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Abstract

Stochastic processes de�ned on graphs arise in a tremendous variety of �elds, including
statistical physics, signal processing, computer vision, arti�cial intelligence, and infor-
mation theory. The formalism of graphical models provides a useful language with
which to formulate fundamental problems common to all of these �elds, including esti-
mation, model �tting, and sampling. For graphs without cycles, known as trees, all of
these problems are relatively well-understood, and can be solved eÆciently with algo-
rithms whose complexity scales in a tractable manner with problem size. In contrast,
these same problems present considerable challenges in general graphs with cycles.

The focus of this thesis is the development and analysis of methods, both exact and
approximate, for problems on graphs with cycles. Our contributions are in developing
and analyzing techniques for estimation, as well as methods for computing upper and
lower bounds on quantities of interest (e.g., marginal probabilities; partition functions).
In order to do so, we make use of exponential representations of distributions, as well
as insight from the associated information geometry and Legendre duality. Our results
demonstrate the power of exponential representations for graphical models, as well as
the utility of studying collections of modi�ed problems de�ned on trees embedded within
the original graph with cycles.

The speci�c contributions of this thesis include the following. We develop a method
for performing exact estimation of Gaussian processes on graphs with cycles by solving a
sequence of modi�ed problems on embedded spanning trees. We present the tree-based
reparameterization framework for approximate estimation of discrete processes. This
framework leads to a number of theoretical results on belief propagation and related
algorithms, including characterizations of their �xed points and the associated approxi-
mation error. Next we extend the notion of reparameterization to a much broader class
of methods for approximate inference, including Kikuchi methods, and present results
on their �xed points and accuracy. Finally, we develop and analyze a novel class of up-
per bounds on the log partition function based on convex combinations of distributions
in the exponential domain. In the special case of combining tree-structured distribu-
tions, the associated dual function gives an interesting perspective on the Bethe free
energy.

Thesis Supervisors: Alan S. Willsky and Tommi S. Jaakkola
Title: Professors of Electrical Engineering and Computer Science
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Notational Conventions

Symbol De�nition

General Notation

j � j absolute value

k � k L2 norm

r gradient operator

r2 Hessian operator

ai the ith component of the vector A

Aij element in the ith row and jth column of matrix A

ek indicator vector with 1 in the kth component and 0 every-
where else

R real numbers

RN vector space of real-valued N -dimensional vectors

[0; 1]N closed unit hypercube in RN

(0; 1)N open unit hypercube in RN

Ra(F ) range of the mapping F

F ÆG composition of mappings F and G

I identity operator

x random vector

XN sample space of N -dimensional random vector x

y observation vector

p(x) probability distribution on x

p(x jy) conditional probability distribution of x given y

H(p) entropy of distribution p

D(p k q) Kullback-Leibler divergence between p and q

N (�;�) Gaussian distribution with mean � and covariance �

U [a; b] uniform distribution on [a; b]

L Lagrangian of a constrained optimization problem
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6 NOTATIONAL CONVENTIONS

Symbol De�nition

Graphs and graphical models

G undirected graph

V vertex or node set of graph

E edge set of graph

C graph clique

C set of all cliques of GeG triangulated version of GeC set of all clique of eG
S separator set in a junction tree

S set of all separator sets

S subset of vertex set V

F subset of edge set E

G[S] node-induced subgraph

G(F ) edge-induced subgraph

 C compatibility function on clique C
Z partition function

N number of nodes (i.e., jV j)
m number of discrete states

s; t indices for nodes

(s; t) edge between nodes s and t

j; k indices for discrete states

N (s) neighbors of node s in G

T spanning tree of G

E(T ) edge set of T
KN complete graph on N nodes



NOTATIONAL CONVENTIONS 7

Symbol De�nition

Exponential families and information geometry

� exponential parameter vector

d(�) number of components in �

�C potential function

� collection of potential functions

p(x; �) exponential distribution on x de�ned by �

� log partition function

	 negative entropy function (dual to �)

� mean parameters (dual variables)

� Legendre mapping between � and �

Me e-
at manifold

Mm m-
at manifold

D(� k ��) Kullback-Leibler divergence between p(x; �) and p(x; ��)
E � [f ] expectation of f(x) under p(x; �)

cov�ff; gg covariance of f(x) and g(x) under p(x; �)

cum�ff1; : : : ; fkg kth-order cumulant of f1(x); : : : fk(x) under p(x; �)



8 NOTATIONAL CONVENTIONS

Symbol De�nition

Tree-based reparameterization

T i embedded spanning tree

i index for embedded spanning trees

L total number of spanning trees used

Mst;k belief propagation message from node s to t

Ps;j ; Pst;jk exact marginal probabilities

Ts;j; Tst;jk approximate marginal probabilities

� arbitrary normalization constant

pi(x) tree-structured component of p(x)

qi(x) set of residual terms (i.e., p(x)=pi(x))

Æ(xs = j) indicator function for xs to take value j

A set of composite indices (s; j) and (st; jk)

Ai composite indices corresponding to T i

C constraint set for pseudomarginals

C i constraint set based on tree T i

D constraint set for exponential parameters

D i constraint set based on tree T i

� mapping from T to �

R reparameterization operator

�i projection operator onto tree T i

Ii injection operator from T i to full set

Qi combined reparameterization-identity mapping based on T i

f�ng sequence of TRP iterates

�n step-size at iteration n

i(n) spanning tree index at iteration n

G(T ; �) cost function (approximation to KL divergence)

Es;j log error log Ts;j � logPs;j



NOTATIONAL CONVENTIONS 9

Symbol De�nition

Advanced methods for approximate inference

A core structure

G(A) graph induced by the core structure

QA(x) approximating distribution de�ned by the core structure

PA(x) components of original distribution over the core structure

Cmax(A) set of maximal cliques in A

Csep(A) set of separator sets associated with A

R residual partition

� particular residual element of R

QA [ �(x) auxiliary distribution on augmented structure A [�
PA [ �(x) components of original distribution on augmented structure

A [�eR augmented residual partitione� elements of eR
M marginalization operator

GA;R approximation to KL divergence based on A and R
~Q collection of approximating distributions

M� core structure valued messages
�� exponential parameter for target distribution

A(B) indices associated with elements of B

�B f �� j � 2 A(B) g
�B � �B

P
�2B ����

�B projection operator of an exponential parameter onto B

I injection operator into full set A
�A exponential parameter for QA
�A [� exponential parameter for QA [ �



10 NOTATIONAL CONVENTIONS

Symbol De�nition

Convex upper bounds

T set of all spanning trees of G

~� probability distribution over trees T
�(T ) probability of spanning tree T
supp(~�) support of the distribution ~�

�e edge appearance probabilities Pr~�fe 2 T g
�(T ) exponential parameter vector structured according to tree T
� collection of tree-structured exponential parameter vectors

E ~� [�] convex combination
P

T 2T �(T )�(T )
A(��) set of feasible pairs (�; ~�) such that E ~� [�] = ��

Q(�; ~�; ��) Lagrangian dual function

�, � dual parameters

�T projection operator onto tree T
L(G) set of tree-consistent mean parameters

M (G) set of globally consistent mean parameters

Hs single-node entropy at xs
Ist mutual information between xs and xt
T(G) spanning tree polytope

r(F ) rank function on subsets F of edge set E

v(F ) number of vertices adjacent to edges in F � E

c(F ) number of connected components of G(F )

F(�;�e; ��) function for optimal upper boundsb�(�e) optimal set of mean parameters (as a function of �e)c�e optimal set of edge appearance probabilities

�(T ) edge incidence vector corresponding to spanning tree T
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Chapter 1

Introduction

A fundamental problem in applied probability theory is that of constructing, repre-
senting and manipulating a global probability distribution that is based on relatively
local constraints. This issue arises in a tremendous variety of �elds. For example, in
statistical image processing or computer vision [e.g., 67,74,127,173], one relevant set of
random variables are the grey-scale values of the image pixels. Of course, since images
are locally smooth, neighboring pixels are likely to share similar intensity values. This
fact imposes a large set of local constraints on the grey-scale values. In order to form a
model suitable for applications like image coding or denoising, it is necessary to combine
these local constraints so as to form a global distribution on images. Similar issues arise
in building models of natural language [e.g., 139] or speech signals [e.g., 144]. In chan-
nel coding [e.g., 72, 167], reliable transmission of a binary signal over a noisy channel
requires a redundant representation or code. Linear codes can be de�ned by requiring
that certain subsets of the bits have even parity (i.e., their sum is zero in modulo two
arithmetic). Each of these parity-checks typically involves only a relatively small frac-
tion of the transmitted bits. The problem of decoding or estimating the transmitted
codeword, however, requires a global distribution on all possible codewords. Finally,
in statistical mechanics [e.g., 136,165], the behavior of many physical phenomena (e.g.,
gases, crystals, magnets) is well-described by positing local interactions among a large
set of quantities (e.g., particles or magnets) viewed as random variables. Of interest
to the physicist, however, are global properties of the system as a whole (e.g., phase
transitions, magnetization).

The development of methods to attack problems of this nature has varied from �eld
to �eld. Statistical physicists, dating back to Boltzmann and Gibbs [e.g., 76], made
the �rst inroads. For example, Ising [91] in 1925, seeking to qualitatively understand
phase transitions in ferromagnetic materials, introduced the model that now bears his
name. In coding theory, Gallager [70, 71] in the early 1960s proposed and analyzed
low-density parity check codes. Although they received relatively little attention at the
time, they have since become the subject of considerable research [e.g., 38, 125, 130,
148, 149]. Onwards from the 1970s, statisticians and probability theorists have studied
the relations among Markov �elds, contingency tables, and log-linear models [e.g., 21,
50, 51, 54, 77, 80, 123, 160]. Markov random �eld models and the Gibbs sampler were
introduced to image processing in the late 1970s and early 1980s [e.g., 74, 85, 113, 180].
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Pearl [138] spearheaded the use of probabilistic network models in arti�cial intelligence,
and also studied the formal semantics of both directed and undirected networks.

Since this pioneering work, it has become clear that the approaches of these di�erent
�elds | though ostensibly disparate | can be uni�ed by the formalism of graphical
models. Graphical models provide a powerful yet 
exible framework for representing and
manipulating probability distributions de�ned by local constraints [51,69,102,105,122].
Indeed, models in a wide variety of �elds, including the Ising and Potts models of
statistical physics [e.g., 15, 91], error-correcting codes de�ned by graphs, among them
turbo codes [e.g, 18, 131] and low-density parity check codes [e.g., 71, 125, 149], and
various models for image processing and computer vision [e.g., 21, 74, 180], can all be
viewed as particular cases of a graphical model.

At the core of any graphical model is a graph | that is, a collection of nodes joined
by certain edges. Nodes in the graph represent random variables, whereas the edge
structure encodes particular statistical relations among these variables. These models
derive their power from fundamental correspondences between graph-theoretic ideas,
and concepts in probability theory [105, 122]. A special case of such a correspondence
will be known by any reader familiar with (discrete-time) Markov processes. The de�n-
ing feature of such processes is that the random variables in the past and future are
conditionally independent given the present state. In graphical terms, samples of the
Markov process can be viewed as living at nodes of a linear chain. The graphical prop-
erty corresponding to conditional independence is that removing any single node will
break the chain into two components (past and future). For graphs with more structure
than a chain, there exists a correspondingly more general set of Markov properties. The
well-known Hammersley-Cli�ord theorem [39,80] is a precise speci�cation of the general
correspondence between Markov properties and graph structure.

� 1.1 Research areas related to graphical models

Graphical models, while providing a unifying framework, are by no means a panacea.
Indeed, it could be argued that these models pose more problems than they solve.
Undoubtedly, however, graphical models provide a convenient language with which to
formulate precisely a number of problems common to many �elds. In this section, we
provide a high-level overview of a subset of these problems.

� 1.1.1 Estimation or inference

In many applications, it is desirable to estimate or make inferences about a collection
x = fxsg of random variables, based on a set of noisy observations y = fysg. A
Bayesian approach to this problem entails combining any prior information about x
with the new information introduced by the observations. In the context of this thesis,
the prior information about x is represented by a distribution speci�ed by a graphical
model.
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For example, in image processing, each ys could correspond to a noise-corrupted ob-
servation of the grey-scale intensity xs at image location s. Any statistical dependency
among the grey-scale values fxsg | that is, the prior information | is speci�ed by
a particular graphical model. Denoising an image refers to the procedure of using the
noisy observations y so as to infer the true grey-scale values x. The resulting estimate
can be thought of as a \denoised" image. A similar task arises in channel coding: here
the elements of y correspond to the received bits, which may have been corrupted by
transmission through the channel. We use these received bits to estimate the transmit-
ted codeword x, where the structure of the code (i.e., the set of permissible codewords)
is represented by a graphical model.

� 1.1.2 Model selection

A related problem is that of model �tting. Suppose that we are given a set of samples
x(1); : : : ;x(n), drawn independently from some unknown distribution. Presumably these
samples provide some information about the structure of the underlying distribution.
The problem of model selection, then, is to make use of these samples so as to infer
or �t an appropriate model for the underlying distribution. Any procedure for model
selection depends, of course, on the criterion of model �delity that is speci�ed.

As an example drawn from image processing, each x(i) might correspond to a sample
of a particular image texture (e.g., wood or grass). On the basis of these samples, we
want to select a model that captures the statistical structure of the given texture.

� 1.1.3 Sampling

Given a distribution de�ned by a graphical model, an important problem is how to draw
random samples from this distribution. Although this sampling problem might appear
straightforward at �rst blush, it is, in general, an exceedingly diÆcult problem for large-
dimensional problems. The tutorial paper by MacKay [129] gives helpful insight into
the nature of the diÆculties; see also Ripley [150].

Returning to our image processing example, suppose that we have speci�ed a model
for a particular texture | for example, wood. The ability to draw samples would allow
us to assess whether or not the model captures the visually salient features of wood. If
indeed the model were realistic, then an eÆcient sampling procedure would allow us to
synthesize patches of wood texture.

Of course, these research areas are all interconnected. Indeed, the process of model
selection typically entails performing inference as a subroutine. Moreover, any proce-
dure for drawing random samples from a distribution forms the basis for a Monte Carlo
method [29,150] for performing (approximate) inference. The bulk of this thesis focuses
on estimation and inference; due to these interconnections, however, our results have
implications for other research areas as well.
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� 1.2 Principal methods

In this section, we provide a broad overview of the principal methods used in this thesis.
In particular, our analysis draws primarily from the following four bodies of theory:

� graph theory

� exponential families and information geometry

� convex analysis and duality

� variational theory and methods

The foundation of any graphical model is a graph, and graph theory is the study of
these objects and their properties [e.g., 27]. An interesting fact is that the complexity of
solving various problems (e.g., inference, model �tting, sampling) in a graphical model
depends critically on the structure of the underlying graph. For graphs without cycles
(i.e., trees), most of these problems can be solved quickly by very eÆcient algorithms,
whereas these same problems are often intractable for general graphs with cycles.

The set of distributions de�ned by a graphical model can be formulated as an expo-
nential family. These families and their associated geometry have been studied exten-
sively in applied probability theory and statistics [e.g., 5,7,13,34,45,47,83]. Exponential
families have a rich geometric structure, in which the Fisher information matrix plays
the role of a Riemannian metric [145]. Indeed, an exponential family constitutes a
di�erential manifold of distributions, for which the exponential variables constitute a
particular parameterization. A distinguishing feature of manifolds formed by exponen-
tial families is the existence of a second set of parameters, which are coupled to the
exponential variables. From this dual parameterization arises a considerable amount
of additional geometric structure, in which the Kullback-Leibler divergence assumes a
central role. This body of theory is known collectively as information geometry.

At a broad level, convex analysis [e.g., 61, 87, 151] is the study of convex sets and
functions. Ideas and techniques from convex analysis play important roles in various
�elds, from statistical physics [136] to information theory [42]. Especially important is
the notion of convex duality, of which there are various related forms (e.g., Fenchel, Leg-
endre, Lagrangian). Convex duality not only provides conceptual and geometric insight,
but also has important practical consequences for developing optimization algorithms.

Variational formulations, along with the associated body of theory and methods, are
integral to many disciplines of science and engineering [e.g., 93, 153, 182]. At the heart
of such methods is the idea of specifying a quantity of interest in a variational fashion
| that is, as the minimizing (or maximizing) argument of an optimization problem.
A variational formulation makes it possible to study or approximate the quantity of
interest by studying or approximating the corresponding optimization problem.

As will become clear later in the thesis, there exist deep connections between these
four areas. For example, exponential families arise most naturally as maximum entropy
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distributions [182] subject to linear constraints | that is, in a variational fashion. More-
over, the two sets of parameters for an exponential family are coupled by a particular
form of convex duality, namely the Legendre transform [151]. This Legendre mapping
strongly re
ects the structure of the underlying graph: the transform is quite simple for
tree-structured graphs, but very complicated for a graph with cycles. Convex analysis
is also intimately linked to many variational methods [see, e.g., 61].

� 1.3 Main problems and contributions

In this section, we discuss the problems that are addressed by this thesis, as well as the
nature of our speci�c contributions. The main problems tackled in this thesis are the
following:

� estimation or inference for distributions de�ned by graphs with cycles:

(a) exact inference for Gaussian processes

(b) approximate inference for discrete processes

� computable bounds on quantities associated with a graphical distribution, includ-
ing marginal probabilities and the partition function1

Before proceeding to an in-depth discussion of these problems, we pause to discuss
the unifying theme of this thesis. Graphs without cycles, known as trees, are an im-
portant subclass of graphs. One fact highlighted by our work is that a distribution
that arises from a graphical model with cycles is fundamentally di�erent than a tree-
structured distribution. As we will see, for tree-structured graphical models, all three of
the problems described in Section 1.1 are relatively well-understood, and can be solved
by very fast algorithms. In contrast, these same problems are intractable for general
graphs with cycles.

At a very high level, all the work described in this thesis is based on the following
simple observation: embedded within any graph with cycles are a large number of trees.
Given a problem on a graph with cycles, it is tempting, therefore, to consider modi�ed
problems de�ned on trees. As demonstrated by our results, the remarkable fact is that
studying this simpler set of modi�ed tree problems can lead to considerable insight
about the original problem on the graph with cycles. Although the work described here
focuses primarily on tree-structured subgraphs, it should be clear that similar ideas can
be applied to subgraphs of higher treewidth2 embedded within the original graph.

1As we will see in the sequel, the partition function plays an important role in graphical models.
2An ordinary tree is a graph of treewidth one; roughly speaking, graphs of higher treewidth corre-

spond to trees on clusters of nodes from the original graph. See the book [17] and tutorial paper [25]
for further discussion of hypergraphs and treewidth.



28 CHAPTER 1. INTRODUCTION

We now turn to discussion of the main problems addressed in this thesis.

� 1.3.1 Inference in graphs with cycles

As noted above, a fundamental fact is that the complexity of inference depends very
strongly on graph structure. A simple case, one which may be familiar to many readers,
should help to illuminate the role of graph structure in inference. Suppose that we wish
to estimate a discrete-time Markov process x = fxt j t = 0; : : : ; N � 1 g, based on an
associated set of noisy observations y = fytg where each yt is a measurement of the
corresponding xt. For this Markov chain problem, there exist well-known and very
eÆcient algorithms for carrying out standard estimation tasks [e.g., 101, 110, 144, 146].
For example, in one version of the so-called smoothing problem, we want to compute, for
each time t = 0; : : : ; N � 1, the marginal distribution of xt conditioned on the full set
y of observations. Any eÆcient algorithm for this task has a recursive form, typically
involving a forward and backward sweep. For example, in the Gauss-Markov case, the
forward sweep corresponds to the Kalman �lter [101, 110, 111], whereas one version of
the backward sweep corresponds to the Rauch-Tung-Striebel smoother [146]. Going
through the derivation reveals that Markov properties of the chain | namely, that past
and future are conditionally independent given the present | are exploited heavily.

Interestingly, recursive algorithms for exact estimation, rather than being limited to
chain-structured graphs, are more generally applicable to the class of acyclic graphs or
trees. (Note that a simple chain is a special case of a tree). An important fact is that
the nodes of any tree-structured graph can be put into a partial order by arbitrarily
designating one node as the root, and then measuring the scale of other nodes in terms
of their distance from the root. This partial ordering, in conjunction with Markov
properties of a tree, permit the derivation of eÆcient recursive techniques for exact
estimation on a tree [e.g., 36,138]. The most eÆcient implementation of such algorithms
again have a two-pass form, in which the computation �rst sweeps from outer nodes
towards the root node, and then from the root node outwards.

Graphs with cycles, on the other hand, are fundamentally di�erent than acyclic
graphs. In the presence of cycles, nodes cannot be partially ordered, so that it is no
longer possible to exploit Markov properties of the graph to derive recursive algorithms.
As we will discuss in Chapter 2, although there exist general-purpose algorithms for
exact inference on graphs with cycles, they are all based on suitably modifying the graph
so as to form a tree. Moreover, the complexity of these exact methods, in general, scales
poorly with problem size.

It is therefore of considerable interest to develop eÆcient algorithms for exact or
approximate inference on graphs with cycles. Although a great deal of work has been
devoted to this area, there remain a variety of open problems. In the following sections,
we discuss the open problems addressed in this thesis, �rst for Gaussian and then for
discrete-valued processes.
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� 1.3.2 Exact inference for Gaussian processes

In the Gaussian case, exact inference refers to the computation of both the conditional
means and error covariances at each node of the graph. The complexity of the brute
force approach to this computation | namely, matrix inversion | scales cubically as
a function of the number of nodes N . In many applications [e.g., 64, 127], the number
of nodes may be on the order of 105 or 106, so that an O(N3) cost is unacceptable.

Tree-structured Gaussian processes are especially attractive due to the tractability
of inference. In particular, the computational complexity of a two-pass algorithm for
exact inference on a tree is O(N) (see Chou et al. [36]). In order to leverage these
fast algorithms for problems in signal or image processing, one strategy is to use a
multiscale tree in order to model dependencies among a collection of random variables,
representing a time series or 2-D random �eld, in an approximate fashion. The variables
to be modeled are viewed as lying at the �nest scale of the tree. In the context of
image processing, these �ne scale variables might correspond to grey-scale intensity
values at each pixel, whereas coarser scale variables might correspond to aggregate
quantities (e.g., wavelet coeÆcients). Instead of modeling dependencies among the �ne
scale variables directly, the approach is to build a tree model on top of them, in which
variables at higher levels of the tree capture dependencies among subsets of the �ne scale
variables. This general modeling philosophy, in conjunction with eÆcient techniques
for stochastic realization of these multiscale tree models [e.g., 65, 89, 90], have been
applied successfully to various problems [e.g., 49, 64, 88, 127].

It turns out that these tree-structured models tend to capture long-range depen-
dencies well, but may not be as e�ective at modeling short-range interactions. To
understand the source of this problem, consider again the example of image processing,
in which �ne scale variables correspond to grey-scale intensity values. Of course, inten-
sity values at spatially adjacent pixels tend to be highly dependent. However, certain
pairs of such pixels are mapped to pairs of tree nodes that are separated by a very large
tree distance. A tree model will fail to capture the dependency between such a pair of
variables, a de�ciency which manifests itself with abrupt jumps (or boundary artifacts)
in samples drawn from the approximate tree model [see, e.g., 90, 127].

A number of methods [e.g., 89] have been proposed to deal with boundary artifacts,
but none are entirely satisfactory. Indeed, the most natural solution is to add extra
edges to the tree as necessary. With the addition of these edges, however, the new
graph is not a tree, meaning that eÆcient inference algorithms for trees [36] are no
longer applicable. This fact necessitates the development of eÆcient algorithms for
exact estimation of Gaussian processes on graphs with cycles.

There are a variety of methods for eÆciently computing the conditional means of a
Gaussian problem on a graph with cycles, including techniques from numerical linear
algebra [56], as well as the belief propagation algorithm [138], which will be discussed
at more length in the following section. However, none of these methods compute the
(correct) error covariances. This is a serious de�ciency, since in many applications [e.g.,
64, 127], these error statistics are as important as the means themselves.
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In Chapter 4, we develop a new iterative algorithm for exact estimation of Gaussian
processes on graphs with cycles. As a central engine, it exploits the existence of eÆcient
algorithms [36] for solving any Gaussian estimation problem de�ned on a tree embedded
within the original graph. For this reason, we call it the embedded trees (ET) algorithm.
At each iteration, the next iterate is generated by solving an appropriately modi�ed
Gaussian estimation problem on a spanning tree of the graph. We will prove that if
the sequence of tree problems is suitably constructed, then the sequence of iterates
converges geometrically to the true means and error covariances on the graph with
cycles.

� 1.3.3 Approximate inference for discrete-valued processes

For discrete-valued Markov processes on graphs, one important inference problem is to
compute marginal distributions at each node of the graph. It can be shown [40] that
this problem is NP-hard. As a result, techniques for approximate inference are the focus
of a great deal of current research.

The belief propagation algorithm [138], also known as the sum-product algorithm
in coding theory [e.g., 118, 131], is a well-known and widely studied method [e.g.,
3,131,147,175,183] for approximate inference. This algorithm is used in a wide variety
of �elds, ranging from arti�cial intelligence and computer vision [e.g., 67, 68, 134] to
coding theory, where it shows up as a highly successful iterative decoding method for
turbo codes [18, 131] and low-density parity check codes [72, 125, 130, 149]. As a result,
belief propagation has generated tremendous excitement in a number of communities.

Belief propagation (BP) is a technique for computing approximate marginal dis-
tributions at each node of the graph. It is an iterative algorithm, in which so-called
messages are passed from node to node along edges of the graph. On a tree-structured
graph, it is guaranteed to compute the correct marginals in a �nite number of iterations.
On a graph with cycles, in contrast, the algorithm may not converge, and even when it
does, the resulting approximations are of variable accuracy. Accordingly, the behavior
of BP in application to graphs with cycles has been the subject of a great deal of recent
research [e.g., 2, 8, 147, 175, 183]. We provide a brief review of this work in Section 5.1
of Chapter 5. For now we highlight the recent results of Yedidia et al. [183], who pro-
vided a variational interpretation of BP. In particular, their analysis established that
points to which BP can converge (i.e., �xed points) correspond to extremal points of the
so-called Bethe free energy from statistical physics. Nonetheless, despite the advances
of recent work, there remain a number of open questions associated with belief prop-
agation, perhaps the most important of which being the nature of the approximation
error.

This area is the focus of Chapter 5, in which we advocate a conceptual shift away
from the traditional message-passing view of approximate inference (as in standard BP).
In lieu, we develop the notion of reparameterization. Any graphical model is speci�ed
by a product of so-called compatibility functions de�ned over cliques of the graph;
however, this representation is not necessarily unique. This lack of uniqueness suggests
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the goal of seeking an alternative parameterization in which the functions on cliques
correspond to (exact or approximate) marginal distributions. It is well-known [e.g.,
43] that any tree-structured distribution can be reparameterized in terms of its exact
marginal distributions (corresponding to single nodes and edges). For a graph with
cycles, we consider the idea of obtaining a similar reparameterization in terms of an
approximate set of marginal distributions. As a conceptual vehicle for studying the
reparameterization concept, we introduce the class of tree-based reparameterization
(TRP) updates. At one level, these updates are equivalent to a particular tree-based
schedule for message-passing; conversely, we show that synchronous BP updates can be
re-formulated as a very local form of such reparameterization.

The class of reparameterization algorithms is rich, including BP and TRP, as well as
variants thereof. The interpretation of these algorithms as performing reparameteriza-
tion gives rise, in a natural way, to a number of new theoretical insights. First of all, an
especially important property is the \obvious" one | namely, that any reparameteriza-
tion algorithm does not alter the original distribution on the graph with cycles. Rather,
it simply speci�es an alternative factorization in terms of compatibility functions that
represent approximations to the marginal distributions. Secondly, the perspective of
tree-based updates gives rise to an intuitive characterization of �xed points: they must
be consistent, in a suitable way to be de�ned, with respect to every acyclic substructure
embedded within the original graph.3 The invariance and �xed point characterization
have a number of consequences, of which the most important is the resulting insight
into the approximation error | i.e., the di�erence between the TRP/BP approximate
marginals, and the actual marginals. Results pertaining to this error have been ob-
tained in certain special cases: single cycle graphs [175], and the graphs corresponding
to turbo codes [147]. The reparameterization perspective allows us to give an exact ex-
pression of the approximation error for an arbitrary graph, which is the starting point
for deriving improved approximations and/or error bounds. Interestingly, although our
insights emerge naturally from the formulation of the TRP updates, most of them apply
in an algorithm-independent manner to any constrained local minimum of the Bethe
free energy, regardless of how it is obtained.

It is well-known that belief propagation tends to give poor results on certain kinds
of graphs (e.g., those with many short cycles). It is therefore desirable to develop
principled methods for improving the BP approximation. In Chapter 6, we present a
framework for developing and analyzing such extensions. The basis of this framework
is a decomposition of the graph with cycles into a core structure, over which exact com-
putations can be performed, and a set of residual elements (e.g., edges and/or cliques)
not captured by the core. We show that the notion of reparameterization, as developed
in Chapter 5, extends in a natural way to all approximations in this class. As a conse-
quence, most of our results on TRP have corresponding generalizations. First of all,we
show how these algorithms can be interpreted as computing a particular reparame-
terization of the distribution. We then establish that �xed points are characterized by

3Spanning trees are maximal acyclic subgraphs.
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consistency conditions over certain embedded substructures. For example, in the case of
Kikuchi approximations, we �nd that hypertrees4 embedded within the original graph
play the same role that spanning trees do for the Bethe free energy of belief propaga-
tion. As with our analysis of BP/TRP, we provide an exact expression for the error in
any of these approximations, and provide a set of upper and lower bounds on the error.
An ancillary contribution of Chapter 6 is to unify two previously proposed extensions:
the Kikuchi approximations of Yedidia et al. [183], and the expectation-propagation
technique of Minka [132].

� 1.3.4 Upper and lower bounds

It is often desirable to obtain upper and lower bounds on various quantities associated
with a probability distribution, including marginal probabilities at particular subsets
of nodes, as well as the partition function. In the context of estimation, a set of upper
and lower bounds on a particular marginal provides much stronger information than
a mere approximation | namely, the guarantee that the desired marginal probability
must lie within the speci�ed window. Bounds on the partition function are important
for a variety of problems, including model selection [106] and large deviations analy-
sis [158]. Given a set of data points, the partition function has the interpretation as
the likelihood of observing that particular set of data under the given model. Selecting
a model according to the principle of maximum likelihood [114,119], then, corresponds
to choosing model parameters so as to maximize the partition function. The theory of
large deviations [e.g., 55, 158] deals with the exponential rate at which the probability
of observing an unlikely event (a so-called large deviation: e.g., 900 or more heads in
1000 tosses of a fair coin) decays asymptotically as the number of samples tends to
in�nity. In this context, the (log) partition function is well-known to play the role of a
rate function | that is, it speci�es these exponential error rates.

Mean �eld theory [e.g., 106], as described in Section 2.3, provides a well-known
lower bound on the partition function. This lower bound, in conjunction with the
EM algorithm [57], forms the basis of an important method for approximate model
�tting [106]. In comparison, upper bounds appear to be much more diÆcult to derive.
For the case of binary-valued nodes with pairwise interactions, Jaakkola and Jordan [95]
exploited ideas from convex analysis to derive a recursive node-elimination procedure
for upper bounding the partition function.

In Chapter 3, we derive both lower and upper bounds on the expectation of an
arbitrary function (say f). The lower bounds are closely related to standard mean
�eld, in that they follow from exploiting the convexity of the log partition function |
in our case, a partition function modi�ed in a way dependent on f . We then derive a
new set of upper bounds that are based on taking convex combinations of exponential
parameters. We also develop a technique for strengthening an arbitrary bound, based

4Hypertrees are a generalization of ordinary trees. One way to de�ne them is via the notion of a
junction tree, which is an acyclic graph in which the nodes consist of certain clusters of nodes (i.e.,
cliques) from the original graph, satisfying a certain consistency condition. See Section 2.1.5 for details.
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on the idea of decomposing the function f in an additive manner. We prove that for
both the lower and upper bounds developed in Chapter 3, this technique is guaranteed
to yield (in general) strictly tighter bounds. The bounds developed in Chapter 3 play
a fundamental role in our analysis of the error in approximate inference techniques, as
described in Chapters 5 and 6.

The new class of upper bounds based on convex combinations are studied more
extensively in Chapter 7. We consider, in particular, the set of convex combinations
formed from all spanning trees embedded within a graph with cycles. A crucial fact
here is that the number of such spanning trees is typically extremely large. (E.g., the
complete graphKN has NN�2 spanning trees [168].) Despite the apparent intractability
of optimizing over such a huge number of trees, we show that exploiting ideas from La-
grangian duality leads to a drastic reduction in problem complexity. This simpli�cation
enables us to develop an eÆcient method for optimizing both the choice of exponential
parameters as well as the choice of convex combination over all spanning trees. More-
over, this dual formulation of the problem gives a new and interesting perspective on
the Bethe free energy.5 In particular, our analysis leads to functions which, though
closely related to the Bethe free energy, have the following attractive properties. First
of all, they are strictly convex, so we are guaranteed a unique global minimum that can
be found by standard methods from nonlinear programming [20]. Secondly, this global
minimum yields an upper bound on the log partition function.

� 1.4 Thesis overview

In summary, the primary contributions of the thesis are as follows:

� a new iterative algorithm for exact estimation of Gaussian processes on graphs
with cycles

� the tree-based reparameterization framework for analysis of belief propagation
and related algorithms for approximate estimation of discrete-valued processes on
graphs with cycles

� a unifying framework for the development and analysis of more advanced tech-
niques for approximate inference

� a new class of upper bounds on the log partition function

The remainder of the thesis is organized, on a chapter by chapter basis, in the
following manner:

Chapter 2: Background

This chapter sets out the background that underlies developments in the sequel. It
begins with an overview of basic concepts in graph theory, followed by a self-contained

5As discussed in Section 1.3.3, the Bethe free energy plays an important role in the belief propagation
algorithm for approximate estimation on graphs with cycles.
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but brief introduction to graphical models. We include a discussion of the junction tree
representation of distributions [122,123], as well as the exact inference technique of the
same name. We then introduce exponential families of distributions, and develop the
associated theory of information geometry. The �nal section treats variational methods,
with particular emphasis on mean �eld theory as an illustrative example.

Chapter 3: Perturbations and Bounds

This chapter illustrates the use of exponential representations in developing perturba-
tion expansions and bounds on expectations of an arbitrary function (e.g., single-node
marginal distributions). The perturbation expansions yield helpful information about
the sensitivity of various quantities (e.g., marginal distributions) to changes in the model
parameters. We then turn to the development of bounds on expectations of arbitrary
functions.

We show how to apply the lower bound from mean �eld theory to a tilted log
partition function6 in order to obtain lower bounds on the expectation of an arbitrary
function. We also derive a new class of upper bounds, based on the idea of taking
convex combinations of exponential parameters. For the expectation of an arbitrary
function, we develop a method for strengthening the bounds by performing an additive
decomposition. We illustrate these bounds with some simple examples.

Chapter 4: Embedded trees algorithm for Gaussian processes

This chapter develops and analyzes the embedded trees (ET) algorithm for exact estima-
tion of Gaussian processes de�ned on graphs with cycles. The ET algorithm generates
a sequence of iterates (means and error covariances) by exactly solving a sequence of
modi�ed problems de�ned on trees embedded within the graph. We prove that when
the sequence of modi�ed tree problems is appropriately chosen, the sequence of iterates
converges to the correct mean and covariances for the original problem on the graph
with cycles. The algorithm is illustrated in application to a problem on a nearest-
neighbor grid. Theoretical extensions of this work as well as related empirical results
can be found in the Master's thesis [163].

Chapter 5: Tree-based reparameterization for approximate estimation

This chapter develops the tree-based reparameterization (TRP) framework for approx-
imate inference on graphs with cycles. We show that belief propagation (BP) can be
re-formulated as a special case of reparameterization, and establish that more global
tree updates have superior convergence properties. We prove that �xed points of
TRP updates satisfy the necessary conditions to be local minima of a cost function
that is an approximation to the Kullback-Leibler divergence. Although this cost func-
tion is distinct from the Bethe free energy [183], the two functions coincide on the

6This tilted partition function arises from a tilted distribution, which is a standard idea in large
deviations analysis [e.g., 157].
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constraint set, which allows us to prove equivalence of TRP and BP �xed points. The
TRP perspective leads to a new characterization of TRP/BP �xed points in terms of
consistency over embedded acyclic subgraphs. As particular examples of reparameteri-
zation algorithms, the updates of TRP or BP updates leave invariant the distribution on
the graph with cycles; this invariance has a number of important consequences. Finally,
we use the �xed point characterization and invariance to analyze the approximation er-
ror. We �rst develop an exact expression for the error in an arbitrary graph with cycles.
This expression, though conceptually interesting, is not tractable to compute in gen-
eral. This diÆculty motivates us to develop computable upper and lower bounds on
the approximation error using the results from Chapters 3 and 7. We illustrate these
bounds with some simple empirical examples.

Chapter 6: Exploiting higher-order structure for approximate estimation

This chapter provides a uni�ed framework for developing and analyzing more advanced
techniques for computing approximations to the marginals of a target distribution. Each
approximation in this framework is speci�ed by a cost function that depends on a set
of so-called pseudomarginals. These pseudomarginals implicitly de�ne a distribution,
and the associated cost function constitutes an approximation to the Kullback-Leibler
divergence between this distribution and the target distribution. We construct these
approximations by decomposing the graph with cycles into a core structure, over which
the pseudomarginals are updated by exact computations, and a set of residual terms
(e.g., edges or cliques) not covered by the core structure. We demonstrate that various
known approximations, including the Bethe free energy, Kikuchi approximations [183],
and the proposal of Minka [132], are special cases of this framework. Moreover, we
develop algorithms, analogous to the tree-based reparameterization updates of Chap-
ter 5, for performing constrained minimization of the cost functions. The minimizing
arguments constitute approximations to the actual marginals of the target distribution.
Signi�cantly, most of the theoretical results from Chapter 5 have natural generalizations
to all of the approximations in this framework. In particular, the ideas of reparameter-
ization and invariance are generally applicable. We use these principles to characterize
�xed points, and to analyze the approximation error.

Chapter 7: Upper bounds based on convex combinations

This chapter presents a new class of computable upper bounds on the log partition
function that are applicable to an arbitrary undirected graphical model. The bounds
are formed by taking a convex combination of tree-structured exponential parameters.
The weight on each tree can be viewed as its probability under a distribution over all
spanning trees of the graph. We consider the problem of optimizing these bounds with
respect to both the tree-structured exponential parameters as well as the distribution
over spanning trees. We show that a Lagrangian dual reformulation of the problem
leads to substantial simpli�cation. As a result, despite the extremely large number of
spanning trees embedded in a general graph, we are able to develop an eÆcient algorithm
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for implicitly optimizing the bounds over all spanning trees. This dual reformulation
also gives a new perspective on the Bethe free energy of approximate estimation. We
illustrate the use of these bounds in application to random choices of distributions on
various graphs. The methods developed in this chapter are broadly applicable. For
instance, there are natural extensions to convex combinations of hypertree-structured
distributions, which in turn provides a new perspective on Kikuchi and related free
energies.

Chapter 8: Contributions and Suggestions

This chapter summarizes the contributions of the thesis, and points out a number of
directions for future research. We also consider brie
y the possible implications of
the perspective and results of this thesis for related research areas, including network
information theory, computing large deviations exponents, and iterative decoding.



Chapter 2

Background

This chapter outlines the background necessary for subsequent developments in this
thesis. Graphical models provide a 
exible framework for specifying globally consistent
probability models based on local constraints. The primary focus of this thesis is
problems that arise in using such models. We begin in Section 2.1 with an introduction
to the basics of graphical models, and the relevant problems of inference and estimation.
As a prelude to introducing graphical models, this section also contains a brief primer
on graph theory. Section 2.2 introduces a particular representation of distributions
de�ned by graphical models | namely, the exponential family. Associated with such
families are a variety of elegant results, known collectively as information geometry. A
third concept central to this thesis is that of a variational formulation. Accordingly, we
devote Section 2.3 to an overview of variational methods, with a particular emphasis
on mean �eld theory.

� 2.1 Graphical models

Graphical models are a powerful framework for representing and manipulating prob-
ability distributions over sets of random variables. Indeed, stochastic processes de-
�ned on graphs arise in a variety of �elds, including coding theory [72], statistical
physics [15,32,136], arti�cial intelligence [138], computer vision [67], system theory [14]
and statistical image processing [127]. The power of graphical models derives from
the correspondence that they establish between the probabilistic concept of conditional
independence, and the graph-theoretic notion of node separation.

We begin in Section 2.1.1 with a brief but self-contained introduction to the basics
of graph theory. There are many books available to the reader interested in more
background on graph theory [e.g., 16,22,26,27]. In Section 2.1.2, we turn to the basics of
graphical models. More background on graphical models can be found in the books [69,
102,105,122]; another helpful source is the edited collection of papers [104]. Section 2.1.3
introduces the problem of estimation or inference in graphical models, which is central
to many parts of this thesis. Section 2.1.4 brie
y discusses exact inference algorithms
for tree-structured graphs; more details can be found in Appendix A. In Section 2.1.5,
we describe the notion of a junction tree, which is important both in a purely graph-
theoretic context and for the purposes of inference in graphical models.

37
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� 2.1.1 Basics of graph theory

A graph G = (V;E) consists of a set of nodes or vertices V = f1; : : : ; Ng that are joined
by a set of edges E. Edges in a graph can either be directed or undirected; this thesis
will focus exclusively on undirected graphs. For an undirected graph, the notation (s; t)
(or equivalently, (t; s)) denotes an undirected edge between nodes s and t in the vertex
set. Throughout this thesis, we will focus on simple graphs, for which self-loops (i.e.,
an edge from a node back to itself), and multiple edges between the same pair of nodes
are both forbidden.

A subgraph H = (V (H); E(H)) of a graph G is formed by a particular subset V (H)
of the vertices, and a particular subset E(H) of the edges of G. It is often convenient
to consider subgraphs induced by particular subsets of the vertex set, or by particular
subsets of the edge set. First of all, given a subset S of the vertex set V , the subgraph
induced by S is given by G[S] = (S;E[S]) where E[S] = f (s; t) 2 E j s; t 2 S g. The
graph G[S] is called a node-induced subgraph. Similarly, given a subset F � E of the
edge set, the subgraph induced by F is given by G(F ) = (V (F ); F ), where

V (F ) , f u 2 V j 9 v 2 V s: t (u; v) 2 F g
This graph G(F ) is called an edge-induced subgraph. Examples of node and edge-
induced subgraphs are given in Figure 2.1.
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Figure 2.1. Illustration of node and edge-induced subgraphs. Vertices and edges in the
subgraph are shown in dark circles and solid lines (respectively), while those not in the
subgraph are shown with dotted open circles and dotted lines (respectively). (a) Graph
G with cycles. (b) The node-induced subgraph G[S] for S = f1; 2; 3; 5; 6; 8g. (c) The
edge-induced subgraph G(F ) with F = f(1; 2); (2; 3); (3; 5); (4; 6); (6; 8)g.

For any s 2 V , the set of neighbors of s in G is given by

N (s) , f t 2 V j (s; t) 2 E g (2.1)

The degree of a node s, denoted d(s), corresponds to the number of neighbors (i.e., the
cardinality jN (s)j of the neighbor set).

A path is a graph P consisting of the vertex set V (P ) = fs0; s1; : : : ; skg and a set of
distinct edges E(P ) = f(s0; s1); : : : (sk�1; sk) g. The vertices s0 and sk are the end ver-
tices of the path, and l(P ) = k is the length of the path. We say that P is a path from s0
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to sk. A cycle is a path from a node s back to itself formed of a sequence of distinct edges.
I.e., a cycle consists of a sequence of distinct edges f (s1; s2); (s2; s3); : : : ; (sk�1; sk) g
such that s1 = sk. We say that a graph is connected if for each pair fs; tg of distinct
vertices, there is a path from s to t. A component of the graph is a maximal connected
subgraph. The notation c(G) denotes the number of (connected) components in the
graph G.

Of particular interest are graphs without cycles:

De�nition 2.1.1 (Forests and trees). A tree T is a cycle-free graph consisting of a
single connected component. A forest is formed by the union of a collection of trees.
Given a graph G, a spanning tree is an embedded tree (i.e., a tree-structured subgraph
of G) that reaches each vertex. See Figure 2.2. for illustration of these concepts.

De�nition 2.1.2 (Cliques). A clique of a graph G is any fully connected subset of
the vertex set V . A clique is maximal if it is not properly contained within any other
clique.

Figure 2.3 illustrates the structure of cliques of sizes one through four. Note that any
single node is itself a clique, but not a maximal clique unless it has no neighbors. If
we return to Figure 2.1(a), nodes f1; 2; 5g form a 3-clique, but nodes f1; 2; 5; 3g do not
form a 4-clique, since node 1 is not connected (directly) to node 3.

Let C = C(G) denote the set of all cliques in a graph G. For instance, given a tree
T , the clique set C(T ) consists of the union V [E of the vertex set with the edge set.
We use C to denote an arbitrary member of C (i.e., a particular clique of G). Given
a subset of the clique set C, it is natural to de�ne the following generalization of an
edge-induced subgraph:

De�nition 2.1.3 (Clique-induced subgraphs). Given a subsetB � C of the clique
set, let G(B) denote the subgraph of G induced by the cliques in B. More precisely,
G(B) = (V (B);E(B)) where

V (B) , f s 2 V j s 2 C for some C 2 B g (2.2a)

E(B) , f (s; t) 2 E j s; t 2 C for some C 2 B g (2.2b)

Note the clique set of G(B) can be strictly larger than B. For example, if we consider
a single cycle G on three nodes with B = f(1; 2); (2; 3); (1; 3)g, then the clique set of
G(B) includes the 3-clique f1; 2; 3g =2 B.

The notion of triangulation will play a central role in the junction tree representation
of graphical models, to be discussed in Section 2.1.5.

De�nition 2.1.4 (Triangulated). A graph G is triangulated if every cycle of length
4 or greater has a chord (i.e., an edge joining two vertices not adjacent in the cycle).
See Figure 2.4 for illustrations of triangulated versus non-triangulated graphs.
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(a) (b) (c)

Figure 2.2. (a) Graph G with cycles. (b) A forest embedded within G. (c) Embedded
spanning tree that reaches each vertex of G.

Figure 2.3: Graph cliques of size 1 through 4.
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Figure 2.4. Illustration of a non-triangulated versus triangulated graph. (a) This
3� 3 grid is not triangulated; it has many four cycles (e.g., the cycle formed by nodes
1 � 2 � 5 � 4 � 1) that lack a chord. (b) Here is one triangulated version of the 3 � 3
grid, formed by adding the extra edges f(2; 4); (4; 8); (2; 6); (6; 8); (2; 8)g. The extra edge
(2; 8) is added as a chord for the 4-cycle formed by nodes 2� 4� 8� 6� 2.
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Given a graph that is not triangulated, it is always possible to form a triangulated
version eG by adding chords to cycles as necessary. However, this triangulated version
need not be unique; that is, a given untriangulated graph G may have a number of
possible triangulations.

It is useful to distinguish vertices (and edges), that if removed from the graph,
increase the number of connected components:

De�nition 2.1.5 (Cut vertices and bridges). A vertex is a cut vertex if its deletion
from the graph increases the number of connected components. A bridge is an edge
whose deletion increases the number of connected components. (See Figure 2.5).

c

s

Figure 2.5: Vertex s is a cut vertex in the graph shown, whereas edge c is a bridge.

� 2.1.2 Basics of graphical models

Given a graph G = (V;E), a probabilistic graphical model is formed by associating
with each node s 2 V a random variable xs taking values in the sample space X .
This sample space can be either a continuum (e.g., X = R), or the discrete alphabet
X = f0; : : : ;m� 1g. In this latter discrete case, the underlying sample space XN is the
set of all N vectors x = fxs j s 2 V g over m symbols, so that jXN j = mN .

In a graphical model, the edges of the underlying graph represent probabilistic
dependencies between variables, and come in two varieties | directed or undirected.
Although the probabilistic interpretation of directed and undirected edges is di�erent,
any directed graph can be converted to an equivalent1 undirected graph [see, e.g., 138].
In this thesis, we restrict our attention to undirected graphs.

The stochastic processes of interest are those which are Markov with respect to the
underlying graph. To de�ne this concept, let A, B and C be subsets of the vertex set V .
Let xAjB be the random variables in A conditioned on those in B. The set B separates
A and C if in the modi�ed graph with B removed, there are no paths between nodes in
the sets A and C (see Figure 2.6).

De�nition 2.1.6. A stochastic process x is Markov with respect to the graph G if
xAjB and xCjB are conditionally independent whenever B separates A and C.

1However, it may no longer be possible to read directly certain conditional independencies from the
undirected graph.
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A C

B

Figure 2.6. Illustration of the relation between conditional independence and graph
separation. Here the set of nodes B separates A and C, so that xAjB and xCjB are
conditionally independent.

This de�nition of Markovianity constitutes a generalization of the concept as applied
to a discrete time series. Indeed, a time series sampled at discrete instants can be viewed
as a stochastic process de�ned on a chain. For such a graph, De�nition 2.1.6 corresponds
to the usual notion that the past and future are conditionally independent given the
present.

A graph strongly constrains the distribution of a Markov process. Indeed, the
Hammersley-Cli�ord theorem [21,80] guarantees that distributions of Markov processes
over graphs can be expressed in factorized form as products of so-called compatibility
functions de�ned over the cliques:

Theorem 2.1.1 (Hammersley-Cli�ord). Let G be a graph with a set of cliques C.
Suppose that a distribution2 p over a discrete random vector x is formed as a normalized
product of nonnegative functions over the cliques:

p(x) =
1

Z

Y
C2C

 C(x) (2.3)

where  C(x) is a compatibility function depending only on the subvector xC = fxs j s 2
Cg; and Z ,Px

Q
C2C  C(x) is the partition function. Then the underlying process x is

Markov with respect to the graph. Conversely, the distribution p of any Markov random
�eld over G that is strictly positive (i.e., p(x) > 0 for all x 2 XN ) can be represented
in this factorized form.

Remarks: There a variety of proofs of this result [e.g., 21, 80]; see Cli�ord [39] for
a historical overview. One of the most elegant proofs [80] uses the M�obius inversion
formula [see, e.g., 29]. Note that this theorem generalizes the usual factorizations
of Markov chains, for which the compatibility functions are formed by forward (or
backward) transition functions de�ned on the edges (i.e., maximal cliques for a chain).
See Lauritzen [122] for an example of a non-positive distribution (i.e., p(x) = 0 for some
x 2 XN ) for which the converse is false.

2Strictly speaking, p is a probability mass function for discrete random variables; however, we will
use distribution to mean the same thing.
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� 2.1.3 State estimation or inference

A problem that arises in many applications of interest is that of estimating the random
vector x = fxs j s 2 V g based on a set of noisy observations y = fys j s 2 V g. For
instance, in image processing or computer vision [67,127], the vector x could represent
an image de�ned on a grid, and y could represent a noisy or blurred version of this
image. Similarly, in the context of channel coding [69,72], the vector x would represent
message bits, whereas y would correspond to the received bits.

In all cases, the goal is to estimate or to draw statistical inferences about the
unobserved x based on the observations y. The observation model can be formulated
mathematically in the form of a conditional distribution. In particular, we assume
that for each node s 2 V , the variable ys is a noisy observation of xs, speci�ed by
the conditional density p(ysjxs). We assume that the observations y are conditionally
independent given the hidden variables3 x, so that p(yjx) =Qs2V p(ysjxs).

Of central interest for problems of estimation or inference is the posterior density
p(xjy), which de�nes a variety of estimators:

1. The maximum a posteriori (MAP) estimate corresponds to the peak or mode of
the posterior density | that is: bxMAP = argmaxx2XN p(xjy)

2. Also of interest are posterior marginals of a subset of variables. For instance, for
a discrete process x, the single node marginals are given by

p(xsjy) =
X

fx0 j x0s=xs g
p(x0jy) (2.4)

Here the notation means summing over all con�gurations x0 2 XN such that
x0s = xs. For a continuous-valued process, this summation should be replaced by
integration.

By combining the prior in equation (2.3) with the observation density via Bayes
rule, we have:

p(x jy) = 1

Z

Y
C2C

 C(x)
Y
s

p(ysjxs) (2.5)

Note that each individual node forms a singleton clique, meaning that some of the
factors in (2.3) may involve functions of each individual variable. As a consequence,
the transformation from the prior distribution p(x) of equation (2.3) to the condi-
tional distribution p(x jy) of equation (2.5) is simply to modify the singleton factors of
equation (2.3). As a result, from here onwards, we suppress explicit mention of mea-
surements, since problems of estimation or inference for either p(x) or p(x jy) are of
identical structure and complexity.

3This assumption entails no loss of generality, since any observation that is a function of variables
at multiple nodes can be merged into a clique potential that includes those nodes.
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The computations of the MAP estimate or of the single-node marginals are both
well-de�ned tasks. The latter task will be of primary interest in this thesis. DiÆculties
arise from di�erent sources, depending on whether x is a discrete or continuous-valued
process. For a continuous process, it may not be possible to evaluate analytically the
necessary integrals. This diÆculty is relevant even for small problems. For a discrete
process, on the other hand, computing a marginal simply involves a discrete summation,
which is a straightforward operation for small problems. Here the diÆculty arises as
the problem size grows. In particular, given a discrete-valued process on N nodes
with m � 2 states, the number of terms in the summation of equation (2.4) explodes
exponentially as mN�1. Consequently, for suÆciently large graphs, it will be impossible
to perform the discrete summation. A similar curse of dimensionality applies to the
computation of the MAP estimate.

� 2.1.4 Exact inference in trees

For a Markov chain, there exist highly eÆcient algorithms for computing the MAP esti-
mate, or the single-node marginals at each node. These algorithms exploit the Markov
properties of a chain | namely, that the past and future are conditionally independent
given the present | to perform the necessary computations in a recursive and hence
eÆcient manner. For the linear-Gaussian problem, this formulation leads to the Rauch-
Tung-Striebel smoother [146]. For a discrete-state hidden Markov chain, the resulting
algorithm is known as the �� � algorithm in the speech processing literature [143].

Interestingly, these recursive algorithms can be generalized to trees, which are singly-
connected graphs without cycles. (A chain is a special case of a tree.) An important
property of trees is that their nodes can be assigned a partial ordering in terms of their
depth in relation to an arbitrary node designated as the root. That is, the root is scale
0; the immediate descendants (i.e., children) of the root are scale 1; and so on down to
the leaves (terminal nodes) of the tree. With this partial ordering, the most eÆcient
implementation of a tree inference algorithm follows a two-pass form, �rst sweeping
up from the leaves to the root, and then downwards from the root to the leaves. For
a discrete process, the computational complexity of these algorithms is O(m2N). See
Appendix A for more details about such tree algorithms.

� 2.1.5 Junction tree representation

The set of cliques of a Markov chain are single nodes and pairs of adjacent nodes. In
this case, the compatibility functions f Cg of equation (2.3) can always be written as a
function of local marginal and conditional distributions. For example, the standard for-
ward factorization of a Markov chain on three nodes is in terms of an initial distribution
and transitions:

p(x) = p(x1) p(x2 jx1) p(x3 jx2)
There is an alternative factorization that is symmetric with respect to the nodes |
namely p(x) = [p(x1; x2)=p(x1)p(x2)] [p(x2; x3)=p(x2)p(x3)]p(x1)p(x2)p(x3). More gen-
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erally, the same kind of symmetric factorization holds for any tree-structured graph
T :

p(x) =
Y
s2V

p(xs)
Y

(s;t)2E

p(xs; xt)

p(xs)p(xt)
(2.6)

That is, for a tree, the compatibility functions of equation (2.3) can always be repre-
sented directly in terms of local marginal distributions:  s(xs) = p(xs) for each node
s 2 V ; and  st(xs; xt) = [p(xs; xt)=p(xs)p(xt)] for each edge (s; t) 2 E.

In contrast, for a graph with cycles, the compatibility functions do not, in general,
have any direct correspondence with local marginal distributions on those same cliques.4

However, such a correspondence does hold on a graph formed of suitably aggregated
nodes, which is the subject of the junction tree representation. The basic idea is to
cluster nodes within the original graph G so as to form a clique tree | that is, an
acyclic graph whose nodes are formed by cliques of G. We use the calligraphic C to
refer to a given node of the clique tree (i.e., a given clique of G).

Having formed a tree, it is tempting to simply apply a standard tree inference
algorithm. However, the clique tree must satisfy an additional restriction so as to
ensure consistency of probabilistic inference on the tree. To understand the source of
this problem, consider the single loop on 4 nodes shown in Figure 2.7(a), as well as
the clique tree (one of many possible) shown in Figure 2.7(b). Here ellipses represent
nodes of the clique tree (i.e., cliques of the original graph), whereas the boxes represent
separator sets, which correspond to intersections of nodes adjacent on the clique tree.
Observe that node 3 occurs twice in the clique tree, once in each of the cliques f1; 3g

1

2 3

4

1 2

24

2

3 44

1 31

(a) (b)

Figure 2.7. A simple example showing the necessity of the running intersection prop-
erty for probabilistic consistency. (a) Single loop on 4 nodes. (b) One possible clique
tree for the graph in (a). This clique tree fails the running intersection property.

and f3; 4g. However, any tree inference algorithm applied to the clique tree of (b) will
not enforce the implicit constraint that the corresponding random variable x3 in clique
f1; 3g must match the x3 in clique f3; 4g. As a result, running a tree inference algorithm
on the graph in (b) will not yield the correct results for the single loop of (a).

4The simplest example to consider is the single cycle on 4 nodes; here the pairwise compatibility
functions can never correspond to Pst=PsPt. See Proposition 5.4.4 in Chapter 5.



46 CHAPTER 2. BACKGROUND

What is required is a mechanism for enforcing consistency among the di�erent ap-
pearances of the same random variable. Note that the same problem does not arise
for node 2, although it also appears in both of the two cliques f1; 2g and f2; 4g. The
di�erence is that node 2 also appears in all separator sets in the path between these
two cliques, which provides a pipeline for transmitting and enforcing the associated
consistency constraints. This motivates the following de�nition:

De�nition 2.1.7. A clique tree has the running intersection property if for any two
clique nodes C1 and C2, all nodes on the unique path joining them contain the intersec-
tion C1 \ C2. A clique tree with this property is known as a junction tree.

For what type of graphs can one build junction trees? It is clear that no clique tree of
the single loop in Figure 2.7(a) has the running intersection property. (Since the clique
tree of Figure 2.7(b) does not satisfy running intersection, by a symmetry argument
neither can any other clique tree.) An important result in graph theory establishes a
correspondence between junction trees and triangulated graphs (see De�nition 2.1.4).

Proposition 2.1.1. A graph G has a junction tree () it is triangulated.

Proof. See Lauritzen [122].

This proposition leads to a method for exact inference on arbitrary graphs:

Algorithm 2.1.1 (Junction tree).

1. Given a graph with cycles G, triangulate it by adding edges as necessary.

2. Form a junction tree associated with the triangulated graph eG.
3. Run a tree inference algorithm on the junction tree.

Although this procedure is sound in principle, its practical use is limited. For most
applications of interest, the size of the cliques in the triangulated version eG grows
with problem size. As a result, the state cardinality of the supernodes in the junction
tree grows exponentially, meaning that applying tree algorithms rapidly becomes pro-
hibitively complex. This explosion in the state cardinality is another demonstration of
the intrinsic complexity of exact computations for graphs with cycles.

Example 2.1.1. To illustrate the junction tree procedure and its associated complex-
ities, we consider the 3 � 3 grid shown in Figure 2.8(a). The �rst step is to form a
triangulated version eG, as shown in Figure 2.8(b). Note that the graph would not be
triangulated if the additional edge joining nodes 2 and 8 (shown in a dashed line) were
not present. Without this edge, the 4-cycle (2� 4� 8� 6� 2) would lack a chord. As
a result of this additional edge, the junction tree has two 4-cliques in the middle, as
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Figure 2.8. Illustration of junction tree procedure. (a) Original graph is a 3� 3 grid.
(b) Triangulated version of original graph. Note the two 4-cliques in the middle. (c)
Corresponding junction tree for triangulated graph in (b), with maximal cliques depicted
within ellipses, and separator sets within rectangles.

shown in Figure 2.8(c). Consequently, running a tree inference algorithm on the junc-
tion tree involves dealing with variables with state cardinalities of m4. This diÆculty
only worsens as the grid size grows.

Despite its limited practical use, the junction tree procedure provides conceptual
insight into the inherent complexity of a given distribution on a graph. In particular, it
gives rise to an alternative representation of the distribution, in terms of local marginal
distributions on maximal cliques and separator sets. That is,

p(x) =

Q
C2C p(xC)Q
S2S p(xS)

(2.7)

where C is the set of all maximal cliques of eG, and S is the associated set of separators.
Unlike the representation of equation (2.3), equation (2.7) provides a decomposition
directly in terms of local marginal distributions. The price to be paid is that the
decomposition involves functions de�ned over larger clusters of variables. Note that
equation (2.6) is a particular case of this decomposition, where the maximal cliques are
the edges of the ordinary tree, and the separator sets correspond to nodes with degree
greater than one.

� 2.2 Exponential families and information geometry

Exponential families of distributions and their associated geometry have been studied
extensively in applied probability theory and statistics. Work in this area dates back to
Rao [145] in 1945, who developed the geometric role of the Fisher information matrix.
Subsequent contributions were made by a variety of people, including Chentsov [33,34],
Csisz�ar [44{47], Barndor�-Nielson [13] and Amari [5{7]. This section contains a brief
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introduction to this body of theory, which is often referred to as information geometry.
We emphasize only those concepts necessary for our subsequent development; see the
references above, or the edited collection of papers in [83] for further details. Although
information geometry applies to any exponential family of distributions, we focus here
on such distributions in the speci�c context of graphical models.

