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Abstract

A key issue in the development and deployment of model-based automatic target recog-
nition (ATR) systems is the generation of target models to populate the ATR database.
Model generation is typically a formidable task, often requiring detailed descriptions of
targets in the form of blueprints or computer-aided-design (CAD) models. Recently,
efforts to generate models from a single one-dimensional radar range profile or a sin-
gle two-dimensional synthetic aperture radar (SAR) image have met with some suc-
cess. However, the models generated from these data sets are of limited use to most
ATR systems because they are not three-dimensional. We propose a framework for
generating a three-dimensional target model directly from multiple SAR images of a
target obtained at arbitrary viewing angles. We cast model generation as a paramet-
ric estimation problem in which we seek a description of the target in terms of its
component reflector primitives given a set of features extracted from the SAR images.
We accomplish this parametric estimation in the context of data association using the
expectation-maximization (EM) method. We construct an EM-based algorithm that
generates a target model from features extracted from a set of SAR imagery. This algo-
rithm adaptively selects the model order and operates without supervision. We present
extensions to the basic model-generation framework and algorithm to enable explicit
accommodation of various phenomena important for proper target modeling, including
partial obstruction and noncanonical primitive responses. Throughout the thesis we
present results demonstrating the applicability of our framework and the utility of our
algorithm.
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Chapter 1

Introduction

MAGE data plays a central role in many fields and applications. In recent years,

especially as remote sensing technologies and computing resources have progressed
markedly, there has been a proliferation of applications in which image data is of fun-
damental importance. In many fields, the collection of the image data is only one of a
number of difficult technical challenges: often, the most daunting task is the intelligent
processing of the collected imagery to infer something about the environment or the
scene being imaged. The imagery collected by a weather satellite, or a radio telescope,
or a magnetic resonance imaging system is of interest only insofar as it can be pro-
cessed by a human or machine to extract information relevant to tomorrow’s weather,
or a distant galaxy, or a patient’s diagnosis.

In many fields the primary goal of the image processing is to identify and char-
acterize specific objects of interest, or targets, in the presence of significant noise and
uninformative background features, or clutter. Omne such field is military reconnais-
sance [82]. In a typical reconnaissance scenario, the imaging system might consist of
a sensor mounted on an airplane; the scene being imaged might contain a wide vari-
ety of natural features (e.g., trees, grass, and rivers), fixed manmade structures (e.g.,
buildings and roads), and vehicles (e.g., trucks and tanks). In such a scenario the ve-
hicles are often the targets of interest, and all other scene components are viewed as
distracting clutter. In order to make intelligent decisions based on imagery collected in
such a scenario, many questions must typically be answered: which parts of the image
correspond to targets, as opposed to clutter? How many vehicles are present? Where
are these vehicles located? What types of vehicles are they? Are these vehicle types
indicative of friends or foes? If only a small amount of imagery is to be processed, then
this processing might be accomplished by a human image analyst; if, on the other hand,
there is a significant amount of imagery and time is of the essence, then it would be
beneficial to employ an automated processor. Automatic target recognition (ATR) sys-
tems have been designed to process data and to identify and classify targets of interest
in scenarios like these [9,10,31].

ATR systems have received considerable attention in military reconnaissance ap-
plications, especially in conjunction with synthetic aperture radar (SAR) imaging sys-
tems [15,23,51,76,77,102]. The broad utility of SAR as a remote sensing tool is well
known: it is effective at large distances, at day or at night, in any weather conditions,

15
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SAR ATR system
SAR | ROIs ROIs target types,
. —=| prescreener | discriminator - classifier ——— locations,
Imagery i ' POSES, ...
rejected imagery rejected rejected
containing no natural clutter man-made clutter
potential targets false dlarms false darms

Figure 1.1. A three-stage ATR system.

and it is capable of producing high-resolution images, all while using a sensor small
enough to be mounted on an airplane. Research into ATR systems operating on SAR
imagery has intensified in recent years as more and more SAR imagery has become
available for wide release and experimentation [73,74].

The high-level motivation for this thesis is the generation of target models from
SAR imagery to facilitate development and deployment of ATR systems. In particular,
this thesis is concerned with the question of how compact, descriptive, and robust
target models for ATR can be generated from multiple SAR images of a target. This
introductory chapter elucidates both the context and motivation of this problem, and
provides an outline for the remainder of the thesis. We begin by sketching out the
context in which the problem of target model generation is important.

B 1.1 Overview of Automatic Target Recognition

A typical ATR system for SAR is described in [81]. This system has three distinct
processing stages, as depicted in Figure 1.1: a prescreener, a discriminator, and a clas-
sifier. The prescreener processes large amounts of imagery to identify a relative handful
of regions of interest (ROIs), or small image chips potentially containing targets. The
discriminator more closely examines these ROIs and rejects those that appear to con-
tain only natural clutter, sending the rest to the classifier for even closer scrutiny. The
classifier makes a final determination about each ROI, either rejecting it as uninterest-
ing manmade clutter or identifying it as a target and reporting estimates of relevant
target information such as precise location, vehicle type, pose, and other deployment
conditions. The benefit of the multi-stage approach of Figure 1.1 is the tradeoff it al-
lows between image volume and algorithmic complexity: the prescreener must process
all collected imagery to screen out clutter, but can be implemented according to a very
simple criterion (such as amplitude thresholding); the discriminator can more closely
examine the relatively few image regions that are passed from the prescreener; the
classifier can then apply sophisticated processing to the remaining image chips, which
represent a very small subset of the original data set.
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All ATR systems, whether implemented as in Figure 1.1 or not, employ some sort
of classifier. An ATR system’s classifier typically does not operate directly on collected
imagery, but rather on vectors of features, or descriptive parameters extracted from
each ROI. Features can be descriptions of extracted peaks or edges, or descriptions of
segmented image regions, or basis function decompositions, or any other description of
an ROI that tends to compress it into a handful of salient parameters. Classification
is typically accomplished by comparing the extracted ROI feature vector to a database
of target models. Depending on the structure and implementation of this database,
ATR systems can be categorized as one of two types: template-based systems or model-
based systems. Template-based ATR systems maintain a large database of exemplar
feature vectors, or templates, taken from real or synthetic imagery of a library of targets,
typically at a number of different poses and in a variety of deployment conditions and
viewing configurations; each database template provides a classification hypothesis,
and candidate targets from collected imagery are classified based on how well they
match these templates. Model-based ATR systems, on the other hand, maintain a
database of physical or conceptual models of targets that can be manipulated on the
fly to predict feature vectors for targets in arbitrary poses, deployment conditions, and
viewing configurations. Classification is achieved by intelligently refining the model
selection and manipulation process until a feature-vector classification hypothesis is
obtained that closely matches the extracted feature vector. (The ATR system described
in [81] is template-based; a model-based ATR system is described in [112] and [36].)

Traditionally, template-based systems have found wider use than model-based sys-
tems. This is due in large part to the relative conceptual and computational complexity
of a model-based system’s classifier, which requires high-level reasoning, model manip-
ulation, and feature-vector prediction in near-real-time in order to classify targets. In
recent years, however, there has been a surge of interest in model-based ATR sys-
tems [36], due in large part to computational advances that make their implementation
feasible. Model-based systems offer several conceptual advantages over template-based
systems, including a more general framework and potentially a more compact database.
Additionally, the model-based framework allows for a continuous and arbitrarily fine
selection of target pose and deployment conditions in the selection of classification hy-
potheses, as opposed to the discrete selection imposed by the structure of the template-
based framework. Unfortunately, the development and deployment of model-based ATR
systems is hampered by the difficulty of creating target models to populate the ATR
database. The problem of generating target models is the focus of this thesis.

M 1.2 Thesis Motivation and Contributions

The generation of target models to populate the target-model database is a problem
that is central to the implementation of any model-based ATR system. Omne concep-
tual basis for a model-based ATR-system database is to represent targets in terms of a
small set of canonical reflector primitives such as flat plates, cylinders, tophats, dihe-
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drals, and trihedrals [61,92]. This approach offers numerous benefits to a model-based
ATR system. In particular, reflector primitives enable compact description of a rich
class of targets in a format that lends itself directly to feature-based processing; they
couple physical relevance to predictive utility, facilitating the model manipulation and
component articulation required to form classification hypotheses; they allow statisti-
cal uncertainty and variability to be modeled directly in feature space; finally, they
are more stable and potentially more informative than full facetization or computer-
aided-design (CAD) models and potentially more straightforward to generate from SAR
imagery. Facetization and CAD models [61,118], or so-called “scattering center” mod-
els derived from facetization and CAD models, typically serve as the basis for classifier
databases in current model-based ATR systems [56]. However, the very targets which
are of utmost interest in ATR applications are often those for which no such detailed
prior information is available.

This thesis focuses on the problem of creating a three-dimensional reflector-primitive
target model from multiple SAR images of a target. It is motivated in part by recent
model-based ATR research, much of which has considered the problem of extracting
relevant reflector-primitive-based features from single view radar measurements in the
form of range profiles [16,45,70,85] or SAR images [86,93]. These efforts have been
successful in demonstrating that information pertaining to the reflector-primitive com-
position of a target can be robustly and reliably extracted from radar data. Our work
builds on this conceptual legacy and considers the problem of how reflector-primitive-
based information can be robustly and reliably extracted when the available radar data
is not limited to a single viewing angle, but instead is spread over multiple viewing
angles across the viewsphere.

The fundamental contribution of this thesis is the development and demonstration of
a systematic formalism and flexible framework for the generation of three-dimensional
models from multiple SAR images of a target. Our models consist of spatial collec-
tions of reflector primitives such as cylinders, tophats, dihedrals, and trihedrals, each
of which is described in terms of a handful of parameters, including a discrete index
indicating basic scattering type and several continuous parameters including location,
pose, and other information relevant to describing the scattering signature of the over-
all target [56,92]. Our framework entails estimation of the number of scatterers and
their descriptive parameters based on the observed set of SAR images. In principle the
optimal way to do this is to use all of the available imagery to perform the parameter
estimation directly. Note that the explicit inclusion of location as one of the parameters
describing each primitive implies that the model estimation procedure must deal with
establishing a correspondence between each postulated primitive and the observed scat-
tering responses in all of the SAR images. In principle the optimal way to do this is to
use all of the SAR images directly to establish these correspondences at the same time
that the parameters of each primitive are estimated. However, because of the complex-
ity of such a task, the fact that our ultimate objective is a low-dimensional description
of the target as a set of primitives, and the fact that model-based ATR systems already
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Figure 1.2. Two views of SLICY.

operate in this manner, we view the estimation problem as a two-step procedure. Each
SAR image is first compressed into a set of augmented detections consisting of relevant
information about significant scattering responses in each image, including location and
other data extracted from the individual images or phase histories. These compressed
representations are then fused in order to estimate the 3-D locations and characteris-
tics of the target primitives. This framework offers great flexibility in the choice of a
compression scheme, with possibilities ranging from fine-grained extractions in which
the compression of each SAR image involves keeping a great many basis functions that
capture most of the energy in the raw image, to more coarse-grained representations in
which only a small number of dominant scatterers are kept from each image, with only
a few parameters describing each response. In order to clearly present our framework
and to highlight representations commonly used in ATR, we focus here on a parameter-
ization at the coarser end of this spectrum. This choice also highlights the importance
of the correspondence problem mentioned previously.

A motivating example for the research presented here is the target depicted in
Figure 1.2. This target, known as SLICY (an acronym for Sandia Laboratories Imple-
mentation of Cylinders), although simpler than many manmade targets such as trucks
or tanks, is sophisticated enough to exhibit many or most of the complicated real-world
effects observed in more complex targets. SLICY is a target that exhibits noncanonical
primitive responses, cavity responses, primitive coupling in the form of multiple-bounce
reflections, and is self-occluding from many viewing angles. A motivating question for
much of the work in this thesis is the following: can we develop a model generation
framework that is sophisticated enough to deal with a target like SLICY?

B 1.3 Thesis Organization and Main Contributions

The remainder of this thesis is organized as follows.
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Chapter 2, Background and Previous Work

We begin by describing the basic physical principles on which radar systems are based.
We describe how radar systems achieve resolution in the range and cross-range di-
rections. This leads to a discussion of SAR, in which high resolution is achieved by
clever processing of sequential radar returns. We introduce several concepts that are
instrumental in the understanding and interpretation of SAR images, and that aid in
the construction of a measurement model in Chapter 3. We counsider the propaga-
tion phenomenology that dictates the appearance of reflector primitives in SAR images
and describe how several simplifying assumptions enable concise description of the ap-
pearance of such primitives; the assumptions and models underlying the methods of
Geometrical Optics (GO) and Physical Optics (PO) [61,92] are given particular atten-
tion due to their extensive utilization in later chapters. We conclude the chapter with
a description of recent work in which GO, PO, and related models have been used to
extract reflector-primitive-based features from 1-D and 2-D radar measurements in the
form of range profiles and SAR images.

Chapter 3, Precise Problem Formulation

In this chapter we formalize the problem statement and construct a measurement model
based on the considerations of Chapter 2. We propose a framework in which the model
generation problem is broken into two stages: first, the extraction of features from
SAR images, and second, the fusion of these features across images to yield a 3-D
target model. The benefits of this two-stage approach are numerous: it allows a great
deal of flexibility in both the description of salient features in individual images and
the description of the target, it transforms an otherwise ill-posed inverse problem into
a well-posed correspondence problem, it casts the model generation problem into a
realm in which data association techniques can be applied, and it greatly facilitates the
construction of a tractable measurement model. We discuss various choices of target
parameterizations and feature-extraction techniques, and for purposes of illustration
select specific instances of each that are used extensively throughout the remainder
of the thesis. The physical considerations of Chapter 2 are utilized in conjunction
with several simplifying assumptions to produce a measurement model relating the
observed SAR image features to the parametric description of the target which is to be
estimated. This measurement model illuminates the true nature of the model generation
problem in our framework, in which any SAR image feature has associated with it
two fundamental levels of uncertainty: first, the very identity of that feature (i.e., its
unknown correspondence to the set of target primitives) and second, the stochastic
nature of the feature parameters conditional on that unknown identity. We discuss the
validity of our assumptions and allude to relaxations of these assumptions that will
enable the accommodation of sophisticated real-world effects such as those described in
Chapters 6 and 7.



Sec. 1.3, Thesis Organization and Main Contributions 21

Chapter 4, An Expectation-Maximization Approach to Model Generation

In this chapter we present an algorithm to generate 3-D target models from extracted
SAR features in the framework constructed in Chapter 3. This algorithm is based on
the Expectation-Maximization (EM) method [71,75], an iterative technique for arriving
at a maximum likelihood estimate of parameters in data association problems, and can
conceptually accommodate any choice of target parameterization and feature extraction
that can be cast in the framework of Chapter 3. We describe the basic form of the core
of the algorithm (i.e., the form of the expectation and maximization steps of the EM
method) for the measurement model constructed in Chapter 3, and consider various
practical implementation issues. The conceptual and computational benefits of the
assumptions of Chapter 3 are clearly indicated; additional assumptions are made in
order to ease the computational burden of the expectation and maximization steps. We
describe a technique for initializing the iteration and for modifying the model order as
the iteration progresses. The initialization uses an agglomerative clustering technique to
produce a rough guess at the unknown identities of all features, which are then used to
produce an estimate of the number of primitives and their descriptive parameters. The
model-order selection adaptation operates in conjunction with the initialization, which
is biased toward an overestimation of model order, to gradually correct this overfit as
the EM iteration progresses. The result is a data-adaptive algorithm that arrives at
a full parametric reflector-primitive target description (including model order) with no
supervision.

Chapter 5, Experimental Results from the Basic Algorithm

This chapter contains experimental results that illustrate the utility of the framework
and algorithm constructed in Chapters 3 and 4. We describe the experimental setup
used in this and later chapters and illustrate results demonstrating the algorithm’s
performance on single-primitive targets in typical clutter conditions, corresponding es-
sentially to the simplest data association problem with which the algorithm could be
faced. These results serve to demonstrate the differences in observability between the
basic primitive types and to establish benchmarks against which results in later sections
and chapters can be gauged. We analyze these results and illustrate the various fun-
damental limitations that dictate the detectability of the several primitive types under
consideration and impact the quality of their parameter estimates. We demonstrate
that the algorithm’s detection performance for each primitive type is near theoretical
bounds. We present results for more sophisticated targets which present more signif-
icant data association problems, and demonstrate that the algorithm is successful at
solving these correspondence problems. We conclude this chapter by analyzing the
effects of a mismatch between modeled and actual primitive dimensions on algorithm
performance.



22 CHAPTER 1. INTRODUCTION

Chapter 6, Dealing with Obstruction

In this chapter we examine one shortcoming of the framework constructed in Chapters 3
and 4, namely, its inability to accommodate explicitly the effects of partial obstruction
of primitives. We demonstrate the detrimental effect of obstruction on algorithm perfor-
mance by presenting results similar to those of Chapter 5 but with partially obstructed
primitives. We describe several conceptual approaches to accommodating obstruction
by expanding the framework of Chapter 3 and modifying the algorithm of Chapter 4.
The conceptually optimal method of incorporating obstruction effects is shown to be
impractical, and we propose a simplified approach that is a natural extension to the
existing framework and does not significantly increase the computational requirements
of the algorithm. The utility of this approach is demonstrated with several examples.

Chapter 7, Dealing with Noncanonicity

This chapter begins with an analysis of real-world effects that make many primitives
exhibit noncanonical responses. We examine SLICY in detail and describe its various
response mechanisms, which illustrate several forms of noncanonicity. We demonstrate
the inability of the algorithm constructed in previous chapters to accommodate non-
canonical responses properly by presenting its performance on SLICY. We describe dif-
ferent conceptual approaches to dealing with noncanonicity, and propose an approach
that is conceptually broad enough to accommodate a wide range of noncanonicities.
Councentrating on one class of noncanonicities involving perturbations of the geomet-
rical structure of primitives, we implement this approach and demonstrate its perfor-
mance on SLICY. The modified algorithm robustly and reliably generates a realistic
and descriptive model of SLICY. We conclude the chapter by describing a method for
distinguishing between estimated target model components that correspond to prop-
erly modeled responses and those that correspond to improperly modeled noncanonical
response mechanisms.

Chapter 8, Contributions and Suggestions for Future Research

In the final chapter we summarize the major contributions of the thesis and describe
several possible directions for further research. We suggest several straightforward ex-
tensions to the framework and algorithm constructed in previous chapters and conclude
by discussing a handful of deeper and more fundamental extensions.

Appendices

In addition to three appendices containing supporting material for the previously men-
tioned chapters, Appendix D presents a summary of the notation used throughout the
thesis and Appendix E provides a glossary of acronyms.



Chapter 2

Background and Previous Work

ADAR has found wide use in scientific, commercial, and military applications for a

myriad of purposes. Its ubiquitousness stems from its many advantages in practical
sensing scenarios: radar is a non-invasive, remote, all-weather imaging technique capa-
ble of operating at night or during the day. Radar systems are able to detect targets
and produce high-resolution images from distances of many miles.

Radar relies on the facts that objects reflect radio waves, and that different kinds of
objects reflect radio waves differently. Although the concept of the detection of targets
by radio waves dates from the early 1900s [99], radar was not extensively developed
and did not achieve widespread use until World War II, when its utility as a military
tool was first exploited.! The years immediately following the war saw an explosion
of radar technology and widespread research into target detection and classification by
radar. Radar development in this era was characterized by gradually improving range
resolution but generally inadequate azimuthal, or cross-range, resolution. In the 1950s,
Carl Wiley, an engineer for the Goodyear Aircraft Corporation, realized that motion of
the radio antenna platform could be used to enhance azimuthal resolution, and SAR
was born [111]. This chapter presents some basic radar and SAR concepts, describes
relevant phenomenological models for the interaction of objects with radio waves, and
examines several recent efforts to extract target information from radar measurements.

B 2.1 Radar Fundamentals

Radar measurements are made by emitting radiation and “listening” for reflections.
More precisely, a radar system uses a transmitting antenna to radiate energy in peri-
odic bursts. A receiving antenna detects the reflected signal by measuring the electric
field strength as a function of time. A monostatic radar system uses a single antenna
for both transmission and reception and thus measures backscattered radiation. (In
practice, most radar systems are monostatic; bistatic radar systems employ distinct
antennas for transmission and reception, and multistatic radar systems have a single
transmitting antenna but multiple receiving antennas.) The delay between the trans-
mission of a pulse and the reception of its reflection yields information about target

! An excellent popular account of the development of radar during World War II (and of the devel-
opment of numerous radar applications and spinoff technologies after the war) is [13].

23
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range; the Doppler shift of the reflection provides velocity information?; the strength
(equivalently, attenuation) and polarization of the return signal yield information about
target structure and composition.

H 2.1.1 Radar Cross Section

Historically, the strength of the radar return signal is considered a measurement of a
target’s radar cross section (RCS), defined as

s|2
o= lim (47?11?2)2 £°]

Jim I (2.1)

where R is the distance between the antenna and target, £' is the transmitted field
strength, and £° is the return (i.e., backscattered) field strength as measured at the
radar platform [62]. The quantity o has units of area; it can be interpreted as the
projected area of an isotropically scattering, perfectly conducting sphere that would
backscatter the same fraction of power as the target at the given viewing angle. The
limit in R is taken to remove any near-field effects such as wavefront curvature or target-
antenna coupling. RCS is often specified in dBsm units, shorthand notation for square
meters on a decibel scale; ¢ is occasionally normalized and made dimensionless by di-
viding by the squared wavelength of the transmitted field. Note that RCS encapsulates
only the magnitude of a response, and neglects all phase information.

The quantity o in (2.1) is idealized in the sense that it represents a limit as R
approaches infinity; an actual radar measurement is, of course, taken at a finite distance
and thus is of the form

2 [E
[Eol*

oo = (47R}) (2.2)
where |£5|? and |Ef|?* are measured at the radar platform, and Ry is a range measurement
that can be obtained from the delay 79 between transmission of a pulse and reception
of its reflection, i.e.,

CTQ

RO = 77 (23)

or by more sophisticated processing (as described in Section 2.1.2). Note that the

measurements of |£5|? will depend on the polarization of the transmitted field and

the polarization of the receiving antenna; to capture these dependencies, (2.2) may be
modified as follows:

2 e, - £

7 = (rhs) Sz

(2.4)

2Most modern radar systems use sophisticated signal processing techniques such as deramp com-
pression [51], described in Section 2.1.2; most such techniques assume a stationary target and utilize
Doppler-shift information to enhance range resolution, with the result that relative range and velocity
information are not directly separable.
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Figure 2.1. Antenna polarization and imaging geometry.

where €5 and £} are now vector fields and e, is a unit vector aligned with the receiving
antenna polarization [38,62]. In practice the ¢r subscript on o is often specified as HH,
HV, VH, or VV, where H stands for “horizontal” polarization and V for “vertical”
polarization according to the geometry depicted in Figure 2.1; note that H and V are
defined in terms of the platform motion vector and the line-of-sight vector (which is
defined in turn by the azimuth ¢ and depression v of the target with respect to the
radar platform). Occasionally, left-handed and right-handed circularly polarized fields
are also used to obtain radar measurements, in which case (2.4) still holds, but with
complex field and unit vectors.?

A single RCS measurement characterizes only the return field strength for a particu-
lar transmit-receive polarization pair for a particular delay 7y (and thus for a particular
range Ry). Multiple measurements of RCS from the same target are often presented in
the format of a range profile, which is a vector of o measurements (and often, associated
phase information) at a fixed azimuth and depression, as a function of range. If range
profiles at closely spaced azimuths are available, these may be concatenated to produce
an image. Such images are often treated as visual data, although strictly speaking they
represent measurements of the ratio of incident field strength to reflected field strength
at an array of range-azimuth locations.

We can further quantify the nature of RCS measurements of a scene by introducing
the concept of complex reflectivity density 77|, which we shall denote as

g(x,y) = m(z,y)elP =), (2.5)

where m(x,y) and p(z,y) are both real-valued functions representing the magnitude and
phase of g(z,y), respectively. Complex reflectivity density has the following physical

3In fact, the above equations and definitions accommodate radar measurements taken at arbitrary
elliptical polarizations, although in practice linear and circular polarizations are used almost exclusively.
*This formulation follows that of [77] and assumes a 2-D target; this simplifies analysis by precluding
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interpretation: a target patch of area da dy centered at ground location (x,y) will reflect
the transmitted signal with power attenuated by the factor m(x,y) dx dy and with an
intrinsic phase shift (i.e., not attributable to the propagation delay) of p(x,y). (In
general, m(z,y) and p(x,y) are functions of viewing angle, incident signal frequency,
and polarization, although this dependence has been suppressed in the notation of the
previous equations.) In this formulation, RCS measurements represent the magnitude
of the integration of g(x,y) over the radar footprint, i.e., the region illuminated by the
radar. Clearly, if the radar system can be designed to illuminate smaller regions, or
equivalently if returns can be processed to simulate those that would be observed from
such a system, resolution will improve. We now turn our attention to the problem of
how modern radar systems achieve resolution in both the range and cross-range (i.e.,
azimuthal) directions.

H 2.1.2 Range Resolution

Range resolution of a radar system is usually defined as the minimum range separa-
tion between two point scatterers required to produce two distinct peaks in the radar
return [109]. Range resolution depends on the choice of transmit pulse and on the
processing of the return. Classically, range resolution was determined by achievable
bandwidth and power constraints. In modern radar systems, a technique known as
deramp compression is often used to enhance range resolution [23,51]. Rather than
relying on narrow transmit pulses and matched filters to facilitate return processing,
deramp compression radars transmit a linear frequency-modulation (FM) chirp pulse
which can be expressed in complex form as

bc(t) — 6j2ﬂ(fCt+%t2)W[_%7%}(t), (26)

where f.is the carrier or center frequency of the pulse (i.e., the instantaneous frequency
at time ¢ = 0), 7. is known as the chirp rate of the pulse, and W[, ,(t) is a window
function satisfying

1 <t<
{’ U=t=9 (2.7)

0, otherwise,

so that the total duration of the chirp of (2.6) is 7. Figure 2.2 depicts the real part of
a chirp pulse generated according to (2.6).

Let us define g4(u) to be the coherent projection of the complex reflectivity density
function g(z,y) onto the axis defined by the target azimuth ¢, as in Figure 2.3.°> If a
linear FM chirp pulse is transmitted and the return signal is appropriately demodulated
and low-pass filtered (details are given in [23,51]), the resulting deramp compressed

the possibility of target self-occlusion. The 3-D case is considered in [50].

®The ensuing analysis relies on the assumptions that the target lies in the ground plane, that
knowledge of g(z,y) and the transmit pulse is sufficient to describe the radar response, and that the
depression angle 1) is zero.
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Figure 2.2. Linear FM chirp pulse.

signal (denoted c4(t)) is approximately equal to the Fourier transform of g4(u) over the
frequency range

Fl S t S FQa (28)
where F] and F5 are defined as
2 T
= - |:fc_7)c_:| ;
c 2
(2.9)
2 T
F2 = - fc +77c_ .
c 2

That is, c(t) is approximately an interval of the Fourier transform of a projection of
g(x,y). Assuming at this point that we are interested only in obtaining a range profile
at azimuth ¢, we might proceed by defining

. co(t), Fi <t < Fy,
Co(t) = 2.10
s() {0, otherwise, ( )
such that
¢(t) = Flgp(u)] - Wir, 1y (1), (2.11)

where F is the Fourier transform operator. Then we can obtain §4(u), an imperfect
representation of the projected complex reflectivity density, by taking the inverse Fourier
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Figure 2.3. Projection of reflectivity density function.

transform of ¢4(t). It is apparent from the above equation that this reconstruction will
be a scaled version of

200 . 20T
Go(u) = ge(u) * Zle” sine ( U ﬂu) . (2.12)
c c

Thus the approximation gy(u) is simply the convolution of the true projection gq(u)
with a sinc function. Furthermore, (2.12) clearly indicates that the greater the duration
of the transmit chirp pulse, the better the approximation g4(u) will be. In fact, the
range resolution for a system using deramp compression to process returns from a linear
chirp transmit pulse can be shown to be [23]

c

Op % ——. 2.13

T ﬂcT ( )

This implies that we can improve resolution by increasing the duration of the trans-

mit chirp pulse. In practice, deramp compression systems are used to achieve range
resolutions on the order of 0.1 m and below [23].

B 2.1.3 Cross-Range Resolution

As we have just seen, excellent range resolution can be achieved by choosing an appro-
priate transmit signal. Cross-range resolution is more difficult to achieve. Cross-range
(i.e., azimuthal) resolution is defined analogously to range resolution: it is the minimum
cross-range separation between two point scatterers required to produce two distinct
peaks in a sequence of radar returns obtained as ¢ varies. Given a specific transmit
pulse, c4(t) is a function only of the projection of g(x,y) onto the range axis. Thus,
scenes with identical range projections will produce identical returns. This implies
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that barring clever processing, cross-range resolution is determined by the size of the
region illuminated by the radar. Specifically, a scatterer’s azimuthal location can be
pinpointed only to the coarseness of the radar footprint. It would initially seem that
the easiest way to achieve cross-range resolution, then, is to diminish the width of the
radar beam.
It can be shown [15] that the cross-range resolution of the system described thus far
is
CRO

6.7:7’ e
feD

(2.14)

where D is the antenna aperture, essentially the largest dimension of the antenna array.
This equation reveals two fundamental inadequacies. First of all, it is undesirable to
have resolution dependent on range, since the range of the targets being imaged will in
general not be known a priori. To demonstrate the second, more serious problem, let
us examine a typical radar imaging scenario. The quantity ¢ is constant; physical and
practical constraints make it impossible to increase f. significantly; the use of radar as a
remote sensing tool often precludes the reduction of Rg. A typical radar scenario might
include a radar operating at f. = 10 GHz, imaging from a distance of Ry = 10 km.
Suppose the application demands a cross-range resolution of 0.3 m, an easily achievable
range resolution. Then (2.14) requires that D = 1000 m! Clearly this is much too large
an antenna to be carried on board an aircraft.

Classical radar techniques require an impractically large antenna to achieve accept-
able cross-range resolution. The maximum feasible antenna array size D is determined
by the platform housing the radar system; the above example indicates that cross-range
resolution comparable to range resolution can be achieved ounly if the radar is ground-
or ship-based, since clearly no truck or aircraft could house an antenna array hundreds
of meters long. Cross-range resolution is not achievable by classical means, and instead
must be gleaned from signal processing. This is the victory of SAR.

H 2.2 SAR Fundamentals

Figure 2.4 is a SAR image of a tank.% This image represents an array of backscattered
RCS measurements taken at 16384 (128 x 128) range/cross-range pairs and presented
in log-magnitude form.” The vertical axis of the image corresponds to range and the
horizontal axis corresponds to cross-range, both relative to the scene center. The pixel
resolution in both directions is approximately 0.3 m. This is an example of how SAR
can achieve excellent cross-range resolution.®

SThis image is T-72 chip hb03829.015 (17° depression, 296.8° azimuth) from the MSTAR (moving
and stationary target acquisition and recognition) public targets data set [73].

"Although SAR is a coherent imaging modality offering phase as well as magnitude information,
SAR images are typically presented in magnitude form only.

8The grainy appearance of the image is due to a SAR imaging phenomenon known as speckle,
described below.
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Figure 2.4. SAR image of a tank.

SAR systems achieve cross-range resolution by (as the acronym implies) synthesiz-
ing an aperture larger than the physical antenna aperture. This is accomplished by
coherently processing radar returns generated at multiple points along the flight path.
There are two common modes of SAR operation: stripmap mode and spotlight mode.
Stripmap-mode SAR, depicted in Figure 2.5, is so named because the aircraft maintains
a linear flight path while operating a sideways-looking antenna [23,76]. In this way the
radar footprint sweeps out a strip on the ground. In spotlight-mode SAR, depicted in
Figure 2.6, the aircraft maintains a linear flight path while continuously steering the
antenna to illuminate a single patch on the ground [15,51,77]. In both stripmap and
spotlight mode, the multiple returns from a target collected at different points along
the flight path are processed to yield improved azimuthal resolution. This thesis will
consider SAR systems operating in spotlight mode.

Many of the recent spotlight-mode SAR references (such as [51]) approach the sub-
ject using the tomographic formulation first proposed by Munson, O’Brien, and Jenkins
in 1983 [77]. The objective of tomography is to reconstruct multi-dimensional data by
processing multiple projections of that data [79,96]. The crux of tomography is the
celebrated Projection-Slice Theorem, which equates the 1-D Fourier transform of a pro-
jection of an image to a slice of the 2-D Fourier transform of the image [65]. Specifically,
given data h(x,y) with 2-D Fourier transform H(fy, fy), define hy(u) to be the projec-
tion of h(x,y) onto the axis running through x-y origin at angle ¢, as in Figure 2.7.
That is,

hg(u) = /+oo h(wcos ¢ 4+ vsin ¢, —usin @ + v cos @) dv. (2.15)

— 00
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Figure 2.5. Stripmap-mode SAR.

Figure 2.6. Spotlight-mode SAR.
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Figure 2.7. Projection from Cartesian coordinates onto an axis.
Then the Projection-Slice Theorem states

+oo
/ hg(u)e 72wt dy = H(f, cos ¢, — f, sin @). (2.16)
—0o0

If a full set of projections hg(u) at all 0 < ¢ < 27 is available, then the full plane of
H(fs, fy) is known and h(z,y) can be reconstructed exactly.

Recall that deramp compression processing a linear chirp return yields a segment
of the Fourier transform of a projection g4(w). That is, each return is equivalent to
a portion of a slice of G(f,, fy), the Fourier transform of g(x,y). In a spotlight-mode
system, returns generated at different points along the flightpath will correspond to
projections at multiple angles. In this way a region of the Fourier transform of the target
scene’s complex reflectivity density may be constructed. The apparent shortcoming
of this technique, however, is that the Projection-Slice Theorem states that the entire
plane of Fourier data is required to reconstruct g(x,y) exactly. The above approach will
generate only a swath of Fourier data. In practice, it is often infeasible or impossible
to acquire returns outside of an aperture of several degrees. This, coupled with the
fact that the processed returns yield a reconstruction of the Fourier data only in a
bandlimited region, means that the segment of Fourier data acquired will be very small
indeed. If the range of viewing angles is small, the set of returns acquired will represent



Sec. 2.2. SAR Fundamentals 33

Figure 2.8. Annular segment of Fourier data.

only a roughly annular segment of Fourier data, approximately covering the region

FleTSF27
o0 < fo < ¢o + Ao,

where F) and F are as defined in (2.9), ¢ and A¢ are parameters defined by the viewing
geometry (A¢ is typically no larger than a few degrees), and f, and fy represent polar
coordinate locations in the Fourier plane. (Figure 2.8 depicts an annular region of the
Fourier plane in terms of (2.17).)

(2.17)

To proceed from here, one might imagine attempting to reconstruct g(x,y) in the
same way that g4(u) was reconstructed—mnamely, by zero-padding the return and taking
an inverse Fourier transform. Let us define

G(frvfé')a Fl Sfr SF2 and ¢0 SfGS¢U+A¢a

] (2.18)
0, otherwise,

G(fr, fo) = {

and then let §(z,y) be the inverse Fourier transform of G(f,, fg). It can be shown [23]
that given the bounds in (2.17), this technique achieves a cross-range resolution of

C

6:01" N oo A
2f.sin(Ag)

(2.19)
which means that the 10-GHz system described in Section 2.1.3 can achieve a cross-
range resolution of 0.3 m with less than three degrees of azimuthal variation! This is well
within the realm of feasible synthetic aperture sizes in most remote sensing applications.
Another benefit is that, unlike the classical cross-range resolution result (2.14), SAR
cross-range resolution does not depend on range. A priori, however, there is no reason
to expect g(x,y), which has been constructed from an extremely bandlimited region of
the Fourier plane, to resemble g(x,y) at all. It seems that g(x,y) would be lacking all
image characteristics not having frequencies present in the Fourier region defined by
(2.17) and depicted in Figure 2.8.
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As it turns out, if the seemingly naive prescription of (2.18) is followed, an accept-
able image will be generated. In fact, this is how SAR images, including the one shown
in Figure 2.4, are produced. In 1984, Munson and Sanz [78] suggested a theoretical ba-
sis for this phenomenon and fortified the suggestion with experimental evidence. Their
argument relies on the fact that SAR is a coherent imaging modality. Very briefly, it
proceeds as follows: the intrinsic phase term p(z,y) in (2.5) is determined largely by
microscopic surface phenomena at the air/target boundary [77,104]. The microscopic
characteristics of even the “smoothest” target surface are essentially random and uncor-
related except at microscopic distances. This means that macroscopic, non-overlapping
measurements of ¢/P(*:¥) are essentially uncorrelated, with energy distributed through-
out the Fourier plane. Because g(x,y) is a product of m(z,y) and eP(@Y)  the wideband
presence of the phase term modulates information about m(x, y) throughout the Fourier
plane. Thus, any small segment of Fourier data will contain information about m(z,y)
that might be recoverable.” (A complete description of the admittedly imprecise and
incomplete argument presented here is undertaken in [78].)

Incidentally, the above description of the microscopic nature of target surfaces also
offers an explanation for the SAR phenomenon known as speckle. (Speckle is the descrip-
tive term for the grainy appearance of Figure 2.4 and all other SAR images.) Speckle
is the visual manifestation of the randomuness of the microscopic target textures. The
SAR imaging process produces measurements of complex reflectivity density integrated
over each pixel region. Due to the random phase fluctuations described above, some
pixels will encompass microscopic scatterers that interfere constructively, while other
pixels will encompass microscopic scatterers that interfere destructively. Speckle is thus
an artifact of the coherent SAR imaging process.

We have now presented a basic summary of how radar and SAR work. Before
proceeding, we note several things. First of all, the analysis presented in this section
has been for continuous-time radar returns; in practice, the radar return c4(t) of (2.13) is
sampled to yield a sequence of stepped frequency measurements cy[n], so named because
of the Fourier-transform relationship between the range profile and c4(t). Consequently,
SAR images are formed not from continuous G(fs, f,) data but rather from samples of
this data compiled from multiple cy[n] returns at different aspect angles. The array of
sampled G(fs, fy) data, or its interpolation onto a regularly spaced rectangular array
on Cartesian axes, is known as a phase history. SAR images are formed as discrete
Fourier transforms (DFTs) of phase histories.

We also note that while SAR achieves cross-range resolution unattainable by clas-
sical means, it is still able to resolve scatterers in only two dimensions. Any scatterers
equidistant from the antenna in both range and cross-range will produce a superposed
coherent response in the return. These contours of equidistance are approximately
straight lines orthogonal to the so-called slant plane defined by the platform motion
vector and the line-of-sight vector and depicted in Figure 2.9. Intuitively, this means

9 According to this argument there is no reason to expect the phase of g(z,y) to conform to p(z,y) at
all, but this is unimportant if we view SAR images as measurements only of the magnitude of g(z,y).
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Figure 2.9. The slant plane. The slant plane is defined in terms of the platform motion vector and
the line-of-sight vector. If the angle between these vectors’ ground-plane components—i.e., the SAR
image squint angle—is 90° as it is here, and if the platform motion vector is parallel to the ground
plane, then the slant plane is uniquely determined by the absolute elevation ¢ and azimuth ¢ of the
line-of-sight vector in terms of a fixed ground-based frame of reference.

that neglecting obstruction and higher-order effects, a SAR image is the coherent pro-
jection of the 3-D target complex reflectivity density into the slant plane, modified by
waveform and processing artifacts. In particular, if the coherent projection of com-
plex reflectivity density into the slant plane is denoted by gy 4(u,v), then the SAR
image constructed according to above formulation (again neglecting obstruction and
higher-order effects) can be shown to be a sampled version of

G0 (1, v) = gy ¢(u, v) * sinc <27ru> sinc <27w> , (2.20)
67‘ 6.TT
where 6, and 6,, are defined in (2.13) and (2.19), respectively. If the SAR image is
formed by sampling gy 4(u,v) at a spacing finer than 6, x 6, (e.g., by zero-padding
the sampled G(f,, fy) data), so that the pixel spacing is finer than the resolution, then
the image is said to be oversampled. The effect of oversampling is to provide a more
smoothly interpolated representation of the projected reflectivity density.

One implication of (2.20) is that the locations of reflector primitives in SAR images
are determined essentially by their projections into the slant plane. (To be precise, the
locations of the responses of primitives in a SAR image are determined by the pro-
jections of their apparent reflection points into the slant plane. For point-like or flat
reflector primitives such as corners, edges, flat plates, and dihedral- and trihedral-type
bodies, the reflection points will remain constant across most viewing angles at which
the primitive produces a bright response, but for reflector primitives with curved sur-
faces, such as cylinders and spheres, the reflection points will wander over the surface of
the primitive as viewing angle changes [62].) Another implication of (2.20) is that bright
scatterers will produce pronounced sidelobes in nearby pixels. To counteract this effect,
the Fourier-domain phase history is often multiplied by a sidelobe-suppression window
function prior to its DFT. In particular, if G( fas fy) is the Cartesian representation of
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G’( frs fo), then the phase history is formed by sampling

G(f:cafy)'lfss(f:cafy)u (221)

where K(fs, fy) is a unit-energy sidelobe-suppression window function with the same
region of support as G(fz, fy). (Typical choices for Ks(fs, fy) include Kaiser or Taylor
windows [15].) This has the effect of modifying (2.20) so that

2 2
0.6 (1,v) = gy s (u,v) * sinc ( ;ru) sinc ( ;v) * kgs(u,v), (2.22)

where k, (u, v) is the inverse Fourier transform of K,,(fs, fy). This convolution reduces
the amplitude of the sidelobes but also reduces the effective resolution of the SAR image.

B 2.3 Propagation Phenomenology

Clearly, in order to extract a target model from multiple SAR images, we require some
phenomenological model relating the target to its appearance in images obtained at
different aspect angles. The choice of any phenomenological model involves a tradeoff
between accuracy and simplicity. For instance, given perfect knowledge of the trans-
mitted field and all target characteristics, Maxwell’s equations will describe the electric
field at all points in space, and thus predict the radar image of the scene exactly. Un-
fortunately, the solution of Maxwell’s equations for a complex target—Ilet alone their
inversion to yield a target model from scattered data—is generally intractable if not
impossible.1% It is therefore necessary to turn to a simpler model to predict the radar
return from most targets [21,61,62,92] and to facilitate the phenomenological model
manipulation required for the inverse problem.

We will be concerned with systems operating at frequencies near 10 GHz, in the X
band. The wavelength of a 10-GHz wave is 3 cm. If all target features are somewhat
larger than this wavelength, then the interaction between the target and the electric
field is said to occur in the high-frequency regime, and a high-frequency scattering
model [61] may be utilized to predict the radar return. (High-frequency models depend
on the approximation that all objects interacting with the electric field are substan-
tially larger than the wavelength. So-called low-frequency and resonant models predict
the interaction of electric fields with bodies that are substantially smaller than or ap-
proximately the same size as the wavelength, respectively [92].) We now describe three
high-frequency models that are especially relevant to our efforts.

