this case, the projection 7 is obtained by following a e-geodesic (curved in the n-
coordinates) between n* and 7). For this reason, this operation is often called an e-
projection (onto an m-flat manifold). Moreover, a Pythagorean relation analogous to
that of equation (2.44) also holds:

Theorem 2.2.2 (Pythagoras for e-projection). Let 0 be the I-projection of a point
0* onto an m-flat manifold M,,. Then for all 6 € M,,, we have:

D@1 6%) =D 0)+ D@ | 07)
Proof. The proof of this result is entirely analogous to that of Theorem 2.2.1. O

Various extensions to Theorems 2.2.1 and 2.2.2 are possible. For example, if we
project onto a convex set of distributions (as opposed to a m-flat or linear manifold),
then the equality of Theorem 2.2.2 is weakened to an inequality (i.e., from a Pythagorean
result to the triangle inequality) [see 42].

Moreover, I-projections constitute the basic building blocks for a variety of well-
known iterative algorithms. These algorithms can be divided into two broad classes:
successive projection algorithms, and alternating minimization algorithms. Csiszar [45]
established the convergence of the successive projection technique; in a later paper [47],
he showed that the iterative scaling procedure [52] is a particular case of such an al-
gorithm. Csiszdr and Tusnddy [44] present alternating minimization algorithms, and
provide conditions for their convergence. The tutorial introduction by O’Sullivan [135]
shows how many well-known algorithms (e.g., expectation-maximization [57], Blahut-
Arimoto [9,24]) can be reformulated as particular cases of alternating minimization.

B 2.3 Variational methods and mean field

The term wvariational methods refers to a variety of optimization problems, and asso-
ciated techniques for their solution. Its origins lie in the calculus of variations [73],
where the basic problem is finding the extremum of an integral involving an unknown
function and its derivatives. Modern variational methods encompass a wider range of
techniques, including the finite element method [157], dynamic programming [19], as
well as the maximum entropy formalism [99, 100, 182]. Here we begin with a simple
example to motivate the idea of a variational method; we then turn to an exposition
of mean field methods. For more details, we refer the reader to the tutorial paper [93],
which provides an introduction to variational methods with emphasis on their applica-
tion to graphical models. The book by Rustagi [153] gives more technical details, with
particular applications to problems in classical statistics.

To motivate the idea of a variational method, consider the following example, also
discussed in the tutorial paper [93]. Suppose that for a fixed vector b € R" and symmet-
ric positive definite matrix () € R**", we are interested in solving the linear equation
Qz = b. Clearly, the solution is Z = Q~'b, which could be obtained by performing
a brute force matrix inversion, and then forming a matrix-vector product. For large

66 CHAPTER 2. BACKGROUND

problems, this brute force approach will be intractable. A variational formulation of
the problem motivates a more efficient technique, and suggests natural approximations
to the optimum. In particular, we consider the cost function J(z) = %J?TQIE — bz,
Clearly, J(z) is convex and bounded below, and so has a unique global minimum. In-
deed, the minimizing argument of J(z) is the desired optimum; that is, we can compute
7 by minimizing J(z). Moreover, to obtain approximations to the optimum, we need
only perform a partial minimization of J(z). The method of choice for such problems is
the conjugate gradient method of numerical linear algebra [56]. It generates a sequence
{z*}, such that each z* minimizes J(z) over a k—dimensional subspace. Thus, the n'’
iterate 2™ will be equal (aside from possible numerical inaccuracies) to the optimum Zz;
however, the iterations are typically terminated for some k < n, thereby yielding an
approximation z¥

~
~ .

B 2.3.1 Mean field as a variational technique

We now describe particular subclass of variational methods known under the rubric of
mean field. This term refers to a collection of techniques for obtaining approximations
to distributions. While we take a variational approach to mean field, these methods can
be motivated and derived from a variety of perspectives [e.g., 32,136]. Our exposition
shares the spirit of the tutorial introductions given in [93,106]; it differs in details in
that we make extensive use of exponential representation of equation (2.8).

Let p(x;6*) be the distribution of interest. We assume that this distribution is
intractable, so approximating it is a natural problem. Consider the variational problem
of minimizing the Kullback-Leibler divergence

DO] 6") = > Egldal [0 — 0"]a + 2(6%) — B(0) (2.45)

between p(x;6) and p(x;0*). Of course, if we could perform an unconstrained min-
imization, we would trivially recover § = 6*. However, since calculating the KL di-
vergence in (2.45) entails taking expectations under p(x;6), it is necessary to restrict
the minimization to a tractable family F of distributions. In particular, we form an

approximation p(x;6) by computing:

~

= in D . 2.4
0 = argmin D(9 || %) (2.46)

That is, we compute the optimal approximation in some family, where optimality is
measured by the KL divergence. It is important that this optimization problem does not
correspond to an I-projection. Indeed, although we will see that F typically corresponds
to an e-flat manifold, the optimization in equation (2.46) is over the first argument of
the KL divergence, and not the second as it would be for a projection onto an e-flat
manifold (see problem (2.37)). The fact that mean field is not an I-projection has
important consequences, as we will discuss later.

Sec. 2.3. Variational methods and mean field 67

(2) (b)

Figure 2.13. Illustration of the mean field approximation. (a) Original graph is a 3 x 3
grid. (b) Fully disconnected graph, corresponding to a naive mean field approximation.
Wavy lines at each node represent adjustable input parameters.

The form of the KL divergence in (2.45) suggests an alternative interpretation of
this optimization. By the convexity of the log partition function and equation (2.18a),
we have

O(0%) > @(0) + > _ Eglpa] [0* — 0]a (2.47)

for all #. This lower bound also appears in the statistical physics literature, with slightly
different notation, as the so-called Gibbs-Bogoliubov-Feynman inequality [see 32,185].
As a consequence of equation (2.47), the optimization of (2.46) can be viewed as maz-
imizing a lower bound on the (intractable) log partition function ®(6*). This interpre-
tation is important in the application of mean field methods to parameter estimation
via the EM algorithm [see 106].

The formulation in (2.46) encompasses a variety of mean field techniques, where a
specific technique corresponds to a particular choice of e-flat manifold for the approxi-
mating family F. For example, given the Ising model of equation (2.10), consider the
family Fo = {0 | 05+ =0 V (s,t) € E } — that is, the e-flat manifold of fully factorized
distributions (see Example 2.2.7)). Performing the minimization of equation (2.46) with
this choice corresponds to finding the best fully factorized approximation. Doing so en-
tails finding zero points of the gradient, and a particular iterative scheme for solving
this fixed point equation give rise to the (naive) mean field equations.'?

The graphical consequence of the naive mean field approximation is to decouple
all nodes of the graph. Figure 2.13 illustrates this transformation: the original graph,
shown in (a), is a 3x3 grid. The mean field distribution is fully factorized, and so has the

2Tn naive mean field, a fully factorized binary distribution of a binary vector x € {0,1}" is rep-
resented as g(x) = Hivzl pZe (1 — ps)' =%, where the quantities {us} are the mean field parameters.
Taking gradients with respect to p yields the usual mean field equations. Our exponential parameteri-
zation is related via 0s = log[us /(1 — ps)].

68 CHAPTER 2. BACKGROUND

structure of the fully disconnected graph shown in (b). The mean field approximation
introduces the additional variational parameters ps (or 65 = log[us/(1 — us)]), which
can be viewed as adjustable inputs to each node. This is typical of a variational trans-
formation: it simplifies the problem (i.e., removes edges) with the additional expense
of introducing variational parameters to optimize.

The naive mean field approximation can be quite accurate in certain cases. An im-
portant example is a large and densely connected graphical model in which the pairwise
couplings between variables are relatively weak. By the law of large numbers, the con-
fluence of many effects on a given node converges to a “mean effect”, so that the actual
distribution is close to fully factorized. (See Jaakkola [93] for further discussion of such
issues.) However, a fully factorized approximation is unable to capture multimodal
behavior, and can often be a very poor approximation. For this reason, it is natu-
ral to use approximations with more structure, but that nonetheless remain tractable.
Natural examples include factorized distributions formed by clustered nodes, as well as
tree-structured distributions. Accordingly, different choices of F — corresponding to
distributions with more structure than a fully factorized distribution — lead to more
advanced mean field methods. For example, given a particular tree embedded within
the original graph with edge set Fi..e C F, we can set

Firee ={0 |05t =0 YV (5,t) ¢ Firee } (2.48)

which corresponds to the e-flat manifold of distributions structured according to the
tree. This general idea of obtaining approximations richer than a fully factorized dis-
tribution is known as structured mean field; such approaches were pioneered by Saul
and Jordan [155], and have been investigated by a number of other researchers [e.g.,
12,75,92,96,179].

W 2.3.2 Stationarity conditions for mean field

As noted earlier, mean field optimization, as formulated in equation (2.46), does not
fall within the purview of standard information geometry. In particular, although the
family F is an e-flat manifold, the minimization does not take place over the second
argument (which would correspond to an m-projection), but rather over the first ar-
gument. For this reason, mean field theory fails to share the geometry and optimality
conditions of the m- or e-projections described in Section 2.2.7. For instance, solutions
of mean field equations are not necessarily unique, and can exhibit undesirable prop-
erties such as “spontaneous symmetry breaking”, in which the mean field solution is
asymmetric despite complete symmetry of the actual distribution. See [93] for a simple
but compelling example. Nonetheless, mean field solutions do have certain geometric
properties, which we develop in this subsection for future reference.

We now derive an alternative set of stationary conditions for mean field in the
general case. We first take derivatives of the KL divergence with respect to 6 to obtain
VoD(0 || 0°) = G(0) [0 — 6*] where [G(0)]ap = covg{da, ¢} is the Fisher information
matrix evaluated at 6. Let J be a subset of the potential index set, such that the

Sec. 2.3. Variational methods and mean field 69

approximating family has the form F7 = { 6 [6, =0 Vo ¢ J }. Then the
stationary conditions for a mean field solution 6 are:

[G(@) (5—9*)] =Y [G(B)as [0 -0 = 0 Va € J (2.49)
@ B

From equation (2.29), recall the role of the Fisher information matrix as the Jacobian
of the mapping between 6 and the dual variables 7, = Ey[¢p,]. By a Taylor series
expansion, this ensures that

M=n"]a=0 Va e J

where the approximate equality holds up to first order in the perturbation [1/9\— 0*].
That is, the mean field stationary conditions in (2.49) ensure that the dual variables 7,
match the desired statistics 1}, up to first order for all free indices (i.e., « € J).

As a concrete illustration, in the case of naive mean field for an Ising model, the
mean field stationarity conditions guarantee that

~

Ejlzs] = plzs =1;0) = p(zs =1;0%) = Fp- [z

for all nodes s € V. That is, the single node marginals of the mean field approximation
are approximately equal (up to first order) to those of the original model. To emphasize
the difference with standard information geometry, recall from Example 2.2.10 that the
m-projection of * onto the set of fully factorized distributions Fy (i.e., computing
arg minge 7, D(6* || 0)) would guarantee the equality of these first order marginals.

70

CHAPTER 2. BACKGROUND

Chapter 3

Perturbations and Bounds

H 3.1 Introduction

In this chapter, we demonstrate the use of exponential representations of graph-structured
distributions in application to two important problems:

(a) assessing model sensitivity to changes in parameters and structure;

(b) deriving computable bounds on quantities of interest (e.g., partition functions;
marginal distributions).

The first problem is fundamental to all types of modeling; indeed, sensitivity analysis
is critical in fitting and validating models. In this context, a useful tool is the pertur-
bation expansion, which quantifies the deviations in model behavior as parameters are
perturbed from a nominal setting. The first topic of this chapter, then, is the develop-
ment of such perturbation expansions for graphical models. The second goal — that of
developing bounds — is important for any graphical model in which exact inference is
intractable. In particular, bounds are useful as an approximate inference tool [94,97],
for model fitting [e.g., 106], and also for large deviations analysis [e.g., 158]. Accord-
ingly, the second part of this chapter focuses on the use of exponential representations
in developing such bounds.

Although this chapter presents a number of new results, in the context of this thesis
as a whole, it serves primarily as a basis for future developments. In particular, the
bounds derived in this chapter will play important roles in Chapters 5, 6 and 7.

H 3.1.1 Use of exponential representations

As we saw in Section 2.2, any exponential family is specified by a collection of functions
¢ = {¢o}. When the exponential family represents a collection of graphical models, the
¢ao are potential functions defined on cliques of the underlying graph. Specifying the
collection ¢, therefore, specifies the structure of the graphical model. The associated
vector of exponential weights 6 corresponds to the model parameters. For a given clique
potential ¢, the quantity 6, represents its weight in the exponential representation.
As a result, the exponential parameters can also be used to capture graph structure,
since the absence or presence of any clique is controlled by whether or not the corre-
sponding exponential parameters are zero (see Section 2.2.5). Indeed, the exponential

71

72 CHAPTER 3. PERTURBATIONS AND BOUNDS

parameters corresponding to graphs with particular structure constraints (e.g., a bound
on the maximal clique size) form e-flat manifolds in information geometry, as described
Section 2.2.

Consider a particular graph-structured distribution, specified in an exponential fash-
ion as p(x;0*), which we shall refer to as the target distribution. Many quantities of
interest can be represented by an expectation of the form

Eg-[f]= > p(x;6%)f(x) (3.1)

xcxN

for an appropriate function f : XV — R. (When x takes values in a continuous space,
the summation of equation (3.1) should be replaced by an integral.) As an example,
suppose that x is discrete-valued (i.e., X = {0,... ,m — 1}). If we choose f as the
indicator function d(zs = j) for the random variable x4 to assume value j € X, then
Egp« [f] = p(zs = j;0%) is the marginal probability at node s. More generally, given a
subset S C V, let xg denote the collection {z, | s € S}. For a configuration e € XV,
let

d(xs =es) 2 [[6(zs =€) (3.2)

SES

denote an indicator function for the event that z, = e, for all s € S. Taking the
expectation of such an indicator function is equivalent to computing the value of a
marginal distribution over the nodes in S. On the other hand, as an example for a
continuous-valued process, the conditional mean of the variable at node s corresponds
to setting f(x) = zs.

Given a target distribution p(x;0*), we develop expansions for the expectations
Egp« [f] and log Ey« [f] in terms of quantities computed using a related distribution p(x; 6).
At a conceptual level, the coefficients of these expansions provide valuable information
on the sensitivity to specified perturbations. On the practical side, in the case where
p(x; 6%) is intractable whereas p(x; #) is tractable, such expansions may be computation-
ally useful, in that they provide a succession of approximations to Ey«[f]. In Chapter 4,
we shall develop an exact inference algorithm for Gaussian processes based on such an
idea.

The basic thrust in our development of bounds is similar to the perturbation expan-
sions; in detail, however, the analysis is of a different flavor, since we require quantities
that are explicit bounds and not just approximations. To develop bounds on the expec-
tation Egy- [f], we make use of results from convex analysis, applied to the log partition
function of a suitably modified model. We first develop a set of bounds based on a sin-
gle approximating distribution p(x;#); these bounds represent an extension of the mean
field bounds described in Section 2.3.1. Indeed, for the special case f(x) = 1, our results
reduce to the usual mean field bound on the log partition function (see equation (2.47)).
It is not surprising, then, that the stationary conditions for the exponential parameter(s)
optimizing these bounds are similar to the mean field conditions [e.g., 93,106].

Sec. 3.2. Perturbations and sensitivity analysis 73

In the context of an exponential representation, it is natural to consider the idea
of taking convex combinations of exponential parameters. The convexity of the log
partition function then allows us to apply Jensen’s inequality [e.g., 42], which leads to
a new set of bounds. These bounds, in contrast to the first set, are based on multiple
approximating points {p(x;0%)}. We will return to these bounds in Chapter 7, where
we consider the problem of optimizing both the weights in the convex combination as
well as the choice of exponential parameters on spanning trees of the graph.

We then consider the problem of strengthening the bounds. In order to tighten
both sets of bounds on Ey- [f], we exploit the idea of an additive decomposition of the
form f =5, f*. Such decompositions lead to a family of bounds, nested in terms of
the fineness of the decomposition of f. Although refining the additive decomposition
increases the cost of computing the bounds, we prove that refinements are, in general,
guaranteed to yield stronger bounds.

The remainder of this chapter is organized as follows. In Section 3.2, we present
perturbation expansions for Ey-[f] and logEy«[f], and illustrate their interpretation
with some simple examples. In Section 3.3, we derive two sets of bounds on these same
expectations, either based on a single approximating point, or multiple approximating
points. Section 3.4 then is devoted to the development of techniques for strengthening
the basic form of these bounds. In Section 3.5, we illustrate our results in application to
bounding the log partition function of some simple graphs. We conclude in Section 3.6
with a summary, and discussion of role of these results in the remainder of the thesis.

B 3.2 Perturbations and sensitivity analysis

Given the target distribution p(x;6*), consider the expectation Egy-[f] of a function
f: XN — R In this section, we derive perturbation expansions for this expectation (as
well as for log Ey- [f]) about an approximating distribution p(x;@). Coefficients of these
expansions are given by cumulants computed under the approximating distribution.
Related results have been derived by other researchers [e.g., 11,30,53,116,121]. For
example, Laskey [121] showed how to perform sensitivity analysis of a directed tractable
Bayesian network by taking first derivatives with respect to model parameters. Dar-
wiche [53], using a representation that is closely related to an overcomplete exponential
parameterization (see Example 2.2.4), developed a differential approach that gives an
alternative perspective on exact inference in tractable models. Perhaps most closely
related to our work are the results of Barber and van der Laar [11], who developed per-
turbation expansions of the log partition function about a tractable distribution, and
also considered methods, akin to mean field, for attempting to optimize such expansions.
These results are basically equivalent to our expansions of Ey-[f] when f(x) = 1.

Bl 3.2.1 Expansions of the expectation Ey-[f]

The starting point of our development is the fact, as pointed out in Section 2.2.2,
that the log partition function ®(f) is very closely related to the cumulant generating

74 CHAPTER 3. PERTURBATIONS AND BOUNDS

function [81] of p(x;6), or more precisely to the cumulant generating function of the
random variables {¢,(x)} under this distribution. In particular, the first and second-
order cumulants of these variables are given by, respectively:

9%(0)

]EH[QSa] = aea (33&)
P (0
cove{das b5} — aoféol (3.3b)

Higher-order cumulants are specified by recursive differentiation. For example, the
third-order cumulant cumg{¢q, ¢35, ¢, } is given by % covg{da, ¢}, which can be eval-
uated as:

CumG{QSm ¢,37 QSU} =y [Qsoz Qsﬁ QSU] - E0[¢a] Eq [Qsﬁ QSU] — [y [Qsﬁ]]EH[QSa QSU]
- EH [QSU] Eﬂ [Qsa Qsﬁ] + 2]E9 [QSQ]EG [QSﬁ]Eﬂ [QSU] (34)

Now for an arbitrary function f : XN — R, it is also possible to consider the
expectation Ey- [f] under p(x;6*) as a type of first-order cumulant. Consequently, it is
straightforward to apply Taylor’s theorem [161] in order to expand it about p(x;6) in
terms of higher-order cumulants. We summarize the result as follows:

Proposition 3.2.1. Let € = 0" — 0 be the difference between two arbitrary parameter
vectors, and let f : XN — R be arbitrary. Then we have:

B[] = Bolf]+ 3 covolf, da} cat 3 3 como{f, bas da}eacs + O(lel?) (35)
« a,f

Remark: Although equation (3.5) gives terms only up to second order, it should be
clear that we can continue such expansions to arbitrary order.