� 2.2.1 Exponential representations

Equation (2.3) decomposes a graph distribution as a product of compatibility func-
tions de�ned on the cliques. A related representation is the Gibbs form, in which a
distribution is speci�ed as the exponential of a sum of functions on the cliques. In
the context of graphical models, an exponential family constitutes a collection of such
Gibbs distributions:

p(x; �) = exp
�X

�

����(x) � �(�)
	

(2.8a)

�(�) = log
� X
x2XN

expf
X
�

����(x)g
�

(2.8b)

The quantity � de�ned in equation (2.8b) is the log partition function that serves to
normalize the distribution; when the sample space XN is continuous, the summation
de�ning � should be replaced by an integral.

Any exponential family is speci�ed by a collection of potential functions f�� j � 2 Ag,
where A is a �nite index set. The domain of the exponential parameter vector � is the
set

� , f � 2 R
jAj j �(�) <1g

In the discrete case, this imposes no restrictions (i.e., � = RjAj); in continuous examples,
� can be a strict subset of RjAj . In this thesis, we focus primarily on the discrete case.

Each parameter vector � 2 � indexes a particular member p(x; �) of the family,
assuming that the set of clique potentials � = f��g is �xed. With some abuse of
notation, we will often use the parameter vector � itself as a shorthand for the associated
distribution.

Minimal representations

It is typical to de�ne an exponential family with a collection of functions � = f��g
that are linearly independent. Indeed, if there were any linear dependencies, they could
be eliminated without sacri�cing any expressive power of the exponential model. This
condition gives rise to a so-called minimal representation [e.g., 13], in which there is a
unique parameter vector � associated with each distribution. In this case, the dimension
of the exponential family, denoted by d(�), is given by jAj.

To illustrate these de�nitions, we consider some simple examples:
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Example 2.2.1. Consider a scalar Gaussian random variable x � N (�; �2). Then its
density has the exponential representation

p(x; �) = expf�1x+ �2x
2 � �(�)g (2.9)

I.e. here we have �1(x) = x and �2(x) = x2. By completing the square, we obtain
relations between the exponential parameters (�1; �2) and the mean and variance |
namely, �2 = �1=[2�2] and �1 = �=�2. Here the dimension of the family is d(�) = 2.
Moreover, the domain of � is the half plane

� = f(�1; �2) 2 R
2 j �2 < 0g

The restriction on �2 is required so that the associated integral de�ning the log partition
function | namely, �(�) =

R1
�1 expf�1x+ �2x

2gdx | is �nite.

Example 2.2.2. Now consider a binary process (i.e., x 2 f0; 1gN ) de�ned on a graph
with pairwise maximal cliques (i.e., whose maximal cliques are pairs of nodes). The
standard (minimal) representation corresponds to the Boltzmann machine [e.g., 106],
also known as the Ising model in statistical physics [15, 32]:

p(x; �) = exp
�X
s2V

�sxs +
X

(s;t)2E
�stxsxt � �(�)

	
(2.10)

where �st is the strength of edge (s; t), and �s is the node parameter for node s. In this
case, d(�) = jV j+ jEj = N + jEj, and the domain � of � is all of Rd(�) .

Examples 2.2.1 and 2.2.2 illustrate that the sample space X is critical in assessing
the linear independence of a set of functions f��g, and hence the minimality of the
representation. In Example 2.2.1, the functions x and x2 are linearly independent over
R, so that equation (2.9) constitutes a minimal representation. In contrast, these same
functions are not linearly independent over f0; 1g.
Example 2.2.3. We now consider an extension of Example 2.2.2, with x 2 f0; 1gN .
The Ising model corresponds to pairwise maximal cliques. To incorporate higher-order
cliques (e.g., the 3-clique fs; t; ug), we add a multinomial of the form xsxtxu, with
corresponding exponential parameter �stu. Cliques of higher order are incorporated in
a similar fashion, so that the minimal representation of the most general distribution
(i.e., possibly on the complete graph) is of the form:

p(x; �) = exp
� nX
s=1

�sxs +
X
s<t

�stxsxt +
X
s<t<u

�stuxsxtxu + : : :

: : : + �1���Nx1x2 � � � xN � �(�)
	

(2.11)
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It can be veri�ed that the set of functions fxsgNs=1 [ fxsxtgs<t [ : : : [ fx1 � � � xng are
linearly dependent over f0; 1gN , and span the space of all real-valued functions on
f0; 1gN . Hence the dimension of the family is given by:

d(�) =

�
N

1

�
+

�
N

2

�
+ : : :+

�
N

N

�
= 2N � 1

Since any distribution on the binary vector x 2 f0; 1gN has 2N �1 degrees of freedom,5

we see that any distribution can be represented in the form equation (2.11).
Of course, the Ising model of equation (2.10) arises as a particular case of equa-

tion (2.11), where we place the restriction that �J = 0 for all subsets J � f1; : : : ; Ng
of size jJ j > 2. Indeed, a nested sequence of exponential families Fk can be de�ned
by imposing restrictions of the form �J = 0 for all jJ j > k, for k = 1; : : : ; N � 1. See
Amari [6] for details on such nested families. In the context of graphical models, these
restrictions correspond to a limit on the maximal clique size in the associated graph.

Examples 2.2.2 and 2.2.3 can be extended to minimal exponential representations
of m-ary processes (m > 2) as well. In particular, the analog of the Ising model for an
m-ary process is speci�ed in terms of the functions

R(s) , fxas j a = 1; : : : ;m� 1g for s 2 V (2.12a)

R(s; t) , fxasxbt j a; b = 1; : : : ;m� 1g for (s; t) 2 E (2.12b)

The dimension of this exponential family is given by d(�) = (m�1)N+(m�1)2jEj. In-
corporating higher order cliques entails adding higher degree multinomials to the clique
functions of equation (2.12). This procedure, though conceptually straightforward, can
lead to cumbersome notation. See Amari [6] for further details.

Overcomplete representations

In addition to such a minimal parameterization, parts of our analysis (especially Chap-
ter 5) make use of an overcomplete representation, in which the f��g are linearly de-
pendent. In this case, the lack of linear independence means that there exists an entire
linear subspace of parameter vectors �, each associated with the same distribution.

Example 2.2.4 (Overcomplete representation of binary process). One natural
overcomplete representation of a binary process on a graph with pairwise cliques entails
specifying a 2-vector for each node s 2 V , and a 2 � 2 matrix of values for each edge
(s; t) in the graph. To do so, we choose our clique potentials as indicator functions:
that is, the collection of functions fÆ(xs = j) j j = 0; 1g for each node s 2 V , and
fÆ(xs = j)Æ(xt = k) j j; k = 0; 1 g for each edge (s; t) 2 E. Here, the indicator or delta

5Any distribution can be represented by a 2N vector, and we lose one degree of freedom due to the
normalization

P
x
p(x) = 1.
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function Æ(xs = j) is equal to 1 when node xs takes the state value j, and 0 otherwise.
The corresponding representation would be of the form

p(x; �) = exp
�X
s2V

1X
j=0

�s;jÆ(xs = j) +
X

(s;t)2E

1X
j;k=0

�st;jkÆ(xs = j)Æ(xt = k)� �(�)
	

(2.13)

where � is the corresponding overcomplete parameter vector.

It is straightforward to generalize this type of overcomplete representation in terms
of indicator functions to m-ary processes.

Di�erent types of binary potentials

Given a distribution over a binary vector de�ned by a graph with pairwise cliques, it
will often be useful to specify potential types from one of the following classes:

(a) in a graph with attractive potentials, all pairs of neighboring random variables are
more likely to take the same values than opposite values.

(b) conversely, in a graph with repulsive potentials, all neighboring variables are en-
couraged to take opposite values.

(c) a graph with mixed or frustrated potentials consists of a combination of attractive
and repulsive potentials.

In the statistical physics literature [e.g., 15,32], these types of distributions are referred
to as ferromagnetic, anti-ferromagnetic, and paramagnetic respectively.

The convention of this thesis will be that a binary random variable xs takes values
in f0; 1g. In order to specify potential types, it is useful to consider a so-called spin
representation in which a binary random variable us takes values in f�1;+1g. The term
\spin" comes from the statistical physics literature [32]; for instance, one can think of
us as giving the orientation (up or down) of a magnet at node s. We let

p(u;!) = expf
X
s

!sus +
X
(s;t)

!stusut � �(!)g (2.14)

be a minimal exponential representation corresponding to the spin vector u 2 f�1; 1gN ,
where ! is the associated vector of exponential parameters. In this spin representation,
the nature of the interaction between us and ut is determined entirely by the sign of
!st. In particular, the potential is attractive (respectively repulsive) if and only if !st
is positive (respectively negative).6

6Note that the same statement does not hold for the exponential parameter �st in a f0; 1g represen-
tation (see, e.g., equation (2.10)). For this representation, if we disregard the single node parameters
�s, setting �st > 0 places higher weight on the con�guration (xs; xt) = (1; 1), but equal weights on the
remaining con�gurations f(0; 0); (1; 0); (0; 1) g.
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Thus, a spin representation is convenient for constructing random distributions on
graphs with particular types of potentials. Moreover, any spin parameter ! speci�es a
unique exponential parameter �. In particular, we substitute the relation us = 2xs� 1,
which converts from f0; 1g variables to spins, into equation (2.14), and then equate
coeÆcients with the Ising model of equation (2.10). In this way, we obtain the following
relations:

�s = 2
�
!s �

X
t2N (s)

!st
�

(2.15a)

�st = 4!st (2.15b)

We now de�ne for future reference a few ensembles of random potentials. In all
cases, we set the node parameters !s = 0 for all nodes s 2 V . Let U [a; b] denote the
uniform distribution on the interval [a; b]. Given a particular edge weight d > 0, we
then choose the edge parameters as follows:

(a) for the uniform attractive ensemble with edge weight d > 0, set !st � U [0; d]
independently for each edge (s; t) 2 E

(b) for the uniform repulsive ensemble, set !st � U [�d; 0] independently for each edge
(s; t) 2 E

(c) for the uniform mixed ensemble, set !st � U [�d; d] independently for each edge
(s; t) 2 E

Given the (randomly-chosen) distribution p(u;!) speci�ed in terms of the spin param-
eter !, we then convert to the distribution p(x; �), where � is obtained from ! via
equation (2.15).

� 2.2.2 Properties of �

In this section, we develop some important properties of the log partition function �
de�ned in equation (2.8b), including its convexity. Given a distribution p(x; �) and a
function f : XN ! R, we de�ne the expectation of f(x) with respect to p(x; �) as
follows:

E � [f(x)] =
X
x2XN

p(x; �) f(x) (2.16)

When the sample space X is continuous, this summation should be replaced by an
integral.

With this notation, we can show that the function � is closely related to the cumu-
lant generating function7 associated with the random variables f��(x)g. In particular,

7Another interpretation of � arises in statistical physics, where it is known as the Helmholtz free

energy [32, 136].
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given a parameter vector � 2 R
d(�) and another vector � 2 R

d(�) , we compute:

log

�
E �

�
expf

X
�

����(x)g
��

= �(� + �)� �(�) (2.17)

The quantity on the left-hand side is the cumulant generating function (or the logarithm
of the moment generating function) [81]. Equation (2.17) shows that this cumulant
generating function is equal to the di�erence between the function � at two distinct
values.

Using this relation, it can be shown that derivatives of � with respect to � correspond
to the cumulants of f��(x)g. For example,

@�

@��
(�) = E � [��] (2.18a)

@2�

@�� @��
(�) = cov�f��; ��g , E �

n�
�� � E � [��]

��
�� � E � [��]

�o
(2.18b)

are the �rst and second order cumulants. In general, let cum�f��1 ; : : : ; ��kg denote
the kth-order cumulant of f��1 ; : : : ; ��kg under p(x; �). Then higher order cumu-
lants are de�ned recursively by successive di�erentiation of lower order cumulants; e.g.,
cum�f��1 ; ��2 ; ��3g = @

@��3

�
cum�f��1 ; ��2g

�
.

The second order cumulant in equation (2.18b) reveals an important property of
the log partition function:

Lemma 2.2.1. The function � is convex as a function of �. The convexity is strict
when the representation is minimal.

Proof. Note that the quantity in (2.18b) is an element of the Fisher information ma-

trix (�E �
�@2log p(x;�)

@�2

	
). Therefore, the Hessian r2� is positive semi-de�nite (strictly

positive de�nite for a minimal representation), so that � is convex (respectively strictly
convex).

The convexity of � will play a central role in subsequent geometric developments.

� 2.2.3 Riemannian geometry of exponential families

An important feature of exponential families of distributions is their geometric struc-
ture. In this section, we provide a very brief introduction to the di�erential geometry
of these families. See Amari [5{7] and the edited collection of papers [83] for further
details.

Consider an exponential representation in terms of the d(�)-dimensional parameter
�, assumed to be minimal. For each � 2 �, we have p(x; �) > 0 for all x 2 XN .
Therefore, we can associate with each point � 2 � a function | namely, the log dis-
tribution log p(x; �). Under suitable regularity conditions [13], this association de�nes
a d(�)-dimensional di�erential manifold M of functions flog p(x; �) j � 2 �g. When
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the sample space XN is discrete and hence �nite, we can view M as embedded within
R
jXN j; otherwise, it is embedded within an in�nite-dimensional function space. The

mapping � 7! log p(x; �) is the co-ordinate mapping of the manifold, as illustrated in
Figure 2.9.

M

�

�

log p(x; �)

Figure 2.9. The exponential parameters � serve as the co-ordinates for the d(�)-
dimensional di�erential manifold of log distributions log p(x; �). Associated with each
� 2 � is a log distribution log p(x; �); the association � 7! log p(x; �) de�nes the co-
ordinate mapping.

Given a line �(t) in �, we can consider the curve in M de�ned by its image
log p(x; �(t)) under the co-ordinate mapping. The set of all tangent vectors to such
curves at a particular value of � de�nes the tangent space ofM at the point log p(x; �).
It can be seen that this tangent space is a d(�)-dimensional vector space. In particular,
letting e� be a d(�)-vector of zeros with a single one in element � and zero elsewhere,
consider the co-ordinate line �(s;�) = (1� s)� + se�. By straightforward calculations,
the tangent vector t� to the curve log p(x; �(s;�)) is given by

t� =
@

@��
log p(x; �) = ��(x) � E � [��] 1(x) (2.19)

where 1(x) = 1 for all x 2 XN . In computing this derivative, we have used equa-
tion (2.18a). It can be shown that the set ft� j � 2 Ag spans the tangent space at
log p(x; �).

We now use p(x; �) to de�ne a weighted inner product on the tangent space. Of
course, it suÆces to specify the inner product for any pair ft�; t�g, which we do as
follows:

ht�; t�i� = E �

h @

@��
log p(x; �)

@

@��
log p(x; �)

i
= cov�f��; ��g (2.20)

where we have used equations (2.18b) and (2.19) to see the equivalence to a covariance.
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The quantities g��(�) , cov�f��; ��g are elements of the Fisher information ma-
trix, denoted by G(�). For a minimal �-representation, it can be seen that the Fisher
information matrix is strictly positive de�nite for all �. It therefore de�nes a Rieman-
nian metric, with the squared distance between the distribution � and an in�nitesimally
perturbed distribution � +� given by

[d(�; � +�)]2 =
X
�;�

g��(�)���� = �TG(�)� = k�k2G(�) (2.21)

The Fisher information matrix and the induced distance function of equation (2.21)
also play important roles in other contexts, as we will explore in subsequent sections.

� 2.2.4 Legendre transform and dual variables

The aspect of information geometry that sets it apart from classical Riemannian ge-
ometry is the existence of a dual parameterization, coupled to the exponential �-
parameterization. The coupling arises from convex duality associated with the log
partition function �. The monograph of Rockafellar [151] provides a comprehensive
treatment of convex duality; a more elementary and geometric treatment of duality
can be found in Bertsekas [20]. In this section, we exploit the convexity of � to apply
notions from convex analysis | in particular, the Legendre transform | from which
we obtain a second set of parameters dual to the exponential �-representation. In a
later section, we use the Legendre duality to develop a geometric interpretation of the
presence or absence of certain cliques in a graph-structured distribution.

The convexity of � allows us to apply the Legendre transform. Here we assume that
the domain � of � is either all of RjAj , or some convex subset. The Legendre dual of �
is de�ned as:

	(�) = sup
�
f�T � ��(�)g (2.22)

where � is a vector of the same dimension as the exponential parameter �. Since the
quantity to be maximized (i.e., �T � � �(�)) is strictly concave as a function of �, the
supremum in equation (2.22) is attained at some point b�. Taking derivatives to �nd
stationary points, and making use of equation (2.18a) yields the de�ning equation:

�� � ��(b�) = E
b�
[��] (2.23)

Since they are obtained by taking expectations, these dual variables � are often referred
to as the mean parameters. Substituting the relation in (2.23) back into equation (2.22)
yields the relation

	(�(b�)) =
X
�

b��E b� [��]� �(b�) = E
b�
[log p(x; b�)] (2.24)

so that the Legendre dual 	 is the negative entropy. Note that 	 is itself a convex
function, so that we can again apply the Legendre transform. It is not diÆcult to show
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that applying the Legendre transform twice in this manner recovers the log partition
function; that is,

�(�) = sup
�
f�T� �	(�)g (2.25)

The Legendre duality of � gives rise to a mapping � : � 7! �, de�ned explicitly by

[�(�)]� =
@�(�)

@��
= E � [��] (2.26)

For a minimal representation, Lemma 2.2.1 guarantees that � is strictly convex, in
which case the mapping is one-to-one [151]. It is therefore invertible on its image, with
the inverse map ��1 : � 7! � de�ned by the corresponding relation

[��1(�)]� =
@	(�)

@��
(2.27)

On the basis of these mappings, we can specify distributions either in terms of the expo-
nential parameter �, or the associated dual parameter �. Given a valid dual parameter
� in a minimal representation, the quantity p(x; �) denotes the equivalent exponential
distribution p(x; ��1(�)).

A few examples help to give intuition for the Legendre mapping:

Example 2.2.5 (Legendre transform for Gaussian). Let x � N (0; P ) be a zero-
mean Gaussian random vector with covariance P . Then the density has an exponential
representation of the form:

p(x; �) = exp
n1
2

NX
s=1

�ssx
2
s +

X
s<t

�stxsxt � �(�)
o

(2.28)

Here � speci�es elements of the inverse covariance (i.e., P�1st = ��st).8 From equa-
tion (2.26), the dual variables are given by:

�ss = E � [x
2
s] = var(xs)

�st = E � [xsxt] = cov(xs; xt)

so that � speci�es elements of the covariance matrix P . That is, the Legendre transform
maps back and forth between the matrix inverse pair P and �P�1.
Example 2.2.6. We now return to the Ising model (see Example 2.2.2), where the
random vector x 2 f0; 1gN has a distribution of the form

p(x; �) = exp
�X
s2V

�sxs +
X

(s;t)2E
�stxsxt � �(�)

	
8We require that � belongs to the set for which P�1(�) > 0.



Sec. 2.2. Exponential families and information geometry 57

In this case, the dual variables are given by the expectations:

�s = E � [xs] � p(xs = 1; �)

�st = E � [xsxt] � p(xs = 1; xt = 1; �)

That is, the dual variables correspond to particular marginal probabilities at individual
nodes, and pairs of nodes (s; t). Note that the dual variables fully specify the single
node marginals, and pairwise marginals for (s; t) 2 E:

p(xs; �) = [(1 � �s) �s]
T ; p(xs; xt; �) =

"
(1 + �st � �s � �t) �t � �st

�s � �st �st

#

When the underlying graph G of the Ising model is a tree, these local marginals de-
termine the full distribution p(x; �) explicitly via the tree factorization given in equa-
tion (2.6). For a graph with cycles, such a local construction is not possible; however,
whenever the dual variables f�s; �stg belong to the range of the Legendre transform,
then the invertibility of this transform guarantees that the dual variables still completely
specify the distribution.

The Legendre mapping is also closely related to the Fisher information matrix.
In particular, by di�erentiating equation (2.23) with respect to ��, we see that the
Jacobian of the mapping � : � 7! � is given by the Fisher information matrix [G(�)]�� =
cov�f��; ��g. That is,

�(� +��)� �(�) � G(�)�� (2.29)

up to �rst order in the perturbation ��. Similarly, the inverse Fisher information
matrix G�1, which is guaranteed to exist when � is strictly convex, corresponds to the
Jacobian of the inverse mapping ��1 : � 7! �.

� 2.2.5 Geometric consequences for graphical models

In the speci�c context of graphical models, the Legendre duality also leads to an inter-
esting geometric interpretation of the presence or absence of given clique potentials. In
particular, consider the constrained maximum entropy problem:(

maxpH(p)P
x p(x)��(x) � ��

(2.30)

Geometrically, the maximization takes place over a polyhedral set, formed by the inter-
section of the probability simplex P = fp(x) j 0 � p(x) � 1;

P
x p(x) = 1 g with the

hyperplane constraints fp(x) j Px p(x)��(x) � �� g. It is well-known [42] that the
solution to this problem assumes the familiar Gibbs form of equation (2.8), where the
exponential parameter �� now corresponds to the Lagrange multiplier associated with
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the constraint
P
x p(x)��(x) � ��. That is, it re
ects the sensitivity of the problem to

perturbations in the associated �� constraint.
By the Karush-Kuhn-Tucker conditions [20], the Lagrange multiplier �� is zero

whenever the ��-constraint is inactive (i.e., not met with equality.) On this basis, the
presence or absence of particular cliques in a graphical model can be related to hyper-
plane constraints. In particular, we can add a given clique potential �� by imposing
a hyperplane constraint of the form

P
x p(x)��(x) � ��. Progressively lowering �� so

as to tighten the constraint will eventually ensure that the associated Lagrange mul-
tiplier is non-zero, meaning that the clique potential �� appears in the exponential
representation with a non-zero weight ��. Conversely, we can remove a given clique
from the graphical distribution by loosening the associated constraint. Eventually, the
constraint will become inactive, so that the Lagrange multiplier �� is zero and the clique
is e�ectively absent from the graph.

p(x; ��)

P
x
p(x)��(x) = ��P

x
p(x)��(x) = ��

P

Figure 2.10. Geometry of graph-structured distributions. Distributions p(x) are re-
stricted to the simplex P = f p(x) j 0 � p(x) � 1;

P
x
p(x) = 1 g, and lie on the

intersections of hyperplane constraint sets f p(x) j
P
x
p(x)��(x) = �� g imposed by

the clique potentials f��g.

� 2.2.6 Kullback-Leibler divergence and Fisher information

The Kullback-Leibler divergence [119] can be viewed as a measure of the \distance"
between two distributions. For a discrete random vector, its usual de�nition [see, e.g.,
42] is D(p k q) =Px2XN p(x)[log p(x)� log q(x)]. The de�nition shows that it is not a
true distance, since (for example) it is not symmetric in p and q. However, it can be
shown using Jensen's inequality that D(p k q) � 0 for all p and q, with equality if and
only if p = q.

With a minor abuse of notation9, we letD(� k ��) denote the KL divergence between
two distributions in exponential form p(x; �) and p(x; ��). The exponential parameter-

9Strictly speaking, the divergence applies to distributions p(x; �) and p(x; ��), and not to the pa-
rameters � and �� themselves.
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ization leads to an alternative representation of this KL divergence:

D(� k ��) =
X
�

E � [��]
�
� � ��

�
�
+�(��)� �(�)

= �T [� � ��] + �(��)��(�) (2.31)

where �� = [�(�)]�. That is, the pair (�; �) are dually coupled via the Legendre
transform.

Equation (2.31) shows that the KL divergence D(� k ��) can be viewed as a Breg-
man distance, induced by the convex log partition function �. In particular, since
@�(�)
@��

= E � [��], the KL divergence D(� k ��) is equivalent to the di�erence between

�(��) and the �rst-order tangent approximation �(�) +rT�(�)(�� � �), as illustrated

�(�)

� ��

�(�) +rT�(�)(�� � �)

�(��)

�

Figure 2.11. Kullback-Leibler divergence as a Bregman distance induced by the log
partition function �. The KL divergence D(� k ��) is equal to the di�erence between
�(��) and the tangent approximation �(�) +rT�(�)(�� � �).

in Figure 2.11. Bregman distances are de�ned in precisely this manner; see Censor and
Zenios [31] for more details on Bregman distances and their properties. For a minimal
representation, the strict convexity of � guarantees that this tangent approximation is
always an underestimate of �(��), so that the KL divergence is positive for � 6= ��.10

It is also possible to re-write the KL divergence in terms of the dual variables �. In
particular, from the Legendre duality between � and 	, we have for all dually coupled
pairs (�; �):

�T � = �(�) + 	(�) (2.32)

Substituting this relation into equation (2.31), we obtain an alternative representation

10For overcomplete representations, it is possible to have distinct parameters � 6= �� that induce the
same distribution, in which case D(� k ��) = 0.
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of the KL divergence:

D(� k ��) = (��)T [�� � �] + 	(�)�	(��) (2.33)

Comparing equations (2.33) and (2.31), we see that the former is obtained from the
latter by replacing � with its dual 	, and interchanging the roles of � and �� (and their
associated dual parameters � and ��). Equation (2.33) gives rise to the notion of the
dual of the KL divergence, as studied by Chentsov [33, 34].

The Kullback-Leibler divergence is very closely related to the Riemannian metric
de�ned in equation (2.21). In particular, by Taylor series expansion of log p(x; �), we
obtain

D(� k ��) � 1

2
[� � ��]TG(�)[� � ��] =

1

2
k� � ��k2G(�) (2.34)

where the approximate equality holds up to second order. In this sense, the squared dis-
tance induced by the Fisher informationG(�) is an approximation to the KL divergence.
This notion will arise again in Section 2.2.8.

� 2.2.7 I-projections onto 
at manifolds

In this section, we de�ne a pair of optimization problems canonical to information ge-
ometry. In particular, they entail projecting (where the KL divergence serves as the
\distance") a given distribution onto certain types of \
at" manifolds. The dual param-
eterizations allow us to specify two types of 
at manifold, depending on whether distri-
butions are speci�ed in terms of the exponential parameters �, or the mean parameters
�. This procedure of projecting onto a 
at manifold, known as an I-projection, consti-
tutes the basic building block for a variety of well-known optimization algorithms [e.g.,
44, 135].

We begin with de�nitions of e and m-
at manifolds:

De�nition 2.2.1. Given a linear subset of �, an e-
at manifold corresponds to its
image under the coordinate mapping � 7! p(x; �). That is,

Me = f p(x; �) j A� = a g (2.35)

for some matrix A and vector a.
An e-geodesic is a 1-dimensional e-
at manifold | that is, a family of distributions

speci�ed by a line in the exponential coordinates:

f p(x; �(t)) j �(t) = (1� t) �0 + t �1; t 2 R g

for some �xed �0 and �1.

With a minor abuse of notation, we shall often use � 2Me to mean that � belongs to
the linear subset de�ning the e-
at manifold. To illustrate, we consider a few examples:
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Example 2.2.7. For the Ising model (Example 2.2.2), an important type of e-
at
manifold is induced by the linear subset F0 = f � j �st = 0 8 (s; t) 2 E g. Any
distribution in this family has the representation

p(x; �) = exp
� NX
s=1

�sxs � �(�)
	

That is, these distributions are fully factorized, with no interactions between di�erent
components xs of the random vector x.

We specify an m-
at manifold in a similar fashion:

De�nition 2.2.2. An m-
at manifold is the set of distributions corresponding to a
linear subset of the dual variables:

Mm = fp(x; �) j B� = b g (2.36)

Recall that p(x; �) refers to the exponential distribution given by p(x; ��1(�)).
We de�ne an m-geodesic in a similar fashion to an e-geodesic: that is, as a 1-

dimensional family of distributions speci�ed by a line in the dual coordinates. Again,
we shall often abuse notation by writing � 2Mm to mean that � belongs to the linear
subset de�ningMm.

Note that an m-geodesic corresponds to the familiar type of mixture of distributions.
That is, given the line �(t) = (1 � t)�0 + t�1, the induced m-geodesic corresponds to
mixtures of distributions in the form

p(x; �(t)) = (1� t) p(x; �0) + t p(x; �1)

We consider a few examples of m-
at manifolds:

Example 2.2.8. Consider a scalar Gaussian random variable with exponential repre-
sentation p(x; �) = expf�1x + �2x

2 � �(�)g. Here the dual parameters are given by
�1 = E � [x] = �, and �2 = E � [x

2] = �2 + �2, where � and � are the mean and standard
deviation respectively. Thus, we see that the set of scalar Gaussian distributions with
�xed mean corresponds to an m-
at manifold.

Example 2.2.9. Consider the Ising model (see Example 2.2.2). The mean parameters
consist of the probabilities �s = p(xs = 1; �) and �st = p(xs = 1; xt = 1; �). Thus, the
set of all distributions with a speci�ed set of single-node marginals

f p(x; �) j �s = e�s g
forms an m-
at manifold.

The notions of e-
at andm-
at manifolds give rise to a pair of canonical optimization
problems in information geometry. We begin by considering the problem of projecting
onto an e-
at manifold.
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Projection onto an e-
at manifold

For a �xed reference distribution �� and e-
at manifold Me, consider the constrained
optimization problem: (

min�D(�
� k �)

s: t � 2 Me

(2.37)

From equation (2.31) and the convexity of �, we see that the KL divergence D(�� k �)
is a convex function of its second argument. Therefore, problem (2.37) is a convex
optimization problem with linear constraints, so that it has a unique global optimum
| say b� = argmin�2Me D(�

� k �). Using equations (2.18a), and (2.31), we compute the
gradient r�D(�

� k �) = � � ��. By the standard condition for a global minimum of a
convex function over a linear manifold [20], we obtain:

[�� � b�]T [� � b�] = 0 (2.38)

for all � 2 Me. Equation (2.38) is the de�ning condition for b�, which is known as the
I-projection of the point �� onto Me.

Many e-
at manifolds of interest are obtained by zeroing a subset of the exponential
parameters | that is:

FJ = f� j �� = 0 8 � =2 J g
The set of fully factorized distributions, described in Example 2.2.7, is an important
case. The optimality condition of equation (2.38) has strong consequences for projec-
tions onto such manifolds. In particular, for any index � 2 J , we can form a perturba-
tion �� = e� of all zeros except for a one in the �-entry. This perturbation �� lies in
the e-
at manifold FJ , so that it must be orthogonal to [���b�]. Using equation (2.38),
this implies that

��� = b�� 8 � 2 J (2.39)

That is, the dual parameters of the projection b� must agree with the dual parameters
�� of the original distribution for all indices � that are free to vary.

Example 2.2.10. Consider again the Ising model (Example 2.2.2), and consider the
problem of projecting �� onto the set F0 = f � j �st = 0 8 (s; t) 2 E g of fully
factorized distributions (see Example 2.2.7). Then equation (2.39) ensures that the
I-projection b� satis�es:

E
b�
[xs] = b�s = ��s = E �� [xs]

Since x 2 f0; 1gN is a binary random variable, the dual variables are equivalent to
node marginal probabilities. Therefore, the single node marginals of the I-projection
p(x; b�) agree with those of p(x; ��). This type of property holds for more general nested
families of distributions, as described in Amari [6].
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Projection onto a m-
at manifold

The problem of projecting onto anm-
at manifoldMm is e�ectively dual to the problem
of projecting onto an e-
at manifold. In this case, the relevant optimization problem is(

min�D(� k ��)
s: t � 2 Mm

(2.40)

Note that in contrast to problem (2.37), here we optimize over the �rst argument of the
KL divergence. This change should be understandable, in light of the relation between
the KL divergence in (2.31), and its alternative formulation in equation (2.33).

On the basis of equation (2.33), it can be shown that problem (2.40) is convex and
linearly constrained in the dual variables �, and so has a unique global optimum b�.
Again, straightforward computations yield the de�ning condition for this optimum:

[�� � b�]T [� � b�] = 0 8 � 2 Mm (2.41)

� 2.2.8 Geometry of I-projection

Associated with equations (2.38) and (2.41) is an elegant geometric picture. Here we
present this viewpoint for the I-projection onto an e-
at manifold, noting that a similar
picture holds for I-projection onto an m-
at manifold. The Pythagorean results of this
section (Theorems 2.2.1 and 2.2.2) date back to Kullback [119,120] and Csisz�ar [44,45].

To develop the geometry, note �rst of all that for any � 2Me, the vector [�� b�] can
be viewed as the tangent vector to some e-geodesic lying within Me, as illustrated in
Figure 2.12. Secondly, consider the m-geodesic joining the points �� and b�. Although it
is linear by de�nition in �-coordinates, it will be a curve in the �-coordinates | namely:

�(t) = ��1(b� + t[�� � b�]) (2.42)

This curved m-geodesic is illustrated in Figure 2.12. We calculate the tangent vector to
the curve (2.42) at b� (i.e., at t = 0) as G�1(b�) [��� b�], where we have recalled that the
Jacobian of the inverse mapping ��1 is given by the inverse Fisher information G�1.

Now consider the inner product, as de�ned by the Fisher information matrix G(b�),
between these two tangent vectors. In particular, using the fact that G(b�)G�1(b�) = I,
we compute:

h[� � b�]; G�1(b�) [�� � b�]i
G(b�)

= [�� � b�]T [� � b�] (2.43)

which must vanish by equation (2.38). Therefore, the geometric consequence of equa-
tion (2.38) is that the m-geodesic joining �� and b� forms an orthogonal intersection
with the e-
at manifold Me, as illustrated in Figure 2.12. Here orthogonality on the
left side of equation (2.43) is measured using the Riemannian inner product h ; i

G(b�)

induced by the Fisher information matrix (see Section 2.2.3), whereas the right side
corresponds to Euclidean inner product of two vectors in Rd(�) . Since the I-projection
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Figure 2.12. The point �� is projected onto the e-
at manifold Me by following an

m-geodesic. This yields the I-projection b�. The tangent vector to the m-geodesic joining

�� and b� is orthogonal to the manifold Me.

of �� onto an e-
at manifold is obtained by following an m-geodesic, it is often called
an m-projection.

Recall from equation (2.34) that the KL divergence is closely related to the Rie-
mannian metric induced by the Fisher information matrix. The geometric picture of
I-projection allows us to further develop this relation by showing that, as with Hilbert
space norms, the KL divergence satis�es a type of Pythagorean relation:

Theorem 2.2.1 (Pythagoras for m-projection). Let b� be the I-projection of a point
�� onto an e-
at manifold Me. Then for all � 2Me, we have:

D(�� k �) = D(�� k b�) +D(b� k �) (2.44)

Proof. We provide the proof here, since it follows in a straightforward manner from our
earlier development. We �rst use the form of the KL divergence in (2.31) to write:

D(�� k b�) +D(b� k �) = [��]T [�� � b�] + b�T [b� � �] + �(��)� �(�)

We then use the optimality condition of equation (2.38) to rewrite the second term on
the RHS as [��]T [b� � �]. Cancelling out the [��]T b� terms then yields the result.

Figure 2.12 again illustrates this geometry, where the points �, b� and �� correspond
to the vertices of a \right" triangle, with the segment between � and �� corresponding
to the hypotenuse. The \distances" between these three points are related by the
Pythagorean relation11 of equation (2.44).

We note that a geometric picture similar to that of Figure 2.12 also holds for the I-
projection of �� (or alternatively, ��) onto anm-
at manifold. The primary di�erence is
that the picture holds in the dual coordinates �, rather than the exponential coordinates.

11In passing, we note that this Pythagorean relation holds more generally for projections onto linear
sets, where the projection is de�ned by any Bregman distance. See [31] for further details on Bregman
distances and their properties.
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In this case, the projection b� is obtained by following a e-geodesic (curved in the �-
coordinates) between �� and b�. For this reason, this operation is often called an e-
projection (onto an m-
at manifold). Moreover, a Pythagorean relation analogous to
that of equation (2.44) also holds:

Theorem 2.2.2 (Pythagoras for e-projection). Let b� be the I-projection of a point
�� onto an m-
at manifold Mm. Then for all � 2Mm, we have:

D(� k ��) = D(� k b�) +D(b� k ��)
Proof. The proof of this result is entirely analogous to that of Theorem 2.2.1.

Various extensions to Theorems 2.2.1 and 2.2.2 are possible. For example, if we
project onto a convex set of distributions (as opposed to a m-
at or linear manifold),
then the equality of Theorem 2.2.2 is weakened to an inequality (i.e., from a Pythagorean
result to the triangle inequality) [see 42].

Moreover, I-projections constitute the basic building blocks for a variety of well-
known iterative algorithms. These algorithms can be divided into two broad classes:
successive projection algorithms, and alternating minimization algorithms. Csisz�ar [45]
established the convergence of the successive projection technique; in a later paper [47],
he showed that the iterative scaling procedure [52] is a particular case of such an al-
gorithm. Csisz�ar and Tusn�ady [44] present alternating minimization algorithms, and
provide conditions for their convergence. The tutorial introduction by O'Sullivan [135]
shows how many well-known algorithms (e.g., expectation-maximization [57], Blahut-
Arimoto [9, 24]) can be reformulated as particular cases of alternating minimization.

� 2.3 Variational methods and mean �eld

The term variational methods refers to a variety of optimization problems, and asso-
ciated techniques for their solution. Its origins lie in the calculus of variations [73],
where the basic problem is �nding the extremum of an integral involving an unknown
function and its derivatives. Modern variational methods encompass a wider range of
techniques, including the �nite element method [157], dynamic programming [19], as
well as the maximum entropy formalism [99, 100, 182]. Here we begin with a simple
example to motivate the idea of a variational method; we then turn to an exposition
of mean �eld methods. For more details, we refer the reader to the tutorial paper [93],
which provides an introduction to variational methods with emphasis on their applica-
tion to graphical models. The book by Rustagi [153] gives more technical details, with
particular applications to problems in classical statistics.

To motivate the idea of a variational method, consider the following example, also
discussed in the tutorial paper [93]. Suppose that for a �xed vector b 2 Rn and symmet-
ric positive de�nite matrix Q 2 Rn�n , we are interested in solving the linear equation
Qx = b. Clearly, the solution is bx = Q�1b, which could be obtained by performing
a brute force matrix inversion, and then forming a matrix-vector product. For large
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problems, this brute force approach will be intractable. A variational formulation of
the problem motivates a more eÆcient technique, and suggests natural approximations
to the optimum. In particular, we consider the cost function J(x) = 1

2x
TQx � bTx.

Clearly, J(x) is convex and bounded below, and so has a unique global minimum. In-
deed, the minimizing argument of J(x) is the desired optimum; that is, we can computebx by minimizing J(x). Moreover, to obtain approximations to the optimum, we need
only perform a partial minimization of J(x). The method of choice for such problems is
the conjugate gradient method of numerical linear algebra [56]. It generates a sequence
fxkg, such that each xk minimizes J(x) over a k�dimensional subspace. Thus, the nth
iterate xn will be equal (aside from possible numerical inaccuracies) to the optimum bx;
however, the iterations are typically terminated for some k � n, thereby yielding an
approximation xk � bx.
� 2.3.1 Mean �eld as a variational technique

We now describe particular subclass of variational methods known under the rubric of
mean �eld. This term refers to a collection of techniques for obtaining approximations
to distributions. While we take a variational approach to mean �eld, these methods can
be motivated and derived from a variety of perspectives [e.g., 32, 136]. Our exposition
shares the spirit of the tutorial introductions given in [93, 106]; it di�ers in details in
that we make extensive use of exponential representation of equation (2.8).

Let p(x; ��) be the distribution of interest. We assume that this distribution is
intractable, so approximating it is a natural problem. Consider the variational problem
of minimizing the Kullback-Leibler divergence

D(� k ��) =
X
�

E � [��] [� � ��]� +�(��)� �(�) (2.45)

between p(x; �) and p(x; ��). Of course, if we could perform an unconstrained min-
imization, we would trivially recover � � ��. However, since calculating the KL di-
vergence in (2.45) entails taking expectations under p(x; �), it is necessary to restrict
the minimization to a tractable family F of distributions. In particular, we form an
approximation p(x; b�) by computing:

b� = argmin
�2F

D(� k ��) (2.46)

That is, we compute the optimal approximation in some family, where optimality is
measured by the KL divergence. It is important that this optimization problem does not
correspond to an I-projection. Indeed, although we will see that F typically corresponds
to an e-
at manifold, the optimization in equation (2.46) is over the �rst argument of
the KL divergence, and not the second as it would be for a projection onto an e-
at
manifold (see problem (2.37)). The fact that mean �eld is not an I-projection has
important consequences, as we will discuss later.
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Figure 2.13. Illustration of the mean �eld approximation. (a) Original graph is a 3�3
grid. (b) Fully disconnected graph, corresponding to a naive mean �eld approximation.
Wavy lines at each node represent adjustable input parameters.

The form of the KL divergence in (2.45) suggests an alternative interpretation of
this optimization. By the convexity of the log partition function and equation (2.18a),
we have

�(��) � �(�) +
X
�

E � [��] [�
� � �]� (2.47)

for all �. This lower bound also appears in the statistical physics literature, with slightly
di�erent notation, as the so-called Gibbs-Bogoliubov-Feynman inequality [see 32, 185].
As a consequence of equation (2.47), the optimization of (2.46) can be viewed as max-
imizing a lower bound on the (intractable) log partition function �(��). This interpre-
tation is important in the application of mean �eld methods to parameter estimation
via the EM algorithm [see 106].

The formulation in (2.46) encompasses a variety of mean �eld techniques, where a
speci�c technique corresponds to a particular choice of e-
at manifold for the approxi-
mating family F . For example, given the Ising model of equation (2.10), consider the
family F0 = f� j �st = 0 8 (s; t) 2 E g| that is, the e-
at manifold of fully factorized
distributions (see Example 2.2.7)). Performing the minimization of equation (2.46) with
this choice corresponds to �nding the best fully factorized approximation. Doing so en-
tails �nding zero points of the gradient, and a particular iterative scheme for solving
this �xed point equation give rise to the (naive) mean �eld equations.12

The graphical consequence of the naive mean �eld approximation is to decouple
all nodes of the graph. Figure 2.13 illustrates this transformation: the original graph,
shown in (a), is a 3�3 grid. The mean �eld distribution is fully factorized, and so has the

12In naive mean �eld, a fully factorized binary distribution of a binary vector x 2 f0; 1gN is rep-
resented as q(x) =

QN
s=1 �

xs
s (1� �s)

1�xs , where the quantities f�sg are the mean �eld parameters.
Taking gradients with respect to � yields the usual mean �eld equations. Our exponential parameteri-
zation is related via �s = log[�s=(1� �s)].
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structure of the fully disconnected graph shown in (b). The mean �eld approximation
introduces the additional variational parameters �s (or �s = log[�s=(1� �s)]), which
can be viewed as adjustable inputs to each node. This is typical of a variational trans-
formation: it simpli�es the problem (i.e., removes edges) with the additional expense
of introducing variational parameters to optimize.

The naive mean �eld approximation can be quite accurate in certain cases. An im-
portant example is a large and densely connected graphical model in which the pairwise
couplings between variables are relatively weak. By the law of large numbers, the con-

uence of many e�ects on a given node converges to a \mean e�ect", so that the actual
distribution is close to fully factorized. (See Jaakkola [93] for further discussion of such
issues.) However, a fully factorized approximation is unable to capture multimodal
behavior, and can often be a very poor approximation. For this reason, it is natu-
ral to use approximations with more structure, but that nonetheless remain tractable.
Natural examples include factorized distributions formed by clustered nodes, as well as
tree-structured distributions. Accordingly, di�erent choices of F | corresponding to
distributions with more structure than a fully factorized distribution | lead to more
advanced mean �eld methods. For example, given a particular tree embedded within
the original graph with edge set Etree � E, we can set

Ftree = f � j �st = 0 8 (s; t) =2 Etree g (2.48)

which corresponds to the e-
at manifold of distributions structured according to the
tree. This general idea of obtaining approximations richer than a fully factorized dis-
tribution is known as structured mean �eld; such approaches were pioneered by Saul
and Jordan [155], and have been investigated by a number of other researchers [e.g.,
12, 75, 92, 96, 179].

� 2.3.2 Stationarity conditions for mean �eld

As noted earlier, mean �eld optimization, as formulated in equation (2.46), does not
fall within the purview of standard information geometry. In particular, although the
family F is an e-
at manifold, the minimization does not take place over the second
argument (which would correspond to an m-projection), but rather over the �rst ar-
gument. For this reason, mean �eld theory fails to share the geometry and optimality
conditions of the m- or e-projections described in Section 2.2.7. For instance, solutions
of mean �eld equations are not necessarily unique, and can exhibit undesirable prop-
erties such as \spontaneous symmetry breaking", in which the mean �eld solution is
asymmetric despite complete symmetry of the actual distribution. See [93] for a simple
but compelling example. Nonetheless, mean �eld solutions do have certain geometric
properties, which we develop in this subsection for future reference.

We now derive an alternative set of stationary conditions for mean �eld in the
general case. We �rst take derivatives of the KL divergence with respect to � to obtain
r�D(� k ��) = G(�) [� � ��] where [G(�)]�� = cov�f��; ��g is the Fisher information
matrix evaluated at �. Let J be a subset of the potential index set, such that the
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approximating family has the form FJ = f � j �� = 0 8 � =2 J g. Then the
stationary conditions for a mean �eld solution b� are:�

G(b�) (b� � ��)
�
�

=
X
�

[G(b�)]�� [b� � ��]� = 0 8 � 2 J (2.49)

From equation (2.29), recall the role of the Fisher information matrix as the Jacobian
of the mapping between � and the dual variables �� = E � [��]. By a Taylor series
expansion, this ensures that

[b� � ��]� � 0 8 � 2 J

where the approximate equality holds up to �rst order in the perturbation [b� � ��].
That is, the mean �eld stationary conditions in (2.49) ensure that the dual variables b��
match the desired statistics ��� up to �rst order for all free indices (i.e., � 2 J ).

As a concrete illustration, in the case of naive mean �eld for an Ising model, the
mean �eld stationarity conditions guarantee that

E
b�
[xs] = p(xs = 1; b�) � p(xs = 1; ��) = E �� [xs]

for all nodes s 2 V . That is, the single node marginals of the mean �eld approximation
are approximately equal (up to �rst order) to those of the original model. To emphasize
the di�erence with standard information geometry, recall from Example 2.2.10 that the
m-projection of �� onto the set of fully factorized distributions F0 (i.e., computing
argmin�2F0 D(�� k �)) would guarantee the equality of these �rst order marginals.
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Chapter 3

Perturbations and Bounds

� 3.1 Introduction

In this chapter, we demonstrate the use of exponential representations of graph-structured
distributions in application to two important problems:

(a) assessing model sensitivity to changes in parameters and structure;

(b) deriving computable bounds on quantities of interest (e.g., partition functions;
marginal distributions).

The �rst problem is fundamental to all types of modeling; indeed, sensitivity analysis
is critical in �tting and validating models. In this context, a useful tool is the pertur-
bation expansion, which quanti�es the deviations in model behavior as parameters are
perturbed from a nominal setting. The �rst topic of this chapter, then, is the develop-
ment of such perturbation expansions for graphical models. The second goal | that of
developing bounds | is important for any graphical model in which exact inference is
intractable. In particular, bounds are useful as an approximate inference tool [94, 97],
for model �tting [e.g., 106], and also for large deviations analysis [e.g., 158]. Accord-
ingly, the second part of this chapter focuses on the use of exponential representations
in developing such bounds.

Although this chapter presents a number of new results, in the context of this thesis
as a whole, it serves primarily as a basis for future developments. In particular, the
bounds derived in this chapter will play important roles in Chapters 5, 6 and 7.

� 3.1.1 Use of exponential representations

As we saw in Section 2.2, any exponential family is speci�ed by a collection of functions
� = f��g. When the exponential family represents a collection of graphical models, the
�� are potential functions de�ned on cliques of the underlying graph. Specifying the
collection �, therefore, speci�es the structure of the graphical model. The associated
vector of exponential weights � corresponds to the model parameters. For a given clique
potential ��, the quantity �� represents its weight in the exponential representation.
As a result, the exponential parameters can also be used to capture graph structure,
since the absence or presence of any clique is controlled by whether or not the corre-
sponding exponential parameters are zero (see Section 2.2.5). Indeed, the exponential

71
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parameters corresponding to graphs with particular structure constraints (e.g., a bound
on the maximal clique size) form e-
at manifolds in information geometry, as described
Section 2.2.

Consider a particular graph-structured distribution, speci�ed in an exponential fash-
ion as p(x; ��), which we shall refer to as the target distribution. Many quantities of
interest can be represented by an expectation of the form

E �� [f ] =
X
x2XN

p(x; ��)f(x) (3.1)

for an appropriate function f : XN ! R. (When x takes values in a continuous space,
the summation of equation (3.1) should be replaced by an integral.) As an example,
suppose that x is discrete-valued (i.e., X = f0; : : : ;m � 1g). If we choose f as the
indicator function Æ(xs = j) for the random variable xs to assume value j 2 X , then
E �� [f ] = p(xs = j; ��) is the marginal probability at node s. More generally, given a
subset S � V , let xS denote the collection fxs j s 2 Sg. For a con�guration e 2 XN ,
let

Æ(xS = eS) ,
Y
s2S

Æ(xs = es) (3.2)

denote an indicator function for the event that xs = es for all s 2 S. Taking the
expectation of such an indicator function is equivalent to computing the value of a
marginal distribution over the nodes in S. On the other hand, as an example for a
continuous-valued process, the conditional mean of the variable at node s corresponds
to setting f(x) = xs.

Given a target distribution p(x; ��), we develop expansions for the expectations
E �� [f ] and log E �� [f ] in terms of quantities computed using a related distribution p(x; �).
At a conceptual level, the coeÆcients of these expansions provide valuable information
on the sensitivity to speci�ed perturbations. On the practical side, in the case where
p(x; ��) is intractable whereas p(x; �) is tractable, such expansions may be computation-
ally useful, in that they provide a succession of approximations to E �� [f ]. In Chapter 4,
we shall develop an exact inference algorithm for Gaussian processes based on such an
idea.

The basic thrust in our development of bounds is similar to the perturbation expan-
sions; in detail, however, the analysis is of a di�erent 
avor, since we require quantities
that are explicit bounds and not just approximations. To develop bounds on the expec-
tation E �� [f ], we make use of results from convex analysis, applied to the log partition
function of a suitably modi�ed model. We �rst develop a set of bounds based on a sin-
gle approximating distribution p(x; �); these bounds represent an extension of the mean
�eld bounds described in Section 2.3.1. Indeed, for the special case f(x) � 1, our results
reduce to the usual mean �eld bound on the log partition function (see equation (2.47)).
It is not surprising, then, that the stationary conditions for the exponential parameter(s)
optimizing these bounds are similar to the mean �eld conditions [e.g., 93, 106].
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In the context of an exponential representation, it is natural to consider the idea
of taking convex combinations of exponential parameters. The convexity of the log
partition function then allows us to apply Jensen's inequality [e.g., 42], which leads to
a new set of bounds. These bounds, in contrast to the �rst set, are based on multiple
approximating points fp(x; �i)g. We will return to these bounds in Chapter 7, where
we consider the problem of optimizing both the weights in the convex combination as
well as the choice of exponential parameters on spanning trees of the graph.

We then consider the problem of strengthening the bounds. In order to tighten
both sets of bounds on E �� [f ], we exploit the idea of an additive decomposition of the
form f =

P
k f

k. Such decompositions lead to a family of bounds, nested in terms of
the �neness of the decomposition of f . Although re�ning the additive decomposition
increases the cost of computing the bounds, we prove that re�nements are, in general,
guaranteed to yield stronger bounds.

The remainder of this chapter is organized as follows. In Section 3.2, we present
perturbation expansions for E �� [f ] and log E �� [f ], and illustrate their interpretation
with some simple examples. In Section 3.3, we derive two sets of bounds on these same
expectations, either based on a single approximating point, or multiple approximating
points. Section 3.4 then is devoted to the development of techniques for strengthening
the basic form of these bounds. In Section 3.5, we illustrate our results in application to
bounding the log partition function of some simple graphs. We conclude in Section 3.6
with a summary, and discussion of role of these results in the remainder of the thesis.

� 3.2 Perturbations and sensitivity analysis

Given the target distribution p(x; ��), consider the expectation E �� [f ] of a function
f : XN ! R. In this section, we derive perturbation expansions for this expectation (as
well as for log E �� [f ]) about an approximating distribution p(x; �). CoeÆcients of these
expansions are given by cumulants computed under the approximating distribution.

Related results have been derived by other researchers [e.g., 11,30,53,116,121]. For
example, Laskey [121] showed how to perform sensitivity analysis of a directed tractable
Bayesian network by taking �rst derivatives with respect to model parameters. Dar-
wiche [53], using a representation that is closely related to an overcomplete exponential
parameterization (see Example 2.2.4), developed a di�erential approach that gives an
alternative perspective on exact inference in tractable models. Perhaps most closely
related to our work are the results of Barber and van der Laar [11], who developed per-
turbation expansions of the log partition function about a tractable distribution, and
also considered methods, akin to mean �eld, for attempting to optimize such expansions.
These results are basically equivalent to our expansions of E �� [f ] when f(x) = 1.

� 3.2.1 Expansions of the expectation E �� [f ]

The starting point of our development is the fact, as pointed out in Section 2.2.2,
that the log partition function �(�) is very closely related to the cumulant generating
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function [81] of p(x; �), or more precisely to the cumulant generating function of the
random variables f��(x)g under this distribution. In particular, the �rst and second-
order cumulants of these variables are given by, respectively:

E � [��] =
@�(�)

@��
(3.3a)

cov�f��; ��g =
@2�(�)

@�� @��
(3.3b)

Higher-order cumulants are speci�ed by recursive di�erentiation. For example, the
third-order cumulant cum�f��; �� ; ��g is given by @

@��
cov�f��; ��g, which can be eval-

uated as:

cum�f��; �� ; ��g = E � [�� �� ��]� E � [��] E � [�� ��]� E � [�� ] E � [�� ��]

� E � [��] E � [�� ��] + 2E � [��]E � [��]E � [��] (3.4)

Now for an arbitrary function f : XN ! R, it is also possible to consider the
expectation E �� [f ] under p(x; �

�) as a type of �rst-order cumulant. Consequently, it is
straightforward to apply Taylor's theorem [161] in order to expand it about p(x; �) in
terms of higher-order cumulants. We summarize the result as follows:

Proposition 3.2.1. Let � = �� � � be the di�erence between two arbitrary parameter
vectors, and let f : XN ! R be arbitrary. Then we have:

E �� [f ] = E � [f ] +
X
�

cov�ff; ��g �� + 1

2

X
�;�

cum�ff; ��; ��g���� + O(k�k3) (3.5)

Remark: Although equation (3.5) gives terms only up to second order, it should be
clear that we can continue such expansions to arbitrary order.

The �rst-order coeÆcient corresponding to the perturbation element �� is the co-
variance

cov�ff; ��g = E � [f ��]� E � [f ]E � [��] (3.6)

It has a sensitivity interpretation as a (�rst-order) measure of the e�ect of perturbations
in the strength of clique potential �� on the expectation E �� [f ]. If f(x) = ��(x) for some
�, then this covariance of equation (3.6) corresponds to the element g�� of the Fisher
information matrix (see Section 2.2.3), in which case this sensitivity interpretation is
well-known.

Suppose that the approximating distribution p(x; �) is tractable, in which case E � [f ]
can be computed and viewed as a zeroth order approximation to E �� [f ]. Adding in the
covariance terms gives rise to a �rst-order approximation, but is the computational cost
of doing so prohibitive? This cost depends on the nature of the function f . By de�ni-
tion, the clique potential �� depends only on a limited subvector x� of the full vector
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x. If in addition the function f depends only a local and small subvector | say xf |
then these covariance terms will involve interactions only among relatively small sub-
sets of variables, so that computation will be tractable. Natural choices of f for which
this local support assumption holds are the indicator functions f(x) = Æ(xs = j) and
f(x) = Æ(xs = j)Æ(xt = k). In such cases, as long as the nominal distribution p(x; �)
is tractable, computing these sensitivity coeÆcients will be computationally feasible.
As an example, for an N -node graph with pairwise cliques and a tree-structured ap-
proximating distribution p(x; �), computing the sensitivity coeÆcients associated with
f(x) = Æ(xs = j) for a discrete-valued process assuming m states would entail a cost of
at most O(m4N).

Example 3.2.1. To illustrate the sensitivity interpretation of Proposition 3.2.1, con-
sider the choice f(x) = Æ(xs = j) (so that the expectation E �� [f ] is equivalent to the
marginal probability p(xs = j; ��) at node s). If the clique potential �� is a function
only of the random variables at a subset of nodes suÆciently \far away" from node s,
then the random variables ��(x) and f(x) should be approximately independent under
p(x; �), in which case

cov�ff; ��g = E � [f ��]� E � [f ]E � [��] � 0

That is, perturbations in the clique potential �� should have little e�ect on the expec-
tation.

Figure 3.1 illustrates this e�ect for the single cycle in (a), and the tree in (b) obtained
by removing the single edge (4; 5). We formed a distribution p(x; ��) over a binary-
valued vector x on the single cycle in (a), using a set of relatively homogeneous set of
attractive potentials (i.e., that encourage neighboring nodes to take the same value).
The vector � corresponds to ��, with the element corresponding to edge (4; 5) set to
zero. Panel (c) plots the error f E �� [f ] � E � [f ] g versus node number. Notice how the
error is largest at nodes 4 and 5 (adjacent to the cut edge), and decays for distant nodes
(e.g., 1 and 8).

Continuing the expansion of Proposition 3.2.1 to higher order provides, in principle,
a sequence of approximations to E �� [f ]. (As noted earlier, the nominal expectation
E � [f ] represents a zero

th-order approximation, whereas adding in the covariance terms
would yield a �rst-order approximation.) One would expect that the approximation
should improve as higher order terms are incorporated; however, such monotonicity is
not guaranteed. Moreover, for a discrete process, the computation of higher order terms
becomes progressively more costly, even in the case where f depends only on a local
subvector and p(x; �) is a tractable distribution. In general, the kth-order coeÆcient will
require computing a term of the form E � [f

Qk�1
i=1 ��i ]. For a discrete-valued process,

this will be an intractable computation for suÆciently large k.
For a Gaussian process, it turns out that the necessary higher-order terms can be

computed recursively in terms of lower order quantities. This leads to one derivation
of an algorithm for exact inference of Gaussian processes, which we will explore in
Chapter 4.
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Figure 3.1. Panel (c) shows the error
�
E�� [f ]�E� [f ]

	
between actual marginals E�� [f ]

on a single cycle (a), and the zeroth-order approximations E� [f ] from a tree obtained
by removing edge (4; 5) (b). Note how the error is maximal around nodes 4 and 5, and
decays as the distance between the node and the cut edge increases.

� 3.2.2 Expansions for log E �� [f ]

We now consider perturbation expansions of the quantity log E �� [f ]. This expansion
has an interesting form, and di�erent properties than that of Proposition 3.2.1. It is
based on a representation of log E �� [f ] as a di�erence between the original log partition
function �(��), and a second log partition function that is suitably modi�ed (in a
manner to be described).

For subsequent developments, we need to ensure that E �� [f ] > 0 so that taking
logarithms is well-de�ned. In the case of a strictly positive distribution (i.e., p(x; ��) > 0
for all x 2 XN ), this condition is ensured by the following:

Assumption 3.2.1. The function f takes only non-negative values (i.e., f(x) � 0 for
all x 2 XN ) and f is not identically zero (i.e., f(x) > 0 for at least one x 2 XN ).

For developments in the sequel, it is helpful to introduce now the notion of a tilted
distribution. This concept is central in both importance sampling [150], and large
deviations theory [e.g., 55, 158]. Suppose that we are given a function f satisfying
Assumption 3.2.1, as well as a distribution in exponential form:

p(x; �) = exp
�X

�

����(x)� �(�)
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We then form a new distribution, denoted p(x; �f ), by \tilting" the original distribution
with the function f . To be precise:

p(x; �f ) / exp
�X

�

����(x)
	
f(x) (3.7)

We denote by �f (�) the log partition function associated with this representation:

�f (�) , log
h X
x2XN

exp
�X

�

����(x)
	
f(x)

i
(3.8)

The function �f has important property: by a simple re-arrangement of equa-
tion (3.8), we obtain the relation

log E � [f ] = �f (�)� �(�) (3.9)

This equation is a reformulation, in terms of exponential parameters and log partition
functions, of a relation used in statistical physics for expressing moments as ratios of
partition functions [e.g., 15].

Equation (3.9) will play a fundamental role in our development of bounds in Sec-
tion 3.3. For now, we observe that the derivatives of �(�) (respectively �f (�)) cor-
respond to cumulants of the random variables f��(x)g under the distribution p(x; �)
(respectively p(x; �f )). On this basis, it is straightforward, again by a Taylor series
approach [161], to obtain a perturbation expansion for log E �� [f ].

Proposition 3.2.2. Let � = �� � � be the di�erence between two arbitrary parameter
vectors, and consider a function f : XN ! [0;1) satisfying Assumption 3.2.1. Then
we have the expansion:

log E �� [f ] = log E � [f ] +
X
�

�
E �f [��]� E � [��]

	
�� +

1

2
�T
�
G(�f )�G(�)

	
� + O(k�k3)

(3.10)

Here E �f [��] denotes the expectation of ��(x) under p(x; �f ); and G(�f ) and G(�)
are the Fisher information matrices corresponding to p(x; �f ) and p(x; �) respectively.
(Explicitly, we have [G(�)]�� = cov�f��; ��g).

It is helpful to interpret Proposition 3.2.2 for particular choices of the function
f . Given some subset S � V , suppose, in particular, that f is an indicator function
Æ(xS = eS), as de�ned in equation (3.2), for xS to assume the con�guration eS . In
this case, the distribution p(x; �f ) is equivalent to p(x; �) but with the variables xS
�xed to the values in eS . (That is, p(x; �f ) = p(x jxS = eS; �).) Thus, the �rst-order
term fE �f [��]� E � [��]g corresponds to di�erence between the mean of ��(x) under a
clamped distribution, and its mean under the original distribution p(x; �). Similarly,
the second order term is the di�erence between the two respective Fisher information
matrices. The factor controlling the accuracy of the expansion is how much cumulants
of f��(x)g under the distribution p(x; �) are a�ected by conditioning on the subset of
variables xS .
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� 3.3 Bounds on expectations

The goal of this section is more ambitious; rather than approximating the expectation
E �� [f ], we seek to generate upper and lower bounds. Our analysis makes use of standard
tools from convex analysis applied to log partition functions.