M 2.3.1 Geometrical Optics

The simplest high-frequency model for RCS prediction is known as the Geometrical
Optics (GO) model [62,92]. GO was developed centuries ago and is based on Fermat’s

101n fact, without regularizing assumptions of some kind, the inversion of Maxwell’s equations to
yield a target model from backscattered data is an ill-posed problem [59].
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Principle (i.e., corpuscles of light follow a path of minimum length) and Snell’s Law
(i.e., the angle of reflection from a surface equals the angle of incidence). GO predicts
that the backscattered RCS at any viewing angle will depend only on the geometry
of the bodies illuminated by the radio waves and on their radii of curvature at the
points of illumination. GO is useful primarily for predicting backscattering for specular
reflections, that is, when reflected rays are parallel to the line of sight. GO is limited in
several important respects: it fails to predict backscattering for non-specular reflections;
it is applicable only when the radii of curvature at the points of reflection are finite and
much larger than the wavelength; it is also inaccurate when the point of reflection lies
near a surface edge or boundary. These failings limit the ability of GO to predict the
scattering from a complex target, although, as we will see, it is successful in predicting
the main components of the responses from primitives with a significant specular return,
such as trihedrals and tophats.

B 2.3.2 Physical Optics

A more sophisticated model for scattering and RCS prediction is known as Physical
Optics (PO) [62,92]. In the 1930s, Stratton and Chu noted that in the absence of
sources, the electrical field at any point in space can be expressed as an integral over a
closed surface containing the scattering volume. This observation, in addition to several
simplifying assumptions [62], admits approximate closed-form backscattering solutions
for some idealized primitives, such as spheres, cylinders, cones, and flat plates.!! These
approximate solutions do not require specular incidence and thus represent a significant
improvement over GO.

PO provides an accurate prediction of the scattering from a much wider variety of
targets and scenes than does GO, but still has failings: its accuracy deteriorates when
incidence is very non-specular, and it cannot describe the contributions of edges and
corners to the backscattered field. However, PO does provide a framework sufficient for
the purposes of describing targets as a collection of reflector primitives of the type we
are considering here—namely, finite 3-D bodies such as trihedrals, tophats, dihedrals
and cylinders.

Cousider the primitives depicted in Figure 2.10: a rectangular plate, a circular plate,
a 90° rectangular-plate dihedral, a right circular cylinder, a 90° square-plate trihedral,
and a circular-base tophat. Together, GO and PO can describe the primary respounse
mechanisms of each of these primitives.!? Each of these primitives has an intrinsic frame

" These assumptions also simplify the Stratton-Chu integral to the point where numerical integration
and thus computer simulation becomes feasible; the scattering-prediction software package XPatch is
largely based on PO [41].

12Here we are distinguishing “primary” response mechanisms, in which each of the primitive’s com-
ponents play a role in backscattering energy, from “secondary” response mechanisms, in which only a
subset of the primitive’s components have a role in backscattering. For instance, a trihedral’s primary
response mechanism is a triple-bounce return, in which an incoming ray is reflected off all three trihe-
dral plates in turn before traveling back toward the antenna; its secondary mechanisms are the single-
and double-bounce returns that arise when the trihedral is oriented at oblique angles and energy is
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response mechanism (ampl) - (pol) - (shaping function)

kZa2b2
™

rectangular plate ( ) 8|2 - (cos ' cos @' sinc(kobsin ') sinc(koa cos ¢ sin ¢'))?

: p o |: J1(2kga(l—cos? ¢’ cos? ¢')1/2 2

circular plate (kgmr?) - |veel? - (COS ' cos ¢’ 1120;’(1(_1@52 1/)'¢c052 d),d)’l)/z ))

dihedral 2k3a’b? e |2 (T ! T . . ! n)?
doubl b (_(W;) veel” (\/5(:051/) SIH(Z — |¢5 — ZD sinc(kob sin ¥ )W[O,g](‘ls ))

2
<3k2a4) o2 {% (4} Wio, 516" Wio, 51 (¥), mi < 5
: Vel 2

trihedral ™ 1 n; n;

triple-bounce 3 (li (4 N mi)) Wio, 51(¢)Wio, 51(¢"), mi > 5,

where (1;,m;,1;) = 0Tt min—max(sin¥’, cos )’ sin ¢', cos v’ cos ¢')

cylinder shaft (korh?) - |75.|* - (cos v’ sinc(koh sin ¥'))?

tophat (Qkorhz) - veel? - (ﬂsin (% - |¢’ - %D)Z

double-bounce

Table 2.1. Physical optics/geometrical optics RCS approximations for basic scattering mechanisms.

of reference, depicted by the sets of axes in Figure 2.10, whose rotation with respect
to an absolute frame of reference, together with the absolute viewing angle, defines a
relative viewing elevation v’ and azimuth ¢, also depicted in Figure 2.10. PO and
GO predict the primary responses from these primitives as functions of relative viewing
angle, the relevant primitive dimensions indicated in Figure 2.10, and the wavenumber
ko of the illuminating radiation [62,92], where

_ 21
fo

by definition for radiation of frequency fo. In particular, GO suffices to predict the
primary trihedral and tophat responses, which are specular; PO is required to predict
the other four responses. The GO and PO predictions for all six primitives are given
in Table 2.1. Each response in the table is expressed as a product of three terms: a
size-dependent amplitude coefficient, a polarimetry-dependent attenuation factor |v;,|?
between 0 and 1 that depends on the antenna transmit-receive polarization as described
shortly, and a view-dependent shaping function that attains a maximum value of one.
(Thus the maximum RCS obtained by any of the primitives in Figure 2.10 is given by
the amplitude coefficients listed in Table 2.1.) The W[-,-](') term appearing in several
entries of Table 2.1 is the window function defined by (2.7) and the .J;(.) term appearing
in the circular plate response is the Bessel function of order one.

Several features of the RCS models in Table 2.1 bear highlighting. First, the
strength of the backscattered field (proportional to the square root of the RCS re-
sponse) varies with the projection of the primitive into the plane orthogonal to the

ko (2.23)

backscattered by interaction with only one or two of its three plates.
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rectangular-plate dihedral cylinder

Figure 2.10. Basic primitives. Here (¢, ¢) is the absolute viewing elevation and azimuth, defined in
terms of a fixed ground-based frame of reference as in Figure 2.9. This absolute viewing angle, together
with the absolute orientation of a primitive, defines a relative viewing elevation ' and azimuth ¢’ as
depicted above. The indicated dimensions and relative viewing angle of any primitive determine its

RCS.
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| Il &5 | #V | VHE | VV ]
w1 0 0 1
~¢ || cos2v' | —sin2v' | sin2v' | — cos 20/

Table 2.2. Polarization attenuation factors for basic scattering mechanisms.

line-of-sight vector. Second, while the responses of the rectangular and circular plates,
dihedral, and cylinder fall off relatively quickly from their maximum values, the tophat
and trihedral responses have much more angular breadth. This is because the unique
geometries of the trihedral and tophat result in specular reflections over a wide range
of viewing angles whereas the other primitives have a single specular plane or direc-
tion. Third, the sinc(.) and Ji(.) terms in the plate, dihedral, and cylinder responses
are characteristic of PO predictions; note that in each case the off-broadside falloff is
inversely proportional to the physical extent of the scatterer, so that larger primitives
produce narrower returns.

As indicated above, the |v;.| terms in Table 2.1 capture the dependence of RCS
on the polarizations of the transmitting and receiving antennas, as indicated by the tr
subscripts. Physical optics predicts that the RCS will depend on whether an incoming
ray is reflected an even or odd number of times—hence the two different polarization
terms ;. and 7;.. For even-bounce mechanisms, the relative rotation of the primitive
also affects the RCS.'® Denoting this rotation by v/, physical optics predicts the polar-
ization attenuation factors given in Table 2.2 [92,104]. This table indicates that while
odd-bounce primitives reflect radiation without changing its polarization, even-bounce
primitives rotate the polarization in the process of reflection; the pairs (v, vy, ) and
("> Vvy) indicate the components of the rotated polarization along orthogonal axes
for horizontal and vertical transmit polarizations, respectively. Note that this rotation
does not affect overall field strength. Note also that Table 2.2 implies that even- and
odd-bounce mechanisms have distinctive polarimetric signatures that could be used to
help distinguish between classes of primitives in cases when polarimetric radar mea-
surements are available.

|2

M 2.3.3 The Geometrical Theory of Diffraction

In scenes with multiple large reflector primitives such as trihedrals, tophats, dihedrals,
and cylinders, PO is generally sufficient to describe most of the observed backscat-
tered energy. In situations where scattering contributions from edges or corners form a
significant portion of the reflected energy, however, PO must be augmented if greater
accuracy is desired. Although PO’s predictions are adequate for most of the purposes
of this thesis, we present one augmented model in the interest of thoroughness and as
a prerequisite to the discussion of Section 2.4. This model is known as the Geomet-

3The rotation corresponds to Huynen’s “tilt angle” [46] and is defined for a dihedral as the angle
between the dihedral seam and a horizontal axis, and for a tophat as the angle between the tangential
extension of the cylinder-base seam orthogonal to the specular direction.
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H reflector type ‘ af.
flat plate at broadside 1

dihedral double-bounce at 0° depression 1
trihedral triple-bounce 1

cylinder at 0° depression | 1/2

singly curved surface | 1/2
tophat double-bounce | 1/2

sphere 0

straight edge at broadside 0

point scatterer 0

doubly curved surface 0
curved edge at broadside | —1/2

corner | —1

tip —1

Table 2.3. Reflectors and their GTD frequency-dependence parameters.

rical Theory of Diffraction (GTD) and was developed by Joseph Keller in the early
1960s [54]. GTD attempts to address the failing of PO to model edge and corner scat-
tering contributions by extending the GO concept from two-dimensional surfaces to
one-dimensional edges and point regions such as corners, tips, and vertices, predicting
that fields incident upon these features are scattered along a “Keller cone” of directions.
GTD succeeds in describing the frequency dependence of edge and corner contributions
exactly but is silent regarding the angular variation of these responses. In particular,
GTD predicts that the backscattered RCS observed from a feature illuminated at fre-
quency f is proportional to f2¢, where « is a feature-characteristic constant exponent
that is an integer multiple of 1/2. Table 2.3 lists the GTD predictions of frequency
dependence for various features [54,85]. (Note the correspondence between the GTD
and PO frequency-dependence predictions for the six primitives also listed in Table 2.1,
remembering that frequency and wavenumber are inversely proportional.)

As indicated above, GTD does not provide descriptions of the angular variation in
scattering observed from edges, corners, and related features. (There are extensions to
GTD that attempt to predict the spatial dependence of edge and vertex scattering, but
these are generally very complicated and often inaccurate outside of a narrow aspect
region [61,62].) As such, GTD’s augmentation to PO is helpful primarily in scenar-
ios where radar data are collected at a single aspect (as in a range profile) or over a
range of aspects sufficiently narrow that any variation in amplitude is not pronounced
(as in a narrow-aperture SAR image). This suggests that GTD’s augmentations are
of questionable value in our problem, which fundamentally requires a scattering model
that accurately describes the variation in amplitude over widely separated aspect an-
gles. GTD offers considerable value to single-aspect or narrow-aperture applications,
however, as we describe in Section 2.4.
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B 2.3.4 Phenomenology for Targets Comprised of Reflector Primitives

Together, the high-frequency scattering models of GO, PO, and GTD provide very
accurate predictions of the observed backscattered responses from targets comprised of
discrete reflector primitives (which might include not only components such as trihedrals
and tophats, but also edges, corners, and tips). In particular, given a target comprised
of M such discrete primitives, the backscattered response at frequency f, azimuth ¢,
and depression ¥ can be expressed as

M f a(tm) 4
Ef o)=Y A (j?> ¢TI gy (6.0, ), (2.24)
m=1

where each one of the M reflector primitives is characterized by a set of parameters
{An, tm, T, €, - The quantity 7, represents the down-range location of a given scat-
terer, A, expresses the (possibly polarimetric) complex amplitude of the scatterer, and
tm is a discrete index identifying the fundamental type of the primitive (e.g., flat plate
or dihedral). The frequency dependence is captured by «(t,,), a mapping from dis-
crete primitive type to the integer multiple of 1/2 characteristic of feature type t,, as
indicated in Table 2.3. (Note that a(t,,) is a non-invertible mapping.) Information
about reflector pose, shape, and size is encompassed in the abstract vector parameter
&, (the components of which might be specific to each primitive type). The quantity
f"in (2.24) serves as a normalization term. The function s, (#,,&,,) describes the
aspect dependence of the backscattering from a primitive of type t¢,,, and is provided
by GO and PO for some primitive types (such as those in Table 2.1) but is generally
unavailable for other primitive types (such as edges, corners, and tips).

The formulation of (2.24) is extremely useful and forms a basic model that en-
ables the description of backscattering from a wide class of targets. Although our
discussion has focused on a traditional set of primitives (augmented by features such
as edges, corners, and tips), nothing in (2.24) requires such a close marriage to tradi-
tional components. Any feature that admits modeling by appropriate choices of a(t,,)
and sy (¢,1,&,,) could be included as a reflector primitive. For instance, the class of
primitives could be broadened to include responses from cavity structures or multiple-
primitive reflections, as long as these phenomena lent themselves to a proper selection
of a(t,,) and s, (6,1, €,,). In practice, much of the research into target modeling and
feature extraction has concentrated on the more traditional set of primitives described
above. We now turn our attention to some of these efforts.

H 2.4 Previous Work

The last decade has seen a variety of attempts to model targets encountered in radar
range profiles and SAR images. Much of this work has been done in the context of
feature extraction for ATR; the reduction of a high-dimensional set of backscattered
radar data to a handful of feature parameters by inversion of a model similar to that
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of (2.24) is attractive to ATR because it facilitates simple and efficient comparison of
collected data and entries from the target database. In particular, if the target database
is maintained as a set of feature vectors comprising parametric descriptions of targets,
and if similar parametric target descriptions can be extracted from collected imagery
or range profiles on the fly, then targets can be classified by comparison to database
entries in the feature domain. This is central to the concept of model-based ATR.

In the following sections we describe recent efforts to extract parametric target de-
scriptions, or feature vectors, from single-look radar data (i.e., range profiles and SAR
images). The focus of these efforts is conceptually similar to our problem: in both
cases a scattering model must be specified and implicitly or explicitly inverted to yield
a description of the target. Of course, there are also numerous differences in the two
problems. One such difference is the requirement that our scattering model accurately
describe backscattering aspect variation, a constraint largely absent in single-look prob-
lems. Another important difference is the difficult correspondence problem underlying
the extraction of a target model from multiple viewing angles, as will be discussed in
Chapter 3. Nevertheless, the work described here provides important insights into a
similar problem. In Section 2.4.1 we describe efforts to extract target models from 1-D
data, and discuss similar efforts to extract models from 2-D data in Section 2.4.2.

B 2.4.1 Model Extraction from a Single Range Profile

One simple and obvious way to extract a model from a range profile is simply to apply an
amplitude-based peak extractor or a matched filter to detect significant responses [23].
This method, while conceptually and computationally simple, has significant draw-
backs. For instance, (2.13) states that the achievable Fourier range resolution is equal
to ¢/n.T; in practice it is often desirable to pinpoint the scatterer location to a finer
scale. Additionally, a simple amplitude-based peak extractor would not provide type
information.

One way of accomplishing this is to employ a parametric model for scattering be-
havior as in (2.24), in which scatterer locations and other information are extracted
directly from radar data based on the assumed parametric forms of scatterers or prim-
itives. In the literature this is often referred to as scattering center extraction. Use of a
parametric model results in a super-resolution algorithm in the sense that its estimate
of the location of a scatterer is not limited by the resolution of the range profile data.

Prony-Based Extraction

Some of the earliest relevant research into 1-D scattering center extraction [16,45] was
performed utilizing Prony’s method [88]. Originally proposed in 1795, Prony’s method
is a procedure for finding a weighted sum of damped exponentials to fit a sequence
of data. Prony’s method has been widely studied and extended to a broad range of
applications, and many good general references on the method exist [42, 68]. In the
current context, the sequence of data is a sequence of stepped frequency measurements
(i.e., the Fourier transform of the range profile). Prony’s method is used to find a fit
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to this data which is of the form

M
En) =Y amply, (2.25)
m=1

where f, is the nth stepped frequency Prony’s method is used to obtain estimates of
complex pole locations p,, (corresponding to the damped exponential modes) and their
complex amplitudes a,, given an assumed model order M. Prony’s method requires
solving two M x M systems of linear equations and finding the zeros of an Mth order
polynomial [68].

Although (2.25) appears to bear little resemblance to a phenomenologically based
model such as (2.24), an appropriate change of variables [16] allows (2.25) to be rewrit-
ten as

M
Elnl =" Amglyestriirnle, (2.26)

m=1

where A, ¢, and 7, are all functions of p,, and a,, from (2.25). Examination shows
that (2.26) differs from (2.24) in only one respect: (2.26) predicts a frequency depen-

dence of the form qf;?, whereas (2.24) predicts a f, (tm) dependence. In situations where
the relative bandwidth of the stepped frequency measurements is small, i.e., where the
range of stepped frequencies is small compared to the center frequency, the model of
(2.26) might provide a reasonable approximation to (2.24), and Prony’s method could
then be used to extract estimates of scatterer location (7,,) and amplitude (A,,). (Note
that, unfortunately, (2.26) does not enable direct estimation of scatterer type informa-
tion, i.e., the GTD frequency dependence exponent.)

Several authors have used Prony’s method and the above transformation to facil-
itate extraction of target models from 1-D scattering data. In particular, Hurst and
Mittra report on this approach in [45], assuming that the model order M is known a
priori. They achieve success in locating scatterers to a precision unattainable by Fourier
means. Additionally, they show that Prony’s method provides a greater dynamic range
in estimating the amplitudes of scattering centers than that provided by an amplitude-
based peak extractor.!® The work of [45] is extended by Carriere and Moses in [16],
which presents a total-least-squares Prony (TLS-Prony) method [89] coupled with a
singular-value decomposition to enable estimation of the model order. Carriere and
Moses test their algorithm on radar data of aircraft, corrupted with additive white
Gaussian noise, and show that they are able to extract scattering centers corresponding
to physical target attributes such as tail fins, the rounded aircraft nose, and the leading
edges of wings.

4The limitation in the dynamic range of an amplitude-based peak-extraction approach stems from
the fact that the contributions of small-amplitude responses are often lost in the large sidelobes of the
brighter responses.
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GTD-Based Extraction

While the efforts described in [45] and [16] are both successful in estimating range loca-
tions and amplitudes of scatterers, they are deficient in several important respects. First
of all, neither algorithm provides a means for estimating scatterer type; thus physical
features of scatterers other than location and amplitude remain unknown.'® Second,
it is well known that Prony’s method is very sensitive to noise [68], which is acknowl-
edged in [45] and [16] although neither paper undertakes an analysis of performance
under varying noise characteristics. Finally, as discussed above, Prony’s method suffers
from the inaccuracies inherent in its scattering model, which become more severe in
systems with a large relative bandwidth. These deficiencies are the motivation for the
work of [85], in which Potter et al. present an approximate maximum likelihood (ML)
algorithm based on the model of (2.24) that builds on the TLS-Prony approach of [16]
to arrive at estimates of { A, a(ty,), 7m 1M _;. The algorithm is shown to produce para-
metric target descriptions with small squared error and accurate a(t,,) estimates given
sufficiently large bandwidth. For small-bandwidth situations, estimation of «a(t,,) is
unreliable and it is not clear that estimation of 7, and A,, is any more reliable than in
the Prony-based algorithm of [16]. The work of [85] demonstrates that although target
models can be generated by inverting a GTD phenomenological model, inversion of a
simpler Prony model might be preferable in narrow-bandwidth situations.

Dictionary-Based Extraction

In [70], McClure and Carin describe a quite general approach to scattering center ex-
traction from 1-D data. Like [16,45,85], they model radar data as scaled superpositions
of individual scatterer responses; unlike these previous efforts, however, their assumed
scatterer responses are not tied to a single phenomenological model but are arbitrary
basis functions chosen from a dictionary specified in advance. The dictionaries used
in [70] are constructed to contain not only GTD-predicted responses (denoted in [70]
as “wavefront” responses due to their relative localization in time) but also “resonant”
responses (i.e., responses localized in frequency that often arise from large-scale target-
structure) and “chirp” responses (i.e., responses localized in neither time nor frequency,
often arising from cavities or dispersive materials on the target). Conceptually, their
approach is general enough to allow consideration of any model that can be expressed
in the form

M
E =" Amdnln],  dmn] €D, m=1,... .M (2.27)
m=1

for an appropriately constructed (and reasonably sized) dictionary D. Extraction of a
scatterer model according to (2.27) requires selection of entries d,[n] from the dictio-
nary D (presumably constructed so that any entry d,,[n] has associated with it a set

15 A later work by Potter et al. [85] uses estimates of a(t,,) derived from Prony p,, and a,, estimates,
without specifying exactly how these were obtained.
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of descriptive parameters, such as scatterer type and range) and a set of amplitudes
A,,. McClure and Carin use matching pursuit techniques [67] to achieve this decom-
position. Matching pursuit is a nonlinear technique developed by Mallat that is similar
to projection pursuit [44], which projects elements from an overcomplete dictionary of
basis elements onto a signal to obtain a compact representation of the signal. Matching
pursuit is an iterative greedy algorithm which, at each iteration, augments its repre-
sentation of the signal by choosing the dictionary entry with maximum projection onto
part of the signal.

The selection of GTD-inspired wavefront responses for the dictionaries of [70] is
straightforward: McClure and Carin generate basis elements by essentially sampling
over the space of all feasible scatterer ranges r,, and frequency exponents «(t,,). The
selection of appropriate resonance and chirp responses is more problematic, and it is
argued in [70] that population of this part of the dictionary should be guided by a priori
knowledge of target shape and structure, since an unconstrained selection of all feasible
chirps and resonances would result in a prohibitively large dictionary.

McClure and Carin present results corresponding to two scenarios: one in which the
target produces both wavefront and resonant responses, and one in which the dominant
responses are chirps. Their results indicate that when the resonant and chirp dictionary
elements are chosen based on exact knowledge of the resonant modes and dispersive
character of the target, matching pursuit does a good job of selecting dictionary elements
to provide a concise and accurate description of the target. However, they do not
present results in the case where target resonance and dispersion are unknown or not
precisely known in advance. McClure and Carin acknowledge that a lack of prior
knowledge of target structure might impose restrictions on the applicability of the
algorithm, although they claim that in applications in which a small number of possible
targets might be encountered, the resonant and chirp dictionary elements can be reliably
calculated in advance; Mallat also notes in [67] that in general some prior knowledge of
signal structure is required in order to construct an effective matching pursuit dictionary.
Depending on the model generation scenario, this may or may not be a significant
limitation: sufficient prior knowledge might be provided by knowledge of the general
class of targets being imaged, or by estimation of resonant modes or chirp characteristics
directly from observed data before forming a dictionary. In any case, the approach
proposed in [70] is general enough to be applicable in many situations.

B 2.4.2 Model Extraction from a Single SAR Image

All of the previous work discussed so far concerns scattering center extraction from 1-D
radar data, that is, from range profiles or stepped frequency measurements. We now
turn our attention to recent efforts to extract scattering centers from 2-D radar data
in the form of SAR images or phase histories. As in the 1-D case, one conceptually
simple approach is simply to apply an amplitude-based peak extractor to a SAR image
to obtain estimates of scatterer locations and amplitudes; also as in the 1-D case, this
approach has the drawbacks of limited resolution and no direct way to obtain type
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information (except in the case of polarimetric imagery). The work described here
focuses on super-resolution techniques based on 2-D analogs to the Prony and GTD
models.

Prony-Based Extraction

The extension of the Prony model of (2.25) to two dimensions is

I J;

i=1 j=1

where p,, is the ith of I poles in the x component, py, . is the ¢, jth pole in the y
component (i.e., the jth of Ji poles corresponding to the ith pole in the x component),
and a;; is the complex amplitude of the 7,jth pole. (The quantity f,, is the mth
stepped frequency, and n is the aspect index.) Note that this model is separable in
the m and n indices. Like the 1-D model, it suffers from a mismatch in predicted
frequency dependence that becomes more marked as relative bandwidth increases. Note
that (2.28) models the spatial variation of the scattering amplitude across the imaging
aperture as an exponential; this is due to the fundamental structure of the Prony model
and not to any physical consideration, although over a narrow aperture an exponential
term may be sufficient to model many primitives’ scattering variations.

In [93], Sacchini, Steedly, and Moses present two methods for estimating I, {.J; }/_,,
and the complete set of p,,, p,, ;, and a;; from two-dimensional data. (One of these
methods is less accurate but computationally simpler than the other.) They also present
an example of the application of the more accurate method to the extraction of scatter-
ing center range and cross-range locations from a SAR phase history. Their methods
are similar in spirit to the 1-D Prony method of [16], employing a 2-D TLS-Prony tech-
nique to estimate model order, locations, and amplitudes. Like the 1-D Prony-based
algorithms of [45] and [16], this 2-D Prony-based algorithm is incapable of estimating
scatterer type.! The authors demonstrate the utility of their algorithm in extracting
scatterer location and amplitude from a synthetic image constructed using a fairly large
aperture and relative bandwidth.

GTD-Based Extraction

As in the 1-D case, the 2-D Prony model is an inaccurate description of the true scat-
tering behavior that becomes more flawed as relative bandwidth or aperture increases.
This limitation, and the desire to estimate scatterer type, motivated Potter and Moses
to develop a GTD-based algorithm for scattering center extraction from SAR phase

Potter and Moses [86] describe how type estimates can be obtained from the Prony-based algorithm
in a later work.
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histories [86]. They utilize a 2-D GTD model of the form

. PN —janf
E(f,0) = Z A ePm? (—) exp{ (z cos0 + ypm sin@)}, (2.29)
m=1 fc ¢

where 0 captures the aspect variation along the synthetic aperture, a(t,,) is the param-
eter describing the GTD-predicted frequency dependence of the mth scattering center,
Tm and y,, are respectively the slant-plane range and cross-range locations of scatterer
m that together determine its distance, and the aspect-dependent backscattering term
of (2.24) has been modeled as A,,e’? a simple model intended to capture any ob-
served amplitude variation over narrow apertures. (As in the 1-D model, A,, is possibly
polarimetric.)

Potter and Moses describe an approximate ML algorithm (which is more completely
described by Chiang in [18]) to estimate the parameters A,,, Ty, Ym, a(ty,), and G,
from (2.29) given M. The algorithm is similar in character to the 1-D GTD-based
scattering center extraction algorithm in [85] described in Section 2.4.1. Potter and
Moses present experimental results demonstrating the performance of their algorithm;
as in [85], estimation of a(t,,) suffers when relative bandwidth is small. As in the
case of [85], this suggests that the simpler Prony-based algorithm of [93] might be
more appropriate for feature extraction except in cases where a large bandwidth offers
significant value-added.

Another contribution of [86] is the demonstration of an M-ary generalized likelihood-
ratio test (GLRT) that can be used to estimate reflector type from polarimetric data,
independent of the GTD model of (2.24). This GLRT relies on the distinctive polarimet-
ric signatures of different primitives [104] and can be used to obtain a finer estimate of
reflector primitive type than is given by «a(t,,) alone, in the sense that it can distinguish
between many reflector types that share the same frequency-dependence exponent. The
GLRT requires compilation of the polarimetric amplitude signatures for each candidate
reflector primitive type!” at rotational angles sampled over a full 360° of rotation about
the line-of-sight vector. Their GLRT also yields as a byproduct an estimate of the
in-plane rotational orientation of the reflector with respect to the look vector. They
present one example, in which the GLRT correctly classifies two cylindrical objects and
a trihedral. This is an example of how information about reflector type can be obtained
without relying on frequency-dependence information, which is basically unreliable for
narrow-bandwidth images.

"Potter and Moses use eight primitive types in the GLRT of [86], including trihedral, dihedral,
narrow diplane, dipole, cylinder, quarter-wave plate, left-handed helix, and right-handed helix.



Chapter 3

Precise Problem Formulation

N this chapter we establish a precise formulation of the problem of target model gen-

eration. Previous chapters have presented the general context in which target model
generation is important, and future chapters will describe in detail our approach to the
estimation of target models. This chapter serves a bridge between these two compo-
nents by casting the problem in concrete terms. In particular, this chapter includes
a formalization of the problem statement, a presentation of our conceptual approach
to target model generation, an enumeration and analysis of our assumptions, and the
construction of a measurement model enabling the estimation of a target model from
the observed SAR data.

The data set from which we must estimate a target model is a collection of K
spotlight-mode SAR images [15,51]. Each of these images is characterized by a partic-
ular viewing geometry, as depicted in Figure 2.9. In particular, the viewing geometry
is defined by the line-of-sight vector from the center of a narrow synthetic aperture to
the center of the target region being imaged. This line-of-sight vector can in turn be
characterized by an azimuth and elevation, each defined with respect to an absolute
ground-based frame of reference, as depicted in Figure 2.9. We assume no restriction
on the azimuth ¢ and elevation 1, defining the line-of-sight vector for any image k;
we do assume, however, that each image has been formed at a squint angle of 90°
(see Figure 2.9), although extension of our approach to allow arbitrary squint angles is
straightforward. Finally, we assume that each image was formed over a linear aperture
in level flight, so that any (¢, ¢x) pair defines a unique slant plane associated with
image k.

A block-diagram representation of our general approach to 3-D target model esti-
mation is depicted in Figure 3.1. A target is observed through a set of K SAR images.
Each of these images is processed to extract a set of features which are then fused in
order to produce a 3-D target model. The framework depicted in Figure 3.1 is quite
flexible. For instance, we could consider modeling the target as a spatially varying
scattering medium and use a trivial feature extraction stage that simply passes on each
complete SAR image to the final module, which would then bear the full burden of
inverse scattering. However, as indicated in the previous chapters, we have in mind a
much more constrained approach that restricts our description of the target in order to
focus on variables that are most observable and of significant interest to model-based

49
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_..»SARimage 1 feature extraction feature set 1

--=-SAR image 2 feature extraction b—» feature set 2
: N
datafusion 3-D target model

. SARimageK — L] feature extraction feature set K

image collection stage feature extraction stage model generation stage

Figure 3.1. Target model generation block diagram.

ATR—namely, reflector-primitive-based parameterizations of targets.

Our principal focus is the design of the data fusion module in Figure 3.1. This
requires specification of exactly what we wish to estimate (i.e., the parameterization of
our target models) and how the features serving as input to this module are related to
the quantities to be estimated. The former step involves judicious selection of param-
eters that are compact, descriptive, and observable; the latter step involves modeling
both the SAR image collection process and the subsequent feature extraction stage that
produces the observable data on which the fusion module will operate. These are the
goals of this chapter. We describe the notation and basic target assumptions defining
the problem in Section 3.1 and present our feature extraction procedure in Section 3.2.
In Section 3.3 we construct a measurement model that relates the observable features
and the 3-D target model parameters to be estimated.

B 3.1 Target Models: Assumptions and Notation

Our target models consist of collections of reflector primitives, each of which is described
by a small set of parameters that enable description of the scattering behavior of the
primitive given any imaging geometry. In particular, a target model will be specified
by the number of primitives /N comprising the target and by N vectors of parameters,
one associated with each component primitive. In general, we can express each vector
6, (fori=1,...,N) as

ot
0, = 92’; , (3.1)
0;

where 6! is an integer index designating the primitive as one of n; canonical primitive
types, 60X is a vector in R3 describing the location of the primitive, and 0? is a generic
vector parameter corresponding to a set of continuous- or discrete-valued descriptors
that, along with 6! and 0¥, specify the appearance of the primitive in an arbitrary SAR
image. We will denote the log-RCS of a primitive parameterized by 8; and viewed from
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elevation ¢ and azimuth ¢ as A(8;,1, ¢), which we typically quote in dBsm.!

Most of our attention in this thesis is restricted to a small class of primitives includ-
ing trihedrals, tophats, dihedrals, and cylinders (so that n; = 4), depicted as the bottom
four primitives in Figure 2.10; we assign type indices (i.e., 8¢ values) of 1 through 4 to
these primitives, respectively. Location 6 of each primitive is defined to correspond to
the origin of the primitive’s local axes in Figure 2.10. A complete parameterization of
any one of these primitives from the perspective of PO (see Section 2.3.2) would select
09 to augment these parameters with all others required to describe its backscattering
at an arbitrary viewing angle as predicted by Table 2.1—for instance, an Euler-angle
pose [100] describing the primitive’s orientation,? the size-dependent amplitude coeffi-
cient describing the primitive’s maximum RCS, and any other dimensions of a primitive
of type 6! that are required to specify its shaping function exactly (e.g., the dihedral
and cylinder heights). Of course, other or more extensive parameterizations are pos-
sible. For instance, an augmented parameterization for characterization of nonideal
primitives might include a vector of descriptive parameters (possibly specific to each
primitive type) that enable modification to the canonical PO responses. A param-
eterization that modeled primitives as imperfect electrical conductors might include
dielectric or absorption terms. In Chapters 7 and 8 we consider how the basic parame-
terization described here might be expanded to enable description of a wider variety of
primitives.

Our basic parameterization is a slight compression of the “complete PO” parame-
terization that excludes primitive dimension information not relevant to determination
of the primitive’s maximum RCS or its slant-plane location. In particular, our basic pa-
rameterization augments 6! and X with a 09 consisting of at most three parameters: an
overall base amplitude 0 related to the overall size of the primitive and corresponding
to the log of the amplitude coefficient in Table 2.1, an Euler-angle pose 6 indicating the
orientation of the scatterer, and a radius of curvature 6 for radially symmetric primi-
tives including tophats and cylinders. The complete vector 8; in this parameterization
is thus given by

0, = | 0o |. (3.2)

The vector 8; provides a concise yet accurate description of a primitive’s appearance in
an arbitrary SAR image according to the physical and imaging models of Chapter 2:

'If polarimetric measurements are used, we take the scalar A(6;,7, ¢) to be the log of the magnitude
of the polarimetric vector.

2Three distinct Euler angles, corresponding essentially to elevation, azimuth, and rotation, are re-
quired to describe the orientation of primitives without radial symmetry, such as trihedrals and dihe-
drals. Two Euler angles suffice to describe the orientation of primitives with rotational symmetry, such
as cylinders and circular-base tophats.
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H notation description space drawn from H
6! basic scattering type {1,2,3,4}
0% location R3

ge maximum RCS R
from any viewing angle

0 0,2 0,2 ft 1.3
6? Euler-angle pose [0, 7] x [0,27) x [0,27), 6 €{1,3},
[0, 7] x [0, 27), 6! € {2,4}
te{l
0r radius of curvature 0. 0; € {1,3},
Ry, 6! e {24}

Table 3.1. Primitive parameterization.

location 6 and radius of curvature 6 (for those primitives for which it is defined),
along with viewing angle, determine the apparent location of the primitive in the SAR
slant plane; discrete type 6! identifies the primitive and selects a basic scattering re-
sponse from Table 2.1; pose OZP orients this response by rotating it to correspond to the
orientation of the primitive; base amplitude 6 scales the response intensity according
to the size of the primitive. The components of 8; in (3.2) are summarized in Table 3.1.

The physical and imaging models of Chapter 2 allow quantification of the pre-
vious statements. For instance, given the slant-plane-based SAR imaging model of
Section 2.2, we can model the observed location of primitive ¢ in image k as a measure-
ment of 7w (8;), the projection of the primitive’s apparent primary-response specular-
reflection point into the slant plane.® In particular,

H0%, 0! € {1,3},

0,) = 1
mk(0:) er;ﬁ—lolegcosw;k, ot € {2,4},

(3.3)

where ¢!, is the relative viewing elevation for primitive i at the center viewing angle
of image k as pictured in Figure 2.10, and where Hy, is the 2 x 3 ground-to-slant-plane
transformation matrix for image k& defined by the center viewing angle (see Figure 2.9):

| —costpcos g cosYysing  —siny,
H; = [ — sin ¢y, — COS ¢y, 0 (34)

Similarly, the PO models of Section 2.3.2 allow us to specify an equation for the RCS
of primitive i at the center viewing angle of image k:

A8, Y, dx) = 07 + Sgt (Vi k> &i1e) + Cpols (3.5)

3This model will be flawed, of course, at viewing angles from which secondary reflection mechanisms
dominate, or from which the response is not in the specular mainlobe [62]. Although we could construct
a model that takes these effects into account, doing so would significantly complicate the ensuing
development. The implications of using a simpler model such as the one that follows are examined in
Chapter 5.
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where ¢/, is the relative viewing azimuth for primitive ¢ in image k (see Figure 2.10)
and 67, 5791;(.), and ¢y have been constructed from the components of Table 2.1: 6 is
the log of the premultiplying amplitude coefficient for a primitive of type 6%, S, (.) is
counstructed from the log-shaping functions of the primary and secondary respounse mech-
anisms for a primitive of type 6! as described shortly, and cpo; captures the polarimetry
scaling factor and includes any effective gain achieved by using multiple polarimetric
channels. For each primitive type, Sy (.) is scaled to give a maximum value is 0 dBsm,
so that 67 will correspond to the maximum single-polarization RCS of the primitive
response.

As indicated above, the basic parameterization of (3.2) neglects the dependence of
primitives’ PO-predicted shaping functions in Table 2.1 on individual dimensions. This
dependence is most pronounced for the dihedral and cylinder, which exhibit sinc-like
elevation responses depending on b and h, respectively (see Figure 2.10). This depen-
dence is also present, though less pronounced, for the trihedral and tophat: although
their primary response mechanisms are specular reflections whose shaping functions are
not dependent on individual primitive dimensions, their secondary response mechanisms
incorporate dihedral and cylinder reflections, respectively (as well as plate responses).
Additionally, primitive responses that comprise two or more reflection mechanisms (e.g.,
the single-, double-, and triple-bounce response mechanisms of the trihedral) rely on
primitive dimensions to determine the relative phase between each component mecha-
nism’s response. There are at least three ways in which we can deal with these depen-
dences. We could simply ignore the size dependence and base the Sy:(.) on nominally
chosen dimensions for each primitive, even though real scatterers magf have signatures
that deviate from these Sy:(.). Alternatively, we could expand the set of canonical prim-
itives to include several different-sized instances of each basic reflector type. Finally, we
could expand the parameterization 0? to include all relevant dimensions for each prim-
itive type and construct Sy (.) with appropriate dependences on these dimensions. Our
basic approach is the first of these alternatives. In particular, we construct our Sy (.)
using nominal values for each primitive’s relevant dimensions, chosen to correspon(fi to
moderately bright primitives. (The precise values chosen for use throughout most of
this thesis are presented in Chapter 5, in the context of the experiments in which they
are first used.) These nominal dimensions determine the individual responses for each
primitive’s component reflection mechanisms, which are then combined via a nonco-
herent sum (i.e., without regard to the size-dependent relative phase) to produce the
overall function Sy:(.) for each primitive type. Details of our construction of these
scattering functions are given in Appendix A. Extensions to the second or third alter-
natives listed above are conceptually straightforward (although with a computational
cost). In Chapter 5 we explore to what extent a mismatch between actual primitive
dimensions and the nominally chosen dimensions selected to construct the Sy (.) affects
performance. '

Before proceeding, we introduce a vector 8 encompassing the complete parametric
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description of the target:

6= : |. (3.6)

(Note that @ implicitly specifies the model order N.) Target model generation in our
framework is thus estimation of the vector 8. We will model 8 (and thus N) as unknown
parameters about which no information is available other than that provided by the
SAR images.

B 3.2 Extracted Features for Target Model Generation

As described previously and depicted in Figure 3.1, our framework entails selection
of a feature extraction scheme to compress the full set of SAR imagery into a vector
of descriptive parameters. These descriptive parameters must bear a clear relation to
the components of 6 if model estimation is to be achieved. This implies that at the
very least, the features extracted from each image should include some description of
the locations and amplitudes of the dominant scatterers. In other words, the chosen
features should include measurements of 7 (6;) to provide information about 6* and 6
as in (3.3), and measurements of A(8;, ¢k, ¢x) to provide information about ¢, 6%, and
6P as in (3.5). Additionally, if polarimetric data are available, the feature set should
include some measurement of the polarimetric signature, since this clearly relates to 6}
as discussed in Section 2.3.2.

The full data set from which selected features must be extracted is the set of K
spotlight-mode SAR images. We assume that each of these images is polarimetric so
that at any pixel [m,n] we have available a vector measurement of the form

gum[m, n]
glm,n] = \/ZqHV[m,n] , (3.7)
gvv[m,n]

where H and V are horizontal and linear polarizations as defined in Section 2.1.1 (see
Figure 2.1).* Furthermore, we assume that all SAR imaging parameters (such as band-
width, aperture width, range and cross-range locations of each pixel center, and az-
imuth and depression to the scene center) are known and can be related to the absolute
ground-based frame of reference. Such information could be provided, for instance,

*Although a SAR imaging system employing two distinct linear antenna polarizations could in theory
return four distinct polarimetric channels (HH, HV, VH, and V' V), in practice most such systems return
only three distinct channels as indicated above. This is an effect of polarimetric-calibration processing
in which the inherent symmetry between HV and VH polarizations [104] is used to correct phase errors
between the polarimetric channels [23]. The HV and VH responses are combined into a single channel
(typically designated HV), leading to the cross-polarization channel gain factor of v/2 in (3.7).
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by geolocation or global positioning measurements taken as the images are collected,’
coupled with accurate ranging and positioning of the target.

The 2-D extraction techniques of Section 2.4.2 provide potential feature extraction
schemes: the Prony-based technique of [93] provides location and amplitude informa-
tion, and the GTD-based technique of [86] provides location, amplitude, and type infor-
mation (in wide-bandwidth images). For the sake of simplicity and clarity, we choose
to utilize a simpler feature extraction technique than those provided by [86,93]. In
particular, we utilize an amplitude-based peak extractor that directly provides location
and amplitude information for the brightest scatterers in an image; this information
is augmented by type information obtained from the polarimetry measurements. This
approach is conceptually straightforward and has the important practical advantage
of potentially being easier to characterize statistically than the approaches of [86,93].
(Statistical characterization of the feature extraction process is essential for the devel-
opment of a measurement model, as described in Section 3.3.) One drawback to this
approach is its inability to pinpoint scatterer location to the degree attainable by the
techniques described in [86,93]. This disadvantage is mitigated somewhat by the fact
that we will likely have multiple location measurements of each primitive from many
aspects with which to estimate a location in R3.