The first-order coefficient corresponding to the perturbation element €, is the co-
variance

covo{f, ¢a} = Eo[f ¢a] — Eo[f]Eg[¢a] (3.6)

It has a sensitivity interpretation as a (first-order) measure of the effect of perturbations
in the strength of clique potential ¢, on the expectation Eg-[f]. If f(x) = ¢ (x) for some
o, then this covariance of equation (3.6) corresponds to the element g,, of the Fisher
information matrix (see Section 2.2.3), in which case this sensitivity interpretation is
well-known.

Suppose that the approximating distribution p(x;0) is tractable, in which case Ey[f]
can be computed and viewed as a zero'" order approximation to Eg-[f]. Adding in the
covariance terms gives rise to a first-order approximation, but is the computational cost
of doing so prohibitive? This cost depends on the nature of the function f. By defini-
tion, the clique potential ¢, depends only on a limited subvector x, of the full vector

Sec. 3.2. Perturbations and sensitivity analysis 75

x. If in addition the function f depends only a local and small subvector — say x; —
then these covariance terms will involve interactions only among relatively small sub-
sets of variables, so that computation will be tractable. Natural choices of f for which
this local support assumption holds are the indicator functions f(x) = §(zs = j) and
f(x) = d(xs = j)do(xy = k). In such cases, as long as the nominal distribution p(x;6)
is tractable, computing these sensitivity coefficients will be computationally feasible.
As an example, for an N-node graph with pairwise cliques and a tree-structured ap-
proximating distribution p(x;#), computing the sensitivity coefficients associated with
f(x) = 0(zs = j) for a discrete-valued process assuming m states would entail a cost of
at most O(m'N).

Example 3.2.1. To illustrate the sensitivity interpretation of Proposition 3.2.1, con-
sider the choice f(x) = §(zs = j) (so that the expectation Ey«[f] is equivalent to the
marginal probability p(zs = j;60*) at node s). If the clique potential ¢, is a function
only of the random variables at a subset of nodes sufficiently “far away” from node s,
then the random variables ¢, (x) and f(x) should be approximately independent under
p(x;6), in which case

COV9{f, ¢a} = Eﬂ[f ¢a] — Ky [f]EG[¢a] ~ 0

That is, perturbations in the clique potential ¢, should have little effect on the expec-
tation.

Figure 3.1 illustrates this effect for the single cycle in (a), and the tree in (b) obtained
by removing the single edge (4,5). We formed a distribution p(x;6*) over a binary-
valued vector x on the single cycle in (a), using a set of relatively homogeneous set of
attractive potentials (i.e., that encourage neighboring nodes to take the same value).
The vector 6 corresponds to 0%, with the element corresponding to edge (4,5) set to
zero. Panel (c) plots the error { Eg-[f] — Ey[f] } versus node number. Notice how the
error is largest at nodes 4 and 5 (adjacent to the cut edge), and decays for distant nodes
(e.g., 1 and 8).

Continuing the expansion of Proposition 3.2.1 to higher order provides, in principle,
a sequence of approximations to Eg«[f]. (As noted earlier, the nominal expectation
g [f] represents a zero'"-order approximation, whereas adding in the covariance terms
would yield a first-order approximation.) One would expect that the approximation
should improve as higher order terms are incorporated; however, such monotonicity is
not guaranteed. Moreover, for a discrete process, the computation of higher order terms
becomes progressively more costly, even in the case where f depends only on a local
subvector and p(x; 6) is a tractable distribution. In general, the k**-order coefficient will
require computing a term of the form Ey|[f Hi.:ll «;]. For a discrete-valued process,
this will be an intractable computation for sufficiently large k.

For a Gaussian process, it turns out that the necessary higher-order terms can be
computed recursively in terms of lower order quantities. This leads to one derivation
of an algorithm for exact inference of Gaussian processes, which we will explore in
Chapter 4.

76 CHAPTER 3. PERTURBATIONS AND BOUNDS

Zero™ order error

1 2 3 4 5 6 7 8
Node number

(b)
(c)

Figure 3.1. Panel (c) shows the error {Eg- [f]—Eg[f]} between actual marginals Eg- [f]
on a single cycle (a), and the zero'-order approximations Ey[f] from a tree obtained
by removing edge (4,5) (b). Note how the error is maximal around nodes 4 and 5, and
decays as the distance between the node and the cut edge increases.

W 3.2.2 Expansions for logFEy-[f]

We now consider perturbation expansions of the quantity logEy-[f]. This expansion
has an interesting form, and different properties than that of Proposition 3.2.1. It is
based on a representation of log Ey-[f] as a difference between the original log partition
function ®(0*), and a second log partition function that is suitably modified (in a
manner to be described).

For subsequent developments, we need to ensure that Ey«[f] > 0 so that taking
logarithms is well-defined. In the case of a strictly positive distribution (i.e., p(x; 6*) > 0
for all x € X), this condition is ensured by the following:

Assumption 3.2.1. The function f takes only non-negative values (i.e., f(x) > 0 for
all x € XN) and f is not identically zero (i.e., f(x) > 0 for at least one x € AN).

For developments in the sequel, it is helpful to introduce now the notion of a tilted
distribution. This concept is central in both importance sampling [150], and large
deviations theory [e.g., 55, 158]. Suppose that we are given a function f satisfying
Assumption 3.2.1, as well as a distribution in exponential form:

p(x;0) = exp { Z Oaa(x) — (I)(H)}

Sec. 3.2. Perturbations and sensitivity analysis 77

We then form a new distribution, denoted p(x; 6y), by “tilting” the original distribution
with the function f. To be precise:

p(x;05) o exp{D Oada(x) } f(x) (3.7)
We denote by ®((#) the log partition function associated with this representation:

op(0) 2 log[> exp{ D budulx) } /()] (3.8)

xcxN

The function ®; has important property: by a simple re-arrangement of equa-
tion (3.8), we obtain the relation

logBp[f] = @(6) — 2(6) (3.9)

This equation is a reformulation, in terms of exponential parameters and log partition
functions, of a relation used in statistical physics for expressing moments as ratios of
partition functions [e.g., 15].

Equation (3.9) will play a fundamental role in our development of bounds in Sec-
tion 3.3. For now, we observe that the derivatives of ®(6) (respectively ®((f)) cor-
respond to cumulants of the random variables {¢4(x)} under the distribution p(x;6)
(respectively p(x;6r)). On this basis, it is straightforward, again by a Taylor series
approach [161], to obtain a perturbation expansion for log Egy-[f].

Proposition 3.2.2. Let € = 0* — 0 be the difference between two arbitrary parameter
vectors, and consider a function f : XN — [0,00) satisfying Assumption 3.2.1. Then
we have the expansion:

log Ey- [f] = log B [f]+) {Eo; [#a] — Eg[al} €a + %GT{G(Qf) —GO)}e + O(lel)
’ (3.10)
Here g, [¢o] denotes the expectation of ¢o(x) under p(x;0y); and G(0f) and G(0)

are the Fisher information matrices corresponding to p(x;0¢) and p(x;6) respectively.
(Ezplicitly, we have [G(6)]ag = cove{da, ¢5}).

It is helpful to interpret Proposition 3.2.2 for particular choices of the function
f. Given some subset S C V, suppose, in particular, that f is an indicator function
d(xs = eg), as defined in equation (3.2), for xg to assume the configuration eg. In
this case, the distribution p(x;6y) is equivalent to p(x;#) but with the variables xg
fized to the values in eg. (That is, p(x;07) = p(x|xg = eg;0).) Thus, the first-order
term {Eg, [¢a] — Ep[¢pa]} corresponds to difference between the mean of ¢, (x) under a
clamped distribution, and its mean under the original distribution p(x;#). Similarly,
the second order term is the difference between the two respective Fisher information
matrices. The factor controlling the accuracy of the expansion is how much cumulants
of {¢a(x)} under the distribution p(x;#) are affected by conditioning on the subset of
variables xg.

78 CHAPTER 3. PERTURBATIONS AND BOUNDS

B 3.3 Bounds on expectations

The goal of this section is more ambitious; rather than approximating the expectation
Eg+ [f], we seek to generate upper and lower bounds. Our analysis makes use of standard
tools from convex analysis applied to log partition functions.

Central in our development is the representation of logEy-[f] as the difference
between two log partition functions, as given in equation (3.9). We established in
Lemma 2.2.1 of Chapter 2 that ® is convex as a function of @, and strictly so for a
minimal exponential representation (see Section 2.2.1). A similar argument establishes
that @, as the log partition function of a tilted distribution, is also convex.

The convexity of these log partition functions allows us to exploit standard prop-
erties of convex functions to derive bounds on logEy-[f]. We use, in particular, the
following two properties [see, e.g., 20] of any differentiable convex function F. First of
all, for any two points y, z, the (first-order) tangent approximation to F(y) based on z
is an underestimate:

F(y) > F(z)+V'F(z) (y —2) (3.11)

Secondly, for any collection of points {y*} and set of weights u > 0 such that >, p* = 1,
we have Jensen’s inequality [42]:

FQowy) < 3 WFR) (3.12)

The analysis in this section will be performed under a slightly stronger version of
Assumption 3.2.1:

Assumption 3.3.1. The function f : XV — [0,1] and f(x) > 0 for at least some
x e &N,

For a discrete-valued process, this assumption entails no loss of generality, since we
can define m = miny f(x) and M = maxx[f(x) — m], and then form the new function
f(x) = ﬁ [f (x) —m] which satisfies Assumption 3.3.1. By the linearity of expectation,

bounds for Fy- [f] can immediately be translated to bounds for Eg-[f].

B 3.3.1 Relation to previous work

The first set of bounds that we present are very closely related the standard mean field
lower bound [e.g., 93,106] on the log partition function. As described in Section 2.3.1,
both naive and structured mean field are extensively studied and used [e.g., 12,75,124,
155,179]. Instead of bounding the original log partition function ®(6*), as in ordinary
mean field, we bound the tilted partition function ®;(6*). This procedure leads to
a bound on the expectation Ey-[f] for an arbitrary function f. This bound has an
interesting form, and reduces to the ordinary mean field bound when f(x) =1 for all
x € XN, Accordingly, we show that the stationary conditions for the tightest form of

Sec. 3.3. Bounds on expectations 79

this bound are very similar to the corresponding mean field stationary conditions. The
additional flexibility of allowing f to be arbitrary pays dividends in Section 3.4.1, in
which we present a simple method for tightening any mean field bound.

Based on a review of the literature, it appears that upper bounds are more diffi-
cult to obtain. There are only a limited number of upper bounds, and their domain
of applicability is limited. For example, using a variational upper bound on the func-
tion log[exp(u) + exp(—u)], Jaakkola and Jordan [95] derived a recursive procedure
for obtaining quadratic upper bounds on the log partition function for the Boltzmann
machine (i.e., a binary process with pairwise maximal cliques). For relatively weak
interactions, these upper bounds are much stronger than the standard (linear) mean
field lower bound. However, generalizing this procedure to discrete processes with more
than two states is not straightforward. For the class of log concave models (a particular
subclass of directed networks), Jaakkola and Jordan [94] developed upper bounds on
marginal probabilities using other bounds from convex analysis.

In Section 3.3.3, we derive a new set of upper bounds on the expectation log Egp« [f]
that are applicable to an arbitrary undirected graphical model. These upper bounds
generalize an idea used by Jaakkola and Jordan [97] to obtain bounds for the QMR-DT
network. We also show in Section 3.4.2 that the idea of additive decompositions can
also be used to strengthen these bounds, again with an adjustable price in computation.

H 3.3.2 Basic bounds based on a single approximating point

By applying the property in equation (3.11) to the tilted partition function ®, it is
straightforward to derive the following bound:

Proposition 3.3.1. Let f : XV — R satisfy Assumption 3.3.1, and consider distribu-
tions at parameter values 0* and 0. Then the expectation Ey-[f] is bounded below and
above as follows:

1
Ey[f]

B[] < 1= (=Bl exp] = DO 116°) + 1= 3 eoval, 4a} 0"~)}

(3.13b)

B[] 2 Elfless] - D010+ L Yeowaf, da}0 -0} (3130

Here covo{f, ot = Eg[f da] — Eg[f|Eg[pa] is the covariance between f and ¢q, and
D(0 || 6*) is the Kullback-Leibler divergence between p(x;0) and p(x;0*).

Proof. See Appendix B.1. O

Since the function f satisfies Assumption 3.3.1, the expectation Ey-[f] necessarily
lies in [0, 1]. A desirable feature of both the lower and upper bounds of Proposition 3.3.1
is that they respect this interval requirement. Indeed, it can be seen that the RHS of

80 CHAPTER 3. PERTURBATIONS AND BOUNDS

equation (3.13a) is always non-negative, and similarly, the RHS of equation (3.13b) is
always less than or equal to one. Thus, the corresponding bounds are never vacuous.

As noted above, a caveat associated with Proposition 3.3.1 is that the bounds, in
the form given, contain the intractable log partition function ®(6*). (In particular, it
appears as part of the KL divergence D(6 || 6*) term). For an undirected graphical
model, evaluating this partition function is, in general, as difficult as computing the
original expectation. In order to evaluate these bounds, we require a computable upper
bound on the log partition function. The methods presented in Section 3.3.3 provide
precisely such bounds.

It is interesting to consider the bounds of Proposition 3.3.1 when we choose 6 equal to
an optimum mean field point (see Section 2.3.2). In particular, fix some substructure of
the graph G — say, for concreteness, an embedded spanning tree — that is represented
by the e-flat manifold Firee. (See equation (2.48) of Chapter 2). Now suppose that we
perform structured mean field optimization; that is, we compute

9 = arg min D(0 || 6%) (3.14)
0 Firee
The elements 6g over which we optimize are those corresponding to any single node
potential function, or any edge belonging to the tree. We obtain stationary conditions
by setting to zero the gradient of D (6 || #*) with respect to each such element. From
our analysis in Section 2.3.2, these stationary conditions are given by

> 9as(0) [0* = 0la =0 (3.15)

for all free indices B: i.e., those indices corresponding to elements 63 that are free to

~

vary in the variational problem (3.14). Here go5(0) = cova{gzﬁa, ¢} is an element of
the Fisher information matrix evaluated at p(x;).

Suppose that the function f corresponds to a potential function ¢g for some free
index . For the tree example used here, such functions include the indicator function
f(x) = 0(zs = a) for any node s and state a € X, as well as f(x) = §(zs = a)d(z; = b)
for any edge (s,?) in the tree, and pair of states (a,b). For such choices of f, equa-
tion (3.15) implies that the summation) covg{¢a, f}(0" — 0)s in equation (3.13a)
vanishes, so that the bound reduces to the much simpler form:

Eo-[f] > Eglf] exp{ - D@1 6"} (3.16)
A similar simplification applies to equation (3.13b).

Optimizing single-point bounds

Suppose that we are allowed to choose the approximating point 6 from some class of
distributions (e.g., the e-flat manifold Fi,ce formed by a spanning tree, as above). It is

LOther types of bounds (e.g., the union bound) can give meaningless assertions (e.g., a probability
is less than 3).

Sec. 3.3. Bounds on expectations 81

tempting to believe that equation (3.16), due to its attractive simplicity, corresponds
to the optimized form of the bound (3.13a). A bit of reflection establishes that this is
not the case; note that equation (3.16) does not take into account the particulars of f,
as it would if it were optimized for f.

In order to optimize the bound of equation (3.13a), we need to return to its deriva-
tion. Recall that it is based on lower-bounding the tilted partition function ®;(6) by the
first-order tangent approximation in equation (3.11). To optimize the bound, we want
to make this tangent-approximation as tight as possible. This problem is equivalent to
the mean field optimization problem, albeit applied to a tilted log partition function.

With this insight, it is straightforward to derive stationary conditions for a zero-
gradient point of this optimization problem. We simply take derivatives of the logarithm
of the RHS of equation (3.13a) with respect to parameters 65 that are free to vary, and
obtain the following necessary conditions for an optimum:

Eﬂ[f ba QS,B] .]Eﬂ[f Qsa]Eﬂ[f ng] o e indices
Z{ Eo[f] Eg[f] Eglf] }[9 6], =0 Y free indices § (3.17)

The term with curly braces in equation (3.17) can be recognized as an element g,g(0y)
of the Fisher information matrix corresponding to the tilted distribution p(x; 65) defined
in equation (3.7). Note the correspondence with the stationary conditions for ordinary
mean field (see equation (2.49) of Section 2.3.2). This correspondence is not surprising,
however, since the optimization problem is equivalent to mean field with the tilted log
partition function. Thus, the set of gradient equations in (3.17) can be solved with the
usual mean field updates [106], or other methods from nonlinear programming [e.g.,
20)].

[0}

B 3.3.3 Bounds based on multiple approximating distributions

The bounds of Proposition 3.3.1 are based on a single (tractable) approximating dis-
tribution p(x;#). In this section, we derive a new set of bounds, complementary to
those of Proposition 3.3.1 in the sense that they are based on multiple approximating
distributions. As a concrete example, suppose that the set of distributions that can be
used to form approximations are those that are tree-structured. Then the bounds of
Proposition 3.3.1 are based on using only a single tree. Since any graph with cycles has
a large number of embedded trees, it is natural to consider bounds based on multiple
trees.

We begin by letting @ = {#° | i € Z} denote a collection of exponential parameters
corresponding to a set of approximating distributions { p(x;6%) | i € Z }. We are
interested in weighted combinations of these points, so that we define a vector of weights

BE{p, i€l |y >0, Y pi=1} (3.18)
7

The vector @ can be viewed as a probability distribution over the set of approximating
distributions.

82 CHAPTER 3. PERTURBATIONS AND BOUNDS

We use these weights and approximating points to generate convex combinations of
exponential parameters, which are defined as follows.

Definition 3.3.1. Given such a distribution g and a collection of exponential vectors
0, a convex combination of exponential parameter vectors is defined via the expectation:

Ez[0] = Egz[0)] & > p'6’ (3.19)
1€L

Now recall that 6* is the exponential parameter vector of a distribution p(x;6*)
defined by the original graph G. We are interested in sets of approximating points 6
for which there exists a convex combination that is equal to 6*. Accordingly, we define
the following set of pairs (0; fi):

Aw) 2{0:1) | Elp) =0 (3.20)

That is, A(6*) is the set of all pairs (8;) of exponential parameters @ = { 0 |i € T }
and distributions fi for which the convex combination Ez[0] is equal to the target
parameter 6*.