Central in our development is the representation of log E �� [f ] as the di�erence
between two log partition functions, as given in equation (3.9). We established in
Lemma 2.2.1 of Chapter 2 that � is convex as a function of �, and strictly so for a
minimal exponential representation (see Section 2.2.1). A similar argument establishes
that �f , as the log partition function of a tilted distribution, is also convex.

The convexity of these log partition functions allows us to exploit standard prop-
erties of convex functions to derive bounds on log E �� [f ]. We use, in particular, the
following two properties [see, e.g., 20] of any di�erentiable convex function F . First of
all, for any two points y; z, the (�rst-order) tangent approximation to F (y) based on z
is an underestimate:

F (y) � F (z) +rTF (z) (y � z) (3.11)

Secondly, for any collection of points fyig and set of weights �i � 0 such that
P

i �
i = 1,

we have Jensen's inequality [42]:

F (
X
i

�iyi) �
X
i

�iF (yi) (3.12)

The analysis in this section will be performed under a slightly stronger version of
Assumption 3.2.1:

Assumption 3.3.1. The function f : XN ! [0; 1] and f(x) > 0 for at least some
x 2 XN .

For a discrete-valued process, this assumption entails no loss of generality, since we
can de�ne m = minx f(x) and M = maxx[f(x)�m], and then form the new functionef(x) = 1

M+1 [f(x)�m] which satis�es Assumption 3.3.1. By the linearity of expectation,

bounds for E �� [ ef ] can immediately be translated to bounds for E �� [f ].

� 3.3.1 Relation to previous work

The �rst set of bounds that we present are very closely related the standard mean �eld
lower bound [e.g., 93, 106] on the log partition function. As described in Section 2.3.1,
both naive and structured mean �eld are extensively studied and used [e.g., 12,75,124,
155, 179]. Instead of bounding the original log partition function �(��), as in ordinary
mean �eld, we bound the tilted partition function �f (�

�). This procedure leads to
a bound on the expectation E �� [f ] for an arbitrary function f . This bound has an
interesting form, and reduces to the ordinary mean �eld bound when f(x) = 1 for all
x 2 XN . Accordingly, we show that the stationary conditions for the tightest form of
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this bound are very similar to the corresponding mean �eld stationary conditions. The
additional 
exibility of allowing f to be arbitrary pays dividends in Section 3.4.1, in
which we present a simple method for tightening any mean �eld bound.

Based on a review of the literature, it appears that upper bounds are more diÆ-
cult to obtain. There are only a limited number of upper bounds, and their domain
of applicability is limited. For example, using a variational upper bound on the func-
tion log[exp(u) + exp(�u)], Jaakkola and Jordan [95] derived a recursive procedure
for obtaining quadratic upper bounds on the log partition function for the Boltzmann
machine (i.e., a binary process with pairwise maximal cliques). For relatively weak
interactions, these upper bounds are much stronger than the standard (linear) mean
�eld lower bound. However, generalizing this procedure to discrete processes with more
than two states is not straightforward. For the class of log concave models (a particular
subclass of directed networks), Jaakkola and Jordan [94] developed upper bounds on
marginal probabilities using other bounds from convex analysis.

In Section 3.3.3, we derive a new set of upper bounds on the expectation log E �� [f ]
that are applicable to an arbitrary undirected graphical model. These upper bounds
generalize an idea used by Jaakkola and Jordan [97] to obtain bounds for the QMR-DT
network. We also show in Section 3.4.2 that the idea of additive decompositions can
also be used to strengthen these bounds, again with an adjustable price in computation.

� 3.3.2 Basic bounds based on a single approximating point

By applying the property in equation (3.11) to the tilted partition function �f , it is
straightforward to derive the following bound:

Proposition 3.3.1. Let f : XN ! R satisfy Assumption 3.3.1, and consider distribu-
tions at parameter values �� and �. Then the expectation E �� [f ] is bounded below and
above as follows:

E �� [f ] � E � [f ] exp

�
�D(� k ��) + 1

E � [f ]

X
�

cov�ff; ��g(�� � �)�

�
(3.13a)

E �� [f ] � 1� �1� E � [f ]) exp

�
�D(� k ��) + 1

1� E � [f ]

X
�

cov�ff; ��g(�� � �)�

�
(3.13b)

Here cov�ff; ��g = E � [f ��]� E � [f ]E � [��] is the covariance between f and ��, and
D(� k ��) is the Kullback-Leibler divergence between p(x; �) and p(x; ��).

Proof. See Appendix B.1.

Since the function f satis�es Assumption 3.3.1, the expectation E �� [f ] necessarily
lies in [0; 1]. A desirable feature of both the lower and upper bounds of Proposition 3.3.1
is that they respect this interval requirement. Indeed, it can be seen that the RHS of
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equation (3.13a) is always non-negative, and similarly, the RHS of equation (3.13b) is
always less than or equal to one. Thus, the corresponding bounds are never vacuous.1

As noted above, a caveat associated with Proposition 3.3.1 is that the bounds, in
the form given, contain the intractable log partition function �(��). (In particular, it
appears as part of the KL divergence D(� k ��) term). For an undirected graphical
model, evaluating this partition function is, in general, as diÆcult as computing the
original expectation. In order to evaluate these bounds, we require a computable upper
bound on the log partition function. The methods presented in Section 3.3.3 provide
precisely such bounds.

It is interesting to consider the bounds of Proposition 3.3.1 when we choose � equal to
an optimum mean �eld point (see Section 2.3.2). In particular, �x some substructure of
the graph G | say, for concreteness, an embedded spanning tree | that is represented
by the e-
at manifold Ftree. (See equation (2.48) of Chapter 2). Now suppose that we
perform structured mean �eld optimization; that is, we computeb� = arg min

�2Ftree
D(� k ��) (3.14)

The elements �� over which we optimize are those corresponding to any single node
potential function, or any edge belonging to the tree. We obtain stationary conditions
by setting to zero the gradient of D(� k ��) with respect to each such element. From
our analysis in Section 2.3.2, these stationary conditions are given byX

�

g��(b�) [�� � b�]� = 0 (3.15)

for all free indices �: i.e., those indices corresponding to elements �� that are free to

vary in the variational problem (3.14). Here g��(b�) = cov
b�
f��; ��g is an element of

the Fisher information matrix evaluated at p(x; b�).
Suppose that the function f corresponds to a potential function �� for some free

index �. For the tree example used here, such functions include the indicator function
f(x) = Æ(xs = a) for any node s and state a 2 X , as well as f(x) = Æ(xs = a)Æ(xt = b)
for any edge (s; t) in the tree, and pair of states (a; b). For such choices of f , equa-
tion (3.15) implies that the summation

P
� covb�f��; fg(�� � b�)� in equation (3.13a)

vanishes, so that the bound reduces to the much simpler form:

E �� [f ] � E
b�
[f ] exp

��D(b� k ��)	 (3.16)

A similar simpli�cation applies to equation (3.13b).

Optimizing single-point bounds

Suppose that we are allowed to choose the approximating point � from some class of
distributions (e.g., the e-
at manifold Ftree formed by a spanning tree, as above). It is

1Other types of bounds (e.g., the union bound) can give meaningless assertions (e.g., a probability
is less than 3).
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tempting to believe that equation (3.16), due to its attractive simplicity, corresponds
to the optimized form of the bound (3.13a). A bit of re
ection establishes that this is
not the case; note that equation (3.16) does not take into account the particulars of f ,
as it would if it were optimized for f .

In order to optimize the bound of equation (3.13a), we need to return to its deriva-
tion. Recall that it is based on lower-bounding the tilted partition function �f (�) by the
�rst-order tangent approximation in equation (3.11). To optimize the bound, we want
to make this tangent-approximation as tight as possible. This problem is equivalent to
the mean �eld optimization problem, albeit applied to a tilted log partition function.

With this insight, it is straightforward to derive stationary conditions for a zero-
gradient point of this optimization problem. We simply take derivatives of the logarithm
of the RHS of equation (3.13a) with respect to parameters �� that are free to vary, and
obtain the following necessary conditions for an optimum:X

�

(
E � [f �� �� ]

E � [f ]
� E � [f ��]

E � [f ]

E � [f ��]

E � [f ]

)�
� � ��

�
�
= 0 8 free indices � (3.17)

The term with curly braces in equation (3.17) can be recognized as an element g��(�f )
of the Fisher information matrix corresponding to the tilted distribution p(x; �f ) de�ned
in equation (3.7). Note the correspondence with the stationary conditions for ordinary
mean �eld (see equation (2.49) of Section 2.3.2). This correspondence is not surprising,
however, since the optimization problem is equivalent to mean �eld with the tilted log
partition function. Thus, the set of gradient equations in (3.17) can be solved with the
usual mean �eld updates [106], or other methods from nonlinear programming [e.g.,
20].

� 3.3.3 Bounds based on multiple approximating distributions

The bounds of Proposition 3.3.1 are based on a single (tractable) approximating dis-
tribution p(x; �). In this section, we derive a new set of bounds, complementary to
those of Proposition 3.3.1 in the sense that they are based on multiple approximating
distributions. As a concrete example, suppose that the set of distributions that can be
used to form approximations are those that are tree-structured. Then the bounds of
Proposition 3.3.1 are based on using only a single tree. Since any graph with cycles has
a large number of embedded trees, it is natural to consider bounds based on multiple
trees.

We begin by letting � = f�i j i 2 Ig denote a collection of exponential parameters
corresponding to a set of approximating distributions f p(x; �i) j i 2 I g. We are
interested in weighted combinations of these points, so that we de�ne a vector of weights

~� , f �i; i 2 I j �i � 0;
X
i

�i = 1 g (3.18)

The vector ~� can be viewed as a probability distribution over the set of approximating
distributions.
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We use these weights and approximating points to generate convex combinations of
exponential parameters, which are de�ned as follows.

De�nition 3.3.1. Given such a distribution ~� and a collection of exponential vectors
�, a convex combination of exponential parameter vectors is de�ned via the expectation:

E ~� [�] � E ~� [�
i] ,

X
i2I

�i�i (3.19)

Now recall that �� is the exponential parameter vector of a distribution p(x; ��)
de�ned by the original graph G. We are interested in sets of approximating points �
for which there exists a convex combination that is equal to ��. Accordingly, we de�ne
the following set of pairs (�; ~�):

A(��) ,
�
(�; ~�)

�� E ~� [�i] = ��
�

(3.20)

That is, A(��) is the set of all pairs (�; ~�) of exponential parameters � = f �i j i 2 I g
and distributions ~� for which the convex combination E~� [�] is equal to the target
parameter ��.
Note: The expectation notation will be used more generally in the following way: given
some function F and the function values F (�i) for all i 2 I, we de�ne

E~� [F (�)] = E ~� [F (�
i)] =

X
i2I

�iF (�i)

Example 3.3.1. To illustrate these concepts, consider a binary distribution de�ned by
a single cycle on 4 nodes, as shown in Figure 3.2. Consider a target distribution of the
form

p(x; ��) = expfx1x2 + x2x3 + x3x4 + x4x1 � �(��)g

That is, the target distribution is speci�ed by the minimal parameter �� = [0 0 0 0 1 1 1 1],
where the zeros represent the fact that ��s = 0 for all s 2 V . We consider the four span-
ning trees associated with the single cycle on 4 nodes, and de�ne a corresponding set
of four exponential parameter vectors � = f�i j i = 1; 2; 3; 4g as follows:

�1 = (4=3) [0 0 0 0 1 1 1 0]

�2 = (4=3) [0 0 0 0 1 1 0 1]

�3 = (4=3) [0 0 0 0 1 0 1 1]

�4 = (4=3) [0 0 0 0 0 1 1 1]

Finally, we choose �i = 1=4 for all i = 1; 2; 3; 4. It is not diÆcult to check that this
choice of a uniform distribution ensures that E ~� [�

i] = ��; that is, the speci�ed pair
(�; ~�) belongs to A(��).
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Figure 3.2. A convex combination of exponential parameters of four distributions
p(x; �i), each de�ned by a spanning tree, is used to approximate the target distribution
p(x; ��) on the single-cycle graph.

The motivation behind the convex combinations in De�nition 3.3.1 is that they allow
us to apply Jensen's inequality (3.12) to generate upper bounds on log partition func-
tions. By using equation (3.9), these bounds can be translated to bounds on log E �� [f ].
The results are summarized in the following:

Proposition 3.3.2. Let f : XN ! R satisfy Assumption 3.3.1, and let �� be the
exponential parameter of target distribution p(x; ��). For any pair (�; ~�) 2 A(��), we
have the bounds:

log E �� [f ] � E~�

�
log E �i [f ]

�
+ E~�

�
�(�i)

�� �(��) (3.21a)

� E~�

�
log E �i [f ]

�
+ E~�

n
E �i

�X
�

(�i � ��)���(x)
�o

(3.21b)

We can also derive a set of lower bounds of similar form by applying the upper bounds in
equation (3.21) to the function ef(x) = 1� f(x), which also satis�es Assumption 3.3.1.

Proof. See Appendix B.2.

There are some caveats associated with the bounds of Proposition 3.3.2. First of
all, recall that Assumption 3.3.1 implies that log E �� [f ] � 0, so that the upper bounds
of equation (3.21) are meaningless if the right-hand sides are larger than zero. Unlike
Proposition 3.3.1, this condition is not guaranteed for these bounds.

Secondly, as with the form of bounds given in Proposition 3.3.1, the bound of
equation (3.21a) is not computable, since it also involves the log partition function
�(��). Required in this case is a lower bound on �(��). Standard mean �eld theory [e.g.,
106], as described in Section 2.3.1, provides a well-known lower bound on this log
partition function. Indeed, in deriving equation (3.21a) from equation (3.21b), we have
made use of the mean �eld lower bound (see equation (2.47)). Of course, it is possible
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to use tighter lower bounds on the log partition function that include higher order
terms [e.g., 124] , which will lead to correspondingly tighter forms of equation (3.21b).

Proposition 3.3.2 also has important consequences for Proposition 3.3.1, in which
the bounds were not computable due to the presence of a log partition function �(��)
in the KL divergence term D(� k ��). What is required in this case is an upper bound
on �(��). In the special case that f = 1, equation (3.21a) provides such an upper
bound. Indeed, all the terms involving f vanish, and we are left with the familiar form
of Jensen's inequality:

�(��) � E ~� [�(�
i)] =

X
i2I

�i�(�i) (3.22)

This upper bound can be applied in conjunction with Proposition 3.3.1 so as to yield
computable bounds.

Optimizing multiple point bounds

It is also natural to consider the problem of optimizing the exponential parameters
� = f�ig, as well as the distribution ~�. For concreteness, let us consider the special
case of f = 1, in which case the problem is to minimize the RHS of equation (3.22) |
that is, F (~�;�) =

P
i �

i�(�i) subject to the constraint

E~� [�
i] =

X
i2I

�i�i = �� (3.23)

Interestingly, the cost function F is convex in � with ~� �xed, and linear (hence convex)
in ~� with � held constant. Moreover, the constraint of equation (3.23) is linear in �

with ~� �xed, and similarly for ~� with � held �xed. The minimization of a convex
function subject to linear constraints is well-behaved (e.g., the minimum is unique for a
strictly convex function), and there are a variety of available algorithms [20]. Therefore,
optimizing over the collection of exponential parameters � with ~� �xed (or over ~� with
� �xed) is possible.

However, the joint optimization over � and ~� is much trickier. In this case, the
constraint set consists of (unpleasant) quadratic equality relations. Moreover, even if
we could perform this joint optimization, there remains the nagging issue of choosing
the set of possible approximating distributions.2 To be concrete, suppose that we decide
to optimize over the set of all spanning trees embedded within the graph. The number
of such trees is prohibitively large for typical graphs | e.g., NN�2 for the complete
graph KN on N nodes [e.g., 168]. Due to this curse of dimensionality, optimizing the
cost function F over all trees appears hopeless. So it is natural to restrict ourselves to
a subset of trees, but how to choose them in a principled way?

Remarkably, it turns out these challenging issues | i.e., choice of trees, and the
explosion in dimension | can be sidestepped entirely by a suitable dual reformulation

2This issue is equally applicable to the single optimization over � with ~� �xed.
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of this optimization problem. As we will show in Chapter 7, this dual reformulation
allows us to develop an eÆcient algorithm for optimizing these bounds over all spanning
trees of the graph, albeit in an implicit manner.

� 3.4 Extension to the basic bounds

In this section, we describe a method for strengthening the basic bounds described in
the previous section. In particular, we ask what factors control the tightness of the
bounds in Proposition 3.3.1 and 3.3.2. One important factor turns out to be the choice
of the function f . In particular, suppose that for some con�guration e 2 XN , we set
f(x) = Æ(x = e). Note that the support of this function f is as small as possible
without being empty; it consists only of the single con�guration e.

Now consider the equality:

p(x = e; ��)
p(x = e; �)

= exp
�
�(�)� �(��) +

X
�

��(e) (�
� � �)�

	
Since E �� [Æ(x = e)] = p(x = e; ��), it can be seen (following a bit of algebra) that this
equation is equivalent to the bounds of Proposition 3.3.1 holding with equality.

This observation suggests that these bounds becomes tighter as the support of the
function f decreases. It also forms the basis of a principled method for tightening
bounds on the expectation E �� [f ]. In particular, given some function f satisfying As-
sumption 3.3.1, we consider additive decompositions of f in the form:

f =
LX

k=1

fk (3.24)

We call the set ffkg a partition of f , and L is the size of the partition. Many functions
of interest can be decomposed additively in this manner.

Example 3.4.1. For the choice f(x) = Æ(xs = j), we have the decomposition

f(x) =

mX
k=1

Æ(xs = j)Æ(xt = k)

for some node t and state value k. If we take expectations with respect to p(x; �), then
this is simply a decomposition of the single node marginal p(xs = j; �) into a sum of
joint marginal terms p(xs = j; xt = k; �).

In the following sections, we show how to exploit additive decompositions to tighten
the bounds of both Proposition 3.3.1 and 3.3.2.
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� 3.4.1 Tighter single point bounds

The basic procedure is very simple: given an additive decomposition of the form in
equation (3.24), we can use Proposition 3.3.1 to derive bounds on each E �� [f

k], and
then add these individual bounds to derive a new bound on E �� [f ]. The following
summarizes this procedure, and establishes that it will, in general, improve the bound
on E �� [f ].

Proposition 3.4.1. Consider the additive decomposition f =
PL

k=1 f
k, where f and

each fk are functions from the state space XN to R satisfying Assumption 3.3.1. Then
we have the bound

E �� [f ] �
X
k

h
E � [f

k] exp
��D(� k ��) + 1

E � [fk]

X
�

cov�ffk; ��g(�� � �)�
	i
(3.25)

Moreover, this bound is also at least as good as the bound (3.13a) of Proposition 3.3.1.
It is strictly superior as long as the terms 1

E� [fk]

P
� cov�ffk; ��g(����)� are not equal

for all indices k.

Proof. See Appendix B.3.

Clearly, computing the bound of Proposition 3.4.1 requires more work | roughly L
times more | than the bound of equation (3.13a) in Proposition 3.3.1 . Nonetheless,
it has the desirable feature that (in general) performing more computation guarantees
a superior result. We shall provide empirical results in Section 3.5.2 showing the gains
that can be achieved by this strengthening procedure.

There is an interesting case for which the bound of Proposition 3.4.1 is no better than
the lower bound of Proposition 3.3.1. Suppose that we perform mean �eld optimization
over some structure (say a tree), thereby obtaining the optimal mean �eld parameter b�.
Suppose moreover that for each k = 1; : : : ; L, we have fk = ��(k) for some free index
�(k). The free indices in mean �eld optimization over a tree correspond to any single
node potentials, and any edge in the tree; see the discussion following Proposition 3.3.1.

In this case, the stationary conditions of mean �eld, as in equation (3.15), dictate
that

P
� covb�ffk; ��g(��� b�)� = 0 for all k. Returning to Proposition 3.4.1, the bound

in equation (3.25) then reduces to

E �� [f ] �
X
k

h
E
b�
[fk] exp

��D(b� k ��)	i
= E

b�
[f ] exp

��D(b� k ��)	 (3.26)

As a consequence, the ffkg partition plays no role, and cannot improve the bound. In-
deed, equation (3.26) is equivalent to the form of Proposition 3.3.1 that is obtained when
� is equal to a mean �eld optimum b�. (In particular, compare it to equation (3.16).)
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It should be noted that obtaining a (structured) mean �eld optimum can be a very
computationally intensive procedure (much more so than computing bounds for the
ffkg), so that it is not always feasible. However, presuming that a mean �eld solution
is obtained, using a partition ffkg that includes functions not involved in the mean �eld
optimization will, of course, improve the bounds. Therefore, Proposition 3.4.1 can still
be used to strengthen a mean �eld solution. Section 3.5.2 gives an empirical illustration
of these phenomena.

� 3.4.2 Tighter multiple point bounds

Similar intuition suggests that additive decompositions should also be useful for tight-
ening the bounds in Proposition 3.3.2 based on multiple points. As before, we consider
the function f(x) = Æ(x = e). Then it is not hard to see that the following equalityX

�

�����(e)� �(��) = E ~�

�X
�

�i���(e)� �(�i)
	
+ E ~� [�(�

i)]� �(��)

corresponds to the bound in equation (3.21a) holding with equality. This observation
leads us to suspect again that the tightness of the bounds increases as the support of f
decreases.

This intuition is in fact correct: given an additive decomposition f =
P

k f
k, we

can strengthen the bound of Proposition 3.3.2 by bounding each fk individually, and
then summing the bounds. We summarize as follows:

Proposition 3.4.2. Consider the additive decomposition f =
P

k f
k, where f and each

fk are functions from the state space XN to R satisfying Assumption 3.3.1. Then we
have the bounds
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Moreover, these bounds are tighter than those given in Proposition 3.3.2 as long as the
quantities fE �i [fk]

Æ
E �i [f ]g are not all equal.

Proof. See Appendix B.4.

� 3.5 Results on bounding the log partition function

By setting f � 1, all of the bounds described in the previous sections reduce to partic-
ular bounds on the log partition function �(��). In this section, we present the results
of applying the lower bounds based on single approximating-points presented in Propo-
sitions 3.3.1 and 3.4.1. The upper bounds based on multiple approximating-point (e.g.,
Proposition 3.3.2) are explored in more detail in Chapter 7.
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Consider a partition of f � 1: i.e., a set of functions ffkg such thatPk f
k = 1. For

any such partition, Proposition 3.4.1 gives a lower bound on the log partition function
�(��):

�(��) � �(�) + log

"X
k

E � [f
k] exp

nX
�

[�� � �]�
E � [f

k��]

E � [fk]

o#
(3.28)

Equation (3.28) follows by substituting f = 1 in equation (3.25), and then taking
logarithms and simplifying.

In order to illustrate this family of bounds, we focus on additive decompositions
ffkg of the form:

1 =
X

eS2X jSj

Æ(xS = eS) (3.29)

The indicator function Æ(xS = eS) for xS to assume the con�guration eS is de�ned
in equation (3.2). With these choices of functions ff ig, the expectations E � [f

i] in
equation (3.28) correspond to the values of marginal distributions over the nodes in S.

For a given graph G = (V;E), we performed simulations for a binary process
x 2 f0; 1gN by forming a distribution p(x; ��) with a random choice of �� from either
the uniform attractive ensemble, or the uniform mixed ensemble, in both cases using
edge strength d = 2. See Section 2.2.1 for the de�nitions of these ensembles of distribu-
tions. In all cases (experimental conditions and graphs), we investigated the e�ect of
increasing the number of nodes (and correspondingly, the number of functions) in the
partition given in equation (3.29). Note that for a binary process, a partition of this
form based on jSj nodes consists of 2jSj functions. The special case jSj = 0 corresponds
to choosing only a single function f1(x) = 1, so that the bound of equation (3.28)
reduces to the ordinary mean �eld bound, as in equation (2.47) of Section 2.3.1.

For each trial, we computed bounds based on some approximating point �, chosen
in a way to be speci�ed below. Given this approximating distribution p(x; �), we �rst
computed the ordinary mean �eld bound3 for jSj = 0. Then for sizes jSj = 1; 2; 3, we
computed the bound of equation (3.28) for each of the

�N
jSj
�
possible subsets of size jSj

in a graph on N nodes.

� 3.5.1 Unoptimized bounds

We �rst investigated the e�ect of re�ning the partition on two graphs (a 3 � 3 grid,
and the fully connected graph K9 on N = 9 nodes). The small problem size facilitates
comparison of the bounds to the true value of �(��). For each each graph, we performed
simulations under both the attractive and mixed conditions. To form the approximating
distribution, we �rst used Kruskal's algorithm [108, 117] to compute the maximum
weight spanning tree T based on the edge weights j��stj on each edge (s; t) 2 E. Let

3This is not an optimized mean �eld bound unless � is a mean �eld optimum.
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E(T ) � E be the edge set of maximum weight spanning tree. We then formed a
tree-structured distribution by setting

�� =

8><>:
��s if � = s 2 V
��st if � = (s; t) 2 E(T )
0 if � = (s; t) 2 E=E(T )

Using the distribution p(x; �), we computed bounds as described above.
The results are shown in Figure 3.3, with plots for the 3� 3 grid shown in the top

row, and those for the fully connected graph shown in the bottom row. On the abscissa,
we plot the number of nodes jSj used in the re�nement, ranging from 0 to 3; on the
y-axis, we plot the relative error in bounds (i.e., [�(��)�Bound]=�(��)). For each size
jSj, we show in a vertically-oriented scatter plot the relative error in all

�
9
jSj
�
possible

bounds based on subsets of this size. We also plot the mean relative error averaged over
all possible subsets. Finally, for the purposes of comparison, in the column jSj = 2,
we plot a single point with a diamond that corresponds to the relative error in the
optimized structured mean �eld solution for the spanning tree T .

We see that re�ning the partition (in general) improves the bounds, as illustrated by
the downward trend in the means. The scatter plots of the individual bounds show that
the tightness of the bounds varies a fair bit, especially for the case of mixed potentials.
This variability underscores the fact that �nding methods for choosing good subsets of
nodes is important.

Note that Proposition 3.4.1 guarantees that re�ning the partition will (in general)
improve a pair of bounds that are nested. For example, it ensures that the bound based
on nodes f1; 2g is better than that based on node f1g; it does not, however, guarantee
that the former bound will be better than that based on any other single node s 6= 1; 2.
As a consequence, we can see that for k = 1; 2, not all of the bounds with jSj = k + 1
are better than the best of the bounds with jSj = k. However, we see that the worst
(respectively the best) of the bounds with jSj = k + 1 are always better, or at least as
good, as the worst (respectively the best) bounds with jSj = k.

The mean �eld solution (plotted with a diamond in column jSj = 2) is better than all
of these bounds in three out of four cases. Of course, such a comparison is not really fair,
since each iteration of structured mean �eld optimization4 requires roughly O(N + jEj)
as much computation as a single bound of the form in equation (3.28). Moreover, many
iterations are typically required; for these examples, mean �eld required more than 20
iterations to converge to a precision of 1�10�4, measured in terms of percentage change
in the bound value. In the following example, we shall do a more direct comparison to
mean �eld.

4There are a variety of ways of performing structured mean �eld optimization, but roughly, each
iteration requires computing the Fisher information matrix, which is expensive.
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Figure 3.3. Improved bounds on the log partition function based on re�ning the
partition for an unoptimized approximating point �. Each panel plots the relative er-
ror [�(��) � Bound]=�(��) in the bounds versus the partition size (number of nodes
k = 0; 1; 2; 3). Shown for each k are the errors for all

�
9
k

�
possible bounds (correspond-

ing to all possible combinations of k nodes from 9 nodes in total). Also shown are the
average error, and the error in the structured mean �eld bound (plotted at k = 2). Top
row: 3� 3 grid. Bottom row: Fully connected graph on 9 nodes.
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� 3.5.2 Bounds with optimal mean �eld vector

In our second simulation, we used a mixed parameter vector �� on a 3�3 grid to compare
the e�ect of re�ning the partition for an unoptimized parameter vector � (chosen as in
the previous experiment), and the structured mean �eld optimum b�.

The results are plotted in Figure 3.4. Panel (a) shows a plot, analogous to those
of Figure 3.3, for the unoptimized approximating point. The qualitative behavior is
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Figure 3.4. E�ect of re�ning the partition for unoptimized versus mean �eld solution
on a 3�3 grid. Each panel plots the relative error [�(��)�Bound]=�(��) in the bounds
versus the partition size (number of nodes k = 0; 1; 2; 3). Shown for each k are the errors
for all

�
9
k

�
possible bounds (corresponding to all possible combinations of k nodes from

9 nodes in total), as well as the average errors. (a) Unoptimized solution on spanning
tree. (b) Optimal structured mean �eld solution on spanning tree.

similar to the top panel of Figure 3.3. Note that the relative error in the optimized
structured mean �eld bound, shown with a diamond, is quite good.

Panel (b), in contrast, shows the e�ect of re�ning the partition when using the
optimal structured mean �eld vector b� as the approximating point. Since we are us-
ing this optimal point, the base error for jSj = 0 has decreased to � 0:008 (or 0:8%).
An interesting feature of this plot is that using a re�ned partition of size jSj = 1 has
absolutely no e�ect on the tightness of the bound. The discussion following Propo-
sition 3.4.1 gives a theoretical explanation of this e�ect: in particular, the functions
fÆ(xs = j)g associated with any re�nement of size one all correspond to functions that
are optimized under structured mean �eld. Hence, re�nements using these functions
have no e�ect. A similar statement applies to certain subsets of size jSj = 2 | namely,
those corresponding to edges in the approximating tree. As a consequence, the plot of
the mean relative error is somewhat misleading. It is skewed upwards for both jSj = 1
and 2, since the average includes many subsets that we know a priori will not improve
the mean �eld solution. For larger partitions, however, re�nements will typically lead
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to further improvements upon the optimized mean �eld solution.

� 3.6 Discussion

Exponential families of distributions capture, in a compact manner, both the model
structure and model parameters. In this chapter, we have demonstrated their power
in application to two important problems: understanding model sensitivity via pertur-
bation expansions, and deriving computable lower and upper bounds on quantities of
interest, including marginal distributions and partition functions. Indeed, the new class
of upper bounds derived in this chapter, as described Section 3.3.3, follow in an elegant
way from the perspective of an exponential representation.

The bounds of this chapter play an important role in developments in the sequel.
In particular, in Chapter 5, we will apply the results of this chapter, as well as those
of Chapter 7, in order to derive upper and lower bounds on the approximation error
that arises in applying the belief propagation error. Moreover, these same results will
be used to bound the error in the more advanced techniques for approximate inference
that are analyzed in Chapter 6. Finally, Chapter 7 is devoted to a detailed analysis of
the upper bounds presented in Section 3.3.3.



Chapter 4

Embedded trees algorithm for

Gaussian processes

� 4.1 Introduction

In areas like coding theory [72, 118], arti�cial intelligence [138], and speech process-
ing [143], graphical models typically involve discrete-valued random variables. How-
ever, in other domains such as image processing, control theory, and oceanography [36,
64, 127], it is often more appropriate to consider random variables with a continuous
distribution. In this context, Gaussian processes de�ned by graphical models are of
great practical signi�cance. Moreover, the Gaussian case provides a valuable setting for
developing an understanding of estimation algorithms [152, 176].

Accordingly, the focus of this chapter is estimation of Gauss-Markov processes on
graphs. Throughout this chapter, the term estimation refers to the computation of
conditional means and error covariances at each node of the graph. For a Gauss-
Markov process on a tree-structured graph, Chou et al. [36] developed a recursive and
very eÆcient algorithm for exact estimation. This algorithm has a two-pass form,
and represents a generalization of the Kalman �lter [110,111] and Rauch-Tung-Striebel
smoother [146]. This estimation algorithm, and associated techniques for constructing
tree-structured models [e.g., 65,89,90], have been used successfully in a wide variety of
applications [e.g., 49, 64, 88, 127].

A well-known problem associated with tree models is the presence of boundary
artifacts. In particular, tree models may introduce arti�cial discontinuities between
pairs of nodes that, though spatially or temporally close, are separated by a great
distance in the tree. Various methods have been proposed to deal with this problem [e.g.,
89], but these proposals are not entirely satisfactory. The most natural solution is to
add extra edges, as necessary, to account for statistical dependencies neglected by a tree
model. With the addition of these edges, however, the resulting graph contains cycles,
meaning that eÆcient tree algorithms [36] for exact estimation are no longer applicable.

An important problem, therefore, is to develop algorithms for exact estimation of a
Gauss-Markov process de�ned on a graph with cycles. In this chapter, we develop and
analyze an algorithm that exactly computes both the conditional mean and error vari-
ances of a Gaussian random vector x based on a set of noisy observations y. As a central

93
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engine, we exploit the existence of fast algorithms for performing exact computations
with tree-structured distributions. Each step of the algorithm entails extracting a tree
embedded within the original graph with cycles, and performing exact calculations with
a modi�ed distribution de�ned by this tree. For this reason, we call our technique the
embedded trees (ET) algorithm. Given a set of noisy measurements, it computes the
conditional means with an eÆciency comparable to or better than other techniques for
graphs with cycles. Unlike other methods, the ET algorithm also computes exact error
covariances at each node of the graph. In many applications [e.g., 64, 127], these error
statistics are as important as the conditional means.

This chapter is organized in the following manner. In Section 4.2, we provide back-
ground on estimation of Gaussian processes de�ned on graphs. Section 4.3 introduces
the embedded trees (ET) algorithm, and presents results on its convergence properties.
We conclude in Section 4.4 with a summary, and directions for future research. The
work described in this chapter was based on collaboration with Erik Sudderth, and
portions of it have appeared previously in a conference paper [174]. Extensions to this
work are described in the Master's thesis [163].

� 4.2 Estimation of Gaussian processes

This section provides the basics of linear-Gaussian estimation, with particular empha-
sis on Gaussian processes that are Markov with respect to a graph. More details on
Gaussian processes and estimation can be found in the book [109], as well as in [163].

� 4.2.1 Prior model and observations

We consider a zero-mean1 Gaussian random vector x � N (0; P ) with strictly positive
de�nite covariance matrix P . We assume that x is partitioned into a set of subvectors
f xs j s = 1; : : : ; N g. Denoting by l(xs) the dimension of xs, the total number of
elements in the vector x is given by l(x) =

PN
s=1 l(xs). We let d = maxs l(xs) denote

the maximal size of any of the subvectors xs.
Let y be a set of noisy observations of x. In many problem domains, the observa-

tions2 y = fys j s 2 A � f1; : : : ; Ng g are naturally expressed as a noise-corrupted
linear function of x as follows:

y = Cx+ v (4.1)

Here v � N (0; R) is zero-mean additive Gaussian noise, independent of x. We assume
that both C and R have a block-diagonal structure that respect the partition of x into
subvectors f xs j s = 1; : : : ; N g. As a consequence, observations ys and yt at distinct
nodes s 6= t are conditionally independent given xs (or given xt).

1It is straightforward to incorporate a non-zero mean by the appropriate addition of terms.
2The set A � f1; : : : ; Ng may be a subset, since we may not have observations of every subvector

xs.
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� 4.2.2 Linear-Gaussian estimation

For estimation purposes, we are interested in the conditional density p(x jy) of x given
the observations y. With a linear observation model of the form in equation (4.1), it
can be shown that x and y are jointly Gaussian [109], and moreover that x conditioned
on y is Gaussian. That is, the density p(x jy) is Gaussian, and can be characterized
completely by its mean bx and covariance bP . Also of interest are the marginal densities
p(xs jy) of xs conditioned on the noisy observations y for each node s 2 V . Since
the full conditional density is Gaussian, these marginal densities are also Gaussian; in
particular, p(xs jy) � N (bxs; bPs). Standard formulae exist for the computation of these
quantities | viz.:

bP�1 bx = CTR�1y (4.2a)bP�1 =
�
P�1 + CTR�1C

�
(4.2b)

The vector bx is the conditional mean of the random variable x conditioned on y. The
quantity bP is often called the error covariance matrix, since it corresponds to the
covariance matrix of the error ee = bx�x. The smaller l(xs)� l(xs) covariance matricesbPs correspond to block diagonal elements of the full error covariance bP . Equations (4.2a)
and (4.2b) are the normal equations [109] that de�ne the problem of linear-Gaussian
estimation.

� 4.2.3 Gauss-Markov processes and sparse inverse covariance

As we will discuss, there exist iterative algorithms from numerical linear algebra [56]
for solving the linear system in equation (4.2a). Otherwise, calculating the full error
covariance bP by brute force matrix inversion would, in principle, provide error variances
(as well as the conditional means). Since the computational complexity of matrix
inversion is O([dN ]3), this proposal is not practically feasible in many applications,
such as large-scale image processing and oceanography [e.g., 64, 127, 128, 173], where
dN may be on the order of 105. The intractability of the general case motivates
considering problems with more structure.

An important type of structure arises for a Gaussian random vector x � N (0; P )
that is Markov, in the sense of De�nition 2.1.6, with respect to an undirected graph
G = (V;E). With respect to this graph, the subvectors xs forming x lie at particular
nodes s 2 V = f1; : : : ; Ng of the graph. In this case, it can be shown [see 160] that the
inverse covariance matrix P�1 inherits a sparse structure from G. In particular, if P�1

is partitioned into blocks according to the subvectors f xs j s 2 V g, the (s; t)th block
can be nonzero only if edge (s; t) 2 E.

For scalar Gaussian variables at each node, the relation between the structure of
the graph and that of the inverse covariance is illustrated in Figure 4.1. Panel (a)
shows a simple graph G, whereas panel (b) shows the structure of an inverse covariance
matrix consistent with a Gaussian random vector that is Markov with respect to G. In
particular, the locations of (possibly) non-zero entries are shown in black. The matrix
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Figure 4.1. Gauss-Markov processes have inverse covariances that respect graph struc-
ture. (a) Simple graph G with cycles. (b) Structure of inverse covariance with non-zero
entries shown in black. Entry (s; t) is non-zero only if edge (s; t) belongs to the graph.

elements shown in white (e.g., (3; 5)) must be zero, since the associated graph lacks an
edge between the corresponding nodes (e.g., there is no edge between nodes 3 and 5).

� 4.2.4 Estimation techniques

There are a variety of techniques for estimation of Gaussian processes that are based
on exploiting Markov structure. First of all, when G is tree-structured, Chou et al. [36]
have shown that both the conditional mean bxs and error covariances bPs at each node
can be computed by a very eÆcient O(d3N) algorithm [36]. It entails �rst specifying
an arbitrary node as the root of the tree, and then passing means and covariances up
the tree from the leaves to the root, and then back down from the root to the leaves.
Thus, it has a two-pass form, and represents a generalization of classic Kalman and
Rauch-Tung-Striebel smoothing algorithms [110, 146] for time series. A full derivation
of this algorithm can be found in Chou et al. [36]; see also Appendix A for a related
algorithm for estimation on trees.

Secondly, one of the best-known and most widely studied inference algorithms is
belief propagation [138]. This algorithm has attracted a great deal of attention, due to
its use in computer vision and arti�cial intelligence [e.g., 67,68,134], and also for its role
in decoding turbo codes [131] and low density parity check codes [71], in which context
it is known as the sum-product algorithm [e.g., 1,118]. Later in this thesis (Chapters 5
and 6), we will discuss belief propagation (BP) at much more length.3 The viewpoint
taken in these later chapters will be of BP as an approximate inference technique for
discrete-valued processes.

Of interest in this chapter is BP in application to Gaussian problems. For tree-
structured graphs, belief propagation produces results equivalent to the tree algorithm
of Chou et al. [36]. In recent work, two groups [152, 176] have analyzed BP in appli-
cation to Gaussian processes de�ned on graphs with cycles. For graphs with cycles,
these groups showed that when belief propagation (BP) converges, it computes the

3See Section 5.1 for an overview of previous work on BP, and Section 5.2.2 for the belief propagation
equations.
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correct conditional means. That is, the BP means are exact (when the algorithm con-
verges). However, in general, the error covariances computed by BP are incorrect. The
complexity per iteration of BP on a graph with cycles is O(d3N), where one iteration
corresponds to updating each message once.4 See [163] for a more thorough exposition
and analysis of Gaussian belief propagation.

Thirdly, it can be seen from equation (4.2a) that computing the conditional mean bx
is equivalent to solving a linear system. Given the sparsity of P�1, a variety of iterative
techniques from numerical linear algebra [56] could be used to solve this linear system.
For a symmetric positive de�nite system like equation (4.2a), the method of choice
is conjugate gradient [56, 86], for which the associated cost is O(d2N) per iteration.
However, such techniques compute only the means and not the error covariances.

� 4.3 Embedded trees algorithm

In this section, we develop an iterative algorithm for computing both the conditional
means and exact error covariances of a Gaussian process de�ned on any graph. Central
to the algorithm is the operation of cutting edges from a graph with cycles to reveal
an embedded tree | i.e., an acyclic subgraph of the original graph. Standard tree
algorithms [36] can be used to exactly solve the modi�ed problem, and the results are
used in a subsequent iteration.

Interestingly, the algebraic analog of removing edges from the graph is a matrix
splitting of the inverse covariance matrix. Matrix splitting is widely used in numeri-
cal linear algebra; see, for example, Demmel [56] for an overview of standard matrix
splitting methods, and their role in Richardson methods like Gauss-Jacobi iterations.
In contrast to classical matrix splittings, those considered here are based on exploiting
particular features of the graph structure.

� 4.3.1 Embedded trees and matrix splitting

An important fact is that embedded within any graph G are a large number of spanning
trees| i.e., acyclic subgraphs that reach every node of G. (See Section 2.1.1 for relevant
de�nitions from graph theory). In general, the number of spanning trees in a graph can
be computed via the Matrix-Tree theorem [e.g., 168]. Figure 4.2 provides an illustration
for the 5 � 5 nearest-neighbor grid drawn in panel (a). Depicted in panels (b) and (c)
are two of the 557,568,000 spanning trees embedded within the 5� 5 grid.

For a Gaussian process on a graph, the operation of removing edges corresponds
to a particular modi�cation of the inverse covariance matrix. Speci�cally, given the
original inverse covariance P�1, we apply a matrix splitting

P�1tree = P�1 +K (4.3)

4This complexity assumes that the graph is relatively sparse, in that the number of neighbors per
node is O(1) relative to the total number of nodes N .
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(a) (b) (c)

Figure 4.2. (a) Original graph G is a 5� 5 grid. Panels (b) and (c) show two di�erent
spanning trees embedded within G.

where Kn is a symmetric cutting matrix. It is chosen to ensure that P�1tree corresponds to
a valid tree-structured inverse covariance matrix. I.e., P�1tree must be positive semide�-
nite, and respect the structure constraints of the associated tree.

For a Gaussian process with a scalar random variable at each node, Figure 4.3
illustrates the correspondence between the algebraic matrix splitting of equation (4.3),
and its graphical consequences. Panel (a) shows the original graph G with cycles,
whereas panel (b) shows the corresponding inverse covariance matrix (black squares
indicate non-zero entries). We decide to cut to the spanning tree shown in panel (c);
the corresponding tree-structured inverse covariance matrix is shown in panel (d). (Note
that since the tree of (c) is, in fact, a chain, the inverse covariance of (d) has the familiar
tridiagonal structure of a Markov time series.) Cutting to this tree entails removal of
edges (1; 4) and (2; 5) from G, as shown in (e). The structure of the simplest possible
cutting matrix K is shown in (f). Algebraically, this cutting matrix can be written as

K = �P�114

�
e1e

T
4 + e4e

T
1

�� P�125

�
e2e

T
5 + e5e

T
2

�
where es denotes the vector of all zeros, with a single one in position s. Here we have
assumed that the diagonal entries of K are zero, although modifying them is also a
possibility.

� 4.3.2 Recursions for computing the conditional mean

On the basis of matrix splitting of equation (4.3), we can rewrite the de�ning normal
equation (4.2a) for the conditional mean bx as follows:�

P�1tree + CTR�1C
�bx = K bx+ CTR�1y (4.4)

Because the \observations" (Kbx+CTR�1y) in equation (4.4) depend on the conditional
mean bx, equation (4.4) does not provide a direct solution to the original inference
problem. It does, however, suggest a natural iterative solution. Let fT ngL�1n=0 be a set
of spanning trees of G, and fKngL�1n=0 a corresponding set of symmetric cutting matrices
such that for each n = 0; 1; : : : ; L� 1, the matrixbJn , P�1 +Kn +CTR�1C � P�1tree(n) + CTR�1C (4.5)
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Figure 4.3. Graphical illustration of tree-cutting operation for a Gaussian process
with a scalar random variable at each node. (a) Structure of original graph G with
cycles. (b) Inverse covariance P�1 for Gaussian process on original graph. Black squares
correspond to non-zero entries. (c) Spanning tree embedded within original graph. (d)
Tree-structured inverse covariance P�1

tree. (e) Edges to be removed by the cutting matrix.
(f) Structure of cutting matrix K.

has a sparsity pattern that respects the Markov properties of the tree T n. Moreover,
we assume that each Kn is chosen such that each bJn is positive de�nite.5

At each iteration, we choose a spanning tree index i(n) 2 f0; : : : ; L� 1g according
to some rule. A natural choice is the cyclic ordering in which

i(n) � n mod(L) (4.6)

A variety of other orderings, some of them random, are discussed in [31].
Using equations (4.4) and (4.5), we may start with some initial vector x0, and

generate a sequence of iterates fbxng1n=1 via the recursion:bJi(n)bxn = Ki(n)bxn�1 + CTR�1y (4.7)

If the cutting matrix Ki(n) is chosen so that bJi(n) is positive de�nite, equation (4.7)
is precisely equivalent to a Gaussian inference problem de�ned on a tree-structured

5We make this assumption in order to make a clear connection to tree-structured inference algo-
rithms. More generally, however, it is suÆcient to choose Kn so that bJn is invertible.
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Markov random �eld, where the right-hand side represents a modi�ed data term. Since
the recursions of equation (4.7) represent a sequence of modi�ed-data tree problems,
they can solved using standard fast algorithms [e.g., 36], allowing bxn to be calculated
as:

bxn = bJ�1i(n)

�
Ki(n)bxn�1 +CTR�1y

�
(4.8)

The computational cost associated with equation (4.8) is O(d3N + cd2), where N is
the number of nodes, c = jEj � (N � 1) is the number of cut edges.6 Typically, for the
sparse graphs of interest here, the number c is at most O(N), and the overall cost of
each iteration is O(d3 N).

Taking the di�erence between the relations implied by equation (4.7) at iterations
n� 1 and n leads to the relation:

bJi(n)bxn � bJi(n�1)bxn�1 = Ki(n)bxn�1 �Ki(n�1)bxn�2 (4.9)

Noting from equation (4.5) that bJi(n) �Ki(n) = bJi(n�1) �Ki(n�1), we may rewrite (4.9)
as �bxn � bxn�1� = bJ�1i(n)Ki(n�1)

�bxn�1 � bxn�2� (4.10)

where the initial condition (bx1 � bx0) is determined according to equation (4.8). Equa-
tion (4.10) explicitly reveals the important fact that the dynamics of the ET algorithm
depend solely on the chosen set of cutting matrices Kn. The observations y act only
to set the initial conditions, and do not a�ect the rate at which the the algorithm con-
verges (i.e., the rate at which the successive di�erences (bxn � bxn�1) decay). This data
independence will play an important role in our subsequent analysis of the convergence
properties of the ET iterations.

� 4.3.3 Convergence analysis

In this section, we determine the conditions under which the embedded trees itera-
tion (4.7) converges. We have assumed that the cutting matrices Kn are chosen so thatbJn is positive de�nite, ensuring that each iterate may be unambiguously calculated us-
ing equation (4.8). This equation de�nes a linear system, so that eigenvalues play a
crucial role in the analysis. Let the set of all eigenvalues of a matrix A by denoted by
f�i (A)g. The spectral radius of A is de�ned as � (A) , max�2f�i(A)g j�j.

Our analysis focuses on the evolution of the error een , (bxn � bx) between the
estimate bxn at the nth iteration and the solution bx of the original inference problem in
equation (4.2a). Using equation (4.2a), we may rewrite the ET recursion (4.7) as

bJi(n)bxn = Ki(n)bxn�1 + bJorig bx = Ki(n)bxn�1 + � bJi(n) �Ki(n)

� bx (4.11)

6Here we have used the fact that any spanning tree of a graph with N nodes has N � 1 edges.
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where bJorig , P�1 + CTR�1C. This equation may be rewritten to relate the errors at
subsequent iterations:

een = bJ�1i(n)Ki(n)een�1 (4.12)

Together, equations (4.12) and (4.10) lead to the following result.

Proposition 4.3.1. For any starting point bx0, the conditional mean bx of the original
inference problem (4.2a) is the unique �xed point of the iterates fbxng1n=1 generated by
the embedded trees recursion (4.8). Moreover, the error een , (bxn�bx) evolves according
to:

een =
h bJ�1i(n)Ki(n) : : : bJ�1i(2)Ki(2)

bJ�1i(1)Ki(1)

i ee0 (4.13)

Proof. The uniqueness of the �xed point bx follows directly from the invertibility of bJorig
and bJn = bJorig +Kn. Equation (4.13) follows by induction from equation (4.12).

Although Proposition 4.3.1 shows that the ET recursion has a unique �xed point
at the optimal solution bx, it does not guarantee that bxn will converge to that �xed
point. In fact, if the cutting matrices Kn are poorly chosen, bxn may diverge from bx at
a geometric rate. The following result speci�es the conditions, for a cyclic ordering of
trees, under which the ET recursions converge or diverge.

Proposition 4.3.2. With a cyclic ordering of trees, convergence of the ET algorithm
is governed by the spectral radius of

A ,

h bJ�1L�1KL�1 : : : bJ�11 K1
bJ�10 K0

i
(4.14)

In particular, if �(A) < 1, then (bxn � bx) n!1�! 0 geometrically at rate 
 , �(A)
1
L ,

whereas if �(A) > 1, then the algorithm will not converge.

Proof. With a cyclic ordering of trees, the error een in the ET algorithm evolves accord-
ing to the dynamics of periodic time-varying linear system (see equation (4.13)). After
subsampling it at intervals of L, it becomes a homogeneous linear system controlled by
the matrix A. Thus, the convergence or divergence of the ET iterates is controlled by
the spectral radius of A.

On the basis of Proposition 4.3.2, we see that it is important to choose the cutting
matrices so that the special radius of A is less than one. It is not straightforward
to analyze this spectral radius in general, since it depends on interactions between
successive cutting matrices. Nonetheless, for the special case of cutting to a single
tree, the following theorem, adapted from a result of Axelsson [10], gives conditions
guaranteeing the validity and convergence of the ET algorithm.
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Theorem 4.3.1. De�ne bJorig , P�1 + CTR�1C, and bJ , bJorig + K. Suppose the
cutting matrix K is symmetric and positive semide�nite. Then we are guaranteed that
�( bJ�1K) < 1. In particular, we have the bounds:

�max(K)

�max(K) + �max( bJorig) � �( bJ�1K) � �max(K)

�max(K) + �min( bJorig) (4.15)

Proof. First of all, since bJ�1 and K are symmetric and positive semide�nite, we have

�min( bJ�1K) � �min( bJ�1)�min(K)

so that the eigenvalues of bJ�1K are all non-negative. Therefore, the spectral radius
�( bJ�1K) is given by the maximal eigenvalue. Equation (4.15) then follows from the
bounds of Theorem 2.2 in Axelsson [10] on the maximal eigenvalue.

Observe that the upper bound of equation (4.15) is always less than one for positive
de�nite bJorig. Therefore, Theorem 4.3.1 gives suÆcient conditions for the convergence
of the ET algorithms. To illustrate Theorem 4.3.1, we consider the simple example of
a single cycle.

Example 4.3.1 (Optimal tree for single cycle). Suppose that we have a Gaussian
process with scalar variables at each node, de�ned on a graph G that is a single cycle.
In this case, it suÆces to cut a single edge in order to obtain a tree. Let eu denote the
vector of zeros with a single one at entry u. We consider a cutting matrix of the form

K = �P�1uv

�
eue

T
u + eve

T
v + eue

T
v + eve

T
u

�
which corresponds to removing edge (u; v) from the graph. Note that the form of this
cutting matrix is distinct from that illustrated in Figure 4.3; in particular, this cutting
matrix also modi�es the diagonal entries of the inverse covariance.

The matrix K is rank one, with only one non-zero eigenvalue �2P�1uv . We suppose
that P�1uv < 0 for all edges (u; v), so that K is positive semide�nite, and Theorem 4.3.1
is applicable. To obtain an ET iteration that converges quickly, we would like to
minimize the upper bound of equation (4.15). This corresponds to minimizing the
largest eigenvalue of K. Consequently, for this single cycle case, removing the weakest
edge (i.e., the edge with smallest jP�1uv j) from the graph leads to the best tree (in the
sense of equation (4.15)). This �nding agrees with the natural intuition.

A few remarks on Theorem 4.3.1 are in order. First of all, note that the hypotheses
of the theorem require K to be positive semide�nite. Modi�cations to K so as to ensure
positive semide�niteness (e.g., adding multiples of the identity) are likely to increase the
maximal eigenvalue �max(K). As this maximal eigenvalue increases, the upper bound of
equation (4.15) can become arbitrarily close to one. Thus, the theoretical convergence
rate (at least the upper bound) can become extremely slow. In practice, we �nd that
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inde�nite cutting matrices, as opposed to the positive semide�nite matrices required by
the hypotheses of the theorem, typically lead to faster convergence.

Secondly, although the conditions of Theorem 4.3.1 are suÆcient, they are by no
means necessary to guarantee convergence of the ET algorithm. Even when cutting to
a single tree, it is easy to construct examples in which the conditions of the theorem
are not satis�ed, but still bJ is positive de�nite and �( bJ�1K) < 1 so that the algorithm
converges. A related caveat associated with Theorem 4.3.1 is its failure to address
the superior performance typically achieved by cycling through several embedded trees.
Indeed, it is possible to combine two trees | a \good" tree for which �( bJ�11 K1) is

small, and a \bad" tree for which �( bJ�12 K2) is large | such that the spectral radius

of the combination �( bJ�12 K2
bJ�11 K1) is smaller than that of the good tree. We refer

the interested reader to [163] for further examples of the bene�ts of cutting to multiple
trees, as well as extensions to Theorem 4.3.1 that capture such e�ects.

� 4.3.4 Calculation of error covariances

As described in Section 4.2.4, there exist a variety of iterative algorithms for computing
the conditional mean of a linear-Gaussian problem. However, none of these methods
correctly compute error covariances at each node. (See Schneider [156] for a Krylov
subspace method that does compute error covariances, though under assumptions com-
plementary to those of this chapter). We show here that the ET algorithm can eÆciently
compute these covariances in an iterative fashion. For many applications (e.g., oceanog-
raphy [64]), obtaining these error statistics is equally as important as computing the
conditional means. Indeed, in a statistical context, an estimate of the mean without
any measure of uncertainty is arguably of limited use.

Assume for simplicity in notation that bx0 = 0. We then expand the recursion of
equation (4.8) for n = 1; 2; 3; : : : as follows:

bx1 =
h bJ�1i(1)

i
CTR�1y

bx2 =
h bJ�1i(2)Ki(2)

bJ�1i(1) + bJ�1i(2)

i
CTR�1y

bx3 =
h bJ�1i(3)Ki(3)

bJ�1i(2)Ki(2)
bJ�1i(1) + bJ�1i(3)Ki(3)

bJ�1i(2) + bJ�1i(3)

i
CTR�1y

...
...

...

From these equations, the general pattern can be discerned: for any iteration n = 1; 2; : : : ,
we have:

bxn � bxn(y) = [Fn + bJ�1i(n)] C
TR�1y (4.16)

where the matrix Fn satis�es the recursion

Fn = bJ�1i(n)Ki(n)

�
Fn�1 + bJ�1i(n�1)

�
(4.17)



104 CHAPTER 4. EMBEDDED TREES ALGORITHM FOR GAUSSIAN PROCESSES

with the initial condition F1 = 0.
Let bx(y) denote the correct conditional mean as a function of the data y. By the

data independence pointed out at the end of Section 4.3.2, if the recursion for the
conditional means fbxn(y)g, given in equation (4.8) is convergent for some data vector,
then it converges to bx(y) for all data vectors y. Moreover, from equation (4.2a), we
have

bx(y) = bPCTR�1y

for all y. Therefore, whenever the mean recursion converges, then the matrix sequence
fFn + bJ�1

i(n)
g converges to the full error covariance bP .

Moreover, the cutting matrices K are typically of low rank, say O(c) where c is the
number of cut edges. For example, given the edge set E(T ) of some tree, the sparsest
possible cutting matrix (i.e., one which does not modify the diagonal entries) can be
written as

K =
X

(u;v)2E=E(T )
wuv

�
eue

T
v + eve

T
u

�
(4.18)

where wuv is a weight on edge (u; v). This cutting matrix is of rank (at most) 2c.
With this type of low rank decomposition for K, it can be shown that each Fn can

also be decomposed as a sum of O(c d) rank 1 matrices. Directly updating this low-
rank decomposition of Fn from that of Fn�1 requires O(d5c2N) operations. However,
an eÆcient restructuring of this update requires only O(d4cN) operations [see 163].
The diagonal blocks of the low-rank representation may be easily extracted and added
to the diagonal blocks of bJ�1i(n), which are computed by standard tree smoothers. All

together, we may obtain these error variances in O(d4cN) operations per iteration.
Thus, the computation of error variances will be particularly eÆcient for graphs where
the number of edges c that must be cut is small compared to the total number of nodes
N .

Example 4.3.2 (Square grids). Consider a square grid withN nodes; the caseN = 5
is illustrated in Figure 4.2(a). Place a single Gaussian random variable xs at each node,
thereby forming a random vector x of length N . It can be shown that the square grid
has 2

p
N (

p
N � 1) edges in total. Any spanning tree on a graph with N nodes has

N � 1 edges, so that we have to remove

c = 2
p
N (

p
N � 1)� �N � 1

�
=
�p
N � 1

�2
edges to form a tree. Asymptotically, c � N so that the computational complexity
of our error covariance computation for a square grid is O(N2). This is inferior to
the nested dissection method for matrix inversion [56], which has complexity O(N3=2).
Nonetheless, there exist many graphs with less than O(pN) additional edges (beyond
those associated with a given spanning tree) for which our algorithm would lead to
gains.
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� 4.3.5 Results

We have applied the ET algorithm to a variety of graphs, ranging from graphs with
single cycles to densely connected MRFs on grids. Here we show some sample results;
additional results on the empirical behavior of the ET algorithm are given in [163].
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Figure 4.4. (a) Convergence rates for computing conditional means bx (normalized L2

error). Plot compares rates of ET to belief propagation (BP) and conjugate gradient
(CG). (b) Convergence rate of ET algorithm for computing error variances.

Figure 4.4(a) compares the rates of convergence for three algorithms: conjugate
gradient (CG), embedded trees (ET), and belief propagation (BP) on a 20�20 nearest-
neighbor grid. We made a random choice of the inverse covariance matrix P�1, subject
to the constraint of being symmetric and positive de�nite. The measurement matrix
C and noise covariance R were both chosen as the identity. The ET algorithm em-
ployed two embedded trees, one analogous to that shown in Figure 4.2(b) and the other
a rotated version of this tree. We �nd that CG is usually fastest, and can exhibit
supergeometric convergence. In accordance with Proposition 4.3.2, the ET algorithm
converges geometrically. Either BP or ET can be made to converge faster, depending
on the choice of clique potentials. However, we have not experimented with optimizing
the performance of ET by adaptively choosing edges to cut. Figure 4.4(b) shows that in
contrast to CG and BP, the ET algorithm can also be used to compute the conditional
error variances, where the convergence rate is again geometric.

� 4.4 Discussion

In this chapter, we developed the embedded trees algorithm for exact estimation of
Gauss-Markov processes on graphs with cycles. Like structured mean �eld (see Sec-
tion 2.3.1), this ET algorithm exploits the fact that exact computations can be per-
formed eÆciently for trees embedded within the graph with cycles. In contrast to mean
�eld, the ET algorithm takes advantage of the fact that graphs with cycles have a
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(typically large) number of spanning trees. Indeed, although ET can be implemented
using only a single spanning tree, its application is usually more powerful when it cycles
through some set of embedded trees.

For computing means, the ET algorithm is comparable to other techniques. In con-
trast with other techniques, the ET algorithm also computes the correct covariances of
the error in the estimate. The error covariance computation is especially eÆcient for
graphs in which cutting a small number of edges reveals an embedded tree. Moreover,
the ET algorithm suggests other ways in which embedded tree structures can be ex-
ploited: e.g., as preconditioners for the conjugate gradient method [56]. Extensions of
this nature are discussed in more detail in [163], and also in Chapter 8 of this thesis.

Although the focus of this chapter was Gaussian processes, we shall see in the fol-
lowing chapter that similar concepts can be developed for discrete-valued processes.
Indeed, the focus of Chapter 5 is tree-based reparameterization, which also entails per-
forming (di�erent) exact computations using distributions de�ned by embedded trees.



Chapter 5

Tree-based reparameterization for

approximate estimation

� 5.1 Introduction

Given a distribution p(x) de�ned by a graphical model, one important problem is com-
puting marginal distributions of variables at each node on the graph. For tree-structured
graphs, standard and highly eÆcient algorithms exist for this task; see Appendix A for
description of one such algorithm. In contrast, exact solutions are prohibitively com-
plex for more general graphs of any substantial size [40]. As a result, there has been
considerable interest and e�ort aimed at developing approximate inference algorithms
for large graphs with cycles.