Our peak extractor compresses each SAR image into a handful of augmented de-
tections corresponding to the locations, amplitudes, and polarimetric signature classi-
fications of the brightest responses in the image. The input to the peak extractor is
the set of polarimetric data g[m,n] in (3.7) for all pixels [m,n]. We can form a single
magnitude image g[m,n] from the pixelwise magnitudes of these polarimetric vectors,
i.e.,

glm, n] = llg[m, n]| (3.8)

for any pixel [m, n]. The peak extractor identifies peaks by selecting pixels from g[m, n]
that are local maxima with amplitude greater than some specified threshold. This
produces an arbitrary number of peaks or detections in any image k, denoted Mjy; each
peak j =1,..., M} in image k corresponds to a distinct pixel [my j, nx j]. Our feature
extraction technique describes each peak j in each image k with three measurements:
a 2-D slant-plane range/cross-range subpixel location x; ; that is a measurement of
7 (0;) in (3.3), a scalar amplitude ay ; that is a dBsm measurement of A(6;, ¥y, o)
in (3.5), and a binary polarimetric-type-classification t ; that is a measurement of the
polarimetric signature of (3.7). These measurements are obtained as follows. The
amplitude is simply taken as a dBsm measurement from g[m,n], i.e.,

ak,j = 201ogyg glmy, ;. ). (3.9)

SExisting SAR systems typically already make such measurements. Slight deviations from a linear
constant-velocity flightpath are generally recorded so that their effects may be corrected in the image
formation process [51].
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Location xy ; is a subpixel estimate of scatterer slant-plane location obtained using a
simple parabolic interpolation procedure [87] based on g[my ;,ng ;| and its four nearest
neighbors:
e - — glmye i +1m 51—-glme;—1,m 4]
k3 T 2ghm j+Ling g1+ 3lme ;—Lng ;]—23[mg 5 nk ;)
xp; =T : (3.10)

glmg j e j+1—glme j.ne 1]
2(g[mu,j,mp,;+1]+g[me j,ne j—1]—-2g[my 5,1k 5])

nk7] -

where T is a 2 X 2 matrix transforming pixel indices into range/cross-range coordinates.
(This quadratic interpolation is motivated by the observation that the mainlobe of the
convoluting kernel in (2.22) can be modeled as quadratic near its peak for any standard
SAR sidelobe-suppression window function [15].) The type measurement ¢; ; is a bi-
nary classification of g[my j,ny ;] as either an odd-bounce or even-bounce signature as
predicted by PO (see Table 2.2), obtained via a polarimetric-signature GLRT classifier
similar to those of [32,86].5 Specifically, the classifier’s GLRT signature hypotheses are

1
Hoqa: g=10 1|,
1
(3.11)
cos 2v),
Heyen (V) - g=| V2sin 2v),
| —cos2v),

(We generate even-bounce hypotheses to span a 180° interval at 5° increments, so that
vy, = (5n)° for n = 0,1,...,35.) We designate an odd-bounce classification as t ; = 1
and an even-bounce classification as t; ; = 2.

Figure 3.2 is an illustration of the features extracted from a typical SAR image
chip—in this case, an XPatch-generated polarimetric image (presented here in log-
magnitude form) of a SLICY-like target in the presence of background clutter. Note
that the peak extractor identifies and describes the clearly salient features of the image,
effectively compressing a high-dimensional data set (24 x 24 pixels of three polarimetric
measurements each, for a total of 1728 measurements) into a handful of descriptive
parameters.

For convenient reference, the three-parameter location/amplitude/type description
of the jth peak of image k& will be called a report and denoted by Zj ;, which can be
expressed as

Xk7]
Zk,j = Q. 5 . (312)
thj

SThis GLRT provides information about the orientation of even-bounce scatterers (namely, the
rotation angle v’ in Table 2.2) as a byproduct of its classification. Although this information could be
used to supplement the features described here, we do not include it in the feature set.
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image k
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Figure 3.2. Feature extraction from a SAR image chip.

At times it will be convenient to refer to the collection of reports within a single image
or across images. For these purposes we define notation for all reports in a single image,

Zi,
Zy, = : , (3.13)
Zi v,
and notation for all reports in all images,
VA
7 = : . (3.14)
Zg

The vector Z thus represents the complete set of observations available to the data
fusion module in Figure 3.1, i.e., the complete set of extracted features from which 6
is to be estimated.

H 3.3 Measurement Model

Feature extraction is a stochastic process: it takes place in the presence of scene clutter
and background noise. It is subject to missed detections, false alarms, and measurement
uncertainty. Any model relating Z to 8 must describe this uncertainty. In this section
we turn our attention to the construction of a probabilistic measurement model that
will serve as the basis for estimation of € from Z.

The uncertainties in the extracted features fundamentally come at two levels of
granularity, one coarse and one fine. The coarse-level uncertainty involves the identity
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Figure 3.3. Notation example.

of each measurement: given a set of reports extracted from a single SAR image and a
postulated set of target primitives, there is no way of knowing with certainty which re-
ports correspond to which primitives. The fine-level uncertainty involves the stochastic
nature of the elements of Zy, ;, even given the report’s proper correspondence.

The coarse-level uncertainty is inherent in the multiplicity of target primitives and
distinct features extracted from each image. It is further compounded by the stochas-
tic nature of the peak detection process, whereby some primitives will not generate
reports in a given image (i.e., missed detections) and some reports will correspond to
no primitive (i.e., false alarms), so that in general there will not be exhaustive corre-
spondence between the target primitives and the reports in any image. To characterize
this coarse-level uncertainty, we introduce a vector of hidden parameters A that de-
scribes the correspondences between reports and target primitives in concrete terims.
In particular, assuming that any report is attributable to at most one primitive (an as-
sumption which will be formalized shortly), we define a label parameter A ; describing
the identity of each report Zj ;:

(3.15)

{i, if report Zy ; corresponds to target primitive 4,
kg =

0, if report Zj ; is spurious (corresponds to no primitive).

The label parameter )\ ; corresponding to any image feature Zj ; is, of course, unob-
servable, but offers a concise identification of that feature in terms of its generating
primitive. For convenience in future expressions, we define Fj to be the number of
false alarms in image k, i.e., the number of A, ; which equal 0 for a given k. Figure 3.3
presents an illustrative example of the notation and concepts encapsulated in Ay ;. This
figure depicts a simple scenario involving two target primitives (N = 2) and three im-
ages (K = 3).

It will be convenient to define a vector Ay collecting the label parameters for all of
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the reports in image k:

Ak

Ak, M
The vector A introduced above can be formally defined as

Al
A= : . (3.17)
Ak

The vector A thus encompasses the identities of all features in all images. Although A
has a general structure imposed by constraints on each Ag (e.g., each A can contain
at most N nonzero elements and cannot contain the same nonzero index more than
once), the set of allowable A is vast: it is the product of the sets of allowable Ay for
k=1,..., K, each of which is a set whose size increases combinatorially with N and
My, For example, if M = N then the number of potential Ay, allowing for missed
detections and false alarms, is

31 )| (S [CTIES SRRLC RN

n=0 n=0

For a scenario with My = N = 5, (3.18) is greater than 1000; for M; = N = 6,
it is greater than 10,000. Thus in a scenario with as few as 10 images, each with
M, = N =6, X is drawn from a space of more than 1040 elements.

Given knowledge of A, the uncertainty remaining in Z is the distribution of the
components of each report Zy ;. This is our fine-level uncertainty. Characterization of
the fine-level uncertainty can be done conditionally, and the measurement model can
be specified as

P(A,Z[0) = p(Z|A, 8) p(A|6), (3.19)

a product of the fine-level probability density function (pdf) and the coarse-level proba-
bility mass function (pmf).” As (3.19) indicates, the unknown correspondences A must
play a fundamental role in any procedure for estimation of 8 from Z. Applications
in which measured data have unknown identities that must be determined in order
to process the data properly are generally known as correspondence or data associa-
tion problems. Data association problems arise in many areas, including multitarget
tracking [5,63], object recognition [19,110], and tomographic reconstruction [64,98].

"Throughout this thesis we will describe discrete random variables and vectors such as A by their
pmfs, and continuous random variables and vectors such as Z by their pdfs, using the same notation
p() in both cases.



60 CHAPTER 3. PRECISE PROBLEM FORMULATION

We make a number of general assumptions about the relationship of A and Z to
0 that facilitate the specification of a measurement model in the form of (3.19). The
first three assumptions concern the coarse-level uncertainty expressed by p(A|@); the
last two concern the remaining fine-scale uncertainty expressed by p(Z|A, 8). All five of
these assumptions are largely justifiable on simple physical grounds, and are standard
in a variety of data association contexts. These assumptions are as follows:

Assumption 1. Fulse alarms are independent from image to image and do not depend
on 6.

Comments. This assumption is standard in nearly all data association contexts and is
essentially a statement that the target model includes all significant scatterers.

Assumption 2. The detectability of the ith primitive in any tmage depends only on 0;
and on the viewing angle of the image; furthermore, missed detections are condition-
ally independent from image to image and from report to report given 6 and are also
mdependent of false alarms.

Comments. This is also a standard assumption, and in this context is a statement about
the completeness of @;—mnamely, that a primitive’s detectability is influenced only by its
inherent description and is not influenced by other primitives or unmodeled effects. This
assumption is violated by effects such as obstruction, in which a primitive’s detectability
might be adversely affected by the locations of other primitives. A relaxation of this
assumption to accommodate obstruction will be examined in Chapter 6.

Assumption 3. Any primitive generates at most one report in each 1mage, and any
report 1s attributable to at most one primitive.

Comments. This assumption was inherent in the introduction of the label parameters
in (3.15) and essentially states that the targets under consideration can be well-modeled
as spatially distributed sets of discrete primitives—an assumption that is made implic-
itly by the parametric scattering representations of many of the efforts described in
Section 2.4 (though not motivated by data association concerns as it is here). This is
similar to assumptions made in many other data association contexts, including mul-
titarget tracking [5,63]. This assumption neglects scatterer-interaction effects such as
multiple-primitive reflections. Chapter 7 includes a detailed analysis of a target from
which multiple-primitive reflections are observed; the results of that chapter suggest
that the algorithm is relatively robust to this type of primitive coupling. In Chapter 8
we examine possible approaches to dealing with scatterer-interaction effects explicitly.

Assumption 4. Any report in any image corresponding to the ith primitive depends
only on 8;; furthermore, reports in a single image and between images are conditionally
dependent given @ and A, whether they are detections or false alarms.
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Comments. Again, this is a standard assumption in most data association applications,
and like Assumption 2 is a statement about the completeness of our parameterization.
Phenomena that cannot be adequately described in the context of the chosen parameter-
ization or by the assumed physical models could compromise this assumption. One such
phenomenon—naimely, responses observed from noncanonical primitives—is considered
in Chapter 7.

Assumption 5. The component measurements of each report Zy ; are conditionally
mdependent given @ and X, whether the report is a detection or a false alarm.

Comments. This assumption, like Assumptions 2 and 4, can also be viewed as a state-
ment about the completeness of 8. Its use is a bit of an idealization: for instance, we
might expect bright responses to yield better x; ; measurements, thus coupling x; ;
and ag ;. As we will discuss in Chapter 8, however, the relaxation of this assumption
introduces no conceptual changes to our algorithm. Chapters 6 and 7 include results
from targets in which this assumption is violated.

Together, Assumptions 1, 2, and 3 imply the conditional independence of the label
parameter vectors for each image:

K

p(A0) = T] p(Axl6). (3.20)
k=1

Similarly, Assumption 4 implies that p(Z|X, @) can be factored as

K K [ M
p(ZIX,0) = [ p(ZelAe. 0) = [ | [12(Zr;s10e.0) | - (3.21)
k=1 k=1 \j=1
Assumption 5 provides a further factorization:
P(Zy j| Ak 5, 0) = p(Xk 5| Ak s> @) Pak j| Ak, 5> 0) P(tk | Ak s, 0)- (3.22)

Although, as indicated in the comments above, there are situations in which these
assumptions will fail, they are largely realistic and standard in similar problems. The
last three chapters of this thesis are dedicated in large part to examining relaxations of
these assumptions in order to accommodate a greater range of real-world effects.

To complete the measurement model of (3.19) we now need only specify the terms
on the right-hand sides of (3.20) and (3.22). The framework provided by these equations
is quite general, in the sense that they allow a wide variety of possible models for the
dependence of Z on 8. In the following two sections we construct a specific measurement
model that enables us to demounstrate our model generation technique in a concrete
framework in subsequent chapters. A different choice of p(Ax|@) in (3.20) or of the pdfs
on the right-hand side of (3.22) would lead to an algorithm only cosmetically different
from the one presented here. We now specify the terms of (3.20) and (3.22) in turn.
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B 3.3.1 Coarse-Level Uncertainty Model

The imagewise identity-uncertainty term p(Ax|@) required by (3.20) is almost com-
pletely determined by Assumption 3 and the constraints it imposes on Ag: no more
than IV of its elements may be nonzero and it cannot contain the same nonzero index
twice. To facilitate specification of p(Ag|@), we introduce a vector of (unobservable)
primitive-detection indicators

e=1| 1 |, (3.23)

where each 0; ;, is a binary indicator signaling whether primitive ¢ generated a report in
image k, .e.:

§ip = 1, %f Akj = z for som'ej =1,..., My, (3.24)
’ 0, if \pyj#eforall j=1,..., M.
(Thus the scenario of Figure 3.3 would give §; = [1 l]T, 6y = [1 O]T, and 63 =
[1 1]T.) We may then write
P(Ak|0) = p(A|Fi, 6k, 6) p(F, 61]6), (3.25)
which Assumptions 1 and 2 tell us is equivalent to
N
P(Ak]60) = p(Ak|Fk, 61, 0) p(Fr) [ p(6ix165). (3.26)
=1

Note that given Fj and 8; the only remaining uncertainty in Ay is the ordering of its
entries. If there is no systematic or preferred ordering, then each permutation is equally
likely and we have

-1
Dk Fe0.0) — ((ﬂﬁ) (M — Fkn) - (3.27)

For p(F}), we assume a standard Poisson false-alarm model that gives us the pmf

e*'YFAV(/yFAV)Fk
F! ’

p(Fy) = (3.28)
where V' denotes the sensor volume, vp 4 is a false alarm rate which may be estimated by
running the feature extractor on characteristic imagery, and where Fjy € Z implicitly.
To specify the third and final term of (3.26), we model a primitive’s detectability as a
function of its RCS at any viewing angle. (This function can be estimated by running the
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feature extractor on characteristic imagery containing scatterers of known amplitude.)
We denote this probability-of-detection function as Pp(.) and write

PD;CJ = PD(A(gia wka d)k))v (329)
so that
. ) = I Noik (1 _ I N1—6; 1
P(6ik|0i) = (Ppj;)°* (1 = Ppj ;)" "ok (3.30)
The product of NV of these terms can be expressed as
N N PDI
E Ak
Hp(6i7k|9i) = H (1 — PD;c,i) : H I—Pfk] (331)
i=1 i=1 Ak, 70 DkAr s

We can now combine (3.27), (3.28), and (3.31) to obtain a complete model for the
coarse-level uncertainty in image k:

e_'YFAV</-}/FAV)Fk N , PD;@ Ak
Ar|0) = . 1—Pp,..)- — 3.32
P(Ael€) My! 1:[1( Dk) )\H 1—Ppyy, . (3.92)
i= Gk #0 Ay

The overall coarse-level pdf p(A|@) is simply the product of K of these terms as in
(3.20).

M 3.3.2 Fine-Level Uncertainty Model

Specification of the distributions of report parameters in (3.22) requires consideration
of two cases: one in which the report under consideration is a detection (i.e., Ay ; # 0),
and one in which it is a false alarm (i.e., Ay ; = 0). We model false alarms as being
uniformly distributed throughout a SAR image, equally likely to be classified as an even-
or odd-bounce scatterer, and having amplitudes that are tabulated in an empirical pdf
pra(.) (obtained, like yp4 and Pp(.), by processing characteristic imagery), so that

1
Pl = 0.6) = 17 (3.33)
1
Pt =0.0) = 5. (3.34)
and
plakj| Ak = 0,0) = pralag;). (3.35)

For a report corresponding to a detected primitive, the physical and imaging models of
Chapter 2 provide a basis for the form of each term in (3.22). In particular, x; ; can
be considered a measurement of my, (9)\,9,].) in (3.3), and we model

exp [_% (Xk,j — Tk (gAk,j))T R (kaj ~ Tk (9)"“’1'))}

Ak #0,0) =

(3.36)
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(i.e., as a Gaussian with mean (6 )\k’j) and covariance R), where R can be estimated
from characteristic imagery. Additionally, if each SAR image is narrowband and narrow-
aperture (so that a scatterer’s RCS throughout the phase history shows little variation
from its value at the center frequency and center viewing angle), then a; ; will be a
good measurement of A(6), ., Yk, ¢x) in (3.5), and we model

. (arj — A(Ox,, Uk &1))? | (3.37)

T 952
205

1
plak | Ak #0,0) = @ro2yifz P

(2mwo?

where o2, like R, can be estimated from characteristic imagery. Finally, to model k. j,
we assume the availability of an n; x 2 confusion matrix p (obtained by processing
characteristic imagery containing primitives of known type), such that

Ly St = p(trjl Ak #0,0). (3.38)
To simplify notation in subsequent expressions, we write

(3.39)

/
Pk = [P]e;k],7tk,]-

for any detection. We can now combine (3.33)—(3.39) to yield the fine-level uncertainty
model for image k:

Fy,
P(Zk|)\k,9)=(%> ' H pra(ag;)

JiAg,; =0
exp (—ﬁ(aw — A(G)\kyj,ﬂ}ka¢k))2> ,

L (2m02)1/2 Pk j (3.40)
exp (_% CAUMEE IS S CACWE X’“j))

j:};[#o 27(det R)1/2 '

The overall fine-level pdf p(Z|A, @) is simply the product of K of these terms as in
(3.21).

H 3.3.3 Complete Measurement Model and Formal Estimation Statement

We now have models for p(Z|A, @) and p(A|@) that can be combined to yield a complete
measurement model p(A, Z|@). This can be expressed as

K

p(AZ16) = [ [ p(Ak: Z416), (3.41)
k=1
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H quantity | description H

R 2 x 2 covariance of x;, ; for detections
p ng X 2 confusion matrix of ¢ ; for detections
o? variance of ay, ; for detections
Pp(.) | function mapping scatterer amplitude to probability of detection
pra(.) | pdfof ai ; for false alarms
YFA false alarm rate

Table 3.2. Measurement-model parameters and functions. These terms comprise a statistical charac-
terization of the feature extraction process.

where
emwaV ()t N
p(Ak, Zi|0) = o ‘2 .H(1 — Ppj,) - H pralar,;)
+ i=1 3 Ak, =0
Ppiy, . €xp (—#(am — A0y, Uk ¢k))2>
H 7/k,] . a INTE . p;c,] (342)
Gidk ;70 1- PDk)‘k,j (2mog)
1 T
H exp (—g (ﬂk(g)\,w-) — Xw) R! (ﬂk(e)\k’j) — XkJ))
1/2 .
540 27(det R)

Table 3.2 summarizes the parameters and functions of (3.42) that must be specified by
estimation from characteristic imagery or by other meauns.

The measurement model of (3.41) and (3.42) is a complete description of the prob-
abilistic relationship of extracted features Z to target parameters 6. Our goal is the
maximum likelihood (ML) estimation of 8 from Z, i.e.,

0= 7|6) = WAL 3.43
argmgxp( |6) argmgxgp( . Z16), (3.43)

where A is the set of all possible A. The chief difficulties in obtaining such an estimate
are the vast size of A and the structure that the summation over A imparts to p(Z|6).
In particular, p(Z|0) is a high-dimensional mixture density fraught with local maxima.
Any attempt to obtain € as in (3.43) must reckon with these fundamental difficulties.
This is the focus of the next chapter.
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Chapter 4

An Expectation-Maximization
Approach to Model Generation

HE measurement model of (3.42) relies on the introduction of a vector of un-

observable label parameters A describing the origin of each report. This vector
provides not only a convenient vehicle for the specification of a measurement model,
but also a conceptual foothold for the estimation of the target parameters. Specif-
ically, if these label parameters were observable—if report data could be associated
across images—estimation of 6 would be straightforward, with p(Z|A, 8) providing a
conditional likelihood function that could be maximized by standard means to produce
an ML estimate [97,105]. The unobservability of A, however, greatly complicates the
problem.

The chief difficulty facing almost all data association problems [5, 19, 63, 64, 98,
110], including the one described here, is the combinatorial proliferation of possible
correspondences that make direct maximization of the marginal likelihood function
p(Z|0) intractable. One way to manage the combinatorial explosion of possibilities is
to dismiss as infeasible a majority of associations corresponding to extremely unlikely
events; we will utilize a technique known as gating, to be described later, for this
purpose [5]. Even with such a simplification, however, the remaining data association
problem is still formidable and requires a powerful tool for solution. The tool we apply
is the expectation-maximization (EM) method [28,71,75,91]. In the following section
we briefly describe the EM method, and in subsequent sections describe its application
to the problem of model generation in the framework we have constructed.

H 4.1 The Expectation-Maximization Method

The EM method, first proposed in 1977 by Dempster, Laird, and Rubin [28], is an
iterative procedure for producing an ML estimate of parameters in incomplete-data
problems, i.e., when there is a many-to-one mapping from a postulated set of “complete”
data to the set of observed data. The general incomplete-data problem is as follows.
An ML estimate of ¥ is sought from a vector of observed data Y:

Uy, = arg m‘f;mxlogp(Y\\Il). (4.1)

67



68 CHAPTER 4. AN EXPECTATION-MAXIMIZATION APPROACH TO MODEL GENERATION

The maximization of (4.1) is often difficult to achieve, but might be simpler if Y could
be augmented with a vector of unobserved data X. The vectors X and Y together form
the complete data, distributed according to p(X,Y|¥). There is said to be a many-to-
one mapping from the set of complete data to the observed data because in general X
might take on any one of a number of values for a given observation Y.

The EM method achieves the maximization of (4.1) by successive maximizations of
an expected-log-likelihood function Q(.) that is related to p(Y|¥) but is generally easier
to maximize. Each iteration of the EM method consists of two steps: an expectation
(E) step and a maximization (M) step. The E step entails calculation of

Q(‘I"‘Il[n}) =F [logp(X,Y|\I;) ‘ Y, \Il["}]
:/ [logp(X,Y|lIl)] p(X|Y,\P[n])dX’ (4.2)
X

where @[ is the estimate of ¥ from the nth iteration and X is the space from which
X is drawn. The M step then maximizes this quantity to obtain a new estimate of W:

el = arg m\I?XQ(\II\‘II["]). (4.3)

(Figure 4.1 is a conceptual representation of the EM method.) The iteration between
the E and M steps is essentially a bootstrap approach to generating an estimate of
W given little initial knowledge of the hidden data X: as ] improves, the E-step
calculation of Q(lIl\‘Il[n]) provides a better local approximation to the true log-likelihood
function, and as Q(\IJ|\II["}) improves, the M-step maximization yields a better estimate
w1 fact, one property that makes the EM method quite attractive is the guarantee
that the likelihood of successive estimates will never decrease [28], i.e.,

p(Y [T > p(Y @), (4.4)

Thus, as long as the likelihood function is bounded, the iteration will result in conver-
gence to at least a local maximum in the likelihood function.

Note that the EM method does not provide any indication of how to carry out
the expectation of (4.2) or the maximization of (4.3). The precise forms of these
equations will depend on the problem at hand, and there is no guarantee that either
step will be easy. The calculation of p(X|Y, lIl[”]) in the E step might be intractable, or
Q(®|®!") might be highly nonlinear and difficult to maximize in the M step. Selection
of an initial estimate ®(% (required to begin the iteration) might be problematic. In
short, the relative simplicity of (4.2) and (4.3) often belies the sophisticated machinery
required to implement the EM method for a given problem.

The remaining sections of this chapter describe an EM-based algorithm for target
model generation (i.e., for implementing the “model generation” stage of Figure 3.1).
In this context, the observed data is Z and the hidden data is A. These quantities

'Further convergence properties of the EM method are examined in [11,71,117].
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Y
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Calculate QW) Wit =agmax Q(uwI)

Figure 4.1. General form of the EM method.

are related to 8 according to the measurement model p(A, Z|@), which determines the
expected-log-likelihood function Q(0|6")). A block diagram of our basic algorithm
is depicted in Figure 4.2. The E and M steps that form the core of this algorithm
are described in Sections 4.2 and 4.3, respectively. Because the EM method is an
iterative procedure, it requires an initialization 0[0]; our procedure for producing such an
initialization is described in Section 4.4. In addition, while in principle the EM method
can deal directly with unknown model order NV by introducing this quantity as part of
the complete data, this adds an undesirable level of complexity to our algorithm. As a
result, the E and M steps we develop in Sections 4.2 and 4.3 assume that NV is specified.
The initialization stage and a model-order adjustment stage, described in Section 4.5,
together enable adaptive selection of model order as the algorithm progresses. Finally,
the EM method requires a criterion for determining convergence and terminating the
iteration. Our termination criterion is described in Section 4.6.

M 4.2 The E Step

In our framework the form of the E step of the algorithm can be stated in specific terms
as

Q616") = E [log p(, Z|6) | . 61" 1]

= Z [logp(/\, Z\G)]p(/\‘zv in-1),
AEA

(4.5)

where A is the set of all possible A. The derivation of Appendix B shows that with N
specified, (4.5) can be written as

N

Q(616") = 3" Qi(8,]6!") + Cc. (4.6)

1=1
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(Section 4.4)
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Y
target model

Figure 4.2. Implementation of an EM-based model-generation algorithm.

where each of the N terms Qi(0i|0£n}) depends only on primitive 7 and can be further
decomposed into a sum of K terms, one for each image:

(016, ZQM (0:161"). (4.7)
where
Mk !
Ppy. ; 1
qplnly o n D ) 2
Qik(0:0;) = ;Pr()\ku = i|Z, 6!") |log =Py, 202 (arj — A0, Yr, 1))
/ 1 W' p-1 .
+log py j — 5 (Xpj — 71(6:)) R™ (xx; — m1(6:))

2

+ 10g(1 - PD;c7i)7
(4.8)
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or, equivalently,

Qi (6,]01") = Pr(8; ), = 1|Zy, 81) log Py}, ; + Pr(6; = 0|Zy, 01")) log (1 — Ppl,)
My, 1
+ ZPI(AkJ = ’L|Zk,9[n}) - ﬁ (ak,j - A(9i7¢k7 ¢k>)2

=1 a

1 _
+log pj, ; — 5 (X — me(0:)T R (x; — mi(65)) .-

(4.9)

In other words, the expected-log-likelihood Q(G\O["}) separates into INK terms, each
depending only on a single primitive and on the reports in a single image. This de-
coupling is a consequence of our independence assumptions of Section 3.3. (A similar
decomposition will be possible in the M step.) As suggested by the form of (4.9), each

QM(GZ'\GE"}) can be viewed as a combination of My + 1 different penalties associated
with primitive ¢ in image k: a detection component penalizing any mismatch between
the primitive’s actual presence in image k and its predicted detectability in that im-
age, and M} components each penalizing the mismatch between the components of a
single report in image k£ and the primitive’s predicted location, amplitude, and type
in that image. Each of the M report penalties is weighted by a report-to-primitive
correspondence probability Pr(\ ; = i|Zk,9["]) that remains to be calculated.

Implementation of the E step requires a total of N > szl My, correspondence proba-
bilities to be calculated—one for each (i, j, k) triplet. In theory this can be accomplished
via Bayes’ rule:

B > Apne =i PNk, Zi |01
ZAkEAk p()‘ka Zk‘g[n})

where Ay is the set of allowable A;. Note that the assumptions of Section 3.3 greatly
simplify the calculation of the report-to-primitive correspondence probabilities by re-
quiring sums over only Ay instead of the much larger set A. Even with this simplifi-
cation, however, the computation of (4.10) is typically intractable even for problems of
modest size due to the combinatorial dependence of the size of A on N and M. As
indicated previously, we overcome this difficulty by gating [5,63], a common and easily
justifiable simplification. Specifically, complete enumeration of A entails consideration
of all possible associations, even very unlikely ones in which measured locations xy ;
are associated with target primitives that project to points in the slant plane far from
X j- Gating is a method for excluding such unlikely pairings from consideration by

Pr(\j = i|Zy, 8) : (4.10)

adaptively defining a set of feasible associations AL"] C Ay at each iteration, where

Agcn] = {Ak : HXk’j - Wk(e[):;]’j)H < Tgates J=1... 7Mk}’ (4'11)
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Figure 4.3. lllustration of gatin%. Each primitive estimate at iteration n defines a circular gate region
)

of radius 7gate centered at 7rk(0£n , the predicted location of primitive ¢ in image k as in (3.3). Gating

defines a set of feasible associations ALH] that is limited to those Ap € Ay for which each report x ;
lies within the gate region of primitive Ay j, as in (4.11). In this illustration, N = M, = 5, so (3.18)
indicates that Aj contains 1546 elements; the set of feasible associations, however, consists of only
twelve A\g.

and then making the assumption that
PAZiOl) =0, Ay € AL\ AL (4.12)

(Typically 7gate is taken as a small multiple of (trace R)'/2.) Figure 4.3 is an illustration
of how gating produces a set of feasible associations _/NXLn] that is much smaller than the

original set Aj. The effect of gating is thus a dramatic reduction in the number of
Ak, Z|0™) that must be calculated to obtain Pr(Ag; = i|Zy, 6!") as in (4.10). This
makes the E step feasible. Gating has the added benefit of enabling non-overlapping
gate regions to be considered independently in the calculation of the correspondence
probabilities, further simplifying the E step.

A necessity for beneficial application of gating is that the current primitive location
estimates 9;‘["] must be reasonable approximations to the true primitive locations 6%, or

else JNXE?] will likely exclude true report-to-primitive correspondences.? (This emphasizes

2The likelihood of this eventuality can be reduced by choosing a large value for 7g.s.. However, this
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the necessity for a good initial estimate 6[0}.) Assuming, however, that the location
estimates at iteration n are sufficiently close to the 6 for the correct reports to be
included in each gate region, gating has the desired effect of dismissing only extremely
improbable report-to-primitive correspondences from consideration.

Before proceeding, we note that although the precise form of QM(GZ‘\GE"}) in (4.8)
depends on the precise form of p(A,Z|0), the basic decomposition of Q(0|9[n]) as in
(4.6) and (4.7) would be possible for any measurement model, given the assumptions
of Section 3.3. In particular, a different choice of measurement model would produce
an expected-log-likelihood that is cosmetically different from the one here—but that

would still decouple into N K separate terms and would still entail calculation of the
Pr(\j = i|Zy, 8™).

W 4.3 The M Step

The M step requires maximization of the E step’s expected log-likelihood Q(G\G["}) with
respect to 0, i.e.,

ot = arg max Q(e)6"). (4.13)

The separation of Q(G\G["}) into individual terms for each primitive in (4.6), made
possible by the independence assumptions of Section 3.3, implies that the maximization
of (4.13) may be achieved independently for each primitive. In particular, the M step

requires NV independent maximizations, each of a single Qi(ei\egn}) over 0;:
GE"H} = arg max Qi(Gi\OEn}). (4.14)

Since 8; includes both continuous parameters (6%, 62, 0, and possibly 0!') and a discrete
parameter (6!), we are faced with a hybrid maximization problem for each primitive,
with the discrete parameter limited to a small, finite space of n; elements. We thus
maximize Qi(Oi\GEn}) by performing n; separate candidate maximizations over the con-
tinuous components of 6;, one for each possible value of §!. Examination of (4.8) reveals
that each candidate maximization is nontrivial: there is a complicated relationship be-
tween Qi(0i|9£n]) and the set of continuous parameters. Specifically, the pose, location,
and radius terms are coupled through m;(8;), and the pose and base amplitude are
coupled through Ppj ; and A(8;, ¢, ¢r.).

As it turns out, we can circumvent these difficulties by utilizing a slight modifi-
cation of the basic EM method that is known as expectation-conditional-maximization
(ECM) [71,72]. ECM’s fundamental modification to the standard EM method is its
decomposition of the M step’s joint maximization into multiple simpler maximizations,

is done at the cost of including more unlikely associations in ALH] in cases where the estimated primitive
locations are accurate.
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each over a partitioned subvector of the complete parameter vector. For instance, for
each of the n; candidate maximizations, we can partition 8; as

ot
_p| 0:(1)
=P | gy | (4.15)
0:(3)
where 6! is set to a fixed value, where
6,(2) = 6. (417)
0.5 = g | (.18

and where P is a permutation matrix that serves to reproduce the defined ordering of

the elements of 8; as in (3.2). ECM then allows us to form 9[n+1|0;?}

i , the maximizing 6;
conditioned on a type of 6!, as

ot
[n+1]6]

[n-+1]6¢] 6, (1)
0" =P | e , 4.19

6}n+1|6'ﬂ (3)

where each 0£n+1|0£](.) is a conditional maximization over a single partition only:
6" = argmax Qi (6:00) 01, 01"(1) 617 (2), 61°3) ) (4.20)
61" (@) = argmax Qi (6:2) [ 01,071 1) 67 (2). 6173) ) (4.21)
6/ @) = argmax: (0:3) 01,07 M), 67 ) 0lm) ) 2)
[n+10]

is thus obtained by a process that can be

viewed as a single-iteration coordinate ascent [8].) The M-step estimate 9£n+” is then

taken to be the vector from the set of the n; type-conditional maximizers that achieves
the greatest expected-log-likelihood:

(The composite parameter vector 6

7

0£n+1]=arg max Qi(GEnHWﬂ\GEn}). (4.23)
0[n+1|9f]

1
t_
0;=1,...n¢
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Although the GEnHJ obtained in such a manner is not guaranteed to be a global maxi-

mizer of Qi(0i|0£n]) as in the standard EM method, ECM shares EM’s monotone con-
vergence properties (i.e., the observed-data log-likelihood is still guaranteed not to
decrease at any iteration) [72]. Furthermore, although ECM convergence may require
more iterations than EM convergence for the same likelihood function, each iteration
might be significantly faster and thus the overall processing time required to produce a
convergent estimate may be shorter for ECM than for EM [71].

The ECM approach greatly simplifies the M step by decoupling components of
the objective function into simpler pieces. Examination of (4.7) and (4.8) shows that
maximization over either 6;(1) or 6,(2) requires consideration of the function

K[ . [n] PD;Ci 1 2
DS Pr(dey = iZ, 0") [log — = — —— (ax; — A(64, Ur dx)

: 1-Pp,, 20
k=1 35=1 ’ ¢ (4.24)

+ IOg(]. - PD;C7Z)> 5

the only terms in Q;(6,]6!") that depend on 6” and 6. This is a highly nonlinear
function. The maximization of (4.24) over the first partition (i.e., pose) is achieved
utilizing a coarse-to-fine search. In particular, the coarsest-level search utilizes a grid
of azimuth/elevation points spread across the viewsphere® and, if applicable, the third
Euler angle (axial rotation). Each successive refinement utilizes a local grid centered
at the maximizing point from the previous grid. The maximization of (4.24) over the
second partition (i.e., base amplitude) is also accomplished using a coarse-to-fine search,
though in a single dimension.

Examination of (4.7) and (4.8) shows that maximization over 6;(3) (i.e., location
and, if applicable, radius of curvature) requires consideration of

K My

> Pr(Mey = ilZ, 6 l—% (xkj — 7x(0:) R (x4 — Wk(@'))] ; (4.25)

k=1 j=1

the only terms in Qi(Gi\GEn}) that depend on X and ¢;. Maximization of (4.25) to
achieve estimates of 0¥ and 0] is thus a weighted least-squares problem. Defining

R} =R Pr(A = ilZy. 6") (4.26)

and

. —cosy!
H = lHk : Cogwlv’“] (4.27)

3The construction of a uniformly spaced grid of points on the sphere is generally impossible; in
fact, even choosing a set of points with roughly equal spacing is nontrivial [22]. We utilize a technique
described in [113] to generate a “Hammersley point set” on the sphere. This is a set of azimuth/elevation
points that achieves nearly uniform spacing on the sphere.
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(where Hy, is the projection matrix defined in (3.4)) for brevity, we can use the definition
of 74 (6;) in (3.3) to obtain a closed-form solution for the maximizer of (4.25):

-1

K My K My
et = (SR H R | de (1)
k=175=1 k=1 j5=1 (4.28)
gxln+1] K My 1k oM
; T -1 F T R—1
e | = (D EIR L) (DY R | e )
@ k=1j=1 k=1 j=1
(4.29)

(If the maximizing radius of (4.29) is negative, we set 87 "*1 to 0 and use the 3"+l
provided by (4.28).)

As in the E step, we note that usage of a different measurement model would
produce an M step differing only in detail from the one here, as long as the independence
assumptions of Section 3.3 still held. In particular, the independence assumptions of
that section ensure that for any specific choice of p(X, Z|0), the M step could still proceed
as a series of N independent maximizations (each of which could be implemented as
several partitioned ECM maximizations as described above).

B 4.4 Initialization Procedure

Because the EM method is iterative, it requires an initial estimate 0l to begin the
iteration, i.e., to enable the calculation of Q(G\G["}) in the first E step. In some scenarios,
such an initialization might be provided by prior information (e.g., an existing reflector-
primitive target model, or a rough model of a target constructed by a human image
analyst), but in general this initialization must be obtained from the same set of data
that is used in the subsequent EM iteration. In this section we describe our procedure
for producing an initialization 0% from Z. As indicated previously, this initialization
procedure works in conjunction with a model-order adjustment stage (described in
Section 4.5) to select the model order adaptively as the EM iteration progresses. This
model-order adjustment occurs after every M step, before the termination check, and
is capable only of reducing the model order or leaving it unchanged. This imposes the
important guideline that the initialization should be biased toward overestimation of
N: any overfit can be corrected in subsequent iterations by the model-order adjustment
stage, but any underfit is permanent.

In general, the final parameter estimate provided by the EM method is dependent
on the initialization [71]. This is especially true in situations like ours, in which A
imparts a multimodal structure to the likelihood function p(Z|0). An effective initial-
ization procedure must select a 0l in the vicinity of the maximizing mode. In other
words, the initialization procedure must implicitly or explicitly deal with the problem
of assigning correspondences between reports, since the true correspondences determine
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Figure 4.4. General form of agglomerative clustering.

the maximizing mode of p(Z|@). Our initialization procedure explicitly estimates these
correspondences in order to construct 8%, It is based on an agglomerative clustering
algorithm that operates on the set of all x; ; to group reports that are likely to have
been generated by the same target primitive. Each group of reports produced by this
agglomeration is used to initialize a single target primitive. Because the number of clus-
ters produced by the agglomeration depends on the data, the order of 0% is adaptive
to Z. As we indicate below, we can bias toward overfitting by setting an agglomeration
threshold appropriately.

Agglomerative clustering is a general procedure in which a collection of items is
iteratively grouped into distinct clusters by successively merging items and groups based
on some measure of their dissimilarity [1]. Figure 4.4 is a block diagram of the general
agglomerative clustering process. At each iteration, the two most similar items or
groups in the collection are merged. This is repeated until all remaining groups are
more dissimilar than some threshold 1. The number of clusters produced depends
strongly on 7: a large choice for n will generally result in fewer clusters than a small
choice.

Our dissimilarity measure is a chi-squared statistic that is based on the measured
report locations x; ; and motivated by the following observation: reports from different
images that can be explained by projection from a single point or closely spaced points
in R? are likely to correspond to the same target primitive. Reports that cannot be
explained by closely spaced points in R® (or reports from within the same image) are
dissimilar and should not be grouped. This notion can be made precise by examining the
total squared error of the linear least-squares error (LLSE) estimate of the 3-D location
of a hypothesized primitive responsible for a candidate group of reports. Specifically,
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suppose a candidate group Z contains m reports:
Z={Zy, ji, Ly, j,.} (4.30)

Suppose also that {k, ..., ky,} has no repeated element, so the reports are from m differ-
ent images. The LLSE location estimate for a fixed-specular-reflection-point primitive
producing these m reports according to (3.3) and (3.36) is*

m -1 m
XL(Z) = (Z H{iR—lﬂki> <Z H{iR—lka) (4.31)
=1

=1

We can write the normalized total squared error of this LLSE estimate as

m
~ 2
F(2) =Y ||HeX(B) — x|
-l (4.32)
=Y (HyX0(Z) = x5, 5,) "R (Hg XL(Z) = x5, 5,)-

It can be shown that if the m reports of Z were in fact all produced by the same primitive
according to the Gaussian model of (3.36), then % (Z) is a chi-squared random variable
with 2m — 3 degrees of freedom.” On the other hand, if the m reports correspond to
multiple primitives, then 5%(2 ) will in general be much larger and will have a noncentral
chi-squared distribution.® We thus use the chi-squared cumulative distribution function
(cdf) as our measure of dissimilarity between clusters of reports. In particular, let F,(.)
be the cdf of a chi-squared random variable with n degrees of freedom, defined as

u p(n/2)-1,-1/2

ST (4.33)

Ea(w) = Pr3 < 0) = [
0
Then for any two clusters of reports Z, and Z;, that together comprise a set of reports
Z,UZy=AZyy jys Ly jin ) (4.34)
we define the dissimilarity between Z, and Z to be

Fom 3(e2 (2, U 2Zy)), ki # k; for all i # j,

o (4.35)
1, k; = kj for some 1 <1,5 < m.

d(Zaa Zb) = {

YA similar expression can be written for radially symmetric primitives with wandering specular
reflection points (e.g., cylinders and tophats).

5This result follows from application of Theorem 9.9 of [95] to (4.32).

51f the reports include false alarms, which we model in (3.33) as having uniform rather than Gaussian
distributions, then the total squared error will have neither a central nor a noncentral chi-squared
distribution but will still generally be larger than when all reports are attributable to a single primitive.
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This provides an interpretation of 1 — 7 as a confidence level (between 0 and 1) for
accepting or rejecting a candidate group Z based on 5%(2). (Note that according to
(4.35), clusters containing two reports from the same image are maximally dissimilar
and will never be merged.) We would like to set n large enough so that most reports
attributable to any single primitive will be grouped in a single cluster, but not so large
as to group many reports from disparate primitives. In theory we could characterize
such a chi-squared agglomeration process in terms of its probability of underfitting
or overfitting a given target as a function of 7: as 7 approaches 0, any two distinct
clusters of reports are less likely to be agglomerated (even if they correspond to the
same primitive) and the probability of underfitting goes to 0; as i approaches 1, distinct
clusters of reports are more likely to be agglomerated (even if they correspond to distinct
primitives) and the probability of underfitting goes to 1. Rather than attempt to
characterize this variation completely, we set 7 to a value empirically determined to
cluster most reports attributable to a single primitive while still giving a low probability
of underfitting, so that the initialization is likely to contain more hypothesized primitives
than are necessary to describe the target. Some of these primitives will be removed in
the subsequent model-order adjustment stage.