Note: The expectation notation will be used more generally in the following way: given
some function F and the function values F(6%) for all i € Z, we define

Ea[F(6)] = Eg[F(6)] = 3 /P (6)
1€T
Example 3.3.1. To illustrate these concepts, consider a binary distribution defined by

a single cycle on 4 nodes, as shown in Figure 3.2. Consider a target distribution of the
form

p(x;0%) = exp{z129 + To3 + T374 + T421 — P(67)}

That is, the target distribution is specified by the minimal parameter 0 =[00001 11 1],
where the zeros represent the fact that 8; = 0 for all s € V. We consider the four span-
ning trees associated with the single cycle on 4 nodes, and define a corresponding set
of four exponential parameter vectors @ = {0 | i = 1,2, 3,4} as follows:

' = (4/3)[0000 1110]
0> = (4/3)[0000 1101]
9 = (4/3)[0000 1011]
0* = (4/3)[0000 0111]

Finally, we choose p' = 1/4 for all i = 1,2,3,4. It is not difficult to check that this
choice of a uniform distribution ensures that Ej [0'] = 0*; that is, the specified pair
(0; i) belongs to A(0%).

Sec. 3.3. Bounds on expectations 83

4/3
453 0 43
0 4/3 43 43 43 0 43 43
4/3 3 4/3 0
(a) 0" (b) 62 (c) 6 (d) 6*

Figure 3.2. A convex combination of exponential parameters of four distributions
p(x;60"), each defined by a spanning tree, is used to approximate the target distribution
p(x;6*) on the single-cycle graph.

The motivation behind the convex combinations in Definition 3.3.1 is that they allow
us to apply Jensen’s inequality (3.12) to generate upper bounds on log partition func-
tions. By using equation (3.9), these bounds can be translated to bounds on log Ey- [f].
The results are summarized in the following:

Proposition 3.3.2. Let f : XV — R satisfy Assumption 3.3.1, and let 0* be the
exponential parameter of target distribution p(x;6*). For any pair (0; i) € A(6%), we
have the bounds:

IA

log By~ [f] Ez [log Ep: [f]] +Ez [®(6")] — ®(6%) (3.21a)

IN

Bz log 1] + B2 {5 [Zajwi ~0ba0]} 2

We can also derive a set of lower bounds of similar form by applying the upper bounds in

equation (3.21) to the function f(x) =1 — f(x), which also satisfies Assumption 3.3.1.
Proof. See Appendix B.2. O

There are some caveats associated with the bounds of Proposition 3.3.2. First of
all, recall that Assumption 3.3.1 implies that log Ey« [f] < 0, so that the upper bounds
of equation (3.21) are meaningless if the right-hand sides are larger than zero. Unlike
Proposition 3.3.1, this condition is not guaranteed for these bounds.

Secondly, as with the form of bounds given in Proposition 3.3.1, the bound of
equation (3.21a) is not computable, since it also involves the log partition function
®(0*). Required in this case is a lower bound on ®(6*). Standard mean field theory [e.g.,
106], as described in Section 2.3.1, provides a well-known lower bound on this log
partition function. Indeed, in deriving equation (3.21a) from equation (3.21b), we have
made use of the mean field lower bound (see equation (2.47)). Of course, it is possible

84 CHAPTER 3. PERTURBATIONS AND BOUNDS

to use tighter lower bounds on the log partition function that include higher order
terms [e.g., 124] , which will lead to correspondingly tighter forms of equation (3.21b).

Proposition 3.3.2 also has important consequences for Proposition 3.3.1, in which
the bounds were not computable due to the presence of a log partition function ®(6*)
in the KL divergence term D(6 || 8*). What is required in this case is an upper bound
on ®(0*). In the special case that f = 1, equation (3.21a) provides such an upper
bound. Indeed, all the terms involving f vanish, and we are left with the familiar form
of Jensen’s inequality:

3(0%) < Ez[0(0)] = 3 w'd(6') (3.22)

1€l

This upper bound can be applied in conjunction with Proposition 3.3.1 so as to yield
computable bounds.

Optimizing multiple point bounds

It is also natural to consider the problem of optimizing the exponential parameters
0 = {0'}, as well as the distribution fi. For concreteness, let us consider the special
case of f =1, in which case the problem is to minimize the RHS of equation (3.22) —
that is, F(ji;0) = >, p'®(6") subject to the constraint

Ez[07] =Y 146" = 07 (3.23)

1€l

Interestingly, the cost function F' is convex in @ with fi fixed, and linear (hence convex)
in fi with @ held constant. Moreover, the constraint of equation (3.23) is linear in 6
with fi fixed, and similarly for fi with @ held fixed. The minimization of a convex
function subject to linear constraints is well-behaved (e.g., the minimum is unique for a
strictly convex function), and there are a variety of available algorithms [20]. Therefore,
optimizing over the collection of exponential parameters @ with fi fixed (or over @ with
0 fixed) is possible.

However, the joint optimization over € and @ is much trickier. In this case, the
constraint set consists of (unpleasant) quadratic equality relations. Moreover, even if
we could perform this joint optimization, there remains the nagging issue of choosing
the set of possible approximating distributions.? To be concrete, suppose that we decide
to optimize over the set of all spanning trees embedded within the graph. The number
of such trees is prohibitively large for typical graphs — e.g., NV=2 for the complete
graph Ky on N nodes [e.g., 168]. Due to this curse of dimensionality, optimizing the
cost function F' over all trees appears hopeless. So it is natural to restrict ourselves to
a subset of trees, but how to choose them in a principled way?

Remarkably, it turns out these challenging issues — i.e., choice of trees, and the
explosion in dimension — can be sidestepped entirely by a suitable dual reformulation

2This issue is equally applicable to the single optimization over 8 with i fixed.

Sec. 3.4. Extension to the basic bounds 85

of this optimization problem. As we will show in Chapter 7, this dual reformulation
allows us to develop an efficient algorithm for optimizing these bounds over all spanning
trees of the graph, albeit in an implicit manner.

H 3.4 Extension to the basic bounds

In this section, we describe a method for strengthening the basic bounds described in
the previous section. In particular, we ask what factors control the tightness of the
bounds in Proposition 3.3.1 and 3.3.2. One important factor turns out to be the choice
of the function f. In particular, suppose that for some configuration e € XV, we set
f(x) = 0(x = e). Note that the support of this function f is as small as possible
without being empty; it consists only of the single configuration e.

Now consider the equality:

x = e 0" " *
o) = o {(0) — (0") + 3 dale) 0" ~0)c}
Since Ey- [0(x = e)] = p(x = e;6%), it can be seen (following a bit of algebra) that this
equation is equivalent to the bounds of Proposition 3.3.1 holding with equality.

This observation suggests that these bounds becomes tighter as the support of the
function f decreases. It also forms the basis of a principled method for tightening
bounds on the expectation Egy-[f]. In particular, given some function f satisfying As-
sumption 3.3.1, we consider additive decompositions of f in the form:

f=> f* (3.24)

We call the set {f¥} a partition of f, and L is the size of the partition. Many functions
of interest can be decomposed additively in this manner.

Example 3.4.1. For the choice f(x) = §(xs = j), we have the decomposition
F) = d(ws = j)o(wr = k)

for some node ¢ and state value k. If we take expectations with respect to p(x;6), then
this is simply a decomposition of the single node marginal p(xs = j;0) into a sum of
joint marginal terms p(zs = j,x; = k; 0).

In the following sections, we show how to exploit additive decompositions to tighten
the bounds of both Proposition 3.3.1 and 3.3.2.

86 CHAPTER 3. PERTURBATIONS AND BOUNDS

H 3.4.1 Tighter single point bounds

The basic procedure is very simple: given an additive decomposition of the form in
equation (3.24), we can use Proposition 3.3.1 to derive bounds on each Fy-[f¥], and
then add these individual bounds to derive a new bound on Ey-[f]. The following
summarizes this procedure, and establishes that it will, in general, improve the bound

on Eg-[f].

Proposition 3.4.1. Consider the additive decomposition f = 25:1 f*, where f and
each f* are functions from the state space XN to R satisfying Assumption 3.3.1. Then
we have the bound

* 1 *
B lf] > 3 [l lesn { = DO 10+ g Scovol ™, a6 = o)
(3.25)

Moreover, this bound is also at least as good as the bound (3.13a) of Proposition 3.5.1.
It is strictly superior as long as the terms m >, cove{ fF, a}(0F —0)q are not equal
for all indices k.

Proof. See Appendix B.3. O

Clearly, computing the bound of Proposition 3.4.1 requires more work — roughly L
times more — than the bound of equation (3.13a) in Proposition 3.3.1 . Nonetheless,
it has the desirable feature that (in general) performing more computation guarantees
a superior result. We shall provide empirical results in Section 3.5.2 showing the gains
that can be achieved by this strengthening procedure.

There is an interesting case for which the bound of Proposition 3.4.1 is no better than
the lower bound of Proposition 3.3.1. Suppose that we perform mean field optimization
over some structure (say a tree), thereby obtaining the optimal mean field parameter 6.
Suppose moreover that for each k = 1,... , L, we have f* = Pa(k) for some free index
B(k). The free indices in mean field optimization over a tree correspond to any single
node potentials, and any edge in the tree; see the discussion following Proposition 3.3.1.

In this case, the stationary conditions of mean field, as in equation (3.15), dictate
that >, c0v§{fk, ¢a} (0" —0)q = 0 for all k. Returning to Proposition 3.4.1, the bound
in equation (3.25) then reduces to

Eelf] > 3 [Bplf*lexo{ — D@ 0)}]

k
= Eylflexp{ - D@1 6%)} (3.26)

As a consequence, the {f*} partition plays no role, and cannot improve the bound. In-
deed, equation (3.26) is equivalent to the form of Proposition 3.3.1 that is obtained when
0 is equal to a mean field optimum 6. (In particular, compare it to equation (3.16).)

Sec. 3.5. Results on bounding the log partition function 87

It should be noted that obtaining a (structured) mean field optimum can be a very
computationally intensive procedure (much more so than computing bounds for the
{f*1), so that it is not always feasible. However, presuming that a mean field solution
is obtained, using a partition {f¥} that includes functions not involved in the mean field
optimization will, of course, improve the bounds. Therefore, Proposition 3.4.1 can still
be used to strengthen a mean field solution. Section 3.5.2 gives an empirical illustration
of these phenomena.

B 3.4.2 Tighter multiple point bounds

Similar intuition suggests that additive decompositions should also be useful for tight-
ening the bounds in Proposition 3.3.2 based on multiple points. As before, we consider
the function f(x) = 0(x = e). Then it is not hard to see that the following equality

Y adale) = @(07) = Eg{) 0idale) — &(6°)} + Eg[®(6")] — &(07)

corresponds to the bound in equation (3.21a) holding with equality. This observation
leads us to suspect again that the tightness of the bounds increases as the support of f
decreases.

This intuition is in fact correct: given an additive decomposition f = >, I, we
can strengthen the bound of Proposition 3.3.2 by bounding each f* individually, and
then summing the bounds. We summarize as follows:

Proposition 3.4.2. Consider the additive decomposition f =", 1%, where f and each
f¥ are functions from the state space XN to R satisfying Assumption 3.3.1. Then we
have the bounds

Eg- /]

IN

2.

k

Fp-lf] > I—Z[H(l—ﬁm[f])m] exp{zz_jm@(o%—@(e*)} (3.27)

k)

i

I1 (5 [f’“])”i] e S a(e) - 20" (3.27)

Moreover, these bounds are tighter than those given in Proposition 3.53.2 as long as the
quantities {Egi[f*]/Egi[f]} are not all equal.

Proof. See Appendix B.4. O

B 3.5 Results on bounding the log partition function

By setting f = 1, all of the bounds described in the previous sections reduce to partic-
ular bounds on the log partition function ®(6*). In this section, we present the results
of applying the lower bounds based on single approximating-points presented in Propo-
sitions 3.3.1 and 3.4.1. The upper bounds based on multiple approximating-point (e.g.,
Proposition 3.3.2) are explored in more detail in Chapter 7.

88 CHAPTER 3. PERTURBATIONS AND BOUNDS

Consider a partition of f = 1: i.e., a set of functions { f*} such that Yok f* =1. For
any such partition, Proposition 3.4.1 gives a lower bound on the log partition function
O(0*):

B(0*) > B(0)+log AT

S Bl e { 3067 - O]QM}] (3.28)
k e

Equation (3.28) follows by substituting f = 1 in equation (3.25), and then taking
logarithms and simplifying.

In order to illustrate this family of bounds, we focus on additive decompositions
{f*} of the form:

1=) d(xg=eg) (3.29)

esEX‘S‘

The indicator function d(xs = eg) for xg to assume the configuration eg is defined
in equation (3.2). With these choices of functions {f’}, the expectations Fy[f’] in
equation (3.28) correspond to the values of marginal distributions over the nodes in S.

For a given graph G = (V,FE), we performed simulations for a binary process
x € {0,1}" by forming a distribution p(x;6*) with a random choice of * from either
the uniform attractive ensemble, or the uniform mixed ensemble, in both cases using
edge strength d = 2. See Section 2.2.1 for the definitions of these ensembles of distribu-
tions. In all cases (experimental conditions and graphs), we investigated the effect of
increasing the number of nodes (and correspondingly, the number of functions) in the
partition given in equation (3.29). Note that for a binary process, a partition of this
form based on |S| nodes consists of 2!/ functions. The special case |S| = 0 corresponds
to choosing only a single function f!(x) = 1, so that the bound of equation (3.28)
reduces to the ordinary mean field bound, as in equation (2.47) of Section 2.3.1.

For each trial, we computed bounds based on some approximating point 8, chosen
in a way to be specified below. Given this approximating distribution p(x;#), we first
computed the ordinary mean field bound? for |S| = 0. Then for sizes |S| = 1,2,3, we
computed the bound of equation (3.28) for each of the (|]§\) possible subsets of size |S|
in a graph on N nodes.

B 3.5.1 Unoptimized bounds

We first investigated the effect of refining the partition on two graphs (a 3 x 3 grid,
and the fully connected graph K9 on N = 9 nodes). The small problem size facilitates
comparison of the bounds to the true value of ®(6*). For each each graph, we performed
simulations under both the attractive and mixed conditions. To form the approximating
distribution, we first used Kruskal’s algorithm [108, 117] to compute the maximum
weight spanning tree 7 based on the edge weights |6%,| on each edge (s,t) € E. Let

3This is not an optimized mean field bound unless § is a mean field optimum.

Sec. 3.5. Results on bounding the log partition function 89

E(T) C E be the edge set of maximum weight spanning tree. We then formed a
tree-structured distribution by setting

0; if a=seV
Oo =< 0% if a=(st)e E(T)
0 if a=(s,t) e E/E(T)

Using the distribution p(x; €), we computed bounds as described above.

The results are shown in Figure 3.3, with plots for the 3 x 3 grid shown in the top
row, and those for the fully connected graph shown in the bottom row. On the abscissa,
we plot the number of nodes |S| used in the refinement, ranging from 0 to 3; on the
y-axis, we plot the relative error in bounds (i.e., [®(6*) — Bound]/®(6*)). For each size
|S|, we show in a vertically-oriented scatter plot the relative error in all (‘g|) possible
bounds based on subsets of this size. We also plot the mean relative error averaged over
all possible subsets. Finally, for the purposes of comparison, in the column |S| = 2,
we plot a single point with a diamond that corresponds to the relative error in the
optimized structured mean field solution for the spanning tree 7.

We see that refining the partition (in general) improves the bounds, as illustrated by
the downward trend in the means. The scatter plots of the individual bounds show that
the tightness of the bounds varies a fair bit, especially for the case of mixed potentials.
This variability underscores the fact that finding methods for choosing good subsets of
nodes is important.

Note that Proposition 3.4.1 guarantees that refining the partition will (in general)
improve a pair of bounds that are nested. For example, it ensures that the bound based
on nodes {1, 2} is better than that based on node {1}; it does not, however, guarantee
that the former bound will be better than that based on any other single node s # 1, 2.
As a consequence, we can see that for £ = 1,2, not all of the bounds with |S| =k + 1
are better than the best of the bounds with |S| = k. However, we see that the worst
(respectively the best) of the bounds with |S| = k + 1 are always better, or at least as
good, as the worst (respectively the best) bounds with |S| = k.

The mean field solution (plotted with a diamond in column |S| = 2) is better than all
of these bounds in three out of four cases. Of course, such a comparison is not really fair,
since each iteration of structured mean field optimization? requires roughly O(N + |E|)
as much computation as a single bound of the form in equation (3.28). Moreover, many
iterations are typically required; for these examples, mean field required more than 20
iterations to converge to a precision of 1 x 10~*, measured in terms of percentage change
in the bound value. In the following example, we shall do a more direct comparison to
mean field.

“There are a variety of ways of performing structured mean field optimization, but roughly, each
iteration requires computing the Fisher information matrix, which is expensive.

90

CHAPTER 3. PERTURBATIONS AND BOUNDS

Relative error

Relative error

3 X 3 grid; Attractive

0.08

0.07

0.06

°

o

a
T

o

o

5
T

o

o

w
T

0.02r

0.01r

¢ Individual bounds
—o— Average of bounds
¢ Mean field

1

2 3
Fineness of partition

(a) Grid; attractive

Fully connected; Attractive

o
)
:

o

[N

[¢)]
T

o©
[
!

0.05f]

¢ Individual bounds
—o— Average of bounds
¢ Mean field

Figure 3.3.

1

2
Fineness of partition

(c) Fully connected; attractive

Relative error

©
[

Relative error

0.25

0.2

0.15

0.05¢

3 X 3 grid; Mixed

¢ Individual bounds
—o— Average of bounds
¢ Mean field

® ecCe @e

oom 9o amsm

0 1
Fineness of partition

(b) Grid; mixed

2

Fully connected; Mixed

1
]
0.061 :
°]
L]
0.04r °|
3
0.02F| o Individual bounds |
—o— Average of bounds
¢ Mean field
0 : : :
0 1 3

2
Fineness of partition

(d) Fully connected; mixed

Improved bounds on the log partition function based on refining the

partition for an unoptimized approximating point 6. Each panel plots the relative er-
ror [®(0*) — Bound]/®(6*) in the bounds versus the partition size (number of nodes
k=0,1,2,3). Shown for each k are the errors for all (2) possible bounds (correspond-
ing to all possible combinations of k¥ nodes from 9 nodes in total). Also shown are the
average error, and the error in the structured mean field bound (plotted at k = 2). Top
row: 3 X 3 grid. Bottom row: Fully connected graph on 9 nodes.