A widely-studied approximation method [e.g., 3, 131, 147, 175, 183] is that known
variously as belief propagation in the graphical model community [138], and the sum-
product algorithm in coding theory [e.g., 118, 131]. The interest in this algorithm
has been fueled in part by its use in �elds such as arti�cial intelligence and computer
vision [e.g., 67,68,134], and also by the success of turbo codes and other graphical codes,
for which the decoding algorithm is a particular instantiation of belief propagation [e.g.,
72, 118, 131]. While there are various equivalent forms for belief propagation [138], the
best known formulation, which we refer to here as the synchronous BP algorithm, entails
the exchange of statistical information among neighboring nodes via message-passing.
If the graph is a tree, the resulting algorithm can be shown to produce exact solutions
in a �nite number of iterations. The message-passing formulation is thus equivalent to
other techniques for optimal inference on trees, some of which involve more global and
eÆcient computational procedures. On the other hand, if the graph contains cycles,
then it is the local message-passing algorithm that is most generally applicable. It
is well-known that the resulting algorithm may not converge; moreover, when it does
converge, the quality of the resulting approximations varies substantially.

Recent work has yielded some insight into the dynamics and convergence properties
of BP. For example, several researchers [2, 8, 107, 175] have analyzed the single cycle
case, where belief propagation can be reformulated as a matrix powering method. For
the special case of graphs corresponding to turbo codes, Richardson [147] developed a
geometric approach, through which he was able to establish the existence of �xed points,

107
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and give conditions for their stability. More recently, Yedidia et al. [183] showed that
BP can be viewed as performing a constrained minimization of the so-called Bethe free
energy associated with the graphical distribution,1 which inspired other researchers [e.g.,
177, 184] to develop more sophisticated algorithms for the minimization of the Bethe
free energy. Yedidia et al. also proposed extensions to BP based on cluster variational
methods [115]; related extensions using higher order structures have been proposed by
Minka [132]. These advances notwithstanding, much remains to be understood about
the behavior of this algorithm, and more generally about other (perhaps superior)
approximation algorithms.

This important area constitutes the focus of this chapter. In particular, this chapter
provides a new conceptual view of a large class of iterative algorithms, including BP
as well as rich set of its variations and extensions. Central to the framework presented
here is the idea of performing exact computations over acyclic subgraphs embedded
within a graph with cycles. This idea was exploited in Chapter 4 to develop an iterative
algorithm for exact estimation of Gaussian processes on graphs. One of the motivations
for the research presented in this chapter is to show how such tree-based updates can
also be applied to discrete processes on graphs with cycles.

As discussed in Section 2.1, a key idea in graphical models is the representation of a
probability distribution as a product of factors, each of which involves variables only at a
subset of nodes corresponding to a clique of the graph. Such factorized representations
are far from unique, which suggests the goal of seeking a reparameterization of the
distribution consisting of factors that correspond, either exactly or approximately, to
the desired marginal distributions. If the graph is cycle-free (i.e., a tree), then there
exists a unique reparameterization speci�ed by exact marginal distributions over cliques.
Indeed, such a parameterization is the cornerstone of the junction tree representation
(see Section 2.1.5).

For a graph with cycles, on the other hand, exact factorizations exposing these
marginals do not generally exist. Nevertheless, it is always possible to reparameterize
certain portions of any factorized representation | namely, any subset of factors cor-
responding to a cycle-free subgraph of the original graph. We are thus led to consider
iterative reparameterization of di�erent subsets, each corresponding to an acyclic sub-
graph. As we will show, the synchronous form of BP can be interpreted in exactly this
manner, in which each reparameterization takes place over the extremely simple tree
consisting of a pair of neighboring nodes. This interpretation also applies to a broader
class of updates, in which reparameterization is performed over arbitrary cycle-free
subgraphs. As a vehicle for studying the concept of reparameterization, the bulk of
this paper will focus on updates over spanning trees, which we refer to as tree-based
reparameterization (or TRP). However, the class of reparameterization algorithms is
broad, including not only TRP, sum-product, BP and variants thereof, but also various
generalizations [132, 183] (see Chapter 6).

1Several researchers have investigated the utility of Bethe tree approximations for graphical models;
we refer the reader to [e.g., 164, 181].
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At one level, just as BP message-passing can be reformulated as a particular se-
quence of reparameterization updates, the more global updates of TRP are equivalent
to a schedule for message-passing based on spanning trees. We �nd that tree-based
updates often lead to faster convergence, and can converge on problems for which
synchronous BP fails. At another level, the reparameterization perspective provides
conceptual insight into the nature of belief propagation and related algorithms. In par-
ticular, a fact highlighted by reparameterization, yet not obvious from the traditional
message-passing viewpoint, is that the overall distribution on the graph with cycles is
never altered by such algorithms. Moreover, from the perspective of tree-based updates
arises a simple and intuitive characterization of BP �xed points, and more broadly any
constrained minimum of the Bethe free energy, in terms of consistency over all trees of
the graph. These two properties, when applied in conjunction, allow us to characterize
the approximation error for an arbitrary graph with cycles.

In the next section, we introduce the background and notation that underlies our
development. In the process, we illustrate how distributions over cycle-free graphs can
be reparameterized in terms of local marginal distributions. In Section 5.3, we introduce
the class of TRP algorithms. In this context, it is convenient to represent distributions
in an exponential form using an overcomplete basis. Our choice of an overcomplete
basis, though unorthodox, makes the idea of reparameterization more transparent, and
easily stated. In this section, we also show an equivalent formulation of synchronous
BP as a sequence of local reparameterizations.

Section 5.4 contains analysis of geometry of TRP updates, as well as the nature of
the �xed points. We begin by formalizing the de�ning characteristic of all reparame-
terization algorithms | namely, they do not change the distribution on the graph with
cycles, but simply yield an alternative factorization. In geometric terms, this invariance
means that successive iterates are con�ned to a linear subspace of exponential param-
eters (i.e., an e-
at manifold in terms of information geometry [e.g., 5, 34].) We then
show how each TRP update can be viewed as a projection onto an m-
at manifold
formed by the constraints associated with each tree, where projection is speci�ed by
a cost function G that is an approximation to the Kullback-Leibler divergence. We
prove a Pythagorean result that links TRP iterates, and establishes interesting links
between tree-based reparameterization and successive projection algorithms for con-
strained minimization of Bregman distances [e.g., 31]. The Pythagorean result enables
us to show that �xed points of the TRP algorithm satisfy the necessary conditions to
be a constrained local minimum of G, thereby making contact with the work of Yedidia
et al. [183]. Speci�cally, we show that although the cost function G minimized by our
TRP algorithm is not the same as the Bethe free energy, TRP �xed points do coincide
with extremal points of the Bethe free energy (i.e., with the �xed points of BP). An
important bene�t of our formulation is a new and intuitive characterization of the �xed
points: in particular, any �xed point of BP/TRP must be consistent, in a suitable
sense to be de�ned, with respect to any singly-connected subgraph; and at least one
such �xed point of this type is guaranteed to exist. By adapting the invariance and
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�xed point characterization to the Gaussian (as opposed to discrete) case, we obtain a
short and elementary proof of the exactness of the means when BP/TRP converges.

The �nal topic of this chapter is the analysis of the approximation error arising
from application of TRP or BP. Previous results on this error have been obtained in
certain special cases. For a single cycle, Weiss [175] derived a relation between the
exact marginals and the BP approximations, and for a binary processes showed how
local corrections could be applied to compute the exact marginals. Empirically, he
also observed that in certain cases, approximation accuracy is correlated with the con-
vergence rate of BP. In the context of turbo decoding, Richardson [147] provided an
approximate analysis of the associated error. Despite these encouraging results, a deep
and broadly applicable understanding of the approximation error remains a challenging
and important problem. Our characterization of the TRP/BP �xed points, in conjunc-
tion with the invariance property, allows us to contribute to this goal by analyzing the
approximation error for arbitrary graphs. In particular, our development in Section 5.5
begins with the derivation of an exact relation between the correct marginals and the
approximate marginals computed by TRP or BP. We then exploit this exact relation
to derive both upper and lower bounds on the approximation error. The interpretation
of these bounds provides an understanding of the conditions that govern the perfor-
mance of algorithms like TRP or BP. Using results from Chapter 7, these bounds can
be computed eÆciently. We illustrate their performance on some sample problems. The
chapter concludes in Section 5.6 with a summary. Portions of the work presented in this
chapter have appeared previously in a conference paper [172] and technical report [171].

� 5.2 Estimation in graphical models

The focus of this chapter is the (approximate) computation of marginal distributions
associated with a graph-structured distribution p(x). In particular, the distribution
p(x) is de�ned by a product of compatibility functions  C over the cliques of a graph G,
as in equation (2.3). Throughout this chapter, we consider graphs in which the clique
set C consists only of singletons and edges (i.e., C = V [ E), an assumption which is
implicit in the synchronous message-passing form of BP presented in Section 5.2.2. In
Chapter 6, we consider extensions of reparameterization that operate over higher order
cliques. Given only singleton and pairwise cliques, the clique index set ranges over all
edges (s; t) 2 E, as well as the singleton cliques fsg.

Under these assumptions, the prior distribution p(x) is de�ned by a product of
singleton and edge terms as follow:

p(x) =
1

Z

Y
s2V

 s(xs)
Y

(s;t)2E
 st(xs; xt) (5.1)

Here the compatibility functions  s and  st denote real-valued functions of xs and
(xs; xt) respectively. With a minor abuse of notation, we will often use the same notation
to refer to vectors and matrices respectively. In particular, for an m�state discrete



Sec. 5.2. Estimation in graphical models 111

process, the quantity  st lying on the edges (s; t) can be also thought of as a m �
m matrix, where the (j; k) element  st;jk is equal to the function value of  st for
fxs = j; xt = kg. Similarly, the single node functions  s can be thought of as an m-
vector, where the jth component  s;j equals the value of  s for fxs = jg. Throughout
this chapter, we will switch between these two interpretations, depending on which is
more convenient; the interpretation should be clear from the context.

The speci�c goal of this chapter is to (approximately) compute the marginal prob-
abilities Ps(xs) of p(x) at each node of the graph. For general graphs with cycles, this
task requires summations involving exponentially many terms; indeed, it can be shown
to be a NP-hard problem [40]. For tree-structured graphs, there exist direct algorithms
for optimal estimation. For graphs with cycles, suboptimal algorithms (such as BP)
are used in an attempt to compute approximations to the desired marginals. In the
following sections, we elaborate on both of these topics.

� 5.2.1 Exact estimation on trees as reparameterization

Algorithms for optimal estimation on trees have appeared in the literature of various
�elds, including coding theory [118], arti�cial intelligence [138], and system theory [14].
See Appendix A for a detailed derivation of one algorithm for optimal estimation on
trees. As described in Section 2.1.5, such tree inference algorithms can, in principle,
be applied to any graph by clustering nodes so as to form a junction tree. However, in
many cases of interest, the aggregated nodes of the junction tree have exponentially large
state cardinalities, meaning that applying tree algorithms is prohibitively complex. This
explosion in the state cardinality is another demonstration of the intrinsic complexity
of exact computations for graphs with cycles.

An important observation that arises from the junction tree perspective is that
any exact algorithm for optimal estimation on trees actually computes marginal dis-
tributions for pairs (s; t) of neighboring nodes. In doing so, it produces an alternative
factorization of the distribution p(x), namely:

p(x) =
Y
s2V

Ps(xs)
Y

(s;t)2E

Pst(xs; xt)

Ps(xs) Pt(xt)
(5.2)

where Ps(xs) and Pst(xs; xt) are the single node and joint marginal distributions re-
spectively. As an illustration, Figure 5.1(a) shows a simple example of a tree-structured
distribution, parameterized in terms of compatibility functions  s and  st, which leads
to the factorization in equation (5.1). Figure 5.1(b) shows this same tree, with the
distribution now reparameterized in terms of the local marginal distributions Ps and
Pst. The representation of equation (5.2) can be deduced from a more general factor-
ization result on junction trees [e.g. 102,123]. Alternatively, equation (5.2) can be seen
as a symmetrized generalization of the well-known factorization(s) of Markov chains.
For example, the variables at the three nodes f1; 2; 4g in Figure 5.1(b) form a simple
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Markov chain, meaning that the joint distribution can be written as

P124 = P1 (P2j1)(P4j2)
= P1 (P12=P1)(P24=P2)

= P1P2P4 (P12=P1P2)(P24=P2P4)

where the last equality is precisely the form of equation (5.2). Note that the �nal line
removes the asymmetry present in those that precede it (which resulted from beginning
the factorization from node 1, as opposed to node 2 or 4).
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(a) (b)

Figure 5.1. A simple example of a graphical model; circles correspond to
state variables xs, whereas squares correspond to observations. (a) Original pa-
rameterization of distribution p(x) = 1

Z

Q
s2V  s(xs)

Q
(s;t)2E  st(xs; xt) on the

tree in terms of compatibility functions  st and  s. (b) Final parameterization

p(x) =
Q

s2V Ps(xs)
Q

(s;t)2E
Pst(xs;xt)

Ps(xs)Pt(xt)
in terms of marginal and joint probabilities

Ps and Pst respectively.

We thus arrive at an alternative interpretation of exact inference on trees: it en-
tails computing a reparameterized factorization of the distribution p(x) that explicitly
exposes the local marginal distributions; and also does not require any additional nor-
malization (i.e., with partition function Z = 1).

� 5.2.2 Belief propagation for graphs with cycles

As we have indicated, the message-passing form of belief propagation (BP), in addition
to being exact in application to trees, yields an iterative message-passing algorithm for
graphs with cycles. In this section, we summarize for future reference the equations
governing the BP dynamics. The message passed from node s to node t, denoted
by Mst, is an m-vector in which element Mst;k gives its value when xt = k. Let
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N (s) = ft 2 V j (s; t) 2 Eg be the set of neighbors of s in G. With this notation, the
message at iteration (n+1) is updated based on the messages at the previous iteration
n as follows:

Mn+1
st;k = �

m�1X
j=0

 st;jk s;j
Y

u2N (s)=t

Mn
us;j (5.3)

where � denotes a normalization constant.2 At any iteration, the \beliefs" | that is,
approximations to the marginal distributions | are given by

Bn
s;j = � s;j

Y
u2N (s)

Mn
us;j (5.4)

� 5.3 Tree-based reparameterization framework

In this section, we introduce the class of tree-based reparameterization (TRP) updates.
Key to TRP is the concept of a tree-structured subgraph of an arbitrary graph G with
cycles | i.e., a tree formed by removing edges from the graph. A spanning tree is an
acyclic subgraph that connects all the vertices of the original graph.

(a) (b) (c)

Figure 5.2. A graph with cycles has a (typically large) number of spanning trees. (a)
Original graph is a nearest neighbor grid. Panels (b) and (c) show two of the 100; 352
spanning trees of the graph in (a).

Figure 5.2 illustrates these de�nitions: panel (a) shows a nearest neighbor grid,
whereas panels (b) and (c) illustrate spanning trees. Of course, these are just two
examples of such embedded spanning trees. Indeed, a graph generally has a (large)
number of spanning trees, and we exploit this fact in our work.

Now suppose that T 0; : : : ;T L�1 (with corresponding edge sets E0; : : : ; EL�1 � E)
is a given set of spanning trees for the graph G. Then for any i 2 f0; : : : ; L � 1g, the
distribution p(x) de�ned by compatibility functions on the graphG, as in equation (5.1),

2Throughout this paper, we will use � to refer to an arbitrary normalization constant, the de�nition
of which may change from line to line. In all cases, it is easy to determine � by local calculations.
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can be factored as:

p(x) = pi(x) ri(x) (5.5)

where pi(x) includes the factors in equation (5.1) corresponding to cliques of T i, and
ri(x) absorbs the remaining terms, corresponding to edges in EnEi removed to form
T i.
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Figure 5.3. Illustration of a tree-based reparameterization update. (a) Original pa-
rameterization in terms of compatibility functions  s and  st. (b) Isolate terms corre-
sponding to a tree T i. (c) Reparameterize the tree-structured component pi(x) of the
distribution in terms of its marginals fTs; Tstg. (d) New parameterization of the full
distribution after a single iteration.

Because the distribution pi(x) is tree-structured, it can be reparameterized in terms
of its marginals, as in equation (5.2). With reference to the full graph G and distribution
p(x), this operation simply speci�es a new choice of compatibility function for each
vertex s 2 V , and each edge (s; t) 2 EnEi, but does not modify the full distribution
p(x). In a subsequent update using this new set of functions and choosing a di�erent
tree T j, we can write p(x) = pj(x)rj(x), where pj(x) includes compatibility functions
over cliques in T j. We can then perform reparameterization for pj(x), and repeat the
process, choosing one of the trees T i at each step of the iteration.
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Figure 5.3 illustrates the basic steps of this procedure for a simple graph with cycles.
Panel (a) shows the original parameterization of p(x) in terms of compatibility functions
 s and  st, as in equation (5.1). A spanning tree, formed by removing edges (4; 5) and
(5; 6), is shown in panel (b); speci�cally, we have ri(x) =  45(x4; x5)  56(x5; x6) in
this case. The tree distribution pi(x), corresponding to the product of all the other
compatibility functions, is reparameterized in terms of marginals Ts and Tst computed
from the tree-structured distribution pi(x). The quantities fTs; Tstg, though exact
marginals for this tree-structured distribution, represent approximations to the actual
marginals fPs; Pstg of the graph with cycles. After this tree reparameterization, the
compatibility functions in the residual term ri(x) are re-instated; the full set of graph
compatibility functions following one update are shown in panel (d). In a subsequent
update, a di�erent tree is chosen over which reparameterization is to be performed.

At one level, the sequence of updates just described is equivalent to a particular
tree-based schedule for message-passing. In particular, a given tree update can be per-
formed by �xing all messages on edges not in the tree, and updating messages on the
tree edges until convergence. However, thinking about tree reparameterization instead
of message-passing highlights a fundamental property: each step of the algorithm3 en-
tails specifying alternative factorization of the distribution p(x), and therefore leaves
the full distribution intact. To formalize this basic idea, in this section we introduce
a particular parameterization of distributions p(x; �), such that iterations of the type
just described can be represented as explicit functional updates �n 7! �n+1 on these
parameters. We also show that synchronous BP iterations can be interpreted as repa-
rameterization operations using especially simple non-spanning embedded trees, and we
present experimental results illustrating the potential advantages of tree-based updates
over synchronous BP.

� 5.3.1 Exponential families of distributions

Recall from Section 2.2 the de�nition of an exponential family of distributions:

p(x; �) = exp
�X

�

����(x) � �(�)
	

(5.6a)

�(�) = log
� X
x2XN

expf
X
�

����(x)g
�

(5.6b)

where � is the log partition function that normalizes the distribution.
It is standard to specify an exponential family of the form in equation (5.6a) using

a set of functions � = f�� j � 2 A g that are linearly independent. This gives rise to
a so-called minimal representation [e.g., 13]. However, in this chapter, we will �nd it
convenient to use a non-minimal set of functions. Speci�cally, let s; t 2 V be indices
parameterizing the nodes of the graph, and let the indices j; k run over the m possible

3Here we have described an unrelaxed form of the updates; in the sequel, we present and analyze a
suitably relaxed formulation.
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states of the discrete random variables. We then take the index set for �, denoted by A,
to be the set of pairs (s; j) or 4-tuples (st; jk), and choose the potentials �� as indicator
functions for x to take on the indicated value (or values) at the indicated node (or pair
of nodes). That is,

��(x) = Æ(xs = j) for � = (s; j) (5.7a)

��(x) = Æ(xs = j)Æ(xt = k) for � = (st; jk) (5.7b)

Here, the indicator or delta function Æ(xs = j) is equal to 1 when node xs takes the
state value j, and 0 otherwise. With this choice of f��g, the length of � is given by

d(�) = mN +m2jEj (5.8)

In contrast to a minimal representation, the exponential parameterization of equa-
tion (5.7) is overcomplete (i.e., there are linear relations among the functions f��g). As
an example, for any edge (s; t) 2 E, we have the linear dependence

m�1X
j=0

Æ(xs = j)Æ(xt = k) = Æ(xt = k) for all k = 0; : : : ;m� 1

An important consequence of overcompleteness is the existence of distinct parameter
vectors � 6= �� that induce the same distribution (i.e., p(x; �) = p(x; ��)). This many-to-
one correspondence between parameters and distributions is of paramount importance
to our analysis because it permits reparameterization operations that leave the overall
distribution unchanged.

� 5.3.2 Basic operators

Given a distribution p(x; �) de�ned by a graphG, the quantities that we wish to compute
are elements of the marginal probability vector

P = f Ps j s 2 V g [ f Pst j (s; t) 2 E g (5.9)

where Ps;j = p(xs = j; �) de�nes the elements of the single-node marginal Ps; and
Pst;jk = p(xs = j; xt = k; �) de�nes the elements of the pairwise marginal Pst.

We now observe that elements of the marginal probability vector P arise as ex-
pectations under p(x; �) of the potential functions f��g de�ned in equation (5.7) |
viz.:

Ps;j = E � [Æ(xs = j)] (5.10a)

Pst;jk = E � [Æ(xs = j) Æ(xt = k)] (5.10b)

On this basis, we conclude that P constitutes a set of mean parameters dual to the
exponential parameters �. These two parameters are coupled via the relation:

P = �(�) (5.11)
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where � is the Legendre transform. (See Section 2.2.4 for more information about the
Legendre transform and its properties). Therefore, the vector P can be viewed as an
alternative set of parameters for the distribution p(x; �).

Note that the range of �, denoted Ra(�), is a highly constrained set of vectors. First
of all, any T 2 Ra(�) must belong to the unit hypercube (0; 1)d(�). Secondly, there
are normalization constraints (single-node and joint marginal probabilities must sum to
one); and marginalization constraints (pairwise joint distributions, when marginalized,
must be consistent with the single node marginals). That is, Ra(�) � C , where

C =
�
T
�� T 2 (0; 1)d(�);

m�1X
j=0

Ts;j = 1 for s 2 V ;
m�1X
k=0

Tst;jk = Ts;j for (s; t) 2 E 	
(5.12)

The elements ofT 2 C de�ne a locally consistent set of pairwise and single node marginal
distributions on the graph. When G is a tree, then any T 2 C can be extended (via the
tree factorization of equation (5.2)) to a unique distribution p(x; �) such that T = �(�).
Thus, for tree-structured graphs, Ra(�) = C .

For a graph with cycles, in contrast, Ra(�) is strictly contained within C . Indeed, for
graphs with cycles, there exist elements of C that cannot be realized as the marginals
of any distribution (Markov or otherwise). This strict containment re
ects the fact
that for a graph with cycles, the local consistency conditions de�ning C are no longer
suÆcient to guarantee the existence of a globally consistent distribution.

For a general graph with cycles, of course, the computation of �(�) in equation (5.11)
is very diÆcult. Indeed, algorithms like BP and TRP can be formulated as iteratively
generating approximations to �(�). To make a sharp distinction from exact marginal
vectors P 2 Ra(�) � C , we use the symbol T to denote such pseudomarginal vectors.

We will also make use of the following mapping that is de�ned for any such T:

�
�(T)

�
�

=

8<: log Ts;j if � = (s; j) 2 A
log

�
Tst;jk

Æ
(
P

j Tst;jk)(
P

k Tst;jk)

�
if � = (st; jk) 2 A (5.13)

The quantity �(T) can be viewed as an exponential parameter vector that indexes a
distribution p(x; �(T)) on the graph G. In fact, consider a marginal vector P 2 Ra(�).
If G is a tree, then not only is the computation of (5.11) simple, but we are also
guaranteed �(P) indexes the same graphical distribution as that corresponding to the
marginal vector P | that is:

�(�(P)) = P (5.14)

This equality is simply a restatement of the factorization of equation (5.2) for any
tree-structured distribution in terms of its single-node and joint pairwise marginals.
However, if G has cycles, then in general the marginal distributions of p(x; �(P)) need
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not agree with the original marginals P (i.e., the equality of equation (5.14) does not
hold). In fact, determining the exponential parameters corresponding to P for a graph
with cycles is as diÆcult as the computation of �(�) in equation (5.11). Thus, the
composition of operators �Æ�, mapping one marginal vector to another, is the identity
for trees but not for general graphs.

Alternatively, we can consider composing � and � in the other order:

R(�) =
�
� Æ ��(�) (5.15)

which de�nes a mapping from one exponential parameter vector to another. For a
general graph, the operator R will alter the distribution (that is, p(x; �) 6= p(x;R(�))).
For a tree-structured graph, while R is not the identity mapping, it does leave the
probability distribution unchanged; indeed, applying R corresponds to shifting from
the original parameterization of the tree distribution in terms of � to a new exponential
parameter R(�) that corresponds directly to the factorization of equation (5.2). As a
result, in application to trees, the operator R is idempotent (i.e., R Æ R = R).

� 5.3.3 Tree-based reparameterization updates

The basic idea of TRP is to perform reparameterization updates on a set of spanning
trees T 0; : : : ;T L�1 in succession. The update on any given spanning tree T i involves
only a subset Ai = f(s; j); (st; jk) j s 2 V; (s; t) 2 Eig of all the elements of �. To move
back and forth between parameter vectors on the full graph and those on spanning tree
T i, we de�ne projection and injection operators

�i(�) = f�� j � 2 Ai g (5.16a)

Ii(�i(�)) =

(
�� if � 2 Ai

0 if � =2 Ai (5.16b)

We let �i, �i and Ri denote operators analogous to those in equations (5.11), (5.13)
and (5.15) respectively, but as de�ned for T i.

Each TRP update acts on the full-dimensional vector �, but changes only the lower-
dimensional subvector �i(�) = f�� j � 2 Aig. For this reason, it is convenient to use
the underbar notation to de�ne operators of the following type:

Ri(�) = Ii(Ri(�i(�))) (5.17a)

�i(�) = Ii(�i(�i(�))) (5.17b)

For instance, �i projects the exponential parameter vector � onto spanning tree T i;
computes the corresponding marginal vector for the distribution p(x; �i(�)) induced on
the tree; and then injects back to the higher dimensional space by inserting zeroes for
elements of edges not in T i (i.e., for indices � 2 A=Ai). Moreover, analogous to C , we
de�ne a constraint set C i by imposing marginalization constraints only for edges in the
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spanning tree (i.e., as in equation (5.12) with E replaced by Ei). Note that C i � C ,
and since every edge is included in at least one spanning tree, we have that \iC i = C .

Using this notation, the operation of performing tree-reparameterization on span-
ning tree T i can be written compactly as transforming a parameter vector � into the
new vector given by:

Qi(�) = Ri(�) +
�
I � Ii Æ�i

�
(�) (5.18a)

= � +
�Ri(�)� Ii(�i(�))

�
(5.18b)

where I is the identity operator. The two terms in equation (5.18a) parallel the decom-
position of equation (5.5): namely, the operator Ri performs reparameterization of the
distribution pi(x), whereas the operator [I�Ii Æ�i] corresponds to leaving the residual
term ri(x) unchanged. Thus, equation (5.18a) is a precise statement of a spanning
tree update, such as that illustrated in Figure 5.3, speci�ed in terms of the exponential
parameter �.

Given a parameter vector �, computing Qi(�) is straightforward, since it only in-
volves operations on the spanning tree T i. The tree-based reparameterization algorithm
generates a sequence of parameter vectors f�ng by successive application of these op-
erators Qi. The sequence is initialized4 at �0 using the original set of graph functions
f sg and f stg as follows:

�0� =

(
log s;j if � = (s; j)

log st;jk if � = (st; jk)

At each iteration n, we choose some spanning tree index i(n) from f0; : : : ; L� 1g, and
then update using the operator on spanning tree T i:

�n+1 = Qi(n)(�n) (5.19)

In the sequel, we will also consider a relaxed iteration, involving a step size �n 2 (0; 1]
for each iteration:

�n+1 = �nQi(n)(�n) + (1� �n)�n (5.20)

where �n = 1 recovers the unrelaxed version.
The only restriction that we impose on the set of spanning trees is that each edge

of the full graph G is included in at least one spanning tree (i.e., [iAi = A). It is
also necessary to specify an order in which to apply the spanning trees | that is,
how to choose the index i(n). A natural choice is the cyclic ordering, in which we set
i(n) � n (mod L). More generally, any ordering | possibly random | in which each
spanning tree occurs in�nitely often is acceptable. A variety of possible orderings for
successive projection algorithms are discussed in [31].

4Other initializations are also possible. More generally, �0 can be chosen as any exponential param-
eter that induces the same distribution as the original compatibility functions f sg and f stg.
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� 5.3.4 Belief propagation as reparameterization

Just as TRP can be viewed as a particular tree-based schedule for message-passing, we
show in this section how to reformulate synchronous BP in \message-free" manner as a
sequence of local rather than global reparameterization operations. Speci�cally, in each
step, new compatibility functions are determined by performing exact calculations over
extremely simple (non-spanning) trees formed of two nodes and the corresponding edge
joining them.

We denote by M0
st = fMst;k j k 2 X g the m�vector corresponding to the chosen

initialization of the messages. This choice is often the vector of all ones, but any
initialization with strictly positive components is permissible. The message-free version
of BP iteratively updates approximations to the exact marginals P = fPs; Pstg. Initial
values of the approximations T = fTs; Tstg are determined from the initial messages
M0

st and the original compatibility functions of the graphical model as follows:

T 0
s;j = �  s;j

Y
u2N (s)

M0
us;j for all s 2 V (5.21a)

T 0
st;jk = �  st;jk  s;j  t;k

Y
u2N (s)=t

M0
us;j

Y
u2N (t)=s

M0
ut;k for all (s; t) 2 E (5.21b)

where � denotes a normalization factor.
At iteration n, these quantities are updated according to the following recursions:

T n
s;j = �T n�1

s;j

Y
t2N (s)

1

T n�1
s;j

m�1X
k=0

T n�1
st;jk (5.22a)

T n
st;jk = �

T n�1
st;jk�Pm�1

j=0 T n�1
st;jk

��Pm�1
k=0 T

n�1
st;jk

� T n
s;jT

n
t;k (5.22b)

The update in equation (5.22b) is especially noteworthy: it corresponds to perform-
ing optimal estimation on the very simple two-node tree formed by edge (s; t). As an
illustration, Figure 5.4(b) shows the decomposition of a single-cycle graph into such
two-node trees. This simple reparameterization algorithm operates by performing op-
timal estimation on this set of non-spanning trees, one for each edge in the graph, as
in equation (5.22b). The single-node marginals from each such tree are merged via
equation (5.22a).

We now claim that this reparameterization algorithm is equivalent to belief propa-
gation, summarizing the result as follows:

Proposition 5.3.1. The reparameterization algorithm speci�ed in the equations (5.21)
and (5.22) is equivalent to the message-passing form of BP given in equations (5.3)
and (5.4). In particular, for each iteration n = 0; 1; : : : and initial message vector M0

st,
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Figure 5.4. (a) Toy example of original graph. (b) Two node trees used for updates in
message-free version of belief propagation. Computations are performed exactly on each
two-node tree formed by a single edge and the two associated observation potentials
as in equation (5.22b). The node marginals from each two-node tree are merged via
equation (5.22a).

we have the following relations:

Mn+1
st;k = �M0

st;k

nY
i=0

1

T i
t;k

m�1X
j=0

T i
st;jk for all (s; t) 2 E (5.23a)

Bn
s;j = T n

s;j for all s 2 V (5.23b)

where � denotes a normalization factor.

Proof. See Appendix C.1.

� 5.3.5 Empirical comparisons of BP versus TRP

Given that a spanning tree reaches every node of the graph, one might expect tree-
based updates, such as those of TRP, to have convergence properties superior to those
of local updates such as synchronous BP. As stated previously, a single TRP update
on a given spanning tree can be performed by �xing all the messages on edges not in
tree, and updating messages on edges in the tree until convergence. Such tree-based
message updating schedules are used in certain applications of BP, such as turbo de-
coding [131], for which there are natural choices of trees over which to perform updates.
In this section, we provide experimental evidence supporting the claim that tree-based
updates have superior convergence properties for other problems. An interesting but
open question raised by these experiments is how to optimize the choice of trees (not
necessarily spanning) over which to perform the updates.
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Convergence rates

In this section, we report the results of experiments on the convergence rates of TRP and
BP on three graphs: a single cycle with 15 nodes, a 7 � 7 nearest neighbor grid, and
a larger 40 � 40 grid. At �rst sight, the more global nature of TRP might suggest
that each TRP iteration is more complex computationally than the corresponding BP
iteration. In fact, the opposite statement is true. Each TRP update corresponds to solve
a tree problem exactly, and therefore requires O(m2(N � 1)) operations.5 In contrast,
each iteration of synchronous BP requires O(m2jEj) operations, where jEj � N � 1
is the number of edges in the graph. In order to make comparisons fair in terms of
actual computation required, whenever we report iteration numbers, they are rescaled
in terms of relative cost (i.e., for each graph, TRP iterations are rescaled by the ratio
(N � 1)=jEj < 1). In all cases, we used unrelaxed updates for both BP and TRP.

For each graph, we performed simulations under three conditions: edge potentials
that are repulsive (i.e., that encourage neighboring nodes to take opposite values);
attractive (that encourage neighbors to take the same value); and mixed (in which some
potentials are attractive, while others are repulsive). For each of these experimental
conditions, each run involved a random selection of the initial parameter vector �0

de�ning the distribution p(x; �0). In all experiments reported here, we generated the
single node parameters �s;j as follows:

6 for each node s 2 V , sample as � N (0; (0:25)2),
and set [�s;0 �s;1] = [as � as]. To generate the edge potential components �st;jk, we
begin by sampling bst � N (0; 1) for each edge (s; t). With Æjk denoting the Kronecker
delta for j; k, we set the edge potential components in one of three ways depending on
the experimental condition. For the repulsive condition, we set �st;jk = �(2Æjk�1) jbstj;
for the attractive condition, �st;jk = (2Æjk � 1) jbstj; whereas for the mixed condition
�st;jk = (2Æjk � 1) bst.

For each experimental condition, we performed a total of 500 trials for each of the
single cycle and 7�7 grid, comparing the performance of TRP to BP. On any given run,
an algorithm was deemed to converge when the mean L2 di�erence between successive
node elements ( 1n

P
s k�n+1s � �ns k2) reached a threshold of � = 1 � 10�16. A run in

which which a given algorithm failed to reach this threshold within 3000 iterations
was classi�ed as a failure to converge. In each condition, we report the total number
of convergent trials (out of 500); and also the mean number of iterations required to
converge, rescaled by the ratio (N�1)=jEj and based only on trials where both TRP and
BP converged.

Table 5.1 shows some summary statistics for the two graphs used in these experi-
ments. For the single cycle, we implemented TRP with two spanning trees, whereas we
used four spanning trees for the grid. Although both algorithms converged on all trials
for the single cycle, the rate of TRP convergence was signi�cantly (roughly 3 times)
faster. For the grid, algorithm behavior depends more on the experimental condition.

5Here we are using the fact that a tree problem can be solved eÆciently by a two-pass sweep, where
exactly two messages are passed along each edge of the graph.

6The notation N (0; �2) denotes a zero-mean Gaussian with variance �2.



Sec. 5.3. Tree-based reparameterization framework 123

Graph Single 15-cycle 7� 7 grid
R A M R A M

BP 500 23.2 500 23.4 500 23.6 455 62.3 457 65.8 267 310.1

TRP 500 8.1 500 8.0 500 8.2 500 30.5 500 30.8 282 103.2

Table 5.1. Comparison of convergence behavior of TRP versus BP for a single cycle
of 15 nodes; and a 7 � 7 grid. Potentials were chosen randomly in each of the three
conditions: repulsive potentials (R); attractive potentials (A); mixed potentials (M).
First and second numbers in each box denote the number of convergent runs out of 500;
and the mean number of iterations (rescaled by relative cost and computed using only
runs where both TRP and BP converged) respectively.

The repulsive and attractive conditions are relatively easy, though still diÆcult enough
for BP that it failed to converge on roughly 10% of the trials, in contrast to the perfect
convergence percentage of TRP. In terms of mean convergence rates, TRP converged
more than twice as quickly as BP. The mixed condition is diÆcult for suitably strong
edge potentials on a grid: in this case both algorithms failed to converge on almost half
the trials, although TRP converged more frequently than BP. Moreover, on runs where
both algorithms converged, the TRP mean rate of convergence was roughly three times
faster than BP. Although mean convergence rates were faster, we did �nd individual
problems on the grid for which the version of TRP with four trees converged more
slowly than BP. However, one possibility (which we did not take advantage of here) is
to optimize the choice of trees in an adaptive manner.
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Figure 5.5. Convergence rates for TRP versus BP on a 40 � 40 grid. Plotted on a
log scale is the L2 distance (

P
s;j j�

n
s;j � �

�
s;j j

2) from current iterate �n to �xed point ��

versus iteration number n. In all cases, both BP and TRP converge to the same �xed
point ��. (a) Repulsive potentials. (b) Mixed potentials. (c) Particular choice of mixed
potentials that causes diÆculty for TRP.

We also examined convergence behavior for the 40� 40 grid with 1600 nodes, using
a version of TRP updates over two spanning trees. Figure 5.5 provides an illustration of
the convergence behavior of the two algorithms. Plotted on a log scale is the L2 distance
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between the single-node elements of �n and �� at each iteration, where �� is a �xed point
common to BP and TRP, versus the iteration number. Again, the TRP iteration are
rescaled by their cost relative to BP iterations ((N � 1)=jEj), which for this large grid
is very close to 0:5. Panel (a) illustrates a case with repulsive potentials, for which the
TRP updates converge quite a bit faster than BP updates. Examples in the attractive
condition show similar convergence behavior. Panels (b) and (c) show two di�erent
examples, each with a mixed set of potentials. The mixed condition on the grid is
especially diÆcult due to the possibility of con
icting or frustrated interactions between
the nodes. For the problem in (b), the two spanning trees used for this particular version
of TRP are a good choice, and again lead to faster convergence. The potentials for the
problem in (c), in contrast, cause diÆculties for this pair of spanning trees; note the
erratic convergence behavior of TRP.

Each TRP update ignores some local interactions corresponding to the edges re-
moved to form the spanning tree. These edges are covered by other spanning trees in
the set used; however, it remains an open question how to choose trees so as to maxi-
mize the rate of convergence. In this context, one could imagine a hybrid algorithm in
which pure synchronous BP iterations are interspersed with iterations over more global
structures like trees (not necessarily spanning). The exploration of such issues remains
for future research.

Domain of convergence

We have also found that tree-based updates can converge for a wider range of poten-
tials than synchronous BP. The simple 5-node graph shown in Figure 5.6(a) serves
to illustrate this phenomenon. We simulated a binary process over a range of po-
tential strengths � ranging from �0:3 to �1:0. Explicitly, for each value of �, we
made a deterministic assignment of the potential for each edge (s; t) of the graph as
�st;jk = (2Æjk � 1)�. For each potential strength we conducted 100 trials, where on
each trial the single-node potentials were set randomly by sampling as � N (0; (0:25)2)
and setting [�s;0 �s;1] = [as � as]. On any given trial, the convergence of a given
algorithm was assessed as in Section 5.3.5. Plotted in Figure 5.6(b) is the percentage of
successfully converged trials versus potential strength for TRP and BP. Both algorithms
exhibit a type of threshold behavior, in which they converge with 100% success up to
a certain potential strength, after which their performance degrades rapidly. However,
the tree-based updates extend the e�ective range of convergence.7 To be fair, recently
proposed alternatives to BP for minimizing the Bethe free energy [e.g., 177,184], though
they entail greater computational cost than the updates considered here, are guaranteed
to converge to a stationary point.

7This result is not dependent on the symmetry of the problem induced by our choice of edge poten-
tials; for instance, the results are similar if edge potentials are perturbed from their nominal strengths
by small random quantities.
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Figure 5.6. (a) Simple 5-node graph. (b) Comparison of BP and TRP convergence per-
centages versus function of potential strength on graph in (a). Plotted along the abscissa

as a measure of potential strength is the multi-information D(p(x; �) k
QN

s=1 p(xs; �)).
Both TRP and BP exhibit a threshold phenomenon, with TRP converging for a wider
range of potentials.

� 5.4 Analysis of �xed points and convergence

In this section, we present a number of results related to the geometry and �xed points
of reparameterization algorithms like TRP and BP. The de�ning characteristic of a
reparameterization algorithm is that the original distribution is never altered. Accord-
ingly, we begin in Section 5.4.1 with a formal statement of this property in terms of
exponential parameters, and then establish its validity for the more general class of re-
laxed updates. We also develop the information-geometric interpretation of this result.
Motivated by this geometric view, we show that a TRP update can be viewed as a
projection onto the tree constraint set C i . This projection is de�ned by a particular
cost function, de�ned in Section 5.4.2, that arises as an approximation to the Kullback-
Leibler (KL) divergence. In Section 5.4.3, we show that successive TRP iterates satisfy
a Pythagorean relation with respect to this cost function. This result is of independent
interest because it establishes links to successive projection techniques for constrained
minimization of Bregman distances [e.g., 31]. In Section 5.4.4, we use this Pythagorean
relation to prove that �xed points of the TRP algorithm satisfy necessary conditions to
be a constrained minimum of this cost function. By combining our results with those
of Yedidia et al. [183], we conclude that �xed points of the TRP algorithm coincide
with those of BP. The Pythagorean result also allows us to formulate a set of suÆcient
conditions for convergence of TRP in the case of two spanning trees, which we present
in Section 5.4.5. In Section 5.4.6, we provide an elementary proof of the result originally
developed in [152,176] concerning the behavior of BP for jointly Gaussian distributions.
Finally, in Section 5.4.7, we address the question of when (other than for tree-structured
distributions) the TRP/BP approximations can be exact.
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� 5.4.1 Geometry and invariance of TRP updates

Highlighted by our informal set-up in Section 5.3 is a fundamental property of repa-
rameterization algorithms like TRP and BP | speci�cally, they do not change the
original distribution on the graph with cycles. In this section, we formalize this notion
of invariance, and show that it also holds for the more general class of relaxed updates
in equation (5.20). On the basis of this invariance, we provide an illustration of the
TRP updates in terms of information geometry [7, 34, 45]. This geometric perspective
provides intuition and guides our subsequent analysis of reparameterization algorithms
and their �xed points.

From the perspective of reparameterization, a crucial feature of the exponential
parameterization de�ned in equation (5.7) is its overcompleteness. For this reason,
given a �xed exponential parameter e�, it is interesting to consider the following subset
of Rd(�) :

M(e�) , �� 2 R
d(�) j p(x; �) � p(x; e�)	 (5.24)

where d(�) denotes the length of � as de�ned in equation (5.8). This set can be seen
to be a closed submanifold of Rd(�)| in particular, note that it is the inverse image of
the point e� under the continuous mapping � 7! p(x; �). In order to further understand
the structure ofM(e�), we need to link the overcomplete parameterization to a minimal
parameterization, speci�ed by a linearly independent collection of functions.

We begin with the special case of binary-valued nodes (m = 2). Recall from Exam-
ple 2.2.2 of Section 2.2.1 that the standard minimal representation of a distribution on
a binary vector with pairwise potentials has the form:

p(x; 
) = exp
�X

s


sxs +
X
s;t2E


stxsxt � �(
)
	

(5.25)

Here we use the parameter 
 to distinguish this minimal representation from the over-
complete parameter � used in TRP updates. Similarly, as shown by the discussion
of Section 2.2.1, an m-ary process on a graph with pairwise potentials has a minimal
representation in terms of the collection of functions:

R(s) , fxas j a = 1; : : : ;m� 1g for s 2 V (5.26a)

R(s; t) = fxasxbt j a; b = 1; : : : ;m� 1g for (s; t) 2 E (5.26b)

As in the binary case illustrated above, we let 
 be a parameter vector of weights on
these functions.

In contrast to the overcomplete case, the minimal representation induces a one-to-
one correspondence between parameter vectors 
 and distributions p(x; 
). Therefore,
associated with the distribution p(x; e�) is a unique vector e
 such that p(x; e�) � p(x; e
).
The dimension of the exponential family [see 5] is given by the length of 
, which
we denote by d(
). From equation (5.26), we see that this dimension is given by
d(
) = [ (m� 1)N + (m� 1)2 jEj ]. On the basis of these equivalent representations,
the set M(e�) can be characterized as follows:
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Proposition 5.4.1. The set M(e�) of equation (5.24) is a linear (e-
at) submanifold
of Rd(�) of dimension d(�)� d(
). It has the form f� 2 R

d(�) jA� = e
 g, where A is an
appropriately de�ned d(
)� d(�) matrix of constraints.

Proof. See Appendix C.5.

Based on this proposition, we can provide a geometric statement and proof of the
invariance of TRP updates:

Theorem 5.4.1 (Invariance of distribution). Consider a sequence of TRP iterates
f�ng generated by the relaxed updates:

�n+1 = �nQi(n)(�n) + (1� �n)�n (5.27)

Then the distribution on the full graph with cycles is invariant under the updates: that
is, �n belongs to the set M(�0) = f� 2 Rd(�) j p(x; �) � p(x; �0)g for all n = 1; 2; : : : .
Moreover, any limit point �� of the sequence also belongs to M(�0).
In addition, the same statements hold for the reparameterization form of BP presented
in Section 5.3.4.

Proof. As previously described, the unrelaxed TRP update of equation (5.19) does
indeed leave the distribution unchanged, so that Qi(�) 2 M(�) for all �. The relaxed
update of equation (5.27) is nothing more than a convex combination of two exponential
vectors (�n and Qi(n)(�n)) that parameterize the same distribution, so that by recourse
to Proposition 5.4.1, the proof of the �rst statement is complete. As noted earlier,
M(�0) is a closed submanifold, so that any limit point of the sequence f�ng must also
belong to M(�0). An inductive argument establishes that the reparameterization form
of BP also leaves invariant the distribution on the full graph.

These results together also lead to a geometric understanding of the TRP updates in
the exponential domain (i.e., in terms of the parameter vector �). In order to describe
this geometry, we begin by de�ning an exponential analog of the constraint set C as
follows:

D = f� j � = �(T) for some T 2 C g = �(C ) (5.28)

If a vector � belongs to the set D , then it must satisfy certain nonlinear convex con-
straints (e.g., log[

P
j exp(�s;j)] = 0 for all s 2 V ; and log[

P
j exp(�st;jk + �s;j)

�
= 0 for

all (s; t) 2 E). For each spanning tree constraint set C i , we also de�ne the set D i in an
analogous manner. Note that for any �, the updated Qi(�) is guaranteed to belong to
D i . Moreover, the set-up of the algorithm ensures that D = \iD i .

Figure 5.7 illustrates the geometry of TRP updates. The sequence of iterates f�ng
remains within the linear manifold M(�0). In terms of information geometry [5], this
manifold is e-
at, since it is linear in the exponential parameters. Note that C and each
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Figure 5.7. Geometry of tree-reparameterization updates in the exponential domain.
Iterates are con�ned to the linear manifold M(�0). Curved lines within M(�0) corre-
spond to the intersection D i \ M(�0), for a particular spanning tree constraint set D i .
Each update entails moving along the line between �n and the point Qi(n)(�n) on D i(n) .
Any �xed point �� belongs to the intersection of D = \iD

i with M(�0).

C i are de�ned by linear constraints in terms of the (pseudo)marginal T, and so are
m-
at manifolds. Each set D i , as de�ned in equation (5.28), is the image under � of
the constraint set C i , and so is a curved manifold in terms of exponential parameters.
Therefore, the intersection D i \M(�0) forms a curved line, as illustrated in Figure 5.7.
Each update consists of moving along the straight line between the current iterate
�n, and the point Qi(n)(�n) obtained by applying the tree reparameterization operator
Qi(n). By construction, the vector Qi(n)(�n) belongs to the constraint set D i(n) . The
ultimate goal of a reparameterization algorithm is obtain a point �� in the intersection
\iD i of all the tree constraint sets.

� 5.4.2 Approximation to the Kullback-Leibler divergence

Based on the geometric view illustrated in Figure 5.7, an unrelaxed TRP update corre-
sponds to moving from �n to the point Qi(n)(�n) in the constraint set D i(n) = �(C i(n)).
We now show that this operation corresponds to a type of projection; that is, it can
be formulated as �nding the point in C i(n) that is closest to �n, where \distance" is
measured by a cost function to be de�ned. In particular, the cost function G central to
our analysis arises as an approximation to the Kullback-Leibler (KL) divergence [42],
one which is exact for a tree.

Let T 2 (0; 1)d(�) be a pseudomarginal vector, and let � be a parameter vector for
the original graph G with cycles. As building blocks for de�ning the full cost function,
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we de�ne functions for each node s and edge (s; t) as follows:

Gst(Tst; �st) =
X
j;k

Tst;jk

�
log
�
Tst;jk=(

X
j

Tst;jk)(
X
k

Tst;jk)
�� �st;jk

�
(5.29a)

Gs(Ts; �s) =
X
j

Ts;j
�
log Ts;j � �s;j

�
(5.29b)

We then de�ne the cost function as:

G(T; �) ,
X
s2V

Gs(Ts; �s) +
X

(s;t)2E
Gst(Tst; �st) �

X
�2A

T�
�
�(T)� �

�
�

(5.30)

It can be seen that this cost function is equivalent to the Bethe free energy [183] when
T belongs to the constraint set C , but distinct for vectors T that do not satisfy the
marginalization constraints de�ning membership in C .

To see how G is related to the KL divergence as de�ned in equation (2.31), consider
the analogous function de�ned on spanning tree T i for a vector T 2 C

i :

Gi(�i(T); �i(�)) =
X
s2V

Gs(Ts; �s) +
X

(s;t)2Ei

Gst(Tst; �st) �
X
�2Ai

T�
�
�i(�i(T))� �

�
�

(5.31)

where �i(�) and �i(T) are exponential parameter vectors and marginal vectors, respec-
tively, de�ned on T i. With the exponential parameterization of equation (5.7) applied
to any tree, we have T� = E�i (�i(T))[��(x)] for all indices � 2 Ai. As a result, the

function Gi is related to the KL divergence as follows:

D(�i(�i(T)) k �i(�)) = Gi(�i(T); �i(�)) + �(�i(�)) (5.32)

In establishing this equivalence, we have used the fact that the partition function of the
factorization in equation (2.6) is unity, so that the corresponding log partition function
is zero (i.e., �(�i(�i(T))) = 0). Therefore, aside from an additive constant �(�i(�))
independent of T , the quantity Gi(�i(T); �i(�)), when viewed as a function of �i(T),
is equivalent to the KL divergence.

Now consider the problem of minimizing the KL divergence as a function of T,
subject to the constraint T 2 C i . The KL divergence in equation (5.32) assumes its
minimum value of zero at the vector of correct marginals on the spanning tree |
namely, Pi = �i(�i(�)) 2 C i . By the equivalence shown in equation (5.32), minimizing
the function Gi(�i(T); �i(�)) over T 2 C i will also yield the same minimizing argument
Pi.

For the original graph G with cycles, the cost function G of equation (5.30) is not
equivalent to the KL divergence. The argument leading up to equation (5.32) cannot
be applied because �(�(T)) 6= T for a general graph with cycles. Nevertheless, this
cost function lies at the core of our analysis of TRP. Indeed, we show in Section 5.4.3
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how the TRP algorithm can be viewed as a successive projection technique for con-
strained minimization of the cost function G, in which the reparameterization update
on spanning tree T i as in equation (5.19) corresponds to a projection onto constraint
set C i . Moreover, since G agrees with the Bethe free energy [183] on the constraint set
C , this allows us to establish equivalence of TRP �xed points with those of BP.

� 5.4.3 Tree reparameterization updates as projections

Given a linear subspace L � R
n and a vector y 2 R

n , it is well-known [20] that the
projection bx under the Euclidean norm (i.e., bx , argminx2L kx � yk) is characterized
by an orthogonality condition, or equivalently a Pythagorean relation. The main result
of this section is to show that a similar geometric picture holds for TRP updates with
respect to the cost function G. As a consequence, each iteration of TRP can be viewed
as projecting the current iterate � onto the constraint set C i(n) , where G plays the role
of a squared distance function:

Proposition 5.4.2 (Pythagorean relation). Assume that the sequence f�ng gener-
ated by equation (5.20) with step sizes �n remains bounded. Let i = i(n) be the tree
index used at iteration n. Then for all U 2 C i :

G(U; �n) = G(U; �n+1) + �nG(�i(Qi(�n)); �n) (5.33)

where �i is de�ned in equation (5.17b).

Proof. See Appendix C.2.

An important special case of Proposition 5.4.2 is the unrelaxed update (�n = 1), in
which case equation (5.33) simpli�es to

G(U; �n) = G(U; �n+1) + G(�i(�n+1); �n) (5.34)

A result analogous to equation (5.34) holds for the minimum of a Bregman distance over
a linear constraint set [e.g., 31]. Well-known examples of Bregman distances include the
L2 norm, as well as the Kullback-Leibler (KL) divergence. Choosing the KL divergence
as the Bregman distance leads to the I-projection in information geometry [e.g., 7,34,45].

Even when the distance is not the L2 norm, results of the form in equation (5.34) are
still called Pythagorean, because the function G plays the role (in a loose sense) of the
squared Euclidean distance. This geometric interpretation is illustrated in Figure 5.8.
For the unrelaxed updates, we are guaranteed the existence8 of a pseudomarginal Tn

such that �n = �(Tn). The three points Tn, �i(�n+1) and U analogous to the vertices
of a right triangle, as drawn in Figure 5.8. We project the point Tn onto the constraint

8The image of the unit hypercube (0; 1)d(�) under the map � is not all of Rd(�) , since, for example,
given any pseudomarginal T 2 (0; 1)d(�), we have [�(T)]s;j = log Ts;j < 0. Nonetheless, for unrelaxed
updates producing iterates �n, it can be seen that the inverse image of a point �n under � will be
non-empty as soon as each edge has been updated at least once.
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Figure 5.8. Illustration of the geometry of Proposition 5.4.2. The pseudomarginal
vector Tn is projected onto the linear constraint set C i . This yields the point �i(�n+1)
that minimizes the cost function Gi over the constraint set C i .

set C i , where the function Gi serves as the distance measure. This projection yields the
point �i(�n+1) 2 C i , and we have depicted its relation to an arbitrary U also in C i .

It is worthwhile comparing Figure 5.8 to Figure 5.7, which represent the same ge-
ometry in the two di�erent co-ordinate systems. Figure 5.8 gives a picture of a single
TRP update in terms of pseudomarginal vectors T; in this co-ordinate system, the
constraint set C i is linear and hence illustrated as a plane. Figure 5.7 provides a similar
picture in terms of the exponential parameters. The non-linear mapping �i transforms
this constraint set C i to its analog D i in the exponential domain (i.e., D i = �i(C i)). As
a consequence of the non-linearity, the sets D i in Figure 5.7 are represented by curved
lines in exponential co-ordinates. In Figure 5.7, a single TRP update corresponds
to moving along the straight line in exponential parameters between �n = �(Tn)
and the point Qi(n)(�n) that belongs that D

i \ M(�0). Conversely, in Figure 5.8,
this same update is represented by moving along the curved line between Tn and
�i(�n+1) = Ii(�i(�i(Qi(n)(�n)))).

� 5.4.4 Characterization of �xed points

Returning to the Euclidean projection example at the start of Section 5.4.3, consider
again the problem of projecting y 2 Rn onto the linear constraint set L � Rn . Suppose
that constraint set L can be decomposed as the intersection L = \iLi. Whereas it may
be diÆcult to compute directly the projection bx 2 L, performing projections onto the
larger linear constraint sets Li is often easier. In this scenario, one possible strategy
for �nding the optimal projection bx 2 L is to start at y, and then perform a series
of projections onto the constraint sets fLig in succession. In fact, such a sequence of
projections is guaranteed [e.g., 31] to converge to the optimal approximation bx 2 L.

More generally, a wide class of algorithms can be formulated as successive projec-
tion techniques for minimizing a Bregman distance over a set formed by an intersection
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of linear constraints [e.g., 31]. An example that involves a Bregman distance other
than the Euclidean norm is the generalized iterative scaling algorithm [52], used to
compute projections involving the Kullback-Leibler divergence. A Pythagorean rela-
tion analogous equation (5.34) is instrumental in establishing the convergence of such
techniques [31, 45].

The problem of interest here is similar, since we are interested in �nding a point
belonging to a constraint set formed as an intersection of linear constraint sets (i.e.,
C = \iC i). However, the function G is certainly not a Bregman distance since, for
instance, it can assume negative values. Nonetheless, the Pythagorean result in Propo-
sition 5.4.2 allows us to show that any �xed point �� of the TRP algorithm satis�es the
necessary conditions for it to be a local minimum of G(T; �0) over the constraint set
C . Although the result extends to other orderings, for concreteness we state it here for
a cyclic ordering of spanning trees T 0; : : : ;T L�1: i.e., the tree index for iteration n is
chosen as i(n) = n(modL).

Theorem 5.4.2 (Characterization of �xed points). Let �� be a �xed point of a
sequence of iterates f�ng generated by equation (5.20) with a cyclic tree ordering, and
using step sizes �n 2 [�; 1] for some � > 0.

(a) The point �� is �xed under all the tree operators Qi. (I.e., �� = Qi(��) for all
indices i = 0; : : : ; L�1.) Therefore, each �xed point �� is associated with a unique
pseudomarginal vector T� 2 C .

(b) The pseudomarginal vector T� satis�es the necessary conditions for it to be a local
minimum of G(T; �0) over the constraint set C :X

�2A

@G
@T�

(T�; �0)
�
U�T�

�
�

= 0

for all U in the constraint set C .

(c) Fixed points of the TRP algorithm always exist, and coincide with those of BP.

Proof. See Appendix C.2.

A few remarks about Theorem 5.4.2 are in order. First of all, to clarify the result
stated in (a), the unique pseudomarginal vector T� associated with �� can be con-
structed explicitly as follows. For an arbitrary index �, pick a spanning tree T i such
that � 2 Ai. Then de�ne T �� = [�i(�i(��))]�; that is, T �� is the value of this (single node
or pairwise) marginal for the tree-structured distribution p(x; �i(��)). Note that this is
a consistent de�nition of T �� , because the condition of part (a) means that [�i(�i(��))]�
is the same for all spanning tree indices i 2 f0; : : : ; L � 1g such that � 2 Ai. More-
over, this construction ensures that T� 2 C , since it must satisfy the normalization and
marginalization constraints associated with every node and edge.

Figure 5.9 illustrates this characterization of �xed points in terms of T�. Shown
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Figure 5.9. Illustration of �xed point consistency condition. (a) Fixed point fT �
s ; T

�
stg

on the full graph with cycles. (b) Illustration of consistency condition on an embedded
tree. The quantities fT �

s ; T
�
st g must be a consistent set of marginal probabilities for

any tree embedded within the full graph.

in panel (a) is an example of a graph G with cycles, parameterized according to the
approximate marginals T �st and T �s . Consider the set of edges that must be removed
from G in order to form a given tree T . For instance, Figure 5.9(b) shows the tree
obtained by removing edges (4; 5) and (5; 6) from the graph in (a). Suppose that we
remove the functions T �st=(T �s T �t ) that sit on non-tree edges, and use the remaining
functions to form a tree-structured distribution as follows:

pT (x;T�) =
Y
s2V

T �s (xs)
Y

(s;t)2E(T )

T �st(xs; xt)
T �s (xs)T �t (xt)

(5.35)

Here E(T ) is the edge set of the tree T . The consistency condition of Theorem 5.4.2
then guarantees that the pseudomarginals T �st and T �s correspond to exact marginal
distributions for the tree-structured distribution pT (x;T�). In this case, we say that
the pseudomarginal vector T� is tree-consistent with respect to the tree T .

In fact, this tree-consistency holds for any acyclic substructure embedded within the
full graph with cycles | not just the spanning trees used to implement the algorithm.
Thus, Theorem 5.4.2 provides an alternative and very intuitive view of BP or TRP:
such algorithms attempt to reparameterize a distribution on a graph with cycles so
that it is consistent with respect to each tree. In this regard, part (c) of Theorem 5.4.2
is noteworthy, in that it guarantees that any positive distribution on a graph can be
reparameterized in terms of pseudomarginalsT� that satis�es the tree-based consistency
condition of part (a). Although the existence of such a reparameterization is well-known
for trees, it is by no means obvious for an arbitrary graph with cycles.
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In the context of Theorem 5.4.2, the equivalence of TRP and BP �xed points fol-
lows because G and the Bethe free energy coincide on the constraint set C . It is also
possible to establish this equivalence in a more constructive manner. In particular, any
�xed point fM�

stg of the message updates in equation (5.3) can be transformed into a
pseudomarginal vector T� = fT �s ; T �stg as follows:

T �s;j = �  s;j
Y

u2N (s)

M�
us;j (5.36a)

T �st;jk = �  st;jk  s;j  t;k
Y

u2N (s)=t

M�
us;j

Y
u2N (t)=s

M�
ut;k (5.36b)

The message �xed point condition of equation (5.3) guarantees that the corresponding
T� = fT �s ; T �stg satisfy the edgewise marginalization constraints necessary for member-
ship in the constraint set C . That is, elements of T� are locally consistent with respect
to all the simple two-node trees formed by single edges (s; t) 2 E, as illustrated in Fig-
ure 5.4. From the junction tree perspective [102, 123], we know that local consistency
of marginals on edges is equivalent to global consistency for trees. Therefore, the local
consistency on edges de�ning membership in C implies that the vector T� must be con-
sistent on any singly-connected substructure embedded within G. As a consequence,
the collection of pseudomarginals T� speci�ed by the message �xed point satis�es the
tree-based consistency condition of part (a), as illustrated in Figure 5.9. Even more
generally, a similar line of reasoning establishes that any constrained local minimum of
the Bethe free energy, whether obtained by TRP/BP or an alternative minimization
technique [e.g., 177, 184], can be identi�ed with a pseudomarginal vector T� satisfying
the condition of Theorem 5.4.2.