The chi-squared-statistic agglomerative clustering algorithm described here forms
the heart of our initialization procedure. A block diagram of the complete initialization
procedure is presented in Figure 4.5. A simple threshold test is first used to screen
the complete set of reports Z, rejecting those with low amplitudes (which are likely to
be false alarms) and passing only those brighter than some threshold ai, to the chi-
squared clusterer. The chi-squared agglomeration then proceeds as described above,
producing a set of report clusters. Clusters containing only a small number of reports
(say, two or three) are likely to be spurious and not necessarily indicative of a primitive;
clusters containing fewer than some minimum number ny;, of reports are thus removed
at the conclusion of the agglomeration. Each remaining cluster is then used to initialize
a single primitive vector 050} by means similar to those of Section 4.3. In particular,
suppose that the ith cluster comprises reports Z as defined in (4.30). We first initialize
base amplitude to the maximum amplitude among Z:

0?[0} = max dag, j, — Cpol- (4.36)

n=1,....,m

We then use the implicit estimate of A provided by the grouping of Z to define an
initial set of estimated correspondence probabilities:

1, ZkJ‘ € Z,

(4.37)
0, Zy; ¢ Z.

Pr(\; = i|Zy, 617Y) = {
These correspondence probabilities are then used to obtain the type, pose, location, and
radius components of OEO] by means identical to those described in Section 4.3, i.e., by

n¢ candidate maximizations of (4.24) and (4.25) using the correspondence probabilities
of (4.37).7

"Note that a location estimate is available as a byproduct of the chi-squared-statistic clustering; this
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Figure 4.5. Block diagram of initialization procedure.

Before proceeding, we make two observations concerning the agglomerative cluster-
ing process. First, the agglomeration described here is based solely on report location,
though it can easily be extended to include type and amplitude information. Second,
note that the procedure we have described is not perfectly designed for grouping reports
produced by cylinders and tophats since, as is evident from (3.3), the apparent specular
reflection point for such primitives changes from view to view due to the radial symme-
try of these reflectors. As a result, the dissimilarity values computed by our clustering
method for a group of reports produced by a tophat or cylinder will generally be larger
than those computed for trihedrals or dihedrals. While it is possible to design a more
sophisticated clustering method to deal with this effect, we have found our simpler al-
gorithm to be sufficient to produce a satisfactory initialization for the EM iteration (see
the results in Chapter 5).

B 4.5 Model-Order Adjustment

Our model-order adjustment stage counteracts the overfitting induced in the initializa-
tion by gradually removing extraneous primitives. This is accomplished by examining
the empirical evidence for each hypothesized primitive’s existence after each M step
and removing any primitives whose estimates have converged to values which are not

strongly supported by the data. More precisely, after each M step we calculate an
[n]

empirical probability of detection ﬁf for each primitive ¢ for which ;" has converged:

K
. 1
P = K ;Pr(éuk = 1|Z, 6"
o (4.38)
= =203 PO = 2,60,
k=1j=1

(The Pr(A\g; = i\Zk,G["}) terms are available from the E step of the iteration.) In-
tuitively, if ]5? is near zero, then Z provides little evidence to support the hypothesis

estimate is the same as that provided by (4.28) using the correspondence probabilities of (4.37). For the
cylinder and tophat candidate maximizations, (4.29) must be used to obtain a new location estimate
along with a radius of curvature estimate.
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of a target primitive whose parameters are as given by ng}. This suggests that ng}

is either a poor estimate (possibly due to convergence of the EM iteration to a local
maximum of the likelihood function) or that the model order is too high. In either case
it is appropriate simply to remove the primitive from the estimate and decrement the
model order. We make this decision by comparing a converged primitive’s calculated
]5? to a type-dependent threshold (from a set of n; thresholds empirically chosen to
reflect the fact that primitives with highly specular responses will almost certainly be
detected in fewer images than those with broader responses). This model-order adjust-
ment stage ensures that all primitives contained in the final estimate of 6 will have
empirical probabilities of detection at least as great as their type-dependent thresholds
dictate. Omne drawback to our approach is the increased computational burden in the
early stages of the EM iteration, before the extraneous primitives have been eliminated
and the hypothesized model order is still artificially large. The benefit of this extra
computation is the increased adaptivity and robustness of the final estimate .

M 4.6 Termination Criterion

Rather than directly monitoring p(Z|6™) for convergence, we adopt the computation-
ally simpler and widely used procedure of monitoring the estimates 61" themselves. In
particular, at the conclusion of iteration n (see Figure 4.2), the algorithm is terminated

[n]

7

if the model order was not adjusted between iterations n — 1 and n, and if each 6
satisfies the following conditions:

[n—1]

gttt = gl (4.39)

oxt] — pxle ] H < (4.40)
o] — 95["_”‘ < (4.41)
opln — 9?[”’”‘ < T, (4.42)
(Pt Pty < o (4.43)
rot (9P gPI=1y < o (4.44)

where each 7, is a small positive tolerance, <(.,.) is the angular separation on the view-
sphere between two Euler-angle poses, and rot(.,.) is the absolute difference between

the rotation-angle components of two Euler-angle poses. If any OEn] fails to satisfy any
of (4.39)—(4.44), or if the model order was adjusted in the current iteration, then the
termination criterion fails and the algorithm progresses to iteration n + 1.

B 4.7 Other Implementation Details

The previous sections give a complete overview of our basic algorithm for estimating
target models from SAR data. This section highlights a few issues that are, conceptually,
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H stage dominant contributor approximate complexity H
initialization chi-squared clustering O(K*M?)
B step correspondence probability ~ O(NKM) for
calculation small 7gate
M step pose maximization O(NKny)
model-order adjustment — O(NKM)
termination check — O(N)

Table 4.1. Complexity of each stage of the model generation algorithm. The second column lists the
component that dominates each stage’s computational burden. (The model-order adjustment stage and
the termination check are computationally very simple and are essentially single-component stages.)
The quantity M that appears in several terms of the third column is defined as the average number of
reports in each image. Note that the E-step burden depends on 7gate-

of secondary importance, but are nevertheless relevant to the implementation of the
algorithm as a computational procedure.

H 4.7.1 Computational Burden

The implementation of the algorithm described in this chapter is made feasible by the
independence assumptions of Section 3.3. In particular, these assumptions decouple
Q(G\G["}) to the point that the computational complexity of each EM iteration is roughly
linear in K and N. The complexity of each individual stage of the algorithm (see
Figure 4.2) is summarized in Table 4.1. We now examine the relative burdens of these
stages in closer detail.

The computational burden of the initialization stage is dominated by the agglom-
erative chi-squared clustering. Conceptually, this agglomeration requires calculation of
LLSE location estimates and associated squared errors for all pairs of report clusters
at all iterations of the agglomeration. This suggests that if Np reports survive the pre-
agglomeration amplitude thresholding (see Figure 4.5), then the computational burden
of each agglomeration iteration is roughly quadratic in Ng. Furthermore, if the original
set of Np reports is eventually grouped into a small number of clusters, the overall
agglomeration will require nearly Ng iterations. We might thus expect the overall com-
putational complexity of the agglomeration to be cubic in Np. In practice, a significant
simplification is possible: many of the calculations required at any iteration will already
have been performed in previous iterations, and each iteration will require only on the
order of Np new calculations of LLSE location estimates and associated squared errors.
The overall complexity of the initialization stage is thus quadratic in Ng. Because Np
is roughly linearly proportional to K and M (the average number of reports in each
image), the computational burden of the initialization stage is quadratic in K and M.

As described in Section 4.2, the independence assumptions of Section 3.3 greatly
reduce the number of calculations required to implement the E step by enabling the
report-to-primitive correspondence probabilities to be calculated independently for each
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image. The E step complexity is thus linear in K. Gating provides a further simplifi-
cation within each image by significantly reducing the number of feasible associations
and enabling nonoverlapping gate regions (i.e., gate regions that have no reports in
common) to be considered independently. The complexity of the computation of all
correspondence probabilities for a single image & depends strongly on 7gae, the gate

radius. In the limiting case as rgate — 00, we will have AE:} ~ Ay (see Section 4.2) and
the computational burden will thus explode combinatorially as N and M} increase. In
the case where gate regions are nonoverlapping this burden is merely linear in N and
M. In practice, for reasonably sized 7gate, most gate regions do not overlap and thus
the E-step burden is generally nearly linear in N and M, in addition to K.

The independence assumptions of Section 3.3 also simplify the M step considerably,
allowing us to obtain 0" as N independent maximizations, each requiring n, candidate
maximizations over a single ;. The M step is thus linear in N and ns.2 The most
computationally demanding component of each candidate 8; maximization is the parti-
tioned pose maximization, which is implemented as a coarse-to-fine search in either two
Euler angles (for cylinders and tophats) or three Euler angles (for dihedrals and trihe-
drals). Evaluation of the objective function (4.24) at each point in this search requires
calculation of Sy (.) and other terms at K different viewing angles. The complicated
nature of the SQQZ-) (see Section 3.1 and Appendix A) makes this a nontrivial task. The
pose maximization takes much longer than the other components of the M step (i.e.,
the closed form maximization over location and radius and the one-dimensional coarse-
to-fine search over base amplitude) and adds a linear dependence on K to the M-step
complexity. In practice, the M step tends to dominate the computational burden of the
overall algorithm.?

Compared to the initialization, E step, and M step, the termination check and
model-order adjustment stage are inconsequential to the overall computational burden
of the algorithm. The model-order adjustment stage has a complexity that is linear in N
and /K, whereas the termination check has a complexity that is linear in NV and constant
with respect to K, but neither stage adds significantly to the overall complexity of the
model generation algorithm.

H 4.7.2 Convergence Behavior

Although the likelihood attained by successive M step estimates ol is guaranteed not
to decrease at any iteration, there is in general no guarantee on the speed of conver-
gence [71]. In practice, due to the separable nature of our Q(8|6/"]), we tend to observe
convergence of some 6; before others. Thus while most 8; might converge to station-

8In Chapter 7 we present a modification to the basic algorithm that effectively reduces the M step’s
computational dependence on n; to a constant.

9To mitigate the effects of the pose maximization on the overall computational burden of the algo-
rithm, we coarsen the initial search grid once a primitive reaches convergence, i.e., when the estimate
of 6; has reached a mode and is unlikely to change. Thus the M step will proceed more quickly as more
primitive estimates converge.
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ary values after only a few iterations, a single nonconvergent 8; can greatly prolong
the duration of the overall estimation, since the EM cycle requires calculation of all
Pr(A\p; = i|Z, 0!") and maximization over all 8; at each iteration regardless of how
many of the 6; have converged.

Empirical observation shows that as ng] converges, its associated report-to-primitive
correspondence probabilities Pr(Ay ; = i|Zy, 6!") tend to 0 and 1 for all k and j. (This
has a self-reinforcing tendency on the estimates: once all correspondence probabilities

[n]

equal 0 or 1, there is no internal pressure for 8; to change from iteration to iteration.)

Furthermore, the GE"}

that take the longest to converge are those for which all or most
Pr(\g; = t|Zy, G[n]) tend to 0. These hypothesized primitives have little or no empirical
evidence for existence, and as such their base amplitude estimates tend to be so low as to
make their detection in any image unlikely. Although such primitives would eventually
converge and be removed by the model-order adjustment stage, we preemptively remove
any primitive whose base amplitude drops below a certain threshold 7, (chosen so that
Pp(ng) is near 0). This speeds the ultimate convergence of the algorithm. As a practical
matter, we also impose a maximum number of iterations. If this limit is reached, the
last iteration’s estimate 6" is subjected to one last model-order adjustment step, and

the primitives that survive are used as the final estimate.

M 4.7.3 Numerical Issues

Maximization over location and radius as in (4.28) and (4.29) requires inversion of a
matrix formed as a weighted sum of deficient-rank matrices HzR_lHk or HiTkR_lHLk,

with weights given by Pr(\g ; = i|Zy, o). 1t Ogn] is a poor estimate or if primitive 7 is
spurious, then most of these correspondence probabilities will be nearly zero, and the
inverting matrix may be poorly conditioned. Additionally, even if multiple correspon-
dence probabilities are nonzero, in degenerate cases the sum of these matrices might
not achieve full rank. If the condition number [43] of the inverting matrix rises above
a certain value at any iteration, the location and radius estimates are not updated at
that iteration.'?

Another numerical issue arises in the generation of the coarse grid of points on the
viewsphere for the pose maximization. These grid points are generated according to
a deterministic algorithm (the “Hammersley” algorithm of [113]). Observation shows
that if the same coarse grid is used repeatedly, estimates of 6F tend to cluster around
the grid points. To correct for this tendency we rotate the coarse-level grid by a random
angle before conducting each coarse-to-fine pose search. Similarly, we apply a random
offset to the coarse 1-D amplitude grid before performing each coarse-to-fine amplitude
search.

1071y degenerate cases in which the inverting matrix fails to achieve full rank despite multiple nonzero
correspondence probabilities, we update the observable-subspace component of the primitive’s location
and radius estimates.



Chapter 5

Experimental Results from the
Basic Algorithm

N Chapter 3 we developed a framework enabling consideration of target model gen-

eration as a data association problem; in Chapter 4 we constructed an algorithm that
operates in that framework to generate target models directly from SAR imagery. In
this chapter we present experimental results obtained by running the algorithm on sev-
eral targets. These results illustrate the basic utility of the algorithm and demonstrate
how the performance of the algorithm depends on primitive observability. We begin
in Section 5.1 by describing the basic experimental setup. In Section 5.2 we present
results obtained from algorithm runs on single-primitive targets; these results demon-
strate the dependence of algorithm performance on primitive observability and provide
benchmarks for the more complex targets that follow. Section 5.3 describes a proce-
dure for correcting a location-estimate bias observed in some of the algorithm results.
In Section 5.4 we present results from more sophisticated targets and compare these
results to single-primitive benchmarks. Section 5.5 concludes the chapter with an exam-
ination of the effects of a mismatch between the primitive dimensions used to construct
the algorithm’s scattering models and the actual dimensions of observed primitives.

B 5.1 Experimental Setup

Our target model generation algorithm associates features extracted from SAR images
to estimate target primitive characteristics. In the following section we describe the
construction of the SAR-image data sets used in our experiments. Implementation of
the algorithm also requires specification of the values of various parameters; we describe
the selection of these parameters in Section 5.1.2.

B 5.1.1 Construction of SAR-Image Data Sets

The SAR images used in our experiments were produced using XPatch, a powerful
electromagnetic-simulation software package capable of accurately simulating radar re-
turns from a wide variety of targets [41,69]. XPatch combines “shooting and bouncing
rays” (SBR) techniques [4,29,66] with PO to predict the backscattered field observed
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H parameter ‘ value H
range resolution 0.3 m
cross-range resolution 0.3 m
range pixel spacing 0.2 m
cross-range pixel spacing 0.2 m
center frequency 9.6 GHz
aperture width 3.0°
sidelobe-suppression —35-dB Kaiser window
frequency weighting (range and cross-range)

Table 5.1. Imaging parameters for XPatch simulations.

from facetized target models, .e., targets described as unions of multiple small tri-
angular planar regions. XPatch has several independent modules that can each be
used for electromagnetic scattering simulation; the two most widely used modules are
known as XPatchF and XPatchT [26,27].} XPatchF is designed primarily for simulating
RCS measurements or range profiles from targets at a single fixed viewing angle, while
XPatchT is designed to facilitate the simulation of radar measurements across an aper-
ture. We use XPatchT to produce simulated SAR imagery of the targets considered in
our experiments. The parameters used to generate these images are given in Table 5.1.
(The values of these parameters were chosen based on their similarity to the imaging
parameters of widely available data sets, such as the MSTAR data collections [73,74].)

Because XPatch produces imagery of targets in the clear, we add synthetic natural
clutter to each image.? Natural clutter observed in real SAR images varies widely in
scale and structure depending on the components of the scene being imaged [103,104].
We synthesize grassy-terrain-type clutter to add to each SAR image. The small size of
the distinct scatterers (i.e., individual blades of grass) in a grassy-terrain environment
suggests that this type of clutter can be well-modeled as an additive random process
independent between resolution cells [103]. Several authors have suggested the gener-
alized K distribution as a physically relevant and empirically accurate model for the
distribution of polarimetric complex amplitudes of clutter pixels [6,48,49,119].> We

!The trailing initials in these modules’ names reflect the fact that XPatchF performs computations
in the frequency domain, while XPatchT computations are performed in the time domain.

2XPatch does include the capability to augment target imagery with various types of simulated
natural clutter using the XPatchES module of the package [25]. However, this module is designed
primarily for one-time synthesis of clutter for individual SAR images, and not for repeated syntheses
of clutter for a large set of SAR images such as we require to facilitate Monte Carlo analysis.

3The K distribution is a unimodal heavy-tailed distribution characterized by three parameters re-
lated to its shape, mode, and spread. (For multidimensional measurements—e.g., a complex polari-
metric pixel amplitude—the spread parameter is a matrix.) The work of [6,48,49,119] suggests that in
some cases the K distribution is a better phenomenological model than other distributions commonly
used to model clutter, such as log-normal, Rayleigh, and Weibull [53,103]. The K distribution takes
its name from its dependence on the modified Bessel function of the third kind, which is often denoted

K.(.).
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thus model clutter as an additive K-distributed random process with statistics given
by the “grass” parameters of [80]. This model captures much of the empirical behav-
ior of grassy-terrain clutter in polarimetric systems, including the unequal distribution
of clutter among the polarimetric channels and the correlation between HH and VV
returns [80,103]. (The SAR image in Figure 3.2 was generated by XPatch using the
parameters of Table 5.1 and corrupted by additive K-distributed grassy-terrain clutter
as described above.)

Each experiment in this thesis corresponds to a set of algorithm runs using imagery
of a specific target. The SAR-image data set is a fixed size for all runs in an experiment,
but each run corresponds to a random choice of viewing angles for the images in the
data set and a random realization of clutter in each of those images. To achieve the
randomization over viewing angle, we select images for each algorithm run randomly
from an XPatch-generated superset of 2736 images for each target. This image superset
contains one image for each viewing angle on a 2.5° elevation/azimuth grid on a swath of
the viewsphere extending in elevation from 5° to 50° and in azimuth from 0° to 357.5°.
We characterize each experiment in terms of its average viewsphere sampling density
(AVSD), defined as the average spacing between images in the data set if they were to be
spread evenly across the 2.5° viewsphere grid. For instance, a 10° AVSD corresponds to
a random sampling of 180 images from the superset, exactly enough to form a 10° grid
in azimuth and elevation across the viewsphere band described above if the images were
selected in a regularly spaced manner rather than randomly. Similarly, a 20° AVSD
corresponds to a sampling of 54 images. Each image selected in any algorithm run
is corrupted with K-distributed clutter as described above. A single experiment thus
represents the average algorithm performance observed for a data set of given size; this
averaging removes variations in performance attributable to the inclusion or exclusion
of specific viewing angles in the data set, or to specific clutter realizations.

B 5.1.2 Specification of Algorithm Parameters

Implementation of the algorithm described in Chapter 4 requires specification of various
parameters: the measurement-model parameters of Table 3.2, the primitive dimensions
used to construct the scattering responses Sg:(.) (see Section 3.1 and Appendix A), and
additional parameters associated with each e{lgorithm stage. We now discuss how these
parameters were chosen.

The measurement-model parameters of Table 3.2 characterize the empirical behavior
of the feature-extraction procedure of Section 3.2 in the clutter environment described
above. The values we use for these parameters are given in Table 5.2. The false alarm
rate yp 4 is an empirical value calculated by counting the reports extracted from images
containing only clutter. The false-alarm amplitude pdf pp4(.) can be represented as
a histogram based on these reports’ amplitudes; we implement ppa(.) as a Gaussian
approximation to this histogram, as depicted in Figure 5.1. The probability-of-detection
function Pp(.) represents the observed detection performance of the feature extractor,
obtained by running the feature extractor on imagery containing targets of known
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H quantity ‘ description ‘ value H
YEA false alarm rate 0.058 FA /m?
pra(s) pdf of false-alarm amplitudes see Figure 5.1
function mapping scatterer amplitude .
Pp(. I . F 2
() to probability of detection see Higure 5
R1/2 root-covariance of [ 5.0 cm 0 |
extracted locations for detections 0 5.0 cm
confusion matrix of [0.78 0.01 0.17 0.97 |
P extracted types for detections | 0.22 099 0.83 0.03 |
standard deviation of
. . 5.0 dB
Ta extracted amplitudes for detections St

Table 5.2. Values of measurement-model parameters and functions. These are the values used for the
parameters of Table 3.2. These parameters characterize the feature extraction process of Section 3.2 in
the clutter environment described in Section 5.1.1.

amplitude for RCS values between —10 dBsm and 20 dBsm at 1-dBsm increments. The
resulting Pp(.) function is depicted in Figure 5.2. The extracted-location covariance
matrix R and extracted-type confusion matrix p are empirical statistics obtained by
running the feature extractor on imagery of 10-dBsm-base-amplitude primitives from
various viewing angles. (Note that the trihedral and dihedral both exhibit significant
confusions between type classifications, whereas the tophat and cylinder do not. This is
due to the relatively significant contributions of the trihedral’s and dihedral’s secondary-
response mechanisms to those primitives’ overall responses—e.g., the presence of strong
double-bounce reflections in the trihedral response.) The extracted-amplitude variance
2 was not directly calculated as an empirical statistic as were R and p, but is instead
a heuristic value chosen with the intent of capturing some of the variability in primitive
responses encountered in the real world that would be difficult to model in a training set.
We examine more principled and directed approaches to dealing with primitive-response
noncanonicity in Chapter 7.

The values in Table 5.2 can be viewed as approximate or average statistics; the
“true” values of many of these parameters will vary depending on the characteristics
of the targets being imaged. For instance, bright scatterers will produce reports with
a high signal-to-clutter ratio, which will tend to improve the quality of the compo-
nent measurements of the report. Thus we would expect the true covariance of xy ;
and the true confusion of # ; to vary depending on A(6;, vy, ¢x). Similarly, a primi-
tive’s probability of detection in any image might depend not only on the magnitude
of its polarimetric response, but also on scatterer type because different polarimetric
signatures of identical magnitude might not be equally discernible in clutter that is
unequally distributed across polarimetric channels. Additionally, type confusion can
depend on primitive dimensions: as a trihedral’s dimensions increase, for instance, its
double-bounce response mechanisms become more specular and contribute less to the

g
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False—alarm amplitude histogram P: A(.)
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Figure 5.1. False-alarm amplitude pdf pra(.). The solid line is a histogram of the observed amplitudes
of 4000 false alarms. It is implemented as a Gaussian with mean 3.8 and standard deviation 1.2, overlaid
as the dashed line.
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Figure 5.2. Probability-of-detection function Pp(.). This function was empirically estimated by
running the feature extractor on imagery containing targets of known amplitude at 1-dBsm increments.
It is linearly interpolated between those points. For robustness it is clipped at a maximum value of
0.99 and a minimum value of 0.01 regardless of amplitude.
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overall scattering response. It is possible to extend the measurement model developed
in Section 3.3 to capture these dependences; such an extension is discussed further in
Chapter 8.

Implementation of the model generation algorithm also requires specification of
nominal primitive dimensions to construct scattering models Sg¢(.) as described in
Section 3.1 and Appendix A. For most of the experiments in this section, the nom-
inal scattering-model primitive dimensions have been set to values that are identical to
the dimensions of the primitives to be estimated. These values are indicated in the con-
text of each experiment. In Section 5.5 we examine the effects of a mismatch between
modeled and actual primitive dimensions. These effects are seen to be relatively minor.

Finally, we must also specify various algorithmic parameters that are required for
implementation of the different stages of the algorithm. These parameters, their no-
tation, and their values are given in Table 5.3. As indicated in the various sections of
Chapter 4, these parameters are heuristically chosen to give reliable performance. The
selection of these parameters is summarized below.

o [nitialization stage. As described in Section 4.4, implementation of the initial-
ization stage requires specification of several threshold parameters: an amplitude
threshold ap, for deciding which reports to pass to the clusterer, a chi-squared-
agglomeration dissimilarity threshold 7 indicating how dissimilar reports can be
and still be grouped, and a report-count threshold nyj, used to weed out spurious
clusters at the conclusion of the agglomeration. Selection of api, is essentially
the choice of a point on a receiver-operating characteristic (ROC) curve [105] in-
dicating the relative abundance of missed detections and false alarms among the
reports passed to the clusterer. We choose ai, to be 5.0 dBsm, because most false
alarms have amplitudes below this value (see Figure 5.1) and because primitives
much dimmer than this are unlikely to produce a report (see Figure 5.2). The
chi-squared-statistic dissimilarity threshold 7 is set to 0.9, a value empirically
determined to be large enough to group most reports attributable to a single
primitive but not so large as to group many unrelated reports.* The report-count
threshold n,i, is chosen based on the AVSD, since a sparser AVSD (i.e., a smaller
K) will generally result in fewer reports attributable to a given primitive.

o [ step. The gate radius is chosen to be 0.4 m, which is sufficiently large to
accommodate not only the covariance of x;, ; (see R in Table 5.2) but also errors
in the location estimates 6 observed early in the EM iteration.

o Model-order adjustment stage. As described in Section 4.5, the type-dependent
probability-of-detection thresholds are selected to reflect the fact that tophats

*Choosing a relatively large value for 7 aids in properly clustering reports generated by a single
primitive but emanating from points in R?® other than 6%, e.g., reports from the wandering specular-
reflection points of cylinders and tophats, and lower-bounce reports from trihedrals and dihedrals.
(The inability of the agglomerative clustering procedure to model wandering-specular-point reflections
properly was discussed in Section 4.4).
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|| algorithm stage || parameter | notation value ||
minimum report amplitude '
for clustering (min 5.0 dBsm
. chi-squared-statistic
initialization dissimilarity threshold K 0.9
minimum reports in 4, AVSD = 10°,
e e 7. . Tmin
cluster for initialization 3, AVSD = 20°
[ E step | gate radius | rgate | 04 m |
006, oM=1,
i empirical- 0.2 gt — o
! thresholds 29/K, 60;" =3,
2.9/K, 6" =4
location estimate tolerance Tx 1.0 cm
. radius estimate tolerance T 1.0 cm
termination _ S
check pose az/el estimate tolerance Tp: 2
pose rotation estimate tolerance Tpa 2°
base amplitude tolerance Ta 0.3 dBsm

Table 5.3. Values of algorithmic parameters.

and trihedrals have much broader responses than dihedrals and cylinders, and will
usually produce more reports in a given data set. The thresholds for dihedrals and
cylinders depend on K (the number of images in the data set) so that regardless
of the size of the data set, primitive estimates based on as few as three reports
can survive the model-order adjustment stage.’

o Termaination check. Convergence is determined by comparing estimate values
between successive iterations as described in Section 4.6. The tolerances on the
continuous parameters of 8; are chosen to be small values as indicated in Table 5.3.

B 5.2 Single-Primitive Target Experiments

Our first set of experiments details the performance of the algorithm on four targets,
each counsisting of a single primitive with a base amplitude of 10 dBsm. The purpose of
these experiments is threefold: to validate algorithm performance on a set of very simple
targets, to illustrate the limitations in performance imposed by the relative differences
in observability between the four primitive types, and to tabulate benchmarks against
which results from more complex targets can be judged. Although many primitives
observed in practice will have base amplitudes much greater than 10 dBsm (especially
dihedrals and trihedrals in many targets of interest [62]), direct comparison of the

At least two xj ; are required to form an estimate of a dihedral’s location; at least three xj ; are
required to form estimates of a cylinder’s location and radius.



92 CHAPTER 5. EXPERIMENTAL RESULTS FROM THE BASIC ALGORITHM

H primitive dimensions H

trihedral a =12.67 cm
tophat | 7 =18.39 cm, h = 36.78 cm
dihedral | @ = 14.05 cm, b = 14.05 cm
cylinder | » =17.70 cm, h = 53.04 cm

Table 5.4. Dimensions of single-primitive targets. (The dimension notation used here corresponds to
that of Figure 2.10.) These dimensions give a base amplitude of 10 dBsm for each primitive.

| target | 6! ] 62 [aBsw) | 627 [en] | 07 [c)] | oP7 [°] |
trihedral || 1 10 [30.5 0.0 15.2] — (3526 0 0]
tophat | 2 10 [30.5 0.0 15.2] | 1839 | [ 90 0 ]
dihedral | 3 10 [30.5 0.0 15.2] — [ 25 0 0]
cylinder || 4 10 [30.5 0.0 15.2] | 17.70 | [ 65 180 ]

Table 5.5. Parameters of single-primitive targets.

four primitive types with the same base amplitude helps to illustrate the differences
in observability between the primitives. The dimensions of the primitives used in the
experiments of this section are given in Table 5.4. As indicated previously, the Sy (.)
in these experiments are also constructed using the dimensions in Table 5.4; the effects
of dimension mismatch are examined in Section 5.5.

The components of 8; for each of the four single-primitive targets are listed in
Table 5.5. Recall that specification of the pose of a tophat or cylinder requires two
Euler angles, while specification of the pose of a trihedral or dihedral requires three
Euler angles (see Section 3.1). The two components of the tophat and cylinder pose
correspond to the elevation and azimuth of these primitives’ axis of symmetry. The
first two components of the trihedral and dihedral pose correspond to the elevation and
azimuth of the direction of maximum RCS (i.e., the viewing angle at which Sg(.) is
maximized); the third component is the rotation of the response about this direction.
The trihedral and tophat are thus oriented with their bases parallel to the ground plane,
while the dihedral and cylinder are tilted 25° out of vertical.

Before presenting results for the algorithm runs on these targets, we point out that
the differences in the relative observabilities of these primitives will lead to marked dif-
ferences in the performance of the algorithm on each. Figure 5.3 depicts the predicted
RCS values A(8;, Yy, ¢r) of each of the four primitives described by the parameters of
Table 5.5 at the 2736 viewing angles in the 2.5° grid. This figure clearly depicts the
differences in primitive observability. The tophat has the broadest response and would
produce a report from almost any viewing angle. The trihedral response is localized to
roughly a quarter of the grid but is still more observable than the dihedral and cylin-
der, both of which are observable only near a single great circle along the viewsphere
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corresponding to each primitive’s specular plane. Clearly, the narrow respounses of the
dihedral and cylinder indicate that these primitives will generally produce many fewer
reports in a given data set than will tophats or trihedrals. As a result the algorithm will
be more likely to discover the presence of a tophat or trihedral in a data set of given
size than to discover the presence of a dihedral or cylinder. Additionally, dihedrals and
cylinders will generally suffer from poorer-quality estimates of 8; (compared to those
of tophats and trihedrals) even when they are discovered.

We can quantify the relative observabilities of these primitives by computing the
average Pp(A(0;, 1y, ¢r)) over the 2.5° grid for each primitive. This gives the fraction
of images in a data set in which each primitive can be expected to produce a report.
Denoting this quantity as Pp(A(0;, ¥k, ¢r)), we see that K - Pp(A(0;, ¥k, ¢r)) is the
average number of reports a primitive can be expected to produce in a randomly selected
data set of size K. Table 5.6 lists these values for 10° and 20° AVSDs. We can also apply
Pp(.) to the A(8;, Uy, ¢r) grids to obtain a rough upper bound P(ﬁlsix on the fraction of
runs in any experiment in which it is possible for the algorithm to discover the presence
of the primitive. (Recall from Section 4.4 that discovery of a primitive requires that
the data set contain at least npni, reports of amplitude ani, or greater.) We obtain
Pg‘fsix for each data-set size by Monte Carlo simulation: we randomly select K viewing
angles from the 2.5° grid and then randomly “detect” or “miss” the primitive at each
sample based on Pp(A(6;, 1y, ¢r)) at that viewing angle. If at least ny;, “detections”
are produced at viewing angles for which A(0;, ¥, ¢r) > amin, it would be possible for
the algorithm to discover the primitive. The fraction of simulations in which this is the
case provides the approximate bound P(ﬁlsix.7 (Note that discovery performance near
Pg‘fsix would indicate that the initialization stage is performing as intended.) Table 5.6
indicates that the tophat is by far the most observable primitive: it will produce many
reports and should be discoverable in almost all algorithm runs. The trihedral will
also generally produce enough reports to be discovered in most trials. The dihedral
is much less observable than the tophat or trihedral, but should still be discovered in
more algorithm runs than the cylinder; both the dihedral and cylinder, however, have
a Pyisc bound that is significantly below unity and deteriorates with AVSD.

Table 5.7 presents the performance of the algorithm on the four single-primitive
targets for 10° and 20° AVSDs. (We analyze this performance in detail below.) This
table is broken up into several sections, each describing the errors observed in a single
compounent of the estimate of 8. Model order results are broken into three categories:

SWe use the term “discovery” rather than “detection” to refer to the production of a primitive
estimate by the algorithm in order to avoid confusion with the detection of reports in individual images.
Primitive discovery requires detection in multiple images, but detections will not of necessity lead to
discovery.

"The bound obtained in this way is approximate because it neglects effects such as clutter and
mismatch between A(6;, Y, ) and XPatch predictions (described in conjunction with the algorithm’s
base amplitude estimate performance shortly). Additionally, it neglects the presence of false alarms,
which could be grouped with (nmin — 1) legitimate reports to produce a cluster that survives the
initialization stage.
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Figure 5.3. Respounses of four primitives. These images depict each primitive’s A(0;, ¢k, ¢r) at every
point on the 2.5° viewsphere grid. (The images are clipped below 3 dBsm because primitives are not
detectable from viewing angles at which A(0;, ¢k, ¢r) is too low.) The relative observabilities of the
different primitive types, as clearly visible above, have a significant impact on the performance of the
algorithm.
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: _ max
primitive || Pp(A(8:, v, 01)) 12( ggﬁ(f%kg@g 10° AVS]fdlsczoo AVSD
trihedral 0.1349 24.28 7.29 1.000 0.962
tophat 0.7287 131.17 39.35 1.000 1.000
dihedral 0.0292 5.26 1.58 0.683 0.154
cylinder 0.0237 4.26 1.28 0.585 0.129

Table 5.6. Relative observability of primitive responses. The quantity Pp(A(0;, ¢k, ¢r)) is calculated
from the primitive responses of Figure 5.3 and is used to determine the average number of reports that
will be produced by each primitive in 10°- and 20°-AVSD data sets. The rightmost two columns present
rough upper bounds on Fyjsc, the fraction of algorithm runs in which a primitive is discovered. These
values suggest that while tophats and trihedrals will be discoverable in almost all trials, dihedrals and
cylinders will often not produce enough reports to be discovered.

“underfit” refers to the the fraction of runs in which the model order was zero, i.e.,
in which the presence of the primitive was not discovered by the algorithm; “Pgjs.”
refers to the fraction of runs in which an estimate was produced for the primitive,
1.€., in which it was captured by the initialization stage and survived the model-order
adjustment stage through convergence of the EM iteration; “overfit” refers to the frac-
tion of runs in which the final model order was greater than one. “Type confusion”
presents type estimation results conditional on discovery. In most algorithm runs in
which the primitive is discovered and estimated to be the correct type, the continuous
parameter estimates cluster near the true values; in a handful of runs they do not. The
fraction of runs in which this occurs is listed in the “fraction spurious” column. The
errors in the estimates of the continuous parameters of 6;, conditional on discovery,
correct type identification, and non-spurious parameters, are presented in the lower
half of Table 5.7. Base amplitude figures are quoted in dBsm, location and radius
in centimeters, and pose in degrees. We separate location and base amplitude statis-
tics into bias (defined here as average estimate minus truth) and standard deviation
to illustrate bias effects described below. Pose results are presented in terms of two
statistics, the first being the root-mean-squared error (rmse) of the azimuth/elevation
component (i.e., the root-mean-squared angular separation on the viewsphere between
the azimuth/elevation estimate and the true azimuth/elevation) and the second being
the rmse of the rotation component, if applicable. For each of the eight experiments
(four primitives, two AVSDs), Monte Carlo runs were continued until we had obtained
500 trials in which the primitive was discovered and estimated to be the correct type.

Discoverability and Model-Order Estimation

The Pyisc statistics of Table 5.7 confirm that algorithm performance depends strongly
on primitive observability. These statistics also indicate that the algorithm is discov-
ering each primitive in almost all cases in which it is provided enough reports to do
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model order . fraction
AVSD | target underfit| Py, | overfit type confusion spurious
trihedral || 0.000 | 1.000 [ 0.000 1.000 0.000 0.000 0.000 0.000
10° tophat 0.000 | 1.000 | 0.000 0.000 1.000 0.000 0.000 0.000
dihedral 0.279 | 0.721 | 0.000 0.000 0.000 0.998 0.002 0.002
cylinder 0.051 | 0.490 | 0.000 0.000 0.000 0.021 0.979 0.002
trihedral || 0.052 | 0.948 | 0.000 0.990 0.000 0.006 0.004 0.000
20° tophat 0.000 | 1.000 | 0.000 0.000 1.000 0.000 0.000 0.000
dihedral 0.815 | 0.185 | 0.000 0.035 0.000 0.933 0.032 0.000
cylinder 0.891 | 0.109 | 0.002 0.030 0.000 0.004 0.966 0.026
AVSD | target 02 error [dBsm] 9;‘ error [cm] 6? rmse [°] 07 rmse
bias | stdev || ||bias|| | Vtr(cov) || az/el | rot [cm)]
trihedral 0.156 0.494 6.233 3.025 2.169 7.786 —
10° tophat —1.382 | 0.191 0.409 1.288 1.329 — 1.056
dihedral || —0.148 | 1.114 || 11.511 14.171 10.592 | 7471 —
cylinder 0.080 1.625 0.410 22.169 1.286 — 6.629
trihedral || —0.000 | 1.035 5.559 6.831 9.175 | 22.363 —
20° tophat —1.298 | 0.365 0.446 2.175 2.388 — 1.730
dihedral || —0.052 | 1.840 7.591 31.417 14.285 | 11.644 —
cylinder 0.455 2.771 1.786 30.845 3.433 — 9.980

Table 5.7. Results from single-primitive-target experiments.
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so: the trihedral, tophat, and dihedral Py, results are all very close to the bounds
of Table 5.6. (The observed Py actually exceeds the approximate bound for both
dihedral experiments; this is attributable to the slight mismatch between the dihe-
dral primitive scattering model and the PO predictions as described in Section 3.1
and Appendix A.) The cylinder Py values are slightly below the bound for both
AVSDs. This is attributable to the inability of our initialization procedure to deal di-
rectly with the cylinder’s wandering specular-reflection point as noted at the conclusion
of Section 4.4. In particular, in some algorithm runs in which a cylinder does produce
Timin OF more reports of amplitude ani,, those reports are not properly clustered by the
initialization stage.®

We see from Table 5.7 that model order is almost never overestimated for single-
primitive targets, the exception being a single run in the 20° AVSD cylinder experiment.
In most cases in which the primitive is discovered, the initialization stage produces a
single initialization that persists to the end of the EM iteration. In cases where the
initialization stage does produce more than one report cluster, the spurious cluster is
almost always removed in a subsequent iteration by the model-order adjustment stage.
Additionally, the fact that the algorithm is approximately meeting the Pgjsc bounds of
Table 5.6 indicates that an underfit in model order is almost always attributable to a
paucity of reports and not to reports being incorrectly associated. The bottom line is
that the model-order adjustment stage is properly removing most spurious estimates
but not at the expense of removing primitives that correspond to true primitives.

Type Estimates

It is apparent from Table 5.7 that the type classification performance of the algorithm
is excellent: in almost every trial in which a primitive is discovered, its type is cor-
rectly identified. This suggests that the limited type information provided by the even-
bounce/odd-bounce discriminator of the feature extraction stage is not a significant
impediment to type estimation. In the 10° AVSD experiments, there is very limited
confusion between the dihedral and cylinder responses; these two responses are both
concentrated near a single plane and are sufficiently similar (see Figure 5.3) that a small
set of measurements might not be sufficient to distinguish them reliably. In some of
the the 20° AVSD experiments, dihedrals and cylinders were also incorrectly identified
as trihedrals. Note that in no case was any primitive incorrectly identified as a tophat:
the tophat response is so broad that it is a poor fit to any other primitive response even
at a 20° AVSD.

Base Amplitude Estimates

The observed standard deviations of the base amplitude estimates (as well as those of
the location and radius estimates) indicate that, as expected, the more-observable prim-

8 Although the tophat also has a wandering wandering specular-reflection point, its broad response
ensures that at least n,in reports will be grouped even if some reports are not properly clustered by
the initialization.
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C average
primitive XPatch — A ( 0, br. br)
trihedral —0.30 dBsm

tophat —1.35 dBsm
dihedral —0.33 dBsm
cylinder —0.49 dBsm

Table 5.8. Average differences between XPatch predictions and A(8;, ¥k, ¢r). These averages are over
all viewing angles in which the maximum XPatch-predicted pixel amplitude exceeds 3 dBsm.

itives enable more accurate parameter estimation because they usually produce more
reports in any data set. Table 5.7 also indicates that the base amplitude estimates
are generally biased. This is attributable to several factors. First is the frequency
windowing inherent in the SAR imaging process. As indicated in Section 2.2, a prim-
itive’s amplitude in an image is affected by its location in the slant plane relative to
the pixel centers: a primitive whose projected location is not coincident with a pixel
center will be slightly attenuated, i.e., the extracted amplitude ay ; will be less than
A(0;, Y, o). The average attenuation will depend on the oversampling rate and on the
sidelobe-suppression windowing function. For the parameters of Table 5.1 this average
attenuation can be shown to be approximately 0.5 dBsm.? Another factor influencing
the base amplitude bias is the slight deviation between A(8;, ¢, ¢r) and the RCS values
produced by XPatch. These differences arise from several sources, including approxi-
mations made in our construction of Sy:(.) from basic scattering-response components
(see Section 3.1 and Appendix A), Sligﬁt inaccuracies in the basic scattering-response
components themselves'® [62,92], and SBR and facetization effects [4,27,66]. The mean
difference between the XPatch prediction and A(6;, 1y, ¢x) over the 2.5° grid for each
primitive type is given in Table 5.8. (Note that the presence of the nonlinear PD;@,Z’
terms in (4.24) indicates that the biases of Table 5.8 will not necessarily be the same
as the biases observed in the base amplitude estimates.) A final factor influencing the
base amplitude bias is the correlation of the base amplitude estimate error with pose
estimate error due to these parameters’ coupling in each Sp:(.). This correlation is most
pronounced for the cylinder due to its extremely narrow résponse: if the pose estimate
converges to a slightly erroneous value, the estimate of 8¢ will tend to increase in order
to better fit the a; ; measurements, all of which lie near the true specular plane. As
long as this increase is small enough not to boost the PD;€7Z< values at other viewing
angles, there will be no pressure in (4.24) to counteract this tendency.

9This value is obtained by numerical integration of the —35-dB Kaiser sidelobe-suppression kernel
over a square region determined by the oversampling rate.