Sec. 3.5. Results on bounding the log partition function 91

B 3.5.2 Bounds with optimal mean field vector

In our second simulation, we used a mixed parameter vector 6* on a 3% 3 grid to compare
the effect of refining the partition for an unoptimized parameter vector € (chosen as in
the previous experiment), and the structured mean field optimum 0.

The results are plotted in Figure 3.4. Panel (a) shows a plot, analogous to those
of Figure 3.3, for the unoptimized approximating point. The qualitative behavior is

3 X 3 grid; Mixed 3 X 3 grid; Mixed
0.01f
i
0.008 —\!
L3
— — .
2 S]
@ ©0.0061 ol
E . | ¢ .
T 0.01F o B e |
[3) 19 [3] L
x . ' x 0.004 H
3
0.005('« Individual bounds H 0,002/ * Individual bounds
—o— Average of bounds —o— Average of bounds
¢ Mean field ¢ Mean field
00 1 2 3 O0 1 2 3
Fineness of partition Fineness of partition
(a) Unoptimized (b) Optimized (mean field)

Figure 3.4. Effect of refining the partition for unoptimized versus mean field solution
on a 3 x 3 grid. Each panel plots the relative error [®(6*) — Bound]/®(#*) in the bounds
versus the partition size (number of nodes k£ = 0,1, 2,3). Shown for each k are the errors

for all (z) possible bounds (corresponding to all possible combinations of k£ nodes from

9 nodes in total), as well as the average errors. (a) Unoptimized solution on spanning
tree. (b) Optimal structured mean field solution on spanning tree.

similar to the top panel of Figure 3.3. Note that the relative error in the optimized
structured mean field bound, shown with a diamond, is quite good.

Panel (b), in contrast, shows the effect of refining the partition when using the
optimal structured mean field vector 0 as the approximating point. Since we are us-
ing this optimal point, the base error for |S| = 0 has decreased to ~ 0.008 (or 0.8%).
An interesting feature of this plot is that using a refined partition of size |S| = 1 has
absolutely no effect on the tightness of the bound. The discussion following Propo-
sition 3.4.1 gives a theoretical explanation of this effect: in particular, the functions
{6(zs = j)} associated with any refinement of size one all correspond to functions that
are optimized under structured mean field. Hence, refinements using these functions
have no effect. A similar statement applies to certain subsets of size |\S| = 2 — namely,
those corresponding to edges in the approximating tree. As a consequence, the plot of
the mean relative error is somewhat misleading. It is skewed upwards for both |S| =1
and 2, since the average includes many subsets that we know a prior: will not improve
the mean field solution. For larger partitions, however, refinements will typically lead

92 CHAPTER 3. PERTURBATIONS AND BOUNDS

to further improvements upon the optimized mean field solution.

H 3.6 Discussion

Exponential families of distributions capture, in a compact manner, both the model
structure and model parameters. In this chapter, we have demonstrated their power
in application to two important problems: understanding model sensitivity via pertur-
bation expansions, and deriving computable lower and upper bounds on quantities of
interest, including marginal distributions and partition functions. Indeed, the new class
of upper bounds derived in this chapter, as described Section 3.3.3, follow in an elegant
way from the perspective of an exponential representation.

The bounds of this chapter play an important role in developments in the sequel.
In particular, in Chapter 5, we will apply the results of this chapter, as well as those
of Chapter 7, in order to derive upper and lower bounds on the approximation error
that arises in applying the belief propagation error. Moreover, these same results will
be used to bound the error in the more advanced techniques for approximate inference
that are analyzed in Chapter 6. Finally, Chapter 7 is devoted to a detailed analysis of
the upper bounds presented in Section 3.3.3.

Chapter 4

Embedded trees algorithm for
Gaussian processes

H 4.1 Introduction

In areas like coding theory [72,118], artificial intelligence [138], and speech process-
ing [143], graphical models typically involve discrete-valued random variables. How-
ever, in other domains such as image processing, control theory, and oceanography [36,
64, 127], it is often more appropriate to consider random variables with a continuous
distribution. In this context, Gaussian processes defined by graphical models are of
great practical significance. Moreover, the Gaussian case provides a valuable setting for
developing an understanding of estimation algorithms [152,176].

Accordingly, the focus of this chapter is estimation of Gauss-Markov processes on
graphs. Throughout this chapter, the term estimation refers to the computation of
conditional means and error covariances at each node of the graph. For a Gauss-
Markov process on a tree-structured graph, Chou et al. [36] developed a recursive and
very efficient algorithm for exact estimation. This algorithm has a two-pass form,
and represents a generalization of the Kalman filter [110,111] and Rauch-Tung-Striebel
smoother [146]. This estimation algorithm, and associated techniques for constructing
tree-structured models [e.g., 65,89,90], have been used successfully in a wide variety of
applications [e.g., 49, 64,88, 127].

A well-known problem associated with tree models is the presence of boundary
artifacts. In particular, tree models may introduce artificial discontinuities between
pairs of nodes that, though spatially or temporally close, are separated by a great
distance in the tree. Various methods have been proposed to deal with this problem [e.g.,
89], but these proposals are not entirely satisfactory. The most natural solution is to
add extra edges, as necessary, to account for statistical dependencies neglected by a tree
model. With the addition of these edges, however, the resulting graph contains cycles,
meaning that efficient tree algorithms [36] for exact estimation are no longer applicable.

An important problem, therefore, is to develop algorithms for exact estimation of a
Gauss-Markov process defined on a graph with cycles. In this chapter, we develop and
analyze an algorithm that exactly computes both the conditional mean and error vari-
ances of a Gaussian random vector x based on a set of noisy observations y. As a central

93

94 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

engine, we exploit the existence of fast algorithms for performing exact computations
with tree-structured distributions. Each step of the algorithm entails extracting a tree
embedded within the original graph with cycles, and performing exact calculations with
a modified distribution defined by this tree. For this reason, we call our technique the
embedded trees (ET) algorithm. Given a set of noisy measurements, it computes the
conditional means with an efficiency comparable to or better than other techniques for
graphs with cycles. Unlike other methods, the ET algorithm also computes exact error
covariances at each node of the graph. In many applications [e.g., 64,127], these error
statistics are as important as the conditional means.

This chapter is organized in the following manner. In Section 4.2, we provide back-
ground on estimation of Gaussian processes defined on graphs. Section 4.3 introduces
the embedded trees (ET) algorithm, and presents results on its convergence properties.
We conclude in Section 4.4 with a summary, and directions for future research. The
work described in this chapter was based on collaboration with Erik Sudderth, and
portions of it have appeared previously in a conference paper [174]. Extensions to this
work are described in the Master’s thesis [163].

B 4.2 Estimation of Gaussian processes

This section provides the basics of linear-Gaussian estimation, with particular empha-
sis on Gaussian processes that are Markov with respect to a graph. More details on
Gaussian processes and estimation can be found in the book [109], as well as in [163].

B 4.2.1 Prior model and observations

We consider a zero-mean' Gaussian random vector x ~ N(0, P) with strictly positive
definite covariance matrix P. We assume that x is partitioned into a set of subvectors
{xs|s=1,...,N }. Denoting by I(xs) the dimension of x;, the total number of
elements in the vector x is given by [(x) = Zi\;l [(x5). We let d = max,[(xs) denote
the maximal size of any of the subvectors x;.

Let y be a set of noisy observations of x. In many problem domains, the observa-
tions? y = {ys | s € A C {1,... ,N} } are naturally expressed as a noise-corrupted
linear function of x as follows:

y=Cx+v (4.1)

Here v ~ N (0, R) is zero-mean additive Gaussian noise, independent of x. We assume
that both C' and R have a block-diagonal structure that respect the partition of x into
subvectors { x5 | s =1,... ,N }. As a consequence, observations y, and y; at distinct
nodes s # t are conditionally independent given x, (or given x;).

Tt is straightforward to incorporate a non-zero mean by the appropriate addition of terms.
2The set A C {1,...,N} may be a subset, since we may not have observations of every subvector
Xs.

Sec. 4.2. Estimation of Gaussian processes 95

B 4.2.2 Linear-Gaussian estimation

For estimation purposes, we are interested in the conditional density p(x|y) of x given
the observations y. With a linear observation model of the form in equation (4.1), it
can be shown that x and y are jointly Gaussian [109], and moreover that x conditioned
on y is Gaussian. That is, the density p(x|y) is Gaussian, and can be characterized
completely by its mean X and covariance P. Also of interest are the marginal densities
p(xs|y) of x5 conditioned on the noisy observations y for each node s € V. Since
the full conditional density is Gaussian, these marginal densities are also Gaussian; in
particular, p(xs |y) ~ N (Xs, ﬁs) Standard formulae exist for the computation of these
quantities — viz.:

P's = CT'Rly (4.2a)
Pt = [P'+CTR'(C] (4.2b)

The vector X is the conditional mean of the random variable x conditioned on y. The
quantity P is often called the error covariance matrix, since it corresponds to the
covariance matrix of the error € = X —x. The smaller I(xs) X [(x;) covariance matrices
P, correspond to block diagonal elements of the full error covariance p. Equations (4.2a)
and (4.2b) are the normal equations [109] that define the problem of linear-Gaussian
estimation.

B 4.2.3 Gauss-Markov processes and sparse inverse covariance

As we will discuss, there exist iterative algorithms from numerical linear algebra [56]
for solving the linear system in equation (4.2a). Otherwise, calculating the full error
covariance P by brute force matrix inversion would, in principle, provide error variances
(as well as the conditional means). Since the computational complexity of matrix
inversion is O([dN]3), this proposal is not practically feasible in many applications,
such as large-scale image processing and oceanography [e.g., 64,127,128, 173], where
dN may be on the order of 10°. The intractability of the general case motivates
considering problems with more structure.

An important type of structure arises for a Gaussian random vector x ~ N (0, P)
that is Markov, in the sense of Definition 2.1.6, with respect to an undirected graph
G = (V, E). With respect to this graph, the subvectors x; forming x lie at particular
nodes s € V.={1,... ,N} of the graph. In this case, it can be shown [see 160] that the
inverse covariance matrix P! inherits a sparse structure from G. In particular, if P—!
is partitioned into blocks according to the subvectors { x, | s € V' }, the (s,)" block
can be nonzero only if edge (s,t) € E.

For scalar Gaussian variables at each node, the relation between the structure of
the graph and that of the inverse covariance is illustrated in Figure 4.1. Panel (a)
shows a simple graph G, whereas panel (b) shows the structure of an inverse covariance
matrix consistent with a Gaussian random vector that is Markov with respect to G. In
particular, the locations of (possibly) non-zero entries are shown in black. The matrix

96 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

(a) (b)
Figure 4.1. Gauss-Markov processes have inverse covariances that respect graph struc-
ture. (a) Simple graph G with cycles. (b) Structure of inverse covariance with non-zero
entries shown in black. Entry (s,t) is non-zero only if edge (s,t) belongs to the graph.

elements shown in white (e.g., (3,5)) must be zero, since the associated graph lacks an
edge between the corresponding nodes (e.g., there is no edge between nodes 3 and 5).

B 4.2.4 Estimation techniques

There are a variety of techniques for estimation of Gaussian processes that are based
on exploiting Markov structure. First of all, when G is tree-structured, Chou et al. [36]
have shown that both the conditional mean X, and error covariances ﬁs at each node
can be computed by a very efficient O(d®N) algorithm [36]. Tt entails first specifying
an arbitrary node as the root of the tree, and then passing means and covariances up
the tree from the leaves to the root, and then back down from the root to the leaves.
Thus, it has a two-pass form, and represents a generalization of classic Kalman and
Rauch-Tung-Striebel smoothing algorithms [110,146] for time series. A full derivation
of this algorithm can be found in Chou et al. [36]; see also Appendix A for a related
algorithm for estimation on trees.

Secondly, one of the best-known and most widely studied inference algorithms is
belief propagation [138]. This algorithm has attracted a great deal of attention, due to
its use in computer vision and artificial intelligence [e.g., 67,68,134], and also for its role
in decoding turbo codes [131] and low density parity check codes [71], in which context
it is known as the sum-product algorithm [e.g., 1,118]. Later in this thesis (Chapters 5
and 6), we will discuss belief propagation (BP) at much more length.? The viewpoint
taken in these later chapters will be of BP as an approximate inference technique for
discrete-valued processes.

Of interest in this chapter is BP in application to Gaussian problems. For tree-
structured graphs, belief propagation produces results equivalent to the tree algorithm
of Chou et al. [36]. In recent work, two groups [152,176] have analyzed BP in appli-
cation to Gaussian processes defined on graphs with cycles. For graphs with cycles,
these groups showed that when belief propagation (BP) converges, it computes the

3See Section 5.1 for an overview of previous work on BP, and Section 5.2.2 for the belief propagation
equations.

Sec. 4.3. Embedded trees algorithm 97

correct conditional means. That is, the BP means are ezact (when the algorithm con-
verges). However, in general, the error covariances computed by BP are incorrect. The
complexity per iteration of BP on a graph with cycles is O(d>N), where one iteration
corresponds to updating each message once.* See [163] for a more thorough exposition
and analysis of Gaussian belief propagation.

Thirdly, it can be seen from equation (4.2a) that computing the conditional mean X
is equivalent to solving a linear system. Given the sparsity of P~1, a variety of iterative
techniques from numerical linear algebra [56] could be used to solve this linear system.
For a symmetric positive definite system like equation (4.2a), the method of choice
is conjugate gradient [56,86], for which the associated cost is O(d?N) per iteration.
However, such techniques compute only the means and not the error covariances.

B 4.3 Embedded trees algorithm

In this section, we develop an iterative algorithm for computing both the conditional
means and exact error covariances of a Gaussian process defined on any graph. Central
to the algorithm is the operation of cutting edges from a graph with cycles to reveal
an embedded tree — i.e., an acyclic subgraph of the original graph. Standard tree
algorithms [36] can be used to exactly solve the modified problem, and the results are
used in a subsequent iteration.

Interestingly, the algebraic analog of removing edges from the graph is a matrix
splitting of the inverse covariance matrix. Matrix splitting is widely used in numeri-
cal linear algebra; see, for example, Demmel [56] for an overview of standard matrix
splitting methods, and their role in Richardson methods like Gauss-Jacobi iterations.
In contrast to classical matrix splittings, those considered here are based on exploiting
particular features of the graph structure.

H 4.3.1 Embedded trees and matrix splitting

An important fact is that embedded within any graph G are a large number of spanning
trees — i.e., acyclic subgraphs that reach every node of G. (See Section 2.1.1 for relevant
definitions from graph theory). In general, the number of spanning trees in a graph can
be computed via the Matrix-Tree theorem [e.g., 168]. Figure 4.2 provides an illustration
for the 5 x b nearest-neighbor grid drawn in panel (a). Depicted in panels (b) and (c)
are two of the 557,568,000 spanning trees embedded within the 5 x 5 grid.

For a Gaussian process on a graph, the operation of removing edges corresponds
to a particular modification of the inverse covariance matrix. Specifically, given the
original inverse covariance P~', we apply a matrix splitting

Pra=P '+ K (4.3)

tree

“This complexity assumes that the graph is relatively sparse, in that the number of neighbors per
node is O(1) relative to the total number of nodes N.

98 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

(a) (b) (c)
Figure 4.2. (a) Original graph G is a 5 x 5 grid. Panels (b) and (c) show two different
spanning trees embedded within G.

where K, is a symmetric cutting matriz. Tt is chosen to ensure that P, corresponds to

a valid tree-structured inverse covariance matrix. Le., Pk must be positive semidefi-
nite, and respect the structure constraints of the associated tree.

For a Gaussian process with a scalar random variable at each node, Figure 4.3
illustrates the correspondence between the algebraic matrix splitting of equation (4.3),
and its graphical consequences. Panel (a) shows the original graph G with cycles,
whereas panel (b) shows the corresponding inverse covariance matrix (black squares
indicate non-zero entries). We decide to cut to the spanning tree shown in panel (c);
the corresponding tree-structured inverse covariance matrix is shown in panel (d). (Note
that since the tree of (c) is, in fact, a chain, the inverse covariance of (d) has the familiar
tridiagonal structure of a Markov time series.) Cutting to this tree entails removal of
edges (1,4) and (2,5) from G, as shown in (e). The structure of the simplest possible
cutting matrix K is shown in (f). Algebraically, this cutting matrix can be written as

K = —P;,' [eie] +ese]| — P! [esel + esel]

where e; denotes the vector of all zeros, with a single one in position s. Here we have
assumed that the diagonal entries of K are zero, although modifying them is also a
possibility.

H 4.3.2 Recursions for computing the conditional mean

On the basis of matrix splitting of equation (4.3), we can rewrite the defining normal
equation (4.2a) for the conditional mean X as follows:

[Pree + CTR7IC]x=Kx+C"R 'y (4.4)

tree

Because the “observations” (KX+CT R™'y) in equation (4.4) depend on the conditional
mean X, equation (4.4) does not provide a direct solution to the original inference
problem. It does, however, suggest a natural iterative solution. Let {T”}ﬁ;é be a set
of spanning trees of G, and {Kn}ﬁ;é a corresponding set of symmetric cutting matrices
such that for each n =0,1,... ,L — 1, the matrix

L2P 'y K,+C"R'Cc = P +C'R™'C (4.5)

tree(n)

Sec. 4.3. Embedded trees algorithm 99

1 2 1 2 1 2
3 3
O
4 5 4 5 4 5
(a) Graph with cycles (c) Spanning tree (e) Cut edges

(b) Original inverse covariance (d) Tree inverse covariance (f) Cutting matrix

Figure 4.3. Graphical illustration of tree-cutting operation for a Gaussian process
with a scalar random variable at each node. (a) Structure of original graph G with
cycles. (b) Inverse covariance P~! for Gaussian process on original graph. Black squares
correspond to non-zero entries. (c) Spanning tree embedded within original graph. (d)
Tree-structured inverse covariance P () Edges to be removed by the cutting matrix.
(f) Structure of cutting matrix K.

has a sparsity pattern that respects the Markov properties of the tree 7™. Moreover,
we assume that each K, is chosen such that each jn is positive definite.?

At each iteration, we choose a spanning tree index i(n) € {0,... ,L — 1} according
to some rule. A natural choice is the cyclic ordering in which

i(n) =n mod(L) (4.6)

A variety of other orderings, some of them random, are discussed in [31].

Using equations (4.4) and (4.5), we may start with some initial vector x°, and
generate a sequence of iterates {X"}>2, via the recursion:
j;(n)’i” = Ki(n)ic\”*l + CTRily (4.7)

If the cutting matrix Kj,) is chosen so that f,-(n) is positive definite, equation (4.7)
is precisely equivalent to a Gaussian inference problem defined on a tree-structured

>We make this assumption in order to make a clear connection to tree-structured inference algo-
rithms. More generally, however, it is sufficient to choose K, so that J, is invertible.