� 5.4.5 SuÆcient conditions for convergence for two spanning trees

Proposition 5.4.2 can also be used to derive a set of conditions that are suÆcient to
guarantee the convergence in the case of two spanning trees. To convey the intuition of
the proof, suppose that it were possible to interpret the cost function G as a distance
function. Moreover, supposeU were an arbitrary element of C = \iC i , so that we could
apply Proposition 5.4.2 for each index i. Then equation (5.33) would show that the
\distance" between �n and an arbitrary element U 2 C , as measured by G, decreases at
each iteration. As with proofs on the convergence of successive projection techniques for
Bregman distances [e.g., 31, 45], this property would allow us to establish convergence
of the algorithm.

Of course, there are two problems with the use of G as a type of distance: it is not
necessarily non-negative, and it is possible that G(�i(Qi(�)); �) = 0 for some � 6= Qi(�).
With respect to the �rst issue, we are able to show in general that an appropriate choice
of step size will ensure the non-negativity of G(�i(Qi(�)); �) (see Appendix C.4). The
following result then states suÆcient conditions (including assuming that the second
problem does not arise along TRP trajectories) for convergence in the case of two
spanning trees:



Sec. 5.4. Analysis of �xed points and convergence 135

Theorem 5.4.3. Consider the application of TRP with two spanning trees T 0 and T 1.
Suppose that the sequence of iterates f�ng remains bounded, and that:
(a) for i = 0; 1, the condition G(�i(Qi(�n)); �n)! 0 implies that [Qi(�n)� �n]! 0.
(b) there exists some integer K such that the condition

G(�0(Q1(�n)); �n)G(�1(Q0(�n)); �n) > 0

holds for all n � K.
Then there exist choices of the step sizes �n such that the sequence �n converges to some
�� in the desired constraint set. I.e., �� = Qi(��) for i = 0; 1.

Proof. See Appendix C.4, which includes a characterization of the step size choices that
ensure convergence.

This result, though its hypotheses cannot be checked a priori, provides some insight
into the factors that cause failures of convergence when applying TRP/BP. In particular,
the proof of Theorem 5.4.3 shows that assumption (a) is analogous to the gradient-
relatedness condition of standard descent algorithms for nonlinear optimization [20].

� 5.4.6 Implications for continuous processes

The reparameterization approach can be extended and has important implications for
continuous processes as well. In particular, by extension to the Gaussian case, we obtain
an elementary proof of a generalization to TRP of the result [152, 176] that when BP
converges, the means are, in fact, correct. To establish this result, let us consider the
Gaussian analog of TRP. For simplicity in notation, we treat the case of scalar Gaussian
random variables at each node (though the ideas extend easily to the vector case). In
the scalar Gaussian case, the approximate marginal distribution Ts(xs) at each node
s 2 V is parameterized by a mean �s and variance �2s . Similarly, the approximate joint
distribution Tst(xs; xt) can be parameterized by a mean vector �st , [�st;s �st;t]

0, and
a covariance matrix. At each iteration, the edge (s; t) is labeled with the edge function
Tst= eTst;s eTst;t, where eTst;s(xs) = R1�1 Tst(xs; xt)dxt is the marginal distribution over xs
induced by Tst. This edge function is parameterized by the mean vector �st, and a
quadratic form Ast = [ast;s ast ; ast ast;t]. With this set-up, we have:

Proposition 5.4.3. Consider the Gaussian analog of TRP or BP, and suppose that it
converges. Then the computed means are exact, whereas in general the error covariances
are incorrect.

Proof. From the original problem speci�cation, we have

� log p(x) = 1=2 (x� b�)T P�1 (x� b�) + C (5.37)

where P�1 is the inverse covariance; C is a constant independent of x; and b� are the
correct means on the graph with cycles.
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We begin by noting that the Gaussian analog of Theorem 5.4.1 guarantees that this
distribution will remain invariant under the reparameterization updates of TRP (or
BP). At any iteration, the distribution is reparameterized in terms of Ts and the edge
functions as follows:

� log p(x) =
1

2

X
(s;t)2E

�
ast;s(xs � �st;s)

2 + 2ast(xs � �st;s)(xt � �st;t) + ast;t(xt � �st;t)
2

�
+
1

2

X
s

(xs � �s)
2
Æ
�2s + C (5.38)

Note that the pseudomarginal vector fTs; Tstg need not be consistent so that, for ex-
ample, eTst;s(xs) need not equal Ts(xs). However, suppose that TRP (or BP) converges
so that these quantities are equal, which, in particular, implies that �s = �st;s for all
(s; t) such that t 2 N (s). That is, the means parameterizing the edge functions must
agree with the means at the node marginals. In this case, equations (5.37) and (5.38)
are two alternative representations of the same quadratic form, so that we must haveb�s = �s for each node s 2 V . Therefore, the means computed by TRP or BP must be
exact. In contrast to the means, there is no reason to expect that the error covariances
in a graph with cycles need be exact.

It is worth remarking that there exist highly eÆcient techniques from numerical lin-
ear algebra (e.g., conjugate gradient [56]) for computing the means of a linear-Gaussian
problem on a graph. Therefore, although TRP and BP compute the correct means (if
they converge), there is little reason to apply them in practice. There remains, however,
the interesting problem of computing correct error covariances at each node: we refer
the reader to [174] for description of an embedded spanning tree method that eÆciently
computes both means and error covariances for a linear-Gaussian problem on a graph
with cycles.

� 5.4.7 When does TRP/BP yield exact marginals?

It is clear that the TRP/BP algorithm will yield the exact single node marginals of
any p(x) de�ned on a tree-structured graph. In this section, we address of the question
of whether there exist particular problems on graphs with cycles for which a TRP/BP
solution will be exact. If so, how large is the set of such problems? Theorems 5.4.2
and 5.4.1 provide the insights that are key to our analysis; these theorems place very
severe restrictions on cases where TRP/BP �xed points can be exact.

Let T� 2 C be a consistent �xed point of the TRP algorithm in the sense of
Theorem 5.4.2. Let Ps denote the actual marginals of the given distribution p(x). We
begin by de�ning two distinct notions of exactness:

De�nition 5.4.1 (Exactness).

(a) The point T� is weakly exact if all the single node marginals are correct. I.e.,

T �s;j = Ps;j for all s 2 V; j = 0; 1 (5.39)
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(b) The point T� is strongly exact if all the marginals, both single node and pairwise,
are correct. I.e., in addition to equation (5.39), we have

T �st;jk = Pst;jk for all (s; t) 2 E; j; k = 0; 1 : : : m� 1 (5.40)

The �xed point characterization of Theorem 5.4.2 provides a straightforward tech-
nique for constructing TRP/BP �xed points. In particular, we simply specify a dis-
tribution in terms of a vector T� 2 C that is locally consistent (see equation 5.12) as
follows:

p(x;T�) /
Y
s2V

T �s (xs)
Y

(s;t)2E

T �st(xs; xt)
T �s (xs)T �t (xt)

(5.41)

Since T� belongs to C , it is consistent on any spanning tree embedded within the
graph (i.e., it belongs to the constraint set C i corresponding to tree T i) and therefore
is guaranteed to be a �xed point of the TRP updates. The invariance result of Theo-
rem 5.4.1 guarantees that any distribution can be put into the form of equation (5.41)
without altering the distribution. As a consequence, the question of exactness reduces
to understanding when the T �s and T �st are equivalent to the corresponding marginal
distributions of Ps and Pst of p(x;T

�).

Example 5.4.1 (Symmetric cases). By exploiting the fact that TRP/BP updates
preserve any symmetries in the problem, it is easy to develop symmetric examples that
are weakly exact. For example, for a binary-valued vector x de�ned on any graph, let
us specify a set of symmetric pseudomarginals as follows:

T �s = [0:5 0:5]0 (5.42a)

T �st =

 
� 0:5� �

0:5� � �

!
(5.42b)

where � 2 [0; 0:5] is arbitrary. It is clear that the corresponding vector T� for any such
problem instance is an element of C , and a �xed point of TRP. Moreover, for such a
choice of T�, symmetry considerations dictate that the actual single-node marginals of
p(x;T�), formed as in equation (5.41), will be uniform [0:5 0:5]0. Therefore, TRP/BP
is weakly exact for any such problem instance.

We now investigate the relation between the joint pairwise pseudomarginals T �st, and
the actual marginals Pst. From equation (5.36b), it can be seen that any pseudomarginal
T �st is always related to the original compatibility function  st via:

T �st;jk = �  st;jk �s;j�t;k

for some vectors �s; �t, and normalization constant �. For any tree-structured dis-
tribution, a relation of this form also holds for the actual marginals.9 Indeed, a tree-
structured distribution is characterized by the property that the dependency between

9This is necessarily the case, since TRP/BP is exact for tree-structured problems.
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x1bx1a

x3a

x3b

x2a

x2b

Figure 5.10. Degeneracy of compatibility functions for a 4-state process. Each random
variable xs is decomposed into two random components xsa and xsb, each of which is a
binary random variable. These subcomponents are coupled by compatibility functions
indicated in lines. Example courtesy of Tommi Jaakkola.

xs and xt, for any pair of nodes (s; t) 2 E, is mediated entirely by the compatibility
function  st. Indeed, if the compatibility function  st is removed, then xs and xt will
be independent in the new distribution.

This intuition motivates us to de�ne a notion of degenerate compatibility functions,
for which TRP/BP will be exact for uninteresting reasons. To understand the idea of
degeneracy, �rst consider a distribution p(x) of a binary-valued vector x for which at
least one compatibility function  st is rank one. I.e.,  st be written as the outer product
 st = 's '

0
t for a pair of 2�vectors 's and 't. These 2�vectors can be absorbed into

the single-node functions  s and  t, so that edge (s; t) can e�ectively be removed from
the graph. Thus, for example, for a binary process, any distribution on a single cycle
with at least one rank one compatibility function is equivalent to a tree-structured
distribution.

The picture for m-ary processes is a bit more complicated. Here it is possible that
all compatibility functions have a rank larger than one, and yet the overall distribution
still exhibits degeneracies. Figure 5.10 illustrates a particular example of this degener-
ate behavior. The graph is a single cycle formed of three nodes, for which the associated
random variables fxs; s = 1; 2; 3 g each assume 4 states. Each xs is decomposed into
two random components xsa and xsb, each of which is a binary random variable. The
connections between the random variables xs are shown in solid lines. For instance, x2b
is directly coupled to x3b, but not to x3a. None of these compatibility functions are rank
one, so that the associated edges cannot be removed without altering the distribution.
However, any distribution on this graph still has the property that removing the com-
patibility function between any pair of variables xu and xv leaves them independent in
the new distribution.

These illustrative examples motivate the following:

De�nition 5.4.2 (Degeneracy). A set of compatibility functions (or the associated
distribution) is degenerate if for at least one (s; t) 2 E, the compatibility function  st
(viewed as a m�m matrix) has rank strictly less than m.

The signi�cance of De�nition 5.4.2 will become clear in the proof of Proposition 5.4.4,
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which relies on the fact for a non-degenerate distribution on a tree, two random vari-
ables xu and xv (for arbitrary u; v 2 V ) are never independent.10 Therefore, given a
non-degenerate distribution de�ned by a a single cycle, it is never possible to make a
pair of random variables xu and xv independent by removing only a single edge.

Proposition 5.4.4 (No exact pairwise marginals on single cycles).

Consider a distribution p(x) of a binary-valued vector x de�ned by a set of non-
degenerate compatibility functions on a single cycle. Let T� be TRP/BP �xed point
for this problem. Then none of the joint pairwise marginals are correct (i.e., T �st 6= Pst
for all (s; t) 2 E).
Proof. A remark on notation before proceeding: throughout this proof, we shall treat
the quantities T �st(xs; xt) as functions of (xs; xt), rather than matrices. Let (u; v) 2 E
be an arbitrary edge. By de�nition, we have:

Puv(xu; xv) =
X

fx0 j (x0u;x0v)=(xu;xv)g
p(x0;T�) (5.43a)

= �

" X
(x0u;x

0
v)=(xu;xv)

Y
s2V

T �s (x
0
s)

Y
(s;t)2En(u;v)

T �st(x0s; x0t)
T �s (x0s)T �t (x0t)

#
T �uv(xu; xv)
T �u (xu)T �v (xv)

(5.43b)

where � is a normalization constant. The quantity within square brackets is the joint
marginal distribution bTuv(xu; xv) of a distribution structured according to the tree T
speci�ed by the subset of edges E(T ) = En(u; v). For future reference, we refer to this
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Figure 5.11. Relevant graphs for analyzing non-exactness of pairwise marginals on
a single cycle. (a) Distribution p(x;T�) on graph G. (b) Tree-structured distribution
p(x; �T (T�)) formed by removing edge (u; v) = (3; 4).

10The same statement does not hold for a graph with cycles, as Example 5.4.2 will demonstrate.
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tree-structured distribution as pT (x;T�x). We rewrite equation (5.43b) as:

Puv(xu; xv) = � bTuv(xu; xv) T �uv(xu; xv)
T �u (xu)T �v (xv)

(5.44)

We now proceed via proof by contradiction. If Puv(xu; xv) = T �uv(xu; xv) for all
xu; xv , then equation (5.44) reduces to

bTuv(xu; xv) = T �u (xu)T
�
v (xv) (5.45)

which implies that xu and xv are statistically independent under the tree-structured
distribution pT (x;T�). This can occur only if at least one of the potential functions T �st
for (s; t) 2 En(u; v) is degenerate. This degeneracy contradicts the assumptions of the
proposition, allowing us to conclude that Puv 6= T �uv for all (u; v) 2 E.

Interestingly, the proof of Proposition 5.4.4 is not valid for graphs with multiple
cycles. The �nal step of the proof is based on the fact that for a tree-structured
distribution, the condition of xu and xv being independent is equivalent to degeneracy
(in the sense of De�nition 5.4.2) of the compatibility functions.

This property is not true for graphs with cycles, so that if we try to extend Propo-
sition 5.4.4 to graphs with multiple cycles, the proof breaks down at the �nal stage.
Indeed, for a graph with cycles, it is possible to construct a distribution such that xu
and xv are independent, even though all the compatibility functions in the graph are
non-degenerate (i.e., full rank).

Example 5.4.2. In this example, we shall construct a family of problems for which
the TRP pseudomarginals are correct for all single nodes, and for all but a single edge.
I.e., the TRP solution is weakly exact, and strongly exact with the exception of a single
edge.

Consider the 2-cycle graph shown in Figure 5.12(a), and a distribution p(x;T�) of
a binary vector x parameterized in terms of a TRP �xed point T�. We specify the set
of pseudomarginals as follows:

T �s = [0:5 0:5]0 for all s 2 V (5.46a)

T �st =

 
� 0:5� �

0:5� � �

!
for all (s; t) 2 En(3; 4) (5.46b)

T �34 =

 
� 0:5� �

0:5� � �

!
(5.46c)

The parameter � 2 (0; 0:5) is arbitrary; we shall specify � 2 (0; 0:5) as a function of �.
It can be seen that the vector T� is an TRP �xed point, and is therefore consistent

on any embedded tree. Consider now the following procedure for obtaining the exact
marginals at nodes 3; 4; 5 and 6. We split the graph of Figure 5.12(a) into two subgraphs,
as illustrated in panel (b). We marginalize the distribution over nodes 1 and 2, which
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yields a 2� 2 matrix Q34 (a function of x3 and x4) that is passed as a message to the
remaining nodes in the lower subgraph.

We now choose �, thereby specifying T �34, in such a way to ensure that:

Q34;jk

T �34;jk
T �3;jT

�
4;k

= �

where � is a normalization constant. Since the single node marginals are uniform, this
is equivalent to T �34;jk = �0=Q34;jk, where �

0 is chosen so that the entries of T �34 sum to
one.

With this choice of T �34, the quantity Q34 e�ectively cancels out the compatibility
function on edge (3; 4). To complete the computation of the actual marginals, we simply
need to operate over the tree shown in Figure 5.12(c). The compatibility functions on
this tree are already in standard form, so that the pseudomarginals f T �s j s = 3; 4; 5; 6 g
and f T �st j (s; t) 2 f(3; 5); (4; 5); (5; 6)g g must be equivalent to the exact marginals Ps
and Pst. By symmetry, a similar argument applies to the upper subgraph. Therefore,
all of the single node marginals T �s agree with the actual ones, and all of the joint
pairwise marginals T �st, except T �34, are correct.

As a concrete numerical example, it can be veri�ed that with � = 0:4, the choice
� = 0:196 yields a graph with the above property. It makes intuitive sense that � < 0:25,
since the compatibility function on edge (3; 4) serves to weaken the dependencies that
build up between the other two indirect paths between 3 and 4.
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Figure 5.12. Example of a graph and compatibility functions for which a TRP/BP
solution is nearly exact. (a) Original graph parameterized in terms of a TRP �xed point
T�. (b) Computing exact marginals on the graph by decomposing into two separate
subgraphs. The top subgraph sends a message Q34 to the bottom graph. We choose

the compatibility functions to ensure that Q34
T�
34

T�
3
T�
4

is a constant function. (c) The

cancellation leaves us with a tree.
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� 5.5 Analysis of the approximation error

An important but very diÆcult problem is analysis of the errors that arise from approx-
imation techniques such as BP and TRP. To date only a few results, as described brie
y
in Section 5.1, are available regarding this error. Empirical simulations show that BP
gives good approximations for certain graphs (e.g., those with long cycles relative to
potential strength); in other cases, however, the approximations can be very poor. In
the absence of error analysis, it is impossible to gauge the validity of the approximation.
In this section, we provide a contribution to this important problem.

Our analysis of the approximation error is based on two fundamental properties of
a �xed point ��. First of all, part (a) of Theorem 5.4.2 dictates that for an arbitrary
spanning tree T i, the single node elements ��s;j = log T �s;j correspond to a consistent set
of marginal distributions on the spanning tree. That is, the quantities T �s;j have two
distinct interpretations:

(a) as the BP or TRP approximations to the exact marginals on the original graph
with cycles.

(b) as the single node marginals of the tree-structured distribution pT (x;T�), as
de�ned in equation (5.35), for any tree T

Secondly, by the invariance stated in Theorem 5.4.1, the distribution p(x; ��) induced by
the �xed point �� is equivalent to the original distribution p(x; �0). In conjunction, these
two properties imply that the exact marginals on the full graph with cycles are related
to the approximations T �s;j by a relatively simply perturbation | namely, removing the
functions T �st=T �s T �t on edges not in the spanning tree. On this basis, we �rst derive an
exact expression relating expectations under two di�erent distributions, from which we
proceed to derive lower and upper bounds on the approximation error.

In the development to follow, we will use the notation and perspective of the
TRP algorithm. However, it should be noted that like Theorems 5.4.2 and 5.4.1, our
analysis of the approximation error is again algorithm-independent. That is, it applies
to any local minimum of the Bethe free energy, whether obtained by TRP/BP or an
alternative minimization technique.

� 5.5.1 Exact expression

Our treatment begins at a slightly more general level, before specializing to the case of
marginal distributions and the TRP algorithm. Consider a function f : XN ! R, and
two distributions p(x; e�) and p(x; �). Suppose that we wish to express the expectation
E
e�
[f(x)] in terms of an expectation over p(x; �). Using the exponential representation

of equation (5.6), it is straightforward to show that

E
e�
[f(x)] = E �

�
exp

�X
�

(e� � �)���(x) + �(�)� �(e�)	 f(x)

�
(5.47)
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Note that this is a change of measure formula, where the exponentiated quantity can
be viewed as the Radon-Nikodym derivative.

We now specialize equation (5.47) to the problem at hand. Let us denote the actual
single node marginal p(xs = j; �0) on the graph with cycles by

Ps;j , E �0 [Æ(xs = j)] = E �� [Æ(xs = j)] (5.48)

where Æ(xs = j) is the indicator function for node xs to take value j. To derive
equation (5.48), we have used the invariance property (i.e., p(x; �0) = p(x; ��)) of
Theorem 5.4.1. Assume that TRP (or BP) converges to some exponential parameter
��, with associated pseudomarginal vector T�. In this case, Theorem 5.4.2 guarantees
that the single-node elements of T� can be interpreted as the following expectations:11

T �s;j , E�i (��)[Æ(xs = j)] (5.49)

We now make the assignments e� = ��; � = �i(��); and f(x) = Æ(xs = j) in equa-
tion (5.47) and re-arrange to obtain

Ps;j � T �s;j = E�i (��)

h�
exp

� X
�=2Ai

�����(x)� �(��)
	� 1

�
Æ(xs = j)

i
(5.50)

where we have used the fact that �(�i(�)) = 0. Equation (5.50) is an exact expres-
sion for the error (Ps;j � T �s;j) in terms of an expectation over the tree-structured dis-

tribution p(x; �i(��)). Note that equation (5.50) holds for all spanning tree indices
i 2 f0; : : : ; L� 1g.

� 5.5.2 Error bounds

It is important to observe that equation (5.50), though conceptually interesting, is of
limited practical use. The problem stems from the presence of the residual term

ri(x) , expf
X
�=2Ai

�����(x)g

within the expectation on the right-hand side. For most problems, computing the ex-
pectation of ri(x) will not be tractable, since it is a function of all nodes xs incident
with any edge removed to form spanning tree T i. Indeed, if the computation of equa-
tion (5.50) were easy for a particular graph, this would imply that we could compute
the actual marginals, thereby obviating the need for an approximation technique such
as BP/TRP.

This intractability motivates the idea of bounding the approximation error. In order
to do so, we make use the bounds derived in Chapter 3, particularly Proposition 3.3.1.

11The tree-based consistency condition of Theorem 5.4.2 ensures that T �s;j = E�i (��)[Æ(xs = j)]
independent of the choice of spanning tree index i 2 f0; : : : ; L � 1g.
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In order to state these bounds on the approximation error, it is convenient to de�ne
a quantity that, for each spanning tree T i, captures part of the di�erence between
the exact node marginal Ps;j (corresponding to p(x; ��)) and the approximation T �s;j
(corresponding to the tree-structured distribution p(x; �i(��))). Recall that the set
f�� j � 2 AnAi g corresponds to the set of potentials that were removed from the full
graph G in order to form the spanning tree T i. Accordingly, we de�ne a quantity �i

s;j

as a weighted sum of covariance terms involving those potentials removed to form the
tree distribution:

�i
s;j ,

X
�2AnAi

��� cov�i(��)fÆ(xs = j); ��(x)g (5.51)

With this de�nition, we have the following error bounds on the approximation error:

Theorem 5.5.1 (Error bounds). Let �� be a �xed point of TRP/BP, giving rise to
approximate single-node marginals T �s;j, and let Ps;j be the true marginal distributions
on the graph with cycles. For each spanning tree index i 2 f0; 1; : : : ; L� 1g, the error
Es;j , log T �s;j � logPs;j is bounded above and below as follows:

Es;j � D(�i(��) k ��)� �i
s;j

T �s;j
(5.52a)

Es;j � log T �s;j � log

�
1� (1� T �s;j) exp

�
�D(�i(��) k ��)� �i

s;j

1� T �s;j

��
(5.52b)

Proof. The bounds of this theorem follow by appropriately applying Proposition 3.3.1
from Chapter 3. We �rst make the identi�cations e� = �� and � = Ii(�i(��)), and
then set f(x) = Æ(xs = j), a choice which satis�es the assumptions of Proposition 3.3.1.
Equation (5.52a) then follows by applying Proposition 3.3.1, followed by some algebraic
manipulation. The lower bound follows via the same argument applied to the function
f(x) = 1� Æ(xs = j), which also satis�es the restrictions of Proposition 3.3.1.

A number of remarks about Theorem 5.5.1 are in order. For practical purposes, the
primary consideration is the cost of computing these lower and upper bounds. The terms
in the summation de�ning �i

s;j are tractable. In particular, each of the covariances
can be calculated by taking expectations over tree-structured distributions, and their
weighted summation is even simpler. On the other hand, within the KL divergence
D(�i(��) k ��) lurks a log partition function �(��) associated with the graph with
cycles. In general, computing this quantity is as costly as performing inference on the
original graph. To obtain computable bounds, we require an upper bound on the log
partition function. In Chapter 7, we derive a set of such upper bounds, which allow us
to compute upper bounds on the results of Theorem 5.5.1.

On the conceptual side, Theorem 5.5.1 highlights three factors that control the
accuracy of the TRP/BP approximation. For the sake of concreteness, consider the
upper bound of equation (5.52a):
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(a) the covariance terms de�ning �i
s;j re
ect the strength of the interaction, as

measured under the tree distribution p(x; �i(��)), between the delta function
Æ(xs = j) and the clique potential ��(x). When the removed clique potential
interacts only weakly with the delta function, then this covariance term will be
small and so have little e�ect.

(b) the parameter ��� is the amount of weight placed on each clique potential �� that
was removed to form the spanning tree.

(c) the KL divergence D(�i(��) k ��) measures the discrepancy between the tree-
structured distribution p(x; �i(��)) and the distribution p(x; ��) on the graph with
cycles. It will be small when the distribution p(x; ��) is well-approximated by a
tree. The presence of this term re
ects the empirical �nding that BP performs well
on graphs that are approximately tree-like (e.g., graphs with fairly long cycles).

A number of extensions to the bounds presented in Theorem 5.5.1 are possible.
First of all, it is worthwhile emphasizing that Theorem 5.5.1 provides L bounds on the
single-node marginal Ps;j | one for each of the L spanning trees used in the algorithm.12

This allows us to choose the tightest of all the spanning tree bounds for a given index
(s; j). Point (a) above suggests that one should expect tighter bounds when using a
tree formed by removing edges \relatively far" away from node s of interest. Indeed,
the covariance between Æ(xs = j) and the removed clique potential �� captures this
notion in a precise fashion.

Secondly, the change of measure expression in equation (5.47), as well as the methods
used to prove Theorem 5.5.1, are both valid for more general choices of the function
f : XN ! [0; 1]. Di�erent choices will allow us to derive bounds on the error of other
approximate marginals. For instance, making the choice f(x) = Æ(xs = j) Æ(xt = k)
will lead to bounds on the pairwise marginal Pst;jk. Thirdly, note that the bounds
of Theorem 5.5.1 are �rst-order, because they account for the interaction between the
function f and clique potentials �� only up to �rst order (i.e., cov�ff; ��g). On the
basis of equation (5.50), it is possible to derive stronger bounds by including higher order
terms (as in [e.g., 124]), though with an associated price of increased computation. A
thorough analysis of various bounds and the inherent tradeo�s is open for future work.

� 5.5.3 Illustrative examples of bounds

The tightness of the bounds given in Theorem 5.5.1 varies, depending on the graph
topology, the choice of clique potentials, and the choice of spanning tree. In this section,
we give some simple numerical illustrations. In all cases, we use the results of Chapter 7
to compute an upper bound on the log partition function �(��), so that the results of
Theorem 5.5.1 are actually computable. Observe that bounds of Theorem 5.5.1 can be
transformed into lower and upper bounds on the exact marginals. Speci�cally, a lower

12More generally, results of the form of Theorem 5.5.1 hold for any acyclic subgraph embedded within
the graph, not just the spanning trees used to implement the algorithm.
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bound (respectively upper bound) on the log error Es;1 = log T �s;1 � logPs;1 gives rise
to an upper bound (respectively lower bound) on the actual marginal via the relation
Ps;1 = T �s;1 expf�Es;1g.

Varying the clique potentials

We �rst consider the choice of clique potentials. Figure 5.13 illustrates the behavior
of TRP and the corresponding error bounds for a binary-valued process on the 3 � 3
grid shown in panel (a) for di�erent settings of clique potentials. Shown in panels
(b) through (d) are the actual marginals Ps;1 = p(xs = 1; ��) compared to the TRP
approximations T �s;1 plotted on a node-by-node basis. We have also used the TRP/BP
�xed point to compute lower and upper bounds on Ps;1; these bounds on the actual
marginal are plotted in panels (b) through (d) as well.

Panel (b) illustrates the case of weak potentials, so that TRP /BP leads to the very
accurate approximation of the exact marginals Ps;1. The gap between the corresponding
lower and upper bounds on the exact marginals is narrow, which assures us that the
approximation is excellent. Panel (c), in contrast, displays the more interesting choice
of strong attractive clique potentials, for which TRP/BP approximations tend to be
skewed towards an extreme value (one in this case). The gap between the upper and
lower bounds on the exact marginals is large in comparison to those shown in panel
(b). Despite the relative looseness of the bounds, note how the TRP/BP approximate
marginals T �s;1 exceed the upper bounds13 for certain nodes (in particular, nodes 5
through 9). Consequently, the error bounds inform us that the BP approximation is
very inaccurate for these nodes.

Panel (d) displays the case of strong mixed potentials, where the TRP/BP approx-
imation is again inaccurate. Once more, the TRP/BP approximation lies outside the
window of bounds for the actual marginal for certain nodes (e.g., nodes 4,5,7,8).

Choice of spanning tree for bounds

As mentioned earlier, bounds of the form in Theorem 5.5.1 hold for any spanning tree
(or more generally forest) embedded within the graph G. Here we show that the choice
of spanning tree can also make a signi�cant di�erence in the tightness of the bounds.
Shown in panels (a) and (b) of Figure 5.14 are the actual marginals Ps;1 and TRP/BP
approximations T �s;1 for a particular binary problem on the 3 � 3 grid. Note that the
TRP/BP approximation is very good in this case.

As in the previous section, we also used the TRP/BP �xed point to calculate upper
and lower bounds on the actual marginal Ps;1; here we investigated the e�ect of varying
the spanning tree used to compute the bound. Our choice of spanning tree was based
on the following heuristic. We �rst computed the minimal exponential parameter 
�

(as in equation (5.25)) corresponding to the overcomplete representation p(x; ��). We

13It is possible for the approximations to exceed the bounds, because the bounds are on the exact
marginals Ps;1.
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Figure 5.13. Behavior of the bounds of Theorem 5.5.1 for the 3�3 grid shown in panel
(a) under various settings of clique potentials. Panels (b) through (d) show the actual
marginals Ps;1 versus the TRP approximations T �

s;1, as well as upper and lower bounds
on the exact marginals. (b) For weak potentials, TRP gives a good approximation, and
the gap between the lower and upper bounds on the exact marginals is very narrow.
(c) For strong attractive potentials, the approximation is poor, and the gap becomes
relatively large. (d) Similarly, the approximation is also poor for strong mixed potentials.
Note how for certain nodes in (c) and (d), the TRP/BP approximation lies above the
upper bounds on the actual marginal Ps;1.
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Figure 5.14. The narrowness of the bounds can depend strongly on the choice of
spanning tree. Both panels show the exact marginals Ps;1 compared to the TRP/BP
approximations T �

s;1 on a node-by-node basis, as well as lower and upper bounds on
the actual marginals. (a) The maximum weight spanning tree in the graph yields very
narrow bounds. (b) The minimum weight spanning tree yields very poor bounds.

then computed the maximum and minimum weight spanning trees with Kruskal's al-
gorithm [108,117], using j
�stj as the weight on edge (s; t). Panels (a) and (b) show the
lower and upper bounds on the exact marginals obtained from the TRP solution using
the maximum and minimum weight spanning trees, respectively. The disparity between
the two sets of bounds is striking. Further work should address techniques for choosing
spanning trees that yield relatively tight bounds.

Uses of error analysis

The preceding examples serve to illustrate the general behavior of the bounds of The-
orem 5.5.1 for some small problems, for which the bounds provided useful quantitative
information. Computing these quantities requires upper bounding the log partition
function �(��), using techniques from Chapter 7. For this reason, it is possible that for
very large problems with strong potentials, the upper and lower bounds (e.g., on the
exact marginal Ps;1) will tend towards to 1 and 0 respectively. In this case, they would
no longer be quantitatively useful.

Nonetheless, the error analysis could still be useful in certain contexts. First of all,
one direction to explore is the possibility of using our exact error analysis to derive,
rather than upper and lower bounds, correction terms to the BP approximation. For
instance, the term �i

s;j de�ned in equation (5.51) is a computable �rst-order correction
term to the BP approximation. Understanding when such corrections are useful is an
interesting open problem. Secondly, several researchers [132,183] have proposed exten-
sions to BP; we will analyze these techiques from the reparameterization perspective in
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Chapter 6. Since the partition function is �xed regardless of the approximation (when
speci�ed in a minimal exponential representation), it plays no role in the relative er-
ror between the accuracy of di�erent approximations. Therefore, these bounds could
be useful in assessing when a more structured approximation, like generalized belief
propagation [183], yields more accurate results.

� 5.6 Discussion

This chapter developed a new conceptual framework for understanding belief propaga-
tion and related algorithms, based on their interpretation as performing a sequence of
reparameterization updates. Each step of reparameterization entails specifying a new
set of compatibility functions for an acyclic subgraph (i.e., tree) of full graph. The
key property of these algorithms is that the original distribution is never changed, but
simply reparameterized. The ultimate goal is to obtain a new factorization in which
the functions on cliques represent approximations to the exact marginals. In particu-
lar, these pseudomarginals, which are computed by any reparameterization algorithm,
must be consistent on every tree embedded within the graph with cycles. This tree
consistency strongly constrains the nature of the approximation. The combination of
the invariance result and the tree consistency enabled us to derive an exact expres-
sion for the error between the TRP/BP approximations and the exact marginals on an
arbitrary graph with cycles. We also developed upper and lower bounds on this ap-
proximation error, and provided illustrations of their behavior. In conjunction with the
results of Chapter 7, these error bounds are computable, and thus provide potentially
useful information on the performance of TRP/BP.

The theoretical results of this chapter followed very naturally from the perspective
of tree-based reparameterization. However, it should be noted that most of these results
| most importantly, the invariance and tree consistency of the �xed points, as well as
the associated error analysis | are, in fact, algorithm-independent. To be precise, the
same results apply to any local minimum of the Bethe free energy, regardless of the
algorithm [e.g., 177, 184] used to �nd it. Moreover, this chapter focused exclusively
on reparameterization algorithms which involved only singleton and pairwise cliques.
However, as we will see in Chapter 6, the ideas and results from this chapter can be
extended to more advanced approximation techniques that either operate over larger
cliques [183], or make use of more complex approximating structures [132]. We shall
extend the same �xed point characterization, invariance and error analysis to these
higher-order reparameterization algorithms.
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Chapter 6

Exploiting higher-order structure for

approximate estimation

� 6.1 Introduction

The focus of Chapter 5 was one of the most widely-studied algorithms for the approx-
imate computation of marginal distributions | namely, the belief propagation (BP)
or sum-product algorithm [e.g., 3, 131, 147, 175, 183]. It is well-documented that the
performance of BP varies considerably, depending both on the graph topology and the
settings of the potentials. It is therefore desirable to develop principled methods for
improving the approximation.

In this chapter, we present a framework for developing and analyzing a large class of
more advanced algorithms for approximate inference. Each approximation is speci�ed
by a subgraph of the original graph (known as the core structure) and a corresponding
set of residual cliques, such that the union of the core and the residual terms covers
the clique set of the full graph. This framework is quite general, in that it includes a
large number of approximations, including the Bethe free energy associated with belief
propagation, as well as more advanced methods such as Kikuchi approximations [183],
and the structured approximations of Minka [132]. Although techniques that exploit
more structure than the Bethe free energy entail a higher computational cost, the hope
is that they lead to better approximations to the actual marginal distributions.

Worthy of note is that the notion of reparameterization from Chapter 5 carries over
to these more advanced approximations in a very natural way. As a consequence, many
of the important results from Chapter 5 also have analogs for these more advanced
methods. For instance, a central result of Chapter 5 was that TRP/BP updates do not
alter the distribution on the full graph with cycles. This invariance had a number of
important consequences, perhaps the most important of which being its role in char-
acterizing the approximation error. All of the approximations that we consider in this
chapter satisfy a generalized form of this invariance. As with our work in Chapter 5,
this invariance allows us to derive an exact expression for the approximation error, as
well as upper and lower bounds. By recourse to the results of Chapter 7, these bounds
can be computed eÆciently. Indeed, we shall provide examples for which the error
analysis provide valuable information for assessing when the use of a more advanced
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technique is appropriate.

� 6.1.1 Variational formulation

The goal of this chapter is to compute approximations to the single node marginals of
a given distribution p(x). I.e., we want to compute:

p(xs) =
X

f x0j x0s=xsg
p(x0) (6.1)

Despite its simple formulation, this problem is diÆcult because the number of terms in
the summation ( O(mN )) explodes exponentially in the number N of nodes.

As in Chapter 5, the variational problem that underlies the approximations that we
shall consider is that of minimizing the Kullback-Leibler (KL) divergence between p(x)
and some approximating distribution q(x). For discrete-valued random vectors x, this
divergence is given by:

D(q k p) =
X
x2XN

q(x) log
q(x)

p(x)
(6.2)

It is well-known [42] that the KL divergenceD(q k p) is non-negative, and equal to zero if
and only if q = p. Therefore, if we actually performed this unconstrained minimization,
we would simply recover the quantity p(x) which, as a vector with mN elements, is so
large as to be impossible to store or manipulate. Therefore, this initial try does not
bring us much closer to computing local marginal distributions.

While this direct approach is not helpful, other approximate formulations turn out
to be fruitful. The Bethe free energy [183] is a particular approximation to the KL
divergence. It depends on a set of pseudomarginals ~Q = fQs; Qstg, which are required
to be locally consistent (i.e.,

P
x0t
Q(xs; x

0
t) = Qs(xs)). We use these pseudomarginals

to specify a distribution q on the graph:

q(x) =
1

Z(~Q)

Y
s2V

Qs(xs)
Y

(s;t)2E

Qst(xs; xt)

Qs(xs)Qt(xt)
(6.3)

If G is a tree, then not only are we guaranteed that the pseudomarginals ~Q are globally
consistent (i.e., they are a valid set of marginals for some distribution over G), but in
fact they correspond to the marginals of q. In this case, the associated partition function
Z(~Q) is equal to one. On the other hand, if G is not tree-structured, the ~Q may not
satisfy global consistency; moreover, even if they do satisfy this property, they may not
be the correct marginals associated with q. Nevertheless, it is the pseudomarginals ~Q
on which the Bethe free energy focuses.

The Bethe free energy arises from substituting the factorization of q given in equa-
tion (6.3) into the KL divergence D(q k p). There are a few catches: in performing
this substitution, we neglect the fact that for a graph with cycles the partition function
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Z(~Q) is not equal to one (as it would be for a tree); and we assume that the pseudo-
marginals fQs; Qstg are, in fact, the exact marginals of q. Therefore, the Bethe free
energy is, in general, only an approximation to the KL divergence. Since minimizing
the KL divergence would yield the true distribution p, the hope is that minimizing
the Bethe free energy, as an approximation to this divergence, will yield minimizing
arguments ~Q� that are approximations to the true marginals. As shown by Yedidia
et al. [183], belief propagation is one particular algorithm for attempting to solve this
minimization problem.

The approaches described in this chapter are based on this same guiding principle.
In particular, we approximate the KL divergence of equation (6.2) using cost functions
that depend only on (relatively) local pseudomarginal functions. The aim is then to
minimize these cost functions so as to obtain approximations to the marginals of p.

� 6.1.2 Related work

A number of improvements to the Bethe free energy have been proposed in previous
work. First of all, Yedidia et al. [183] developed extensions based on Kikuchi ap-
proximations [115] from statistical physics. Note that the representation of q given
in equation (6.3) depends only on single node and pairwise pseudomarginals (Qs and
Qst respectively); as a result, the Bethe free energy is a function only of these local
quantities. Kikuchi approximations extend the Bethe free energy in a natural way by
including higher order terms (i.e., marginals over larger subsets of nodes). Yedidia et al.
developed a message-passing algorithm, analogous to BP, for minimizing such Kikuchi
approximations, and found empirically that Kikuchi approximations typically lead to
more accurate estimates of the marginal distributions. Secondly, several researchers
have observed that belief propagation corresponds to updating a fully factorized ap-
proximation [e.g., 78, 132, 133, 147]. Based on this observation, Minka [132] proposed
extensions to belief propagation that entail updating distributions with more complex
structure (e.g., a distribution induced by a tree). He also proposed an algorithm, which
he called expectation-propagation, for updating such distributions. An ancillary contri-
bution of this chapter is to show how both the Kikuchi approach of Yedidia et al. [183]
and the expectation-propagation of Minka [132] can be formulated within a common
framework.

� 6.1.3 Overview of the chapter

This chapter is organized as follows. Section 6.2 describes the key elements of the ap-
proximations to the KL divergence (i.e., the cost functions) to be considered in this
chapter. In Section 6.3, we develop properties of these cost functions, including condi-
tions that govern when and how they are exact representations of the KL divergence.
We illustrate these properties with a number of examples. The focus of Section 6.4 is
not the cost functions themselves, but rather their optimizing arguments. It is these
arguments that are of primary interest for the purposes of approximate inference. The
key result of Section 6.4 is an invariance satis�ed by the local minima of any of the
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approximations to the KL divergence considered in this chapter. This invariance, in
fact, is algorithm-independent, in that it holds for any local minimum regardless of the
particular algorithm used to �nd it. We also provide a general set of updates, speci�ed
either in terms of message-passing or reparameterization, to try to minimize these cost
functions subject to appropriate marginalization constraints. Particular versions of this
algorithm are closely related to either the generalized belief propagation updates of
Yedidia et al. [183], or the expectation-propagation updates of Minka [132]. The gener-
alized message-passing updates have the interesting property that each of the iterates
(and not just its �xed points) corresponds to a di�erent reparameterization of the orig-
inal distribution. In Section 6.5, we exploit the invariance to derive an exact expression
for the error between the approximate and true marginals, as well as lower and upper
bounds on this error. In Section 6.6, we illustrate properties of the approximations of
this chapter by applying them to simple problems. We conclude with a discussion in
Section 6.7.

� 6.2 Elements of the approximations

In this section, we describe in detail the following four key elements of our framework
for approximations:

(a) the core structure, which is given by a subgraph of G (or more generally, of a
triangulated version of G) over which an approximating distribution is optimized.

(b) a set of residual elements | namely, cliques that are in G but are not included
in the core structure.

(c) a set of auxiliary distributions de�ned on augmented subgraphs formed by adjoin-
ing additional cliques to the core structure.

(d) a set of marginalization operators that enforce constraints between the auxiliary
distributions and the core distributions

� 6.2.1 Basic de�nitions and notation

In this section, we introduce the basic de�nitions and notation required for subsequent
developments. The development of this section presupposes familiarity with the graph-
theoretic concepts and notation introduced in Section 2.1.1.

Given a graph G, it will often be useful to consider a triangulated version. Although
this triangulated version is not unique in general, we assume throughout this chapter
that a particular triangulated version eG is chosen and �xed. The set of cliques of eG
will be denoted by eC; this is (in general) a superset of the set of cliques of G, denoted
by C.

Let p(x) denote the distribution whose marginals we would like to approximate; this
target distribution is de�ned as a product of compatibility functions  C on the cliques
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of G as follows:

p(x) ,
1

Z

Y
C2C

 C(xC) (6.4)

In addition to this target distribution, there exist other distributions that can be formed
as a product of compatibility functions  C for C belonging to a subset of the full clique set
C. We shall use the notation P(�) to refer to distributions constructed in this manner.
In contrast, we reserve the notation Q(�) to refer to approximating distributions. In
particular, the marginal distributions of a given Q(�) will represent approximations to
the marginal distributions of the target distribution p.

� 6.2.2 Core structures and distributions

The primary ingredient of any of the approximations developed in this chapter is the
core structure, over which an approximating distribution QA will be de�ned. A core
structure is speci�ed by a subset A of the cliques eC of the triangulated version eG. We
make the following important assumption about the subgraph eG(A) of eG induced by
the subset A:

Assumption 6.2.1. The graph eG(A) induced by core structure A must be triangu-
lated.

Example 6.2.1. To illustrate Assumption 6.2.1, consider the 3 � 3 grid illustrated in
Figure 6.1(a). One possible triangulated version eG is shown in Figure 6.1(b). Shown in
panel (c) is the graph eG(A) induced by the set of edgesA = E=f(1; 4); (4; 7); (3; 6)(6; 9)g;
it is a tree, and therefore satis�es the triangulation criterion of Assumption 6.2.1. In
contrast, panel (d) shows the graph eG(A) induced by A = E=f(4; 7); (3; 6)(6; 9)g, which
fails Assumption 6.2.1.

Let QA(x) denote a distribution de�ned by potential functions on the cliques in the
core set A. The signi�cance of Assumption 6.2.1 is in guaranteeing, via the junction
tree representation, that QA(x) factorizes as a product of local marginal distributions.
Since the induced graph eG(A) is triangulated, it has an associated junction tree [122].
Let Cmax(A) denote the set of maximal cliques in this junction tree, and let Csep(A)
be the corresponding set of separator sets. (See Section 2.1.5 for background on the
junction tree representation). We then have the factorized representation

QA(x) =

Q
C2Cmax(A)Q(xC)Q
C2Csep(A)Q(xC)

(6.5)

of the core approximating distribution (CAD). As we will see, this local product rep-
resentation is the key to being able to optimize eÆciently the choice of approximating
distribution QA. The implicit assumption here is that in contrast to the target distri-
bution on the graph G, the junction tree representation of QA over eG(A) is manageable
(i.e., the maximal cliques are small enough so that exact inference is tractable).
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Figure 6.1. Illustration of triangulated and non-triangulated induced graphs eG(A).

(a) Original graph G is the 3 � 3 grid. (b) One possible triangulated version eG of
G. Note the two 4-cliques f2; 4; 5; 8g and f2; 5; 6; 8g at the center of the graph. (c)

The graph eG(A) induced by the core structure A = E=f(1; 4); (4; 7); (3; 6)(6; 9)g. It is
a tree, and therefore triangulated. (d) The graph G(A) induced by the core structure
A = E=f(4; 7); (3; 6)(6; 9)g. It is no longer triangulated, since the 4-cycle 1�2�5�4�1
lacks a chord. This problem can be recti�ed by adding the 3-clique f1; 2; 4g that appears

in eG.

Similarly, we let PA be a distribution formed over the core structure by a product
over those compatibility functions of the target distribution of equation (6.4) contained
within the core:

PA(x) /
Y

C2A\C
 C(x) (6.6)

Herein we refer to this distribution as the core of the target distribution (CTD). Note
that the single node marginals associated with the CTD will, in general, be di�erent
than the single node marginals of the target distribution.

We illustrate these de�nitions with a few examples:

Example 6.2.2. Consider a graph G = (V;E) with pairwise maximal cliques, in which
case the set of all cliques C is equal to V [E.
(a) Let A = V , so that eG(A) is a completely disconnected graph. In this case, both

the CAD and CTD are fully factorized:

QA(x) =
Y
s2V

Q(xs)

PA(x) /
Y
s2V

 s(xs)

As we have mentioned and will be made explicit in Example 6.3.2, this choice of
a fully factorized CAD corresponds to belief propagation.
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(b) Let A = V [ E(T ) where E(T ) � E is the edge set of an embedded tree. In
this case, eG(A) corresponds to this particular embedded tree. The CAD is tree-
structured, and factorizes as a product of marginals over the nodes and edges in
E(T ):

QA(x) =
Y
s2V

Q(xs)
Y

(s;t)2E(T )

Q(xs; xt)

Q(xs)Q(xt)

The CTD also factorizes into a product of vertex and edge terms:

PA(x) /
Y
s2V

 s(xs)
Y

(s;t)2E(T )
 st(xs; xt)

� 6.2.3 Residual partition

The second key element is the residual set | namely, the subset C=(A \ C) � C of
cliques in C not covered by elements of the core set A. (Note that since A is a subset
of the clique set eC of the triangulated version eG, it may not be a subset of C.) We use
the notation � to denote a particular subset of those cliques in the residual set.

De�nition 6.2.1. Let R denote a partition of the residual set into a collection of
subsets f�ag (which need not be disjoint). I.e., the union [a�a is equal to the residual
set. Such a decomposition is called a residual partition.

Example 6.2.3. We illustrate with a continuation of Example 6.2.2:

(a) In Example 6.2.2(a), the vertex set was chosen as the core structure (A = V ). In
this case, the residual set is given by C=V = E | that is, the set of all edges in
the graph. These edges can be partitioned into subsets � in a variety of ways.
The simplest choice is for each � to be a single edge (s; t) 2 E. The union
A [R = V [E covers the set of all cliques C.

(b) Consider again Example 6.2.2(b), in which A = V [ E(T ) for some embedded
tree T . Here the residual set corresponds to those edges in G but not included
in the tree (i.e., the set of edges E=E(T )). Again, the simplest partition of this
residual set is into single edge terms (i.e., � = (s; t)). The union A [ R =
V [E(T ) [ (E=E(T )) covers the clique set C.
Figure 6.2 illustrates a particular case of this decomposition. Shown in (a) is the
original graph G | here a 3� 3 grid. Panel (b) shows the spanning tree induced
by A = V [ E(T ), whereas panel (c) shows the residual set of edges in E, but
not in E(T ).

Note that the core and residual structures in these examples satisfy an important prop-
erty that we will always impose:
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Figure 6.2. Illustration of core and residual structures. (a) Original graph (3�3 grid).
(b) Spanning tree core (A = V [E(T )). (c) Residual set E=E(T ) of edges not covered
by the spanning tree.

Assumption 6.2.2. The union of the cliques in the core and residual sets covers the
clique set (i.e., A [R � C).

Note that the set of cliques C can be a strict subset of A [R, since the core structure
A can include cliques in eC=C. Assumption 6.2.2 will play an important role in later
analysis.

� 6.2.4 Auxiliary distributions

In equations (6.5) and (6.6), we de�ned two distributions QA and PA that were struc-
tured according to the core set A. Similarly, given any element � 2 R, it will be useful
to de�ne distributions structured according to the augmented set A[�. As an analog
to PA, we de�ne the distribution

PA [ �(x) /
Y

C2A[�
 C(x) (6.7)

as a normalized product of compatibility functions over cliques in the augmented set
A [�.

In a similar fashion, we let QA [ � be an approximating distribution structured
according to the cliques in the augmented set. To give an explicit expression for QA [ �

is a bit more subtle: in particular, it requires that we consider a triangulated version
of G(A [�).

De�nition 6.2.2. For each � 2 R, an augmented residual set e� � � is a subset of
cliques in eC such that the induced graph eG(A [ e�) is triangulated.
Although the choice of this augmented residual set is not necessarily unique, we shall
assume that a particular choice is made and �xed.
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Given an augmented residual set, we can exploit the junction tree representation of
Section 2.1.5 to decompose the auxiliary distribution as follows:

QA [ �(x) =

Q
C2Cmax(A[e�)

eQ(xC)Q
C2Csep(A[e�)

eQ(xC) (6.8)

Here we use the notation eQ to distinguish these local marginals from those in the
de�nition of the core distribution QA in equation (6.5).

To illustrate, we continue with Example 6.2.3:

Example 6.2.4.

(a) In Example 6.2.3(a), the core set is A = V ; the residual set given by the edge set
E; and the residual set is partitioned into individual edges (i.e., � = (u; v) 2 E).
In this case, the augmented graph A [ � = V [ (u; v) remains triangulated, so
that there is no need to augment �. The auxiliary distributions are given by:

PA [ �(x) /  uv(xu; xv)
Y
s2V

 s(xs) (6.9a)

QA [ �(x) =
eQ(xu; xv)eQ(xu) eQ(xv)

Y
s2V

eQ(xs) (6.9b)

(b) In Example 6.2.3(b), the core set is A = V [ E(T ), where E(T ) is the edge set
of an embedded tree T . (See Figure 6.2(b)). As in (a), we partition the residual
set E=E(T ) into individual edges (� = (u; v)). Consider the augmented set

A [� = V [E(T ) [ (u; v)

In this case, the auxiliary distribution PA [ � has the form

PA [ �(x) /
Y
s2V

 s(xs)
Y

(s;t)2E(T )[f(u;v)g
 st(xs; xt)

Now if T is a spanning tree, then adding an extra edge will add a cycle to the
graph. In this case, since we assumed that G has pairwise maximal cliques, the
augmented set will no longer be triangulated. We therefore need to augment �
to form e� so that eG(A [ e�) is triangulated.
To provide a concrete illustration of this augmentation procedure, consider the
3� 3 grid illustrated in Figure 6.2(a). Let us add edge (1; 4) to the spanning tree
shown in Figure 6.2(b); we have drawn the corresponding subgraph G(A[ (1; 4))
in Figure 6.3(a). This subgraph is not triangulated, since the 4-cycle 1�2�5�4�1
lacks a chord. Therefore, we form e� by adding the chord (2; 4) to � = (1; 4) to
obtain the triangulated subgraph shown in Figure 6.3(b).
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Figure 6.3. Augmented subgraph and its triangulation for 3� 3 grid. (a) Augmented
subgraph A [ � formed by adding a single edge � = (1; 4) to the spanning tree core

set. (b) Triangulated version A [ e� of the augmented subgraph. The edge (2; 4) must
be added to triangulate the graph.

Now the maximal cliques of this triangulated graph are given by

f(124); (245); (23); (56); (58); (78); (89)g

By the junction tree representation, we can decompose any auxiliary distribution
QA [ � as:

QA [ � =
eQ124

eQ245
eQ23

eQ56
eQ58

eQ78
eQ89eQ24

eQ2 ( eQ5)2 ( eQ8)2

where we have omitted the explicit dependence of Q on x for notational simplicity.

� 6.2.5 Marginalization operators

Recall the de�nitions of the core approximating distribution (CAD) QA and auxiliary
distribution QA [ �:

QA(x) =

Q
C2Cmax(A)Q(xC)Q
C2Csep(A)Q(xC)

(6.10a)

QA [ � =

Q
C2Cmax(A[e�)

eQ(xC)Q
C2Csep(A[e�)

eQ(xC) (6.10b)

Note that both of these distributions are de�ned in terms local marginal distributions
over subsets of cliques and separator sets. A key constraint is that the local marginals
de�ning the auxiliary distribution must agree with those de�ning the core distribution,
whenever they overlap. In this section, we de�ne marginalization operators that will be
used to enforce these constraints.
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To be precise, for any � 2 R, we de�ne a set of clique pairs as follows:

P(�) , f (C;D) j C 2 C(A); D 2 C(A [ e�) s: t C � Dg (6.11)

For any pair (C;D) 2 P(�), let QC and eQD be the corresponding local marginals in the
de�nitions of QA and QA [ � respectively. For any such pair, we require thatX

x0D s:t x0C=xC

eQD(x0D) = QC(xC)

I.e., the quantity eQD, when marginalized down, agrees with QC . We write this equation
compactly as

M ( eQD ) = QC (6.12)

where M is a marginalization operator. We write M (QA [ �) = QA to mean that
equation (6.12) holds for all pairs (C;D) 2 P(�).
Example 6.2.5. We continue with Example 6.2.4 (a), in whichA = V , and each resid-
ual term � consisted of a single edge (u; v). This gave rise to an auxiliary distribution
of the form:

QA [ �(x) =
eQ(xu; xv)eQ(xu) eQ(xv)

Y
s2V

eQ(xs)
The marginalization condition M (QA [ �) = QA consists of the following constraints:X

x0u

eQ(x0u; xv) = Q(xv) (6.13a)

X
x0v

eQ(xu; x0v) = Q(xu) (6.13b)

eQ(xs) = Q(xs) 8 s 2 V (6.13c)

Note that equations (6.13a) and (6.13b) are identical to the pairwise marginalization
constraints enforced in standard belief propagation.

� 6.3 Approximations to the Kullback-Leibler divergence

In this section, we use the formalism and machinery described in Section 6.2 to develop
a variety of approximations to the Kullback-Leibler (KL) divergence. It is simplest to
do so when the residual partition satis�es a certain property (to be de�ned) related
to disjointness. Capturing Kikuchi approximations [115, 183] requires the use of non-
disjoint residual partitions, which are conceptually similar but more complex in terms
of notation.



162 CHAPTER 6. EXPLOITING HIGHER-ORDER STRUCTURE FOR APPROXIMATE ESTIMATION

Each of the approximations to be considered here is speci�ed by a particular choice
of the core set A and residual partition R. The central quantity is a cost function
GA;R(~Q) that depends a collection of approximating distributions ~Q. The notion of
exactness is de�ned as follows:

De�nition 6.3.1. The approximation is said to be exact if there exists a distribution q
over G that marginalizes down to the local marginals de�ning ~Q such that GA;R(~Q) is
equal to the Kullback-Leibler divergence D(q k p) (aside from constants not dependent
on ~Q or q).

As we will see, the Bethe free energy corresponds to a special case of a GA;R(~Q)
approximation, one which is exact for a tree-structured graph. Of course, the more
general and interesting case will be when the function GA;R is only an approximation
to the Kullback-Leibler divergence.

� 6.3.1 Disjoint and non-disjoint residual partitions

We �rst de�ne the notion of disjoint and non-disjoint residual partitions. One might
de�ne the residual partition R to be pairwise disjoint if �a and �b are disjoint for
all �a;�b 2 R. It turns out to be necessary to de�ne disjointness at the level of the
augmented residual sets e� speci�ed in De�nition 6.2.2. We denote the full collection of
these augmented residual sets as follows:

eR , fe� j � 2 R g (6.14)

With this notation, we have:

De�nition 6.3.2. A residual partition R is pairwise disjoint if e�a \ e�b = ; for all
distinct e�a; e�b in the associated augmented residual set eR. Otherwise, it is non-disjoint.
Example 6.3.1. To illustrate De�nition 6.3.2, consider the 2-square graph G shown
in Figure 6.4(a), as well as the triangulated version eG shown in panel (b). As the core
structure, we choose the embedded spanning tree shown in panel (c). We partition the
residual set into the two edge terms �1 = (3; 4) and �2 = (5; 6), which are disjoint.
Adding the �rst term �1 to the core A gives rise to the augmented structure A [�1

shown in panel (d). Here we need augment �1 to form e�1 = f�1; (1; 4)g in order to
triangulate the graph. Similarly, adding �2 yields the augmented structure shown in
panel (e); here we need to form e�2 = f�2; (1; 4); (3; 4); (3; 6)g in order to triangulate
the graph. Thus, e�1\ e�2 = (1; 4), so that the partition is not disjoint at the augmented
level.

We will follow up Example 6.3.1 in Example 6.3.6 to demonstrate the necessity of
de�ning disjointness at the level of the augmented residual sets.
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Figure 6.4. An example of disjointness at the �-level, but not at the e�-level. (a)

Original 2-square graph G. (b) Triangulated version eG. (c) Core structure of embedded
spanning tree. (d) Augmented structure formed by adding �1 = (3; 4); edge (1; 4) is
added to triangulate. (e) Augmented structure formed by adding edge �2 = (5; 6); here
we must add edges (3; 6), (3; 4) and (1; 4) to triangulate.

� 6.3.2 Approximation for a disjoint partition

In this section, we develop the basic form of the approximations for the case of a
pairwise disjoint residual partition. (i.e., e�a \ e�b = ; for all e�a 6= e�b 2 eR). Given
such a residual partition R and a core set A, we de�ne:

GA;R(~Q) = D(QA k PA) +
X
�2R

n
D(QA [ � k PA [ �)�D(QA k PA)

o
(6.15)

The function GA;R depends on the collection of distributions

~Q , QA [ fQA [ � j � 2 R g

where the core approximating distribution QA was de�ned in equation (6.5); and the
auxiliary distributions QA [ � are de�ned in equation (6.8). The variational problem
of interest is the following:(

minGA;R(~Q)

s: t M (QA [ �) = QA 8 � 2 R
(6.16)

To illustrate the case of a disjoint residual partition, we present a simple example
that leads to the Bethe free energy [183] of belief propagation:
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Example 6.3.2 (Bethe free energy). Consider the set-up of Example 6.2.5, where
A = V ; and the core and auxiliary distributions have the form:

QA(x) =
Y
s2V

Q(xs)

QA [ (u;v)(x) =
Q(xu; xv)

Q(xu)Q(xv)

Y
s2V

Q(xs)

PA(x) /
Y
s2V

 s(xs)

PA [ (u;v)(x) /  uv(xu; xv)
Y
s2V

 s(xs)

Here we have dropped the distinction between Q and eQ in de�ning QA [ (u;v), since the
marginalization constraints ensure that they are the same.

Substituting these relations into equation (6.15) yields, after some re-arrangements,
the following cost function:

GA;R(~Q) = C +
X
s2V

X
xs

Q(xs) log
Q(xs)

 s(xs)

+
X

(s;t)2E

X
xs;xt

Q(xs; xt) log
h Q(xs; xt)

Q(xs)Q(xt)
� log st(xs; xt)

i
(6.17)

where C is a constant independent of ~Q.
In this speci�c context, the variational problem (6.16) assumes the following form:

minimize the cost functional of equation (6.17) as a function of fQs; Qstg, subject to
the marginalization constraints derived in Example 6.2.5:X

x0s

Q(x0s; xt) = Q(xt)X
x0t

Q(xs; x
0
t) = Q(xs)

for all node pairs (s; t) 2 E.
The functional of equation (6.17), aside from the additive constant, is equivalent to

the Bethe free energy [183]. Note that with the exception of tree-structured graphs,
the function GA;R(~Q) 6= D(q k p) +C. Herein arises the primary source of error in the
approximation.1

As shown by Yedidia et al. [183], the belief propagation (BP) algorithm is a particu-
lar technique for attempting to minimize the Bethe free energy subject to the marginal-
ization constraints associated with variational problem (6.16). Overall, these relations

1Another source of error is the possibility of obtaining local minima in solving the associated varia-
tional problem (6.16).
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illustrate that BP, as a technique for attempting to minimize the GA;R functional with
a fully factorized core set, can be viewed as a sequence of updates to a fully factor-
ized distribution QA. This fact has been pointed out by a number of researchers [e.g.,
78, 132, 133, 147].

� 6.3.3 Approximation for a non-disjoint partition

When the partition R is no longer pairwise disjoint, a minor modi�cation to the cost
function of equation (6.15) is required. In particular, for a non-disjoint partition, an
unmodi�ed GA;R would count each element that appears in a non-empty intersectione�a \ e�b more than once. It is therefore necessary to subtract o� terms corresponding
to these intersections. If all the higher-order intersections e�a\ e�b\ e�c are empty, then
we are �nished; otherwise, we need to add back in triplet terms. The basic principle at
work here is that of inclusion-exclusion [168].