OFor instance, the shaping function of the tophat double-bounce in Table 2.1 depends on an ap-
proximation to the projected area of the tophat double-bounce region, which is complicated due to the
curved contours of the base plate and cylinder. Exact determination of this area at any viewing angle
requires numerical integration [12].
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Location and Radius-of-Curvature Estimates

As expected, the location and radius-of-curvature estimates produced by the algorithm
are most accurate in high-observability situations, i.e., for denser AVSDs and for prim-
itives with more-observable responses. Note that due to the high specularity of the
dihedral and cylinder responses, all reports produced by either primitive will be nearly
coplanar and will thus provide little information about the component of 6 orthogonal
to the specular plane. Dihedral and cylinder location-estimate standard deviations are
thus disproportionately large, even for their low observability. Additionally, although it
is not illustrated in Table 5.7, the radius errors are correlated with the location errors
due to layover effects.

The trihedral and dihedral location estimates exhibit a pronounced bias. This
is due to the influence of these primitives’ lower-bounce mechanisms as described in
Section 3.1. In particular, these lower-bounce reflections violate the model of (3.3) that
is the basis for the estimation of 6 in (4.28). In Section 5.3 we discuss an approach to
removing this bias, if desired.

Pose Estimates

The pose results of Table 5.7 demonstrate that primitive pose can in general be ac-
curately estimated to a finer granularity than provided by the AVSD. As with the
other parameters, pose estimation improves with observability; however, the distinctive
nature of each primitive response (see Figure 5.3) has different implications for the es-
timation of each primitive’s pose. In particular, tophats produce many reports around
the viewsphere and possess rotational symmetry, making their responses easy to orient.
Cylinders produce very few reports, but all of these reports are nearly coplanar, making
cylinder pose estimation relatively easy as well.

The trihedral and dihedral responses suffer from specific invariances that complicate
the estimation of their poses. For instance, estimation of the azimuth and elevation of
the trihedral is relatively easy, but estimation of its rotation is relatively difficult because
the trihedral response is nearly invariant to rotation about its specular direction.'’ The
dihedral suffers from a large pose error due to its confinement near a single specular
plane: it is difficult to distinguish dihedral poses related by a small rotation within
this plane. Figure 5.4 is a visual depiction of this phenomenon. This figure presents
four grids of A(8;, Yy, ¢ ) measurements, each obtained from a dihedral identical to the
one under consideration but oriented at a different pose. The poses of the dihedrals in
successive images in Figure 5.4 are related by rotations of approximately 5° within the
specular plane. Visually, these responses are very similar; it is clear that a sparse sub-
sampling of the images in Figure 5.4 might provide insufficient information for reliable
discrimination between these responses.

" This problem is exacerbated for larger trihedrals, which have narrower double-bounce components
and thus provide less rotational information.
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Figure 5.4. Responses of four identical dihedrals with different poses. (The format of the images
in this figure is similar to that of Figure 5.3.) Orientations of the dihedrals in successive images are
related by a rotation of approximately 5° within the specular plane. This illustrates a near-invariance
in dihedral pose: changes in pose can produce responses that are difficult to distinguish, especially given
measurements over only a sparse sampling of the above grids.
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N unrefined location error [cm]| || refined location error [cm]
AVSD | primitive , .
|Ibias|| ‘ V/tr(cov) [|bias|| ‘ V/tr(cov)
10° trihedral 6.233 3.025 0.576 4.792
dihedral 11.511 14.171 3.259 18.012
20° trihedral 5.559 6.831 0.735 12.652
dihedral 7.591 31.417 3.671 38.742

Table 5.9. Results of bias-reduction post-processing on trihedral and dihedral location estimates.

B 5.3 Reducing Trihedral and Dihedral Location Estimate Bias

As described in the previous section, the location estimates of the trihedral and di-
hedral, formed according to (4.28) at each iteration, are biased due to the influence
of lower-bounce reflections. The direction and magnitude of the bias depends on the
primitive orientation and dimensions. If we seek an unbiased location estimate, we
could modify the projectional model of (3.3) to take into account the different reflec-
tion points of the lower-bounce mechanisms. Unfortunately, this conceptually optimal
approach introduces a dependence on primitive dimension and pose and significantly
complicates the maximization at each iteration. We opt for a computationally simpler
approach that is in effect a post-processing step to be implemented after the EM itera-
tion has converged. Specifically, at the conclusion of the EM iteration we have available
a final estimate of primitive pose (from the final M step) and a final set of report-to-
primitive correspondence probabilities (from the final E step). We use the M-step pose
to identify reports obtained at viewing angles from which the highest-bounce respounse
is believed to dominate; we then use the E-step probabilities and xj ; measurements
of these reports to form a new estimate as in (4.28). In other words, we use the final
pose estimate to identify reports whose slant-plane location measurements are believed
to violate (3.3) and then form a new estimate of 6* omitting those reports. If the pose
estimate is accurate, this refined location estimate will be unbiased (though by omitting
some Xy, ; we will likely increase the rmse of the location estimate).

The results of this post-processing on the experiments of the previous section are
presented in Table 5.9. In each case the bias in the location estimate is reduced signif-
icantly. The trihedral location-estimate refinement achieves a greater fractional reduc-
tion in bias than the dihedral location-estimate refinement due to the greater accuracy
of the trihedral pose estimates (see Table 5.7). For similar reasons, the refinement is
more successful for the 10° AVSD experiments than for the 20° AVSD experiments.

B 5.4 Multiple-Primitive Target Experiments

The results of Section 5.2 demonstrate the performance of the algorithm on four single-
primitive targets, for which the underlying data association problem is quite simple.
In this section we examine the performance of the algorithm when it is faced with
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Figure 5.5. Two views of the first multiple-primitive target.

a more challenging data association problem—specifically, a multiple-primitive target.
We would expect the error statistics obtained for each primitive in a multiple-primitive
target to be no better than those obtained from a target containing only that primitive,
1.e., in the absence of confusing primitives. Similar error statistics would indicate that
the algorithm is successfully solving the data association problem, correctly assigning
report correspondences to arrive at its parameter estimates. In this section we compare
results obtained from two multiple-primitive targets with benchmark results obtained
from single-primitive targets.

B 5.4.1 Target One

The first multiple-primitive target we examine consists of four primitives, one of each
type, centered at the corners of a 0.91 m square. Each primitive is thus separated
from its neighbors by at most three resolution cells.!? Two renderings of the XPatch
facetization model of this target are depicted in Figure 5.5. The cylinder and tophat
in this scene are identical to those of Section 5.2; the dihedral and trihedral are larger
than those of Section 5.2. (The dimensions of these primitives are given in Table 5.10.)
The parameterizations of the primitives in this target are given in Table 5.11. As
in Section 5.2, the experiments of this section are conducted using Sy:(.) matched to
the primitive dimensions, and examination of the effects of mismatch is deferred to
Section 5.5.

The single-primitive-target benchmark results for the components of this target are
given in Table 5.12. Because the tophat and cylinder in this target are the same size
as those in Section 5.2, we can use the tophat and cylinder results from that section as
benchmarks; to obtain benchmarks for the larger trihedral and dihedral used here, we

12From most viewing angles, neighboring primitives will be separated by less than 0.91 m in the slant
plane due to the projection from R3.



Sec. 5.4. Multiple-Primitive Target Experiments 103

H primitive dimensions H

trihedral a = 28.00 cim
tophat | r=18.39 cm, h = 36.78 cm
dihedral | a = 33.30 cm, b = 33.30 cm
cylinder | » =17.70 cm, h = 53.04 cm

Table 5.10. Dimensions of the components of the first multiple-primitive target. (The dimension
notation used here corresponds to that of Figure 2.10.) These dimensions give a base amplitude of
10 dBsm for the tophat and cylinder, 23.75 dBsm for the trihedral, and 25 dBsm for the dihedral.

target | ge | ga [qBsm] 67 [cm] o7 em) 6T [°]
component
trihedral || 1 | 23.75 | [-45.7 -457 0] | — | [3526 135 0 ]
tophat 2| 1000 | [-457 457 O] | 1839 | [ 90 0 ]
dihedral || 3 | 25.00 | [ 457 457 0] | — | ] 25 —45 0]
cylinder || 4 | 1000 | [ 457 457 0] | 1770 | [ 65 —135 — |

Table 5.11. Parameters of the components of target one.

ran experiments similar to those of Section 5.2 for these two primitives.

We performed 500 Monte Carlo runs for both a 10° AVSD and a 20° AVSD for
this target.'® The results from these experiments are presented in Table 5.13 in a for-
mat similar to that of Table 5.12. (For a multiple-primitive target, overfit statistics
cannot be tabulated for individual components. Spurious-estimate statistics are also
listed for the target as a whole, and do not include those runs which produced an over-
fit.) Comparison to the benchmark results of Table 5.12 shows that the error statistics
for each component of this target are almost identical to the corresponding single-
primitive benchmarks. In particular, the type confusion results are almost identical, all
base amplitude biases and standard deviations are within a fraction of a dBsm from
their benchmark values, and the location, pose, and radius errors are all very similar
to the benchmarks. (The greatest deviation from the benchmark values is observed in
the cylinder results from the 20° AVSD performance. This is largely attributable to
the lesser statistical significance of the cylinder results in Table 5.13: these statistics
are based on a total of 500 x 0.082 = 41 cylinder discoveries, compared to 500 discov-
eries in the single-primitive-target benchmark.) Additionally, each primitive’s Py is
almost as high in this experiment as in the single-primitive-target benchmarks. The
exception is the cylinder in the 10° experiment, whose Pjyis. decreases from 0.490 to
0.406. This suggests that in approximately 8.4% of algorithm runs on this target, one
or more cylinder reports are improperly clustered. Because of the low observability of

13Note that this differs slightly from the single-primitive-target experiments, in which Monte Carlo
runs were continued until the primitive had been discovered and correctly identified 500 times.
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target model order . fraction
AVSD f
VS component ||underfit| Pgjsc | overfit type contusion spurious
trihedral 0.000 | 1.000 | 0.002 1.000 0.000 0.000 0.000 0.000
10° tophat 0.000 | 1.000 | 0.000 0.000 1.000 0.000 0.000 0.000
dihedral 0.047 | 0.953 | 0.000 0.002 0.000 0.996 0.002 0.000
cylinder 0.051 | 0.490 | 0.000 0.000 0.000 0.021 0.979 0.002
trihedral 0.000 | 1.000 | 0.010 1.000 0.000 0.000 0.000 0.000
20° tophat 0.000 | 1.000 | 0.000 0.000 1.000 0.000 0.000 0.000
- dihedral 0.563 | 0.437 | 0.000 0.023 0.002 0.961 0.014 0.000
cylinder 0.891 | 0.109 | 0.002 0.030 0.000 0.004 0.966 0.026
target 0¢ error [dBsm] #% error [cm] 6% rmse [°] 07 rmse
AVSD L — . :
component bias | stdev || ||bias]| | Vtr(cov) || az/el | rot [cm)]
trihedral —0.703 | 0.541 6.799 2.211 2.890 | 19.246 —
10° tophat —1.382 | 0.191 0.409 1.288 1.329 — 1.056
dihedral —2.033 | 2.338 5.764 13.890 11.713 | 9.281 —
cylinder 0.080 1.625 0.410 22.169 1.286 — 6.629
trihedral | —0.865 | 0.914 || 6.271 | 4.744 || 4641 | 25.058 || —
00° tophat || —1.298 | 0.365 || 0446 | 2175 || 2388 | — 1.730
dihedral || —3.225 | 4.423 || 4.862 | 23.908 | 15.660 | 14.963 || —
cylinder || 0455 | 2771 || 1.786 | 30.845 | 3433 | — 9.980

Table 5.12. Single-primitive-target benchmarks for comparison to results from target one.
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AVSD target Plisc type confusion overfit fract‘lon
component spurious
trihedral 1.000 1.000 0.000 0.000 0.000
o tophat 1.000 0.000 1.000 0.000 0.000
10 dihedral 0.950 0.000 0.000 0.998 0.002 0.020 0-008
cylinder 0.406 0.000 0.000 0.045 0.955
trihedral 1.000 1.000 0.000 0.000 0.000
o tophat 1.000 0.000 1.000 0.000 0.000
20 dihedral 0.460 0.026 0.004 0.953 0.017 0-000 0-016
cylinder 0.082 0.024 0.000 0.024 0.952
target 6% error [dBsm] 6% error [cm] 6P rmse [°] 07 rmse
AVSD i 1 : i
component bias | stdev || ||bias|| | Vir(cov) | az/el | rot [cm]
trihedral —0.617 | 0.495 7.635 2.395 2.978 | 17.866 —
10° tophat —1.119 | 0.222 0.339 1.407 1.810 — 1.126
dihedral —1.696 | 2.411 7.227 12.647 11.337 | 6.934 —
cylinder 0.154 1.507 1.190 21.713 1.209 — 7.553
trihedral || —0.900 | 0.959 || 7.236 | 4.821 | 4911 | 25839 |
00 tophat || —1.026 | 0.374 || 0.531 | 2.480 | 2.683 | — 1.923
dihedral || —2.873 | 4.045 || 7.368 | 21.776 | 13.483 | 15.301 | —
cylinder || 0.517 | 2.567 || 2.718 | 29.500 || 1.869 | — 7480

Table 5.13. Results from first multiple-primitive-target experiments.

the cylinder (see Figure 5.3 and Table 5.6), a single misclustered report could easily
be the difference between a cluster that is used to initialize a primitive estimate and a
cluster that is removed because it does not contain enough reports.

The similarity between the multiple-primitive-target experiment statistics and the
single-primitive-target benchmarks suggests that the algorithm is successfully perform-
ing data association. The initialization clustering and subsequent EM iteration are thus
finding the proper correspondences between reports in different images and using these
correspondences to estimate primitive parameters.

W 5.4.2 Target Two

The second multiple-primitive target we examine also consists of four primitives. The
components of this target are all trihedrals, each identical in size to the trihedral com-
ponent of the target in the previous section. Two renderings of the XPatch facetization
model of this target are depicted in Figure 5.6. The components of this target are lo-
cated in closer proximity than those of target one: two of the trihedrals are separated by
only 30.5 cm, or approximately the width of one resolution cell. The parameterizations
of the components of this target are given in Table 5.11. The primitive dimensions used
to construct the Sy (.) for this experiment are those of Table 5.10.

We performed 125 Monte Carlo runs at 10° and 20° AVSDs for this target. Because
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Figure 5.6. Two views of the second multiple-primitive target.

target

6! | 6 [dBsm] 67" [cm] or 6P" [°]
component
trihedral 1 || 1 23.75 [ 152 76 152] | — | [3526 —45 0]
trihedral 2 || 1 23.75 [-152 76 152] | — | [3526 —135 0]
trihedral 3 || 1 23.75 [-45.7 =305 152] | — | [3526 90 O]
trihedral 4 || 1 23.75 [ 457 =305 152] | — | [3526 90 0]

Table 5.14. Parameters of the components of target two.
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target . fraction
component Plise type confusion overfit spurious

trihedral 1 1.000 1.000 0.000 0.000 0.000
o trihedral 2 1.000 1.000 0.000 0.000 0.000
10 trihedral 3 1.000 1.000 0.000 0.000 0.000 0.032 0-000

trihedral 4 1.000 1.000 0.000 0.000 0.000

trihedral 1 1.000 1.000 0.000 0.000 0.000
o trihedral 2 1.000 1.000 0.000 0.000 0.000
20 trihedral 3 1.000 1.000 0.000 0.000 0.000 0080 0-000

trihedral 4 1.000 1.000 0.000 0.000 0.000

AVSD

target 6% error [dBsm] 6% error [cm] 6” rmse [°]
AVSD . . :

component bias | stdev || ||bias]| | Vtr(cov) || az/el | rot
trihedral 1 || —0.720 | 0.524 5.606 2.321 3.505 | 17.184
10° trihedral 2 || —0.826 | 0.541 5.755 2.393 3.910 | 18.734
trihedral 3 || —0.685 | 0.629 7.208 2.686 3.318 | 21.761
trihedral 4 || —0.747 | 0.574 7.046 2.891 2.809 | 18.662
trihedral 1 || —1.102 | 1.192 || 3.816 | 4.246 | 5.812 | 22.188
20° trihedral 2 || —1.228 | 1.008 4.530 4.809 6.187 | 23.780
trihedral 3 || —0.930 | 0.981 7.426 4.507 4.519 | 24.961
trihedral 4 || —0.884 | 0.778 6.978 4.308 3.758 | 24.087

Table 5.15. Results from second multiple-primitive-target experiments.

all components of this target are the same type and size, they can be compared to the
same single-primitive-target benchmark, i.e., the trihedral benchmark of Table 5.12.
The performance of the algorithm on this target is presented in Table 5.15. The statis-
tics for each component are similar; because each component is identical we can com-
bine the error statistics for the four components into a single set of ensemble statistics
describing the average error over all four target components. (For the sake of compact-
ness, type-estimation results have been abridged to a single “P4” statistic, denoting
the fraction of runs in which type was estimated correctly as a trihedral.) These en-
semble statistics are presented in Table 5.16. Comparing these results to the trihedral
benchmarks of Table 5.12, we see that most of the error statistics from this experiment
are similar to the benchmarks. One effect of the closer proximity of primitives is an
increase in the fraction of runs in which the algorithm overestimates model order (3.2%
of the 10°-AVSD runs and 8.0% of the 20°-AVSD runs) compared to the experiments
of Section 5.2 or Section 5.4.1. Almost all of the overfit runs observed for this target
were the result of improper clustering of trihedral double-bounce reports between prim-
itives in the initialization stage, made more likely by the close proximity and symmetric
orientation of primitives in this target.
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6% error [dBsm] 6% error [cm] 6P rmse [°]
bias | stdev || ||bias|| | /tr(cov) || az/el | 1ot
10° 1.000 || 1.000 || —0.744 | 0.568 6.404 2.583 3.408 | 19.158
20° 1.000 || 1.000 || —1.058 | 1.001 5.688 4.473 5.163 | 23.775

AVSD || PFlisc Pgq

Table 5.16. Ensemble statistics for second multiple-primitive-target experiments.

H 5.5 Primitive Dimension Mismatch

The scattering models used to generate the results of the previous sections were all
constructed using primitive dimensions perfectly matched to the primitives being esti-
mated. In practice this will not be possible. A model generation algorithm will have to
contend with unknown dimensions and multiple-sized instances of each primitive class.
As described in Section 3.1, there are several ways to deal with this issue, ranging from
the method we have chosen (i.e., choosing a specific set of nominal dimensions to con-
struct a single scattering model for all primitives of a single class) to the conceptually
optimal but computationally demanding approach of including all relevant primitive
dimensions in the target parameterization. In this section we examine the impact of
primitive-dimension mismatch on algorithm performance and address the question of
whether the nominal-dimension approach taken here is sufficient to envelop the range
of phenomenology observed from primitives of different sizes.

All four primitive scattering functions depend on primitive dimensions to some
degree (see Section 2.3.2 and Appendix A). This dependence is most marked for the
dihedral and cylinder, whose primary response mechanisms are fundamentally affected
by primitive height; the dependence is relatively minor for trihedrals and tophats, whose
primary response mechanisms do not vary with primitive dimension. We would thus
expect the effects of primitive dimension mismatch to be more severe for dihedrals and
cylinders than for trihedrals and tophats. Furthermore, due to the similarity between
the dihedral and cylinder shaping functions—both involve a sinc term whose mainlobe
width is inversely proportional to primitive height (see Table 2.1)—we would expect
the effects of primitive dimension mismatch to be similar for dihedrals and trihedrals.
We thus focus on the effects of primitive-dimension mismatch as it concerns dihedrals,
since this will be similar to the effects on cylinders and more marked than the effects
on tophats and trihedrals.

Table 5.17 lists dimensions of three different 25-dBsm dihedrals, denoted “short,”
“square,” and “tall.” To establish a benchmark against which to gauge the effects of
size mismatch, we ran 10°-AVSD experiments similar to those of Section 5.2 for each
of these three dihedrals, using Sy:(.) perfectly matched to the true dihedral dimensions
in each case. The results of these experiments are presented in Table 5.18. As in
Section 5.2, Monte Carlo simulations were continued until the dihedral was discovered
and correctly identified 500 times. (For the sake of compactness, type-estimation results
have been abridged to a single “P,4” statistic, denoting the fraction of runs in which type
was estimated correctly as a dihedral, conditional on discovery.) The variation in the
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H dihedral ‘ dimensions H
short a = 53.04 cm, b= 20.90 cm
square | a = 33.30 cm, b = 33.30 cm
tall a = 20.90 cm, b = 53.04 cm

Table 5.17. Dimensions of three dihedrals. (The dimension notation used here corresponds to that of
Figure 2.10.) These dimensions give a base amplitude of 25 dBsm for each dihedral.

. 6% error [dBsm] 6% error [cm] 6” rmse [°]
dibedral || Paisc Pia bias | stdev || [[bias|| | y/tr(cov) | az/el | rot

short 1.000 || 1.000 || —3.218 | 1.804 7.394 12.781 10.394 | 8.274
square 0.953 || 0.996 || —2.033 | 2.338 5.764 13.890 11.713 | 9.281

tall 0.822 || 0.960 || —1.242 | 2.746 | 10.593 11.896 13.675 | 7.714

Table 5.18. Results from dihedral experiments with perfectly matched nominal and actual dimensions.

statistics between the perfectly matched short, square, and tall dihedrals is attributable
to the different responses of these three dihedrals: although they all have the same base
amplitude, the specularity of the response increases with dihedral height, so that the
short dihedral has a broader out-of-plane response than the tall dihedral, and is thus
more observable. This shows up most noticeably in the differences in Pgis. between the
three dihedrals.

Table 5.19 presents results from experiments in which the nominal dimensions used
to construct the dihedral Sy (.) were mismatched to the dimensions of the primitive in
the target scene. In particﬁlar, for the experiments summarized in Table 5.19, Sy:(.)
was constructed using nominal dimensions given by the square dihedral (a = 33.30 ém,
b = 33.30 cm). The actual dihedrals used in the experiments, however, were the short
or tall dihedrals. Comparing the results of Table 5.19 to those of Table 5.18, it is appar-
ent that this dimension mismatch has a relatively minor effect on performance. (The
most noticeable effect is the change in base amplitude bias, induced by the imperfect
match between Sy (.) and the observed dihedral response.) This is an indication that a
single instance of a dihedral might suffice to serve as an exemplar for the entire class of
dihedrals, and, more generally, that the nominal-sizing approach used here could suf-
fice to capture the behavior of primitives of a range of dimensions without significant
degradation in performance.

. 6% error [dBsm] 6 error [cm] 6% rmse [°]
dibedral || Faisc Pia bias | stdev || [[bias|| | y/tr(cov) | az/el | rot

short 0.990 || 1.000 || —0.207 | 2.010 6.784 12.147 10.167 | 7.894

tall 0.872 || 0.988 || —4.062 | 2.799 || 11.741 12.715 14.182 | 9.850

Table 5.19. Results from dihedral experiments with mismatched nominal and actual dimensions.
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Chapter 6

Dealing with Obstruction

HE target model generation algorithm we have developed in the preceding chap-

ters is based on a flexible framework for fusing information extracted from multiple
SAR images. This framework is flexible enough to support the use of a different fea-
ture extraction method than the one we have chosen here, or a different SAR imaging
scenario, or a different set of reflector primitives, or a different target parameterization.
The basis of our framework’s flexibility is the set of assumptions made in Section 3.3:
these assumptions permit construction and use of a wide variety of measurement mod-
els, including models that capture and describe physical phenomena that our current
model neglects. The capabilities of any algorithm operating in this framework will
depend on the physical realism and descriptive utility of its associated measurement
model.

In this chapter we address one important shortcoming of our algorithm: its inability
to accommodate properly partially obstructed primitives. In particular, our measure-
ment model and algorithm are unable to model the effects of obstruction—mamely, the
lack of detections of a primitive at obstructed viewing angles. In Section 6.1 we demon-
strate the detrimental effects of obstruction on the existing algorithm. In Section 6.2 we
consider various approaches to dealing with obstruction, ranging from a sophisticated
phenomenological approach that models obstruction directly in terms of its physical
basis to a data-driven approach that models obstruction based solely on observed prim-
itive responses. We consider the implications of the different approaches for practical
implementation of a new target model generation algorithm, and opt to pursue the
data-driven approach, which enables realistic modeling of the effects of obstruction
without necessitating significant coupling of primitive computations. In Section 6.3 we
describe how such an approach can be implemented with relatively minor modifications
to the existing measurement model and algorithm. In Section 6.4 we present results
demonstrating the behavior of this modified algorithm on targets containing primitives
that are partially obstructed.

B 6.1 The Effects of Obstruction on the Existing Algorithm

Counsider the four single-primitive targets described in Table 6.1. The responses of
these four primitives over the 2.5° viewsphere grid (see Section 5.1.1) are depicted in
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| primitive || 67 | 62 [dBsw] | 627 [em)] | 67 em)] | o°T [°] |
trihedral | 1 | 2375 | [305 0 152]| — | [3526 0 0]
tophat || 2 | 1000 | [305 0 152] | 1839 | [ 90 0 —]
dihedral | 3 | 2500 | [305 0 152]| — |[ 25 0 0]
cylinder | 4 | 1000 | [305 0 152] | 1770 | [ 65 180 —]
Table 6.1. Parameters of four primitives.
P p 0% error [dBsm] || 6 error [cm] 6P rmse [°] 07 rmse
dise id bias | stdev || [bias| |[[stdev][][ az/el | rot [cm]
tri || 1.000 | 1.000 || —0.703 | 0.541 6.799 | 2.211 2.890 | 19.246 —
10° top || 1.000 | 1.000 || —1.382 | 0.191 0.409 1.288 1.329 1.056
dih || 0.953 | 0.996 || —2.033 | 2.338 5.764 | 13.890 || 11.713 | 9.281 —
cyl || 0.490 | 0.979 0.080 1.625 0.410 | 22.169 1.286 6.629
tri || 1.000 | 1.000 || —0.865 | 0.914 6.271 4.744 4.641 | 25.058 —
20° top || 1.000 | 1.000 || —1.298 | 0.365 0.446 | 2.175 2.388 1.730
dih || 0.437 | 0.961 || —3.225 | 4.423 4.862 | 23.908 || 15.660 | 14.963 —
cyl || 0.109 | 0.966 0.455 2.771 1.786 | 30.845 || 3.433 9.980

Table 6.2. Results from unobstructed primitives.

Figure 6.1. These primitives are identical to those used to provide the benchmark results
for the experiments of Section 5.4.1; in that section (and throughout Chapter 5) we
described how the different observabilities and characteristic responses of each primitive
affect the performance of the algorithm. The performance of the algorithm on these
four primitives is given in Table 6.2.1

Suppose now that each of these four primitives was partially obstructed so that
its observed response was not as depicted in Figure 6.1, but instead appeared as in
Figure 6.2. How would the performance of the existing algorithm on these primitives
change? Clearly, we would expect this obstruction to have some detrimental effect. We
could point to two likely sources of performance degradation. First of all, an obstructed
primitive will be less observable than an unobstructed primitive—it will produce fewer
reports in any data set—so we would expect Pyis. to decrease and the quality of all esti-
mates to decline. Furthermore, we would expect the gross differences between a primi-
tive’s observed response in Figure 6.2 and its assumed canonical response in Figure 6.1
to result in an especially marked increase in the pose and base amplitude errors, even
beyond the degradation attributable to the lower observability of each primitive, as
the algorithm attempts to orient Sp(.) to a set of measurements that is a decidedly
imperfect match to that function. These two effects will both have a negative influence
on algorithm performance.

To characterize the overall effect of obstruction on the algorithm, we performed

! This table is a condensed presentation of the benchmark results presented in Section 5.4.1.
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Figure 6.1. Responses of four unobstructed primitives. These primitives are described in Table 6.1.
These images depict each primitive’s A(0;, Y, ¢r) at every point on the 2.5° viewsphere grid. (The
images are clipped below 3 dBsm because primitives are not detectable from viewing angles at which

A(6;, Y, ¢1) is too low.)
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elevation [deg]

elevation [deg]

elevation [deg]

elevation [deg]

obstructed trihedral response [dBsm]:  specular elevation: 35.2644° specular azimuth: 0° rotation: 0°

-180 -135 -90 -45 0 45 90 135 180
azimuth [deg]

obstructed tophat response [dBsm]:  axis elevation: 90° axis azimuth: 0°

-180 -135 -90 -45 0 45 90 135 180
azimuth [deg]

obstructed dihedral response [dBsm]:  specular elevation: 25’ specular azimuth: 0° rotation: 0°

-180 -135 -90 -45 0 45 920 135 180
azimuth [deg]

obstructed cylinder response [dBsm]:  axis elevation: 65° axis azimuth: 180°

50 12
40
30 10
20 8
10 6
-180 -135 -90 —45 0 45 90 135 180 4
azimuth [deg]

Figure 6.2. Responses of four obstructed primitives. These primitives are the same primitives de-
picted in Figure 6.1, but with portions of their responses artificially censored to simulate the effects
of obstruction. The trihedral has been obstructed at elevations 20° and below, the tophat between
azimuth —45° and 45°, and the dihedral and cylinder for azimuths 10° and greater.
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Py Py 6% error [dBsm] 6% error [cm)] 6P rmse [°] 07 rmse
e ! bias [ stdev [| [[bias]| |[[stdev] || az/el | rot [cm]
tri || 1.000 | 1.000 || —1.644 | 1.294 9.276 | 3.535 15.949 | 31.389 —
10° top || 1.000 | 1.000 || —3.510 | 0.736 2.295 | 2.037 || 12.323 — 1.881
dih || 0.805 | 1.000 || —3.474 | 3.311 5.030 | 16.369 || 18.258 | 20.621 —
cyl || 0.158 | 0.889 || —0.278 | 2.037 2.178 | 19474 || 2.412 — 8.079
tri || 0.992 | 0.988 || —1.423 | 1.635 || 9.790 | 6.639 || 16.515 | 32.324 || —
50e | top || 1-000 [ 1.000 [ —2718 | 1.367 || 3.108 | 3.884 | 18518 | — | 3301
dih || 0.183 | 0.953 || —3.926 | 4.978 7.373 | 26.608 || 18.649 | 23.989 —
cyl || 0.026 | 0.922 0.499 2.522 2.905 | 32413 || 3.873 — 10.947

Table 6.3. Performance of existing algorithm on partially obstructed primitives. The obstructed
respounses are depicted in Figure 6.2.

separate experiments on each of the four primitives described in Table 6.1. These
experiments were identical to those of Section 5.2% except for one important detail: the
primitive responses were artificially censored to conform to the obstructed responses
of Figure 6.2. In particular, we constructed SAR-image data sets for unobstructed
primitives as described in Section 5.1.1, and selected a random subset of images at an
AVSD of 10° or 20° for each algorithm run as before. In the formation of Z from
the image set in any algorithm run, however, we discarded all reports extracted from
images whose viewing angles lie in the obstructed regions depicted in Figure 6.2. Thus
the feature set Z contained no measurements from obstructed viewing angles, but only
missed detections. The results from these experiments are presented in Table 6.3.
Comparison of the results of these experiments to the unobstructed-primitive results
of Table 6.2 reveals the precise nature of the detrimental effect of unmodeled obstruc-
tion on the performance of the algorithm. Almost all performance statistics are worse
in the presence of obstruction: Fyis. values have declined, most error covariances and
rmses have increased, many of the pose rmses and base amplitude error covariances
have increased dramatically, and the negative base amplitude bias has increased signif-
icantly in many cases. Table 6.3 indicates that the effects of obstruction vary for each
primitive, and are fundamentally dependent on the observability of the primitive. In
particular, obstruction has a different effect in high- and low-observability situations.
Limited obstruction is unlikely to affect the discoverability of highly observable primi-
tives (i.e., trihedrals and tophats), which will generally produce enough reports to be
discovered even if portions of their responses are not visible; obstruction will, however,
have an adverse effect on the pose and base amplitude estimates produced for these
primitives, due to the gross mismatch between their observed and assumed responses.
Low-observability primitives (i.e., dihedrals and cylinders), on the other hand, gener-
ally produce only a handful of reports in any data set even when unobstructed; any

2 All measurement-model and algorithmic parameters in this and all other experiments of this chapter
are as given in Tables 5.2 and 5.3, respectively; the primitive dimensions used to construct the Sy (.)
for this and all other experiments of this chapter are as given in Table 5.10.
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obstruction will tend to have an adverse effect on the discoverability of these primitives,
and will be accompanied by a less marked effect on their pose errors.

To clarify the different impact of obstruction on high- and low-observability prim-
itive parameter estimates, we can consider the number of reports that each primitive
will generally produce in any data set. In particular, recall that discoverability of any
primitive requires that the primitive produce at least mpj, reports of amplitude amin
or greater; furthermore, estimate quality will improve as the number of reports (i.e.,
primitive observability) increases. Figure 6.3 presents histograms of the number of
super-threshold reports (i.e., reports of amplitude an;, or greater) produced by each
obstructed and unobstructed primitive for a 10°-AVSD data set.> Figure 6.4 presents
similar histograms for a 20°-AVSD data set. Each of these figures contains four plots,
one for each primitive type. Each plot in turn contains two histograms: the dashed line
corresponds to the number of super-threshold reports produced by the unobstructed
primitive, and the solid line corresponds to the number of super-threshold reports pro-
duced by the obstructed primitive. The vertical dotted line in each plot corresponds
to npin for that data set. (Recall from Table 5.3 that ny, = 4 for 10°-AVSD data
sets and Ny, = 3 for 20°-AVSD data sets.) Obstruction compresses each primitive’s
histogram toward the left of the plot. We can summarize the effect of obstruction
on each histogram as it relates to discoverability and observability by tabulating two
quantities from each histogram: Pg‘fsix , the fraction of the histogram to the right of the
dotted line (i.e., the fraction of runs in which at least np,i, super-threshold reports will
be available), and figisc, the expected number of such reports conditional on discovery.
The values of 155?5‘?‘ and ngisc for each obstructed and unobstructed primitive are listed
in Table 6.4. The obstructed trihedral and tophat histograms lie almost entirely to
the right of the dotted line, so P(ﬁlsix remains near unity; the quality of the estimates
produced for these primitives suffers, however, because ngisc decreases. Conversely, ob-
struction causes a much greater fraction of the dihedral and cylinder histograms to lie
to the left of the dotted line, so Pg‘fsix decreases markedly for these primitives; however,
Tidise 18 close to nymin for both primitives regardless of obstruction, thus there is much
less effect on estimate quality.

As indicated previously, obstruction affects algorithm performance through two dis-
tinct channels: first, by reducing primitive observability as just described, and second,
by introducing a mismatch between the observed primitive responses and the assumed
primitive responses. In theory it might be possible to design an algorithm to correct
for the second source of error, but there is fundamentally no way to counteract the
first source of error without being provided additional measurements. To separate the
contributions of these two error sources, we performed a second set of experiments on
the obstructed primitives of Figure 6.2 in which the algorithm was provided perfect
knowledge of the viewing angles at which obstruction occurs. The optimal way to deal

3These histograms were generated in a manner similar to that used to obtain bounds on discoverabil-
ity in Section 5.2, i.e., by using the primitive responses of Figure 6.1 together with the Pp(.) function
of Figure 5.2 to simulate the detection of a primitive in images at randomly selected viewing angles.
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Figure 6.3. Number of reports produced in 10°-AVSD data sets. These four plots (upper left:
trihedral; upper right: tophat; lower left: dihedral; lower right: cylinder) are histograms of the number
of reports of amplitude amin or greater produced for each primitive. The dashed line in each plot is
the histogram for the unobstructed primitive (see Figure 6.1), the solid line is the histogram for the
obstructed primitive (see Figure 6.2), and the vertical dotted line corresponds to nmin, the minimum

number of reports required for an initialization. Note that the horizontal and vertical scales differ from
plot to plot.
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trihedral; upper right: tophat; lower left: dihedral; lower right: cylinder) are histograms of the number
of reports of amplitude ain or greater produced for each primitive. The dashed line in each plot is
the histogram for the unobstructed primitive (see Figure 6.1), the solid line is the histogram for the
obstructed primitive (see Figure 6.2), and the vertical dotted line corresponds to nmin, the minimum
number of reports required for an initialization. Note that the horizontal and vertical scales differ from

plot to plot.
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10° AVSD 20° AVSD
rimitive = - ~ x| =

p P(Iﬁlsa(’:x ndisc Pdisc ndiSC

. unobstructed || 1.000 | 46.904 1.000 | 14.099
trihedral

obstructed 1.000 | 32.541 0.999 | 9.795

unobstructed || 1.000 | 124.886 || 1.000 | 37.501

tophat

obstructed 1.000 | 92.796 1.000 | 27.910

. unobstructed || 0.954 7.839 0.406 | 3.760
dihedral

obstructed 0.682 5.586 0.158 | 3.394

. unobstructed || 0.583 5.297 0.121 | 3.329
cylinder

obstructed 0.182 4.529 0.029 | 3.142

Table 6.4. Effect of obstruction on number of reports produced by each primitive. The values in this

table are compiled from Figures 6.3 and 6.4. Here P%* represents the fraction of runs in which at least
Nmin reports of amplitude amin or greater are produced; maisc is the average number of such reports

conditional on there being at least n.,i, available.

Py Py 62 error [dBsm)] 0 error [cm] 6% rmse [°] 67 rmse
1=e ' bias | stdev [ [[bias|| |[[stdev][[ az/el | rot [cm]
tri || 1.000 | 1.000 || —0.670 | 0.516 9.261 3.444 2.808 | 16.500 —
10° top || 1.000 | 1.000 || —1.216 | 0.265 0.155 1.468 1.914 — 1.141
dih || 0.793 | 0.997 || —2.356 | 3.177 5476 | 17.287 || 15.116 | 15.188 —
cyl || 0.169 | 0.955 0.758 2.456 2.530 | 19.358 || 1.621 — 8.033
tri || 0.992 | 0.988 || —0.837 | 0.992 9.745 | 6.588 6.085 | 27.121 —
20° top || 1.000 | 1.000 || —1.064 | 0.461 0.142 2.723 3.460 — 2.156
dih || 0.189 | 0.916 || —3.673 | 4.971 8.095 | 25.185 || 17.970 | 20.907 —
cyl || 0.026 | 0.942 0.871 3.306 2.438 | 36.236 || 3.449 — 11.906

Table 6.5. Performance of algorithm with perfect knowledge on partially obstructed primitives. The
obstructed responses are depicted in Figure 6.2. These results represent the performance of an algorithm
given complete knowledge of the viewing angles at which obstruction occurs.

with obstruction in such a case is simply to ignore images in which obstruction is known
to have occurred, because these images can provide no information about the primi-
tive. All other images should then be used to form an estimate exactly as before. The
results of these “perfect-knowledge” experiments are given in Table 6.5. The degrada-
tion in performance observed between Tables 6.2 and 6.5 thus represents the effects of
the reduction in primitive observability, while the degradation in performance observed
between Tables 6.5 and 6.3 represents the effects of the unmodeled mismatch between
observed (obstructed) and assumed primitive responses.

Comparison of Tables 6.2, 6.3, and 6.5 indicates that essentially all of the reduc-
tion in discoverability for obstructed primitives is due to lower observability. On the
other hand, most of the increase in the tophat and trihedral pose estimate errors is
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attributable to the response mismatch. The increase in the pose errors of the dihedral
and cylinder are attributable to both factors. The increased negative bias observed in
the base amplitude estimates of most primitives is attributable to the response mis-
match. The slight increase in location and radius-of-curvature estimate errors is chiefly
attributable to the lower observability. Comparison of these tables thus indicates that
while it would not be possible to design an algorithm to improve detectability or loca-
tion error statistics in the presence of obstruction, we could improve the quality of pose
and base amplitude estimates. These tables also indicate that an algorithm able to
deal with obstruction would offer a greater potential benefit to tophats and trihedrals
than to dihedrals and cylinders, since the parameter estimates of the latter two low-
observability primitives suffer much less from response mismatch than do the parameter
estimates of the high-observability trihedral and tophat.

We stress that Table 6.5 represents a benchmark for the best performance we could
hope to attain from any algorithm faced with the obstructed responses of Figure 6.2,
as this performance corresponds to perfect knowledge of the obstructed regions of the
viewsphere for each primitive. Our goal in this chapter is thus to design an algorithm
that can infer obstruction and correct the error introduced by the unmodeled mismatch
between observed obstructed responses and the assumed primitive responses. Such an
algorithm, if successful, would approach the performance of Table 6.5 even without any
prior knowledge of the presence or extent of obstruction for any target.

M 6.2 Possible Conceptual Approaches

Counceptually, any algorithm that is able to accommodate the effects of obstruction
must do two things: it must infer at which viewing angles a primitive is obstructed,
and it must incorporate this knowledge into its estimates of the primitive’s descriptive
parameters. As indicated previously, the optimal way of incorporating knowledge of
obstruction into the estimate of 8; is simply to disregard views at which primitive ¢ is
known to be obstructed. Because the absence of a report attributable to primitive ¢ in
any image influences the estimate of 8; only through a missed-detection penalty (see
(4.9)), disregarding a known obstructed view is equivalent simply to not penalizing for a
missed detection at that view. The conceptual challenge in accommodating obstruction,
then, is not the problem of how to correct its effects if it is known, but the more
fundamental problem of how to infer its presence and extent. In this section we consider
how this might be accomplished.

The approach to dealing with obstruction that is most physically realistic is to cou-
ple all primitives so that the detectability of any primitive ¢ in any image depends
not only on 6; but on the entire vector 8. The existing probability-of-detection func-
tion Pp(A(8;, Uk, o)) would be replaced with a modified function Pp(i, 0,1y, ¢y) that
takes into account the relative locations of all primitives in its determination of the
detectability of primitive ¢. For instance, if the location components of 8 indicated that
primitive ¢ was downrange from another primitive along the line-of-sight vector defined
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by ¥ and ¢y, the modified probability-of-detection function would satisfy

If 6 indicated that the line of sight between the sensor and primitive ¢ was clear, then
we would instead have

Pp(i, 0,1, ¢1) = Pp(A(8;, Uy, ¢1.))- (6.2)

In theory, Pp(i,O,zZJk, ¢r) could take into account not only the locations, but also the
poses and dimensional information (such as provided by 6! and 6}) of each primitive
in its determination of the detectability of any individual primitive from any viewing
angle. Regardless of whether nonlocational information was used to infer obstruc-
tion, however, this approach represents a significant relaxation of Assumption 2 (see
Section 3.3), which stated that the detectability of the ith primitive depends only on
0; and on the viewing angle.