100 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

Markov random field, where the right-hand side represents a modified data term. Since
the recursions of equation (4.7) represent a sequence of modified-data tree problems,
they can solved using standard fast algorithms [e.g., 36], allowing X" to be calculated
as:

o (KX +C"R™y) (4.8)

The computational cost associated with equation (4.8) is O(d® N + cd?), where N is
the number of nodes, ¢ = |E| — (N — 1) is the number of cut edges.% Typically, for the
sparse graphs of interest here, the number ¢ is at most O(N), and the overall cost of
each iteration is O(d® N).

Taking the difference between the relations implied by equation (4.7) at iterations
n — 1 and n leads to the relation:

on on—1 on—2

Tiny " = Ty X! = Ky X" = K1) % (4.9)

Noting from equation (4.5) that j;(n) — Kin) = j;(n,l) — Kj(,—1), we may rewrite (4.9)
as

® -2 = JKin oy @ -%"7) (4.10)
where the initial condition (X' — %°) is determined according to equation (4.8). Equa-
tion (4.10) explicitly reveals the important fact that the dynamics of the ET algorithm
depend solely on the chosen set of cutting matrices K,. The observations y act only
to set the initial conditions, and do not affect the rate at which the the algorithm con-
verges (i.e., the rate at which the successive differences (X” — X"~!) decay). This data
independence will play an important role in our subsequent analysis of the convergence
properties of the ET iterations.

H 4.3.3 Convergence analysis

In this section, we determine the conditions under which the embedded trees itera-
tion (4.7) converges. We have assumed that the cutting matrices K, are chosen so that
jn is positive definite, ensuring that each iterate may be unambiguously calculated us-
ing equation (4.8). This equation defines a linear system, so that eigenvalues play a
crucial role in the analysis. Let the set of all eigenvalues of a matrix A by denoted by
{Xi (A)}. The spectral radius of A is defined as p (A4) £ maxyef;(A)) [Al-

Our analysis focuses on the evolution of the error € = (X" — X) between the
estimate X" at the n'® iteration and the solution X of the original inference problem in
equation (4.2a). Using equation (4.2a), we may rewrite the ET recursion (4.7) as

j;(n)in = Kz(n)s(\n_l + :]:)I‘igi = Kz(n)in_l + (j;(n) — Kz(n)) X (411)

5Here we have used the fact that any spanning tree of a graph with N nodes has N — 1 edges.

Sec. 4.3. Embedded trees algorithm 101

where j;rig £ p-1 4+ CTR™'C. This equation may be rewritten to relate the errors at
subsequent iterations:

Together, equations (4.12) and (4.10) lead to the following result.

Proposition 4.3.1. For any starting point X°, the conditional mean X of the original
inference problem (4.2a) is the unique fized point of the iterates {X"}°°, generated by
the embedded trees recursion (4.8). Moreover, the error & = (X" —X) evolves according
to:

~n _ [7=1 71 =1 ~0
Proof. The uniqueness of the fixed point X follows directly from the invertibility of jorig
and J,, = Jorig + K. Equation (4.13) follows by induction from equation (4.12). O

Although Proposition 4.3.1 shows that the ET recursion has a unique fixed point
at the optimal solution X, it does not guarantee that X™ will converge to that fixed
point. In fact, if the cutting matrices K,, are poorly chosen, X" may diverge from X at
a geometric rate. The following result specifies the conditions, for a cyclic ordering of
trees, under which the ET recursions converge or diverge.

Proposition 4.3.2. With a cyclic ordering of trees, convergence of the ET algorithm
15 governed by the spectral radius of

AL\ JNKL IR K, (4.14)

In particular, if p(A) < 1, then (X" —X) "=5 0 geometrically at rate v £ p(A)%,
whereas if p(A) > 1, then the algorithm will not converge.

Proof. With a cyclic ordering of trees, the error €” in the ET algorithm evolves accord-
ing to the dynamics of periodic time-varying linear system (see equation (4.13)). After
subsampling it at intervals of L, it becomes a homogeneous linear system controlled by
the matrix A. Thus, the convergence or divergence of the ET iterates is controlled by
the spectral radius of A. O

On the basis of Proposition 4.3.2, we see that it is important to choose the cutting
matrices so that the special radius of A is less than one. It is not straightforward
to analyze this spectral radius in general, since it depends on interactions between
successive cutting matrices. Nonetheless, for the special case of cutting to a single
tree, the following theorem, adapted from a result of Axelsson [10], gives conditions
guaranteeing the validity and convergence of the ET algorithm.

102 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

Theorem 4.3.1. Define j;rig £ p1 4 CTR™'C, and J2 j;rig + K. Suppose the
cutting matriz K is symmetric and positive semidefinite. Then we are guaranteed that
p(J7'K) < 1. In particular, we have the bounds:

Amaw (K)
Amaw (K) + Amaw (j;)rig)

~ Amaz (K
<p(J'K) < () — (4.15)
Amaw(K) + Amin(t]orig)

Proof. First of all, since J 1 and K are symmetric and positive semidefinite, we have
Amin(j\ilK) Z Amm(jil)kmm(K)

so that the eigenvalues of J=1K are all non-negative. Therefore, the spectral radius
p(J 1K) is given by the maximal eigenvalue. Equation (4.15) then follows from the
bounds of Theorem 2.2 in Axelsson [10] on the maximal eigenvalue. O

Observe that the upper bound of equation (4.15) is always less than one for positive
definite j;rig. Therefore, Theorem 4.3.1 gives sufficient conditions for the convergence
of the ET algorithms. To illustrate Theorem 4.3.1, we consider the simple example of
a single cycle.

Example 4.3.1 (Optimal tree for single cycle). Suppose that we have a Gaussian
process with scalar variables at each node, defined on a graph G that is a single cycle.
In this case, it suffices to cut a single edge in order to obtain a tree. Let e, denote the
vector of zeros with a single one at entry u. We consider a cutting matrix of the form

K =-P,' [esel +esel +esel +eyel]
which corresponds to removing edge (u,v) from the graph. Note that the form of this
cutting matrix is distinct from that illustrated in Figure 4.3; in particular, this cutting
matrix also modifies the diagonal entries of the inverse covariance.

The matrix K is rank one, with only one non-zero eigenvalue —2P;.!. We suppose
that P! < 0 for all edges (u,v), so that K is positive semidefinite, and Theorem 4.3.1
is applicable. To obtain an ET iteration that converges quickly, we would like to
minimize the upper bound of equation (4.15). This corresponds to minimizing the
largest eigenvalue of K. Consequently, for this single cycle case, removing the weakest
edge (i.e., the edge with smallest |P,,!|) from the graph leads to the best tree (in the
sense of equation (4.15)). This finding agrees with the natural intuition.

A few remarks on Theorem 4.3.1 are in order. First of all, note that the hypotheses
of the theorem require K to be positive semidefinite. Modifications to K so as to ensure
positive semidefiniteness (e.g., adding multiples of the identity) are likely to increase the
maximal eigenvalue A4, (K). As this maximal eigenvalue increases, the upper bound of
equation (4.15) can become arbitrarily close to one. Thus, the theoretical convergence
rate (at least the upper bound) can become extremely slow. In practice, we find that

Sec. 4.3. Embedded trees algorithm 103

indefinite cutting matrices, as opposed to the positive semidefinite matrices required by
the hypotheses of the theorem, typically lead to faster convergence.

Secondly, although the conditions of Theorem 4.3.1 are sufficient, they are by no
means necessary to guarantee convergence of the ET algorithm. Even when cutting to
a single tree, it is easy to construct examples in which the conditions of the theorem
are not satisfied, but still J is positive definite and p(J 1K) < 1 so that the algorithm
converges. A related caveat associated with Theorem 4.3.1 is its failure to address
the superior performance typically achieved by cycling through several embedded trees.
Indeed, it is possible to combine two trees — a “good” tree for which p(fl_lKl) is
small, and a “bad” tree for which p(j;*lKg) is large — such that the spectral radius
of the combination p(jQ_Ingl_lKl) is smaller than that of the good tree. We refer
the interested reader to [163] for further examples of the benefits of cutting to multiple
trees, as well as extensions to Theorem 4.3.1 that capture such effects.

M 4.3.4 Calculation of error covariances

As described in Section 4.2.4, there exist a variety of iterative algorithms for computing
the conditional mean of a linear-Gaussian problem. However, none of these methods
correctly compute error covariances at each node. (See Schneider [156] for a Krylov
subspace method that does compute error covariances, though under assumptions com-
plementary to those of this chapter). We show here that the ET algorithm can efficiently
compute these covariances in an iterative fashion. For many applications (e.g., oceanog-
raphy [64]), obtaining these error statistics is equally as important as computing the
conditional means. Indeed, in a statistical context, an estimate of the mean without
any measure of uncertainty is arguably of limited use.

Assume for simplicity in notation that X° = 0. We then expand the recursion of
equation (4.8) for n =1,2,3,... as follows:

3! = [le)]CTR_ly

= [TgKedd + @] TRy

<3 T -1 -1 T—1 T—1 T p—1
= [J(VKi3) iz)Ki(2) i) T i Ki)Ji) + Ji(3)]0 Ry

From these equations, the general pattern can be discerned: for any iterationn =1,2,...,
we have:

2" = R'(y) = [F"+ T, "Ry (4.16)
where the matrix F™ satisfies the recursion

= T h Kin) [F"—l + f(;_l)] (4.17)

104 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

with the initial condition F' = 0.

Let X(y) denote the correct conditional mean as a function of the data y. By the
data independence pointed out at the end of Section 4.3.2, if the recursion for the
conditional means {X"(y)}, given in equation (4.8) is convergent for some data vector,
then it converges to X(y) for all data vectors y. Moreover, from equation (4.2a), we
have

%(y) = PCTR y

for all y. Therefore, whenever the mean recursion converges, then the matrix sequence
{F" + jz?rlb)} converges to the full error covariance P.

Moreover, the cutting matrices K are typically of low rank, say O(c) where c is the
number of cut edges. For example, given the edge set E(7) of some tree, the sparsest
possible cutting matrix (i.e., one which does not modify the diagonal entries) can be

written as

K= > wuleswe, +eey] (4.18)
(uw)EE/E(T)

where wy, is a weight on edge (u,v). This cutting matrix is of rank (at most) 2c.
With this type of low rank decomposition for K, it can be shown that each F" can
also be decomposed as a sum of O(cd) rank 1 matrices. Directly updating this low-
rank decomposition of F” from that of F* ! requires O(d°c?N) operations. However,
an efficient restructuring of this update requires only O(d*cN) operations [see 163].
The diagonal blocks of the low-rank representation may be easily extracted and added
to the diagonal blocks of j;a), which are computed by standard tree smoothers. All

together, we may obtain these error variances in O(d*cN) operations per iteration.
Thus, the computation of error variances will be particularly efficient for graphs where
the number of edges ¢ that must be cut is small compared to the total number of nodes
N.

Example 4.3.2 (Square grids). Consider a square grid with N nodes; the case N =5
is illustrated in Figure 4.2(a). Place a single Gaussian random variable x4 at each node,
thereby forming a random vector x of length N. It can be shown that the square grid
has 2v/N (VN — 1) edges in total. Any spanning tree on a graph with N nodes has
N — 1 edges, so that we have to remove

c=2V/N(N-1)-[N-1] = [VN -1]?

edges to form a tree. Asymptotically, ¢ ~ N so that the computational complexity
of our error covariance computation for a square grid is O(N?). This is inferior to
the nested dissection method for matrix inversion [56], which has complexity O(N?/2).
Nonetheless, there exist many graphs with less than O(v/N) additional edges (beyond
those associated with a given spanning tree) for which our algorithm would lead to
gains.

Sec. 4.4. Discussion 105

H 4.3.5 Results

We have applied the ET algorithm to a variety of graphs, ranging from graphs with
single cycles to densely connected MRFs on grids. Here we show some sample results;
additional results on the empirical behavior of the ET algorithm are given in [163].

Convergence of means Convergence of error variances

100 & - 10 : :
—o— Conj. Grad. —o— Embedded Tree
—o— Embedded Tree
—+ Belief Prop.
10° } 10°]
g g
@ @
j=2} j=2
G107 S 10700
-15
10 °f _
10 157
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Iteration Iteration

(a) (b)
Figure 4.4. (a) Convergence rates for computing conditional means X (normalized L?

error). Plot compares rates of ET to belief propagation (BP) and conjugate gradient
(CG). (b) Convergence rate of ET algorithm for computing error variances.

Figure 4.4(a) compares the rates of convergence for three algorithms: conjugate
gradient (CG), embedded trees (ET), and belief propagation (BP) on a 20 x 20 nearest-
neighbor grid. We made a random choice of the inverse covariance matrix P!, subject
to the constraint of being symmetric and positive definite. The measurement matrix
C and noise covariance R were both chosen as the identity. The ET algorithm em-
ployed two embedded trees, one analogous to that shown in Figure 4.2(b) and the other
a rotated version of this tree. We find that CG is usually fastest, and can exhibit
supergeometric convergence. In accordance with Proposition 4.3.2, the ET algorithm
converges geometrically. Either BP or ET can be made to converge faster, depending
on the choice of clique potentials. However, we have not experimented with optimizing
the performance of ET by adaptively choosing edges to cut. Figure 4.4(b) shows that in
contrast to CG and BP, the ET algorithm can also be used to compute the conditional
error variances, where the convergence rate is again geometric.

H 4.4 Discussion

In this chapter, we developed the embedded trees algorithm for exact estimation of
Gauss-Markov processes on graphs with cycles. Like structured mean field (see Sec-
tion 2.3.1), this ET algorithm exploits the fact that exact computations can be per-
formed efficiently for trees embedded within the graph with cycles. In contrast to mean
field, the ET algorithm takes advantage of the fact that graphs with cycles have a

106 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

(typically large) number of spanning trees. Indeed, although ET can be implemented
using only a single spanning tree, its application is usually more powerful when it cycles
through some set of embedded trees.

For computing means, the ET algorithm is comparable to other techniques. In con-
trast with other techniques, the ET algorithm also computes the correct covariances of
the error in the estimate. The error covariance computation is especially efficient for
graphs in which cutting a small number of edges reveals an embedded tree. Moreover,
the ET algorithm suggests other ways in which embedded tree structures can be ex-
ploited: e.g., as preconditioners for the conjugate gradient method [56]. Extensions of
this nature are discussed in more detail in [163], and also in Chapter 8 of this thesis.

Although the focus of this chapter was Gaussian processes, we shall see in the fol-
lowing chapter that similar concepts can be developed for discrete-valued processes.
Indeed, the focus of Chapter 5 is tree-based reparameterization, which also entails per-
forming (different) exact computations using distributions defined by embedded trees.

Chapter 5

Tree-based reparameterization for
approximate estimation

H 5.1 Introduction

Given a distribution p(x) defined by a graphical model, one important problem is com-
puting marginal distributions of variables at each node on the graph. For tree-structured
graphs, standard and highly efficient algorithms exist for this task; see Appendix A for
description of one such algorithm. In contrast, exact solutions are prohibitively com-
plex for more general graphs of any substantial size [40]. As a result, there has been
considerable interest and effort aimed at developing approximate inference algorithms
for large graphs with cycles.

A widely-studied approximation method [e.g., 3,131, 147,175, 183] is that known
variously as belief propagation in the graphical model community [138], and the sum-
product algorithm in coding theory [e.g., 118,131]. The interest in this algorithm
has been fueled in part by its use in fields such as artificial intelligence and computer
vision [e.g., 67,68,134], and also by the success of turbo codes and other graphical codes,
for which the decoding algorithm is a particular instantiation of belief propagation [e.g.,
72,118,131]. While there are various equivalent forms for belief propagation [138], the
best known formulation, which we refer to here as the synchronous BP algorithm, entails
the exchange of statistical information among neighboring nodes via message-passing.
If the graph is a tree, the resulting algorithm can be shown to produce exact solutions
in a finite number of iterations. The message-passing formulation is thus equivalent to
other techniques for optimal inference on trees, some of which involve more global and
efficient computational procedures. On the other hand, if the graph contains cycles,
then it is the local message-passing algorithm that is most generally applicable. Tt
is well-known that the resulting algorithm may not converge; moreover, when it does
converge, the quality of the resulting approximations varies substantially.

Recent work has yielded some insight into the dynamics and convergence properties
of BP. For example, several researchers [2, 8,107, 175] have analyzed the single cycle
case, where belief propagation can be reformulated as a matrix powering method. For
the special case of graphs corresponding to turbo codes, Richardson [147] developed a
geometric approach, through which he was able to establish the existence of fixed points,

107

108 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

and give conditions for their stability. More recently, Yedidia et al. [183] showed that
BP can be viewed as performing a constrained minimization of the so-called Bethe free
energy associated with the graphical distribution,! which inspired other researchers [e.g.,
177,184] to develop more sophisticated algorithms for the minimization of the Bethe
free energy. Yedidia et al. also proposed extensions to BP based on cluster variational
methods [115]; related extensions using higher order structures have been proposed by
Minka [132]. These advances notwithstanding, much remains to be understood about
the behavior of this algorithm, and more generally about other (perhaps superior)
approximation algorithms.

This important area constitutes the focus of this chapter. In particular, this chapter
provides a new conceptual view of a large class of iterative algorithms, including BP
as well as rich set of its variations and extensions. Central to the framework presented
here is the idea of performing exact computations over acyclic subgraphs embedded
within a graph with cycles. This idea was exploited in Chapter 4 to develop an iterative
algorithm for exact estimation of Gaussian processes on graphs. One of the motivations
for the research presented in this chapter is to show how such tree-based updates can
also be applied to discrete processes on graphs with cycles.

As discussed in Section 2.1, a key idea in graphical models is the representation of a
probability distribution as a product of factors, each of which involves variables only at a
subset of nodes corresponding to a clique of the graph. Such factorized representations
are far from unique, which suggests the goal of seeking a reparameterization of the
distribution consisting of factors that correspond, either exactly or approximately, to
the desired marginal distributions. If the graph is cycle-free (i.e., a tree), then there
exists a unique reparameterization specified by exact marginal distributions over cliques.
Indeed, such a parameterization is the cornerstone of the junction tree representation
(see Section 2.1.5).

For a graph with cycles, on the other hand, exact factorizations exposing these
marginals do not generally exist. Nevertheless, it is always possible to reparameterize
certain portions of any factorized representation — namely, any subset of factors cor-
responding to a cycle-free subgraph of the original graph. We are thus led to consider
iterative reparameterization of different subsets, each corresponding to an acyclic sub-
graph. As we will show, the synchronous form of BP can be interpreted in exactly this
manner, in which each reparameterization takes place over the extremely simple tree
consisting of a pair of neighboring nodes. This interpretation also applies to a broader
class of updates, in which reparameterization is performed over arbitrary cycle-free
subgraphs. As a vehicle for studying the concept of reparameterization, the bulk of
this paper will focus on updates over spanning trees, which we refer to as tree-based
reparameterization (or TRP). However, the class of reparameterization algorithms is
broad, including not only TRP, sum-product, BP and variants thereof, but also various
generalizations [132,183] (see Chapter 6).