When there are at most pairwise intersections among elements e� of the augmented
residual partition eR, we de�ne the following family of cost functions:
GA;R(~Q) = D(QA k PA) +

X
�2R

n
D(QA [ � k PA [ �)�D(QA k PA)

o
�

X
e�a\e�b 6=;

n
D(QA [ �a\�b

k PA [ �a\�b
)�D(QA k PA)

o
(6.18)

where the second sum ranges over all distinct pairs e�a; e�b 2 eR. For this non-disjoint
partition, the notation ~Q refers to the collection of distributions

~Q , QA [ fQA [ � j � 2 R g [ fQA [ �a\�b
j �a;�b 2 R; e�a \ e�b 6= ; g (6.19)

It is clear that equation (6.18) can be further generalized to the case where higher-order
intersections of residual sets are also non-empty. In particular, to include triplet terms,
we would need to add back in terms involving D(QA [ �a\�b\�c k QA). In the interests
of notational simplicity, we limit ourselves to at most pairwise intersections.

The associated variational problem is the following:8><>:
minGA;R(~Q)

s: t M (QA [ �a\�b
) = QA 8 �a 6= �b; s: t e�a \ e�b = ;

and M (QA [ �) = QA 8 � 2 R

(6.20)

The following example illustrates a non-disjoint partition in the context of a Kikuchi
approximation [115]:

Example 6.3.3 (Kikuchi approximation). We now consider a form of Kikuchi ap-
proximation known as 4-plaque clustering, as applied to a regular grid by Yedidia et
al. [183]. In particular, the 4-plaques arise from clustering the nodes of a 3 � 3 grid
into groups of four, as shown in Figure 6.5(a). The associated core structure is the
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Figure 6.5. 4-plaque Kikuchi approximation on a 3 � 3 grid. (a) 4-plaque clustering
of original grid. (b) Fully disconnected core approximation on clustered variables. (c)

Auxiliary structure formed by adding in the edges e�1 associated with the 4-plaque

f1; 2; 4; 5g. (d) Let e�2 be the augmented residual set associated with the 4-plaque

f4; 5; 7; 8g. Overlap between residual terms e�1 and e�2.

fully disconnected graph shown in Figure 6.5(b), whose nodes are formed by particu-
lar clusters of the original graph. In particular, we retain all the 2-node intersections
between adjacent 4-plaques (shown in rectangular boxes), the 1-node intersections of
these intersections, plus any remaining singleton nodes. In Figure 6.5(b), node 5 is the
single example of an intersection between the intersections (node pairs) of 4-plaques.

For this 3 � 3 grid, the residual set R consists of four terms, each of which corre-
sponds to adding in the interactions associated with a particular 4-plaque. For instance,
including the 4-plaque f1; 2; 4; 5g is equivalent to adding in the set of edges

�1 = f(1; 25); (1; 45); (5; 25); (5; 45)g (6.21)

where the notation (s; tu) denotes the edge between node s and the clustered node
ft; ug. However, so that the induced graph is triangulated, we need to augment this
residual set to e�1 = f�1; (1; 5)g; the resulting triangulated graph eG(A [ e�1) is shown
in Figure 6.5(c). Here it should be understood that (for example) the edge between
f4; 5g and 5 means that the two random variables labeled with 5 are equated. The
pairwise constraint  45 between x4 and x5 is incorporated when de�ning the cluster
f4; 5g.

The partition is not disjoint, since for example the residual sets �1 de�ned in equa-
tion (6.21) and the residual set

�2 , f(5; 45); (5; 58); (7; 58); (7; 45)g (6.22)

associated with the 4-plaque f4; 5; 7; 8g have a non-empty intersection (5; 45). This non-
empty intersection is represented by the dotted ellipse in Figure 6.5(d). For this reason,
it is necessary to use the modi�ed cost function of equation (6.18). This cost function
is equivalent (aside from constants not dependent on ~Q) to the Kikuchi approximation
used by Yedidia et al. [183].
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Thus, like the Bethe free energy of belief propagation in Example (6.3.2), this
Kikuchi approximation corresponds to using a fully factorized core distribution, albeit
one de�ned on a graph formed by clustering nodes.

� 6.3.4 Properties of the approximation

In what sense do the cost functions of equations (6.15) and (6.18) constitute approxima-
tions to the Kullback-Leibler divergence? Moreover, what factors govern their accuracy?
In this section, we establish a number of properties that help to answer these questions.

Suppose that we are given a target distribution p of the form in equation (6.4), and
that q is an approximation to p. We split the KL divergence between q and p into three
terms:

D(q k p) = �H(q)�
X
x2XN

q(x)
X
C2C

log C(x) + logZ(p) (6.23)

Here H(q) = �Px2XN q(x) log q(x) is the entropy of q. Following the terminology of
statistical physics [136], we shall refer to the second term as the average energy. The
log partition function logZ(p) is a constant independent of q, so that we can ignore
it. We shall show that the cost functions of equations (6.15) and (6.18) both treat the
energy term exactly, whereas the treatment of the entropy term, in contrast, is usually
approximate.

Lemma 6.3.1. If A [R � C (i.e., Assumption 6.2.2 holds), then the cost functions
of equation (6.15) and equation (6.18) both capture the average energy term in equa-
tion (6.23) exactly.

Proof. We give the details of the proof for the disjoint residual partition of equa-
tion (6.15). Using the de�nition of PA [ � in equation (6.7), it can be seen that each
term D(QA [ � k PA [ �)�D(QA k PA) contributes energy terms of the form:X

x2XN

X
C2�

Q(xC) log C(x)

Including the terms contributed by D(QA k PA), we have:X
x2XN

hX
C2A

Q(xC) log C(x) +
X
�2R

X
C2�

Q(xC) log C(x)
i
=
X
x2XN

X
C2C

Q(xC) log C(x)

where we have used Assumption 6.2.2 and the fact that the partition is pairwise disjoint.
Thus, the average energy term is treated exactly.

The non-disjoint partition of equation (6.18) can be treated similarly. Here the
second summation corrects the overcounting induced by the non-disjoint residual sets.
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While the energy is always captured exactly, the entropy term is usually treated in
only an approximate manner. The nature of the approximation depends on the relation
between the core structure A and partition R, and the structure of the original graph.
There are some straight-forward situations in which the cost function will be exact in
the sense of De�nition 6.3.1:

(a) for any graph, the approximation is exact whenever the core structure corresponds
to the full graph (so that the residual set is empty).

(b) for any graph and core structure, the approximation is exact whenever the residual
set is partitioned only into a single element �. For instance, using a spanning
tree core on a single loop will always yield an exact result.

Neither of these cases are interesting, since such choices of (A;R) mean that computing
the cost function GA;R is as costly as computing the original KL divergence. However,
there are tractable and non-trivial choices of A and R for which the cost function is
still exact. Important cases include a fully factorized core approximation applied to
tree-structured graph (to be discussed in the following paragraph), and generalizations
of this case (which are covered by Proposition 6.3.1 below). The exactness, and more
generally the relative accuracy of the GA;R approximation, depends on an interaction
between the structures of the core, residual set, and full graph.

Interestingly, the core structure need not cover any signi�cant portion of the full
clique set eC in order for the approximation to be exact. This property is best illustrated
by Example 6.3.2, where the core structure is the vertex set V , and the residual partition
is formed of individual edges (� = (u; v)). When the underlying graph G is tree-
structured, the cost function of equation (6.17) is equivalent to the KL divergence.
This exactness holds despite the gap between the core structure (V ) and the set of
cliques of the full graph (V [E). The key property turns out to be whether or not the
core structure and residual set cover the maximal cliques of a triangulated version of G.
With reference to our example, a tree is already triangulated and its maximal cliques
correspond to the edges; hence, the set V [E trivially contains all the maximal cliques.

This observation can be suitably generalized as follows:

Proposition 6.3.1. Let eC be the clique set of a triangulated version eG of the orig-
inal graph. For a disjoint residual partition, the GA;R function of equation (6.15) is

equivalent to the KL divergence in the sense of De�nition 6.3.1 if and only if A[ eR = eC.

Proof. If A [ eR = eC, then the function GA;R will include a term for every maximal

clique and separator set in a junction tree corresponding to eC. Moreover, the disjoint-
ness of the residual partition ensures that it includes the correct number of such terms,
as speci�ed by the junction tree representation of q(x).

Conversely, if A[ eR is a strict subset of eC, then there is some maximal clique C� ineC not covered by A[ eR. By the junction tree representation of q(x), the entropy H(q)
will be a function of the local marginal distribution Q(xC�). This dependence will not
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be captured by the GA;R function of equation (6.15); hence, it will in general be only
an approximation to the KL divergence.

� 6.3.5 Illustrative examples

In this section, we consider a number of illustrative examples to develop further insight.

Example 6.3.4 (Exactness with a disjoint partition). To provide an illustration
of Proposition 6.3.1, consider the simple 2-square graph G shown in Figure 6.6(a). Panel
(b) shows a particular triangulated version eG. As the core structure A, we choose the
edges (and vertices) corresponding to the spanning tree shown in Figure 6.6(c). We
then partition the residual set into the two edges �1 = (1; 2) and �2 = (5; 6). With
these choices, Minka [132] showed that his expectation-propagation algorithm would
yield an exact result. We shall also establish an algorithm-independent exactness |
in particular, by showing that in this case, the cost function GA;R is equivalent to
the Kullback-Leibler divergence. Therefore, the approximation is exact in the sense of
De�nition 6.3.1, and any technique for solving the associated variational problem (6.16)
will yield the exact marginals of the target distribution p.

We �rst demonstrate exactness by recourse to Proposition 6.3.1. We begin by
considering the augmented structures A [�i; i = 1; 2. We form the augmented edge
sets e�1 = f�1; (1; 4)g and e�2 = f�2; (3; 6)g so that the respective induced subgraphseG(A[ e�i); i = 1; 2, illustrated in Figures 6.6(d) and (e) respectively, are triangulated.
It is not diÆcult to see that the set A [ eR covers the clique set eC of the triangulated
version eG shown panel (b). Therefore, Proposition 6.3.1 assures that the GA;R function
is an exact representation of the KL divergence in the sense of De�nition 6.3.1.

It provides additional insight to demonstrate this exactness in a constructive fashion.
According to the junction tree representation applied to the triangulated version eG of
(b), any distribution q(x) that is Markov with respect to G factorizes as:

q(x) =
Q124Q134Q346Q356

Q14Q34Q36
(6.24)

where we have omitted the explicit dependence of the Q terms on x for notational
simplicity. The terms in the numerator of equation (6.24) correspond to maximal
cliques of a junction tree given by eG, whereas the terms in the denominator correspond
to separator sets.

Next, any core distribution over the tree shown in Figure 6.6(c) must factorize as

QA =
Q13Q24Q34Q35Q46

Q2
3Q

2
4

(6.25)

Now consider the auxiliary distributionQA [ �1 de�ned on the graph in panel (d); by
applying the junction tree representation to this triangulated graph, we are guaranteed
that QA [ �1 factorizes as

QA [ �1 =
Q124Q134Q35Q46

Q14Q3Q4
(6.26)
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Figure 6.6. Non-trivial case where the GA;R approximation is exact. (a) Original

2-square graph G. (b) Triangulated version eG. (c) Core structure is the spanning tree
shown. Residual set is partitioned into �1 = (1; 2) and �2 = (5; 6); these sets are

augmented to form e�1 and e�2. (e) Auxiliary structure A[ e�1. (e) Auxiliary structure

A [ e�2.

Similarly, any auxiliary distribution QA [ �2 over the graph in Figure 6.6(e) factorizes
as

QA [ �2 =
Q356Q346Q13Q24

Q36Q3Q4
(6.27)

Finally, we will show that the cost function GA;R of equation (6.15) combines the
terms QA and QA [ �i in such a way so as to exactly represent the entropy of q(x). In
particular, using equation (6.15), the entropy terms of GA;R are given by:

X
x2XN

(
QA(x) logQA(x) +

2X
i=1

QA [ �i(x)
�
logQA [ �i(x)� logQA(x)

�)
(6.28)

Substituting the representations of QA and QA [ �i ; i = 1; 2 (given in equations (6.25),
(6.26) and (6.27) respectively) into equation (6.28) yields, following some algebra, the
following expression:

X
x2XN

(
Q124(x) logQ124(x) +Q134(x) logQ134(x) +Q346(x) logQ346(x)

+Q356(x) logQ356(x)�Q34(x) logQ14(x)�Q34(x) logQ36(x)�Q36(x) logQ14(x)

)

By computing the negative entropy �H(q) (where q is de�ned in equation (6.24)), we
see that this is an exact representation of the (negative) entropy of q. Therefore, we
have established in a direct and constructive manner that the cost function GA;R is
exact in the sense of De�nition 6.3.1 for the graph of Figure 6.6(a).
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It is also interesting to consider the Kikuchi approximation obtained by the 4-plaque
clustering f1; 2; 3; 4g and f3; 4; 5; 6g, in analogy to Example 6.3.3. To be precise, the
core structure consists of the set of nodes f1; 2; (34); 5; 6g, where (34) denotes the node
formed by clustering 3 and 4 together, as illustrated in Figure 6.7(a). The residual set
associated with f1; 2; 3; 4g is the set of edges �1 = f(1; 2); (1; 34); (2; 34)g as shown in
panel (b), whereas the residual set for f3; 4; 5; 6g is formed of �2 = f(5; 6); (5; 34); (6; 34)g,
as shown in panel (c). Here the notation (s; tu) denotes an edge between node s and the

1 2

5 6

43

1 2

5 6

43

1 2

5 6

43

(a) (b) (c)

Figure 6.7. Kikuchi approximation on 2-square graph. (a) Fully disconnected core with
clustered nodes. (b) Augmented set associated with 4-plaque f1; 2; 3; 4g. (c) Augmented
set associated with 4-plaque f3; 4; 5; 6g.

clustered node (tu). It can be seen that these residual terms cover all maximal cliques
of a triangulated version of the graph in a disjoint manner, so that Proposition 6.3.1
ensures that the Kikuchi approximation is also exact.

Example 6.3.5 (Non-exactness with a non-disjoint partition).

To follow up the previous example, we now illustrate non-exactness, established via
Proposition 6.3.1, in the context of Kikuchi 4-plaque clustering applied to the 3 � 3
grid of Example 6.3.3. In this case, the union of the core structure and the edges �
associated with the 4-plaques does not cover all the cliques of a triangulated version. In
particular, there are two 4-cliques in the center of any triangulated version of the 3� 3
grid (see Figure 6.1(b)). Neither of these 4-cliques are covered by any of the 4-plaques
in this Kikuchi approximation. Therefore, the function GA;R is, in general, only an
approximation to the KL divergence.

Example 6.3.6 (Disjointness at augmented level). To demonstrate the necessity
of de�ning the disjointness of a residual partition as in De�nition 6.3.2, we continue with
Example 6.3.1. That is, consider again the 2-square graph, which we have illustrated in
Figure 6.8(a). As in Example 6.3.1, we choose as the core set the spanning tree shown
in Figure 6.8(b), with the corresponding residual partitions �1 = (3; 4) and �2 = (5; 6).
This gives rise to the auxiliary structures shown in Figure 6.8(c) and (d) respectively.
As discussed in Example 6.3.1, the partition f�1;�2g is disjoint, whereas the aug-
mented partition formed by e�1 = f(3; 4); (1; 4)g and e�2 = f(5; 6); (1; 4); (3; 4); (3; 6)g is
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Figure 6.8. Necessity of de�ning disjointness at the level of the augmented residual sets.
(a) Alternative spanning tree of G from Figure 6.6(a). (b) and (c): Auxiliary structures
formed by adding the residual sets �1 = (3; 4) and �2 = (5; 6) respectively. Extra

edges are added to form the corresponding augmented residual sets e�1 = f�1; (1; 4)g

and e�2 = f�2; (1; 4); (3; 4); (3; 6)g to ensure triangulation. The partition is disjoint at

the level of the �i, but not at the level of the augmented e�i.

no longer disjoint.
It can be seen that the union A[ eR covers the clique set eC of a triangulated versioneG. (In particular, use the triangulated version shown in Figure 6.8(c)). If disjointness

were de�ned in terms of �1 and �2 (as opposed to De�nition 6.3.2), then the residual
partition R = f�1;�2g would be pairwise disjoint, and we would be led to use a cost
function of the form in equation (6.15). Calculations similar to those in Example 6.3.4
show that the approximation is not exact with the cost function of equation (6.15).
Therefore, applying Proposition 6.3.1 would suggest (misleadingly) that the resultant
approximation is exact.

The apparent contradiction is resolved by noting that at the level of the augmented
residual sets, the partition eR = fe�1; e�2g is not pairwise disjoint. Therefore, we should
use the cost function of equation (6.18), which is applicable for non-disjoint partitions.
It can be seen that in accordance with Proposition 6.3.1, this cost function is indeed
exact in the sense of De�nition 6.3.1.

Example 6.3.7 (Non-exactness with a disjoint partition).

We now consider a non-exact case for a disjoint residual partition; this example involves
a very simple graph that nonetheless reveals the factors that control the accuracy of the
approximation. In particular, consider the 5-node graph shown in Figure 6.9(a), with
the core structure being the spanning tree shown in Figure 6.9(b). We partition the
residual set into two edges �1 = (1; 4) and �2 = (4; 5). In order to assure triangulation
of the induced graphs eG(A [ e�i), we augment the �i; i = 1; 2 to e�1 = f�1; (1; 3)g
and e�2 = f�2; (3; 5)g respectively. The resulting triangulated graphs eG(A [ e�i) are
shown in Figures (c) and (d). From these triangulated graphs, it can be seen that the
auxiliary structure of (c) treats the cliques f1; 2; 3g, f1; 3; 4g, and (2; 5) exactly, whereas
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Figure 6.9. Non-exactness of the GA;R approximation with a disjoint partition. (a)
Original graph on 5 nodes. (b) Spanning tree as core structure. (c) Auxiliary structure
formed by A [ (1; 4). (d) Auxiliary structure formed by A [ (4; 5). Extra edges (edges
(1; 3) and (3; 5) in panels (c) and (d) respectively) are added so as triangulate these
auxiliary structures. (e) Triangulated version of the original graph.

(d) treats f2; 3; 5g, f3; 4; 5g, and (1; 2) exactly. The discrepancy with the exact model
becomes clear upon considering a triangulated version of the original graph, as shown
in (e). Here we see that it is necessary to consider (in addition to the previously listed
2 and 3-cliques) the 4-cliques f1; 2; 3; 5g and f1; 3; 4; 5g, both of which are neglected by
the auxiliary structures of (c) and (d). Since A [ eR � eC, Proposition 6.3.1 indicates
that GA;R will not be an exact representation of the KL divergence.

In essence, this GA;R function assumes the existence of a distribution q(x) whose
higher order marginals satisfy certain factorization properties that may not hold |
namely:

Q1235(x) =
Q123(x)Q235(x)

Q23(x)

Q1345(x) =
Q134(x)Q345(x)

Q34(x)

Therefore, the cost function GA;R will not be exact in the sense of De�nition 6.3.1.
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� 6.4 Properties of optimal points

Our analysis in the previous section focused on properties of the cost functions GA;R

of equations (6.15) and (6.18). For the purposes of approximate inference, our interest
lies not so much in properties of these cost functions themselves, but rather in the
associated minimizing arguments ~Q� of the variational problems (6.16) and (6.20). Of
course, our �rst order of business is to establish the existence of such minima (whether
local or global). Having done so, we then turn to an investigation of the properties of
such optimal points. Of primary interest here is the relation between such a point ~Q�,
and the true marginals P of the target distribution p(x).

The key result of this section is a form of invariance satis�ed by any local minimum
~Q�. This property is a generalization of the invariance satis�ed by the TRP/BP up-
dates, as developed in Chapter 5. In later sections, we shall explore the consequences of
this invariance, especially its use in characterizing the error between the approximate
and exact marginals.

� 6.4.1 Existence of local minima

We begin by establishing that the variational problems (6.16) and (6.20) always have so-
lutions. It is clear that the set of points that satisfy the marginalization constraints asso-
ciated with these variational problems is always non-empty; in particular, the marginals
corresponding to the target distribution p(x) belong to the constraint set. Therefore, in
order to prove the existence of a solution, it suÆces to establish that the cost function
GA;R is bounded below.

Lemma 6.4.1. The cost function GA;R is bounded below for all ~Q.

Proof. We assume without loss of generality that  C(xC) � 1 for all C 2 C and x 2 XN .
(This assumption can be satis�ed by rescaling the compatibility functions as necessary,
which will only a�ect the normalization constant). We decompose the function GA;R

into entropy and average energy terms as follows:

GA;R(~Q) = (1� jRj) H(QA) +
X
�2R

H(QA [ �)�
X
x2XN

X
C2C

Q(xC) log C(xC) +K

where jRj denotes the number of terms in the residual partition and K is a �xed �nite
constant independent of ~Q. For discrete random variables, entropy is bounded both
above and below [42]; therefore, the term

(1� jRj) H(QA) +
X
�2R

H(QA [ �)

is bounded below. Since � log C(xC) � 0 and Q(xC) � 0 for all x 2 XN , the second
energy term is also bounded below.

A similar argument establishes that the cost function of problem (6.20) is bounded
below.
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� 6.4.2 Invariance of optimal points

As developed in Chapter 5, an important property of TRP (or the reparameterization
form of BP) is that the distribution p(x) on the graph remains invariant under the
updates. In this section, we establish a generalized form of this invariance that applies
to local minima ~Q� of the variational problems (6.16) and (6.20). In particular, we show
that the collection of distributions ~Q� can be viewed as an alternative parameterization
for the target distribution p(x).

Theorem 6.4.1 (Invariance of local minima).
Any local minimum ~Q� of variational problem (6.16) is related to the original distri-
bution p as follows:

logQ�A(x) +
X
�2R

�
logQ�A [ �(x)� logQ�A(x)

�
= log p(x) +K (6.29)

where K is a constant independent of x. Since the collection ~Q� speci�es an alternative
representation of p(x), we say that it is a reparameterization of p(x).

Similarly, any local minimum of variational problem (6.20) is a reparameterization
in the following sense:

logQ�A(x) +
X
�2R

�
logQ�A [ �(x)� logQ�A(x)

�
�

X
e�a\e�b 6=;

�
logQ�A [ �a\�b

(x)� logQ�A(x)
�
= log p(x) +K (6.30)

Proof. We provide a detailed proof of equation (6.29); the proof of equation (6.30)
is extremely similar. To each marginalization constraint M (QA [ �) = QA of prob-
lem (6.16), we associate a Lagrange multiplier ��. To specify precisely the nature of
��, recall from equations (6.12) that the constraint M (QA [ �) = QA actually indexes
a collection of marginalization constraints, one for each pair (C;D) in the set P(�)
de�ned in equation (6.11). As a result, �� is actually the collection

��(x) , f �C;D� (xC) j (C;D) 2 P(G) g (6.31)

of Lagrange multiplier functions, where �C;D� (xC) is associated with the constraintX
x0D s:t x0D=xC

eQD(x0D) = QC(xC)

To simplify our notation, we de�ne:

��(x) �
�
QA(x)� M (QA [ �(x))

�
,

X
(C;D)2P(�)

�C;D� (xC)
�
QC(xC)�

X
xs; s2D=C

eQD(xD)�
��(x) � 1(x) ,

X
(C;D)2P(�)

�C;D� (xC)
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Moreover, we don't enforce the normalization constraints (e.g.,
P
x2XN QA(x) = 1)

explicitly; instead, we use an arbitrary constant K (whose de�nition will change from
line to line) to enforce normalization where appropriate.

Given this de�nition of the Lagrange multipliers ��, we then form the Lagrangian
associated with variational problem (6.16):

L(~Q;�) = GA;R(~Q) +
X
x2XN

X
�2R

��(x) �
�
QA(x)� M (QA [ �)(x)

�
= (1� jRj) D(QA k PA) +

X
�2R

D(QA [ � k PA [ �)

+
X
x2XN

X
�2R

��(x) �
�
QA(x)� M (QA [ �)(x)

�
From here, the crucial idea is that for any local minimum ~Q of problem (6.16), we are

guaranteed the existence of an associated collection of Lagrange multipliers �� = f���g
such that the Lagrangian stationary conditions

r~QL(~Q�;��) = 0 (6.33)

hold. The existence of these Lagrange multipliers follows because the marginalization
constraints of problem (6.16) are all linear.2 As a consequence, we can use the stationary
condition of equation (6.33) to characterize any local minimum ~Q� of problem (6.16).

By taking derivatives of the Lagrangian with respect to QA and QA [ � and setting
them to zero, we obtain a set of equations equivalent to equation (6.33):

(1� jRj) logQ�A(x) = (1� jRj) logPA(x)�
X
�2R

���(x) � 1(x) +Kcore(6.34a)

logQ�A [ �(x) = logPA [ �(x) + ���(x) � 1(x) +K� (6.34b)

where Kcore and K� represent constants to ensure proper normalization of QA and
QA [ � respectively.

Equation (6.34b) holds for each � 2 R. If we sum up these copies of equation (6.34b)
(one for each �), and then add in equation (6.34a), we obtain:

(1� jRj) logQ�A(x) +
X
�2R

logQ�A [ �(x) = (1� jRj) logPA(x) +
X
�2R

logPA [ �(x) +K

(6.35)

where K = Kcore+
P

�2RK�. Note how the Lagrange multipliers ��� themselves have
cancelled out.

Finally, we observe that by construction, the RHS of equation (6.35) is closely
related to the log of the target distribution p(x) / QC2C  C(xC). In particular, by an

2Local minima of constrained optimization problems with non-linear constraints don't necessarily
have Lagrange multipliers; see Bertsekas [20] for a counterexample.
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argument similar to the proof of Lemma 6.3.1, we write (omitting explicit dependence
on x for notational simplicity):

(1� jRj) logPA +
X
�2R

logPA [ � +K = (1� jRj)
X
C2A

log C +
X
�2R

X
C2A[�

log C +K

=
X
C2A

log C +
X
�2R

X
C2�

log C +K

=
X
C2C

log C +K

= log p+K

where K is an arbitrary constant that absorbs terms not dependent on x (i.e., its
de�nition can change from line to line). This establishes equation (6.29). A similar
argument can be used to prove equation (6.30).

� 6.4.3 Generalized message-passing for minimization

Theorem 6.4.1 is a characterization of local minima that is independent of the technique
used to �nd them. It is nonetheless interesting to consider iterative schemes that are
generalizations of BP message-passing. In this section, we describe such an algorithm
for problem (6.16); a similar algorithm can be developed for problem (6.20). This
algorithm has the interesting property that all of its iterates (not just its �xed points)
satisfy the invariance principle of Theorem 6.4.1.

The essential intuition lies in the Lagrangian conditions that were exploited to prove
Theorem 6.4.1. In order to develop this intuition, we recall the notation used in the
proof of Theorem 6.4.1:

��(x) , f �C;D� (xC) j (C;D) 2 P(G) g (6.36a)

��(x) � 1(x) ,
X

(C;D)2P(�)

�C;D� (xC) (6.36b)

where the set of clique pairs P(G) was de�ned earlier in equation (6.11). Note that
each �C;D� (xC) depends only on the subvector xC . Therefore, ��(x) � 1(x) is de�ned
in terms of an additive decomposition of relatively local functions. In fact, since for
any pair (C;D) 2 P(�), the clique C is a member of C(A), the function ��(x) � 1(x)
respects the structure of the core set A. This local nature of �� is crucial.

With this notation, the Lagrangian stationary conditions of equations (6.34a) and (6.34b)
dictate that the approximating distributions fQA; QA [ �g should be de�ned in terms
of the Lagrange multipliers f��g as follows:

QA(x) = � PA(x) exp
n 1

jRj � 1

X
�2R

��(x) � 1(x)
o

(6.37a)

QA [ �(x) = � PA [ �(x) exp
�
��(x) � 1(x)

	
(6.37b)
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where � denotes a normalization factor. The key is the marginalization constraint
M (QA [ �(x)) = QA(x), which places restrictions on the Lagrange multipliers f��g.

So as to de�ne an algorithm that reduces to belief propagation, we perform a linear
transformation of the Lagrange multipliers, thereby de�ning a set of (log) messages. In
particular, the set of messages fM� j � 2 R g is linked to the f��g via the invertible
relations:

logM�(x) =
1

jRj � 1

X
�2R=�

��(x)�
h jRj � 2

jRj � 1

i
��(x) (6.38a)

��(x) =
X

�2R=�
logM�(x) (6.38b)

Each logM� has the same structure as ��; that is, it decomposes into a sum of local
functions on the cliques of A.

As a multiplicative analog to �� � 1(x), de�ne the product notation:

M�(x)
 1(x) ,
Y

(C;D)2P(�)

MC;D
� (x) (6.39)

Then equations (6.37a) and (6.37b) can be re-written in terms of these messages as
follows:

QA(x) = � PA(x)
Y
�2R

M�(x)
 1(x) (6.40a)

QA [ �(x) = � PA [ �(x)
Y

�2R=�
M�(x)
 1(x) (6.40b)

where � denotes a normalization factor (whose de�nition may be di�erent from line to
line).

We now need to update the messages so that the associated marginalization con-
straints M (QA [ �) = QA are satis�ed; we do so with Algorithm 6.4.1. Although nor-
malizing the messages in equation (6.41) is not strictly necessary, it tends to aid com-
putational stability.

As with the reparameterization algorithms of Chapter 5, we can dispense entirely
with the messages by reformulating the updates in a pure reparameterization form as
follows:

Qn+1
A (x) = � PA(x)

Y
�2R

M
�
Qn
A [ �(x)

�
Qn
A(x)

(6.42a)

Qn+1
A [ �(x) = � PA [ �(x)

Y
�2R=�

M
�
Qn
A [ �(x)

�
Qn
A(x)

(6.42b)

Moreover, it can be veri�ed that the construction of this generalized message-passing
scheme ensures that its �xed points satisfy the Lagrangian conditions associated with
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Algorithm 6.4.1 (Generalized message-passing: (GMP)).

1. Initialize messages M0
� for all � 2 R.

2. At iteration n = 0; 1; : : : , core and auxiliary distributions QA and QA [ � are
speci�ed in terms of the messages fMn

�g as in equations (6.40a) and (6.40b).

3. Update messages:

Mn+1
� (x) = �Mn

�(x)
M
�
Qn
A [ �(x)

�
Qn
A(x)

(6.41)

where � denotes a normalization factor.

problem (6.16). Therefore, its �xed points obey the invariance principle of Theo-
rem 6.4.1. However, a much stronger statement can be made. By applying the same
argument used in the proof of Theorem 6.4.1 to the representations of Qn

A and Qn
A [ � in

equations (6.42a) and (6.42b), it can be seen that all the iterates of generalized message-
passing | not just �xed points | satisfy the invariance principle of Theorem 6.4.1.

To gain intuition for this generalized message-passing, we now consider a few ex-
amples. We begin with the special case where the core structure is A = V , and the
residual structure R is partitioned into individual edges � = (s; t). We show that in
this case the message-passing of the GMP algorithm, modulo some minor notational
di�erences, corresponds to belief propagation.

Example 6.4.1 (Belief propagation).

When A = V , then the CTD PA(x) takes the form

PA(x) /
Y
s2V

 s(xs) (6.43)

Similarly, since the cliques of A are simply vertices, each message M� � Muv in the
generalized message-passing of the GMP algorithm is a fully factorized quantity, which
we write as follows:

Muv(x) =
Y
s2V

Muv;s(xs) (6.44)

I.e., it has a term corresponding to each node s 2 V .
From the de�nitions of QA and QA [ � in equations (6.37a) and (6.37b) respectively,

as well as the message update equation (6.41), it can be seen that when � = f(u; v)g,
then the message components Muv;s are constant for all nodes s 6= u; v. Thus, each
Muv(x) is actually a function of only xu and xv. As a consequence, the only actual
messages sent to a node s are from its neighbors N (s) , f t 2 V j (s; t) 2 E g.
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Figure 6.10. Illustration of structures involved in BP. (a) Original graph. (b) Fully
disconnected core structure A. (c) Augmented structure formed by a single edge (in
this case edge (1; 2)).

Figure 6.10 illustrates this type of decomposition; panel (a) shows the original graph
G. The CAD QA(x) is de�ned on the fully disconnected core structure shown in (b).
The message M(1;2)(x) is associated with the augmented structure obtained by adding
edge (1; 2) to the core structure, as illustrated in panel (c). It is clear that adding edge
(1; 2) will not a�ect the marginals at nodes s 6= 1; 2.

Based on these properties, we can rewrite QA, as de�ned in equation (6.42a), in the
following way:

QA(x) = �
Y
s2V

n
 s(xs)

Y
t2N (s)

Mst;s(xs)
o

(6.45)

Note that the term within curly braces in equation (6.45), modulo slightly altered
notation, is precisely equivalent to the usual BP equation for the approximate single
node marginal at node s (see equation (5.4) of Chapter 5).

Similarly, the distribution PA [ (u;v) has the form:

PA [ (u;v)(x);/
Y
s2V

 s(xs)  uv(xu; xv) (6.46)

Using this form of PA [ (u;v) and the de�nition of QA [ (u;v) from equation (6.37b), it
can be shown that the auxiliary distribution QA [ (u;v)(x) has the following structure:

QA [ (u;v)(x) = �
Y
s2V

 s(xs)  uv(xu; xv)
Y

s2N (u)=s

Msu;u(xu)
Y

s2N (v)=s

Msv;v(xv) (6.47)

If we isolate the components of equation (6.47) depending only on xu and xv, then we
obtain

QA [ (u;v)(xu; xv) = �  u(xu)  v(xv)  uv(xu; xv)
Y

s2N (u)=s

Msu;u(xu)
Y

s2N (v)=s

Msv;v(xv)

(6.48)



Sec. 6.4. Properties of optimal points 181

Again, equation (6.48), modulo minor di�erences in notation, is equivalent to the BP
equations for the joint pairwise marginal (see, e.g., equation (5.21b) of Chapter 5).

Overall, we conclude that in the special case where A = V and the residual set is
partitioned into single edges, the generalized message-passing of the GMP algorithm is
equivalent to belief propagation.

Example 6.4.2 (Flow of messages).

To illustrate the 
ow of messages in GMP, we now consider an example on a more
complex core structure. In particular, we return to the 5-node graph shown of Exam-
ple 6.3.7; we have redrawn it in Figure 6.11(a). As a core structure, we again use the
spanning tree shown in Figure 6.11(b), and we choose the same residual sets �1 = (1; 3)
and �2 = (3; 5), which gives rise to the (augmented) structures shown in panels (c) and
(d) respectively.

If GMP is applied to this example, there are only two sets of messages | namely,
fM�i ; i = 1; 2g. Computing the CAD QA(x) requires knowledge of the CTD PA(x),
as well as both messages:

QA(x) = � PA(x)M�1(x)M�2(x)

Accordingly, we can think of the messages fM�i ; i = 1; 2g being passed from the
augmented structures fA [ �i; i = 1; 2g to the core structure, as illustrated by the
diagonally upward arrows in Figure 6.11(e). Since the core structure is a tree, the
messages are tree-structured quantities.

To compute the auxiliary distribution QA [ �1 requires knowledge of PA [ �1 , and
also the message M�2 . Accordingly, we think of the message M�2 as being passed
from the structure A[�2 to A[�1, following the right-to-left arrow in Figure 6.11(e).
Similarly, the message M�1 is passed from left to right | that is, from A [ �1 to
A [�2.

� 6.4.4 Largest globally consistent substructure

Any optimal point ~Q� of problem (6.16) consists of a collection of distributions: the
core approximating distribution fQ�Ag is de�ned by the core structure eG(A), whereas
the auxiliary distributions fQ�A [ � j � 2 R g are de�ned on the augmented structures

f eG(A [ e�) j e� 2 eRg. Recall that the CAD Q�A is de�ned by a product of local
marginals over the maximal cliques and separator sets of a junction tree corresponding
to the triangulated eG(A):

Q�A(x) =

Q
C2Cmax(A)Q

�(xC)Q
C2Csep(A)Q

�(xC)
(6.49)

The auxiliary distributions Q�A [ � are de�ned by similar products of local marginals,
as in equation (6.10b).
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Figure 6.11. Illustration of message-passing 
ow for a simple 5-node graph. (a) Orig-

inal graph. (b) Spanning tree core structure. (c) Augmented graph eG(A [ e�1). (d)

Augmented graph eG(A [ e�2). (e) Flow of messages in GMP.

With respect to the single-node marginals Q�s of Q�A, each of the auxiliary distribu-
tions are globally consistent, in the sense that they marginalize down appropriately:X

x0 s:t x0s=xs

Q�A [ �(x
0) = Q�(xs) (6.50)

These marginalization conditions are assured by the constraints associated with prob-
lem (6.16).

A natural question to ask is the following: what is the largest structure over which
solutions ~Q� are globally consistent? We call this the largest globally consistent struc-
ture. It should be understood that we require any solution ~Q� to be consistent over this
structure. This requirement excludes the possibility of artfully constructing problems
(as we did in Section 5.4.7 for TRP/BP), such that fortuitous cancellations lead to
consistency. That is, the global consistency of interest in this section is generic, in the
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sense that it holds for all problem instances.
It is important to note that the largest globally consistent structure can be consid-

erably larger than any of the augmented sets A [�, as demonstrated by the following
example:

Example 6.4.3 (Spanning trees for belief propagation).

Recall the Bethe free energy and belief propagation (BP) as discussed in Examples 6.3.2
and 6.4.1. We found that the BP algorithm can be viewed as updating an approximat-
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Figure 6.12. Spanning trees are the largest globally consistent substructure for BP. (a)
Original 3�3 grid. (b) Fully disconnected graph is the core of BP. (c) Augmented struc-
ture A [�i formed by adding the single edge (2; 5). (d), (e) BP solution is guaranteed
to be globally consistent over any embedded spanning tree.

ing distribution QA de�ned on a fully disconnected graph. The CAD is completely
factorized QA(x) =

Q
s2V Qs(xs). Residual terms for the usual form of BP correspond

to single edges. Therefore, in addition to the single-node marginals of QA, the collection
of auxiliary distributions QA [ � gives rise to set of local pseudomarginals Qst(xs; xt),
one for each edge (s; t) 2 E. As an illustrative example, Figure 6.12(a) shows a 3 � 3
grid, and panel (b) shows the corresponding fully disconnected core structure. The
augmented structure A [�, corresponding to the addition of edge (2; 5), is shown in
panel (c).

Upon convergence to a �xed point ~Q�, each of the pseudomarginals Q�st for any
(s; t) 2 E is guaranteed to be consistent with single node marginals Q�s in the following
sense: X

x0t

Q�st(xs; x
0
t) = Q�s(xs) (6.51)

This is equivalent to the condition
P
x0 s:tx0s=xs

Q�
A [ (s;t)(x

0) = Q�s(xs), so that the
auxiliary distributions Q�A [ � are globally consistent with respect to the single-node
marginals.

However, it can be seen that global consistency holds for much larger substructures.
In particular, given the edge set E(T ) of any tree embedded within G, we construct a
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distribution that respects its structure in the usual junction tree manner:

q�T (x) ,
Y
s2V

Q�s(xs)
Y

(s;t)2E(T )

Q�st(xs; xt)
Q�s(xs)Q�t (xt)

(6.52)

For any tree structure, local consistency in the sense of equation (6.51) is equivalent to
global consistency [123] | viz.: X

x0 s:tx0s=xs

q�T (x
0) = Q�s(xs)

for all nodes s 2 V . This argument holds for any tree (or forest) embedded within the
graph G. Therefore, the largest globally consistent substructures are spanning trees;
two particular spanning trees of the 3�3 grid in Figure 6.12(a) are illustrated in panels
(d) and (e).

Although the BP solution ~Q� is globally consistent over any spanning tree, it will
not (in general) be consistent over the full graph. In fact, as pointed out in Section 6.1.1,
it is possible that there exists no distribution that, when marginalized, gives rise to the
fQ�stg on the full graph. I.e., the full set of fQ�stg may fail to be globally consistent with
any distribution whatsoever. See [59] for a simple example where this degeneracy arises.
The spanning tree condition guarantees only that a subset of the fQ�stg| namely, those
corresponding to edges in a spanning tree | are globally consistent. It is for this reason
that the terminology pseudomarginals is appropriate.

For the case of belief propagation, the set A [R (which is equivalent to A [ eR) is
given by the union V [ E � eC. Spanning trees correspond to the largest triangulated
substructure that can be formed with this particular subset of cliques (i.e., with vertices
and edges). This property is actually quite general, as summarized by the following
result.

Proposition 6.4.1 (Largest globally consistent substructure). Given an approx-
imation speci�ed by a core set A and (augmented) residual set eR, the largest glob-
ally consistent substructures are given by the largest triangulated subgraphs that can be
formed by joining together cliques (not necessarily maximal) from the set A [ eR.

Proof. Given a triangulated subgraph formed of cliques in A[ eR, we can always form a
distribution on it by taking a combination of local marginals over the maximal cliques
and separator sets, as speci�ed by the junction tree representation. (See Section 2.1.5
for more details on the junction tree representation). The marginalization constraints
associated with variational problems (6.16) and (6.20) assure that each of these marginal
distributions are locally consistent. Local consistency implies global consistency for a
triangulated graph [122]3, so that the distribution on the triangulated subgraph is

3Indeed, this is the essence of the junction tree representation: it speci�es the necessary degree of
local consistency that assures global consistency.
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Figure 6.13. Embedded 3-clique trees are the largest globally consistent substructures
for this Kikuchi approximation. (a) Fully factorized core formed of clustered nodes. (b)

Edges associated with augmented residual term e� for a particular 4-plaque f1; 2; 4; 5g.
Largest globally consistent substructures are 3-clique trees (i.e., graphs of treewidth 2).
Particular examples of such graphs are shown in (c) and (d).

globally consistent. If the subgraph is not triangulated, it will not be possible in a
generic sense to form a locally consistent distribution that remains globally consistent.

To illustrate Proposition 6.4.1, we now consider the largest consistent substructures
for a particular Kikuchi approximation.

Example 6.4.4 (Largest consistent substructures for Kikuchi).

Recall the 4-plaque Kikuchi approximation applied to the 3 � 3 grid, as discussed in
Example 6.3.3. This clustering procedure gives rise to the fully factorized core structure
of clustered nodes, as illustrated in Figure 6.13(a). The augmented structures A [ e�
correspond to the set of edges associated with a given 4-plaque, plus additional edges to
triangulate. For the particular case of adding the 4-plaque f1; 2; 4; 5g, the corresponding
augmented structure is illustrated in panel (b).

The analog of a spanning tree for this Kikuchi approximation is a clique tree formed
by 3-cliques. For the 3 � 3 grid, two such 3-clique trees are shown in panels (c) and
(d). Alternatively, these graphs can be said to have treewidth 2; an ordinary tree is
formed of edges (i.e., 2-cliques), and has treewidth 1. See [17, 162] for more details on
hypergraphs and the notion of treewidth.

Again, let ~Q be a �xed point of the variational problem associated with this Kikuchi
approximation. Now consider a distribution formed by taking products of the local
marginals in ~Q over maximal cliques and separator sets of one of these 3-clique trees. By
a line of reasoning similar to Example 6.4.3, it can be shown that any such distribution
will be globally consistent. Therefore, such 3-clique trees are the analogs for the Kikuchi
approximation of spanning trees for the Bethe approximation. I.e., they are the largest
globally consistent substructures for this Kikuchi approximation.

This notion of largest globally consistent substructure turns out to play an important
role in our analysis of the approximation error.
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� 6.5 Characterization of the error

This section is devoted to analysis of the error between the marginals of the target
distribution p(x), and the approximate marginals of distributions in ~Q�. As with our
analysis of TRP/BP updates in Chapter 5, the invariance principle of Theorem 6.4.1
allows us to derive an exact expression for this error. This exact relation, though
conceptually interesting, is of limited practical use. However, it does enable us to
derive various bounds on the approximation error. With an upper bound on the log
partition function (see Chapter 7), these bounds are computable, and hence provide
valuable information about the performance of these approximation techniques. For
concreteness, we focus our analysis on the case of single node marginals. However, the
analysis that we describe can be extended easily to marginals de�ned over larger subsets
of the vertex set.

At a local minimum ~Q�, the approximate single node marginals Q�s are speci�ed by
the core distributionQ�A; the desired single node marginals Ps are speci�ed by the target
distribution p(x). The essential intuition of equation (6.29) is the following: the core
distribution Q�A can be viewed as a perturbed version of the target distribution p(x),
where the perturbation is caused by the terms

P
�2R[logQ

�
A [ �� logQ�A]. Therefore,

the approximate marginals Q�s will also be perturbed versions of the true marginals Ps.

� 6.5.1 Reformulation in exponential parameters

To make this intuition precise, it is convenient to shift our analysis to an exponential
representation. (See Section 2.2 for background on exponential representations and
their properties.) In the analysis to follow, we let � = f�� j � 2 A g with associated
potentials � = f�� j � 2 A g represent a minimal exponential parameterization for the
target distribution p(x) de�ned on the graph G. We make the following de�nitions:

(a) let �� be the exponential parameter vector of the target distribution; i.e., p(x) �
p(x; ��).

(b) For any subset B � C, let A(B) � A be the set of indices � associated with
elements of B. Also de�ne

�B , f �� j � 2 A(B) g (6.53a)

�B � �B ,
X
�2B

���� (6.53b)

(c) for any subset B � C, let �B be the projection operator onto this structure. That
is:

�B(�) , f �� j � 2 B g � �B

As an example, we have PA = p(x; �A(��)).
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(d) Similarly, for any parameter vector �B = f �� j � 2 A(B) g de�ne an injection
operator to the full set A via

I(�B) =
(
�� � 2 A(B)
0 otherwise

(e) let �A and �A [� be exponential parameters corresponding to the core distribution
QA and auxiliary distributions QA [ � respectively.

To illustrate the use of the exponential representation, let ��A and ��A [� be expo-
nential parameters corresponding to Q�A and Q�A [ � respectively. Then equation (6.29)
of Theorem 6.4.1 can be restated in the following manner:

I(��A) +
X
�2R

�I(��A [�)� I(��A)
�

= �� (6.54)

In the analysis to follow, we will not always be strict in our use of the injection operator;
when it is omitted, it should be understood implicitly that vectors are augmented with
zeroes where necessary so that binary operations make sense.

� 6.5.2 Exact error expression

With this set-up, we can now give an exact characterization of the error between the
approximate and true single node marginals. With Æ(xs = j) denoting the indica-
tor function for the random variable xs to assume value j, the exact marginals and
approximate marginals are given, respectively, by the following expressions:

Ps;j = p(xs = j; ��) = E �� [Æ(xs = j)] (6.55a)

Q�s;j = p(xs = j; ��A) = E ��
A
[Æ(xs = j)] (6.55b)

Equation (6.54) provides the link between ��A, which de�nes the approximate margn-
inal Q�s;j in equation (6.55b), and the original exponential vector ��, which de�nes the
exact marginal in equatioN (6.55a). By using these three equations in conjunction, it
is possible to derive an exact expression for the error in the single node marginals:

Ps;j �Q�s;j = E ��
A

"n
exp

� X
�2R

�
��A [� � ��A

� � �A[�(x) + �(��A)� �(��)

�
� 1
o
Æ(xs = j)

#
(6.56)

Although theoretically interesting, the practical use of equation (6.56) is limited, as it
is impossible to exactly compute the LHS.4 Although the expectation is taken over the
core distribution p(x; ��A) (which is tractable by assumption), within the expectation is

4Indeed, if we could exactly compute this error, then we would have no need for approximate inference
algorithms in the �rst place.
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a set of residual terms | namely, exp

�P
�2R

�
��A [����A

���A[�(x)�| that includes

a term from (at the very least) every edge in G not covered by the core structure A.
Consequently, actually computing this expectation is as diÆcult as performing exact
inference on the graph G. This intractability motivates the development of bounds on
the error.

� 6.5.3 Exact expression for larger substructures

In deriving equation (6.56), we used the fact that approximations to the single node
marginals are given by Q�s;j = E ��

A
[Æ(xs = j)]. In fact, the formulation of the variational

problem (6.16) guarantees an additional set of conditions | namely

Q�s;j = E ��
A [�

[Æ(xs = j)] for all � 2 R

This relation follows because by the constraints associated with variational problems (6.16)
and (6.20), the auxiliary distribution Q�A [ �(x) = p(x; ��A [�) must marginalize down
to the core distribution Q�A. Thus, we obtain an alternative set of expressions for the
di�erence Ps;j�Q�s;j, given in terms of expectations under the distribution p(x; ��A [�):

E��
A [ �

"(
exp

�
��A � �A(x) +

X
�2R=�

�
��A [� � ��A

� � �A[�(x) + �(��A [�)��(��)

�
� 1

)
Æ(xs = j)

#
(6.57)

This expression is valid for each � 2 R.
More generally, error expressions of the form in equation (6.57) are valid for any

distribution (formed from elements of ~Q�) over a substructure that is globally consis-
tent. As we saw in Section 6.4.4, the largest globally consistent substructure can be
considerably larger than the augmented structures A[ e�. For example, in the context
of belief propagation, these structures are given by spanning trees (see Example 6.4.3).

� 6.5.4 Bounds on the error

As in Chapter 5, we now derive bounds on the log error in the single node marginals
[logPs;j � logQs;j]. The �rst set of bounds in equation (6.58) is based on the fact that
the approximations Qs;j arise from a distribution p(x; ��A) that is a perturbed version
of the target distribution p(x; ��). As a result, we can apply Proposition 3.3.1 to bound
the log di�erence in the marginals. The second set of bounds in equation (6.59) is based
on the same idea applied to p(x; ��A [�).

Theorem 6.5.1. Let ��A be a local minimum of variational problem (6.16) giving rise
to approximate single node marginals Qs;j. Let Ps;j be the exact marginals corresponding
to the target distribution p(x; ��). Then we have the following upper bound on the error
Es;j = logQs;j � logPs;j:

Es;j � D(��A k ��)�
1

Qs;j

X
�2R

�
��A [� � ��A

� � cov��
A
f��; Æ(xs = j)g (6.58)
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where�
��A [� � ��A

� � cov��
A
f�A[�; Æ(xs = j)g ,

X
�2A(A[�)

[��A [� � ��A]� cov��Af��; Æ(xs = j)g

Similarly, for each � 2 R, we have the following upper bound:

Es;j � D(��A [� k ��)� 1

Qs;j

h
��A cov��

A [�
f�A(x); Æ(xs = j)g

+
X

�2R=�

�
��A [� � ��A

� � cov��
A [�

f��; Æ(xs = j)g
i

(6.59)

Proof. To obtain equation (6.58), we �rst make use of equation (6.54) to write:

�� � I(��A) =
X
�2R

[I(��A [�)� I(��A)]

We then apply Proposition 3.3.1 to the function Æ(xs = j), and the parameter vectors
�� and ��A.

To obtain equation (6.59), we use a di�erent re-arrangement of equation (6.54) |
namely:

�� � I(��A [�) = I(��A) +
X

�2R=�;�6=�
[I(��A [�)� I(��A)]

We then apply Proposition 3.3.1 to the function Æ(xs = j), and the parameter vectors
�� and ��A [�.

Note that as with the analysis of TRP �xed points in Chapter 5, similar arguments
can be applied to derive lower bounds on the error Es;j. We do not write out these
bounds in an explicit form here, as they can be deduced from equations (6.58) and (6.59).

It is also worthwhile noting that equation (6.59) holds for all � 2 R. Therefore, for a
given node s and state j, we can, in principle, compute the bound of equation (6.58) for
the core distribution, as well as the bound of equation (6.59) for each � 2 R, and then
choose the tightest of all possible bounds. A similar freedom of choice was associated
with the TRP bounds of Chapter 5, where we were free to choose any spanning tree of
the graph to compute a bound.

A caveat associated with Theorem 6.5.1: it is still necessary to upper bound the log
partition function �(��), which appears as part of the KL divergence. Techniques for
obtaining such upper bounds are described in Chapter 7.

� 6.6 Empirical simulations

In this section, we illustrate some properties of the approximations considered in this
chapter, as well as the error bounds on their performance (as derived in Section 6.5),
for some simple examples.
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� 6.6.1 When to use an approximation with more complex structure?

We �rst consider the question of when to use an approximation with more complex
structure. For many problems, TRP/BP �xed points provide accurate approximations
to the marginals, in which case it is undesirable to incur the higher computational cost
associated with a more structured approximation. Here we illustrate with a simple
example that error bounds may be useful in this context.

We begin by forming a distribution p(x; ��) for a binary valued vector x with a
random choice of attractive potentials (as described in Section 2.2.1) on the 3 � 3
grid. Let Ps;1 denote the actual marginal of p(x; �

�) at node s. We then run TRP/BP
on the problem, thereby obtaining a set of approximate single node marginals T �s;1.
We also use this TRP/BP �xed point to compute lower and upper bounds on the
actual marginals Ps, as described in Section 5.5.3. The actual marginals Ps;1, the
TRP/BP approximations T �s;1 and these upper and lower bounds are all plotted in panel
(b) of Figure 6.14. As discussed in Example 6.3.2, the core structure underlying the
TRP/BP approximation is a fully disconnected graph; as a reminder, we have plotted
this structure in panel (a).

The TRP/BP approximation in panel (b) is quite poor, as re
ected by the relative
looseness of the bounds. Note how the TRP/BP approximation lies beneath the lower
bound on the actual marginals for certain nodes (e.g., node 5), so that we know that it
is a poor approximation even without having to see the actual marginals themselves.5

Given that the TRP/BP approximation is poor, we are motivated to try an approx-
imation with a more complex core structure. Here we illustrate a GA;R approximation
using as the core structure the spanning tree illustrated in panel (c), and a set of resid-
ual terms formed by the 4 edges remaining in the 3 � 3 grid that are not included in
this spanning tree. We run the generalized message-passing Algorithm 6.4.1 in order
to �nd a �xed point of the associated variational problem. The resultant approximate
single node marginals Q�s;1 are plotted in comparison the actual marginals Ps;1 in panel

(d). Note that the approximation is excellent. As before, we can use the �xed point ~Q�

and Theorem 6.5.1 to calculate upper and lower bounds on the actual marginals. In
this case, these bounds are quite tight, which tells us the approximation is quite good.

� 6.6.2 Choice of core structure

Another important question is the e�ect of varying the choice of core structure used
in a GA;R approximation. Here we investigate the e�ect of di�erent choices of core
structure of the same complexity | in this case, two di�erent spanning trees of the
same graph.

To investigate this question, we �rst formed a distribution p(x; ��) for a binary
valued vector x with a random choice of mixed potentials (as described in Section 2.2.1)
on the fully connected graph on 9 nodes (K9). We then computed the maximum

5Recall that we are computing upper and lower bounds on the exact marginals Ps;1, so that it is
possible that the TRP/BP approximations T �s;1 lie outside the window.
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Figure 6.14. Changes in approximation accuracy and error bounds for TRP/BP com-
pared to a GA;R approximation using a spanning tree core on the 3� 3 grid. (a) Fully
disconnected core for BP/TRP. (b) Plots of actual Ps;1 and approximate single node
marginals versus node number). Also shown are lower and upper bounds on the actual
marginals, computed from the TRP �xed point. The TRP/BP approximation is quite
poor; the bounds on the exact marginals are relatively loose. (c) Spanning tree core
A for GA;R approximation. (d) Plots of the actual and approximate marginals, as well
as error bounds. The approximation using a spanning tree core is very accurate, as
re
ected by tighter bounds.
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and minimum weight spanning trees with Kruskal's algorithm [108, 117], using j��stj as
the weight on edge (s; t). Using these spanning trees as the core structures, we then
computed approximations ~Q� for the corresponding GA;R approximations, where each
term in the residual set consisted of a single edge.

Panels (a) and (b) of Figure 6.15 show the results for the minimum and maximum
weight spanning trees respectively. In each panel, we plot the approximate marginals
Q�s;1 and the actual marginals Ps;1 versus node number, as well as upper and lower
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Figure 6.15. Approximations of the same problem based on di�erent choice of spanning
tree cores. Each panel shows the approximate marginals Q�

s;1 and the actual marginals
Ps;1 versus node number, as well as upper and lower bounds on the actual marginals

computed using the �xed point ~Q�. (a) Approximation based on minimum weight
spanning tree is poor, and bounds are quite loose. (b) Approximation based on maximum
weight spanning tree is better, and bounds are correspondingly tighter.

bounds on the actual marginal computed from the �xed points ~Q� using Theorem 6.5.1.
The approximation in panel (a), based on the minimum weight spanning tree, is poor,
and the corresponding bounds on the actual marginal are quite loose. In contrast, the
approximation based on the maximum weight spanning tree, as shown in panel (b), is
better; moreover, the bounds are now tighter.

Note that the cost associated with computing either set of approximations is equiv-
alent, yet the quality of the resulting approximation varies substantially. Although we
have simply used a reasonable heuristic here, this example illustrates that the choice of
core structure, even when restricted to a �xed class (e.g., spanning trees), is important.
We shall discuss this issue of choosing a core structure at more length in Chapter 8.

� 6.7 Discussion

This chapter developed a unifying framework for a wide class of more advanced tech-
niques for approximate inference (including BP as a special case). All of these tech-
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niques, like belief propagation and the Bethe free energy, are based on minimizing ap-
proximations to the Kullback-Leibler divergence. The minimizing arguments of these
variational problems are then taken as approximations to local marginal distributions.
An ancillary contribution of this chapter is to unify two previous extensions to belief
propagation: the Kikuchi approximations of Yedidia et al. [183], and the expectation-
propagation updates of Minka [132].

The analysis of this chapter demonstrated that the idea of reparameterization, �rst
introduced in Chapter 5, is more generally applicable to all of the approximations con-
sidered in this chapter. As a consequence, most of the signi�cant results from Chapter 5
on tree-based reparameterization (or belief propagation) carry over in a natural way to
the more advanced techniques analyzed in this chapter. In particular, we proved the
existence of �xed points, and showed that they all satisfy a generalized form of the invari-
ance principle from Chapter 5. Moreover, we developed a generalized message-passing
(or reparameterization) algorithm for computing �xed points. Lastly, we analyzed the
error that arises in using these approximations, and developed computable bounds on
this error. Given the understanding and insight provided by this analysis, it is interest-
ing to consider the application of these more advanced methods to large-scale problems
to which BP has been successfully applied, including problems in image processing,
arti�cial intelligence, and iterative decoding.
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Chapter 7

Upper bounds based on convex

combinations

� 7.1 Introduction

A fundamental quantity associated with any graph-structured distribution is the log
partition function. In most cases, actually computing the log partition function, though
a straightforward summation in principle, is NP-hard [40, 48] due to the exponential
number of terms. Therefore, an important problem is either to approximate or obtain
bounds on the log partition function. There is a large literature on approximation
algorithms for the log partition function [e.g., 103,140,141]. A related goal is to obtain
upper and lower bounds [e.g., 12,93,94,106,154,179]. The applicability of such bounds
on the log partition function is wide; possible uses include approximate inference [e.g.,
95,97], model �tting [e.g., 106], decision theory and large deviations analysis [e.g., 158].

An important property of the log partition function is its convexity (see Section 2.2).
Mean �eld theory [e.g., 106], as presented in Section 2.3.1, can be viewed as exploiting
one property of a convex function: namely, that the �rst order tangent approximation is
always an underestimate [20]. In Chapter 3, we exploited another fundamental property
of convex functions | namely, Jensen's inequality [42] | in order to derive a new class
of upper bounds applicable to an arbitrary undirected graphical model. These upper
bounds were based on taking a particular convex combination of exponential parameter
vectors.

In this chapter, we analyze this new class of bounds in more detail, focusing on the
case where the exponential parameter vectors are drawn from some tractable class for
which exact computations can be performed eÆciently. The canonical example of such
a tractable substructure is a tree embedded within the original graph. The weights
in the convex combination are speci�ed by a probability distribution ~� over the set of
tractable substructures.

For any given log partition function, there is an entire family of upper bounds, in-
dexed by the choice of exponential parameters as well as the probability distribution
~�. It is therefore natural to consider the problem of optimizing both the choice of
exponential parameters, and the distribution over tractable subgraphs, so as to obtain
the tightest possible bounds on the log partition function. This optimization problem

195
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turns out to have an interesting structure. When the distribution ~� is �xed, the ob-
jective function is strictly convex in the exponential parameters, and so has a unique
global minimum. This uniqueness is in sharp contrast to mean �eld theory, where the
associated optimization problem is well-known to su�er from multiple local minima,
even for relatively simple problems [e.g., 93].

The line of analysis that we develop here is quite general, in that it applies to
discrete random variables assuming an arbitrary number of states m, and in principle
to arbitrary sizes of clique potentials. The only restriction that our analysis imposes
on the approximating structures themselves is that they correspond to a triangulated
graph. However, in order to bring our development into sharp focus, this chapter treats
the special case of binary nodes (m = 2) and pairwise clique potentials; moreover,
we assume that the set of tractable substructures, denoted by T, corresponds to the
set of all spanning trees of the graph G. Based on an understanding of this case, the
modi�cations necessary to deal with higher state numbers (m > 2), larger clique sizes,
and more complex approximating structures will be clear.

A major challenge to be overcome lies in the dimension of the problem. The length
of ~� is equal to the number of spanning trees in the graph G = (V;E). Reasonably
complex graphs tend to have a very large number of spanning trees | one which grows
prohibitively quickly in the number of nodes N = jV j. The collection of exponential
parameter vectors is even larger by an additional factor of O(N). Fortunately, we are
able to sidestep this combinatorial explosion by applying the theory of Lagrangian dual-
ity [20]. Indeed, in the dual formulation, the entire collection of exponential parameters
is replaced by a single vector of length N + jEj. In addition, the dual function consists
of a convex combination of entropy terms of tree-structured distributions, each of which
can be decomposed as a sum of single node and edge terms. This local decomposition
is the crucial property that permits eÆcient optimization of the bounds. In particu-
lar, for a �xed distribution over spanning trees of the graph, we develop a constrained
Newton's method to optimize eÆciently the choice of exponential parameters. Simulta-
neously optimizing both the choice of the exponential parameters and the distribution
~� over spanning trees requires a more intensive but computationally tractable algo-
rithm with an inner and outer loop. Interestingly, steps in the outer loop correspond
to solving a maximum weight spanning tree problem [108], which can be interpreted as
�nding the tree that best �ts the current data [see 37].