This approach, while enabling a description of obstruction directly in terms of the
processes that are responsible for it, would have important ramifications for the practi-
cal implementation of the algorithm. In particular, relaxation of Assumption 2 to allow
a coupled probability-of-detection function would introduce significant complications.
Although the E step could proceed largely as before (i.e., as a set of probability compu-
tations decoupled across images and facilitated by the gating assumption), the M step
would be much more difficult: it would no longer be separable into N unrelated max-
imizations. Instead, maximization over any 6; would require joint consideration of all
components of 6. Modification of any of these components could affect the detectabil-
ity of primitive 7, and modification of 8; could potentially affect the detectability of
all other primitives. Implementation of the M step would thus be significantly more
complicated than in the present algorithm.

If we wished to maintain the physical sophistication of the above approach (i.e., the
dependence of primitive detectability on the locations of all other primitives) and yet
continue to perform the M step as a series of N decoupled maximizations, we could
make the following approximation: we could simply neglect the dependence of any
primitive’s detectability on the variation in other primitives’ parameters within a single

]

M step. In other words, when obtaining an M-step estimate OEnH we could make the

assumption that

Pp(i, 0,9, ¢x) = Pp(i,0(i,n), ¥, ¢r), (6.3)
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where

This would enable 0£n+1} to be obtained without simultaneous maximization over all
other primitives’ parameter vectors. (The E step could still use the completely coupled
Pp(i, 0,7y, ¢r) in its determination of the report-to-primitive correspondence proba-

bilities.) As long as the changes in OEn] were small between iterations, (6.3) might be
a reasonable assumption and would enable description of obstruction in terms of its
physical basis without necessitating a significant increase in the computational burden
of the M step.

The above approach—whether implemented with the simplifying assumption of
(6.3) or not—is based on a physically derived model of obstruction. It describes obstruc-
tion not only in terms of the obstructed primitive, but also the obstructing primitive.
While this approach has the conceptual benefit of ensuring a self-consistent description
of obstruction in the context of any target model, it is unnecessarily complicated. In
particular, in the context of forming an estimate of any obstructed target primitive, any
description of the obstructing primitive is completely superfluous. All that is required
to correct the effects of obstruction is to identify the views at which obstruction occurs.
Thinking of obstruction in terms of both an obstructed and an obstructing primitive is
thus beneficial only if it aids in this inferential process.

A different possibility for dealing with obstruction is to infer its presence not from
the locations of other primitives, but from the measurements extracted from the SAR
images. In other words, we could try to infer the presence and extent of obstruction
from Z instead of 8. Such a data-driven approach would be less physically realistic than
the phenomenologically driven approach described above, but would avoid coupling
primitive estimation in the M step. In particular, if obstruction for each primitive was
inferred separately from Z without being influenced by the other components of 8, then
the M step of the algorithm could proceed as N decoupled maximizations without the
aid of any simplifying assumptions. Primitive detectability could still be modeled as
a function only of 8; and viewing angle, possibly in addition to Z (or to some related
quantities determined by Z, 6;, and the viewing angle).

Comparison of the obstructed responses of Figure 6.2 to the assumed canonical
responses of Figure 6.1 suggests that a data-driven approach might be successful in
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dealing with obstruction: the obstructed responses of Figure 6.2 retain much of their
essential canonical character and are certainly distinguishable and orientable to the
human eye. Depending on how we modify our measurement model and algorithm, these
responses might also be made orientable to the target model generation algorithm. In
the following section we describe our methodology for expanding our existing algorithm
to include a data-driven approach to correcting the effects of obstruction.

B 6.3 Methodology

As indicated previously, in order to accommodate obstruction we must infer at which
viewing angles it occurs, and then avoid penalizing missed detections at these viewing
angles. This will require some modification to the measurement model of Section 3.3,
which will result in a modification Q(6|0["}) and, in turn, necessitate a modification to
our existing E and M steps (see Sections 4.2 and 4.3). The precise nature of these mod-
ifications will depend on how we incorporate obstruction into the existing framework
developed in previous chapters. In this section we propose a specific modification to the
measurement model that is well-matched to the structure of the existing algorithm. In
particular, this modification describes obstruction in terms of a set of hidden variables
that can be naturally accommodated into the EM framework, in a manner similar to
that of the vector A. These hidden obstruction variables, like the label parameters,
not only enable a parsimonious description of the phenomenon they represent, but also
enable a description of that obstruction to be efficiently estimated in the EM framework.

Our hidden obstruction variables take the form of NK binary indicators 3y, each
indicating whether a particular primitive is obstructed from the perspective of a par-
ticular image. In particular, we define

0, primitive 7 is not obstructed at viewing angle (¢, ¢r),
Bik = (6.5)

1, primitive ¢ is obstructed at viewing angle (¢, ¢)-

These variables are clearly not observable, but would offer a concise description of
the extent of obstruction for any primitive. Furthermore, if these variables could be
observed, they would enable direct correction of the effects of obstruction: we would
simply avoid assigning a missed-detection penalty to primitive ¢ in image k£ whenever
Bir = 1. As with the label parameters A; ;, we define notation that will allow us to
refer to the set of all hidden obstruction variables in any image k:

B,k
Br = o (6.6)

BNk

Similarly, let us define a vector B incorporating all obstruction parameters from all
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images:
B1
s=| : |. (6.7)
Br
Observation of B would thus provide complete knowledge of the extent of obstruction
for all primitives in all images.
In order to use the hidden parameters (3;; to describe and correct the effects of
obstruction, we must incorporate B into our measurement model. We propose a new
measurement model in the following section. We then show how this new model affects

the expected-log-likelihood function Q(8]6") and describe its implications are for the
E and M steps of the algorithm, as well as the initialization.

H 6.3.1 Modification to the Measurement Model

We require specification of a new measurement model p(X, 3,Z|60) that includes a com-
plete probabilistic description of the relationship between the newly introduced obstruc-
tion parameters B and the previously defined quantities A, Z, and 8. We can decompose
p(A, B,Z|0) as

P(A; B,Z]0) = p(Z|A, B,6) p(X, B16). (6.8)

The p(Z|A, 3,0) component of (6.8) is analogous to the conditional fine-level uncer-
tainty model of Section 3.3, and p(A, B|0) is analogous to the coarse-level uncertainty
model of that section, and is related to the identity of each measurement. We will as-
sume the same fine-level uncertainty model as was used in Chapter 3, i.e., in which the
component measurements of any report Z; ; depend only on the identity of that report.
Because B offers no further information than A about the identity of each report, we
may thus write

P(Z|A, B,6) = p(Z|X, 0)

K
= [ p(Zk|Ax. 6), (69
k=1

where the p(Zg| A, @) terms are exactly as specified in (3.40).
The coarse-level uncertainty component p(A, 3]60) in (6.8) can be decomposed as

p(A, 8l6) = p(A|B,6) p(B]6). (6.10)

Unlike the fine-level uncertainty of (6.9), the coarse-level uncertainty does change with
the introduction of 8. In particular, the inclusion of 8 imposes a new constraint on A:
by definition, if primitive 7 is obstructed in image k, then it cannot produce a report in
that image. Thus A, ; can take on value 7 only if 3; ;, = 0. There is thus a dependence
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of A (the set of all possible A) on any particular choice of B in the conditional pmf
p(A[B.0)

To enable specification of p(A|3,0), we make several basic assumptions that are
analogues to those of Section 3.3, but which have been slightly modified to accommodate
B. In particular, we assume that the detectability of the ¢th primitive in image k
depends only on 6;, 3, and on the image viewing angle; we assume that missed
detections are conditionally independent from image to image given 6 and 3; finally,
we assume that false alarms are independent from image to image and are independent
of missed detections. These assumptions allow us to write

p(A|B,0) = Hp Ak|By. 6), (6.11)

so that the identities Ag of all reports in any image k can be expressed in terms of 6
and the obstruction parameters 3, for that image, without any dependence on terms
from other images. (This is analogous to the decomposition of p(A|@) into independent
terms for each image in (3.20).)

To derive an expression for p(Ag|B.,0) we must specify false-alarm and primitive-
detectability models that include By. If 8;; = 1 then, by definition, primitive ¢ is not
detectable in image k and there should thus be no penalty for a missed detection. If
Bir = 0, we will model the detectability of primitive ¢ in image & as PD;c,i’ exactly as in
Section 3.3. We will continue to model false alarms as a Poisson arrival process, and to
assume that there is no preferential or systematic ordering of the elements of A,. We
may thus write

eV (yp V)P 1-6; Poir,
p()‘klﬂka 9) = Mo : H (1 — PD;W) " H ”fk'] (6.12)
k- . . —LDp A,
1=1 ].Ak7j7£0 LAl

Note that the only functional difference between p(Ag|By,0) in (6.12) and p(Ax|€) as
expressed in (3.32) is the 1 — f3; ; exponent on the missed-detection penalty in (6.12).%
This accomplishes the proper incorporation of obstruction knowledge, i.e., the avoidance
of applying a missed-detection penalty at viewing angles at which a primitive is known
to be obstructed.

Complete specification of the new coarse-level uncertainty model p(X, 3|60) now lacks
only an expression for p(3]0). As indicated in Section 6.2, we wish to maintain the cur-
rent decoupled nature of the M step, which can be separated into independent maxi-
mizations for each primitive. This imposes the constraint that p(3|0) should be specified
as

p(B|6) HP Bixss Bik|6:) (6.13)

*As described previously, the conditioning on 3, also imposes implicit restrictions on Ay, although
this is not expressed explicitly in (6.12).
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This product represents a prior distribution for patterns of obstruction on the view-
sphere for any primitive.

Intuitively, we would expect obstruction to occur at proximate angles on the view-
sphere. For instance, given a fixed number of obstructed views in some data set, it
seems more plausible that these views would be from similar angles than from angles
spread widely across the viewsphere. In other words, an intuitively plausible prior
would reward localization of obstructed views. This suggests the use of a Markov ran-
dom field (MRF) model [37,116] for p(3|@), in which the prior probability of obstruction
at any viewing angle is specified conditionally on the probabilities of obstruction in the
neighborhood of that viewing angle. Such an approach, while intuitively and physically
reasonable, creates several difficulties. First is the adaptation of standard MRF models,
which are usually applied to planar lattices, to sparse and unequally spaced samples on
the sphere. Second is the effect of an MRF-type model on the implementation of the
E step. In the existing algorithm, the computation of the Pr(Ax ; = i|Zy, 6l") is made
tractable by the full decoupling of the measurement model across views, i.e., by the
ability to express the measurement model as a product of K independent terms. Unless
we choose a prior p(3|0) that also decouples across images, there will be a combinatorial
explosion in the computational burden associated with the E step.

We model p(3|6) using a simple prior in which the probability of obstruction of a
primitive in any image is constant and independent of the obstruction of the primitive
in all other images. Specifically, we model

K N
p(Bl6) = [T T] &) — )t (6.14)

k=11i=1

where P, is a parameter representing the probability of obstruction of any primitive in
any image. (We discuss appropriate selection of P, in Section 6.3.5.) This model, while
less physically meaningful than other possibilities as described above, has the important
benefit of allowing the E step to proceed in its present form, ¢.e., as a computation
decoupled across images.

We can use the previous equations to present a full specification of the modified
measurement model:

K /
eipyFAV /YFAV Fk PD]C7)\ X
b7 8.218) = [ |p(Zele. 0) - o CraV)e TPk

_ Mi! . 1- PDk AL s

k=1 ].)\kv];ﬁo kg (6 15)
N 5 ) '
JI87 (1= Por)1 - By)) Pk
=1

where p(Zy|Ag, 0) is specified in (3.40). Note the similarity of (6.15) to the original
measurement model of Section 3.3: the only differences are the presences of the P, and
1 — P, terms, the binary f3; ;, and 1 — (3; ; exponents, and the implicit restriction of Ay
to accommodate additional constraints imposed by 3.
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B 6.3.2 Modification to the E Step

Modification of the measurement model leads to a change in the expected-log-likelihood
function that must be computed in each E step. In particular, the inclusion of the hidden
variables B into the measurement model indicates that the expected-log-likelihood is
now of the form

Q(616") = E [log (A, 8.2/6) | 7,611

= Y [ogp(r.8.210)|p(x Bz, 6",

(AB)e(A,B)

(6.16)

where B is the set of all possible 3, i.e., a set of 25" binary vectors each corresponding
to a distinct choice of B, and (A,B) is the joint set of all possible (A, 3) pairs. A
derivation similar to that of Appendix B shows that with IV specified, the expected-
log-likelihood can still be written as

Q(6]6") ZQZ (6:16!") + Cig, (6.17)
1=1

where each of the N terms Qi(0i|0£n]) depends only on primitive 7 and can be further
decomposed into a sum of K terms, one for each image:

(6;10™) ZQ”@ (0,161, (6.18)
where
Ppj; 1 2
c(6:]10"" Pr(\; = i|Zg, 0" |log — 2k 9:. .,
Qi k(6] 3221 (A, = i|Zg 0g T P, 207 (arj — A0, Yk, 1))
, 1 T
+1log phj — = (X — wk(60:))" R7H (xp; — m(65))

2

+ (1 = Pr(Bix = 1|Zs, e[n])) log(1 — PD;@,i)?
(6.19)
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or, equivalently,

Q@k(é)z—\é)gn}) = Pr(6; 1 = 1|Zy. 6l")) log Ppy.;
+ [1 — Pr(Big = 1|Z, 0M) — Pr(8; 4 = 1|Zy, 9[n])] log (1 — Ppy. ;)

My,
. n 1
+ ZPI“(/\kJ = i|Zy, 01" l ~ 3552 (arj — A6, U, 01))”
=1 ¢

1
+log pj, ; — 3 (x5, — 7k(0:) R™ (x5 — Wk(ei))] :

(6.20)

This bears a striking resemblance to the expected-log-likelihood function of Section 4.2:
the only difference is the presence of the subtractive Pr(3; ; = 1|Zy, O[n]) terms above.
These terms have exactly the desired effect: they avoid penalizing for a missed detec-
tion in an image from which the probability of obstruction has been determined to be
significant.

As before, the E step requires calculation of Pr(\y ; = i|Zy, 0"} terms for all (4,4, k)
triplets; in addition, complete determination of the modified Q(0]6") also requires
calculation of Pr(f; x = 1|Zy, 6l") for all (i, k) pairs. These computations can proceed
by applying Bayes’ rule to p(Ag, Bi, Zg). In particular, we can write

XA B =i Pk By, Zi61)

where By is the set of all possible 8, and (Ag,By) is the set of all possible (A, 3;)
pairs. We can obtain Pr(5; , = 1|Zy, 9[”]) by similar means:

Pr(\j = i|Zy, 8) (6.21)

) 5.1 DAk, By, Zi 6™
Pr(Bs = 1|Zy, 0") = (A,Bx )i =1 k T (6.22)
Z(Ak7'3k)e(Ak7Bk)p(AkaﬂkaZk|9 )

As in Section 4.2, these computations can be greatly simplified by gating.

Note that due to the required consideration of the 2/V-element set By in the sum-
mations of (6.21) and (6.22), it would appear that inclusion of 3 in the measurement
model has increased the computational burden of the E step by a factor of 2/V. In fact,
the actual increase in computational complexity is much smaller, because evaluation
of p(Ax, By, Zk\G["}) for different values of 3, requires many of the same calculations.
In practice the Pr(\;; = i|Zg, 0 and Pr(Bix = 1|Zy, 0™) terms can be obtained
without much more difficulty than was required to obtain the Pr(\; ; = i|Zk,9["}) in
Section 4.2. This is an additional benefit of the simple prior (6.14) we have assumed
for 3.
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B 6.3.3 Modification to the M Step

As before, the M step entails maximization of Q(0]6") over all 8. Because of the
similarity of the modified Q(O\O["}) to the original, the M step can proceed largely as
before. The single difference is the inclusion of the subtractive Pr(3;; = 1|Zk,6["})
term in the missed-detection penalty term of (6.20). Because this change affects only
the pose- and base-amplitude-dependent terms of Q(6|0["}), the ECM estimates of 6
and 0] can be obtained by maximization of (4.25) exactly as before. The estimates of
6P and 0 must be obtained by maximizing a slightly modified version of (4.24):

K[ . [n] PD;Ci 1 2
DD Pr(Any = ilZ, M) [log ——5— — 55 (ar; — A6, ¥, ¢1))
k=1 i1 ]. - PDk,Z 20'a

- VT (6.23)

+ [1 —Pr(Bix = 1\Zk,9[n})} log(1 — PD;m'))'

Implementation of the M step is thus not substantially changed by the inclusion of 3
in the measurement model.

H 6.3.4 Modification to the Initialization Procedure

The initialization procedure described in Section 4.4 is based on an agglomerative clus-
tering algorithm that provides an estimate of A from which to form 0% The presence
of the Pr(p;, = 1|Zg,0™) terms in (6.23) indicates that the initialization procedure
must be modified to provide some estimate of 3 prior to the construction of 0l A
simple approach would be to neglect the effects of obstruction in the initialization. In
other words, we could assume that all 3;, = 0, neglect the obstruction-probability
terms in Q(0]6"), and form 6% using the agglomerative-clustering estimate of A ex-
actly as before. Empirical observation shows that this approach tends to provide a poor
initialization for partially obstructed primitives. In particular, this approach tends to
introduce large errors into the initial pose estimates of partially obstructed tophats
and trihedrals. For instance, when faced with an obstructed trihedral with a respounse
similar to that of Figure 6.2, this approach tends to produce an initial pose estimate
in which the trihedral elevation is much too high. Such an estimate avoids the missed-
detection penalties that would be incurred in the obstructed region by orienting much
of the trihedral response above the swath of elevations that forms the 2.5° viewsphere
grid (see Section 5.1.1). This estimate is often sufficiently bad that the subsequent EM
iteration is unable to correct it.

The preceding observation suggests that the initialization procedure should include
some mechanism for accommodating obstruction. If we could find some means of explic-
itly estimating B in the initialization, we could incorporate this estimate directly in the
formation of 6% Explicit estimation of 3, however, would likely involve a significant
increase in the computational burden of the initialization stage, due to the relatively
unconstrained nature of B and the significant impact it can have on the appearance
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of primitive responses. One approach would be to iterate between estimation of 8 and
B in the initialization stage. For instance, we could form an estimate of 0! as in
Section 4.4, use this estimate to arrive at an estimate of 3, then use this estimate of
B to re-estimate the target parameters, and so on. This iterative refinement process
could be used to obtain an initialization 0% that is based on an explicit estimate of 3.

We choose an approach to initialization that is simpler than that just described, but
which nevertheless tends to correct much of the pose error introduced by obstruction.
Our approach is a two-stage process that refines the initialization provided by the
existing algorithm’s initialization stage to mitigate the effects of obstruction on the
pose estimate. In particular, the first stage of this process is to form an estimate of
0 exactly as in Section 4.4, i.e., neglecting the presence of the 8 terms by implicitly
setting them all to zero. This first stage is used to provide the type, base amplitude,
location, and radius-of-curvature components of 0% The pose component of each
primitive initialization is then obtained by maximizing over only the amplitude terms
of Q(O\O["} ), neglecting all detection-penalty terms. In other words, if the agglomerative
clustering produces a report group

Zi={Zk, j,--- Ly, j,.} (6.24)

for which the original initialization procedure produces a type initialization 95[0] and a
base amplitude initialization 9;-1[0}, the second stage of our approach obtains the pose
initialization by maximizing

—% D (ak, o = AOis s O1,))° (6.25)

n=1

over #P with type and base amplitude fixed at 6! O and 07 (0], respectively. By neglecting
the detection-penalty components of Q(0|9[n]) and focusing entirely on the amplitudes
of the available measurements this approach tends to produce a good pose initialization
even when obstruction is present.

M 6.3.5 Selection of P,

We have described an algorithm that accommodates obstruction by including a vector
of hidden obstruction parameters (3 in the measurement model. Our assumed prior
distribution (6.14) for 3 is a simple model that is completely specified by the selection of
a scalar parameter Py. Intuitively, P, represents the prior probability that an arbitrary
primitive is obstructed at a randomly selected viewing angle. Thus one way to choose P,
would be to select a value that is believed to approximate the “true” prior probability
of obstruction.

Another way to specify P, is suggested by examining its impact on the algorithm.
Intuitively, we would expect the algorithm to be more likely to attribute a missed
detection to obstruction (i.e., to assign a high value for Pr(3;; = 1\Zk,0["})) as Py
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increases. We can pursue this line of inquiry by rewriting the measurement model of
(6.15) to make the relationship between the blockage parameters and missed detections
more explicit:

K

e ’YFAV V
p(X.B,218) = [ |p(ZelAr. 6) - ”F“‘ Hl 8iks Bik) (6.26)
k=1
where
Ppj (1= By), bir =1 and B =0,
(biks Bin) = (1= Ppi)(1 = By), 8 =0and Bz =0, (6.27)
Pb, 61‘7]@ =0 and ﬁiJc =1.

(Note that a combination of 6; ; = 1 and 3; ;, = 1 is impossible by assumption.) In other
words, when faced with a missed detection (6;, = 0), the algorithm is forced to make
a choice between two explanations (3; 5 = 0 or f3;; = 1) that result in different values
of p(A,B3,Z]0). By its nature as an ML estimator, we would expect the algorithm to
choose the more likely explanation, i.e., the choice of 3; ; that maximizes I(6; , ;1) in
(6.27):

(1- PDQW-)(l —Py) > Py : choose (3 = 0;

6.28
(1- PDQW-)(l —Py) < Py: choose 3 = 1. ( )

Thus the equation
(1= Ppi;)(1=P) =Py (6.29)

implicitly defines an amplitude threshold Ag for determining whether a missed detection
will be more likely to be attributed to obstruction or to simple bad luck. In particular,
recalling that Ppj ; is shorthand notation for Pp(A(8i, %y, dx)), we can express the
relationship between P, and Ag as

1— Pp(Ap)
Pp=—- 6.30
or, conversely,
1-2P,
Ay = Pyt ( > 6.31
0 D 1— Pb ( )

for any 0 < P, < 1/2, where Pj,*(.) is the inverse of the one-to-one function Pp(.).
For the experiments of this chapter (and those of Chapter 7) we set P, = 0.25. This
corresponds to an amplitude threshold Ay of approximately 6.0 dBsm, or equivalently
to a PD;@,Z‘ of approximately 0.67. In other words, when faced with a missed detection
of primitive i at a viewing angle (¢, ¢x) from which the primitive was expected to
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produce a report significantly brighter than 6.0 dBsm, the algorithm will tend to pro-
duce Pr(8;x = 1\Zk,9[n]) ~ 1. If the predicted amplitude is significantly lower than
6.0 dBsm, we will tend to observe Pr(f;; = 1|Zk,6["}) ~ 0. Although P, = 0.25 is a
heuristic choice, we present results in Section 6.4.1 that demounstrate that the algorithm
is not especially sensitive to the precise choice of P,.

H 6.4 Experimental Results

In this section we examine the performance of our modified algorithm on each of several
targets. We begin in Section 6.4.1 by examining the modified algorithm’s performance
on the obstructed primitives of Section 6.1 and by examining the robustness of this
performance to different choices of P,. In Section 6.4.2 we examine the performance of
the modified algorithm on three multiple-primitive targets.

B 6.4.1 Single-Primitive Targets

Recall the partially obstructed primitives of Section 6.1. The performance of the un-
modified algorithm on these primitives was summarized in Table 6.3. This performance
was seen to be significantly worse than that obtained from unobstructed primitives (see
Section 5.2), especially in Py and the pose and base amplitude estimate errors. Recall
also that the results of Table 6.5, obtained from an algorithm that was given perfect
knowledge of the obstruction, suggested that most of the degradation in the tophat
and trihedral pose and base amplitude statistics was due to the mismatch between the
assumed responses of the primitives and their actual obstructed responses, and not
to the decrease in primitive observability caused by obstruction. (The degradation in
these statistics for the dihedral and cylinder was much less marked and was seen to
be approximately equally attributable to the response mismatch and to the decline in
observability.)

Table 6.6 presents the performance of the modified algorithm on the same ob-
structed primitives. (These results correspond to 250 discoveries of each primitive at
each AVSD.) To facilitate comparison to results from the old algorithm (see Table 6.3)
and from the perfect-knowledge algorithm (see Table 6.5), we list the pose and base
amplitude estimate error statistics for all three algorithms in Table 6.7. (All other
statistics are nearly identical between algorithms.) This table demonstrates that the
modified algorithm is quite successful at correcting the effects of obstruction, and gen-
erally comes close to the performance of an ideal algorithm with perfect knowledge of
obstruction. For example, the modified algorithm dramatically reduces the trihedral
and tophat azimuth/elevation pose estimate errors: the trihedral pose error has been
reduced from 15.949° to 4.797° in the 10°-AVSD experiment (for which the perfect-
knowledge value is 2.808°) and from 16.515° to 8.475° in the 20°-AVSD experiment (for
which the perfect-knowledge value is 6.085°). Similarly, the tophat pose error is reduced
from 12.323° to 2.984° in the 10°-AVSD experiment (for which the perfect-knowledge
result is 1.621°) and from 18.518° to 4.260° in the 20°-AVSD experiment (for which the
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P p 0¢ error [dBsm] 6% error [cm] 6P rmse [°] 07 rmse
dise id bias | stdev || [[bias|| [[[stdev][]| az/el | rot [cm]
tri 1.000 | 1.000 || —1.188 | 0.586 9.219 3.420 4.797 | 23.865 —
10° top || 1.000 | 1.000 || —1.537 | 0.302 0.546 1.432 2.984 — 1.144
dih || 0.798 | 1.000 || —2.605 | 3.388 5.955 | 16.771 || 17.562 | 16.063 —
cyl || 0.155 | 0.932 0.119 1.860 2.805 | 19.374 1.718 — 8.119
tri || 0.992 | 0.992 | —1451 | 1.301 || 9.791 | 6.550 || 8475 | 30573 || —
20° top || 1.000 | 1.000 || —1.490 | 0.511 0.487 2.743 4.260 — 2.170
dih || 0.181 | 0.941 || —4.050 | 4.798 7.314 | 26.497 || 18.897 | 22.639 —
cyl || 0.026 | 0.930 0.512 2.465 2.926 | 33.751 4.056 — 11.497
Table 6.6. Performance of modified algorithm on partially obstructed primitives.
10° AVSD 20° AVSD
prim | alg 6” rmse [°] 8¢ error [dBsm] 6P rmse [°] ¢ error [dBsm]
az/el ‘ rot bias ‘ stdev || az/el ‘ rot bias ‘ stdev

old 15949 | 31.389 | —1.644 | 1.294 || 16.515 | 32.324 | —1.423 | 1.635
tri new 4.797 | 23.865 | —1.188 | 0.586 8.475 | 30.573 | —1.451 | 1.301
perfect || 2.808 | 16.500 | —0.670 | 0.516 6.085 | 27.121 | —0.837 | 0.992

old 12.323 — —3.510 | 0.736 || 18.518 — —2.718 | 1.367
top new 2.984 — —1.537 | 0.302 4.260 — —1.490 | 0.511
perfect || 1.621 — —1.216 | 0.265 3.460 — —1.064 | 0.461

old 18.258 | 20.621 | —3.474 | 3.311 || 18.649 | 23.989 | —3.926 | 4.978
dih new 17.562 | 16.063 | —2.605 | 3.388 || 18.897 | 22.639 | —4.050 | 4.798
perfect || 15.116 | 15.188 | —2.356 | 3.177 || 17.970 | 20.907 | —3.673 | 4.971

old 2.412 — —0.278 | 2.037 || 3.873 — 0.499 | 2.522
cyl new 1.718 — 0.119 1.860 4.056 — 0.512 | 2465
perfect || 1.621 — 0.758 | 2.456 3.449 — 0.871 3.306

Table 6.7. Comparison of pose and base amplitude estimate statistics between algorithms for partially
obstructed primitives. Here “old” refers to the algorithm described in previous chapters, “new” refers
to the modified algorithm described in this chapter, and “perfect” refers to the algorithm given perfect
knowledge of the obstructed regions of the viewsphere. Statistics for the old, new, and perfect algorithms
are taken from Tables 6.3, 6.6, and 6.5, respectively.

perfect-knowledge result is 3.460°). The trihedral and tophat base amplitude estimates
also improve with the new algorithm: for instance, in the 10°-AVSD experiment the
tophat base amplitude standard deviation decreases from 0.736 dBsm to 0.302 dBsm
(the perfect-knowledge result is 0.265 dBsm) and the bias changes from —3.510 dBsm
to —1.537 dBsm, which is much closer to the perfect-knowledge result of —1.216 dBsm.

The new algorithm has a less dramatic effect on the dihedral and cylinder estimate
statistics; as described in Section 6.1, obstruction has a less marked effect on the quality
of these estimates and there is thus less room for improvement. Table 6.7 shows that
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10° AVSD 20° AVSD
prim | P, 6P rmse [°] | 6% error [dBsm] 6® rmse [°] 6% error [dBsm]
az/el ‘ rot bias ‘ stdev || az/el ‘ rot bias ‘ stdev

0.10 || 4.881 | 26.578 | —1.623 | 0.736 || 10.064 | 28.340 | —1.822 | 1.421
tri | 0.25 || 4.797 | 23.865 | —1.188 | 0.586 8.475 | 30.573 | —1.451 | 1.301
0.40 || 4.784 | 27.236 | —0.900 | 0.584 || 8.480 | 29.561 | —1.305 | 1.072

0.10 || 3.618 — —2.093 | 0.376 6.581 — —2.102 | 0.722
top | 0.25 || 2.984 — —1.537 | 0.302 4.260 — —1.490 | 0.511
0.40 || 2.409 — —1.151 | 0.264 3.878 — —1.178 | 0.466

Table 6.8. Comparison of pose and base amplitude estimate statistics for different choices of Py.

the dihedral and cylinder azimuth/elevation pose errors have both been reduced slightly
in the 10°-AVSD experiments—the dihedral error decreases from 18.258° to 17.562°
(its perfect-knowledge result is 15.116°) and the cylinder error decreases from 2.412°
to 1.718° (its perfect-knowledge result is 1.621°). The error statistics of the dihedral
and cylinder in the 20°-AVSD experiments are nearly constant for any of the three
algorithms.

To examine the robustness of the modified algorithm to different choices of P,, we
ran additional trihedral and tophat experiments for two additional values of P,, 0.1
and 0.4. As indicated in (6.31), any value of P, between 0 and 0.5 defines an implicit
amplitude threshold Ay at which missed detections are equally likely to be attributed
to bad luck or obstruction; for P, = 0.1 we have Ay = 7.25 dBsm and for P, = 0.4
we have Ag = 4.38 dBsm. We performed 200 algorithm runs at each AVSD for both
primitives using each P,. The pose and base amplitude statistics obtained from all three
choices of P, are presented in Table 6.8. The results of this table demonstrate that the
algorithm is relatively robust to the choice of P: performance shows some variation
but is similar for each value of P, selected. Tophat pose error decreases slightly for
larger values of P,: for instance, the 10°-AVSD tophat pose errors for P, values of 0.10,
0.25, and 0.40 are 3.618°, 2.984°, and 2.409°, respectively. This effect is attributable
to the smaller Ay value associated with larger values of P, which results in more of
the missed detections in the tophat’s obstructed region being correctly assigned f(; x
values of 1. (Changes in Ay have a much smaller effect on the trihedral pose errors
because the RCS of this primitive in most of its obstructed region is far above Ag for
any of these choices of P,.) Another trend that is apparent in Table 6.8 is an increased
positive tendency in the base amplitude bias for larger values of P,: as Ag increases
the algorithm incurs more missed detection penalties (see (6.19)) and this will tend to
result in lower base amplitude estimates. We note that for any of the P, values tested,
the results of Table 6.8 show significant improvement from the “old algorithm” results
of Table 6.7.
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Py Py 0¢ error [dBsm] 6% error [cm] 6P rmse [°] 07 rmse
8¢ ! bias | stdev || [[bias|| [[[stdev][]| az/el | rot [cm]
tri 1.000 | 1.000 || —0.433 | 0.422 7.604 2.406 1.941 | 15.204 —

10° top || 1.000 | 1.000 || —0.759 | 0.179 0.506 | 1.356 1.454 — 1.106
dih || 0.964 | 0.996 || —0.643 | 2.089 5.733 | 12.833 || 11.402 | 6.841 —

cyl || 0.404 | 0.990 1.137 | 3.236 2.220 | 18.969 || 2.619 — 6.224
tri || 0.998 | 1.000 || —0.843 | 0.927 || 7.368 | 4433 || 4.050 | 23.044 || —

50e | top || 1-000 [ 1.000 [ —0.754 | 0.303 | 0.442 | 2587 || 2371 | — | 1940
dih || 0.488 | 0.975 || —2.872 | 4.037 6.631 | 23.753 || 15.397 | 14.912 —

cyl || 0.108 | 0.944 2.951 5.464 4.302 | 34.373 || 4.268 — 10.186

Table 6.9. Performance of modified algorithm on the target of Section 5.4.1.

B 6.4.2 Multiple-Primitive Targets

We now examine the performance of the algorithm on three multiple-primitive targets.
The first of these targets is the multiple-primitive target of Section 5.4.1 depicted in
Figure 5.5. Running the algorithm on this target provides an indication of whether the
added capability of the modified algorithm has any detrimental effects on its ability
to estimate the parameters of unobstructed primitives. The performance of the old
algorithm on this target was presented in Table 5.13; the performance of the modified
algorithm is presented in Table 6.9. (These results correspond to 500 runs for each
algorithm at each AVSD.) In Table 6.10 we compare the pose and base amplitude error
statistics for these two algorithms. Almost all statistics are similar between algorithins.
The average difference in pose errors between algorithms for the trihedral, tophat, and
dihedral is 0.098°, and the average difference in the base amplitude biases among these
primitives is +0.321 dBsm. Overall, the cylinder results show the greatest difference
between the two algorithms: for instance, the cylinder pose error has increased from
1.209° to 2.619° in the 10°-AVSD experiment and from 1.869° to 4.268° in the 20°-
AVSD experiment. Much of the variation in the cylinder statistics is attributable to
the lesser statistical significance of the cylinder results due to this primitive’s low Pgjsc
(the cylinder results for the original algorithm are based on 500 x 0.082 = 41 cylinder
discoveries, and those for the modified algorithm are based on 500 x 0.108 = 54 discov-
eries). Overall, Table 6.10 indicates that the performance of the modified algorithm on
unobstructed primitives is similar to that of the original algorithm.

We also examined the performance of the modified algorithm on two self-obstructing
multiple-primitive targets. The first of these is depicted in Figure 6.5. This primitive is
comprised of a tophat, two trihedrals, and a cylinder; the cylinder obstructs the other
three primitives from various viewing angles, and the cylinder and trihedrals each par-
tially obstruct the tophat. The parameters of these components are given in Table 6.11.
To gauge the ability of the modified algorithm to correct for the errors introduced by
this target’s self-obstruction, we performed 250 runs of each algorithm on this target
at 10° and 20° AVSDs. The results from the old algorithm are presented in Table 6.12,
and the results from the modified algorithm are presented in Table 6.13. The pose and
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10° AVSD 20° AVSD
prim alg 6® rmse [°] 6¢ error [dBsm] 6® rmse [°] 6¢ error [dBsm]
az/el ‘ rot bias ‘ stdev || az/el ‘ rot bias ‘ stdev
trihedral old 2.978 | 17.866 | —0.617 | 0.495 4.911 | 25.839 | —0.900 | 0.959
I I
new || 1.941 | 15.204 | —0.433 | 0.422 4.050 | 23.044 | —0.843 | 0.927
old 1.810 — —1.119 | 0.222 2.683 — —1.026 | 0.374
tophat
new || 1.454 — —0.759 | 0.179 2.371 — —0.754 | 0.303
dihedral old || 11.337 | 6.934 | —1.696 | 2.411 || 13.483 | 15.391 | —2.873 | 4.045
I
new || 11.402 | 6.841 | —0.643 | 2.089 | 15.397 | 14.912 | —2.872 | 4.037
. old 1.209 — 0.154 1.507 1.869 — 0.517 | 2.567
cylinder
new || 2.619 — 1.137 3.236 4.302 — 2.951 5.464

Table 6.10. Comparison of pose and base amplitude estimate statistics between algorithms for the
target of Section 5.4.1. Here “old” refers to the algorithm described in previous chapters and “new”
refers to the modified algorithm described in this chapter. Statistics for the old and new algorithms are
taken from Tables 5.13 and 6.9, respectively.

| primitive || 6! | 67 [aBsm] | %7 [cm] | 67 [cu] | o°T [°] |
tophat | 2 |  10.00 [ 305 00 152] | 1839 | [ 90 0 —]
trihedral 1 || 1| 23.75 [-254 762 15.2] — [35.26 135 O ]
trihedral 2 || 1|  23.75 [-254 —762 152] — [35.26 —135 O ]
cylinder || 4| 10.00 [—424 0 330] | 1770 | [ © 90  —]

Table 6.11. Parameters of components of first self-obstructing target.

base amplitude estimate statistics obtained from the two algorithms are directly com-
pared in Table 6.14. We see that the modified algorithm reduces the pose errors for all
primitives: for instance, the tophat pose error is reduced from 6.631° to 3.223° in the
10°-AVSD experiment and from 9.653° to 4.627° in the 20°-AVSD experiment. As with
the previous experiments, we also observe an increased positive tendency in the base
amplitude estimate biases and a reduction in the standard deviations of these estimates
when the modified algorithm is used: for instance, in the 10°-AVSD experiment the
average base amplitude estimate bias of the two trihedrals changes from —2.803 dBsm
to —1.884 dBsm and the overall standard deviation of these estimates decreases from
1.106 dBsm to 0.718 dBsm.

The second self-obstructing target is depicted in Figure 6.6. This target differs from
those examined thus far in that it is not a collection of discrete canonical primitives,
but rather a continuous body that can presumably be approximated by several discrete
primitives (e.g., four trihedrals). Note that approximation of this target by such prim-
itives will be imperfect due to the fact that components of this target are not equally
sized square plates, as in the canonical trihedral. For instance, the large horizontal



Sec. 6.4. Experimental Results

137

Figure 6.5. Two views of first self-obstructing target.

P p 02 error [dBsm] || 6% error [cm] 6? rmse [°] 07 rmse
dise i bias | stdev || [[bias|| [[|stdev[]]| az/el | ot [cm]
top 1.000 | 1.000 || —2.215 | 0.393 0.699 | 1.445 6.631 — 1.124
10° | tri 1 || 1.000 | 1.000 || —2.867 | 1.100 6.826 | 2.958 6.903 | 24.423 —
tri 2 || 1.000 | 1.000 || —2.739 | 1.111 6.604 | 2.835 6.648 | 21.514 —
top || 1.000 | 1.000 || —1.933 | 0.685 0.844 | 2.830 9.653 — 2.215
20° | tri 1 || 0.996 | 1.000 || —3.267 | 1.841 6.482 | 5.653 || 10.548 | 28.075 —
tri 2 || 0.996 | 0.996 | —3.078 | 1.815 6.279 | 5.346 || 10.648 | 29.503 —
Table 6.12. Performance of old algorithm on first self-obstructing target.
P p 6% error [dBsm] || 6% error [cm] 6P rmse [°]  [|0; rmse
dise id bias | stdev || [[bias]| [[[stdev]]]| az/el | rot [cm]
top 1.000 | 1.000 || —1.144 | 0.226 0418 | 1.385 | 3.223 — 1.087
10° | tri 1 || 1.000 | 1.000 || —1.905 | 0.683 6.852 | 2.946 | 5.137 | 22.126 —
tri 2 || 1.000 | 1.000 || —1.864 | 0.752 6.627 | 2.835 || 4.977 | 20.480 —
top || 1.000 | 1.000 || —1.101 | 0.441 0.324 | 2.583 | 4.627 — 2.052
20° | tri 1 || 0.996 | 1.000 || —2.729 | 1.445 6.447 | 5.574 || 7.362 | 28.601 —
tri 2 || 0.996 | 0.992 || —2.683 | 1.523 6.481 | 5.187 || 7.457 | 28.015 —

Table 6.13. Performance of modified algorithm on first self-obstructing target.
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10° AVSD 20° AVSD

prim | alg 6P rmse [°] | 6¢ error [dBsm] 6® rmse [°] 6¢ error [dBsm]
az/el ‘ rot bias ‘ stdev || az/el ‘ rot bias ‘ stdev

top old || 6.631 — —2.215 | 0.393 9.653 — —1.933 | 0.685
new || 3.223 — —1.144 | 0.226 4.627 — —1.101 | 0.442

i 1 old || 6.903 | 24.453 | —2.867 | 1.100 || 10.548 | 28.075 | —3.267 | 1.841
new || 5.137 | 22.162 | —1.905 | 0.683 7.362 | 28.602 | —2.739 | 1.445

tri 2 old || 6.648 | 21.514 | —2.739 | 1.111 || 10.648 | 29.503 | —3.077 | 1.815
new || 4.977 | 20.480 | —1.864 | 0.752 7.457 | 28.015 | —2.683 | 1.523

Table 6.14. Comparison of pose and base amplitude estimate statistics between algorithms for the first
self-obstructing target. Here “old” refers to the algorithm described in previous chapters and “new”
refers to the modified algorithm described in this chapter. Statistics for the old and new algorithms are
taken from Tables 6.12 and 6.13, respectively.

Figure 6.6. Two views of second self-obstructing target.

base of this target will result in a stronger response at unobstructed low elevations
than would be observed from a canonical trihedral. These deviations from ideality can
be expected to introduce additional pose errors, even on top of those introduced by
obstruction. Noncanonicities such as these are the subject of Chapter 7, in which we
examine approaches to detecting and accommodating noncanonical primitives. For the
experiments here, our focus is simply to determine whether the modified algorithm
can model this target more accurately than the original algorithm, i.e., whether the
modified algorithm can remove some of the errors in the pose estimate.

Table 6.15 presents parameterizations for four trihedrals that can approximate the
target of Figure 6.6. (Pose is defined as for canonical trihedrals.) Because of the unequal
base lengths along each dimension of this target, the canonical definition of trihedral
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| primitive || 6! | 62 [dBsm)] | =1 [cm] | 67 em)] | o*T [°] |
trihedral 1 | 1 | >333 | [ 914  61.0 30.5] — (3526 135 0]
trihedral 2 || 1 | >333 | [—91.4 61.0 30.5] — [35.26 45 0]
trihedral 3 | 1 | >333 | [-91.4 —61.0 30.5] — [3526 —45 0]
trihedral 4 1 > 33.3 [ 914 —61.0 30.5] — [35.26 —135 0]

Table 6.15. Parameters of trihedral components of second self-obstructing target. Note that because
of the noncanonical nature of this target, the definition of base amplitude in Table 2.1 is inapplicable;
a canonical square-plate trihedral with dimensions of 45.7 cm (the shortest dimension of each of these
trihedrals) has a base amplitude of 33.3 dBsm.