!Several researchers have investigated the utility of Bethe tree approximations for graphical models;
we refer the reader to [e.g., 164,181].

Sec. 5.1. Introduction 109

At one level, just as BP message-passing can be reformulated as a particular se-
quence of reparameterization updates, the more global updates of TRP are equivalent
to a schedule for message-passing based on spanning trees. We find that tree-based
updates often lead to faster convergence, and can converge on problems for which
synchronous BP fails. At another level, the reparameterization perspective provides
conceptual insight into the nature of belief propagation and related algorithms. In par-
ticular, a fact highlighted by reparameterization, yet not obvious from the traditional
message-passing viewpoint, is that the overall distribution on the graph with cycles is
never altered by such algorithms. Moreover, from the perspective of tree-based updates
arises a simple and intuitive characterization of BP fixed points, and more broadly any
constrained minimum of the Bethe free energy, in terms of consistency over all trees of
the graph. These two properties, when applied in conjunction, allow us to characterize
the approximation error for an arbitrary graph with cycles.

In the next section, we introduce the background and notation that underlies our
development. In the process, we illustrate how distributions over cycle-free graphs can
be reparameterized in terms of local marginal distributions. In Section 5.3, we introduce
the class of TRP algorithms. In this context, it is convenient to represent distributions
in an exponential form using an overcomplete basis. Our choice of an overcomplete
basis, though unorthodox, makes the idea of reparameterization more transparent, and
easily stated. In this section, we also show an equivalent formulation of synchronous
BP as a sequence of local reparameterizations.

Section 5.4 contains analysis of geometry of TRP updates, as well as the nature of
the fixed points. We begin by formalizing the defining characteristic of all reparame-
terization algorithms — namely, they do not change the distribution on the graph with
cycles, but simply yield an alternative factorization. In geometric terms, this invariance
means that successive iterates are confined to a linear subspace of exponential param-
eters (i.e., an e-flat manifold in terms of information geometry [e.g., 5,34].) We then
show how each TRP update can be viewed as a projection onto an m-flat manifold
formed by the constraints associated with each tree, where projection is specified by
a cost function G that is an approximation to the Kullback-Leibler divergence. We
prove a Pythagorean result that links TRP iterates, and establishes interesting links
between tree-based reparameterization and successive projection algorithms for con-
strained minimization of Bregman distances [e.g., 31]. The Pythagorean result enables
us to show that fixed points of the TRP algorithm satisfy the necessary conditions to
be a constrained local minimum of G, thereby making contact with the work of Yedidia
et al. [183]. Specifically, we show that although the cost function G minimized by our
TRP algorithm is not the same as the Bethe free energy, TRP fixed points do coincide
with extremal points of the Bethe free energy (i.e., with the fixed points of BP). An
important benefit of our formulation is a new and intuitive characterization of the fixed
points: in particular, any fixed point of BP/TRP must be consistent, in a suitable
sense to be defined, with respect to any singly-connected subgraph; and at least one
such fixed point of this type is guaranteed to exist. By adapting the invariance and

110 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

fixed point characterization to the Gaussian (as opposed to discrete) case, we obtain a
short and elementary proof of the exactness of the means when BP/TRP converges.
The final topic of this chapter is the analysis of the approximation error arising
from application of TRP or BP. Previous results on this error have been obtained in
certain special cases. For a single cycle, Weiss [175] derived a relation between the
exact marginals and the BP approximations, and for a binary processes showed how
local corrections could be applied to compute the exact marginals. Empirically, he
also observed that in certain cases, approximation accuracy is correlated with the con-
vergence rate of BP. In the context of turbo decoding, Richardson [147] provided an
approximate analysis of the associated error. Despite these encouraging results, a deep
and broadly applicable understanding of the approximation error remains a challenging
and important problem. Our characterization of the TRP/BP fixed points, in conjunc-
tion with the invariance property, allows us to contribute to this goal by analyzing the
approximation error for arbitrary graphs. In particular, our development in Section 5.5
begins with the derivation of an ezact relation between the correct marginals and the
approximate marginals computed by TRP or BP. We then exploit this exact relation
to derive both upper and lower bounds on the approximation error. The interpretation
of these bounds provides an understanding of the conditions that govern the perfor-
mance of algorithms like TRP or BP. Using results from Chapter 7, these bounds can
be computed efficiently. We illustrate their performance on some sample problems. The
chapter concludes in Section 5.6 with a summary. Portions of the work presented in this
chapter have appeared previously in a conference paper [172] and technical report [171].

B 5.2 Estimation in graphical models

The focus of this chapter is the (approximate) computation of marginal distributions
associated with a graph-structured distribution p(x). In particular, the distribution
p(x) is defined by a product of compatibility functions ¢ over the cliques of a graph G,
as in equation (2.3). Throughout this chapter, we consider graphs in which the clique
set C consists only of singletons and edges (i.e., C = V U E), an assumption which is
implicit in the synchronous message-passing form of BP presented in Section 5.2.2. In
Chapter 6, we consider extensions of reparameterization that operate over higher order
cliques. Given only singleton and pairwise cliques, the clique index set ranges over all
edges (s,t) € E, as well as the singleton cliques {s}.

Under these assumptions, the prior distribution p(x) is defined by a product of
singleton and edge terms as follow:

p) =7 [Tl TT s o) (5.1)

seV (st)eE

Here the compatibility functions v, and v, denote real-valued functions of x; and
(x5, x¢) respectively. With a minor abuse of notation, we will often use the same notation
to refer to vectors and matrices respectively. In particular, for an m—state discrete

Sec. 5.2. Estimation in graphical models 111

process, the quantity 14 lying on the edges (s,t) can be also thought of as a m x
m matrix, where the (j,k) element . . is equal to the function value of v for
{zs = j,xy = k}. Similarly, the single node functions s can be thought of as an m-
vector, where the j* component 5.5 equals the value of 1, for {x; = j}. Throughout
this chapter, we will switch between these two interpretations, depending on which is
more convenient; the interpretation should be clear from the context.

The specific goal of this chapter is to (approximately) compute the marginal prob-
abilities Py(x) of p(x) at each node of the graph. For general graphs with cycles, this
task requires summations involving exponentially many terms; indeed, it can be shown
to be a NP-hard problem [40]. For tree-structured graphs, there exist direct algorithms
for optimal estimation. For graphs with cycles, suboptimal algorithms (such as BP)
are used in an attempt to compute approximations to the desired marginals. In the
following sections, we elaborate on both of these topics.

B 5.2.1 Exact estimation on trees as reparameterization

Algorithms for optimal estimation on trees have appeared in the literature of various
fields, including coding theory [118], artificial intelligence [138], and system theory [14].
See Appendix A for a detailed derivation of one algorithm for optimal estimation on
trees. As described in Section 2.1.5, such tree inference algorithms can, in principle,
be applied to any graph by clustering nodes so as to form a junction tree. However, in
many cases of interest, the aggregated nodes of the junction tree have exponentially large
state cardinalities, meaning that applying tree algorithms is prohibitively complex. This
explosion in the state cardinality is another demonstration of the intrinsic complexity
of exact computations for graphs with cycles.

An important observation that arises from the junction tree perspective is that
any exact algorithm for optimal estimation on trees actually computes marginal dis-
tributions for pairs (s,t) of neighboring nodes. In doing so, it produces an alternative
factorization of the distribution p(x), namely:

p(X) = HPs(xs) W (52)
seV (s,t)eE

where Ps(z,) and Pg(xs,x;) are the single node and joint marginal distributions re-
spectively. As an illustration, Figure 5.1(a) shows a simple example of a tree-structured
distribution, parameterized in terms of compatibility functions s and 4, which leads
to the factorization in equation (5.1). Figure 5.1(b) shows this same tree, with the
distribution now reparameterized in terms of the local marginal distributions P; and
Py;. The representation of equation (5.2) can be deduced from a more general factor-
ization result on junction trees [e.g. 102,123]. Alternatively, equation (5.2) can be seen
as a symmetrized generalization of the well-known factorization(s) of Markov chains.
For example, the variables at the three nodes {1,2,4} in Figure 5.1(b) form a simple

112 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

Markov chain, meaning that the joint distribution can be written as

Piay = P (Py)(Pyp)
= P (P12/P1)(Pos/Py)
= P PPy (Pi2/P P)(Pay/PoPy)

where the last equality is precisely the form of equation (5.2). Note that the final line
removes the asymmetry present in those that precede it (which resulted from beginning
the factorization from node 1, as opposed to node 2 or 4).

Figure 5.1. A simple example of a graphical model; circles correspond to
state variables x5, whereas squares correspond to observations. (a) Original pa-
rameterization of distribution p(x) = %HSGV Ps(xs) H(s’t)eE Ysi(xs,) on the

tree in terms of compatibility functions g and s. (b) Final parameterization
p(x) = [ey Ps(@s) Tlsper % in terms of marginal and joint probabilities
P, and P;; respectively.

We thus arrive at an alternative interpretation of exact inference on trees: it en-
tails computing a reparameterized factorization of the distribution p(x) that explicitly
exposes the local marginal distributions; and also does not require any additional nor-
malization (i.e., with partition function Z = 1).

B 5.2.2 Belief propagation for graphs with cycles

As we have indicated, the message-passing form of belief propagation (BP), in addition
to being exact in application to trees, yields an iterative message-passing algorithm for
graphs with cycles. In this section, we summarize for future reference the equations
governing the BP dynamics. The message passed from node s to node ¢, denoted
by Mg, is an m-vector in which element Mg gives its value when z; = k. Let

Sec. 5.3. Tree-based reparameterization framework 113

N(s) ={t € V| (s,t) € E} be the set of neighbors of s in G. With this notation, the
message at iteration (n+ 1) is updated based on the messages at the previous iteration
n as follows:

1
M = s Z Yagebsg [Misy (53)
ueN(s)/t
where x denotes a normalization constant.? At any iteration, the “beliefs” — that is,
approximations to the marginal distributions — are given by
B?;j = 'k“/)SJ H us,] (5'4)
uEN (s)

B 5.3 Tree-based reparameterization framework

In this section, we introduce the class of tree-based reparameterization (TRP) updates.
Key to TRP is the concept of a tree-structured subgraph of an arbitrary graph G with
cycles — i.e., a tree formed by removing edges from the graph. A spanning tree is an
acyclic subgraph that connects all the vertices of the original graph.

(a) (b) (c)

Figure 5.2. A graph with cycles has a (typically large) number of spanning trees. (a)
Original graph is a nearest neighbor grid. Panels (b) and (c) show two of the 100,352
spanning trees of the graph in (a).

Figure 5.2 illustrates these definitions: panel (a) shows a nearest neighbor grid,
whereas panels (b) and (c) illustrate spanning trees. Of course, these are just two
examples of such embedded spanning trees. Indeed, a graph generally has a (large)
number of spanning trees, and we exploit this fact in our work.

Now suppose that 70, ... ,7L~! (with corresponding edge sets E°,... ,EL~1 C E)
is a given set of spanning trees for the graph G. Then for any i € {0,... ,L — 1}, the
distribution p(x) defined by compatibility functions on the graph G, as in equation (5.1),

2Throughout this paper, we will use & to refer to an arbitrary normalization constant, the definition
of which may change from line to line. In all cases, it is easy to determine x by local calculations.

114 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

can be factored as:

p(x) = pix)ri(x) (5.5)

where p’(x) includes the factors in equation (5.1) corresponding to cliques of 7¢, and
r’(x) absorbs the remaining terms, corresponding to edges in E'\E" removed to form

T

o o o ® ® ®
¢1 ’(/}12 ¢2 1/)23 w{i 11/)1 1/)12 11/)2 1/}23 1/}3
1 2 3 1 2 3
1y s 36 [s 2%
4 5 6 4 5 6
a3 P56 ,
Uy ® .1/15 .we N ® .¢5 .1/10

o o o ® ® o
N N
T, T, T, T
1 2 3 1 2 3
Ty Tos T3 Thy T; T6
T, LT T3 Ts nT, T, Ts T3 Ts
4 5 6 4 5 6
¢45 ¢ 56 -
Ty T5 Ts T, T Ts
o o o [[o

() (d)
Figure 5.3. Illustration of a tree-based reparameterization update. (a) Original pa-
rameterization in terms of compatibility functions ¢ and 4. (b) Isolate terms corre-
sponding to a tree 7. (c) Reparameterize the tree-structured component p’(x) of the
distribution in terms of its marginals {T,Ts}. (d) New parameterization of the full
distribution after a single iteration.

Because the distribution p’(x) is tree-structured, it can be reparameterized in terms
of its marginals, as in equation (5.2). With reference to the full graph G and distribution
p(x), this operation simply specifies a new choice of compatibility function for each
vertex s € V, and each edge (s,t) € E\E’, but does not modify the full distribution
p(x). In a subsequent update using this new set of functions and choosing a different
tree 77, we can write p(x) = p’(x)r/(x), where p’(x) includes compatibility functions
over cliques in 77. We can then perform reparameterization for p/(x), and repeat the
process, choosing one of the trees 7* at each step of the iteration.

Sec. 5.3. Tree-based reparameterization framework 115

Figure 5.3 illustrates the basic steps of this procedure for a simple graph with cycles.
Panel (a) shows the original parameterization of p(x) in terms of compatibility functions
s and g, as in equation (5.1). A spanning tree, formed by removing edges (4,5) and
(5,6), is shown in panel (b); specifically, we have r’(x) = tpu5(z4, z5) ¥s56(5,26) in
this case. The tree distribution p’(x), corresponding to the product of all the other
compatibility functions, is reparameterized in terms of marginals T and T; computed
from the tree-structured distribution p’(x). The quantities {T%, T}, though exact
marginals for this tree-structured distribution, represent approximations to the actual
marginals {Ps, Ps;} of the graph with cycles. After this tree reparameterization, the
compatibility functions in the residual term r¢(x) are re-instated; the full set of graph
compatibility functions following one update are shown in panel (d). In a subsequent
update, a different tree is chosen over which reparameterization is to be performed.

At one level, the sequence of updates just described is equivalent to a particular
tree-based schedule for message-passing. In particular, a given tree update can be per-
formed by fixing all messages on edges not in the tree, and updating messages on the
tree edges until convergence. However, thinking about tree reparameterization instead
of message-passing highlights a fundamental property: each step of the algorithm?® en-
tails specifying alternative factorization of the distribution p(x), and therefore leaves
the full distribution intact. To formalize this basic idea, in this section we introduce
a particular parameterization of distributions p(x;#), such that iterations of the type
just described can be represented as explicit functional updates 6™ — ™! on these
parameters. We also show that synchronous BP iterations can be interpreted as repa-
rameterization operations using especially simple non-spanning embedded trees, and we
present experimental results illustrating the potential advantages of tree-based updates
over synchronous BP.

B 5.3.1 Exponential families of distributions

Recall from Section 2.2 the definition of an exponential family of distributions:

p(x;0) = exp{> Oada(x) — (0)} (5.6a)
o0) = log(Y exp{d_fada(x)}) (5.6D)
xeXN e}

where ® is the log partition function that normalizes the distribution.

It is standard to specify an exponential family of the form in equation (5.6a) using
a set of functions ¢ = {¢, | @ € A } that are linearly independent. This gives rise to
a so-called minimal representation [e.g., 13]. However, in this chapter, we will find it
convenient to use a non-minimal set of functions. Specifically, let s, € V' be indices
parameterizing the nodes of the graph, and let the indices j, k run over the m possible

3Here we have described an unrelaxed form of the updates; in the sequel, we present and analyze a
suitably relaxed formulation.

116 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

states of the discrete random variables. We then take the index set for «, denoted by A,
to be the set of pairs (s;j) or 4-tuples (st; jk), and choose the potentials ¢, as indicator
functions for = to take on the indicated value (or values) at the indicated node (or pair
of nodes). That is,

pa(x) = d(zs =) for a=(s;)) (5.7a)
$a(x) = O(zs =7)0(z; = k) for a = (st; jk) (5.7b)

Here, the indicator or delta function (x5 = j) is equal to 1 when node z, takes the
state value j, and 0 otherwise. With this choice of {4}, the length of 6 is given by

d(®) = mN +m?E| (5.8)

In contrast to a minimal representation, the exponential parameterization of equa-
tion (5.7) is overcomplete (i.e., there are linear relations among the functions {¢s}). As
an example, for any edge (s,t) € FE, we have the linear dependence

—_

m—
Zé(xs:j)é(xt:k)zé(xt:k) forall k=0,...,m—1
j=
An important consequence of overcompleteness is the existence of distinct parameter
vectors 0 # 0* that induce the same distribution (i.e., p(x;0) = p(x,0*)). This many-to-
one correspondence between parameters and distributions is of paramount importance
to our analysis because it permits reparameterization operations that leave the overall
distribution unchanged.

W 5.3.2 Basic operators
Given a distribution p(x;) defined by a graph G, the quantities that we wish to compute
are elements of the marginal probability vector

P={P|scV}U{Py|(s;t)cE} (5.9)

where Pg.; = p(zs = j;60) defines the elements of the single-node marginal Py; and
Pk = p(xs = j, x = k; 0) defines the elements of the pairwise marginal Pj;.

We now observe that elements of the marginal probability vector P arise as ex-
pectations under p(x;#) of the potential functions {¢,} defined in equation (5.7) —
viz.:

Py = Egld(zs = 7)) (5.10a)
Pojr = Egld(zs =) 0(z = k)] (5.10Db)

On this basis, we conclude that P constitutes a set of mean parameters dual to the
exponential parameters 6. These two parameters are coupled via the relation:

P = A9 (5.11)

Sec. 5.3. Tree-based reparameterization framework 117

where A is the Legendre transform. (See Section 2.2.4 for more information about the
Legendre transform and its properties). Therefore, the vector P can be viewed as an
alternative set of parameters for the distribution p(x;8).

Note that the range of A, denoted Ra(A), is a highly constrained set of vectors. First
of all, any T € Ra(A) must belong to the unit hypercube (0,1)%?). Secondly, there
are normalization constraints (single-node and joint marginal probabilities must sum to
one); and marginalization constraints (pairwise joint distributions, when marginalized,
must be consistent with the single node marginals). That is, Ra(A) C C, where

m—1 m—1
C = {T|Te(0,1)"; Tyj=1for s€V; > Toyp =Ty, for (s,t) € E}

(5.12)

The elements of T € C define a locally consistent set of pairwise and single node marginal
distributions on the graph. When G is a tree, then any T € C can be extended (via the
tree factorization of equation (5.2)) to a unique distribution p(x; #) such that T = A(0).
Thus, for tree-structured graphs, Ra(A) = C.