This chapter is organized in the following manner. In Section 7.1.1, we introduce
the notation and de�nitions required for analysis. In Section 7.1.2, we derive the basic
form of the upper bounds to be studied in this chapter. The dual formulation of these
bounds, which is essential in avoiding the combinatorial explosion described above, is
developed in Section 7.2. Section 7.3 builds on this dual formulation by stating and
characterizing the optimal form of the upper bounds, �rst for the case of a �xed dis-
tribution, and secondly when both the distribution ~� and the collection of exponential
parameter vectors are allowed to vary. Section 7.4 is devoted to more practical issues:
we present algorithms for computing the optimal form of the bounds speci�ed in Sec-
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tion 7.3. We also present the results of these techniques in application to bounding the
log partition function of randomly generated distributions. We �nish up in Section 7.5
with a summary and extensions to the work described here.

� 7.1.1 Set-up

The analysis of this chapter makes heavy use of exponential representations of dis-
tributions, and the associated Legendre transform between exponential and mean pa-
rameters. The reader should consult Section 2.2 for the relevant background. In this
section, we set up the notation necessary for subsequent analysis. So as to provide a rel-
atively self-contained and more readable presentation, we duplicate some material from
Section 3.3.3 of Chapter 3, in which upper bounds of this nature were �rst introduced.

Let T = T(G) denote the set of all spanning trees of G. We use the symbol T to
refer to a spanning tree in T. The number jT(G)j of spanning trees in a graph G is
typically quite large; for instance, a well-known result of Cayley [168] states that the
complete graph KN on N nodes has NN�2 spanning trees. More generally, the number
of spanning trees in a graph can be computed via the Matrix-Tree theorem [168].

We now de�ne a probability distribution over the set of spanning trees T = T(G):

~� = f �(T ); T 2 T j �(T ) � 0;
X
T 2T

�(T ) = 1 g (7.1)

The support of ~� is de�ned as

supp(~�) , f T 2 T j �(T ) > 0 g (7.2)

In the sequel, it will also be of interest to consider the probability that a given edge
e 2 E appears in a spanning tree T chosen randomly under the distribution ~�.

De�nition 7.1.1. Given a distribution ~� over spanning trees, the edge appearance
probability of an edge e 2 E is de�ned as follows:

�e , E ~�

�
Æ[e 2 T ]	 = Pr~�fe 2 T g (7.3)

where Æ[e 2 T ] is the indicator function for edge e to appear in tree T . I.e., this is the
probability that edge e belongs to a spanning tree chosen randomly under distribution
~�.

For a random vector x taking values in f0; 1gN , let �� denote the minimal exponen-
tial parameter of a distribution p(x; ��) de�ned on the graph G = (V;E):

p(x; ��) = exp

�X
s2V

��sxs +
X

(s;t)2E
��stxs xt � �(��)

�
(7.4)

We refer to this quantity as the target distribution.



198 CHAPTER 7. UPPER BOUNDS BASED ON CONVEX COMBINATIONS

For each spanning tree T 2 T, let �(T ) be an exponential parameter vector of the
same dimension as �� that respects the structure of T . To be explicit, if T is de�ned
by an edge set E(T ) � E, then �(T ) must have zeros in all elements corresponding to
edges not in E(T ). For a binary process, such a tree-structured distribution has the
form:

p(x; �(T )) = exp
�X
s2V

�(T )sxs +
X

(s;t)2E(T )
�(T )st xsxt � �(�(T ))	 (7.5)

Since any spanning tree on a connected graph with N nodes has N � 1 edges, the
parameter vector �(T ) has d(�(T )) , 2N � 1 non-zero elements for a binary-valued
process.

For compactness in notation, let

� = f�(T ) j T 2 Tg (7.6)

denote the full collection of tree-structured exponential parameter vectors. This quan-
tity can be viewed as a large vector with [(2N � 1) jT(G)j] non-zero elements. The
notation �(T ) speci�es those subelements of � corresponding to spanning tree T .

� 7.1.2 Basic form of bounds

The central idea is that of a convex combination of tree-structured parameter vectors:

De�nition 7.1.2. Given a distribution ~� and a collection of exponential vectors �, a
convex combination of exponential parameter vectors is de�ned via the expectation:

E ~� [�(T )] ,
X
T 2T

�(T )�(T ) (7.7)

We are especially interested in sets of approximating points � for which there exists
a convex combination that is equal to ��. Accordingly, we de�ne the following set of
pairs (�; ~�):

A(��) ,
�
(�; ~�)

�� E ~� [�(T )] = ��
�

(7.8)

It is not diÆcult to see that A(��) is never empty.
Example 7.1.1. To illustrate these de�nitions, consider a binary distribution de�ned
by a single cycle on 4 nodes, as shown in Figure 7.1. Consider a target distribution of
the form

p(x; ��) = expfx1x2 + x2x3 + x3x4 + x4x1 � �(��)g
That is, the target distribution is speci�ed by the exponential parameter

�� =
h
0 0 0 0 1 1 1 1

i



Sec. 7.1. Introduction 199

4/3

4/3

4/3

0

4/3

0

4/34/3

4/3

4/3

4/30 4/34/3

4/3

0

(a) �(T1) (b) �(T2) (c) �(T3) (d) �(T4)

Figure 7.1. A convex combination of four distributions p(x; �(Ti)), each de�ned by a
spanning tree Ti, is used to approximate the target distribution p(x; ��) on the single-
cycle graph.

where the zeros represent the fact that ��s = 0 for all s 2 V . The tractable class consists
of the four possible spanning trees T = fTi j i = 1; : : : ; 4 g on a single cycle on four
nodes. We de�ne a set of associated exponential parameters � = f�(Ti)g as follows:

�(T1) = (4=3)
h
0 0 0 0 1 1 1 0

i
�(T2) = (4=3)

h
0 0 0 0 1 1 0 1

i
�(T3) = (4=3)

h
0 0 0 0 1 0 1 1

i
�(T4) = (4=3)

h
0 0 0 0 0 1 1 1

i
Finally, we choose �(Ti) = 1=4 for all Ti 2 T. It is not diÆcult to check that this choice
of a uniform distribution ensures that E~� [�(T )] = ��; that is, the speci�ed pair (�; ~�)
belongs to A(��).

Recall from Lemma 2.2.1 that the log partition function � is convex as a function
of �. This property allows us to apply Jensen's inequality [42] to a convex combination
speci�ed by a pair (�; ~�) 2 A(��); doing so yields the following result:
Proposition 7.1.1. For any pair (�; ~�) 2 A(��), the following upper bound is valid:

�(��) � E ~� [�(�(T ))] ,
X
T 2T

�(T )�(�(T )) (7.9)

Note that the bound of equation (7.9) is a function of both the distribution ~� over
spanning trees; and the collection of tree-structured exponential parameter vectors �.
The primary goal of this chapter is to optimize these choices so as to minimize the RHS
of equation (7.9), thereby obtaining the tightest possible upper bound of the form in
Proposition 7.1.1. We shall consider �rst the problem of optimizing the choice of � for a
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�xed ~�; and then the joint optimization of � and ~�. Despite the relatively simple form
of equation (7.9), these optimization problems turn out to have a rich and interesting
structure.

� 7.2 Dual formulation with �xed ~�

In this section, we develop a Lagrangian dual formulation of the bounds of equa-
tion (7.9). For a �xed distribution ~�, consider the following constrained optimization
problem: (

min� E ~� [�(�(T ))]
s: t E ~� [�] = ��

(7.10)

With ~� �xed, the upper bound E ~� [�(�(T )] is strictly convex as a function of �, and
the associated constraint is linear in �.

We assume that ~� is chosen such that the associated edge appearance probabilities
�e = Pr~�fe 2 T g are all strictly positive. I.e., all edges e 2 E appear in at least
one tree T 2 supp(~�). This assumption is necessary to ensure that constraint set
f � j (�; ~�) 2 A(��) g is non-empty. By standard results in nonlinear programming [20],
problem (7.10) has a unique global minimum, attained at b� � b�(~�). In principle, a
variety of methods [e.g., 20] could be used to solve the convex program (7.10). However,
an obvious concern is the dimension of the parameter vector �; in particular, it is directly
proportional to jTj, the number of spanning trees in G, which is typically very large.

As we will show in this section, the theory of convex duality allows us to neatly
avoid this combinatorial explosion. In particular, we show that the Lagrangian dual of
problem (7.10) depends on a vector � of length N + jEj, which has the form:

� = f�s; s 2 V ; �st; (s; t) 2 Eg (7.11)

This vector can be viewed as a set of parameters de�ning the local marginal distributions
of a binary process on the single nodes and edges of the original graph G as follows:

p(xs;�) , [1� �s; �s]
0

(7.12a)

p(xs; xt;�) ,

 
[1 + �st � �s � �t] �st � �t

�st � �s �st

!
(7.12b)

To ensure that these de�nitions make sense as marginal distributions (i.e., their elements
lie between zero and one), the vector � must belong to the following polytope:

L(G) = f � j 0 � �st � �s � 1; �s + �t � 1 + �st 8 s 2 V; (s; t) 2 E g
(7.13)

Let b� = f b�(T ) j T 2 T g denote the optimum of problem (7.10). The signi�cance
of � is in specifying this optimum in a very compact fashion. For each tree T 2 T, let
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�T (�) denote the projection of � onto the spanning tree T . Explicitly,

�T (�) , f�s; �st j s 2 V ; (s; t) 2 E(T ) g (7.14)

consists only of those elements of � belonging to single nodes, or elements of the edge
set E(T ) � E of the tree T .

Via equation (7.12), any such vector �T (�) de�nes a set of marginal distributions
for each node s 2 V and edge (s; t) 2 E(T ). These marginals provide an explicit
construction of a distribution p(x; �T (�)) by the usual factorization of tree-structured
distributions implied by the junction tree representation (see Section 2.1.5) | viz.:

p(x; �T (�)) ,
Y
s2V

p(xs;�)
Y

(s;t)2E(T )

p(xs; xt;�)

p(xs;�) p(xt;�)
(7.15)

The proof of Proposition 7.2.1 below shows that the optimal dual parameter b�
speci�es the full collection of optimal exponential parameters b� via the relation:

p(x; b�(T )) = p(x; �T (b�)) for all T 2 T (7.16)

That is, at the optimum, a single vector b� of length N + jEj suÆces to specify the
full collection b� = f b�(T ) j T 2 T g. Consequently, the dual formulation reduces
the problem dimension from the size of � (which is proportional to jTj) down to the
dimension of � (namely, N+ jEj). It is this massive reduction in the problem dimension
that permits eÆcient optimization.

An insight that emerges from our analysis is that the collection of tree-structured
distributions f p(x; b�(T )) j T 2 T g has the following remarkable property:
(a) For every p(x; b�(T )), the single node marginal probability p(xs = 1; b�(T )) is equal

to the same constant b�s, for all vertices s 2 V .
(b) For every tree-structured distribution p(x; b�(T )) for which the tree T includes

edge (s; t), the corresponding marginal probability p(xs = 1; xt = 1; b�(T )) is
equal to the same constant b�st.

These conditions are very similar to the consistency conditions satis�ed by any �xed
point of tree-based reparameterization (see Chapter 5). Not surprisingly then, the dual
function of Proposition 7.2.1 has a very close relation with the Bethe free energy, as we
point out in Section 7.3.4.

� 7.2.1 Explicit form of dual function

We now state and derive the dual form of problem (7.10). Let 	(�T (�)) be the negative
entropy of the tree-structured distribution p(x; �T (�)) de�ned in equation (7.15), and
recall the de�nition of the polytope L(G) given in equation (7.13).
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Proposition 7.2.1 (Dual formulation). For a �xed weight vector ~�, we have the
equivalent dual formulation of problem (7.10):

min
� s:t E~� [�(T )]=��

E ~� [�(�(T ))] = max
�2L(G)

Q(�; ~�; ��) (7.17)

where

Q(�; ~�; ��) , �E~� [	(�T (�))] +
X
�

���
�
� (7.18)

Proof. For the �xed ~�, we consider the Lagrangian dual function associated with prob-
lem (7.10):

Q(�; ~�; ��) = inf
�

n
L(�;�; ~�; ��)

o
(7.19)

where the Lagrangian is de�ned by

L(�;�; ~�; ��) = E ~� [�(�(T )] +
X
�

��
�
��� � E ~� [�(T )�]

	
(7.20)

The function Q(�; ~�; ��) is a function of the dual variables �; in particular, �� is a
Lagrange multiplier associated with the constraint ��� � E ~� [�(T )�] = 0. In addition to
these constraints, each �(T ) is restricted to correspond to a tree-structured distribution,
meaning that certain elements �(T )� must be zero. We enforce these zero constraints
explicitly without Lagrange multipliers.

Now the Lagrangian is also strictly convex as a function of �, so that the in�mum
of equation (7.19) is attained at some value b� = fb�(T )g. By taking derivatives of the
Lagrangian with respect to �, we obtain the stationary conditions for the optimum:

�(T )�E
b�(T )[��]� b��	 = 0 (7.21)

where

��(x) =

(
xs if � = s 2 V
xsxt if � = (s; t) 2 E

If �(T ) = 0, then the approximating parameter �(T ) plays no role in the problem,
so that we can simply ignore it. Otherwise, if �(T ) > 0, equation (7.21) implies that
for all indices � 2 V [ E(T ), the Lagrange multipliers are connected to the optimal
approximating parameters b�(T ) via the relation:

E
b�(T )[��] =

b�� (7.22)

Recall from Section 2.2.4 that the expectations E
b�(T )[��] de�ne a set of mean param-

eters �(b�(T )) that are dually coupled via the Legendre transform to the exponential
parameter b�(T ). Therefore, equation (7.22) has two important implications:
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(a) for all T 2 supp(~�) and nodes s 2 V , the mean parameters E
b�(T )[xs] are all equal

to a common value b�s
(b) similarly, for all T 2 supp(~�) that include edge (s; t), the mean parameters

E
b�(T )[xs xt] are all equal to a common value b�st

Since b�(T ) and �T (b�) are coupled via the Legendre transform, they correspond to
the exponential parameter and mean parameter respectively of the tree-structured dis-
tribution p(x; b�(T )) � p(x; �T (�)). Here, as is common in exponential families, we are
using the exponential parameter b�(T ) and the mean parameter �T (�) interchangeably
to index the same distribution.1

By the Legendre duality between the log partition function and the negative entropy
function (see equation (2.32) in Chapter 2), we have the relation:

�(b�(T )) =X
�

b�(T )�b�� �	(�T (b�)) (7.23)

where 	(�T (b�)) is the negative entropy of p(x; b�(T )) � p(x; �T (�)). Substituting
equation (7.23) into equation (7.20) yields an explicit expression for the Lagrangian
dual function:

Q(b�; ~�; ��) = �E~� [	(�T (b�))] +X
�

b�����
Since � must correspond to a set of mean parameters valid for each node and edge,
it is restricted to the polytope L(G) de�ned in equation (7.13). The cost function is
strictly convex and the constraints are linear, so that strong duality holds [20]; therefore,
the optimum dual value Q�(~�; ��) = max�2L(G)Q(�; ~�; ��) is equivalent to the global
minimum of the primal problem (7.10).

� 7.2.2 Characterization of optimal points

In this section, we characterize both the optimizing argument b� of the dual problem
in Proposition 7.2.1, as well as the corresponding optimum b� of the original primal
problem (7.10). We begin by showing that for �nite ��, the optimal b� always occurs
at interior points of the constraint set L(G). Next, we provide an explicit construction
of these optima, speci�ed in terms of ��, and the edge appearance probabilities �e
associated with the distribution ~�.

Lemma 7.2.1. If k��k < 1, the optimum b� of problem (7.17) is always attained at
an interior point of L(G).

1Strictly speaking, we should write p(x; ��1(�T (�))) to mean p(x; �T (�)), where ��1 is the inverse
Legendre mapping from mean parameters to exponential parameters. (See Section 2.2 for more details).
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Proof. Consider the dual function of equation (7.18) as a function of � and ��. Ob-
serve that the function �E~� [	(�T (�))] is strictly concave. Therefore, from the form of

equation (7.18), the optimum b� = b�(��) and �� can be put into one-to-one correspon-
dence via the invertible and continuously di�erentiable Legendre transform [151]. The
domains of b� and �� are L(G) and RN+jEj respectively. Therefore, extreme points of
the polyhedron L(G) are attained only as k��k ! 1.

The signi�cance of Lemma 7.2.1 is in allowing us to characterize optima of the dual
function in equation (7.18) in terms of ordinary gradient conditions. That is, it obviates
the need to consider Lagrange multipliers associated with the constraints de�ning L(G)
in equation (7.13).

Proposition 7.2.2 (Characterization of optimum). For any k��k < 1, the opti-
mal pair b� and b� are characterized by the relations:

��s = E ~� [b�(T )s] = log

� b�s
(1� b�s)

�
+
X

t2N (s)

�st log

�
(b�s � b�st)

(1 + b�st � b�s � b�t)
�
(7.24a)

��st = E ~� [b�(T )st] = �stb�st = �st log

"
(b�st) (1 + b�st � b�s � b�t)
(b�s � b�st)(b�t � b�st)

#
(7.24b)

where N (s) = f t 2 V j (s; t) 2 E g is the set of neighbors of node s in G.

Proof. See Appendix D.1.

Equations (7.24a) and (7.24b) can be viewed as an alternative and more explicit
statement of the fact that p(x; b�(T )) = p(x; �T (b�)) for all spanning trees T 2 T. An
important implication of equation (7.24b) is that that the optimal exponential edge
parameters b�(T )e are equal for all spanning trees T 2 T. From equation (7.24b) and
our assumption that �e > 0 for all e 2 E, this common value is given by ��e=�e. As
a consequence, the only remaining degree of freedom is in the single node parametersb�(T )s.
Example 7.2.1 (Single cycle). To illustrate Proposition 7.2.2, we return to the sin-
gle cycle of Example 7.1.1, which has four spanning trees in total. Each edge in the
graph appears in 3 of these 4 spanning trees. As a result, the edge appearance proba-
bilities under the uniform distribution (i.e., �(Ti) = 1=4 for all i = 1; : : : ; 4) are given
by �e = 3=4 for all edges e 2 E. From equation (7.24b) and the fact that

�� =
h
0 0 0 0 1 1 1 1

i
the optimal exponential edge parameters are given by b�e = ��e = (3=4) = 4=3 for all
edges. We now must choose the single node parameters b�(Ti)s of each spanning tree Ti
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Figure 7.2. Illustration of optimal exponential tree parameter b�(T1) on a single cycle.
All edges are assigned weight (4=3) and single node parameters are speci�ed in terms of

a � 0:5043. Other optimal solutions b�(Ti) are rotated versions of this one.

to ensure that the mean parameters are all equal as well. Doing so numerically yields
optimal solutions of the form:

b�(T1) =
h
�a �a +a +a (4=3) (4=3) (4=3) 0

i
where a � 0:5043. Figure 7.2 gives a graphical illustration of the structure of this
solution. Other optimal solutions b�(Ti); i = 2; : : : ; 4 are obtained by rotating b�(T1).
With this speci�cation of optimal solutions, it can be veri�ed that

E ~� [b�(T )] = (1=4)
X
Ti

b�(Ti) = ��

as required.

� 7.2.3 Decomposition of entropy terms

A major advantage of the dual formulation of Proposition 7.2.1 is the attendant reduc-
tion in the dimension of the problem | namely, from the O(N jT(G)j) vector � to the
(N + jEj)-dimensional vector �. However, a remaining concern with the formulation of
Proposition 7.2.1 is the apparent need to calculate an entropy term for all structures
T 2 supp(~�). Fortunately, this problem can also be circumvented by using the fact
that for a tree-structured distribution, the negative entropy decomposes into a sum of
node and edge terms.

In particular, using the form in p(x; �T (�)) in equation (7.15), we can write

	(�T (�)) =
X
x2XN

p(x; �T (�)) log p(x; �T (�))

= �
X
s2V

Hs(�) +
X

(s;t)2E(T )
Ist(�) (7.25)
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where

Hs(�) = ��s log �s � (1� �s) log(1� �s) (7.26a)

Hst(�) = ��st log �st � (1 + �st � �s � �t) log(1 + �st � �s � �t)

�(�s � �st) log(�s � �st)� (�t � �st) log(�t � �st) (7.26b)

Ist(�) = Hs(�) +Ht(�)�Hst(�) (7.26c)

are the entropy of the single node distribution p(xs;�), the joint marginal entropy of
p(xs; xt;�), and the mutual information between xs and xt under p(xs; xt;�) respec-
tively.

Using the decomposition of equation (7.25), we obtain:

E ~� [	(�
T (�))] =

X
T 2T

�(T )
(
�
X
s2V

Hs(�) +
X

(s;t)2E(T )
Ist(�)

)

= �
X
s2V

Hs(�) +
X

(s;t)2E
�stIst(�) (7.27)

where �st = Pr~�f(s; t) 2 T g is the edge appearance probability de�ned in De�ni-
tion 7.1.1.

As a consequence, the optimal value of the upper bound depends on the distribution
~� only via the vector of edge appearance probabilities �e = f�e j e 2 Eg. In principle,
this result allows us to consider optimizing the choice of distribution ~� over all spanning
trees by appropriately adjusting the vector �e. The potential reduction in complexity
is signi�cant, since the vector �e has only jEj entries, as opposed to the jT(G)j entries
of ~�.

� 7.2.4 Spanning tree polytope

Our focus up to this point has been on the optimization of the tree-structured expo-
nential parameters � = f�(T )g with the distribution ~� �xed. We now consider the
problem of optimizing ~�, for which it suÆce to optimize the vector of edge appearance
probabilities �e (as established by the analysis of the previous section). Any procedure
for adjusting the elements of �e needs to ensure that they still correspond to the edge
appearance probabilities of a valid distribution ~� over spanning trees. I.e., they must
belong to the set

T(G) = f�e j �e = E~�fÆ[e 2 T ]g for some ~�; 8 e 2 E g (7.28)

where Æ[e 2 T ] is an indicator function for the event that edge e belongs to spanning
tree T . Therefore, we need to gain an understanding of the constraints that govern
membership in T(G).

A simple example helps to provide some intuition for the constraints de�ning the
edge appearance probabilities:
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Example 7.2.2 (Edge appearance probabilities). Figure 7.3(a) shows a graph, and
panels (b) through (d) show three of its spanning trees fT 1; T 2;T 3g. Suppose that we
form a uniform distribution ~� over these trees by assigning probability �(T i) = 1=3 to
each T i; i = 1; 2; 3. Consider the edge with label f ; notice that it appears in T 1, but
not in either of T 2 and T 3. Therefore, under the uniform distribution ~�, the associ-
ated edge appearance probability is �f = 1=3. Since edge e appears in two of the three
spanning trees, similar reasoning establishes that �e = 2=3. Finally, observe that edge b

b

e

f

b

e

f

b

e

f

b

e

f

(a) Original (b) �(T 1) = 1
3 (c) �(T 2) = 1

3 (d) �(T 3) = 1
3

Figure 7.3. (a) Original graph. (b){(d) Three spanning trees of the graph. Each is
assigned probability �(T i) = 1=3. Under this uniform distribution, it can be seen that
�f = 1=3, �e = 2=3 and �b = 1.

appears in all three spanning trees; therefore, it must have edge appearance probability
�b = 1, which re
ects the fact that it will always appear, no matter which of the three
spanning trees is chosen.

Proceeding with our development, we use the delta function Æ[e 2 T ] to de�ne
the spanning tree incidence vector �(T ) as follows. For a given spanning tree T , the
quantity �(T ) is a binary-valued vector of length jEj with elements

�(T )e = Æ[e 2 T ] (7.29)

With this de�nition, we can rewrite the equations �e = E~�fÆ[e 2 T ]g that de�ne
membership in T(G) in a vector form as follows:

�e =
X
T 2T

�(T )�(T ) (7.30)

Equation (7.30) shows that the set T(G) is the convex hull of the set of spanning tree
incidence vectors f �(T ) j T 2 T g. For this reason, we refer to T(G) as the spanning
tree polytope.

By standard results on polyhedra [20], the set T(G) must have an equivalent charac-
terization in terms of a set of linear inequalities. Fortunately, the spanning tree polytope
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is a well-studied object in combinatorial optimization and matroid theory [e.g., 35,60].
The following lemma, based on a result of Edmonds [60], provides such a characteriza-
tion of T(G) in terms of linear relations:

Lemma 7.2.2 (Spanning tree polytope). Given a graph G = (V;E), and any sub-
set F � E, de�ne the rank of F as r(F ) = v(F ) � c(F ), where v(F ) is the number of
vertices covered by edges in F , and c(F ) is the number of connected components of the
subgraph induced by F . Then the spanning tree polytope T(G) is characterized by the
following linear relations: X

e2F
�e � r(F ) 8 F � E (7.31a)X

e2E
�e = N � 1 (7.31b)

�e � 0 8 e 2 E (7.31c)

Note that as de�ned, the rank function r(F ) of a subset F � E corresponds to the
number of edges in the largest acyclic subgraph of G(F ). For example, when F = E,
then the largest acyclic subgraph is a spanning tree. Since any spanning tree has N � 1
edges, we have r(E) = N�1. The term rank function comes from matroid theory [178];
for those readers familiar with matroids, spanning trees are bases in the so-called graphic
matroid.

In order to gain some intuition for the constraints in equation (7.31), we con-
sider some particular cases. The necessity of the non-negativity constraints in equa-
tion (7.31c) is clear, since the �e correspond to edge appearance probabilities. The cor-
responding upper bounds �e � 1 are obtained by choosing a single edge set F = feg.
In this case, we have v(F ) = 2 and c(F ) = 1, so that r(F ) = 1. Equation (7.31a)
thus reduces to the constraint �e � 1. Next, equation (7.31b) can be deduced with
the following reasoning. Let ~� = f�(T )g be the distribution giving rise to the edge
appearance probabilities �e. ThenX

e2E
�e =

X
e2E

X
T 2T

�(T )�(T )e

=
X
T 2T

�(T )
X
e2E

�(T )e

= N � 1

where we have used the fact that
P

e2E �(T )e = N � 1 (since any spanning tree T on
N nodes has N � 1 edges); and the fact that

P
T �(T ) = 1.

Note that equation (7.31a) captures a large number of linear inequalities | one for
each subset F of the edge set. For certain choices of F , such inequalities capture more
subtle constraints that arise from the particulars of graph structure. For instance,
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consider a connected graph in which the edge b is a bridge. I.e. removing the edge
b breaks the graph into two components. As an illustration, edge b in the graph of
Figure 7.3(a) is a bridge. Clearly, any spanning tree T of G must include the edge b,
which implies that �b = 1 for any2 valid spanning tree distribution over this graph.

For the bridge b, the constraint �b = 1 is captured by setting F = Enb in equa-
tion (7.31a). Note that r(Enb) = N � 2, since the graph induced by Enb covers N
vertices, and has two connected components. Therefore, equation (7.31a) indicates
that X

e2Enb
�e � r(Enb) = N � 2

At the same time, from equation (7.31b), we also have that
P

e2Enb �e + �b = N � 1.
These two equations, along with �b � 1, imply that �b = 1 as necessary.

Some of the constraints in equation (7.31a) turn out to be redundant; indeed, it
suÆces to impose bounds of the form in equation (7.31a) only for a certain collection
of subsets F of the edge set [142]. To characterize these subsets, recall the following
de�nitions from the background in Section 2.1.1. Given a subset S � V of the vertex
set, the node-induced subgraph G[S] is the subgraph of G induced by S. That is,
G[S] = (S;E[S]) where

E[S] , f (s; t) 2 E j s; t 2 S g
A cut vertex or cut node in a graph G is a member of V whose removal from G increases
the number of components.

With this terminology, we can now de�ne the relevant collection of edge subsets:

De�nition 7.2.1. A subset F � E is a critical subset means that:

(a) F corresponds to the edge set E[S] of the induced graph G[S], for some subset
S � V of the vertex set, and

(b) the induced graph G[S] is connected and contain no cut nodes.

Any singleton set feg � E is also critical.

An important result in polyhedral combinatorics [see 142] asserts that a polytope
of the form of T(G) can be characterized using constraints of equation (7.31a) only for
critical subsets F � E. The number of such critical subsets is at most 2N , corresponding
to the edge sets E[S] of the graphs induced by all 2N possible subsets S of the vertex
set V . Since jEj � N for any connected graph with cycles, this may be a substantial
reduction relative to the total number of edge subsets (2jEj). However, it is still an
intractable number of constraints in general.

2The analysis of Example 7.2.2 showed that �b = 1 for a particular distribution that placed positive
probability on only three spanning trees. Since b is a bridge in the graph, this statement holds regardless
of the choice of distribution.
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Example 7.2.3. In certain cases, condition (b) of De�nition 7.2.1 can lead to a sub-
stantial reduction in the number of critical subsets (relative to 2N ). For a graph con-
sisting of a single cycle, consider any node-induced subgraph G[S] with 3 � jSj < N .
It can be seen such a graph either has a cut node (Figure 7.4(a)), or is not connected
(Figure 7.4(b)). Therefore, the only critical subsets for a single cycle are the singleton

1 2

3

45

6

1 2

3

45

6

(a) (b)

Figure 7.4. For a single cycle, each node-induced subgraph G[S] with 3 � jSj < N
either has cut node, or is not connected. (a) With S = f1; 2; 3g, node 2 is a cut node in
the induced subgraph G[S]. (b) With S = f2; 3; 5; 6g, the induced subgraph G[S] is not
connected.

edge sets feg, and the full edge set E. Consequently, the conditions 0 � �e � 1 andP
e2E �e = N � 1 are suÆcient to characterize T(G) for a single cycle.

� 7.3 Jointly optimal upper bounds

In this section, we begin by specifying the form of the optimal upper bounds on the log
partition function �(��), where the optimization takes place both over the dual variables
� and the set of edge appearance probabilities �e. We then turn to characterization of
the optimizing arguments (b�;c�e). Finally, we point out some connections between the
cost function central to our bounds, and the Bethe free energy of statistical physics [183].

� 7.3.1 Optimal upper bounds on �(��)

In order to make links with the Bethe free energy, it is convenient to de�ne a function
F that corresponds to the negative of the dual function Q de�ned in equation (7.18).
The key insight of Section 7.2.3 is that the expectation E~� [	(�

T (�))] depends on ~�

only via the edge appearance probabilities �e (see De�nition 7.1.1). Thus, using the
decomposition of entropy terms given in equation (7.27), we can express �Q(�; ~�; ��)
as follows:

F(�;�e; ��) = �
X
s2V

Hs(�) +
X

(s;t)2E
�stIst(�) �

X
�

���
�
� (7.32)

where the entropy Hs and mutual information Ist are de�ned in equations (7.26a)
and (7.26c) respectively. All of our upper bounds will be expressed in terms of this
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function evaluated at particular values of � 2 L(G) (as de�ned in equation (7.13)) and
�e 2 T(G) (as de�ned in equation (7.28)).

Theorem 7.3.1 (Optimal upper bounds).
For an arbitrary �e 2 T(G), de�ne the function

H(�e; ��) , min
�2L(G)

�F(�;�e; ��)	 (7.33)

(a) For any �e 2 T(G), the log partition function is bounded above as follows:

�(��) � �H(�e; ��) (7.34)

Moreover, for all �e 2 T(G), the minimum de�ning H in equation (7.33) is
attained at a unique vector b� � b�(�e) 2 L(G).

(b) In addition, we have an upper bound, jointly optimal over both � and �e, of the
form:

�(��) � � max
�e2T(G)

H(�e; ��) (7.35)

Proof. (a) For each �e 2 T(G), there exists a corresponding distribution ~� that realizes
the edge appearance probabilities �e. Therefore, the function F(�;�e; ��) is equivalent
to a function of the form �Q(�; ~�; ��) = E~� [	(�

T (�))]�P� ���
�
� for some distribution

~� over spanning trees T 2 T. Based on this relation, the upper bound of equation (7.34)
follows from Proposition 7.2.1. The negative entropy 	(�T (�)) is strictly concave as a
function of �, so that F(�;�e; ��) = �Q(�; ~�; ��) is strictly convex as a function of �.
Consequently, the associated minimization problem (with linear constraints on �) has
a unique global minimum b�(�e).

(b) The bound of equation (7.34) holds for all �e 2 T(G), from which equation (7.35)
follows. Observe that F(�;�e; ��) is linear in �e. Therefore, H(�e; ��) is the minimum
of a collection of linear functions, and so is concave as a function of �e [20]. Conse-
quently, H(�e; ��) has a global maximum attained at some point c�e, which yields the
optimal value of the upper bound in equation (7.35). The corresponding optimal �
given by b� � b�(c�e).

We illustrate Theorem 7.3.1 by following up the single cycle case of Example 7.2.1.

Example 7.3.1. Consider a single cycle on four nodes, as shown in Figure 7.5(a).

(a) We begin with the choice of exponential parameter

�� =
h
0 0 0 0 1 1 1 1

i
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as in Example 7.2.1, and �x uniform edge appearance probabilities �e = (3=4) for
all edges e 2 E. The optimal mean parameter for the bound of Theorem 7.3.1(a)
can be calculated as

b�(�e) = hb1 b1 b1 b1 b2 b2 b2 b2

i
where b1 � 0:8195 and b2 � 0:7069. This yields the optimal upper bound of
�F(b�; 3=4; ��) � 4:6422 on the true log partition function �(��) � 4:6252.

By symmetry of the problem, it can be inferred that the uniform choice of edge
appearance probabilities is indeed optimal in the sense of Theorem 7.3.1(b).

21

4 3

21

4 3

b�14 = 0:54 b�23 = 0:54

b�34 = 1

b�12 = 0:92

(a) (b)

Figure 7.5. Illustration of optimality conditions on a single cycle. (a) Graph consisting
of a single cycle. (b) Optimal edge appearance probabilities for �� = [0 0 0 0 1 1 1 3]T .

(b) Now consider the same single cycle, but the non-symmetric choice of exponential
parameter

�� =
h
0 0 0 0 1 1 1 3

i
If we choose uniform (3=4) edge appearance probabilities, then we obtain an upper
bound �F(b�; 3=4; ��) � 6:3451, optimal in the sense of Theorem 7.3.1(a), on the
log partition function �(��) � 6:3326.

Given the inhomogeneous nature of ��, it is appropriate to consider joint opti-
mization over both � and �e, as dictated by Theorem 7.3.1(b). Performing this
optimization using Algorithm 7.4.2 of Section 7.4, we obtain the following optimal
edge appearance probabilities:

c�e � h0:92 0:54 0:54 1
i

(7.36)
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Note that the optimum assigns edge appearance probability of one to the edge
with largest weight (i.e., the single edge with weight 3). As a result, this edge

must appear in any spanning tree in the support of the optimizing distribution b~�.
This set of edge appearance probabilities, combined with the associated b�(c�e),
yields the upper bound H(c�e; ��) � 6:3387 on the true log partition function
�(��) � 6:3326. This upper bound is tighter than the previous bound (� 6:3451)
based on uniform edge appearance probabilities.

� 7.3.2 Alternative proof

In this section, we present an alternative proof of part (a) of Theorem 7.3.1, which
provides a complementary perspective to the approach of taking convex combinations
in the exponential domain. We begin with the variational representation of �(��), as
guaranteed by the Legendre transform (see Section 2.2.4):

�(��) = max
�2M (G)

�
�T �� �	(�)

	
(7.37)

where M (G) is the set of valid mean parameters. (I.e., M (G) is given by the range
Ra(�) of the Legendre mapping).

By the convexity of the negative entropy 	, for any tree-structured set of mean
parameters �tree, we have

	(�) � 	(�tree) +
X
�

�tree� (�� � �tree� ) (7.38)

Here we have used the fact that @	
@��

(�tree) = �tree� . For a �xed tree T speci�ed by
edge set E(T ) � E, the lower bound of equation (7.38) is tightest, in fact, for the
moment-matched tree distribution

�tree = �T (�) = f�s; �st j s 2 V ; (s; t) 2 E(T ) g (7.39)

This fact is most easily seen by noting that the di�erence between the LHS and RHS of
equation (7.38) is equivalent to the KL divergenceD(� k �tree) between the distributions
p(x; �) and p(x; �tree). (See equation (2.33) for this dual representation of the KL
divergence). Therefore, the problem of maximizing the lower bound on the RHS of
equation (7.38) is equivalent to minimizing this KL divergence, which corresponds to an
I-projection onto the e-
at manifold of tree-structured distributions. (See Section 2.2.7
for details on these notions from information geometry). Therefore, the optimal tree
parameter is given by the moment matching procedure speci�ed in equation (7.39).

For this choice of �tree, equation (7.38) reduces to the simpler form

	(�) � 	(�T (�)) (7.40)

since the mean parameters of � and �tree are equal for indices corresponding to single
nodes or edges in the tree, and �tree� = 0 for all other indices (corresponding to edges
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not in the tree). This is a statement of the fact that any distribution on a graph has
lower3 entropy than a moment-matched distribution structured according to any of its
spanning trees.

Since equation (7.40) holds for any spanning tree T , we can consider taking a convex
combination of such bounds, each weighted by some �(T ) � 0. This yields the weighted
lower bound:

	(�) �
X
T
�(T )	(�T (�)) = E ~� [	(�

T (�))] (7.41)

Finally, applying the bound of equation (7.41) to the original variational formulation
of equation (7.37) yields:

�(��) � max
�2M (G)

�
�T �� � E~� [	(�

T (�))]
	

(7.42a)

� max
�2L(G)

�
�T �� � E ~� [	(�

T (�))]
	

(7.42b)

= � min
�2L(G)

F(�;�e; ��) (7.42c)

where equation (7.42a) follows from the bound of equation (7.41); and equation (7.42b)
follows because the set of tree-consistent mean parameters L(G) is a superset of the set
M (G) of globally G-consistent mean parameters. Finally, equation (7.42c) is obtained
in a straightforward manner by decomposing the negative entropies into node and edge
terms, and using the de�nition of F in equation (7.32). This �nal equation (7.42c) is
equivalent to equation (7.34) in the statement of Theorem 7.3.1(a).

This alternative proof shows why moment-matched tree distributions arise in the
optimal form of the bounds. From this alternative derivative, it is easily seen how
to extend our analysis from spanning trees (i.e., acyclic graphs) to hypertrees (i.e.,
acyclic hypergraphs). More background on hypergraphs and hypertrees can be found
in the book [17] and survey article [25]. Indeed, a lower bound analogous to that of
equation (7.38) can be derived for any triangulated subgraph of the original graph. A
similar argument will establish that moment-matching again yields the optimal form
of the bound, as in equation (7.40). Finally, we can use a weighted combination of
negative entropies, thereby yielding upper bounds analogous to that of equation (7.42).

� 7.3.3 Characterization of joint optima

In this section, we provide a number of results characterizing the joint optima (b�(c�e);c�e)
of Theorem 7.3.1(b). In particular, we show that these optima can be characterized in
terms of a balancing of mutual information terms Ist(b�(c�e)) on each edge (s; t) of the
graph. Moreover, we develop a geometric relation between this mutual information vec-
tor, and spanning tree incidence vectors �(T ). Finally, these results lead to a minimax
result that has a game-theoretic 
avor [170].

3Remember that 	 is negative entropy.
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Our �rst result is a characterization of the mutual information terms Ist(b�(c�e)),
which arise from the optimal pair (b�(c�e);c�e).
Proposition 7.3.1 (Characterization of joint optima). Let Ist be the mutual in-
formation as de�ned in equation (7.26c), and let F range over all critical subsets (of
the edge set).

(a) There exist Lagrange multipliers �0 and �(F ) � 0 such that for each (s; t) 2 E,
the optimum (b�(c�e);c�e) is characterized by the following conditions:

Ist(b�(c�e)) = �0 +
X

F3(s;t)
�(F ) (7.43)

The sum
P

F3(s;t) ranges over all critical subsets F that include edge (s; t). More-
over, for each critical subset F , we have �(F ) > 0 only if the rank constraintP

e2F �e � r(F ) of equation (7.31a) is met with equality.

(b) Letting h ; i denote the Euclidean inner product, we have:

hI(b�(c�e)); �(T )� c�ei � 0 8 T 2 T (7.44)

for the incidence vector �(T ) of any spanning tree T 2 T.
Since c�e 2 T(G), there exists a distribution over spanning trees b~� that gives rise
to this set of edge appearance probabilities. Inequality (7.44) holds with equality for

all spanning trees T in the support of b~� (i.e., spanning trees for which b�(T ) > 0).

Proof. See Appendix D.2.

Equation (7.43) of Proposition 7.3.1(a) speci�es that at the optimum (b�;c�e), the
mutual information on each edge (s; t) of the graph (i.e., between the random variables
xs and xt) is balanced in a certain sense. The mutual information on edge (s; t) consists
of a baseline amount �0, to which we add varying amounts of additional information
(i.e.,

P
F3(s;t) �(F ) � 0), depending on how many critical sets F corresponding to an

active constraint involve edge (s; t).

Example 7.3.2 (Optimal information terms for a single cycle). The conditions
of Proposition 7.3.1(a) take a particularly simple form for a single cycle, where the only
critical subsets F are formed of single edges. In this case, we have

Ist(b�(c�e)) = (�0 if b�st < 1

�0 + �[(s; t)] if b�st = 1
(7.45)

Thus, the Lagrangian conditions correspond to an equalization of mutual information
on edges. The mutual information is equal to a constant for all edges (s; t) with appear-
ance probability b�st < 1; the mutual information on any edge (s; t) with appearance
probability b�st = 1 is boosted by some quantity �[(s; t)] � 0.
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To follow up Example 7.3.1(b), the optimal information terms for this problem (with
the same ordering of edges as in equation (7.36)) are given by:

Ie(b�(c�e) = h�0 �0 �0 (�0 + �f34g)
i

where �0 � 0:012 and �f34g � 0:007.

The geometric interpretation of Proposition 7.3.1(b) is interesting, as illustrated
in Figure 7.6. Each spanning tree incidence vector �(T ) is an extreme point of the

c�e

�(T )

�(T 0)

Ie(b�(c�e))

T(G)

Figure 7.6. Geometry of the optimal edge appearance vector c�e in the spanning tree
polytope T(G). Extreme points of this polytope are spanning tree incidence vectors

�(T ). The vector Ist(b�(c�e)) forms an obtuse angle with �(T 0) � c�e for all T 0 2 T. It
is orthogonal to �(T )� c�e whenever T 2 supp(c�e).

spanning tree polytope T(G). The inequality (7.44) indicates that the angle between
the information vector I(b�(c�e)) and the di�erence vector �(T 0) � c�e is obtuse for all
spanning trees T 0 2 T. Moreover, this angle is orthogonal for all spanning tree incidence
vectors �(T ) in the support of b~� (i.e., trees for which b�(T ) > 0).

Proposition 7.3.1(b) also leads to the following result:

Proposition 7.3.2 (Minimax relation).

For all k��k <1, the following minimax relation holds:

max
�e2T(G)

min
�2L(G)

F(�;�e; ��) = min
�2L(G)

max
�e2T(G)

F(�;�e; ��) (7.46)

Proof. The function F(�;�e; ��) is convex in � and linear (hence concave) in �e. More-
over, the constraint sets L(G) and T(G) are both convex and compact. Equation (7.46)
therefore follows from standard minimax results [63].

Proposition 7.3.2 has an interesting game-theoretic interpretation. Imagine a two-
person game speci�ed by the payo� function F(�;�e; ��). The goal of player 1 is
to choose � 2 L(G) so as to minimize this function, whereas the goal of player 2 is
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to choose a spanning tree (or set of spanning trees) so as to maximize this function.
Choosing a single spanning tree can be viewed as a pure strategy in the game-theoretic
sense [170]. Equation (7.46) speci�es an equilibrium condition for the optimal solution

pair. In contrast to a pure strategy, this equilibrium involves choosing a distribution b~�
over spanning trees, which gives rise to the optimal edge appearance vector c�e. Con-
sequently, the optimal strategy for player 2 is not the deterministic choice of a single
spanning tree, but rather the mixed strategy of randomly choosing a spanning tree from
the speci�ed distribution b~�.
� 7.3.4 Relation to Bethe free energy

Recall the cost function that (when optimized) gives rise to bounds on the log partition
function:

F(�;�e; ��) = �
X
s2V

Hs(�) +
X

(s;t)2E
�stIst(�) �

X
�

���
�
� (7.47)

The �rst two terms are a sum of (negative) entropy terms at each node, and a sum
of (weighted) mutual information terms for each pair of random variables joined by an
edge. Borrowing terminology from statistical physics [136], the �nal term

P
� ���

�
� can

be viewed as an \average energy".
The function of equation (7.47) is very closely related to the Bethe free energy [183],

as can be seen by comparing equation (7.47) to equation (6.17) of Chapter 6. In fact, the
Bethe free energy is a special case of equation (7.47), in which all the edge appearance
probabilities �e are set equal to 1. This particular choice of �e does not belong to
the spanning tree polytope T(G), unless of course G is tree-structured. Therefore, our
analysis does not guarantee that the Bethe free energy is convex; indeed, the Bethe
free energy fails to be convex for many graphs with cycles, which leads to failures of
convergence and multiple local minima.

Nonetheless, this link is interesting. As shown by Yedidia et al. [183], belief prop-
agation (BP) can be viewed as attempting to perform a constrained minimization of
the Bethe free energy. It is not surprising, then, that the optimality conditions of our
variational formulation (see Proposition 7.2.2) are very closely related to the optimality
conditions of tree-based reparameterization or BP (see Theorem 5.4.2 of Chapter 5).
This link suggests that our variational formulations might be useful for inference as well.
That is, just like the minimizing arguments computed by BP, the optimal b� can be taken
as approximations to the exact marginals of the distribution p(x; ��). Open questions
include assessing the relative accuracy of b� and the BP approximate marginals, and
understanding how the edge appearance probabilities �e control the approximation.

� 7.4 Algorithms and simulation results

In this section, we develop algorithms for carrying out the optimizations speci�ed in
Theorem 7.3.1. We then present the results of applying these algorithms to compute
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upper bounds on the log partition function of randomly chosen instances of certain
problems.

� 7.4.1 Inner minimization over �

We begin by describing an algorithm for carrying out the inner minimization step
(i.e., computing min�2L(G)

�F(�;�e; ��)	) required to evaluate the upper bound of
Theorem 7.3.1(a). The function F is strictly convex in �, and the constraint set L(G)
is formed by a set of O(N + jEj) linear constraints (see equation (7.13)). Therefore, the
problem is a suitable candidate for constrained Newton's method [20], wherein we take
Newton steps projected back onto the constraint set.

The steps involved are given in Algorithm 7.4.1. Computing both the gradient
rF(�n;�e; ��) and Hessian r2F(�n;�e; ��) are straightforward tasks. Indeed, since F
decouples into a sum of node and edge terms, the Hessian has a structure that re
ects
the edge structure of G. (Hence, for sparse graphs, the Hessian will also be sparse). The
computation of the descent direction e�n+1 in step 2 of Algorithm 7.4.1 is a quadratic
program (i.e., minimizing a quadratic function subject to linear constraints); and can
be solved eÆciently. With suitable choice of step sizes �n (e.g., via the Armijo rule,
or limited minimization rule [see 20]), this algorithm is guaranteed to converge to the
unique global minimum b�. The convergence of Algorithm 7.4.1 is guaranteed to be
superlinear in a neighborhood of the optimum with unity step size [20].

Algorithm 7.4.1 (Constrained Newton's method).

1. Initialize �0 2 L(G).

2. For iterations n = 0; 1; 2; : : : , compute the descent direction:

e�n+1 = arg min
�2L(G)

n
rF(�n;�e; �

�)0(�� �n) +
1

2
(�� �n)r2F(�n;�e; �

�)(� � �n)
o

3. Form the new iterate �n+1 = (1� �n)�n + �ne�n+1, where �n 2 (0; 1] is a step
size parameter.

� 7.4.2 Outer maximization over �e

We now consider the maximization max�e2T(G)H(�e; ��) required to compute the upper
bound of equation (7.35) in Theorem 7.3.1. Neither the Hessian nor the gradient of H
are diÆcult to compute. It is therefore tempting to apply a constrained Newton's
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method once again. However, recall from Lemma 7.2.2 that the spanning tree polytope
T(G) is de�ned by a very large number (O(2N )) of linear inequalities. For this reason,
solving a constrained quadratic program over T(G) (as in step 2 of Algorithm 7.4.1) is
intractable for large enough graphs.

Fortunately, despite the exponential number of constraints characterizing T(G), op-
timizing a linear function subject to the constraint �e 2 T(G) turns out to be straight-
forward. Two observations are key. First of all, from standard results on linear pro-
gramming [20], the optimal value of a feasible linear program is always attained at an
extreme point of the linear polyhedron formed by the constraints.4 Secondly, extreme
points of the spanning tree polytope T(G) are given by spanning tree incidence vectors
�(T ), as de�ned in equation (7.29) [60].

Algorithm 7.4.2 (Conditional gradient).

1. Initialize �e
0 2 T(G).

2. For iterations n = 0; 1; 2; : : : , compute the ascent direction as follows:

f�en+1 = arg max
�e2T(G)

n
rH(�en; ��); (�e ��e
n)
�o

(7.48)

3. Form the new iterate �e
n+1 = (1� �n)�e

n + �nf�en+1, where �n 2 (0; 1] is a
step size parameter.

As a consequence, maximizing a linear function over the spanning tree polytope
is equivalent to solving a maximum weight spanning tree problem [see 108]. Using
these facts, it can be seen that the conditional gradient method [20], as speci�ed in
Algorithm 7.4.2, is a computationally feasible proposal.

It is helpful to consider the steps of Algorithm 7.4.2 in more detail. Due to the
exponential number of constraints de�ning T(G), even the �rst step | that of assessing
whether a given vector belongs to T(G) | is non-trivial. For instance, the uniform
assignment �e = (N � 1)=jEj need not belong to T(G). If we are given a distribution ~�
with a limited support, it is possible to compute the expectations that de�ne the edge
appearance probabilities �e (see equation (7.3)) by direct summation. More generally,
it turns out to be useful to consider a particular class of distributions over spanning
trees, de�ned by:

~�(T ;!) /
Y
e2T

!e (7.49)

where !e � 0 is a weight assigned to each edge e 2 E. That is, the probability of a
given spanning tree T is proportional to the product of the weights on all its edges. For

4The optimal value may be attained at more than one extreme point, or at interior points as well.
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a distribution in this class, Jaakkola et al. [98] showed how a weighted variant of the
matrix-tree theorem [22, 168] could be used to compute expectations under ~�(T ;!).
This method can be used to compute a feasible starting point �e

0 2 T(G).
In the second step of Algorithm 7.4.2, given a �xed �e

n, we �rst solve a problem
of the form in Theorem 7.3.1(a) using Algorithm 7.4.1 to obtain the optimal b�(�en).
Having obtained this optimal point, computing the ascent direction of equation (7.48)
is equivalent to solving a maximum weight spanning tree problem. It can be shown (see
Appendix D.2) that

@H
@�e

(�e
n; ��) = Ie(b�(�en)) (7.50)

so that the edge weights in the maximum spanning tree problem are mutual information
terms. This computation can be performed eÆciently using Kruskal's algorithm [117];
see also [108]. In the third step, the step size �n 2 (0; 1] can be chosen via the Armijo
rule. (See Bertsekas [20] for details on this and other stepsize selection rules.)

Given equation (7.50), the second and third steps have an interesting interpretation.
In particular, let us view the vector of mean parameters b�(�en) as a set of data, which
is used to specify mutual information terms Ie(b�(�en)) on each edge. In this case, �nd-
ing the corresponding maximum weight spanning tree is equivalent to �nding the tree
distribution that best �ts the data in the maximum likelihood sense (or KL divergence
between the empirical distribution speci�ed by the data, and the tree distribution).
See Chow and Liu [37] for more details on this interpretation of the maximum weight
spanning tree procedure. Therefore, at each iteration, the algorithm moves towards the
spanning tree that best �ts the current data.5

� 7.4.3 Empirical simulations

In this section, we present the results of applying the previously described algorithms to
compute the upper bounds speci�ed in Theorem 7.3.1. We performed simulations for a
binary-valued vector x (taking values in f0; 1g) for two di�erent types of graphs (square
grids and a fully connected graph) under two di�erent types of interactions (attractive
or mixed potentials). For the purposes of comparison, we also calculated lower bounds
using the naive mean �eld approximation. See Section 2.3.1 for details on mean �eld.

For each trial on a given graph, we de�ned a distribution p(x; ��) by randomly
choosing an exponential parameter vector �� from either the uniform attractive ensemble
or the uniform mixed ensemble. See Section 2.2.1 for the de�nitions of these ensembles
of distributions.

Grids of varying sizes

We �rst performed simulations for square 2-D grids of varying sizes; the number of nodes
N was either 9, 36, or 81. For each of these grid sizes and each of the two conditions

5There is one minor caveat with this interpretation | namely, as noted previously, the vector b�(�en)
may not correspond to a valid set of marginals for any distribution.
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(attractive or mixed), we ran simulations with edge strengths d ranging6 from 0 to
4p
N
.For each setting of the edge strength, we performed 30 trials for the N = 9 grids,

and 10 trials for N = 36 or 81. The inner minimization min�2L(G) F(�;�e; ��) was
performed using the constrained Newton's method (Algorithm 7.4.1), whereas the outer
maximization was performed with the conditional gradient method (Algorithm 7.4.2).
In all cases, step size choices were made by the Armijo rule [20]. The value of the actual
partition function �(��) was computed by forming a junction tree for each grid, and
performing exact computations on this junction tree.7

Shown in Figure 7.7 are plots of the relative error [Bound��(��)]=�(��) versus the
edge strength (normalized by 4=

p
N for each N so that it falls in the interval [0; 1]). The

three rows of this �gure corresponds to problem sizes N = 9, 36 and 81 respectively.
Panels on the left correspond to the attractive condition, whereas those on the right
correspond to the mixed condition. Each panel displays the relative error in two types
of upper bounds. The \unoptimized" curve shows the bound of Theorem 7.3.1(a)
with the �xed choice of uniform edge appearance probabilities �e = (N � 1)=jEj. The
\optimized" curve corresponds to the jointly optimal (over both � and ~�) upper bounds
of Theorem 7.3.1(b). The lower curve in each panel corresponds to the relative error in
the naive mean �eld lower bound.

The bounds are tightest for low edge strengths d; their tightness decreases as the
edge strength is increased. Optimizing the edge appearance probabilities can lead to
signi�cantly better upper bounds. This e�ect is especially pronounced as the edge
strength is increased, in which case the distribution of edge weights ��st becomes more
inhomogeneous. For these square grids, the tightness of the upper bounds of Theo-
rem 7.3.1 decreases more slowly than the corresponding mean �eld lower bound. In
terms of the relative error plotted here, the upper bounds are superior to the mean �eld
bound by factors of roughly 3 in the attractive case, and roughly 2 in the mixed case.
The tightness of the bounds, measured in terms of relative error, decreases slightly as
the problem size (number of nodes N) is increased and the edge strengths are rescaled
in terms of 1=

p
N .

It is worthwhile emphasizing the importance of the dual formulation of our bounds.
Indeed, the naive approach of attempting to optimize the primal formulation of the
bounds (e.g., see problem (7.10)) would require dealing with a number8 of spanning
trees that ranges from 192 for N = 9 nodes, all the way up to the astronomical number
� 8:33 � 1033 for N = 81 nodes.

6The normalization by 1=
p
N guarantees that the e�ects impinging on a given node are scale-

invariant; they converge to a �xed distribution as the problem size N tends to in�nity.
7Thank you to Yee Whye Teh and Max Welling for generosity in sharing their code for performing

exact inference on grids.
8These numbers can be calculated by applying the Matrix-Tree theorem [168] to the square grids.
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Figure 7.7. Upper and lower bounds on �(��) for a randomly chosen distribution
p(x; ��) on grids of various sizes: N = 9 nodes (�rst row), N = 36 (middle row)
or N = 81 (bottom row). Panels on the left (respectively right) correspond to the
attractive (respectively mixed) condition. Each panel shows the mean relative error
[Bound��(��)]=�(��) versus a normalized measure of edge strength; error bars corre-
spond to plus/minus one standard deviation.



Sec. 7.5. Discussion 223

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

Edge strength

R
el

at
iv

e 
er

ro
r 

(B
ou

nd
−

A
ct

ua
l)/

A
ct

ua
l

Bounds on the log partition function

Unoptimized upper
Optimized upper
Mean field

0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Edge strength

R
el

at
iv

e 
er

ro
r 

(B
ou

nd
−

A
ct

ua
l)/

A
ct

ua
l

Bounds on the log partition function

Unoptimized upper
Optimized upper
Mean field

(a) (b)

Figure 7.8. Upper and lower bounds on �(��) for a randomly chosen distribution
p(x; ��) on the complete graph K9. (a) Attractive condition. (b) Mixed condition.

Fully connected graph

We also performed simulations on the fully connected graph K9 on N = 9 nodes, with
edge strengths d ranging from 0 to 4=3. The results are plotted in Figure 7.8. Both types
of bounds (upper convex and mean �eld) are much poorer for this densely connected
graph (as compared to the grids). Moreover, in contrast to the grids, there is a striking
disparity between the attractive and mixed conditions. In the attractive condition,
none of the bounds are good; however, in a relative sense, the optimized upper bounds
of Theorem 7.3.1(b) are better than the mean �eld lower bound. We also note that
optimizing the edge appearance probabilities leads to signi�cant improvements; indeed,
the unoptimized upper bound is worse than the mean �eld lower bound. In the mixed
condition, the mean �eld lower bound is of mediocre quality, whereas the upper bounds
are very poor. Thus, the quality of the bounds in Theorem 7.3.1 appears to degrade
for the case of mixed potentials on densely connected graphs. Of course, at least in the
limit of large problem sizes, mean �eld would behave very well for densely connected
graphs with mixed potentials, since the aggregation of multiple e�ects converges to a
mean e�ect [see 93].

� 7.5 Discussion

In this chapter, we have developed and analyzed a new class of upper bounds for log
partition functions in graphical models. These bounds are based on convex combina-
tions of distributions de�ned on spanning trees of the graph with cycles. We proved that
there is a unique distribution over spanning trees and an associated set of exponential
parameters that yield the tightest possible upper bound. Despite the prohibitively large
number of spanning trees in a general graph, we developed a technique for optimizing
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the bound eÆciently | though implicitly | over all spanning trees.
It would be interesting to compare the quality of the upper bounds of this chapter

to the upper bound of Jaakkola and Jordan [95]. In particular, for the Ising model
(i.e., a binary process on a graph with pairwise potentials), they developed a recursive
procedure, in which the contribution of a given node is bounded above (quadratically),
and then eliminated from the graph. As a side e�ect, all neighbors of the eliminated
node are joined together by a modi�ed set of potentials. The procedure then continues
by selecting a node from this modi�ed graph. For relatively weak choices of potentials,
these bounds are much superior to the (linear) mean �eld lower bound [95]. However,
they are unlikely to behave as well for very strong potentials.

The bounds that we developed in this chapter have a number of potential uses.
Of particular relevance to this thesis are their application to computing bounds on
the error of the TRP/BP algorithm (Chapter 5), as well as error bounds for more
structured approximating algorithms (Chapter 6). More generally, the techniques in this
chapter can be used to compute bounds on arbitrary expectations E �� [f ], as described
in Chapter 3.

Another potential application of our techniques is in large deviations analysis [e.g.,
55,158]. It is well-known that the log partition function plays the role of a rate function:
that is, it speci�es the exponential rate at which the probability of certain events |
namely, large deviations | decays as the number of samples is increased. In cases for
which exact computation of these error exponents is infeasible, it would be of interest
to obtain bounds. See Chapter 8 for further discussion of this issue.

For clarity in exposition, this chapter focused on the special case of binary-valued
nodes, and graphs with pairwise cliques. However, the line of analysis outlined here
is broadly applicable, in that it extends naturally to more general state spaces (e.g.,
X = R, or the discrete space X = f0; 1; : : : ;m � 1g) and larger cliques. Analogs of
the results given in this chapter hold for these cases. It is also possible to consider
more complex approximating structures | more speci�cally, hypertrees as opposed to
spanning trees [17,25]. One caveat is relevant here: unlike the case of spanning trees, the
optimization of a distribution ~� over hypertrees would not be straightforward. Although
solving the maximum weight spanning tree problem required as part of Algorithm 7.4.2
is easy, its analog for hypertrees of width k � 2 is NP-hard [112, 162].



Chapter 8

Contributions and Suggestions

This chapter begins in Section 8.1 with a high-level outline of the contributions of this
thesis. It might be argued that certain portions of this thesis raise more questions than
they answer; accordingly then, we turn to a discussion of some of these open questions
in Section 8.2. Finally, we conclude in Section 8.3 with a rough sketch of the potential
applications of our results to other areas, including network information theory, iterative
decoding, and computing large deviation exponents.

� 8.1 High-level view

The speci�c goals of this thesis notwithstanding, its high-level contributions include the
following:

� illustrating the power of exponential families, as well as the associated information
geometry, for studying graphical models

� highlighting the fundamental role of the Legendre transform1 between exponential
and mean parameters

� bringing into sharp focus the crucial di�erences between tree-structured distribu-
tions2, and distributions structured according to a graph with cycles

With a retrospective viewpoint, all of the contributions particular to this thesis can
be understood in terms of these high-level issues. Indeed, the problem of estimation or
inference corresponds, in the context of exponential representations, to computing cer-
tain elements of the forward Legendre mapping from exponential to mean parameters.
The estimation problem makes a clear distinction between tree-structured problems
(linear-time algorithms), and graphs with cycles (generally intractable). This distinc-
tion is quite broad: problems involving tree-structured distributions are, for the most
part, well-understood, whereas their counterparts for graphs with cycles present con-
siderable challenges. Accordingly, our strategies for tackling a range of problems were

1The Legendre transform is described in Section 2.2.4.
2More generally, we consider distributions structured according to a triangulated graph.
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similar: we sought to gain insight about a problem on a graph with cycles by formulat-
ing and studying a set of modi�ed problems de�ned on embedded trees. It was a line
of attack that paid dividends for various problems, which we summarize brie
y here.