6¢ stats [dBsm] || 6F error [cm] 6” rmse [°]
mean | stdev || [[bias]| [[stdev]||| az/el | rot
10° 1.000 || 1.000 || 35.195 | 1.920 2.576 | 1.287 || 15.908 | 40.484
20° 1.000 || 1.000 || 34.749 | 2.590 2531 | 2,902 || 16.800 | 35.830

AVSD || Plisc Pia

Table 6.16. Performance of old algorithm on second self-obstructing target.

base amplitude in Table 2.1 is inapplicable. (A canonical trihedral with a base length
equal to 45.7 ¢m, the shortest dimension of each trihedral component of this target,
would give a base amplitude of 33.3 dBsm.) As with the previous target, we ran two sets
of experiments on the target of Figure 6.6, one using the old algorithm and one using the
new algorithm. The results from 125 runs of each algorithm at each AVSD are presented
in Tables 6.16 and 6.17, respectively. (These results are in ensemble form, i.e., they are
averages over all four trihedral components, since each corner of the target is identical
except for a translation and rotation.) Comparison of these two tables reveals that the
modified algorithm produces estimates with a lower azimuth/elevation pose error than
the old algorithm, though with a similar rotational error. In particular, the modified
algorithm reduces the azimuth/elevation pose error from 15.908° to 9.863° in the 10°-
AVSD experiment and from 16.800° to 10.137° in the 20°-AVSD experiment. (The
relatively large rotational error observed for these trihedrals is attributable to the fact
that the best fit of the canonical unobstructed trihedral response to each of the observed
obstructed responses is obtained at a rotation angle near 60°.) The modified algorithm
also reduces the standard deviation of the base amplitude estimates, from 1.920 dBsm
to 1.307 dBsm in the 10°-AVSD experiment and from 2.590 dBsm to 2.066 dBsm in the
20°-AVSD experiment.

6% stats [dBsm] | 68X error [cm] 6P rmse [°]
mean | stdev || [[bias|| [[|stdev[]]| az/el | rot
10° 1.000 || 1.000 || 35.549 | 1.307 2.504 | 1.272 9.863 | 43.333
20° 1.000 || 1.000 || 35.155 | 2.066 2.557 | 2.705 || 10.137 | 39.297

AVSD || Pise Py

Table 6.17. Performance of modified algorithm on second self-obstructing target.
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10° AVSD 20° AVSD
alg 6P rmse [°] 6% error [dBsm] 6P rmse [°] 6% error [dBsm]
az/el ‘ rot mean ‘ stdev | az/el ‘ rot mean ‘ stdev

old || 15.908 | 40.484 | 35.195 | 1.920 | 16.800 | 35.830 | 34.749 | 2.590
new || 9.863 | 43.333 | 35.549 | 1.307 || 10.137 | 39.297 | 35.155 | 2.066

Table 6.18. Comparison of pose and base amplitude estimate statistics between algorithms for the sec-
ond self-obstructing target. Here “old” refers to the algorithm described in previous chapters and “new”
refers to the modified algorithm described in this chapter. Statistics for the old and new algorithms are
taken from Tables 6.16 and 6.17, respectively.



Chapter 7

Dealing with Noncanonicity

N the previous chapter we described an extension of our basic framework to accomimno-
date partially obstructed primitives. In this chapter we consider how our framework
can be further extended to accommodate another important aspect of real targets:
noncanounicity. Real targets are not comprised of ideal primitives. Instead, the motiva-
tion for reflector-primitive model-based ATR systems is the observation that many real
targets can be approximated by collections of primitives, and that given a proper pa-
rameterization of these primitives it is possible to describe the response of a target from
any viewing angle. From the perspective of model-based ATR, then, any phenomenon
or target component response that cannot be adequately described in terms of the cho-
sen parameterization represents a noncanonicity. In our framework, noncanonicities
include such effects as responses from unmodeled primitives, responses from perturbed
canonical primitives, and responses generated from the interaction between primitives.
In this chapter we describe an extension to our framework that is general enough
to accommodate a wide range of possible noncanonicities. As described in Section 7.1,
because the range of possible noncanonicities is extremely broad, our implementation
focuses on one type of noncanonicity that is especially important in properly modeling
a target like SLICY (see Figure 1.2) as a collection of reflector primitives. We examine
SLICY in detail in Section 7.2, and demonstrate how the algorithm described in pre-
vious chapters imperfectly models SLICY’s noncanonical responses. In Section 7.3 we
consider various approaches to accommodating noncanonicity explicitly. In Section 7.4
we propose a particular approach that is conceptually broad enough to enable model-
ing of a wide range of noncanonicities without necessarily imposing a large increase in
the computational burden of the algorithm. We go on to describe the implementation
of this approach for a specific class of noncanonicity observed in SLICY, and describe
the performance of our modified algorithm on SLICY in Section 7.5. We conclude the
chapter in Section 7.6 with a description of a further modification to our algorithm that
enables identification of target features that are improperly modeled using the specified
primitive set and parameterization.

141
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B 7.1 Examples of Noncanonicity

The range of possible noncanonicities is extremely broad. Given any set of primi-
tives (e.g., the trihedral, tophat, dihedral, and cylinder of Figure 2.10), a parametric
framework for describing a target comprised of such primitives (e.g., € as described
in Section 3.1), and a measurement model relating the target parameters to the ob-
served features in a set of SAR images (e.g., p(X, 8, Z|0) as constructed in Section 3.3),
a noncanonicity is any observed response that is not generated strictly according to
the measurement model, or that involves primitive attributes not captured by the cho-
sen parameterization, or that is generated by an unmodeled response mechanism. In
this section we describe several basic sources of noncanonicity in target responses. In
Section 7.3 we consider how various types of noncanonicity could be accommodated by
augmentation of the parameterization 6 to include additional descriptive parameters,
modification to the measurement model, or a combination of these approaches.

One type of noncanonicity corresponds to responses from unmodeled primitives. For
instance, returns from flat plates, cavities, edges, corners, and other such target com-
ponents are noncanonical in our existing framework because we have chosen to model
only trihedrals, tophats, dihedrals, and cylinders. Realistic modeling of targets whose
respouses include many unmodeled scattering mechanisms would require augmentation
of the set of primitives under consideration and specification of a scattering-response
function Sy (.) for any additional primitives we wish to model.

Another type of noncanonicity arises when primitives are perturbed from their
canonical geometric forms. This perturbation can take several forms. For primitives
comprised of several components, changes in the relationship between these compo-
nents will lead to noncanonical responses. For instance, small deviations in the internal
angle of a dihedral can have a significant impact on the primitive’s angular scattering
response [3,39,60]; trihedral responses tend to be more robust to small deviations in
internal angle but also display a dependence on such variations [21,33]. Modifications in
the size or shape of one or more components of a primitive will also lead to noncanonic-
ity. For instance, a trihedral response can be generated by three flat plates even if they
are not square plates; the overall response of such a trihedral, however, will differ from
the canonical square-plate trihedral response described by S1(.).! Similarly, a tophat
formed from a cylinder shaft and a noncircular base will not have a radially symmetric
response as predicted by Sy(.), but will generate stronger returns at azimuths from
which its base extent is greater.

The types of noncanonicity just described conceptually lend themselves to compact
representation. Given a handful of parameters describing the plate sizes and internal
angle of a dihedral, for instance, it is possible at least in theory to predict the response
of such a primitive using PO or similar means. Other types of noncanonicity do not
lend themselves to such compact representation in terms of a small number of primitive

1A detailed examination of the responses of various trihedrals formed from non-square plates is
presented in [94].
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attributes. For instance, the presence of small dents or scratches on the surface of a
primitive will alter its response, but would be much harder to characterize compactly.

Some types of noncanonicity are essentially stochastic in nature. For instance,
surface roughness will lead to variations in primitive response that generally cannot be
deterministically modeled with much accuracy [62,92,104]. Similarly, partial or uneven
obscuration by dielectric materials such as foliage, mud, or camouflage will all alter the
observed response of a primitive and are often difficult to describe deterministically or
in terms of a handful of parameters [62,104].

These examples illustrate that the range of potential noncanonicities is enormous.
Rather than attempting to deal with each possible type of noncanonicity explicitly, our
goal in this chapter is to construct a framework that is flexible enough to allow significant
freedom in the choice of which types of noncanonicity to model explicitly for a given
implementation of the target model generation algorithm, and to demonstrate this
framework by modeling a particular class of noncanonicity that is especially important
in describing the responses observed from SLICY.

W 7.2 SLICY

Figure 7.1 depicts four views of an XPatch facetization model based on SLICY. As
described in Section 1.2, SLICY is a benchmark target that exhibits many sophisticated
real-world effects, as described shortly. Examination of Figure 7.1 suggests that SLICY
might be effectively modeled as a collection of reflector primitives. In fact, SLICY
contains components that are similar to each of our four basic primitive types. We
detail these components below. To aid in the description of SLICY’s components,
Figure 7.2 depicts a view of SLICY with cardinal azimuth directions (defined as depicted
in Figure 2.9) clearly indicated. We define the front of SLICY to be the side clearly
visible at 90° azimuth, as indicated in Figure 7.2.

e Trihedrals. SLICY contains three components that can be modeled as trihedrals.
Two of these are cut out from the front of SLICY’s rectangular body; the third
is formed by two triangular plates that extend from the top of SLICY. Note
that none of these trihedrals is a canonical square-plate trihedral as depicted in
Figure 2.10: the two “cut-out” trihedrals are each formed from two rectangular
plates and a quarter-circular plate, and the “pop-up” trihedral is formed from
two triangular plates and an extended segment of SLICY’s large top.

e Tophats. The two cylindrical shafts extending from the top of SLICY can be
modeled as tophats. The short tophat on the left is hollow; the tall tophat
on the right is solid. Like the trihedrals just described, SLICY’s tophats are
noncanonical: their bases are formed not from circular plates as in Figure 2.10,
but from SLICY’s large rectangular top.

e Dihedrals. Although SLICY contains no true dihedral components that are dis-
tinct from its trihedrals, all three trihedrals generate dihedral-like double-bounce
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returns from some viewing angles. The two cut-out trihedrals on the front of
SLICY will obviously produce dihedral returns when viewed at azimuths near
90°; these components are large enough that the dihedral responses will gener-
ally be resolvable from the cut-out trihedrals’ triple-bounce returns. Additionally,
the triangular plates that form SLICY’s pop-up trihedral are visible from some
viewing angles from the back of SLICY and generate double-bounce returns near
azimuths —45° and —135°. Although the physical structures generating these
returns are actually trihedrals, the separation of the just-described dihedral re-
sponses from the corresponding trihedral responses in location (for the cut-out di-
hedral double-bounce returns) or in pose (for the pop-up dihedral double-bounce
returns) often lead to these components being modeled as distinct scatterers by
the target model generation algorithm, as we discuss in Sections 7.2.2 and 7.5.
Although it is possible to imagine employing geometrically based reasoning to
prevent the inclusion of distinct primitive estimates for responses generated by
already-modeled physical structures, our algorithm contains no means for doing
this. We thus include these four dihedrals in the list of SLICY’s component prim-
itives. We point out that although the two pop-up dihedrals produce returns over
a different range of viewing angles than does the triangular-plate trihedral, their
close proximity to that component presents a particular challenge to the estima-
tion of that trihedral’s parameters, as will be discussed further in Sections 7.2.2
and 7.5.

o Cylinders. SLICY contains one component that can be modeled as a cylinder.
In particular, the front of SLICY contains a curved surface of constant radius-of-
curvature that will produce visible returns at azimuths near 90°.

Figure 7.3 depicts two views of the SLICY facetization model that have been annotated
to indicate the components just described. These components have been named and
numbered for unique identification. In particular, “tophat 1” is the short hollow tophat
on the left, “tophat 2” is the tall solid tophat on the right, “trihedral 1”7 is the long
extended cut-out trihedral on the left, “trihedral 2” is the shorter (but still extended)
cut-out trihedral on the right, and “trihedral 3” is the triangular-plate pop-up trihedral
on top of SLICY. “Dihedral 17 is the extended cut-out dihedral on the left, “dihedral 2”
is the cut-out dihedral on the right, “dihedral 3” is the dihedral formed from the SLICY’s
top base and the left triangular plate of the pop-up trihedral, and “dihedral 4” is the
dihedral formed from the top of SLICY and the triangular plate on the right.

The parameterizations of these components of SLICY are given in Table 7.1. Pose
is defined in Table 7.1 as for canonical primitives: for instance, trihedral azimuth and
elevation are defined as the viewing direction equidistant from the three trihedral axes,
even though noncanonical trihedrals will generally not produce their maximum re-
sponses from this viewing angle. Similarly, tophat pose is defined as the direction of the
axis of the tophat cylinder shaft. Note that base amplitude is not given in Table 7.1.
This is because the noncanonicity of these components makes the canonical definition
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Figure 7.1. Four views of a facetization model of SLICY. This target extends 305 cm in the z direction
and 244 cm in the y direction.
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270° azimuth
(back)

0° azimuth
(right)

180° azimuth

(Ieft) )

90° azimuth
(front)

Figure 7.2. SLICY frame of reference. Here azimuth is defined as in Figure 2.9. We define the front
of SLICY to be the side clearly visible at 90° azimuth. The direction of 0° azimuth corresponds to the
z-axis in Figure 7.1; the direction of 270° (or, equivalently, —90°) azimuth corresponds to the y-axis.

trihedral 3 tophat 2

tophat 1

trihedral 1 trihedral 2

dihedra 1 dihedra 3
dihedral 2

cylinder dihedral 4

Figure 7.3. Reflector-primitive components of SLICY.
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H component H 0! ‘ 6x% [cm] ‘ 7 [cm] ‘ 6'?T [°] ‘
tophat1 | 2 | [—68.6 381 71.1]| 330 | [ 90 0  —]
tophat2 | 2 | [ 660 381 711] | 330 |[ 90 0 ]
trihedral 1 || 1 | [-152 —91.4 40.6] | — | [3526 135 0 ]
trihedral 2 || 1 | [ 864 —91.4 406] | — | [3526 45 0 ]
trihedral 3 || 1 | [ 43.2 —152 71.1] | — | [3526 90 O ]
cylinder || 4 | [ 356 —91.4 406] | 305 | [ 0 0 —]
dihedral1 || 3 | [-83.8 —914 406] | — | [ 45 90 90]
dihedral 2 || 3 | [ 1194 -914 406] | — | [ 45 90 90]
dihedral 3 || 3 | [ 315 -269 71.1] | — | [ 45 —45 90]
dihedral 4 || 3 | [ 549 —269 71.1]| — | [ 45 —135 90]

Table 7.1. Parameters of SLICY components.

of base amplitude (i.e., the log-scaling factor that must be applied to Sp:(.) to match
the actual response of the primitive) inapplicable. '

In addition to displaying responses from each of the components just described,
a variety of other effects are important in understanding the responses produced by
SLICY. These are as follows:

e Obstruction. Some of SLICY’s components partially obstruct other components.
In particular, tophats 1 and 2 are mutually self-obstructing along SLICY’s long
axis (i.e., from azimuths near 0° and 180°). Trihedral 3 also partially obstructs
each tophat over a region of the viewsphere. Dihedral 4 is almost completely
obstructed by tophat 1 except at high elevation angles. The curved surface on the
front of SLICY is not visible from the back, and thus SLICY’s cylinder component
is effectively obstructed over half its respounse.

o Noncanonical responses from modeled primitives. As described previously, most of
the components described in Table 7.1 are noncanonical. That is, their geometries
differ from the canonical primitive geometries depicted in Figure 2.10, and thus
their observed angular respounses will differ from those predicted by PO and GO
in Table 2.1. For instance, each of SLICY’s two cut-out trihedrals will produce
its strongest response not at a viewing angle equidistant from its three axes, but
rather at a viewing angle closer to its longest axis, since such a viewing angle
will maximize the projected triple-bounce reflection area of the primitive [94].
Similarly, SLICY’s tophats will produce responses that vary with azimuth. The
strongest tophat responses will be produced in directions from which the projected
double-bounce area of the tophat is maximized, i.e., the viewing directions from
which the rectangular base-plate length is largest. For SLICY’s tophats this will
occur near azimuths £45° and £135°, i.e., at directions extending from each
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tophat toward the corners of SLICY’s extended base.

o Responses from unmodeled primitives. As indicated previously, SLICY’s short
tophat is hollow. When viewed from high elevation angles, there is a clear line-
of-sight to SLICY’s flat top base through this cylinder shaft and a double-bounce
response is produced from the interior of this tophat.? At lower elevation angles,
this hollow tophat produces a cavity response [62,66]. In particular, rays that
enter the concave region formed by the hollow tophat are scattered multiple times
before they escape the cavity; some of these rays are reflected back in the direction
of the sensor. Because of the additional distance these rays travel before returning
to the sensor, the cavity response appears downrange from the projected location
of the tophat. Additionally, due to the dispersive nature of multiple reflections
from a curved surface, such a response will generally be much dimmer than the
corresponding tophat or high-elevation interior double-bounce response.

o Multiple-primitive responses. The proximity of the components on top of SLICY
results in multiple-primitive responses (i.e., responses produced by rays that are
reflected from more than one primitive before returning to the sensor) at many
viewing angles. In particular, tophats 1 and 2 produce strong multiple-primitive
reflections over much of the viewsphere. Such responses appear downrange from
the true locations of the tophats and at cross-range locations approximately mid-
way between the two primitives. Similarly, trihedral 3 and tophat 2 produce
multiple-primitive reflections at viewing angles near azimuths 0° and 180°. Due
to the proximity of this pair of primitives, their multiple-primitive response often
appears to emanate from a point very close to the apex of trihedral 3. As de-
scribed further in Sections 7.2.2 and 7.5, this has important ramifications for the
estimation of that primitive’s parameters.

e Unresolvable primitives. The proximity of some of SLICY’s components compli-
cates the feature extraction process (see Section 3.2). In particular, from some
viewing angles neighboring components are separated by less than the width of a
resolution cell (7.e., 0.30 m) and are unresolvable. For instance, at their closest
points, the curved surface of tophat 2 and the apex of trihedral 3 are separated by
only 0.25 m. From many viewing angles at which both primitives produce strong
responses, the individual responses blend into a single peak. The feature extractor
described in Section 3.2 thus extracts a single report for these two primitives at
such viewing angles. Furthermore, the features of this report (i.e., its location,
amplitude, and polarimetric-signature classification) are generally a poor match
to the features expected to be generated by either primitive in isolation, due to
the coherent interference between the two responses. In addition to this pair of

2The hollow tophat has a diameter of 66.0 cin and a height of 50.8 cm; the elevation angle at which
SLICY’s top becomes visible through the cylinder shaft is thus arctan(50.8/66.0), or approximately
37.6°.
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primitives, two other components of SLICY are sometimes unresolvable: the exte-
rior and interior responses from tophat 1 (i.e., its standard tophat double-bounce
response and its unmodeled interior double-bounce response) often interfere to
produce only a single peak.

SLICY thus displays a variety of sophisticated effects, only one of which (obstruction)
is explicitly accommodated by our existing algorithm. In Section 7.2.2 we describe
how each of these effects influences target modeling by presenting the performance of a
slightly modified version of the existing algorithm. This modification is not motivated
by any of the types of noncanonicity just described, but instead by a difficulty presented
the existing algorithm by the size of SLICY’s tophats, as we now describe.

H 7.2.1 A Modification to the Initialization Procedure

Recall that the initialization procedure of the existing algorithm, described in detail in
Section 4.4, clusters reports under the assumption that reports generated by a single
primitive all project from a single point in R®. In other words, the existing initialization
procedure assumes that for any report Zy ; for which A; ; = 7, we have

Xpj ~ H 07, (7.1)

where Hy, is the 2 x 3 ground-to-slant-plane transformation matrix for image k defined
in (3.4). As indicated previously, the model of (7.1) is inaccurate for tophats and
cylinders: these primitives produce reports whose locations project from a specular
point R? that depends on the viewing angle and on their radii:

X, ~ Hp0; — [ (1] ] 0! cos wg(ef), (7.2)

where 7. (6P) is the pose-dependent relative viewing elevation of primitive ¢ in image
k (see Figure 2.10). Thus there is a mismatch between the assumed and actual report
locations of tophats and cylinders. We have seen that for tophats and cylinders of the
size considered in previous chapters, the assumption of (7.1) is, while imperfect, still
sufficient to produce a good initialization. For tophats of size comparable to SLICY’s,
the mismatch between (7.1) and (7.2) is severe enough to have a significant effect on the
algorithm. In particular, when the existing initialization procedure is faced with one of
SLICY’s tophats, it tends to produce several small clusters of reports attributable to
the primitive instead of one large cluster. This is undesirable because many of these
distinct initializations often survive to the end of the EM iteration, producing a target
model that contains several primitives where there should be only one.

In order to cluster tophat reports properly according to (7.2), we would require
knowledge of 6P at the time of agglomeration. Although we can imagine modifying
the existing agglomeration procedure to cluster reports based not only on estimates of
primitive location, but also on estimates of pose and radius, such a modification would
vastly complicate the initialization stage. In particular, it would require primitive pose
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remove reports chi-squared remove groups initialize
Z — | with amplitude »| agglomerative | of fewer than primitive
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Figure 7.4. Block diagram of modified initialization procedure.

to be estimated for each pair of report groups at each agglomeration iteration. As
described in Section 4.3, pose estimation is much more difficult and computationally
demanding than location estimation. We thus propose to incorporate knowledge of
primitive pose as a post-processing step that takes place at the conclusion of the existing
initialization procedure, when only a handful of report clusters remain. This post-
processing step takes the form of a second agglomeration stage in which primitive
pose is considered in order to determine whether any clusters produced by the existing
procedure should be further grouped. A block diagram of our modified initialization
procedure, including this post-processing step, is depicted in Figure 7.4.

Let us denote the primitive parameter-vector estimates produced by the existing
initialization procedure by éi, for i = 1,...,N.? Each of these estimates is based on a
cluster of reports

Zi = {Zk17j17"'azkni7jni}- (73)
Without loss of generality let us assume that
ny>ng >-ng. (7.4)

Our second agglomeration clustering stage is based on a dissimilarity measure between
pairs of clusters that is very similar to that of Section 4.4, but in which (7.2) is used
to form location and radius estimates for tophats and cylinders. In particular, for any
two clusters Z;, and Z;, with iy < i3 (so that n;; > n,,) our dissimilarity measure is
the chi-squared cdf evaluated at the total squared error of the estimate associated with

3In the existing initialization procedure, 050] =6; and N = N.
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those clusters, i.e.,

p
~ 1 ~ -
> ey — | HeX - 7 cos Py (67) , 0L e{2,4},
Zy ;€ 0 R-!
9 ZiIUZiz
€L(Zi1a Ziz) =
2 || Xk~ HkXH : ot € {1,3},
Zk,]‘e R-1
Ziluziz
(7.5)

and where X and # are LLSE location and radius estimates formed according to (7.2)
if éfl indicates a tophat or cylinder, or where X is the LLSE location estimate formed
according to (7.1) if a trihedral or dihedral is indicated.

Given an N x N matrix of dissimilarities calculated as above, the second agglom-
eration stage proceeds almost identically to the first. It uses the same dissimilarity
threshold 7. At each agglomeration iteration, if the two most similar clusters are less
dissimilar than 7, they are merged into a single cluster. The location and, if applicable,
radius estimates for this cluster are available from the calculation of (7.5); other prim-
itive attributes are estimated as described in Section 4.4. After N is decremented and
a new set of dissimilarity scores is calculated using the attributes of the new merged
cluster, the agglomeration proceeds to the next iteration. This is continued until all
remaining clusters are more dissimilar than », at which point the remaining estimates
0 are passed to the EM iteration as ol

This modified initialization procedure—different from the original approach only in
its inclusion of the post-processing step just described—greatly reduces the tendency of
the original approach to produce numerous primitive initializations for a single large-
radius tophat. At the conclusion of the modified initialization procedure, there is gen-
erally a single primitive initialization for each tophat component.

B 7.2.2 Performance of the Existing Algorithm on SLICY

We now examine the performance of the existing algorithm (i.e., the algorithm described
in previous chapters and whose initialization stage has been modified as described in
the previous section) on SLICY. We performed 150 algorithm runs at 10° and 20°
AVSDs, using the same algorithmic and measurement-model parameters that were used
in previous chapters. The prior-obstruction-probability parameter P, was set to 0.25 as
in most experiments of Chapter 6.

In every run at both AVSDs, the algorithm discovered the presence of SLICY’s
dominant scatterers, i.e., its two tophats and three trihedrals. The less observable
components (i.e., the dihedrals and cylinder described in Section 7.2 and parameterized
in Table 7.1) were discovered in fewer runs. Table 7.2 lists the fraction of runs in
which each component was discovered. Among the dihedral and cylinder components,
dihedral 3 was discovered in the most runs (41% of the 10°-AVSD runs and 5% of
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Pdisc

component 65 3VsD | 20° AVSD

tophat 1 1.00 1.00

tophat 2 1.00 1.00
trihedral 1 1.00 1.00
trihedral 2 1.00 1.00
trihedral 3 1.00 1.00
dihedral 1 0.13 0.03
dihedral 2 0.24 0.04
dihedral 3 0.41 0.05
dihedral 4 0.02 0.01

cylinder 0.05 0.02

Table 7.2. Fraction of runs in which each component of SLICY was discovered.

the 20°-AVSD runs). Dihedrals 1 and 2 have very narrow specular responses and are
discovered in fewer runs. Dihedral 4 is obstructed by tophat 1 over much of its response
region, and thus is discovered in very few runs. Similarly, the narrow response of the
cylinder, coupled with its effective obstruction from the rear of SLICY, results in very
few discoveries of this component.

The error statistics for the tophat and trihedral parameter estimates are displayed
in Table 7.3. The pose-error statistics of Table 7.3 are of particular note because they
demonstrate the effects of noncanonical responses from modeled primitives. For in-
stance, although the trihedral and tophat components of SLICY are highly observable
and are as bright or brighter than similar components examined in previous chapters,
the pose errors of these components are larger than those observed in previous chapters:
in the 10°-AVSD experiment the tophat pose errors are 4.88° and 13.22° (compare to
1.33° for the tophat of Section 5.2), and the trihedral azimuth/elevation pose errors are
all greater than 8.99° (compare to 2.17° for the trihedral of Section 5.2). Figure 7.5
presents scatter plots of the azimuth and elevation estimates for the two tophats at
each AVSD; Figure 7.6 presents similar scatter plots for the three trihedrals. (The
range of azimuths and elevations displayed in the tophat plots is different from that in
the trihedral plots in order to display the variation in pose estimates over the different
portions of the viewsphere near each primitive’s true pose.) Note that in each plot,
the estimates are not centered around the true primitive pose, but instead around an
incorrect value. For instance, the trihedral 1 estimates do not cluster around eleva-
tion 35.26° and azimuth 135°, but instead around a lower-elevation and higher-azimuth
pose. This represents a reorientation of the assumed canonical trihedral response to
better match the asymmetric noncanonical response actually observed from trihedral 1.
Similarly, the pose estimates of tophat 2 do not cluster around elevation 90°, but in-
stead around a value with elevation near 77° and azimuth near 135°. By orienting
the assumed canonical tophat response at this angle the algorithm can better fit the
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Na Nx p o T
AVSD | component 0¢ error [dBsm] 91-. error [cm)] 67 rmse [°] 07 rmse
mean | stdev [| [[bias]| [[Jstdev]]]| az/el | rot [cm]
tophat 1 16.65 0.32 9.57 2.70 4.88 — 3.91
tophat 2 18.98 0.80 2.35 1.34 13.22 — 0.92

10° trihedral 1 || 27.01 0.80 2.44 1.64 10.44 | 30.05 —
trihedral 2 || 26.53 0.66 5.83 3.07 8.99 | 23.33 —
trihedral 3 || 25.07 1.57 8.28 3.15 13.17 | 26.50 —

tophat 1 16.54 0.47 10.65 5.56 4.73 — 4.12
tophat 2 19.08 1.10 2.30 2.61 13.48 — 1.56
20° trihedral 1 || 26.40 1.43 1.83 3.17 10.85 | 36.71 —
trihedral 2 || 25.97 1.11 5.74 6.24 10.05 | 29.14 —
trihedral 3 || 25.68 4.69 6.87 8.13 21.95 | 29.13 —

Table 7.3. Results of existing algorithm on SLICY.

asymmetric noncanonical response actually observed from tophat 2, which produces
its strongest return near azimuth 135° due to SLICY’s large base extent in this di-
rection. Figures 7.5 and 7.6 clearly show that noncanonicity is introducing systematic
biases into primitive pose estimates, and demonstrate the need for introducing some
means to describe noncanonical responses from modeled primitives. This is the focus
of Sections 7.3 and 7.4.

Table 7.3 indicates that the estimates produced for trihedral 3 have a larger pose
error than those produced for the other two trihedrals. For instance, in the 20°-AVSD
experiment, trihedrals 1 and 2 display azimuth/elevation errors of 10.85° and 10.05°,
respectively, while the corresponding error for trihedral 3 is 21.95°. This is attributable
to two factors first discussed in Section 7.2. First is the unresolvability of trihedral 3
and tophat 2 from many viewing angles, and the consequential availability of only a
single report corresponding to the pair of primitives at these viewing angles. This
effectively reduces the observability of both primitives, but has a much more marked
effect on trihedral 3 because trihedrals are fundamentally less observable than tophats.
Compounding this decrease in observability is the fact that the features of a single
unresolved report will generally be a poor match to those expected to be produced by
either the trihedral or the tophat. Thus even when such a report is associated with
trihedral 3, it will tend to introduce additional error into the estimate produced for
that primitive.

The second factor leading to the larger pose error of trihedral 3 is the proximity
of this trihedral’s response to several other response mechanisms that produce reports
at different viewing angles. In particular, dihedrals 3 and 4 can produce reports that
project from locations near the apex of trihedral 3 at azimuths near —45° and —135°,
respectively. Similarly, trihedral 3 and tophat 2 interact to produce multiple-primitive
responses at azimuths near 0° and 180°; due to the proximity of trihedral 3 and tophat 2
these responses appear to emanate from a location near the apex of trihedral 3. The
proximity of trihedral 3 to these other response mechanisms presents a particular dif-
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Figure 7.5. Tophat pose estimates produced by the original algorithm. The true pose of each tophat
is 90° elevation, the horizontal line at the top of each plot. Notice that due to noncanonicity the pose
estimates cluster around incorrect values.
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Figure 7.6. Trihedral pose estimates produced by the original algorithm. The true pose of each
trihedral is denoted by the filled square in each plot.
estimates cluster around incorrect values.

Notice that due to noncanonicity the pose
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ficulty to the algorithm: some of the reports produced by these additional respounse
mechanisms are often grouped with the legitimate trihedral 3 reports either in the
initialization stage or as the iteration progresses, leading to additional errors.

Primitive unresolvability also has an effect on the estimates produced for tophat 1.
In particular, this primitive’s unresolvability from its internal hollow-tophat double-
bounce response at high elevation angles leads to location and radius-of-curvature errors
that are much higher than those observed from tophat 2 (e.g., tophat 1 exhibits a
location-estimate bias of 9.57 cm in the 10°-AVSD experiment as compared to a bias
of 2.35 ¢m for tophat 2).

In addition to the components indicated in Table 7.2, most algorithm runs resulted
in at least one spurious primitive estimate being produced. In particular, in the 10°-
AVSD experiment an average of 2.23 spurious estimates were produced in each run; in
the 20°-AVSD experiment an average of 1.90 spurious estimates were produced in each
run. Most of these spurious primitives represent attempts by the algorithm to model
responses generated by multiple-primitive reflections or by the interior double-bounce
response of the hollow cavity of tophat 1. Most such spurious primitives are classified
as trihedrals, generally because the responses generating spurious estimates are visible
over a portion of the viewsphere that is limited in extent but not so limited as to enable
accurate modeling by a dihedral or cylinder. In Section 7.6 we describe a method for
distinguishing between spurious primitive estimates and legitimate primitive estimates
corresponding to explicitly modeled response mechanisms.

Incidentally, although noncanonicity introduces significant errors into the pose es-
timates obtained for SLICY’s tophats, these errors are smaller than they would be if
our algorithm included no means for accommodating obstruction. In particular, as pre-
viously indicated, SLICY’s tophats are mutually self-obstructing at azimuths near 0°
and 180°. To demonstrate that the algorithm is detecting and accommodating this ob-
struction, we performed 50 algorithm runs using 10°- and 20°-AVSD data sets with P,
set to 0 (i.e., with the obstruction capability of the algorithm completely suppressed).
The tophat pose and base amplitude statistics obtained with P, = 0 are compared to
those of Table 7.3 (obtained with P, = 0.25) in Table 7.4. Note that with obstruction-
modeling enabled, the algorithm produces tophat pose estimates with lower pose errors
at each AVSD: for instance, in the 10°-AVSD experiment, the pose error of tophat 1 is
reduced from 9.35° to 4.88°, and the pose error of tophat 2 is reduced from 21.16° to
13.22°. These results provide further validation of the framework for accommodating
obstruction that was introduced in Chapter 6.

B 7.3 Conceptual Approaches to Dealing with Noncanonicity

We seek an expansion to our framework that will enable accommodation of noncanon-
ical responses from modeled primitives. In theory, we could accommodate almost any
type of noncanonical response from a modeled primitive by expanding the primitive
parameterization, modifying the measurement model, or applying some combination
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10° AVSD 20° AVSD
component | P, | 67 az/el | 6¢ error [dBsm]| || 6F az/el | 6 error [dBsm)]
rmse [°] | mean ‘ stdev || rmse [°] | mean ‘ stdev
000 935 [1617] 0.40 734 | 1640 | 047
fophat L =00 458 | 16.65 | 0.32 473 | 1654 | 047
0.00 [ 2116 [ 18.05] 2.02 2540 | 18.34 | 1.91
tophat 2 o 1322 | 18.98 | 0.80 13.48 | 19.08 | 1.10

Table 7.4. Comparison of tophat pose and base amplitude estimate statistics with and without
obstruction-modeling capability.

of these two approaches. In particular, if we wished to enable explicit description of
the variation in a primitive response attributable to a certain kind of noncanonicity,
we could expand 6; to include relevant descriptors related to that variation. Alterna-
tively, if we wished to accommodate variations in primitive response without explicitly
including additional descriptors in our primitive parameterization, we could modify the
measurement model p(A, Z|€) to express the dependences of A and Z on certain types
of noncanonicity. Both of these approaches have important practical difficulties associ-
ated with them. We first examine the accommodation of noncanonicity by expansion
of primitive parameterization, and then examine accommodation of noncanonicity by
modification of the measurement model.

Using the notation of (3.1), the general form of the parameterization of any primitive
is

0,=| ox |, (7.6)

where 9? is a vector of primitive descriptors, possibly unique to each primitive type.
Expansion of the primitive parameterization to model certain noncanonicities explicitly
simply corresponds to augmentation or modification of 8% to include components other
than pose, base amplitude, and radius-of-curvature. In order to accommodate an aug-
mented or modified 0? we would need to modify the existing algorithm in two ways:
first, we would need to construct new scattering-response functions Sy (.) relating the
augmented primitive parameter vector to observed primitive responses,land second, we
would need to modify the M step to enable estimation of 0?. The first modification
would likely have only a cosmetic effect on the implementation of the algorithm, as long
as Syt (.) could still be expressed in a convenient functional form or in terms of a previ-
ouslyl specified library of basis functions. The second modification, on the other hand,
could greatly complicate the implementation of the M step. In particular, the M step
requires maximization of each Qi(9i|0£n]) over 6;. This is accomplished as n; candidate
maximizations (one for each possible 6!) of Qi(6i|0£n}) over 0¥ and Y. Even with 8¢
comprising only two parameters (pose and base amplitude) this maximization represents
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the computational bottleneck of our existing algorithm (see Section 4.7.1). Augmenta-
tion of 9? to include other descriptors—even for a single primitive type—would greatly
increase the computational burden of each M step umnless the implementation of this
stage of the algorithm was fundamentally modified.

A second approach to accommodating noncanonicity is to modify the measure-
ment model p(\,Z|€) so that variations in A and Z associated with particular types
of noncanonicities are explicitly described, but without reliance on additional primitive
descriptors. This approach avoids complicating the M step with explicit estimation
of additional primitive descriptors, but still conceptually enables the correction of the
gross errors in pose estimates induced by noncanonical responses. The practical diffi-
culty with this approach is the problem of how to construct such a measurement model.
For instance, in theory p(\, Z|0) could be modified to capture correlations between am-
plitude errors at different viewing angles associated with certain types of noncanonicity.
In practice, however, learning a pdf to describe a complex set of dependences between
elements of a high-dimensional collection of data is often problematic [30,107]. In order
to learn an accurate new measurement model we would require the availability of a
large library of characteristic responses or a detailed analytical understanding of how
primitive responses vary with the type of noncanonicity under consideration. In either
case, we might also need to impose significant regularizing assumptions in order to learn
such a pdf [30,107].

Thus both of these approaches have practical difficulties associated with them. Our
approach to accommodating noncanonical primitive responses is similar to the first
approach described here, but it relies on a basic change to the implementation of the M
step to limit the effect of augmentation of 8% on the conceptual burden of the algorithm.
We now describe this approach.

M 7.4 Our Approach

We accommodate noncanonical primitive responses by introducing additional primitive
descriptors that capture and describe the variations in primitive response associated
with the type of noncanonicity under consideration. This primitive-descriptor aug-
mentation is performed in conjunction with a fundamental modification to the M step
that limits the computational effect on the algorithm. In particular, the modified M
step separates the process of type estimation from that of the estimation of all other
components of @;. This allows the M step to be implemented for each primitive not
as a series of n; candidate maximizations over ¢ and 9? for each primitive type, but
instead as a two-stage process requiring only a single maximization over 6X and 0?
for a fixed primitive type. In the first stage of this modified M step a type estimate
is obtained from Z and the set of Pr(\;; = i|Zk,6["}), without consideration of ¥
and 6. In the second stage, Qi(0i|0£n}) is maximized over X and 8¢ conditional on
the type estimate just obtained. This has the important effect of limiting the increase
in computational complexity associated with the augmentation of any single primitive
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Figure 7.7. Block diagrams of the implementation of the M step. The top block diagram illustrates the
original implementation of the M step; the bottom block diagram illustrates the proposed new modified
implementation of the M step. Although the original implementation requires n; separate maximiza-
tions of the expected-log-likelihood function for each primitive, the proposed modified implementation
requires only one.

type’s 6?. Figure 7.7 depicts two block diagrams that illustrate the difference between
the original implementation and the proposed new implementation of the M step. (The
details of the type classification forming the first block in the modified implementation
are presented shortly.)

The approach we propose is general enough to accommodate a wide variety of non-
canonicities: conceptually, no restriction is placed on 6?, although implementation of
the second (type-conditional maximization) stage of our modified M step will depend on
the primitive descriptors chosen. As indicated previously, we concentrate on the imple-
mentation of this approach for the accommodation of the specific type of geometrical

noncanounicity observed from SLICY’s tophats and trihedrals. We describe our aug-
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mented 9? and the related type-conditional maximization in Sections 7.4.4 and 7.4.5,
respectively. We first describe how the prerequisite type classification is achieved.

M 7.4.1 Type Classification

Conceptually, the optimal way to estimate the collection of primitive types
o' =106 - 04 ] (7.7)

from Z is to take 8" to be the maximum likelihood estimator, i.e., to find

6 = arg m%xp(Z|9t). (7.8)
0

This approach is intractable for a variety of reasons, chiefly the high dimension of Z
and the mixture-density form of p(Z|@) that motivated the introduction of A into the
measurement model in the first place. A more practical approach to obtaining 6% would
be to take

~t

6 = arg rnafuxp(j\,Z\Gt) (7.9)
0«

for some suitable estimate A of A. For instance, we could set

. argmax Pr(\; ; = i|Zy, 01M), max Pr(\ ; = i|Zy, 01") >
)‘k] — 7 i
) n S

1
. 2 (7.10)
0, mZaXPr()\kJ = i|Zy, 0l") 5.
(Such a definition would ensure that A is a feasible vector of label parameters, ¢.e., that
each A contains no duplicated nonzero elements.) The independence assumptions of
Section 3.3 would then allow decoupling of (7.9) into independent type classifications
for each of the IV primitives:

6! = arg max p(, Z|0%). (7.11)
o;

Maximization of (7.11), however, still requires the availability of the unspecified pdf
p(;\7 Z|60!). This pdf could be difficult to obtain from the existing measurement model
due to the high dimension of Z and X and the complicated nature of the dependence
of these quantities on the non-type elements of 6;.

Our approach to type classification is to obtain éf not by maximizing the likelihood
p(jx, Z|6!) as in (7.11), but instead by maximizing a much lower-dimensional likelihood
function corresponding to the pdf of an appropriately chosen summary statistic s(;\7 7).
In particular, we take

0! = arg I%%Xp(s(;\, Z)|6%). (7.12)

7
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For a low-dimensional summary statistic s(;\,Z), the pdf p(s(;\,Z)\Hf) will be much
easier to specify functionally or to learn empirically than p(;\, Z|60!). The conceptual
challenge in performing type classification as in (7.12) is the selection of an appropriate
summary statistic that provides a low-dimensional but still informative summary of A

and Z that can be used to distinguish between primitive types.

B 7.4.2 Selection of a Summary Statistic

The ideal summary statistic would be a low-dimensional representation of Z and A that
takes on markedly different values for primitives of different types, but which is nearly
invariant to differences in primitive pose, location, base amplitude, and noncanonicity
within any particular type. Several features of Z and A meet both of these criteria. For
instance, the set of binary polarimetric-signature classifications associated with each
primitive, {#; ; : 5\k7j = i}, is not ounly informative in identifying the type of primitive 4,
but is also relatively invariant to variations within a type class. Similarly informative
is the pattern of detections and missed detections on the viewsphere as provided by
A In particular, each primitive type produces reports over a characteristic region of
the viewsphere: tophats produce a large number of reports spread across the entire
viewsphere, trihedrals produce reports spread across a single octant of the viewsphere,
and dihedrals and cylinders produce a small number of reports near a single great
circle on the viewsphere. Furthermore, these patterns are not dramatically affected by
variations within a type class: they are essentially invariant to changes in primitive
location and radius; they display limited but not fundamental variation with changes
in base amplitude; they vary in orientation but not in shape and extent with primitive
pose; and they are similar for all but the most severe types of noncanonicity.

In comparison to the these sources of information, the other features of A and Z are
less useful in discriminating between primitive type. The set of report locations asso-
ciated with any primitive, {x; ; : 5\;” = i}, provides little distinguishing information,
and although the set of report amplitudes {ay ; : j‘k,j = i} is more informative, it is
extremely sensitive to variations in base amplitude (obviously) and to noncanonicity.
We thus construct our summary statistic based on {# ; : j‘k,j =i} and on the pattern
of detections provided by . In particular, our s(;\, Z) comprises four scalar elements,
the first of which summarizes the information provided by {#; ; : 5\k7j = i} and the
remaining three of which describe A

The first element of our s(X,Z) summarizes {tr; - 5\k7j = i} by describing the
fraction of these binary measurements which correspond to odd-bounce polarimetric-
signature classifications:

_ #trg Mg =ity = 1)
AURERVREE)

where # indicates the cardinality of the set it is applied to. (High f; values tend to in-
dicate trihedrals or cylinders, while low f; values tend to indicate tophats or dihedrals.)