For a graph with cycles, in contrast, Ra(A) is strictly contained within C. Indeed, for
graphs with cycles, there exist elements of C that cannot be realized as the marginals
of any distribution (Markov or otherwise). This strict containment reflects the fact
that for a graph with cycles, the local consistency conditions defining C are no longer
sufficient to guarantee the existence of a globally consistent distribution.

For a general graph with cycles, of course, the computation of A(f) in equation (5.11)
is very difficult. Indeed, algorithms like BP and TRP can be formulated as iteratively
generating approximations to A(f). To make a sharp distinction from exact marginal
vectors P € Ra(A) C C, we use the symbol T to denote such pseudomarginal vectors.

We will also make use of the following mapping that is defined for any such T:

log T, ; ifa=(s;j) €A

[@(T)]a = log [Tst;jk/(zj Tstijk) Qop Tstjr) | if @ = (st;jk) € A

(5.13)

The quantity ©(T) can be viewed as an exponential parameter vector that indexes a
distribution p(x; ©(T)) on the graph G. In fact, consider a marginal vector P € Ra(A).
If G is a tree, then not only is the computation of (5.11) simple, but we are also
guaranteed O(P) indexes the same graphical distribution as that corresponding to the
marginal vector P — that is:

AO(P)) =P (5.14)

This equality is simply a restatement of the factorization of equation (5.2) for any
tree-structured distribution in terms of its single-node and joint pairwise marginals.
However, if G has cycles, then in general the marginal distributions of p(x; ©(P)) need

118 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

not agree with the original marginals P (i.e., the equality of equation (5.14) does not
hold). In fact, determining the exponential parameters corresponding to P for a graph
with cycles is as difficult as the computation of A(f) in equation (5.11). Thus, the
composition of operators A o ©®, mapping one marginal vector to another, is the identity
for trees but not for general graphs.

Alternatively, we can consider composing © and A in the other order:

R(O) = (©oA)(H) (5.15)

which defines a mapping from one exponential parameter vector to another. For a
general graph, the operator R will alter the distribution (that is, p(x; €) # p(x; R(0))).
For a tree-structured graph, while R is not the identity mapping, it does leave the
probability distribution unchanged; indeed, applying R corresponds to shifting from
the original parameterization of the tree distribution in terms of 8 to a new exponential
parameter R(f) that corresponds directly to the factorization of equation (5.2). As a
result, in application to trees, the operator R is idempotent (i.e., RoR =R).

B 5.3.3 Tree-based reparameterization updates

The basic idea of TRP is to perform reparameterization updates on a set of spanning
trees 7°,..., 7571 in succession. The update on any given spanning tree 7" involves
only a subset A’ = {(s;7), (st;jk) | s €V, (s,t) € E'} of all the elements of #. To move
back and forth between parameter vectors on the full graph and those on spanning tree

T", we define projection and injection operators

IF(0) = {0y | v € A} (5.16a)
oy { & 105

We let A’, © and R’ denote operators analogous to those in equations (5.11), (5.13)
and (5.15) respectively, but as defined for 7°.

Each TRP update acts on the full-dimensional vector 6, but changes only the lower-
dimensional subvector IT°(9) = {6, | « € A'}. For this reason, it is convenient to use
the underbar notation to define operators of the following type:

R(6) = T (R'(II'(9))) (5.17a)
AYO) = T'(A'(IT(6))) (5.17b)

For instance, A" projects the exponential parameter vector 6 onto spanning tree 77
computes the corresponding marginal vector for the distribution p(x;I1*(#)) induced on
the tree; and then injects back to the higher dimensional space by inserting zeroes for
elements of edges not in 7* (i.e., for indices a € A/ A*). Moreover, analogous to C, we
define a constraint set C' by imposing marginalization constraints only for edges in the

Sec. 5.3. Tree-based reparameterization framework 119

spanning tree (i.e., as in equation (5.12) with E replaced by E*). Note that C' D C,
and since every edge is included in at least one spanning tree, we have that N;C' = C.

Using this notation, the operation of performing tree-reparameterization on span-
ning tree 7° can be written compactly as transforming a parameter vector into the
new vector given by:

Q'(0) = R'(O)+ [I-T'oIT'](h) (5.18a)
= 0+ [R'(6) - T'(I1'(9))] (5.18b)

where [is the identity operator. The two terms in equation (5.18a) parallel the decom-
position of equation (5.5): namely, the operator R performs reparameterization of the
distribution p*(x), whereas the operator [I —Z*oII*] corresponds to leaving the residual
term r’(x) unchanged. Thus, equation (5.18a) is a precise statement of a spanning
tree update, such as that illustrated in Figure 5.3, specified in terms of the exponential
parameter 6.

Given a parameter vector #, computing Q'(f) is straightforward, since it only in-
volves operations on the spanning tree 7¢. The tree-based reparameterization algorithm
generates a sequence of parameter vectors {0#"} by successive application of these op-
erators Q'. The sequence is initialized* at 6° using the original set of graph functions

{15} and {15} as follows:

o [lostuy ifa=(s:7)
“ log "/)st;jk if o = (St;jk)

At each iteration n, we choose some spanning tree index i(n) from {0,... ,L — 1}, and
then update using the operator on spanning tree 7*:

0n+1 — Qz(n) (on) (5.19)

In the sequel, we will also consider a relaxed iteration, involving a step size A" € (0, 1]
for each iteration:

where A" = 1 recovers the unrelaxed version.

The only restriction that we impose on the set of spanning trees is that each edge
of the full graph G is included in at least one spanning tree (i.e., U;A* = A). It is
also necessary to specify an order in which to apply the spanning trees — that is,
how to choose the index i(n). A natural choice is the cyclic ordering, in which we set
i(n) = n (mod L). More generally, any ordering — possibly random — in which each
spanning tree occurs infinitely often is acceptable. A variety of possible orderings for
successive projection algorithms are discussed in [31].

4Other initializations are also possible. More generally, #° can be chosen as any exponential param-
eter that induces the same distribution as the original compatibility functions {t¢s} and {ts:}.

120 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

B 5.3.4 Belief propagation as reparameterization

Just as TRP can be viewed as a particular tree-based schedule for message-passing, we
show in this section how to reformulate synchronous BP in “message-free” manner as a
sequence of local rather than global reparameterization operations. Specifically, in each
step, new compatibility functions are determined by performing exact calculations over
extremely simple (non-spanning) trees formed of two nodes and the corresponding edge
joining them.

We denote by M2, = {Mg.x | k € X } the m—vector corresponding to the chosen
initialization of the messages. This choice is often the vector of all ones, but any
initialization with strictly positive components is permissible. The message-free version
of BP iteratively updates approximations to the exact marginals P = { Py, Py;}. Initial
values of the approximations T = {T§,Ts} are determined from the initial messages
MY, and the original compatibility functions of the graphical model as follows:

0=kt [M, forall seV (5.21a)
uEN()

Toik = 6 Psrge Ysg bee || My, [[Maw for all (s,t) € B (5.21b)
ueN(s)/t uEN(t)/s

where x denotes a normalization factor.
At iteration n, these quantities are updated according to the following recursions:

—1
T = &It] T Tk (5.22a)
teN() 537 =
n—_l
Th = K stik TI TR, (5.22b)

(Xr Tosh) (20 Tosr)

The update in equation (5.22b) is especially noteworthy: it corresponds to perform-
ing optimal estimation on the very simple two-node tree formed by edge (s,t). As an
illustration, Figure 5.4(b) shows the decomposition of a single-cycle graph into such
two-node trees. This simple reparameterization algorithm operates by performing op-
timal estimation on this set of non-spanning trees, one for each edge in the graph, as
in equation (5.22b). The single-node marginals from each such tree are merged via
equation (5.22a).

We now claim that this reparameterization algorithm is equivalent to belief propa-
gation, summarizing the result as follows:

Proposition 5.3.1. The reparameterization algorithm specified in the equations (5.21)
and (5.22) is equivalent to the message-passing form of BP given in equations (5.3)
and (5.4). In particular, for each iteration n = 0,1,... and initial message vector MY,

Sec. 5.3. Tree-based reparameterization framework 121

Tip
(2, Th2) (2, Tho)
T T
1 2
1 2/
4 3!
4// 3//

(a) (b)
Figure 5.4. (a) Toy example of original graph. (b) Two node trees used for updates in
message-free version of belief propagation. Computations are performed exactly on each
two-node tree formed by a single edge and the two associated observation potentials
as in equation (5.22b). The node marginals from each two-node tree are merged via
equation (5.22a).

we have the following relations:

n m—1
1 .
Mgt o= M,] o Y Ti forall(st)€E (5.23a)
i=0 "tk j=0

where k denotes a normalization factor.

Proof. See Appendix C.1. O

B 5.3.5 Empirical comparisons of BP versus TRP

Given that a spanning tree reaches every node of the graph, one might expect tree-
based updates, such as those of TRP, to have convergence properties superior to those
of local updates such as synchronous BP. As stated previously, a single TRP update
on a given spanning tree can be performed by fixing all the messages on edges not in
tree, and updating messages on edges in the tree until convergence. Such tree-based
message updating schedules are used in certain applications of BP, such as turbo de-
coding [131], for which there are natural choices of trees over which to perform updates.
In this section, we provide experimental evidence supporting the claim that tree-based
updates have superior convergence properties for other problems. An interesting but
open question raised by these experiments is how to optimize the choice of trees (not
necessarily spanning) over which to perform the updates.

122 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

Convergence rates

In this section, we report the results of experiments on the convergence rates of TRP and
BP on three graphs: a single cycle with 15 nodes, a 7 X 7 nearest neighbor grid, and
a larger 40 x 40 grid. At first sight, the more global nature of TRP might suggest
that each TRP iteration is more complex computationally than the corresponding BP
iteration. In fact, the opposite statement is true. Each TRP update corresponds to solve
a tree problem exactly, and therefore requires O(m?(N — 1)) operations.® In contrast,
each iteration of synchronous BP requires O(m?|E|) operations, where |E| > N — 1
is the number of edges in the graph. In order to make comparisons fair in terms of
actual computation required, whenever we report iteration numbers, they are rescaled
in terms of relative cost (i.e., for each graph, TRP iterations are rescaled by the ratio
(N —1)/|E| < 1). In all cases, we used unrelaxed updates for both BP and TRP.

For each graph, we performed simulations under three conditions: edge potentials
that are repulsive (i.e., that encourage neighboring nodes to take opposite values);
attractive (that encourage neighbors to take the same value); and mized (in which some
potentials are attractive, while others are repulsive). For each of these experimental
conditions, each run involved a random selection of the initial parameter vector 6°
defining the distribution p(x;6°). In all experiments reported here, we generated the
single node parameters f5.; as follows:® for each node s € V, sample a; ~ N(0, (0.25)?),
and set [fg0 051] = [as — as]. To generate the edge potential components 6.1, we
begin by sampling bs ~ N (0,1) for each edge (s,t). With ¢, denoting the Kronecker
delta for j, k, we set the edge potential components in one of three ways depending on
the experimental condition. For the repulsive condition, we set 0.1, = — (205 — 1) |bsy|;
for the attractive condition, Oy.;r = (205 — 1) |bs|; whereas for the mized condition
Ostijr = (205 — 1) by

For each experimental condition, we performed a total of 500 trials for each of the
single cycle and 7 x 7 grid, comparing the performance of TRP to BP. On any given run,
an algorithm was deemed to converge when the mean L? difference between successive
node elements (1 > |67+ — 67(|%) reached a threshold of € = 1 x 107!, A run in
which which a given algorithm failed to reach this threshold within 3000 iterations
was classified as a failure to converge. In each condition, we report the total number
of convergent trials (out of 500); and also the mean number of iterations required to
converge, rescaled by the ratio (N —1)/|E| and based only on trials where both TRP and
BP converged.

Table 5.1 shows some summary statistics for the two graphs used in these experi-
ments. For the single cycle, we implemented TRP with two spanning trees, whereas we
used four spanning trees for the grid. Although both algorithms converged on all trials
for the single cycle, the rate of TRP convergence was significantly (roughly 3 times)
faster. For the grid, algorithm behavior depends more on the experimental condition.

SHere we are using the fact that a tree problem can be solved efficiently by a two-pass sweep, where
exactly two messages are passed along each edge of the graph.
5The notation A'(0,0?) denotes a zero-mean Gaussian with variance o2

Sec. 5.3. Tree-based reparameterization framework 123

Graph Single 15-cycle 7 x 7 grid
R | A | M R | A | M
BP 500 23.2 500 23.4 500 23.6 455 62.3 457 65.8 267 310.1
TRP 500 8.1 500 8.0 500 8.2 500 30.5 500 30.8 282 103.2

Table 5.1. Comparison of convergence behavior of TRP versus BP for a single cycle
of 15 nodes; and a 7 x 7 grid. Potentials were chosen randomly in each of the three
conditions: repulsive potentials (R); attractive potentials (A); mixed potentials (M).
First and second numbers in each box denote the number of convergent runs out of 500;
and the mean number of iterations (rescaled by relative cost and computed using only
runs where both TRP and BP converged) respectively.

The repulsive and attractive conditions are relatively easy, though still difficult enough
for BP that it failed to converge on roughly 10% of the trials, in contrast to the perfect
convergence percentage of TRP. In terms of mean convergence rates, TRP converged
more than twice as quickly as BP. The mixed condition is difficult for suitably strong
edge potentials on a grid: in this case both algorithms failed to converge on almost half
the trials, although TRP converged more frequently than BP. Moreover, on runs where
both algorithms converged, the TRP mean rate of convergence was roughly three times
faster than BP. Although mean convergence rates were faster, we did find individual
problems on the grid for which the version of TRP with four trees converged more
slowly than BP. However, one possibility (which we did not take advantage of here) is
to optimize the choice of trees in an adaptive manner.

- BP - BP
-0.5 —— TRP -0.5 —— TRP

E-15

Distance to fixed point
|
| n |
£ o« -
Distance to fixed point
|
| n |
£ o« -
Distance to fixed point
Lowo N e O
R R R T =)

!
A
@

!
A

@
IS

@

10 20 30 40 50 10 20 30 40 50 20 40 60 80 100
Iteration Iteration Iteration

(a) (b) (c)

Figure 5.5. Convergence rates for TRP versus BP on a 40 x 40 grid. Plotted on a
log scale is the L? distance (D105 — 07.;%) from current iterate 8™ to fixed point 6*
versus iteration number n. In all cases, both BP and TRP converge to the same fixed
point 6*. (a) Repulsive potentials. (b) Mixed potentials. (¢) Particular choice of mixed
potentials that causes difficulty for TRP.

We also examined convergence behavior for the 40 x 40 grid with 1600 nodes, using
a version of TRP updates over two spanning trees. Figure 5.5 provides an illustration of
the convergence behavior of the two algorithms. Plotted on a log scale is the L? distance

o BP
—~— TRP

120

124 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

between the single-node elements of 8™ and 6* at each iteration, where 6* is a fixed point
common to BP and TRP, versus the iteration number. Again, the TRP iteration are
rescaled by their cost relative to BP iterations ((N — 1)/|E]), which for this large grid
is very close to 0.5. Panel (a) illustrates a case with repulsive potentials, for which the
TRP updates converge quite a bit faster than BP updates. Examples in the attractive
condition show similar convergence behavior. Panels (b) and (c¢) show two different
examples, each with a mixed set of potentials. The mixed condition on the grid is
especially difficult due to the possibility of conflicting or frustrated interactions between
the nodes. For the problem in (b), the two spanning trees used for this particular version
of TRP are a good choice, and again lead to faster convergence. The potentials for the
problem in (c¢), in contrast, cause difficulties for this pair of spanning trees; note the
erratic convergence behavior of TRP.

Each TRP update ignores some local interactions corresponding to the edges re-
moved to form the spanning tree. These edges are covered by other spanning trees in
the set used; however, it remains an open question how to choose trees so as to maxi-
mize the rate of convergence. In this context, one could imagine a hybrid algorithm in
which pure synchronous BP iterations are interspersed with iterations over more global
structures like trees (not necessarily spanning). The exploration of such issues remains
for future research.

Domain of convergence

We have also found that tree-based updates can converge for a wider range of poten-
tials than synchronous BP. The simple 5-node graph shown in Figure 5.6(a) serves
to illustrate this phenomenon. We simulated a binary process over a range of po-
tential strengths p ranging from —0.3 to —1.0. Explicitly, for each value of u, we
made a deterministic assignment of the potential for each edge (s,t) of the graph as
Ost i = (2(5jk — 1)p. For each potential strength we conducted 100 trials, where on
each trial the single-node potentials were set randomly by sampling as ~ N(0, (0.25)2)
and setting [0s,0 6s5,1] = [as — as]. On any given trial, the convergence of a given
algorithm was assessed as in Section 5.3.5. Plotted in Figure 5.6(b) is the percentage of
successfully converged trials versus potential strength for TRP and BP. Both algorithms
exhibit a type of threshold behavior, in which they converge with 100% success up to
a certain potential strength, after which their performance degrades rapidly. However,
the tree-based updates extend the effective range of convergence.” To be fair, recently
proposed alternatives to BP for minimizing the Bethe free energy [e.g., 177,184], though
they entail greater computational cost than the updates considered here, are guaranteed
to converge to a stationary point.

"This result is not dependent on the symmetry of the problem induced by our choice of edge poten-
tials; for instance, the results are similar if edge potentials are perturbed from their nominal strengths
by small random quantities.

Sec. 5.4. Analysis of fixed points and convergence 125

100 —— TRP
—— BP

Convergence (%)

0 025 125 © 15

0.5 0.75 1
Potential strength

(a) (b)

Figure 5.6. (a) Simple 5-node graph. (b) Comparison of BP and TRP convergence per-
centages versus function of potential strength on graph in (a). Plotted along the abscissa

as a measure of potential strength is the multi-information D(p(x;6) || Hivzl p(zs;6)).
Both TRP and BP exhibit a threshold phenomenon, with TRP converging for a wider
range of potentials.

B 5.4 Analysis of fixed points and convergence

In this section, we present a number of results related to the geometry and fixed points
of reparameterization algorithms like TRP and BP. The defining characteristic of a
reparameterization algorithm is that the original distribution is never altered. Accord-
ingly, we begin in Section 5.4.1 with a formal statement of this property in terms of
exponential parameters, and then establish its validity for the more general class of re-
laxed updates. We also develop the information-geometric interpretation of this result.
Motivated by this geometric view, we show that a TRP update can be viewed as a
projection onto the tree constraint set C'. This projection is defined by a particular
cost function, defined in Section 5.4.2, that arises as an approximation to the Kullback-
Leibler (KL) divergence. In Section 5.4.3, we show that successive TRP iterates satisfy
a Pythagorean relation with respect to this cost function. This result is of independent
interest because it establishes links to successive projection techniques for constrained
minimization of Bregman distances [e.g., 31]. In Section 5.4.4, we use this Pythagorean
relation to prove that fixed points of the TRP algorithm satisfy necessary conditions to
be a constrained minimum of this cost function. By combining our results with those
of Yedidia et al. [183], we conclude that fixed points of the TRP algorithm coincide
with those of BP. The Pythagorean result also allows us to formulate a set of sufficient
conditions for convergence of TRP in the case of two spanning trees, which we present
in Section 5.4.5. In Section 5.4.6, we provide an elementary proof of the result originally
developed in [152,176] concerning the behavior of BP for jointly Gaussian distributions.
Finally, in Section 5.4.7, we address the question of when (other than for tree-structured
distributions) the TRP/BP approximations can be exact.