The problem of Gaussian inference corresponds to computing the conditional means
as well as the associated error covariances. This problem is equivalent to determining
certain elements of the Legendre mapping from exponential parameters (e.g., speci�ed
by an inverse covariance matrix in the Gaussian case) to the mean parameters (e.g.,
the covariance matrix). For a graph with cycles, the embedded trees (ET) algorithm
developed in Chapter 4 performs exact inference in an eÆcient manner by leveraging the
existence of fast algorithms for tree-structured problems. Overall, this algorithm has
the curious property of performing computations only on embedded trees, yet managing
to solve exactly a problem on a graph with cycles.

The tree-based reparameterization framework of Chapter 5 gives a di�erent perspec-
tive on belief propagation (BP), as well a class of related algorithms | namely, as a
sequence of so-called reparameterization updates. Each such update entails altering the
factorization of a graph-structured distribution, with the ultimate goal of ensuring that
the factorization is consistent in a suitable sense on all embedded trees of the graph.
The Legendre mapping �gures prominently in de�ning the reparameterization opera-
tors. The use of an overcomplete exponential representation clari�es the fundamental
property of reparameterization updates: true to their name, they do not change the
overall distribution. This invariance property, in conjunction with the characterization
of �xed points, has a number of important consequences. Perhaps the most important
single consequence is the resultant insight into the error between the BP approximate
marginals, and the actual marginals on the graph with cycles. In particular, it leads
very naturally to an exact expression for this error, which serves as a starting point for
developing bounds.

In Chapter 6, the notion of reparameterization is shown to be more generally ap-
plicable. Speci�cally, this chapter provides a unifying framework for a wide class of
approaches to approximate inference, all of which (like belief propagation) are based on
minimizing approximations to the Kullback-Leibler divergence. For each approximation
in this class, we develop a corresponding set of reparameterization updates for attempt-
ing to obtain approximate marginals. Due to the central role of reparameterization, a
satisfying fact is that all of the major results of Chapter 5 | including characterizing
the �xed points of these algorithms, as well as analyzing the approximation error |
carry over in a natural way.

The results of Chapter 7 provide an elegant illustration of the interplay between
exponential representations, variational formulations and convex duality. It is natural,
in the context of an exponential representation, to consider convex combinations of
parameter vectors. As �rst described in Chapter 3, doing so leads to a new upper
bound on the log partition function �(��) associated with an intractable distribution
p(x; ��). In the formulation of Chapter 7, the choice of exponential parameter vectors
and weights in the convex combination ranges over all spanning trees of the graph. Since
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reasonably complex graphs tend to have a very large number of spanning trees, the
problem of optimizing this upper bound appears intractable. Nonetheless, considering
the Lagrangian dual formulation, in which the Legendre mapping plays a central role,
leads to considerable simpli�cation. The dual problem not only gives an upper bound on
the log partition function, but also can be optimized eÆciently (albeit implicitly) over
all spanning trees of the graph. Moreover, the form of this dual function brings the work
of this thesis around in a full circle | in particular, by providing a novel and interesting
perspective on the Bethe free energy [183] that is central to belief propagation. Not
surprisingly then, the conditions for the optimum of the dual problem are remarkably
similar to the consistency conditions associated with belief propagation (or equivalently,
tree-based reparameterization).

� 8.2 Suggestions for future research

From this thesis arise various speci�c problems for future research. In this section, we
outline a number of these problems, as well as possible avenues of attack.

� 8.2.1 Exact inference for Gaussian processes

From the perspective of numerical linear algebra, the embedded trees (ET) algorithm
developed in Chapter 4 is related to the class of so-called Richardson methods [e.g.,
56]. The ET algorithm is distinct from standard Richardson iterations, since it is time-
varying (i.e., the embedded tree used can change from iteration to iteration). Trees, or
more precisely forests, have been used in similar ways in past work (e.g., the alternating
direction implicit (ADI) method [23, 137]). Although this use of embedded trees is
certainly interesting, a more promising direction of research | at least for the goal of
developing fast algorithms | is to consider embedded trees as a means of generating so-
called preconditioning matrices. The convergence rate of various linear system solvers
(e.g., conjugate gradient [56]) is known to depend on the condition number (ratio of
maximum to minimum eigenvalues). The goal of preconditioning is to decrease this
condition number so as to speed up convergence.

One interesting direction, then, is further exploration of trees as preconditioners for
a linear system de�ned by a graph with cycles. Sudderth [163] gives some promising
examples with regard to the eigenspectrum compression that can be achieved with trees
as preconditioners. Of interest for understanding the behavior of preconditioned systems
are the eigenvalues of quantities like B�1A, or equivalently the generalized eigenvalues3

of (A;B). In the context of graphical models, A should be viewed as a matrix respecting
the structure of the graph with cycles, whereas B is the preconditioner (in our case,
a tree-structured matrix). The area of support graph theory [e.g., 10, 28, 79, 82, 166]
provides techniques for analyzing and bounding the eigenvalues of such systems. A
clever idea in support graph theory is that of mapping each path in the original graph
onto a path in the graph corresponding to the preconditioner. For example, if we use

3The generalized eigenvalues of (A;B) satisfy Ax = �Bx for some x 6= 0.
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an embedded tree as the preconditioner (B), then every path in the original graph can
be mapped onto a unique path in the tree. A fundamental result is the congestion-
dilation lemma [28, 79, 82], which relates the eigenvalues of B�1A to a product of the
maximum congestion (roughly, a measure of how many paths use a given edge) times
the maximum dilation (roughly, a measure of weighted path length). Elegant results
of this nature have also been obtained in the spectral analysis of random walks on
graphs [e.g., 58, 159].

It is likely that the use of a single tree as a preconditioner can be thoroughly an-
alyzed by extant techniques in support graph theory. The most promising empirical
results, however, are obtained not with a single tree, but rather with multiple trees.
Empirical demonstrations of this phenomenon, as well as preliminary theoretical re-
sults, are presented in [163]. At a high level, the following research questions merit
further study:

� how to precisely capture the e�ect of using multiple trees?

� how to develop techniques for optimizing the choice and ordering of multiple trees?

Any analysis, rather than being limited to trees, should apply more generally to tri-
angulated graphs (e.g., graphs with treewidth � 2). Overall, the perspective a�orded
by graphical models could provide valuable insights into the analysis of preconditioned
linear systems.

� 8.2.2 Approximate inference for discrete processes

The analysis of Chapters 5, 6 and 7, though contributing several important results on
the subject of approximate inference, also raises a host of challenging questions, which
we discuss in this section.

Uses of error bounds

An important result in Chapter 5 is the exact expression for the error between the
approximate marginals computed by belief propagation (BP) and the actual marginals
of p(x; ��). Since this exact expression cannot be evaluated (in general), we also derived
computable bounds on this error. Chapter 6 extended this error analysis to more
advanced methods for approximate inference.

For the toy examples presented in both chapters (see, for example, Figures 5.13
and Figure 6.14), the error bounds are quantitatively useful: i.e., they provide relatively
narrow windows in which the actual marginals must lie. As a consequence, if an approx-
imate marginal (e.g., the BP approximation) happens to fall outside of these windows,
then perforce it must be a poor approximation. A desirable feature of the bounds is
that they are never vacuous.4 However, for large problems, the upper bound (respec-
tively lower bound) on the marginals may become arbitrarily close to one (respectively

4The union bound, for example, can make vacuous assertions: e.g., Pr(A) � 10.
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zero). To understand why, note that a major factor controlling the tightness of the log
bounds is the absolute error in upper bounding the log partition function �(��). Unless
the model parameters are somehow rescaled, this absolute error will grow as the prob-
lem size increases, so that the bounds will tend to extreme values. As a consequence,
it is unlikely that (in general) the error bounds will remain quantitatively useful for
large-scale problems.

However, the error bounds might still yield important qualitative information. For
instance, the bounds could be used to assess the rate at which the accuracy of a �xed
approximation deteriorates as the model parameters and/or structure are changed. An-
other possible application, discussed at more length below, is using the error bounds to
assess the relative accuracy of a set of approximations for the same problem. There-
fore, an open direction is exploring the uses of error bounds in application to large-scale
problems. This avenue seems particularly promising given the wide range of important
problems to which belief propagation has been applied [e.g., 67, 68, 131, 134].

The error bounds in Chapters 5 and 6 are formulated in terms of a �xed point of the
minimization algorithm (e.g., BP/TRP in Chapter 5). However, even though it may
not be obvious from the statement of the results, it is possible to compute bounds on the
error at any iteration, thereby obviating the need to wait for convergence. To illustrate,
consider the tree reparameterization (TRP) updates. After any update on a �xed tree T ,
the current single node pseudomarginals are guaranteed to be globally consistent with
with respect to the tree. The overall distribution on the graph with cycles is invariant
under the updates, so that (as with TRP/BP �xed points) the approximations following
any TRP iterate are related to the actual marginals by the perturbation of removing
edges to reveal the tree T . An argument of this nature applies more generally to the
reparameterization algorithms described in Chapter 6. As a consequence, it becomes
possible to assess the evolution of the error for each iterate of the algorithm (i.e., in
a dynamic fashion). This type of dynamic assessment could be useful, for example,
in coding applications where the decoding algorithm (an instantiation of BP) is not
necessarily run until convergence. An optimistic view is that understanding the error
evolution could help to specify termination times for which the approximation might
be better than the �xed point obtained when the algorithm ultimately converges.

Choice of substructures

Common to all the approximations considered in Chapter 6 was a decomposition of the
graph with cycles into a core structure, and a set of residual elements. The chapter itself
provided a uni�ed framework for analyzing approximate inference techniques based on
such decompositions; largely left unanswered, however, was the crucial question of how
to partition the graph into core and residual components.

Suppose that we are given two possible core and residual sets, and that we run min-
imization algorithms in order to compute a set of approximate marginals for each. As
mentioned in our previous discussion, the error bounds provide one means of comparing
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the relative accuracy5 of these two sets of approximate marginals, albeit in a post hoc
manner (i.e., only after both approximations have been computed).

Given the problem of computing approximate marginals for some graph-structured
distribution, important but diÆcult open problems include the following:

� how to choose the optimal core structure from a �xed set of possibilities (e.g., the
set of all spanning trees)

� assessing the potential accuracy of an approximation in an a priori manner (i.e.,
before running the reparameterization algorithm)

� determining the amount of computation required (i.e., how much structure to
incorporate) in order to achieve a pre-speci�ed level of accuracy

At a high level, the analysis and examples of Chapter 6 show that the accuracy of the
approximations depends on the strength of higher-order interactions among subsets of
nodes. As a result, these research problems all touch upon a fundamental question in
graphical models: how to specify precisely the way in which graph structure and the
settings of potential functions control interactions among random variables? Answers
to questions of this nature, though clearly related to the Legendre transform between
exponential and mean parameters, are understood (at best) only partially. We shall
return to discussion of this issue in Section 8.2.3.

Uses of convexi�ed Bethe free energies

As noted in Section 7.3.4 of Chapter 7, for each vector �e in the spanning tree polytope
T(G), Theorem 7.3.1(a) guarantees that

F(�;�e; ��) = �
X
s2V

Hs(�) +
X

(s;t)2E
�stIst(�) �

X
�

���
�
� (8.1)

is convex as a function of �. In fact, functions in the form of equation (8.1) can be
viewed as a convexi�ed versions of the Bethe free energy [183]. Indeed, making the
(generally) invalid6 choice �e = 1 in equation (8.1) gives rise to the Bethe free energy.

The results of Yedidia et al. [183] establish that belief propagation attempts to
minimize the Bethe free energy. The minimizing arguments are taken as approximations
to the actual marginals of the original distribution p(x; ��). A similar program can be
pursued for the family of functions in equation (8.1): namely, given a �xed �e 2 T(G)
and �xed ��, minimize the function of equation (8.1) subject to � belonging to the linear
polytope L(G) de�ned in equation (7.13); and then take the minimizing arguments as
approximations to the actual marginals. An advantage of this proposal (compared to

5The advantage of considering relative versus absolute accuracy is that the intractable log partition
function �(��) need not be considered because it cancels out.

6The vector of all ones does not belong to the spanning tree polytope, except when (of course) G is
actually a tree.
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minimizing the Bethe free energy) is that the problem is convex with linear constraints,
so that a unique global minimum is guaranteed to exist, and a variety of techniques [e.g.,
20] can be used to �nd it.7 As a result, this formulation obviates failures of convergence
and the possibility of multiple (local) minima associated with the Bethe free energy and
belief propagation.

Open questions associated with this proposal include:

� For a �xed choice �e 2 T(G), how do the approximate marginals b� compare to
the BP approximations, or to the actual marginals of p(x; ��)?

� How does the choice of �e a�ect the approximation? Are certain approximations
best-suited to certain graphs?

For the time being, we note that results of Chapters 5 and 7, when suitably modi�ed,
can be used to derive an exact expression for the error between the actual marginals,
and these new approximations b�. Again, this exact expression would form the basis for
developing bounds.

Another interesting problem to tackle is the evolution of the approximate marginals
as a line is traced from a valid choice �e 2 T(G) to the vector 1 corresponding to BP. In
this context, methods from homotopy theory [4] should be useful (as in [41]). This line
of research is likely to have practical consequences, such as better techniques for �nding
BP �xed points, as well as theoretical implications. For example, tracing the evolution
of �xed points would identify bifurcations in the solution space. Such sharp transitions
must occur, because for any �e 2 T(G), the associated cost function in equation (8.1)
has a single global minimum, whereas the Bethe free energy typically has multiple local
minima.

� 8.2.3 Bounds

The techniques of Chapter 3, in conjunction with the upper bounds of Chapter 7, permit
the eÆcient computation of upper and lower bounds on local marginal probabilities
(e.g., the single-node and joint pairwise marginals) associated with any distribution
p(x; �). Although these results are clearly useful, the analysis itself was myopic, in that
each bound was considered in isolation. Therefore, it is interesting to consider how to
strengthen bounds by taking into account more global relations.

Let us focus on a concrete example for the purposes of illustration. Consider the
Ising model: i.e., a binary vector x 2 f0; 1gN with distribution of the form:

p(x; �) = exp
�X
s2V

�sxs +
X

(s;t)2E
�stxsxt � �(�)

	
(8.2)

Recall that the associated set of N + jEj dual variables is given by

�s = E � [xs] = p(xs = 1; �) for all s 2 V
�s = E � [xs xt] = p(xs = 1; xt = 1; �) for all (s; t) 2 E

7The constrained Newton's method described in Algorithm 7.4.1 is one possibility.
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Now it is clear that the set of all valid dual variables is a subset of [0; 1]N+jEj. It is, in
fact, a strict subset since the dual variables are coupled by a number of relations. Some
of these relations follow trivially from set inclusion properties; e.g., the inequality

p(xs = 1; xt = 1; ��) � p(xs = 1; ��) (8.3)

holds for all pairs of nodes (s; t).
It turns out that for a tree-structured distribution, local inequalities like that of

equation (8.3) between variables at adjacent nodes (s; t) 2 E are suÆcient to character-
ize the set of valid dual variables. For a graph with cycles, in contrast, there are highly
non-local constraints among the dual variables.

Example 8.2.1 (Invalid set for single cycle). Consider a single cycle on 4 nodes,
and set �s = 0:5 for all s 2 f1; 2; 3; 4g. Set the pairwise dual variables as �12 =
�23 = �34 = 0:4 and �14 = 0:1. It can be veri�ed that any subset of these dual variables
corresponding to a tree embedded within the graph8 is valid. However, as shown in [59],
the full set of dual variables is not consistent with any distribution.

Therefore, characterizing the set of valid dual variables for a graph with cycles is an
interesting problem. Essentially, the question that we have posed is to characterize the
range of the Legendre mapping � : � 7! �. In certain cases (e.g., the binary case; the
Gaussian case), this range set can be characterized in some detail. Answering the same
question for more general distributions and graphs remains an important direction to
explore. If we return to the original issue motivating this discussion, it should be clear
that a deeper understanding of these relations would be helpful in tightening bounds.

� 8.3 Possible implications for related �elds

This section provides a discussion of related research �elds where the results of this
thesis may have implications.

� 8.3.1 Network information theory

The subject of network information theory [e.g., 42, 62] is the coding and transmission
of information in a distributed network. The basic problem, at a high-level, is analogous
to that of classical (single-user) information theory | that is, given a set of sources
and receivers and a channel model that describes possible noise and interference, how
to transmit the sources reliably over this channel? Despite this conceptual similarity,
most problems in multiuser information theory have turned out to be far more diÆcult
than their corresponding analogues in the single-user setting.

For example, one speci�c problem of interest is computing the capacity region as-
sociated with a particular arrangement of sources and receivers. For a given source-
receiver pair, an achievable rate is one for which information can be transmitted with

8In this case, a subset corresponding to a tree consists of all the single node variables, together with
any three of the four pairwise variables.
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a probability of error that tends to zero asymptotically; see Cover [42]. The capacity
region of a network is the set of achievable rates for all source-receiver pairs. For spe-
cial cases (e.g., broadcast channel; multiple access channel), these regions are relatively
well-understood. For more complicated networks, the most generally applicable tool is
a bound derived from the min-cut/max-
ow duality that is well-known from network
optimization [e.g., 27]. The resulting bounds, however, are quite weak in most cases.

From the point of view of exponential representations and graphical models, the
essence of the diÆculty is akin to the Legendre mapping problem, as discussed in
Section 8.2.3. That is, it can be extremely diÆcult to characterize the statistical de-
pendencies that arise among a collection of random variables linked in a network with
cycles. From this perspective, the classic channel in information theory is relatively
easy to analyze precisely because its graphical structure (namely, that of a chain) is rel-
atively simple. The corresponding problems for more complicated graphs, however, are
much more diÆcult because there can be highly non-trivial and non-local interaction
among subsets of variables. Overall, the framework of exponential representations and
graphical models may be useful in studying problems of network information theory.

� 8.3.2 Analysis of iterative decoding

One manifestation of belief propagation is as a highly successful iterative decoding
technique for various codes de�ned by graphical models, including turbo codes [e.g.,
18, 131] and low-density parity check codes [e.g., 71, 126, 130, 149]. As a consequence,
the results of Chapter 5 | especially the error analysis | have implications for coding
theory.

In recent work, several groups of researchers [e.g., 126,148,149] have obtained results
on the performance of belief propagation decoding of low-density parity check codes. For
instance, a remarkable result established by Richardson et al. [149], building from the
work in [126], is a capacity-like notion for BP decoding: namely, the existence of noise
thresholds (dependent on the channel and code) below which the probability of error
tends to zero exponentially in the code length, and above which the error probability is
bounded away from zero. In many cases, the density evolution technique [71, 148] can
be used to calculate these thresholds.

Two key features of this work are the following:

� the analysis is asymptotic as the code length (or number of nodes in the graph)
N tends to in�nity

� it entails averaging over all codes in a random ensemble (in addition to averaging
over channel noise)

Considering asymptotic behavior permits the application of powerful concentration the-
orems [e.g., 126]. These results, which are based on martingale sequences [e.g., 81],
establish that the limiting behavior of the decoder on a randomly-chosen code becomes
concentrated around its expected behavior with high probability. Averaging over all
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codes in an ensemble is also important, because it permits probabilistic analysis of the
structure of random graphs (associated with randomly-chosen codes). As N !1, the
graphs in a typical ensemble become tree-like, so that the expected behavior of BP
decoding converges to the tree case.9

As a consequence, important open questions in iterative decoding include:

� analyzing BP decoding for codes of relatively short lengths (e.g., � 103 bits) for
which asymptotic analysis does not apply

� analysis of BP decoding averaged over the channel noise but for a �xed code

The results in Chapter 5, in which we gave an exact expression and bounds for the
BP error for an arbitrary graph with cycles, appear germane to these problems. It is
conceivable, then, to try to calculate averages of the error over the channel noise (which
amounts to averaging over random choices of the single node potentials).

To sketch a line of attack in a bit more detail, optimal bit-wise decoding of a binary
code is based on the sign of the log likelihood ratio (LLR). Suppose that we represent the
problem of decoding a linear binary code de�ned by graph in an exponential manner|
that is, as performing inference for a distribution p(x; ��) that captures both the parity
checks10 de�ning the code, as well as the noisy observations of transmitted bits. With
this notation, the LLR for optimal decoding is given by log[p(xs = 1; ��)=p(xs = 0; ��)].
The results of Chapter 5 show that approximate BP decoding is based, instead, on the
sign of the modi�ed LLR log[p(xs = 1;�i(��))=p(xs = 0;�i(��)), where p(x; �i(��)) is a
distribution structured according to a particular (but arbitrary) tree embedded within
the graph with cycles representing the code. This relation suggests a new avenue for
analyzing the error between the optimal and BP log likelihood ratios for an arbitrary
but �xed code.

� 8.3.3 Application to large deviations analysis

Large deviations theory [e.g., 55, 158] treats the probability of certain events in the
limit of large sample sizes. For example, one might be interested in the probability of
obtaining 900 or more heads in 1000 tosses of a fair coin. This is certainly an unlikely
event; alternatively phrased, it is a large deviation in the sample mean of heads (here
900=1000 or 0:9) from the true mean (0:5 for a fair coin). Of particular interest are
the rates that govern the exponential decay of these probabilities as a function of the
sample size. In this context, the log partition function (or equivalently, the cumulant
generating function) is well-known to play the role of a rate function [see, e.g., 158]. As

9To be precise, most random ensembles have the property that for any positive integer k � 3, the
probability that a graph chosen randomly from the ensemble has cycles of length � k tends to zero [e.g.,
149].

10Technically, since parity checks entail deterministic constraints , it would be necessary to either use
an extended exponential representation in which elements ��� can assume in�nite values, or to consider
�-approximations to deterministic parity checks.
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a consequence, the bounds of Chapter 7 are potentially useful in application to large
deviations.

Exponential formulation of large deviations

To illustrate, we formulate a simple large deviations result using an exponential rep-
resentation. Consider an exponential family fp(x; �)g of distributions speci�ed by a
set of functions � = f��g. We assume that there is some underlying graph G such
that any potential function on a clique of G can be expressed in terms of �. However,
we also allow the possibility that the set � may include functions in addition to these
clique potentials.11 Let p(x; e�) be a distribution in this exponential family, and let
�� = E

e�
[��(x)] be the associated dual variables.

Now suppose that we are given a set of n samples X = fx(1); : : : ;x(n)g, where each
x(i) is sampled IID from p(x; e�). In the coin tossing example introduced earlier, each
random variable x(i) would be a indicator function for the event of obtaining a head on
the ith trial. Let p(X; e�n) denote the product distribution Qn

i=1 p(x
(i); e�).

We are interested in the probability that the sample mean of some random variable
| say speci�ed by the linear combination aT�(x) | exceeds its true mean aT � by
more than � > 0. To be precise, the quantity of interest is the probability:

P (n; e�; �) , Pr
e�n

n 1
n

nX
i=1

aT
�
�(x(i))� �

� � �
o

(8.4)

where Pr
e�n

denotes probability under the product distribution p(X; e�).
A standard upper bound on this probability is the following Cherno� bound:

P (n; e�; �) � exp

(
� n min

� s:t E� [aT�(x)]=aT �+�
D(� k e�)) (8.5)

where D(� k e�) is the Kullback-Leibler (KL) divergence between p(x; �) and p(x; e�).
The key point here is that the optimal error exponent, which governs the rate of decay
as n tends to in�nity, is given by the closest distribution to p(x; e�), as measured by the
KL divergence, that satis�es the moment constraint (i.e., E � [a

T�(x)] = aT� + �).

Applying bounds from Chapter 7

At an intermediate stage in one proof of equation (8.5), the following relation, valid for
all Æ > 0, arises:

1

n
logP (n; e�; �) � �(e� + Æa)� Æ[aT � + �]� �(e�) (8.6)

11This additional 
exibility will be important in certain cases, as we will see in Example 8.3.1.
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It is by minimizing this RHS over all Æ > 0 that we obtain the Kullback-Leibler error
exponent of equation (8.5). (See the form of the Kullback-Leibler divergence given in
equation (2.45)).

Now suppose that the reference distribution p(x; e�) is simple enough so that it is
possible to compute �(e�), but that computing �(e� + Æa) is intractable.

Example 8.3.1. As a simple illustrative example, suppose that p(x; e�) corresponds to
a (�rst-order) discrete-time Markov chain on N points. This Markov process can be
viewed as living on a linear chain, so that the cliques correspond to singleton nodes and
pairs of adjacent nodes. Suppose moreover that we are interested in the probability
that the product of the end point random variables (i.e., ��(x) = x1xN ) exceeds a
threshold. This �� function is not a clique potential of the original graph, but can be
viewed as a clique potential on an augmented graph (namely, a single cycle).

In this case, the vector a is equal to e� | that is, the vector of all zeros with a
single one in element �. The �� potential couples the starting and end points, so that

for all Æ > 0, p(x; e� + Æe�) is a distribution with the structure of a single cycle. Thus,

the quantity �(e� + Æe�) cannot be computed eÆciently by standard tree algorithms.12

One can imagine a variety of such scenarios, in which computing �(e� + Æa) is not
tractable. For these cases, exact computation of the error exponent in equation (8.5),
would be impossible, so that it would be useful to obtain an upper bound. The results of
Chapter 7 are relevant in this context. Given any �e 2 T(G), we can use Theorem 7.3.1
to prove that:

logP (n; e�; �) � �H(�e; e� + Æa) � Æ [aT � + �]��(e�) (8.7)

where H is de�ned in equation (7.33). It can also be shown that the RHS is a strictly
convex function of Æ, so that there is a unique bÆ > 0 that attains the tightest possible
upper bound of this form. Equation (8.7) can be viewed as a poor man's version of the
Cherno� bound (8.5), but with the advantage of being eÆciently computable.

12For this simple example, �(e�+ Æe�) could still be computed, for instance, by applying the junction
tree algorithm (see Section 2.1.5) to the single cycle, but one can imagine more complex scenarios for
which this quantity is truly intractable.



Appendix A

Algorithms for optimal estimation

on trees

Here we derive the key equations underlying a variety of algorithms for computing
posterior marginal distributions in tree-structured graphs.

� A.1 Partial ordering in scale

The critical property of a tree-structured graph T is that its nodes s 2 V can be
partially ordered according to their scale. (See [168] for a precise de�nition of a partial
ordering). In order to de�ne the notion of scale, we begin by designating an arbitrary
node as the root; we assume without loss of generality that that the root is labeled
with s = 1. Once the root is speci�ed, the other nodes (s 2 V=f1g) can be assigned a
scale i = 0; 1; : : : ; I based on their distance from the root. This distance is given by
the number of edges in the unique path joining s and the root node. Accordingly, the
root is the only node to be assigned scale i = 0. At the next �nest scale i = 1 are q(0)
nodes, that correspond to the children of the root node. A node at scale i < I gives
birth to its children at the next scale (i + 1). The children of node s are indexed by
s�1; : : : s�q(s), and we let Ch(s) denote the set of all children of node s. Similarly, each
node s at scale i > 0 has a unique parent �
s at scale (i � 1). This hierarchical tree
organization is illustrated in Figure A.1(a).

� A.2 Basic notation

Lying at each node s is a random variable xs, to which we will refer as the state variable.
In Figure A.1(b), these nodes are illustrated with circles. Dangling from each state node
is a node containing an observation ys; in Figure A.1(b), these nodes are drawn with
squares. By concatenating these quantities, we de�ne the vectors

x , f xs j s 2 V g (A.1a)

y , f ys j s 2 V g (A.1b)

For any node s, we let T (s) denote the vertices in the subtree of T rooted at node

237
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Figure A.1. (a) Basic types of nodes in a tree: node s and its parent s�
, and children
fs�1 ; : : : s�q

g. (b) Assignment of random variables to nodes of the tree, and de�nition
of subtree T (s) rooted at s. The data ys consists of all the data f yt j t 2 T (s) g at
nodes in T (s).

s. We then de�ne

ys , f y t j t 2 T (s) g (A.2)

to be the collection of observations in the subtree rooted at s. This set ys is illustrated
in Figure A.1(b). We let ycs � y=ys denote the complement of ys in full data set y.

We shall frequently exploit the following decomposition:

T (s) = fsg [
h
[t2Ch(s) T (t)

i
(A.3)

Equation (A.3) expresses the fact that the subtree T (s) is the disjoint union of node s
and the subtrees rooted at children of s.

� A.3 Markov decomposition

At the heart of the two-pass tree smoothing algorithms is the following decomposition
of the single-node marginal probability p(xs jy):
Proposition A.3.1 (Key decomposition). For any node s, the following decompo-
sition holds:

p(xs jy) = � p(ys jxs) p(xs jycs)
Y

xt2Ch(t)
p(yt jxs) (A.4)
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where � is a normalization constant independent of xs.

Proof. The proof is a basic exercise in applying Bayes' rule, and exploiting the Markov
properties of a tree-structured distribution. We write:

p(xs jy) = � p(y jxs) p(xs) (A.5a)

= � p(ys jxs) p(ycs jxs) p(xs) (A.5b)

= � p(ys jxs) p(xs jycs) (A.5c)

= � p(ys jxs)
h Y
t2Ch(s)

p(yt jxs)
i
p(xs jycs) (A.5d)

where the de�nition of the normalization constant � has changed from line to line. Here
equation (A.5a) follows from Bayes' rule; equation (A.5b) follows from the fact that ys
and ycs are conditionally independent given xs; equation (A.5c) follows from Bayes'
rule applied to p(ycs jxs) p(xs); and equation (A.5d) follows from Markov properties
associated with the decomposition in equation (A.3).

Equation (A.4) reveals the computation of p(xs jy) requires two types of quantities:
(a) the likelihoods p(yt jxs) of the data yt in the subtree T (t) given xs, where t is a

child of s

(b) the conditional probabilities p(xs jycs).
In the following sections, we describe a recursive upward sweep for computing the
likelihoods, and then a downward pass for recursively computing the conditional prob-
abilities.

� A.4 Upward sweep

Proposition A.4.1 (Likelihood calculation). For any node xs, the following fac-
torization holds:

p(ys jxs) = � p(ysjxs)
Y

t2Ch(s)
p(yt jxs) (A.6a)

= � p(ys jxs)
Y

t2Ch(s)

Z
xt

p(yt jxt) p(xt jxs)dxt (A.6b)

where � is an arbitrary normalization constant.

Proof. Equation (A.6a) follows from the Markov properties associated with the decom-
position of equation (A.3). Equation (A.6b) follows from the relation:

p(yt jxs) =

Z
p(yt jxs; xt) p(xt jxs)dxt

and the fact that yt is conditionally independent of xs given xt whenever t 2 Ch(s).
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� A.5 Downward sweep

Similarly, the conditional probabilities can be computed by a downward sweep:

Proposition A.5.1 (Conditional calculation). For any node xs, the conditional
probabilities p(xs jycs) can be computed via the following recursions:

p(xs jycs) = �

Z
xs�


p(ys�
 jxs�
)
h Y
t2Ch(s�
)=s

p(yt jxs�
)
i
p(xs�
 jycs�
) p(xs jxs�
)dxs�


(A.7a)

p(yt jxs�
) =

Z
p(yt jxt) p(xt jxs�
) dxt (A.7b)

Equation (A.7a) is a recursive formula for computing the conditional probabilities p(xs jycs)
in terms of the parent quantity p(xs�
 jycs�
); the local observation p(ys�
 jxs�
); and the
likelihoods p(yt jxs�
). The latter quantities can be computed from the upward sweep via
equation (A.7b).

Proof. To establish equation (A.7a), we write:

p(xs jycs) = � p(ycs jxs) p(xs) (A.8a)

= �

Z
p(ycs jxs�
) p(xs�
 jxs) p(xs) dxs�
 (A.8b)

= �

Z
p(ycs jxs�
) p(xs�
) p(xs jxs�
) dxs�
 (A.8c)

= �

Z
p(ys�
 jxs�
) p(ycs�
 jxs�
)

h Y
t2Ch(s�
)=s

p(yt jxs�
)
i
p(xs�
) p(xs jxs�
) dxs�


(A.8d)

= �

Z
p(ys�
 jxs�
) p(xs�
 jycs�
)

h Y
t2Ch(s�
)=s

p(yt jxs�
)
i
p(xs jxs�
) dxs�


(A.8e)

Here equation (A.8a) follows from Bayes' rule; equation (A.8b) follows from the condi-
tional independence p(ycs jxs; xs�
) = p(ycs jxs�
); and equation (A.8c) is another applica-
tion of Bayes' rule. Next equation (A.8d) follows from the Markov properties associated
with the decomposition:

ycs = fys�
g [ ycs�
 [
h
[t2Ch(s�
)=s yt

i
Equation (A.8e) follows from a �nal application of Bayes' rule.

Equation (A.7b) follows from the fact that p(yt jxt; xs�
) = p(yt jxt) whenever t is
a child of s�
.
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On the basis of Propositions A.4.1 and A.5.1, it is possible to develop a number of
recursive algorithms for computing posterior marginals at each node of the graph. For
example, one such algorithm is a generalization of the Maynes-Fraser [66] algorithm for
smoothing of time series (i.e., de�ned on a chain) to more general graphs. It is also
straightforward to derive an alternative algorithm in which data is incorporated only on
the upward pass. This leads to a downward recursion in terms of the conditional prob-
abilities p(xs jy). This algorithm is a generalization of the Rauch-Tung-Striebel [146]
smoother to arbitrary (non-Gaussian) stochastic processes, and general trees.

It is also possible to derive similar algorithms for MAP estimation. These algorithms
are formally equivalent to those for computing posterior marginals, in that all integrals
are replaced by a maximization operation. In fact, dynamic programming algorithms
of this nature can be generalized so as to apply to any commutative semi-ring on which
two binary operations are de�ned [see 169], a general and elegant view emphasized
recently in [3].
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Appendix B

Proofs for Chapter 3

� B.1 Proof of Proposition 3.3.1

Using equation (3.11) and the convexity of �f , for any pair �� and � we write:

�f (�
�) � �f (�) +

X
�

@�f (�)

@��
[�� � �]� (B.1)

Using equations (3.9) and (2.18a), we compute
@�f

@��
(�) = E � [��]+

cov�ff; ��g
E� [f ]

. We substi-

tute this relation, as well as the forms of �f (�) and �f (�
�) speci�ed by equation (3.9),

into equation (B.1) to obtain:

�(��) + log E �� [f ] � �(�) + log E � [f ] +
X
�

[�� � �]�

n
E � [��] +

cov�ff; ��g
E � [f ]

o
Applying the form of the KL divergence in equation (2.31) and re-arranging yields the
bound of equation (3.13a).

In order to derive equation (3.13b), we observe that whenever f satis�es Assump-
tion 3.3.1, then so does the function ef(x) , 1 � f(x). We can therefore apply equa-
tion (3.13a) to ef to derive an upper bound on E �� [f ].

� B.2 Proof of Proposition 3.3.2

The log partition function �f corresponding to the tilted distribution is convex, so that
we can apply Jensen's inequality in equation (3.12). For any (�; ~�) 2 A(��), we have
�f (�

�) = �f (E ~� [�
i]) � E ~� [�f (�

i)]. Using equation (3.9), this is equivalent

�(��) + log E �� [f ] � E ~�

�
�(�i) + log E �i [f ]

�
which, after re-arranging, is equivalent to the upper bound of equation (3.21a). The
weaker upper bound of equation (3.21b) follows by applying the standard mean �eld
lower bound (see Section 2.3.1) on the the log partition function to each exponential
parameter �i | that is:

�(��) � �(�i) +
X
�

E �i [��] [�
� � �i]�
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� B.3 Proof of Proposition 3.4.1

The bound of equation (3.25) follows by applying Proposition 3.3.1 to each individual
fk, and then summing the bounds to obtain a bound on E �� [f ] =

P
k E �� [f

k]. To prove
the superiority of this new bound, de�ne

Bk = �D(� k ��) + 1

E � [fk]

X
�

(�� � �)�hfk; ��i�

and write the log of LHS of equation (3.25) as

log
hX

k

E � [f
k] exp(Bk)

i
= log E � [f ] + log

hX
k

E � [f
k]

E � [f ]
exp(Bk)

i
� log E � [f ] +

X
k

E � [f
k]

E � [f ]
Bk

= log E � [f ]�D(� k ��) + 1

E � [f ]

X
�

(�� � �)�h
X
k

fk; ��i�

= log E � [f ]�D(� k ��) + 1

E � [f ]

X
�

(�� � �)� hf; ��i�

where the �nal line is the log of the bound given in Proposition 3.3.1. Here the in-
equality follows from the concavity of the logarithm. This inequality is strict as long as
E � [f

k] > 0 for all k (which holds for all fk 6= 0), and the Bk terms are not all equal to
the same constant.

� B.4 Proof of Proposition 3.4.2

The bounds of equation (3.27) themselves follow by applying Proposition 3.3.2 to each
fk, and then summing the bounds on each fk to obtain a bound on f .

To prove superiority of these bounds to those of Proposition 3.3.2, we require the
following lemma, proved in x6:9 of Hardy et al. [84]:

Lemma B.4.1. Let �i � 0 be weights such that
P

i �
i = 1, and let aik be positive

numbers. Then X
k

�Y
i

a�
i

ik

�
�

Y
i

�X
k

aik

��i
(B.2)

The inequality is strict as long as the quantities [aik=
P

k aik] are not all equal.

We now use Lemma B.4.1 to write:X
k

"Y
i

�
E �i [f

k]

��i
#

�
Y
i

"X
k

E �i [f
k]

��i

=
Y
i

�
E �i [f ]

��i
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where the �nal line follows from linearity of expectation applied to
P

k f
k = f . This

inequality is strict as long as the quantities fE �i [fk]
Æ
E �i [f ]g are not all equal.
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Appendix C

Proofs for Chapter 5

� C.1 Proof of Proposition 5.3.1

We begin by proving equation (5.23a) using induction on the iteration n. The statement
is true for n = 0, since

M0
st

1

T 0
t

X
xs

T 0
st = �

X
xs

 st s
Y

u2N (s)=t

M0
us

which is equal to M1
st using equation (5.3).

Now let us assume that it holds for n and prove it for n+1. It is equivalent to prove
that Mn+1

st =Mn
st

1
Tn
t

P
xs
T n
st. Using the de�nition of T n

st in equation (5.22b), we write
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= �Mn�1
st

n 1

T n�1
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X
xs

T n�1
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Y
u2N (s)=t
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us

Mn�1
us

o
(C.1f)

where we have used the de�nition of T n
st in equation (5.22b) to obtain equation (C.1a);

the de�nition of T n
s in equation (5.22a) to obtain equation (C.1c); and the induction

hypothesis to go to equation (C.1e), and again to equation (C.1f).

247
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Examining the form of equation (C.1f), we see that we can apply the same sequence
of steps to the term 1
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t

P
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to obtain:
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The series telescopes in this multiplicative way until we reach n = 0, at which point
the right hand side is equal to:
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where we have used the initialization of T 0
t and T

0
st given in equations (5.21a) and (5.21b)

respectively.
To establish equation (5.23b), we begin by using the de�nition of Bn

s in equa-
tion (5.4) to write

Bn+1
s

Bn
s

= �
Y

t2N (s)

Mn+1
ts

Mn
ts

= �
Y

t2N (s)
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s

X
xt

T n
st

= �
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This equality, in conjunction with the fact that B0
s = � s

Q
u2N (s)M

0
us = T 0

s , shows
that Bn

s = T n
s for all iterations n.

� C.2 Proof of Proposition 5.4.2

We begin with some preliminary de�nitions and lemmas. For a closed and convex set
X, we say that x� is an algebraic interior point [31] if for all x 6= x� in X there exists
x0 2 X, and � 2 (0; 1) such that x� = �x+ (1� �)x0. Otherwise, x is an exterior point.
The following lemma characterizes the nature of a constrained local minimum over X.

Lemma C.2.1. Let f : X ! R be a C1 function, where X is a closed, convex and
nonempty set. Suppose that x� is a local minimum of f over X. Then

rf(x�)T (x� x�) � 0

for all x 2 X. Moreover, if x� is an algebraic interior point, then rf(x�)T (x�x�) = 0
for all x 2 X.
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Proof. See [20] for a proof of the �rst statement. To prove the second statement,
assume that x� is an algebraic interior point, so that for an arbitrary x 2 X we can
write x� = �x+ (1� �)x0 for some x0 and � 2 (0; 1). Then:

rf(x�)T (x� � x0) = �rf(x�)T (x� x0) � 0

rf(x�)T (x� � x) = (1� �)rf(x�)T (x0 � x) � 0

Since � 2 (0; 1), this establishes that rf(x�)T (x0 � x) = 0, and hence also (from the
de�nition of x� that rf(x�)T (x� x�) = 0.

Lemma C.2.2. Let U 2 C
i be arbitrary. Then for any � such that e� = Ri(�) is

bounded: X
�2Ai

�
U� � �i(�i(�))�

��e� � �]� = 0 (C.2)

Proof. We established in Section 5.4.2 that the point �i(�i(�)) is the minimizing ar-
gument of the function Gi de�ned in equation (5.31) over the linear and hence convex
set C i . This point will be an exterior point only if some element is equal to zero or
one, a possibility that is prevented by the assumption that Ri(�) = Ii(�i(�i(�i(�)))
is bounded. Therefore, �i(�i(�)) is an algebraic interior point, meaning that we can
apply Lemma C.2.1 to conclude that for all U 2 C

i , we haveX
�2Ai

�
U� � �i(�i(�))�

�
@Gi
@T�

(�i(�i(�)); �) = 0 (C.3)

It remains to calculate the necessary partial derivatives of Gi. We begin with the
decomposition Gi(T ; �) =P(s;t)2Ei Gist(Tst; �st) +

P
s2V Gis(Ts; �s) where

Gist(Tst) =
X
j;k

Tst;jk

�
log
�
Tst;jk=(

X
j

Tst;jk)(
X
k

Tst;jk)
�� �st;jk

�
(C.4a)

Gis(Ts) =
X
j

Ts;j
�
log Ts;j � �s;j

�
(C.4b)

Using this decomposition, we calculate:

@Gi
@T�

(T ; �) =

(
�(T )s;j � �s;j + 1 for � = (s; j)

�(T )st;jk � �st;jk � 1 for � = (st; jk)

Substituting these quantities into equation (C.3), evaluated at eT = Ii(�i(�i(�))), we
obtain:X

s2V

X
j

�
U � eT	

s;j

�e� � � + 1]s;j +
X

(s;t)2Ei

X
j;k

�
U � eT	

st;jk

�e� � � � 1]st;jk = 0(C.5)
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where by de�nition e�� = �i( eT )� for each � 2 Ai. Now since both U and eT belong to
C
i , we have

P
j[U � �(Qi(�))

�
s;j

= 0 for all s 2 V and
P

j;k[U � eT ]st;jk = 0 for all

(s; t) 2 Ei. As a result, the constants 1 or �1 in equation (C.5) vanish in the sums over
j or fj; kg, and we are left with the desired statement in equation (C.2).

Equipped with these lemmas, we now establish equation (5.33) for �n = 1 by writing:

G(U ; �)� G(U ;Qi(�))� G(�i(Qi(�)); �) =
X
�2A

�
U � �i(Qi(�))

�
�

�Qi(�)� �]�

=
X
�2Ai

�
U � �i(Qi(�))

�
�

�
�(�i(�i(�)))� �]�

where we used the fact that Qi(�)� =

(
�� for all � 2 A=Ai

Ri(�)� for all � 2 Ai.

Since Ri(�) is bounded by assumption, we can apply Lemma C.2.2 to conclude that

G(U ; �)� G(U ;Qi(�))� G(�i(Qi(�)); �) = 0 (C.6)

thereby establishing equation (5.33) for �n = 1, with the identi�cations � � �n and
i = i(n).

To extend the result to �n 2 [0; 1], we use the de�nition of �n+1 given in equa-
tion (5.20) to write:

G(U ; �n)� G(U ; �n+1) =
X
�

U�
�
�n+1 � �n

�
�

= �n
X
�

U�
�Qi(n)(�n)� �n

�
�

= �n
�
G(U ; �n)� G(U ;Qi(n)(�n))

�
= �nG(�i(n)(Qi(n)(�n)); �n)

where we have obtained the �nal line using equation (C.6).

� C.3 Proof of Theorem 5.4.2

(a): By the cyclic tree ordering, we have �Ln+i+1 � �Ln+i = �Ln+i[Qi(�Ln+i)� �Ln+i]
where i is arbitrary in f0; : : : ; L � 1g. Since the sequence f�ng converges to ��, it is
Cauchy so that the left side tends to zero. Since �Ln+i � �, this implies that Qi(�Ln+i)�
�Ln+i ! 0. I.e. Qi(��) = �� for all i 2 f0; : : : ; L� 1g.

We now construct the unique T � 2 C such that �i(T �) = �i(�i(��)). For an
arbitrary index � 2 A, pick a spanning tree T i such that � 2 Ai. This is always possible
since [iAi = A by construction. De�ne T �� = [�i(�i(��))]�, which is a consistent
de�nition because

[�i(�i(��))]� = [�j(�j(��))]�
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for any spanning tree indices i; j such that � 2 Ai \ Aj. By construction, it is clear
that T � 2 C , and that �i(T �) = �i(�i(��)).

(b): Let U 2 C = \iC i be arbitrary. By applying Proposition 5.4.2 repeatedly, we
obtain

G(U ; �0) = G(U ; ��) +
1X
n=1

Wn (C.7)

where Wn , �nG(�i(n)(Qi(n)(�n)); �n). By part (a), the parameter �� induces a unique
pseudomarginal vector T � 2 \iC i . We then apply equation (C.7) with U = T � and use
the fact that G(T �; ��) = 0 by construction to obtain G(T �; �0) =P1

n=1Wn. Substitut-
ing this result back into equation (C.7), we �nd that

G(U ; �0) = G(U ; ��) + G(T �; �0)
for all U 2 \iC i . To prove that T � satis�es the necessary conditions to be a local
minimum, we note that

G(U ; �0)� G(U ; ��)� G(T �; �0) =
X
�

@G
@T�

(T �; �0)
�
U � T �

�
�

= 0

where we have used a sequence of steps similar to the proof of Proposition 5.4.2.

(c) Since the cost function G is bounded below and the constraint set is non-empty,
the problem has at least one minimum. Any such point must satisfy the necessary
conditions to be a local minimum, as presented in part (b). To establish equivalence
with BP �xed points, recall that cost function G agrees with the Bethe free energy on
this constraint set. Yedidia et al. [183] have shown that BP �xed points correspond to
points that satisfy the Lagrangian conditions for an extremum of the Bethe free energy
over C . Moreover, because the constraint sets are linear, the existence of Lagrange
multipliers is guaranteed for any local minimum [20]. By recourse to Farkas' lemma [20],
these Lagrangian conditions are equivalent to the condition stated in (b). Therefore,
we conclude that TRP �xed points exist, and coincide with those of BP.

� C.4 Proof of Theorem 5.4.3

Throughout this appendix, we will use the notation �i(�) as a shorthand for the quantity
�(�i(�)). With this notation, we begin with some preliminary lemmas.

Lemma C.4.1. For all indices i = 0; : : : ; L�1, we have Gi(�i(�i(�)); �i(�)) = ��i(�).

Proof. Note that �i(�i(�i(�))) and �i(�) induce the same distribution on spanning
tree T i so that D(�(�i(�i(�))) k �i(�)) = 0. The statement of the lemma then follows
from equation (5.32).
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Lemma C.4.2. Let l 2 f0; : : : ; L� 1g be arbitrary, and let i(n) the tree index used at
the nth iteration. Then:

�l(�n+1) � (1� �n)�l(�n) + �n�l(Qi(n)(�n)) (C.8)

Moreover, in the special case l = i(n), we have

�i(n)(�n+1) = (1� �n)�i(n)(�n) (C.9)

Proof. Recall that �n+1 is formed as the convex combination

�n+1 = (1� �n)�n + �nQi(n)(�n)

This combination remains convex if we apply the linear projection operator �l to both
sides, so that equation (C.8) follows from the well-known convexity of the log partition
function �.

In the special case l = i(n), we have �l(Ql(�n)) = 0, so that equation (C.8) reduces
to �l(�n+1) � (1� �n)�l(�n). Moreover, by the convexity of �:

�l(�n+1) � �l(�n) +
X
�2Al

E�l (�n)[��]
�
�n+1 � �n

�
�

(C.10a)

= �l(�n) + �n
X
�2Al

E�l (�n)[��]
�Ql(�n)� �n

�
�

(C.10b)

= (1� �n)�l(�n) (C.10c)

where we have used the fact that @�
@��

(�l(�)) = E�l (�)[��] to obtain equation (C.10a);

the de�nition of �n+1 in equation (C.10b); and Lemma C.4.1 in equation (C.10c).

With these preliminary lemmas, we can begin the proof of the theorem. Let U 2 C

be arbitrary. By applying Proposition 5.4.2 repeatedly, for any iteration M = 1; 2; : : : ,
we obtain

G(U ; �0)� G(U ; �M ) =

M�1X
n=0

Wn (C.11)

where Wn = �nG(�i(n)(Qi(n)(�n)); �n). Lemma C.4.1 and the de�nition of �i in equa-
tion (5.17b) lead to the equivalent expressions:

�i(�n) = Gi(�i(�i(�n)); �i(�n)) (C.12a)

= G(�i(Qi(�n)); �n) (C.12b)

meaning that we can write Wn = ��n�i(n)(�n).
From this point onwards, our goal is to establish that

lim
n!1�i(�n) = 0 for i = 0 ; 1 (C.13)
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Indeed, if equation (C.13) holds, then using equation (C.12), we see that assumption (a)
implies that Qi(�n) ! �n as well, which is the statement of the theorem. The essence
of establishing (C.13) is to choose a sequence f�ng of positive step sizes such that
Wn > 0 is guaranteed for all n = 0; 1; 2; : : : . This condition ensures that for some �xed
U 2 C , the LHS of equation (C.11) | namely, the sequence AM , G(U ; �0)�G(U ; �M )
| is non-decreasing in M . Moreover, since the sequence f�Mg remains bounded by
assumption, the sequence AM is also bounded above. That is, the sequence fAMg is
both non-decreasing and bounded above, and so must converge. Using equation (C.11),
the convergence of fAMg will allow us to conclude that Wn ! 0. Finally, we will use
this fact to establish equation (C.13).

Without loss of generality, we assume that �i(�0) < 0 for i = 0; 1, a condition that
can be guaranteed by subtracting a constant from the full vector �0 if necessary. We
formalize the step size choice in the following lemma:

Lemma C.4.3. At each iteration n, de�ne:

�n ,

8<:
�

��i(�n)

�i(Qi(n)(�n))��i(�n)

�
if �i(Qi(n)(�n)) > 0

1
Æ
(n+ 1) otherwise

where i(n) � n(mod2) and i � (n + 1)(mod 2). Provided that �i(�0) < 0 for i = 0; 1,
then choosing the step sizes

�n =
1

2
�n (C.14)

will guarantee that �i(�n) < 0 for all n, i = 0; 1.

Proof. The proof is by induction; the case n = 0 is given, and so we assume it holds
for an even iteration n so that i(n) = 0. From equation (C.9) in Lemma C.4.2, if
�0(�n) < 0, then any step size in (0; 1) will ensure that �0(�n+1) < 0. Note that by
construction 0 < �n < 1, so that it is a valid step size choice.

Now considering i = 1: if �1(Q0(�n)) � 0, then again any choice �n+1 < 1 will
suÆce. On the other hand, if �1(Q0(�n)) > 0, with the step size

0 < �n =
��1(�n)

�1(Q0(�n))� �1(�n)
< 1

the right hand side (i.e., upper bound) of equation (C.8) is zero. Since the upper bound
of equation (C.8) decreases for smaller �n, the step size choice of equation (C.14) will
ensure that �1(�n+1) < 0.

A similar argument can be applied for odd n, where i(n) = 1. Therefore, we have
established that our step size choice ensures that �i(�n+1) < 0 for all n, and i = 0; 1.

We now prove equation (C.13). By the step size choice of Lemma C.4.3 and our ear-
lier reasoning, we are guaranteed that the in�nite sum

P1
n=0Wn exists, and that Wn !
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0+. So as to exploit assumption (b) of the theorem statement, we now split our analysis
into two cases. Note that for a; b = 0; 1, we have �a(Qb(�n)) = G(�a(Qb(�n));Qb(�n))
by de�nition of �a in equation (5.17b). Therefore, assumption (b) means that the
quantities �1(Q0(�n)) and �0(Q1(�n)) are eventually (i.e., for n � K) of the same sign.

Case 1: Suppose �rst that for a; b = 0; 1, we have �a(Qb(�n)) � 0 for all n � K.
This implies that �n = 1

2(n+1) for all n � K, so that the in�nite sum
P

n�KWn =

�Pn�K �i(n)(�n)=[2 (n + 1)] exists. Since ��i(n)(�n) > 0 for all n by construction,

this implies that �i(�n)! 0 for i = 0; 1.
Case 2: Otherwise for a; b = 0; 1 and a 6= b,1 we have �a(Qb(�n)) > 0 for all n � K.

Let fnkg be the even integers for which i(nk) = 0. Then we have:

1X
nk�K

Wnk = �
1X

nk�K
�nk�0(�nk)

=
1

2

X
nk�K

�0(�nk)�1(�nk)

�1(Q0(�nk))� �1(�nk)
(C.15)

Since the sequence f�ng remains bounded by assumption, the denominator of Wnk

is bounded in absolute value. Therefore, the fact that Wnk ! 0 implies that the
numerator | namely, �0(�nk)�1(�nk) | must converge to zero. This condition does
not necessarily imply that one of these two log partition functions converges to zero;
for example, we could have �0(�nk) tending to zero for even k, and �1(�nk) tending to
zero for odd k.

With the additional constraints of our problem, we shall now prove that, in fact we
have limnk!1�1(�nk) = 0. We proceed via proof by contradiction: if this were not
the case, then there would exist some in�nite subsequence (say fnjg) of the even indices
fnkg such that �1(�nj ) is bounded away from zero. From the condition �1(�nj )�0(�nj )!
0, this implies that �0(�nj )! 0. By assumption (a) and the equivalence of Lemma C.4.1,
this implies that [Q0(�nj )� �nj ]! 0. Since �1 is a C2 function and f�ng is bounded, we
can apply the mean value theorem to conclude that limnj!1 inf

�
�1(�nj )��1(Q0(�nj )

�
=

0. Moreover, since �1(Q0(�nj )) > 0 for all nj � K by assumption, we have

lim
nj!1

inf �1(�nj ) � lim
nj!1

inf
�
�1(�nj )� �1(Q0(�nj ))

�
= 0

Moreover, by our step size choice, we have �1(�nj ) < 0 for all nj, thereby ensuring
the relation limnj!1 sup�1(�nj ) � 0. In conjunction, these two relations imply that
limnj!1�1(�nj ) exists, and is equal to zero, so that we have reached a contradic-
tion. Therefore, our initial assumption must have been false, and we can conclude that
limnk!1�1(�nk) = 0.

On the other hand, to analyze the behavior of �0(�n), consider the sequence formed
1Note that by de�nition, �a(Qa(�n)) = 0 for a = 0; 1.
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by the odd indices fmkg. This leads to equation (C.15), with the roles of 0 and 1
interchanged. Thus, a similar argument allows us to establish that �0(�mk)! 0.

Therefore, we have proved that �1(�nk) ! 0 and �0(�mk) ! 0. These condi-
tions in conjunction imply that the step sizes �n are tending to zero for the in�nite
subsequences formed by even indices fnkg and odd indices fmkg. Therefore, we can
conclude that the overall sequence �n converges to some �� such that �i(��) = 0, and
hence equation (C.13) is proved, which establishes the theorem.

� C.5 Proof of Proposition 5.4.1

We begin by expressing the delta function Æ(xs = j) as a linear combination of the
monomials in the set R(s) de�ned in equation (2.12a) as follows:

Æ(xs = j) =
Y
k 6=j

(k � xs)

(k � j)
(C.16)

This decomposition is extended readily to pairwise delta functions, which are de�ned
by products Æ(xs = j)Æ(xt = k); in particular, they can be written as linear combi-
nations of elements in the sets R(s) and R(s; t), as de�ned in equation (2.12a) and
equation (2.12b), respectively. Now suppose that � 2 M(�0), so that log p(x; 
0) =
log p(x; �) for all x 2 X . By construction, both the LHS and RHS are linear combina-
tion of the elements R(s) and R(s; t). Equating the coeÆcients of these terms yields
a set of d(
) = (m � 1)N + (m � 1)2jEj linear equations. We write these equations
compactly in matrix form as A� = 
0.

This establishes the necessity of the linear manifold constraints. To establish their
suÆciency, we need only check that the linear constraints ensure the constant terms in
log p(x; 
0) and log p(x; �) (i.e., �(
0) and �(�) respectively) are also equal. This is a
straightforward veri�cation.
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Appendix D

Proofs for Chapter 7

� D.1 Proof of Proposition 7.2.2

From Lemma 7.2.1, for k��k <1, the optimal b� is attained in the interior of L(G). I.e.,
none of the linear inequality constraints de�ning L(G) are met with equality. Optimal

points b� are therefore given as zero points of the gradient @Q(�;~�;��)
@� . In order to calculate

this gradient, we use the fact that @	(�T (�))
@��

= �(T )� by de�nition of the Legendre
duality coupling the log partition function � and negative entropy 	. Calculating the
gradient @Q(�;~�;��)

@� and setting it to zero yields the following stationary conditions for
the optimum:

E~� [b�(T )st] = ��st (D.1a)

E ~� [b�(T )s] = ��s (D.1b)

Now for any spanning tree T 2 T, we have p(x; b�(T )) = p(x; �T (b�)). By de�nition,
the distribution p(x; b�(T )) has the following exponential form:

log p(x; b�(T )) =
X
s2V

b�(T )s xs + X
(s;t)2E(T )

b�(T )st xsxt � �(b�(T )) (D.2)

On the other hand, from equation (7.15), we have:

log p(x; �T (b�)) =X
s2V

1X
j=0

log p(xs = j; b�)Æ(xs = j)

+
X

(s;t)2E(T )

1X
j;k=0

log

"
p(xs = j; xt = k; b�)

p(xs = j; b�) p(xt = k; b�)
#
Æ(xs = j)Æ(xt = k) (D.3)

where p(xs; b�) and p(xs; xt; b�) are de�ned in equation (7.12).
Using the fact that for binary variables Æ(xs = 0) = (1 � xs) (and similarly,

Æ(xs = 1) = xs), we see that equations (D.2) and (D.3) are both binomials in fxsg
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and fxsxtg. Equating their respective coeÆcients yields the following relations:

b�(T )st = Æ[(s; t) 2 T ] log
"
(b�st) (1 + b�st � b�s � b�t)
(b�s � b�st)(b�t � b�st)

#
(D.4a)

b�(T )s = log

� b�s
(1� b�s)

�
+
X

t2N (s)

Æ[(s; t) 2 T ] log
�

(b�s � b�st)
(1 + b�st � b�s � b�t)

�
(D.4b)

Taking expectations with respect to ~� and using equations (D.1a) and (D.1b) yields
the statement of the proposition.

�

� D.2 Proof of Proposition 7.3.1

(a) De�ne the function

H(�e; ��) = min
�2L(G)

F(�;�e; ��) = F(b�(�e);�e; ��)
where b�(�e) denotes the optimal � as a function of �e. Taking derivatives via the chain
rule, we obtain:

@H
@�st

(�e; �
�) =

X
�

@F
@��

@b��
@�st

�����
b�(�e)

+
@F
@�st

�����
b�(�e)

(D.5)

Now from Lemma 7.2.1, the optimum b�(�e) of the problem min�2L(G) F(�;�e; ��)
occurs at an interior point of L(G). Therefore, none of the constraints de�ning L(G)
are active, so that in fact, by the Karush-Kuhn-Tucker conditions [20], we must have

@F
@��

��
b�(�e)

= 0 (D.6)

at the optimum b�. Moreover, straightforward calculations yield

@F
@�st

��
b�
= Ist(b�) (D.7)

By combining equations (D.6) and (D.7) with equation (D.5), we are led to conclude
that @H

@�st
(�e; �

�) = Ist(b�(�e)).
Now form the Lagrangian associated with the problem max�e2T(G)H(�e; ��):

L(�e; �; ��) = H(�e; ��) + �0

h
(N � 1)�

X
e2E

�e

i
+
X
F�E

�(F )
h
r(F )�

X
e2F

�e

i
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where the sum
P

F�E ranges over all critical subsets F . Taking derivatives with respect
to �e yields the Lagrangian conditions stated in the proposition. The Karush-Kuhn-
Tucker conditions guarantee that the Lagrange multipliers �(F ) associated with the
inequality constraints are all non-negative. In particular, �(F ) � 0 with equality when-
ever the constraint associated with F is inactive.

(b) Since @H
@�st

(�e; �
�) = Ist(b�(�e)) from part (a) and �(T ) 2 T(G), the statement

hI(b�(c�e)); �(T )� c�ei � 0 8 T 2 T (D.8)

follows from standard necessary conditions [see 20] for the maximum c�e of H over the
linear (hence convex) set T(G).

We now establish that inequality (D.8) holds with equality for all T 2 supp(~�).

Since c�e 2 T(G), there exists some distribution b~� over spanning trees thatX
T 2T

b�(T )Æ�e 2 T ] = b�e 8 e 2 E (D.9)

We now multiply equation (D.9) by Ie(b�(�e)) and sum over all e 2 E to obtain

0 =
X
e2E

Ie(b�(�e))nX
T 2T

b�(T )�Æ�e 2 T ]� b�e�o
=

X
T 2T

b�(T )X
e2E

Ie(b�(�e))�Æ�e 2 T ]� b�e�
=

X
T 2T

b�(T ) hI(b�(c�e)); �(T )� c�ei
where we have recognized that for �xed T , the function Æ[e 2 T ] � �(T )e. Using this
relation and inequality (D.8), we must have hI(b�(c�e)); �(T )� c�ei = 0 for all T such
that b�(T ) > 0.

�
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