126 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

H 5.4.1 Geometry and invariance of TRP updates

Highlighted by our informal set-up in Section 5.3 is a fundamental property of repa-
rameterization algorithms like TRP and BP — specifically, they do not change the
original distribution on the graph with cycles. In this section, we formalize this notion
of invariance, and show that it also holds for the more general class of relaxed updates
in equation (5.20). On the basis of this invariance, we provide an illustration of the
TRP updates in terms of information geometry [7,34,45]. This geometric perspective
provides intuition and guides our subsequent analysis of reparameterization algorithms
and their fixed points.

From the perspective of reparameterization, a crucial feature of the exponential
parameterization defined in equation (5.7) is its overcompleteness. For this reason,
given(e; fixed exponential parameter 0, it is interesting to consider the following subset
of R49).

M(6) £ {0 e RU | p(x;60) = p(x; 0)} (5.24)

where d(6) denotes the length of § as defined in equation (5.8). This set can be seen
to be a closed submanifold of R¥?®) — in particular, note that it is the inverse image of
the point 6 under the continuous mapping 6 — p(x;0). In order to further understand
the structure of M(g), we need to link the overcomplete parameterization to a minimal
parameterization, specified by a linearly independent collection of functions.

We begin with the special case of binary-valued nodes (m = 2). Recall from Exam-
ple 2.2.2 of Section 2.2.1 that the standard minimal representation of a distribution on

a binary vector with pairwise potentials has the form:

p(x;y) =exp { > vsxs + > Yarxsz — (7))} (5.25)

s,teE

Here we use the parameter v to distinguish this minimal representation from the over-
complete parameter # used in TRP updates. Similarly, as shown by the discussion
of Section 2.2.1, an m-ary process on a graph with pairwise potentials has a minimal
representation in terms of the collection of functions:

R(s) 2 {z%|a=1,... m—1} forseV (5.26a)
R(s,t) = {z%% |a,b=1,... ,m —1} for (s,t) € E (5.26b)

As in the binary case illustrated above, we let v be a parameter vector of weights on
these functions.

In contrast to the overcomplete case, the minimal representation induces a one-to-
one correspondence between parameter vectors v and distributions p(x;). Therefore,
associated with the distribution p(x;) is a unique vector ¥ such that p(x;0) = p(x;7).
The dimension of the exponential family [see 5] is given by the length of -, which
we denote by d(y). From equation (5.26), we see that this dimension is given by
d(y) =[(m —1) N + (m —1)? |E|]. On the basis of these equivalent representations,
the set M(#) can be characterized as follows:

Sec. 5.4. Analysis of fixed points and convergence 127

Proposition 5.4.1. The set M(0) of equation (5.24) is a linear (e-flat) submanifold
of RUO) of dimension d(0) — d(y). It has the form {6 € RU? |A9 =7}, where A is an
appropriately defined d(y) x d(@) matriz of constraints.

Proof. See Appendix C.5. O

Based on this proposition, we can provide a geometric statement and proof of the
invariance of TRP updates:

Theorem 5.4.1 (Invariance of distribution). Consider a sequence of TRP iterates
{6™} generated by the relaxed updates:

gntl — \n Ql(n) 0™) + (1 — A" (5.27)

Then the distribution on the full graph with cycles is invariant under the updates: that
is, 0" belongs to the set M(0°) = {6 € RY®) | p(x;0) = p(x;60°)} for allm =1,2,....
Moreover, any limit point 0% of the sequence also belongs to M(0°).

In addition, the same statements hold for the reparameterization form of BP presented
in Section 5.5.4.

Proof. As previously described, the unrelaxed TRP update of equation (5.19) does
indeed leave the distribution unchanged, so that Q*(6) € M (@) for all §. The relaxed
update of equation (5.27) is nothing more than a convex combination of two exponential
vectors (6" and Q*(™)(0™)) that parameterize the same distribution, so that by recourse
to Proposition 5.4.1, the proof of the first statement is complete. As noted earlier,
M(0) is a closed submanifold, so that any limit point of the sequence {#™} must also
belong to M(°). An inductive argument establishes that the reparameterization form

of BP also leaves invariant the distribution on the full graph.
0

These results together also lead to a geometric understanding of the TRP updates in
the exponential domain (i.e., in terms of the parameter vector). In order to describe
this geometry, we begin by defining an exponential analog of the constraint set C as
follows:

D = {6|6=06(T) for some T € C} = 6(C) (5.28)

If a vector @ belongs to the set), then it must satisfy certain nonlinear convex con-
straints (e.g., log[>_; exp(fs;;)] = 0 for all s € V; and log[}_; exp(fss;jx + 0s5)] = 0 for
all (s,t) € E). For each spanning tree constraint set C', we also define the set D' in an
analogous manner. Note that for any 6, the updated Q*(#) is guaranteed to belong to
. Moreover, the set-up of the algorithm ensures that D = N;ID*.

Figure 5.7 illustrates the geometry of TRP updates. The sequence of iterates {6"}
remains within the linear manifold M(6°). In terms of information geometry [5], this
manifold is e-flat, since it is linear in the exponential parameters. Note that C and each

128 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

Figure 5.7. Geometry of tree-reparameterization updates in the exponential domain.
Iterates are confined to the linear manifold M(6°). Curved lines within M (6°) corre-
spond to the intersection ¥ N M (%), for a particular spanning tree constraint set ‘.
Each update entails moving along the line between 6" and the point Q™) (") on D™ .
Any fixed point #* belongs to the intersection of I = N;D with M (°).

C' are defined by linear constraints in terms of the (pseudo)marginal T, and so are
m-flat manifolds. Each set ', as defined in equation (5.28), is the image under © of
the constraint set C*, and so is a curved manifold in terms of exponential parameters.
Therefore, the intersection D N M (6°) forms a curved line, as illustrated in Figure 5.7.
Each update consists of moving along the straight line between the current iterate
0™, and the point Q™) (0™) obtained by applying the tree reparameterization operator
Qi("). By construction, the vector Q™ (") belongs to the constraint set '™ . The
ultimate goal of a reparameterization algorithm is obtain a point 8* in the intersection
N;D* of all the tree constraint sets.

B 5.4.2 Approximation to the Kullback-Leibler divergence

Based on the geometric view illustrated in Figure 5.7, an unrelaxed TRP update corre-
sponds to moving from 0" to the point Q"™ (") in the constraint set DH™) = ©(CH™)).
We now show that this operation corresponds to a type of projection; that is, it can
be formulated as finding the point in C(™ that is closest to 8", where “distance” is
measured by a cost function to be defined. In particular, the cost function G central to
our analysis arises as an approximation to the Kullback-Leibler (KL) divergence [42],
one which is exact for a tree.

Let T € (0, 1)d(0) be a pseudomarginal vector, and let f be a parameter vector for
the original graph G with cycles. As building blocks for defining the full cost function,

Sec. 5.4. Analysis of fixed points and convergence 129

we define functions for each node s and edge (s,t) as follows:
gst(Tst; est) = ZTst;jk{ IOg [Tst;jk/(ZTst;jk)(Z Tst;jk)] - est;jk} (5293‘)
Ik J k

Gs(Ts;05) = ZTs;j [log Ts,j — os;j] (5.29b)
J

We then define the cost function as:

= Z gs(Ts§ 05) + Z gst(Tst§ est) = Z Ty [G(T) - H]a (5'30)

seV (s,t)EE acA

It can be seen that this cost function is equivalent to the Bethe free energy [183] when
T belongs to the constraint set C, but distinct for vectors T that do not satisfy the
marginalization constraints defining membership in C.

To see how G is related to the KL divergence as defined in equation (2.31), consider
the analogous function defined on spanning tree 7* for a vector T € C':

gZ(Hz(Z Z gs Ts, 0 Z gst Tst7 ost = Z TOé [@Z (Hl(T)) - 0] «
seV (s,t)eE? ac Al
(5.31)

where IT°(9) and TT*(T) are exponential parameter vectors and marginal vectors, respec-
tively, defined on 7. With the exponential parameterization of equation (5.7) applied
to any tree, we have Ty, = Egi(q1i(T))[#a(x)] for all indices o € A’ As a result, the
function G* is related to the KL dlvergence as follows:

D(6'(IT(T)) || IT(9)) = G*(IT'(T); I () + ®(IT'(9)) (5.32)

In establishing this equivalence, we have used the fact that the partition function of the
factorization in equation (2.6) is unity, so that the corresponding log partition function
is zero (i.e., ®(©(IT*(T))) = 0). Therefore, aside from an additive constant ®(I1°(6))
independent of T, the quantity G*(IT*('T);II*(#)), when viewed as a function of IT*(T),
is equivalent to the KL divergence.

Now consider the problem of minimizing the KL divergence as a function of T,
subject to the constraint T € C'. The KL divergence in equation (5.32) assumes its
minimum value of zero at the vector of correct marginals on the spanning tree —
namely, P? = AY(IT*(A)) € C'. By the equivalence shown in equation (5.32), minimizing
the function G*(IT*('T); IT*(#)) over T € C' will also yield the same minimizing argument
P’.

For the original graph G with cycles, the cost function G of equation (5.30) is not
equivalent to the KL divergence. The argument leading up to equation (5.32) cannot
be applied because A(O(T)) # T for a general graph with cycles. Nevertheless, this
cost function lies at the core of our analysis of TRP. Indeed, we show in Section 5.4.3

130 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

how the TRP algorithm can be viewed as a successive projection technique for con-
strained minimization of the cost function G, in which the reparameterization update
on spanning tree 7° as in equation (5.19) corresponds to a projection onto constraint
set C'. Moreover, since G agrees with the Bethe free energy [183] on the constraint set
C, this allows us to establish equivalence of TRP fixed points with those of BP.

B 5.4.3 Tree reparameterization updates as projections

Given a linear subspace £ C R" and a vector y € R”, it is well-known [20] that the
. . ~ . . ~ A . . .
projection X under the Euclidean norm (i.e., X £ arg minge, ||x — y||) is characterized
by an orthogonality condition, or equivalently a Pythagorean relation. The main result
of this section is to show that a similar geometric picture holds for TRP updates with
respect to the cost function G. As a consequence, each iteration of TRP can be viewed
as projecting the current iterate # onto the constraint set CH") | where G plays the role

of a squared distance function:

Proposition 5.4.2 (Pythagorean relation). Assume that the sequence {0™} gener-
ated by equation (5.20) with step sizes \™ remains bounded. Let i = i(n) be the tree
index used at iteration n. Then for all U € C*:

G(U;0") = G(U;0"1) + A"G(A'(Q'(67));0") (5.33)
where A is defined in equation (5.17b).
Proof. See Appendix C.2. O

An important special case of Proposition 5.4.2 is the unrelaxed update (A" = 1), in
which case equation (5.33) simplifies to

G(U;0") = G(U; ") + G(A'(9"F); 07) (5.34)

A result analogous to equation (5.34) holds for the minimum of a Bregman distance over
a linear constraint set [e.g., 31]. Well-known examples of Bregman distances include the
L? norm, as well as the Kullback-Leibler (KL) divergence. Choosing the KL divergence
as the Bregman distance leads to the I-projection in information geometry [e.g., 7,34,45].

Even when the distance is not the L? norm, results of the form in equation (5.34) are
still called Pythagorean, because the function G plays the role (in a loose sense) of the
squared Euclidean distance. This geometric interpretation is illustrated in Figure 5.8.
For the unrelaxed updates, we are guaranteed the existence® of a pseudomarginal T"
such that 6™ = ©(T™). The three points T", A’(#"*!) and U analogous to the vertices
of a right triangle, as drawn in Figure 5.8. We project the point T" onto the constraint

8The image of the unit hypercube (0,1)*® under the map © is not all of R¥? | since, for example,
given any pseudomarginal T € (0,1)%?), we have [©(T)]s;; = log Ts,; < 0. Nonetheless, for unrelaxed
updates producing iterates 6™, it can be seen that the inverse image of a point " under © will be
non-empty as soon as each edge has been updated at least once.

Sec. 5.4. Analysis of fixed points and convergence 131

.

Ai(0n+1) U

Figure 5.8. Illustration of the geometry of Proposition 5.4.2. The pseudomarginal
vector T" is projected onto the linear constraint set C'. This yields the point At (O™
that minimizes the cost function G* over the constraint set C.

set C', where the function G’ serves as the distance measure. This projection yields the
point A*(6"*1) € 7, and we have depicted its relation to an arbitrary U also in C’.

It is worthwhile comparing Figure 5.8 to Figure 5.7, which represent the same ge-
ometry in the two different co-ordinate systems. Figure 5.8 gives a picture of a single
TRP update in terms of pseudomarginal vectors T; in this co-ordinate system, the
constraint set C’ is linear and hence illustrated as a plane. Figure 5.7 provides a similar
picture in terms of the exponential parameters. The non-linear mapping ©° transforms
this constraint set C’ to its analog I in the exponential domain (i.e., I’ = ©¢(C')). As
a consequence of the non-linearity, the sets I in Figure 5.7 are represented by curved
lines in exponential co-ordinates. In Figure 5.7, a single TRP update corresponds
to moving along the straight line in exponential parameters between 0" = ©(T")
and the point Q'™ (") that belongs that D N M(#°). Conversely, in Figure 5.8,
this same update is represented by moving along the curved line between T" and

AN(O"H) = THANIT Q™ (67)))).

B 5.4.4 Characterization of fixed points

Returning to the Euclidean projection example at the start of Section 5.4.3, consider
again the problem of projecting y € R" onto the linear constraint set £ C R™. Suppose
that constraint set £ can be decomposed as the intersection £ = N;£¢. Whereas it may
be difficult to compute directly the projection X € L, performing projections onto the
larger linear constraint sets £* is often easier. In this scenario, one possible strategy
for finding the optimal projection X € L is to start at y, and then perform a series
of projections onto the constraint sets {£’} in succession. In fact, such a sequence of
projections is guaranteed [e.g., 31] to converge to the optimal approximation X € L.
More generally, a wide class of algorithms can be formulated as successive projec-
tion techniques for minimizing a Bregman distance over a set formed by an intersection

132 CHAPTER 5. TREE-BASED REPARAMETERIZATION FOR APPROXIMATE ESTIMATION

of linear constraints [e.g., 31]. An example that involves a Bregman distance other
than the Euclidean norm is the generalized iterative scaling algorithm [52], used to
compute projections involving the Kullback-Leibler divergence. A Pythagorean rela-
tion analogous equation (5.34) is instrumental in establishing the convergence of such
techniques [31,45].

The problem of interest here is similar, since we are interested in finding a point
belonging to a constraint set formed as an intersection of linear constraint sets (i.e.,
C = n;C). However, the function G is certainly not a Bregman distance since, for
instance, it can assume negative values. Nonetheless, the Pythagorean result in Propo-
sition 5.4.2 allows us to show that any fixed point 8* of the TRP algorithm satisfies the
necessary conditions for it to be a local minimum of G(T;#°) over the constraint set
C. Although the result extends to other orderings, for concreteness we state it here for
a cyclic ordering of spanning trees 7°,... ,TE~1: ie., the tree index for iteration n is
chosen as i(n) = n(mod L).

Theorem 5.4.2 (Characterization of fixed points). Let 0* be a fized point of a
sequence of iterates {0"} generated by equation (5.20) with a cyclic tree ordering, and
using step sizes \" € [e, 1] for some € > 0.

(a) The point 0* is fired under all the tree operators Q. (Le., 8% = Q'(6*) for all
indicesi =0,... ,L—1.) Therefore, each fized point 0* is associated with a unique
pseudomarginal vector T* € C.

(b) The pseudomarginal vector T satisfies the necessary conditions for it to be a local
minimum of G(T;6°) over the constraint set C:
0
—g(T*;oo) U-T*], =0

acA 8Ta

for all U in the constraint set C.
(¢) Fized points of the TRP algorithm always exist, and coincide with those of BP.
Proof. See Appendix C.2. O

A few remarks about Theorem 5.4.2 are in order. First of all, to clarify the result
stated in (a), the unique pseudomarginal vector T* associated with 6* can be con-
structed explicitly as follows. For an arbitrary index «, pick a spanning tree 7 such
that a € A*. Then define T = [A*(IT*(0*))]a; that is, T is the value of this (single node
or pairwise) marginal for the tree-structured distribution p(x; II*(6*)). Note that this is
a consistent definition of T}, because the condition of part (a) means that [A*(II?(6*))]a
is the same for all spanning tree indices i € {0,... ,L — 1} such that o € A*. More-
over, this construction ensures that T* € C, since it must satisfy the normalization and
marginalization constraints associated with every node and edge.

Figure 5.9 illustrates this characterization of fixed points in terms of T*. Shown

Sec. 5.4. Analysis of fixed points and convergence

133

T . T . |T% T; . Ty . T}
1 T12 2 T23 3 1 T12 2 T23 3
A TE L TE L LG L TE
J \/2 3\ J \/2
Ty, T T T 1, T3
T/ T} T3 T; I; T; T} T T3 T I;
5 6 5
O O O O O
ST Y T
T4 T5 TG T4 T5 TG

® ®
(a) (b)

Figure 5.9. Illustration of fixed point consistency condition. (a) Fixed point {T, T4}
on the full graph with cycles. (b) Illustration of consistency condition on an embedded
tree. The quantities {T¥, T2 } must be a consistent set of marginal probabilities for

any tree embedded within the full graph.

in panel (a) is an example of a graph G with cycles, parameterized according to the
approximate marginals T; and 7. Consider the set of edges that must be removed
from G in order to form a given tree 7. For instance, Figure 5.9(b) shows the tree
obtained by removing edges (4,5) and (5,6) from the graph in (a). Suppose that we
remove the functions T3;/(T;T;") that sit on non-tree edges, and use the remaining
functions to form a tree-structured distribution as follows:

H Ts*t(xvat)

p (T = [[T5(s) T#(ws) T} (24)

seEV

(5.35)
(s,t)EE(T)

Here FE(T) is the edge set of the tree 7. The consistency condition of Theorem 5.4.2
then guarantees that the pseudomarginals T¢; and T} correspond to exact marginal
distributions for the tree-structured distribution pT(x; T*). In this case, we say that
the pseudomarginal vector T* is tree-consistent with respect to the tree 7.

In fact, this tree-consistency holds for any acyclic substructure embedded within the
full graph with cycles — not just th