Tt ; (7.13)
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The second element of s(;\, Z) is simply the fraction of images in the data set in which
the primitive generated a report:

_# Ay =1
K ’

fa (7.14)

The remaining two components of s(;\, Z) describe the spread of detections on the view-
sphere in terms of the eigenvalues of the orientation matriz [2,34,108,114] associated
with their viewing angles. In particular, suppose that X indicates Ny detections of
primitive 7, at viewing elevations and azimuths given by { (v, ¢n)}flvil. Each of these
viewing angles can be specified in terms of a unit vector in R?® extending from the origin
to a point on the unit sphere:

T €0S Yy, €OS ¢y,
Yn| = | —cost, sing, | . (7.15)
Zn sin ¥,

The orientation matrix is defined in terms of these unit vectors as

Z CE% Z TnlYn Z TnZn

M= X %u¥n  DYn D YnZn| (7.16)
Z TnZn Z YnZn Z 2721
where each summation is over n = 1,..., Ng. The eigenvalues and eigenvectors of M

provide a concise and informative description of the distribution and orientation of
directional data on the sphere [2,34,108,114].* In particular, the relative magnitudes of
the eigenvalues of M are often used to summarize the distribution of directional data
on the sphere [34,114,115]: similar magnitudes for all eigenvalues indicate data spread
nearly uniformly across the viewsphere, while different ratios between the eigenvalues
are characteristic of data concentrated near one direction or along a great circle.

Let us denote the eigenvalues of M by vy, v, and vz, where v; > vy > v3. Figure 7.8
presents scatter plots of the variation in logy(ve/v3) vs. logg(v1/vs) for each primi-
tive type. Each point in each plot was calculated by taking a randomly selected 20°-
AVSD data set corresponding to a randomly oriented 10-dBsm primitive of the specified
type, and simulating the detection of that primitive using the canonical scattering-
response function Sy (.) and the probability-of-detection function Pp(.) as described in
Section 5.2. Figure 7.8 indicates that although there is some variation in these eigen-
value ratios within each primitive type, these statistics are informative in discriminating
between primitive types. We thus use scaled versions of log,,(vy/v3) and log;,(v1/v3)

YUf {(¢hn, dn)}oe, are envisioned as the coordinates of a set of Ny unit point masses on the unit
sphere, the eigenvectors of M have the following physical interpretation: the eigenvector corresponding
to the maximum eigenvalue represents the axis about which the moment of inertia is minimized, and
the eigenvector corresponding to the minimum eigenvalue represents the axis about which the moment
of inertia is maximized [108,114]. The remaining eigenvector provides an orthogonal completion of R?.
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as the final two elements of our summary statistic:

fi

5 fa
s(\,Z) = v
( ) %loglo i

1 V2
3 logyg o2

(7.17)

(The 1/8 scaling coefficients we apply to the log-ratios of the orientation-matrix eigen-
values ensure that each component of s(\,Z) varies over a similar range, i.e., approxi-
mately from 0 to 1. The motivation for this will be explained shortly.)

B 7.4.3 Implementation of Summary-Statistic Type Classification

Classification of type as in (7.12) requires the availability of the pdf p(s(;\, Z)|6%). We
obtain this pdf using a Parzen-window density estimator (PWDE) [84,107]. The PWDE
provides an estimate of a given pdf in terms of a set of samples from that pdf. In
particular, given a set of samples {Yn}f:[;l obtained from a pdf p(y), the PWDE of
p(y) is of the form?®

N,
R 1 = 1 Cr
py) = N, nE_l K (hlly YnH> i’ (7.18)

where £(.) is some appropriately chosen kernel function, h is an appropriately chosen
“bandwidth parameter” determining the spread of the kernel function around each
sample value, d is the dimension of y, and ¢, is a normalization constant ensuring

% P (%) dy = 1. (7.19)
There is a considerable body of literature describing appropriate selection of kernel
functions and bandwidth parameters [30,40,83,107]. In situations where each element
of the sample vector varies over a similar range and there are few isolated sample
points, a common choice for £(.) is a circularly symmetric Gaussian kernel. Because
the elements of our summary statistic all vary roughly between 0 and 1,° and because

Figure 7.8 suggests that samples of s(j\, Z) will contain few outliers, we employ such a
kernel to obtain a PWDE of the form

PP (C.CO | 1 .
B I =5 X gz (—gls - S.001) . 20

n=

5Other, more general forms of the Parzen-window density estimator also exist. For instance, in one
common implementation, the bandwidth parameter h varies at each sample point depending on the
proximity to other samples.

®This is the motivation for scaling log,,(va/v3) and log,,(v1/vs) by 1/8 in the definition of s(A, Z)
in (7.17).
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trihedral orientation matrix eigenvalue ratios tophat orientation matrix eigenvalue ratios

8r 8r
7r 7r
6 6
5l
o
2
>
"4t
=3
o
3L
ol
0 1 4 5 7 8 2 3 4 7 8
Iog10 v2/v3 Iog10 v2/v3
dihedral orientation matrix eigenvalue ratios cylinder orientation matrix eigenvalue ratios
8r 8r
Tr . Tr
6r L 6r
5L
o
>
>
At
S
j=2]
o
3l
2r 2r
1r 1r
0 1 4 5 6 7 8 0 1 2 3 4 7 8
log 10 v2/v3 log 10 v2/v3

Figure 7.8. Orientation matrix eigenvalue ratios. These plots characterize the variability of the spread
of detections on the viewsphere in a 20°-AVSD data set for randomly oriented 10-dBsm trihedrals (upper
left), tophats (upper right), dihedrals (lower left), and cylinders (lower right). The vertical axis of each
plot represents the log-ratio between the maximum and minimum eigenvalues of the orientation matrix;
the horizontal axis represents the log-ratio between the middle and minimum eigenvalues of the matrix.
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where {S,,(61)}2* | is a set of samples of p(s(X, Z)|#?) obtained for a fixed value of 6!,
We generate these samples by simulating the detection process for each primitive type
using Sy () and Pp(.) as described in Section 7.4.2, and by simulating the generation of
tkj measurements for each detection according to the confusion probabilities provided
by the confusion matrix p of Table 5.2. We choose h using a standard criterion in
classification-related PWDE applications [30,35]: we construct an empirical pdf as in
(7.20) for many different values of h, and choose h to be the value that achieves the
best classification performance on an additional set of samples randomly generated in
a manner identical to the first set. We choose h = 0.0375 based on such an analysis.”
Given an empirical pdf obtained as just described, the first component of our

modified M step is extremely simple: S(S\,Z) is calculated from Z and the set of
]

Pr(Ag; = t|Zy, 9["]) for each primitive. The primitive type estimate Hf[n is then taken

as

0! = arg max p(s(X, Z)[61). (7.21)
ot

1

The second component of the M step then entails maximization of Qi(0i|0£n]) over 6%
and 69, conditional on the type classification obtained in (7.21). We now describe our
augmented 8¢ and the related maximization.

B 7.4.4 Selection of an Augmented Primitive-Descriptor Vector

Any choice of 0? should meet two criteria: first, it should enable accurate description of
primitive responses over the range of noncanonicities we wish to model (i.e., variations
in trihedral and tophat responses of the form observed in Section 7.2); second, it should
consist of descriptors that can be reliably and robustly estimated from Z, otherwise the
augmented parameterization will offer no additional benefit to a model-based ATR sys-
tem. For this reason we select a relatively coarse-grained augmentation to the existing
69 that takes the form of a discrete variable 6 characterizing each primitive as one of
a number of discrete subtypes, i.e., variants on the basic canonical primitive type that
exhibit different responses. In particular, each 6; is now of the form

0;=|,5l, (7.22)

L0
where 607 is a discrete subtype-indicator index for a primitive of type 6! that take on
values 1,...,n4(0!). Although finer-grained parameterizations are possible, we select

"This value of h attained a misclassification probability of 0.0055. Other values tested in the range
0.0025 < h < 0.125 gave misclassification probabilities not exceeding 0.017, suggesting that type-
classification performance is relatively robust to the choice of h.
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subtype 1 subtype 2 subtype 3

Figure 7.9. Trihedral subtype geometries. Subtype 1 is the canonical trihedral; subtype 2 represents
a trihedral extended along one axis; subtype 3 represents a trihedral with an extended base.

this approach because it provides a simple illustration of our framework and because
it provides a benchmark for the selection of more detailed choices of 83: if #¢ cannot
be estimated reliably, it is unlikely that finer-grained parameterizations could be esti-
mated reliably without inclusion of additional features in Z. In Chapter 8 we discuss
approaches to the selection of 9? to model observed variations in primitive responses.

We utilize a set of three trihedral subtypes and four tophat subtypes that are rep-
resentative of the types of noncanonical responses observed from SLICY. In particular,
the trihedral subtypes are intended to represent variations in the relative size of the
trihedral plate components, as depicted in Figure 7.9: the first subtype is the canonical
square-plate trihedral considered in previous chapters, the second subtype corresponds
to a trihedral that has been extended along one of its axes, and the third subtype
response corresponds to a trihedral with an extended base, i.e., a trihedral that has
been extended along two of its axes. Each of these trihedrals can be uniquely ori-
ented by specification of three Euler angles in 6P, as depicted in Figure 7.10. We
employ a set of heuristic scattering-response functions to model the angular scatter-
ing responses from these types of trihedrals. The construction and functional forms
of these subtype responses are detailed in Appendix C; the three responses themselves
are depicted in Figure 7.11. (The poses and base amplitudes of each of the three re-
sponses in Figure 7.11 are identical.) In the context of SLICY, the hope is that the
second trihedral subtype response might enable more accurate modeling of trihedrals 1
and 2, while the third trihedral subtype response might enable more accurate modeling
of trihedral 3.

We utilize a set of four tophat subtypes that correspond to variations in the size
and shape of the tophat base, as depicted in Figure 7.12. In particular, the first tophat
subtype is identical to the canonical tophat response of earlier chapters. The second
and third subtype responses are intended to model the responses from tophats with
different-sized square bases; the final subtype response is meant to model the response
from a tophat asymmetrically centered along one axis of an extended rectangular base.
Each of these four tophats can be uniquely oriented by specification of three Fuler angles
in 6P, as depicted in Figure 7.13.8 The scattering response we use for each subtype is

8Because the first tophat subtype corresponds to the rotationally symmetric canonical tophat ge-
ometry, only two Euler angles are needed to define its orientation, as described in Section 3.1.
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Figure 7.10. Specification of the orientation of trihedral subtypes. The three axes of a trihedral define
a local frame of reference, as depicted on the left; a trihedral “pose vector” peri can be defined in this
local frame of reference as the direction equidistant from the three trihedral axes (i.e., the direction
separated from each axis by 54.74° on the viewsphere). Trihedral pose in the absolute ground-based
frame of reference can then be defined in terms of three Fuler angles, as depicted on the right: an
elevation 1 and azimuth ¢ corresponding to the direction of psyi in terms of the ground-based axes,
and a rotation angle v representing the rotation of the trihedral axes about psi. (We define v = 0° to
correspond to the rotation at which the dot product between the local and absolute z axes is maximized.)
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Figure 7.11. Trihedral subtype responses. These are the models used for the three trihedral subtypes
depicted in Figure 7.9.
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Figure 7.12. Tophat subtype geometries. Subtype 1 is the canonical tophat; subtype 2 represents
a square-base tophat with base extent in cardinal directions equal to the tophat height; subtype 3
represents a square-base tophat with smaller base; subtype 4 represents a tophat with a rectangular
base extended in one direction.
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Figure 7.13. Specification of the orientation of tophat subtypes. The cylinder axis and cardinal base
directions of a tophat define a local frame of reference, as depicted on the left; a tophat “pose vector”
Ptop can be defined in this local frame of reference as the cylinder axis direction. Tophat pose in the
absolute ground-based frame of reference can then be defined in terms of three Euler angles, as depicted
on the right: an elevation 1 and azimuth ¢ corresponding to the direction of ptop in the ground-based
frame of reference, and a rotation angle v representing the rotation of the tophat axes about ptop. (We
define v = 0° to correspond to the rotation at which the dot product between the local and absolute x
axes is maximized.)

depicted in Figure 7.14. (The poses and base amplitudes of each of the four responses
in Figure 7.14 are identical.) As with the trihedral subtype responses, the construction
and functional forms of the tophat subtype responses are detailed in Appendix C.

Dihedrals and cylinders are each modeled with a single subtype response that cor-
responds to the canonical response from each primitive. This is motivated by the low
observabilities of these two primitive types.
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Figure 7.14. Tophat subtype responses. These are the models used for the four tophat subtypes
depicted in Figure 7.12.
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B 7.4.5 Implementation of Type-Conditional Maximization

Given the inclusion of subtype in the primitive-descriptor vector, the second component

of the modified M step—i.e., the type-conditional maximization of Qi(ei\eg’”) over
6% and 09—can be achieved in a manner similar to that of the original M step. In
particular, given the type classification Hf[n], we first maximize Qi(0i|0£n]) over X and,
if required, 67 in closed form according to (4.28) or (4.29). We then maximize over 6, 6P,
and 60} by performing ns(OfM) candidate maximizations over pose and base amplitude,
one for each subtype. We then compare the candidate maximizers for each subtype
to choose the overall maximizer. Because the type-classification procedure described
in Section 7.4.1 reduces the overall computational burden of the M step by a factor of
roughly n;, we perform each candidate subtype maximization jointly over §° and 6.

(This differs from the maximization procedure of Section 4.3, in which Qi(9i|9£n}) was
maximized over 6% and 6 sequentially according to the ECM method.)

To demonstrate the performance of the modified algorithm on a target consisting
of canonical primitives, we performed 200 runs of the modified algorithm on the target
depicted in Figure 5.5 at AVSDs of 10° and 20°. The performance of the modified algo-
rithm on this target is presented in Table 7.5, along with the results from the existing
algorithm (originally reported in Table 6.9). The statistics for the two algorithms are
extremely similar: for every primitive at each AVSD, Pgisc and Pq are almost identical
between algorithms, indicating that the modified implementation of the M step is not
markedly affecting the ability of the algorithm to discover and correctly identify prim-
itives. The modification of the maximization procedure to estimate §° and 6¢ jointly,
rather than sequentially, has a slight effect on the error statistics associated with these
parameters. In particular, some of the base amplitude estimate biases change slightly
(e.g., in the 20°-AVSD experiment the trihedral base amplitude estimate bias changes
from —0.84 dBsm to —0.40 dBsm and the dihedral base estimate bias changes from
—2.87 dBsm to —1.56 dBsm), and some of the pose errors change slightly (e.g., in the
10°-AVSD experiment the trihedral pose rotational error changes from 15.20° to 7.23°,
and in the 20°-AVSD experiment the dihedral pose rotational error changes from 14.91°
to 20.29°). Overall, however, Table 6.9 demonstrates similar performance for the two
algorithms, implying little loss in performance of this modified algorithm for problems
for which the original algorithm was designed.

In addition to the quantities presented in Table 6.9, the modified algorithm pro-
vides subtype estimates. Table 7.6 presents the fraction of runs on this target at each
AVSD in which the trihedral and tophat were classified as each subtype. (Recall that
a single subtype is used for the dihedral and cylinder.) This table demonstrates that
the modified algorithm is correctly classifying the primitives as the canonical subtype
in almost all algorithm runs: in the 10°-AVSD experiment, the tophat was classified as
canonical in every run and the trihedral was classified as canonical in all but one run.
In the 20°-AVSD experiment, the tophat subtype was correctly classified in 93% of the
runs, and the trihedral was correctly classified as canonical in 89% of the runs.
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Py Py 6¢ error [dBsm] || 6% error [cm] 6P rmse [°] ||0F rmse
e ' bias | stdev [ [[bias| [[[stdev]]] az/el | rot [cm]
tri old || 1.00 | 1.00 || —0.43 0.42 7.60 241 1.94 | 15.20 —
new || 1.00 | 1.00 || —0.28 0.36 7.49 2.50 1.46 7.23 —
top old 1.00 | 1.00 || —0.76 0.18 0.51 1.36 1.45 — 1.11
10° new || 1.00 | 1.00 || —0.80 0.16 0.33 1.39 1.38 — 1.11
dih old || 0.96 | 1.00 || —0.64 2.09 5.73 12.83 || 11.40 | 6.84 —
new || 0.95 | 1.00 || —0.09 1.71 6.44 12.24 9.72 7.22 —
eyl old || 0.40 | 0.99 1.14 3.24 2.22 18.97 2.62 — 6.22
new || 0.36 | 1.00 1.65 4.61 0.94 21.55 3.73 — 7.00
tri old || 1.00 | 1.00 || —0.84 0.93 7.37 4.43 4.05 | 23.04 —
new || 1.00 | 1.00 || —0.40 0.82 7.07 4.87 4.11 | 23.95 —
top old || 1.00 | 1.00 || —0.75 0.30 0.44 2.59 2.37 — 1.94
20° new || 1.00 | 1.00 || —0.82 0.44 0.17 2.47 2.57 — 1.97
dih old || 0.49 | 0.98 || —2.87 4.04 6.63 23.75 || 15.40 | 14.91 —
new || 0.56 | 0.96 || —1.56 4.15 4.87 21.74 || 13.23 | 20.29 —
eyl old || 0.11 | 0.94 2.95 5.46 4.30 34.37 4.27 — 10.19
new || 0.15 | 0.93 1.25 4.12 6.41 37.24 3.96 — 8.74

Table 7.5. Performance of original algorithm and modified algorithm on the target of Section 5.4.1.
Here “old” refers to the algorithm developed in previous chapters (and incorporating the modification to
the initialization procedure described in Section 7.2.1) and “new” refers to the algorithm incorporating
all modifications described in this chapter.

component subtype classification fraction
10° AVSD | 20° AVSD
tophat [ 1.000 0.000 0.000 0.0000 | | [ 0.930 0.050 0.015 0.005 |
trihedral [ 0.995 0.005 0.000 | [ 0.890 0.065 0.045 |

Table 7.6. Subtype-estimation performance of modified algorithm on the target of Section 5.4.1.
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B 7.5 Performance of the Modified Algorithm on SLICY

We performed 150 runs of the modified algorithm on SLICY at AVSDs of 10° and
20°, using the same algorithmic and measurement-model parameters that were used in
Section 7.2.2 and in previous chapters. (As in Section 7.2.2, the obstruction-probability
prior was set to P, = 0.25.) The modified algorithm discovered SLICY’s dominant scat-
terers (i.e., its tophats and trihedrals) in each run at each AVSD. Table 7.7 presents
the number of runs in which each component of SLICY was discovered, along with the
results from the original algorithm (originally presented in Table 7.2). The discover-
ability of each component is nearly identical between algorithms. In addition to the
components indicated in Table 7.7, one or more spurious estimates were produced in
most algorithm runs. In particular, an average of 2.68 spurious primitive estimates were
produced in each 10°-AVSD run, and an average of 2.07 spurious primitive estimates
were produced in each 20°-AVSD run. This is slightly more than were generated by the
old algorithm (i.e., an average of 2.23 in the the 10°-AVSD runs and an average of 1.90
in the 20°-AVSD runs). This is attributable to the availability of additional scattering
models (i.e., the trihedral and tophat subtype responses), which provide a richer set of
responses with which to approximate unmodeled response mechanisms. In Section 7.6
we describe a method for distinguishing between spurious primitive estimates and le-
gitimate primitive estimates produced by explicitly modeled response mechanisms.

Table 7.8 presents the subtype-classification statistics for SLICY’s trihedrals and
tophats at both AVSDs. The first column for each AVSD, denoted P,, gives the fraction
of runs in which each component was classified as noncanonical (i.e., as a subtype other
than 1); the second column gives the confusion statistics between subtypes. We see
that in most runs at either AVSD, these components are being correctly classified as
noncanonical. Table 7.8 indicates that tophat 1 is usually identified as subtype 2, a
square-base subtype whose base extent is similar to its cylinder height; tophat 2 is
usually identified as subtype 3, a square-base subtype in which the cylinder height
exceeds the base extent (see Figure 7.12). This is commensurate with the different
heights of tophats 1 and 2. Despite SLICY’s rectangular top base, the tophats are
rarely classified as subtype 4. This is because the strong responses expected from such
a subtype along the extended base axis are not observed from SLICY’s tophats due to
obstruction.

Trihedrals 1 and 2 are classified as subtype 2 in most algorithm runs (i.e., in 95%
of the 10°-AVSD runs and in 75% of the 20°-AVSD runs). This is commensurate
with their geometries, which are similar to that of trihedral subtype 2 (see Figure 7.9).
Although the geometry of trihedral 3 is similar to that of subtype 3, Table 7.8 indicates
that subtype classification of this trihedral is less successful. In particular, although
trihedral 3 is identified as noncanonical in 68% of the 10°-AVSD runs and in 71% of the
20°-AVSD runs, it is classified as subtype 3 in only 47% of the 10°-AVSD runs and 16%
of the 20°-AVSD runs. This is attributable to the same factors that complicated the
estimation of the parameters of trihedral 3 in Section 7.2.2—mnamely, its unresolvability
from tophat 2 and its proximity to the response mechanisms of dihedrals 3 and 4 and
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Pdisc

component | alg 753555 T 905 AVSD
old 1.00 1.00
tophat 120 1.00 1.00
old 1.00 1.00
tophat 2 =20 1.00 1.00
. old 1.00 1.00
trihedral 1 \—= 1.00 1.00
. old 1.00 1.00
trihedral 2 \— 1.00 1.00
. old 1.00 1.00
trihedral 3 o 100 100
. old 0.13 0.03
dihedral 1= 017 0.03
. old 0.24 0.04
dihedral 21— 0.25 0.04
. old 0.41 0.05
dihedral 31— 0.41 0.07
. old 0.02 0.01
dihedral 4 =2 0.02 0.01
linder |04 0.05 0.02
Y new 0.06 0.02

Table 7.7. Fraction of runs in which each component of SLICY was discovered.

10° AVSD 20° AVSD
P, subtype confusion P, | subtype confusion
tophat 1 0.86 0.14 0.83 0.03 0.00 0.73 0.27 0.59 0.08 0.06
tophat 2 0.98 0.02 0.00 097 0.01 0.95 0.05 0.03 0.90 0.02

component

trihedral 1 || 0.96 0.04 0.95 0.01 0.79 0.21 0.74 0.05
trihedral 2 || 0.95 0.05 0.95 0.00 0.77 0.23 0.76 0.01
trihedral 3 || 0.68 [ 0.32 0.21 047 | 0.71 [ 0.29 0.55 0.16 |

Table 7.8. Subtype-estimation performance of modified algorithm on SLICY.
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Na Nx p o T
AVSD | component | alg 6¢ error [dBsm] (91-. error [cm] 67 rmse [°] 07 rmse
mean | stdev || [[bias|| [[[stdev]||| az/el | rot [cm]
tophat 1 old 16.65 0.32 9.57 2.70 4.88 — 3.91
P new || 15.49 0.90 8.94 3.44 2.68 3.91 3.80
tophat 2 old 18.98 0.80 2.35 1.34 13.22 — 0.92
P new |[21.49 | 0.88 || 151 | 1.06 || 528 | 327 | 063
o . old || 27.01 0.80 2.44 1.64 10.44 | 30.05 —
107 trihedral 1 ST o6 0.2 | 243 | 162 || 4.36 | 807 —

old || 26.53 0.66 5.83 3.07 8.99 | 23.33 —
new || 27.57 0.54 7.26 3.28 2.46 | 6.53 —
old || 25.07 1.57 8.28 3.15 13.17 | 26.50 —
new || 26.47 3.93 7.51 3.42 10.18 | 18.76 —

trihedral 2

trihedral 3

tophat 1 | 0l || 1654 [ 047 ]I 1065 | 556 || 413 | — 412

new || 1585 | 1.51 || 1057 | 532 | 318 | 522 || 4.70

tophat 2 |04 1908 | 110 230 | 261 || 1348 ] — 1.56

new || 21.25 | 148 159 | 1.93 | 680 | 450 | 1.16
. ) old || 2640 | 1.43 183 | 3.17 | 10.85 | 36.71 —
207 | trihedral 1 s T 1.45 1.86 | 320 || 7.15 | 23.38 —
old || 25.97 | 1.1 574 | 624 || 1005|2014 | —

trihedral 2 1= 751 T 1.07 742 | 661 | 6.25 | 20.41 —

old || 25.68 4.69 6.87 8.13 21.95 | 29.13 —
new || 30.40 6.74 5.74 8.42 20.52 | 35.20 —

trihedral 3

Table 7.9. Results of modified algorithm on SLICY. Here “old” refers to the algorithm developed in
previous chapters and “new” refers to the algorithm incorporating the modifications described in this
chapter.

the multiple-primitive responses generated by trihedral 3 and tophat 2.

Table 7.9 presents error statistics obtained by the new algorithm on SLICY’s tophat
and trihedral components. For convenience of comparison, Table 7.9 also lists the error
statistics for the old algorithm (i.e., the results presented in Table 7.3). We see that
most of the results are similar between algorithms, with several notable exceptions. In
particular, the introduction of multiple subtypes has the desired effect of reducing the
pose errors associated with most primitives. For instance, the azimuth/elevation pose
error of tophat 1 has been reduced from 4.88° to 2.68° in the 10°-AVSD experiment, and
from 4.73° to 3.18° in the 20°-AVSD experiment; the reduction for tophat 2 is more dra-
matic, from 13.22° to 5.28° in the 10°-AVSD experiment and from 13.48° to 6.80° in the
20°-AVSD experiment. Note also that because the three noncanonical tophat subtypes
are rotationally asymmetric, their poses include a third Euler angle; Table 7.9 lists the
rmse error in this rotational component, conditional on classification as subtype 2, 3,
or 4. This error is 5.22° or less for both tophats at both AVSDs, indicating that the
algorithm is quite successful at determining the rotational orientation of noncanonical
tophats.

The pose errors for trihedral 1 and 2 are also significantly reduced by the modified
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algorithm. For instance, in the 10°-AVSD experiment, the azimuth/elevation pose error
for trihedral 1 has been reduced from 10.44° to 4.36°, and the error for trihedral 2 has
been reduced from 8.99° to 2.46°. Additionally, the rotational errors for these primitives
have been significantly reduced, due to marked rotational asymmetry of the response
of trihedral subtype 2 (see Figure 7.11). For instance, in the 10°-AVSD experiment,
the rotational pose error for trihedral 1 has been reduced from 30.05° to 8.97°; the
corresponding error for trihedral 2 is reduced from 23.33° to 6.53°.

The modified algorithm has a much less pronounced effect on the pose estimates of
trihedral 3: its pose error is reduced from 13.17° to 10.31° in the 10°-AVSD experiment
and from 21.95° to 20.92° in the 20°-AVSD experiment. As discussed in Section 7.2.2,
the poorer algorithm performance on this primitive is due to the unresolvability of its
respouses from those of tophat 2 over a range of viewing angles, and its proximity
to several other response mechanisms that produce reports at different viewing angles
(namely, dihedrals 3 and 4 and the multiple-reflection mechanism generated by trihe-
dral 3 and tophat 2). Because our modified algorithm includes no means for detecting
or accommodating such effects, trihedral 3 displays poorer statistics than the other two
trihedrals regardless of which algorithm is used. In Chapter 8 we examine how these
effects might be accommodated.

Scatter plots of the pose estimates produced for each of the tophats are displayed
in Figure 7.15; similar plots for the trihedrals are displayed in Figure 7.16. (As with
Figures 7.5 and 7.6, the range of azimuths and elevations displayed in the tophat plots
is different from that in the trihedral plots in order to display the variation in pose
estimates over the different portions of the viewsphere near each primitive’s true pose.)
These plots also identify the subtype associated with each pose estimate. Comparison
to Figures 7.5 and 7.6 demonstrates that the algorithm is in fact removing much of the
gross pose error introduced by noncanonical primitive responses. (Again, trihedral 3 is
an exception.) Although residual errors remain, most pose estimates lie closer to their
true values. Figures 7.15 and 7.16 also demonstrate that pose errors associated with
different subtypes tend to cluster around different values. For instance, the scatter
plots for trihedrals 1 and 2 clearly demonstrate a correlation between subtype and
pose estimate: although a correct subtype classification for these trihedrals is usually
accompanied by a pose estimate near truth, an incorrect subtype classification is likely
to be associated with a pose estimate that is much further from truth.

Table 7.9 indicates that in some cases the modified algorithm produces base ampli-
tude estimates with a larger standard deviation than the original algorithm. For in-
stance, the base amplitude estimates produced by the modified algorithm for tophat 1
have a standard deviation of 0.90 dBsm in the 10°-AVSD experiment and 1.51 dBsm
in the 20°-AVSD experiment, compared to standard deviations of 0.32 dBsm and
0.47 dBsm produced by the original algorithm. This is due to correlation between
subtype classification and the base amplitude estimate. In particular, the base am-
plitude that minimizes Qi(9i|0£n}) will change conditional on primitive subtype. For
instance, the standard deviation of the base amplitude estimates of tophat 1 condi-
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Figure 7.15. Tophat pose estimates produced by the modified algorithm. The true pose of each
tophat is 90° elevation, the horizontal line at the top of each plot. The scale on each plot is identical
to that of Figure 7.5. These plots also indicate the subtype classification for each estimate.
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trihedral 1 pose estimates: 10° AVSD
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Figure 7.16. Trihedral pose estimates produced by the modified algorithm. The true pose of each
trihedral is denoted by the filled square in each plot. The scale on each plot is identical to that of
Figure 7.6. These plots also indicate the subtype classification for each estimate.
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tional on a classification of subtype 2 is only 0.27 dBsm in the 10°-AVSD experiment
and 0.36 dBsm in the 20°-AVSD experiment. This is well below the ensemble values of
0.90 dBsm and 1.51 dBsm.

Figure 7.17 presents a visual depiction of a characteristic set of estimates gener-
ated in the 10°-AVSD experiment. In particular, this figure contains four plots, each
corresponding to a single run in the 10°-AVSD experiment. Each plot overlays the
locations of all primitives produced by the model generation algorithm on an outline of
SLICY, viewed from the top. The estimated primitive types are indicated by different
symbols, as explained in the figure caption. This figure illustrates many of the effects
described above, including the generation of spurious trihedral estimates corresponding
to multiple-primitive reflections, the generation of spurious estimates corresponding to
the cavity response of tophat 1, and the relatively low discoverability of SLICY’s di-
hedral components. (A more detailed description of these estimates is provided in the
caption of Figure 7.17.)

B 7.6 Distinguishing between Legitimate and Spurious Primitive Estimates

Ideally, a target model generation algorithm would provide not only a set of primitive
estimates ng], but also some measure of its confidence in each estimate. Such a confi-
dence statistic would be useful for many reasons. For instance, it could be used to guide
further modeling by identifying responses that are poorly described using the standard
parameterization; such responses could be classified as a special primitive type and de-
scribed using a different parameterization or in terms of an “all-purpose” set of basis
functions. A confidence measure could also be used by a model-based ATR system to
aid in the construction and testing of classification hypotheses by providing a measure
of the uncertainty associated with various target features.

In this section we describe the construction of a confidence statistic that can be
used to distinguish between legitimate and spurious primitive estimates, i.e., between
estimates corresponding to actual modeled target components and estimates corre-
sponding to unmodeled response mechanisms. This is motivated by the observation
in Sections 7.2.2 and 7.5 that in most runs on SLICY our algorithm tends to produce
one or more spurious estimates in an attempt to model multiple-primitive reflections or
the hollow interior response of tophat 1. Because most of these spurious estimates are
classified as trihedrals, and because SLICY contains three highly observable legitimate
trihedral components, we focus on distinguishing between legitimate and spurious trihe-
dral estimates. Furthermore, although an appropriately constructed confidence statistic
could be used on its own merits to provide a concise and fine-grained measure of cer-
tainty in an estimate, in this section we only consider construction of such a statistic as
it relates to the classification of responses as legitimate or spurious. In Chapter 8 we
discuss the construction and use of a confidence statistic in a more general context.

In the absence of prior information, a confidence statistic must be based on how well
a primitive estimate ng} fits the observed data. The expected-log-likelihood Q(6|0[”])
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Figure 7.17. Illustration of four SLICY models. The estimated locations of all primitives in four
different 10°-AVSD runs are overlayed on an outline of SLICY from the top. The shapes of the over-
layed symbols indicate different estimated types: triangles correspond to trihedral estimates, circles
correspond to tophat estimates, and squares correspond to dihedral estimates. (None of the models
depicted included a cylinder estimate.) Note that in all four runs, the types of SLICY’s trihedral and
tophat components were correctly estimated, and the locations of these components were very near
the true values. The various dihedrals, on the other hand, were discovered in fewer runs: none were
discovered in plot (a), one was discovered in plot (b), three were discovered in plot (c), and two were
discovered in plot (d). (Note that the location of the left cut-out dihedral in plot (d) was estimated at
the edge of that component; this is because the reports responsible for that estimate were nonspecular
dihedral returns, ¢.e., returns generated at viewing angles outside of the dihedral response mainlobe,
and which thus appear to emanate from the edge of the primitive as described in Section 3.1 [62].) Note
also that all runs contain at least one spurious primitive estimate: for instance, the cavity response
from tophat 1 results in a spurious trihedral estimate with z-y location near that of tophat 1 in plots
(a), (b), and (d). Similarly, spurious estimates corresponding to the multiple-primitive responses from
the two tophats are present in all four plots. (These are located between the two tophats.) Plot (c)
also depicts a spurious primitive estimate generated by the multiple-primitive response from trihedral 3
and tophat 2.
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provides one measure of this. In particular, if we evaluate the expected-log-likelihood
at 0 = 9["}, we would expect to obtain a less negative value from an estimate that
provides a good fit to the data than from an estimate that provides a poor fit to the
data. Let us consider the components of Q(O[n]w["}) that depend on a single primitive

],

estimate 6;

K Mk

G[n ZZPr Akj = i|Zy, 6! [ (XkJ _ Wkwin}))TRfl (Xk,j _ Wk(9£n1)>

k=15=1

1 n
o 202 (akJ (0£ }7¢ka¢k))2 + IOg p;(:mj]

K
+Z PI“ zk—1|Zk76[ )IOgPD;w-

k=1
+ (1 = Pr(Bip = 1|2y, 01")) — Pr(6; 1 = 1|Z,, 0™))) log(1 - Ppl,)
p
By
+kz:1Pr ﬂzk—l\Zk, logl_Pb.

(7.23)

This quantity has three conceptually distinct components. In particular, the first two
lines of (7.23) penalize the total mismatch between the predicted response of a primitive
described by ng} and the observed response among the set of reports that correspond
to the primitive; the next two lines penalize the mismatch between the predicted and
observed detectability of the primitive across the viewsphere; the final line penalizes
the attribution of missed detections to obstruction according to the obstruction prior
specified in (6.14). For a given set of reports, each of these components will tend to pe-
nalize spurious estimates more than legitimate estimates: spurious estimates will likely
provide a poorer fit to the observed report measurements, will likely have many missed
detections, and Will likely attribute many of these missed detections to obstruction.
The statistic Ql( ) thus appears informative for discriminating between legitimate
and spurious estlmates

One problem with the use of Q; ( ) to distinguish between legitimate and spurious

estimates is that it tends to penalize GE " that are based on a large number of reports.
In particular, if we define

K My

Ar =3 Pr(My = iZ, 0M), (7.24)

k=1j=1

then the first two lines of (7.23) indicate that Qi(egn]) will tend to take on more negative
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10° AVSD 20° AVSD
component Qi(eg"]) mean ‘ Qi(OEnJ) std dev QZ—(GEnJ) mean ‘ Qi(OEn]) std dev
trihedral 1 —-1.93 0.25 -1.79 0.41
trihedral 2 —2.62 0.48 —2.47 0.89
trihedral 3 —3.53 0.97 —3.78 1.36
all spurious —7.10 1.21 -5.39 1.33

Table 7.10. Mean and standard deviation of Q,(ng]) for all trihedral estimates.

values as Ar increases. We thus normalize Qi(egn]) by A,! to obtain
i 1 -
Qi(6!) = A—Qi(GE ), (7.25)
T

Conceptually, Qi(ogn}), like Qi(GEn}), contains three distinct components. The first pe-

nalizes the average mismatch between the predicted response of ng] and the observed
report measurements, the second penalizes the relative number of views at which there
is a significant detection mismatch compared to the number of views at which a mea-
surement is available, and the third penalizes the relative number of views at which
there is an obstruction penalty compared to the number of views at which a measure-
ment is available. The normalization of the obstruction penalty is intuitively appealing:
although attribution of a handful of missed detections to obstruction in the course of
explaining a large collection of reports is not generally indicative of a spurious esti-
mate, attribution of a large number of missed detections to obstruction in an attempt
to explain a handful of reports almost certainly is.

Figure 7.18 depicts histograms of Qi(GEn}) for all trihedral estimates in the 10°-
AVSD experiment. The first three histograms are compiled from the estimates pro-
duced by trihedrals 1, 2, and 3, respectively; the fourth histogram is compiled from all
other trihedral estimates, ¢.e., all of the spurious trihedrals produced in the 10°-AVSD
experiment. Figure 7.19 presents similar histograms for the 20°-AVSD experiment.
Figures 7.18 and 7.19 depict a clear difference in the Qi(GEn]) values attained by legit-
imate and spurious estimates. In particular, the legitimate-estimate histograms and
spurious-estimate histograms show relatively little overlap in Qi(OEn}). Table 7.10 lists
the mean and standard deviation for each histogram at each AVSD. Note that although
there are differences in the mean and spread of the QZ(GEn]) among the three legitimate

primitives, the mean Qi(egn}) for each of the legitimate primitives is separated by at
least one standard deviation (and often several) from the mean spurious value. (Note
that at each AVSD, trihedral 3 produces the most negative mean value and displays
the greatest spread; this is attributable to the particular difficulties associated with the
estimate of this trihedral’s parameters, as described in Sections 7.2.2 and 7.5.)

The preceding analysis suggests that legitimate and spurious estimates could be
distinguished by application of a simple threshold test. In particular, for a specified
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Figure 7.18. Histograms of Qi(OE"]) values in the 10°-AVSD experiment. The first three histograms
present values attained by estimates of each of the three legitimate primitives; the fourth histogram
presents values attained by the spurious estimates.
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Figure 7.19. Histograms of Q,-(GE"]) values in the 20°-AVSD experiment. The first three histograms
present values attained by estimates of each of the three legitimate primitives; the fourth histogram
presents values attained by the spurious estimates.
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threshold 7, we would apply the following test:

Qi(egn}) > g : declare ng] legitimate; (7.26)
Qz—(egn}) <ng: declare OEn] spurious. '

The threshold 7¢ could be chosen by analysis of histograms of Qi(ogn}) values typi-
cally attained by legitimate and spurious estimates, such as provided by Figures 7.18
and 7.19. Figure 7.20 depicts two ROC curves [105] obtained by application of (7.26)
to the histograms at each AVSD for a range of choices of 7g. The horizontal axis of
each plot represents the fraction of spurious estimates that are incorrectly declared le-
gitimate for a given choice of 7¢; the vertical axis represents the fraction of legitimate
estimates that are correctly identified as such for the same choice of 7. Each plot
indicates points on the curve attained by several different choices of 7g. Figure 7.20
indicates that near-perfect discrimination between SLICY’s legitimate and spurious tri-
hedral estimates is theoretically possible at an AVSD of 10° for appropriate selection of
nq: performance is worse at an AVSD of 20° because of the lesser separation between
the legitimate and spurious histograms.
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Figure 7.20. ROC curves depicting Qi(egn])-based discrimination. The horizontal axis of each plot
corresponds to the fraction of spurious estimates correctly classified as spurious for a given choice of
Qi(OE"]); the vertical axis corresponds to the fraction of true estimates incorrectly classified as spurious.
Various values of ng are indicated on each plot.
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Chapter 8

Contributions and Suggestions for
Future Research

HIS thesis makes contributions in the area of target modeling for model-based
ATR systems operating on SAR imagery. In this final chapter we summarize the
contributions of the thesis and suggest several directions for future research.

H 8.1 Contributions

The fundamental contribution of this thesis is the development and demonstration of a
systematic formalism and flexible framework for the generation of target models from
SAR images. In Chapter 3 we described the basic structure of this framework and
cast target model generation as a parametric estimation problem whereby we seek a
parametric description of a target in terms of its component reflector primitives. We
proposed to perform this estimation not directly from the raw set of SAR imagery,
but rather from a lower-dimensional summary of that data in the form of a collec-
tion of extracted image features. This has two primary benefits: first, it facilitates
the specification of a measurement model in terms of the unknown target-primitive
identities of the extracted image features, and second, it enables the consideration of
model generation from the perspective of data association, enabling the application of
the expectation-maximization (EM) method as proposed in Chapter 4. This framework
also has the conceptual benefit of allowing an extremely broad range of choices of target
parameterization and SAR-image feature extraction.

The major contribution of Chapter 4 is the development an EM-based algorithm
to generate target models in the data association framework constructed in Chapter 3.
This algorithm treats the image-feature identities as a set of hidden “label parameters”
that, although unobservable, provide a conceptual foothold for the estimation of a target
model by the EM method. In particular, our algorithm generates a target model by
iterating between an expectation (E) step and a maximization (M) step. In the E step
the probabilities of each feasible set of label parameters are calculated, conditional on
the observed image features and on the target model provided by the previous iteration;
in the M step these probabilities are used to estimate a new target model from the
data. Because exact calculation of the E-step probabilities is combinatorially difficult,
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we applied gating to make implementation of this component of the algorithm tractable.
We described a specific implementation of the E and M steps of the algorithm for the
specific measurement model constructed in Chapter 3. Although some of the details of
this implementation depend on the precise form of this measurement model, a similar
algorithm could be constructed for any measurement model that relates extracted image
features to target parameters via a set of hidden label parameters.

Two further contributions of Chapter 4 are the construction of an initialization tech-
nique to produce an estimate with which to seed the EM iteration, and the modification
of the basic EM method to enable adaptive selection of model order as the iteration
progresses. The initialization procedure we proposed is an agglomerative clustering
technique for grouping image features based on their backprojection into R?. (An ex-
tension to the basic initialization technique proposed in Chapter 4 was presented in
Chapter 7.) The model-order adjustment stage takes place after the M step in every
iteration. It operates by examining the empirical evidence for the existence of each
hypothesized target primitive as provided by the E-step probabilities. Hypothesized
primitives with little empirical evidence for existence—i.e., hypothesized primitives
that explain few image features—are removed.

In Chapter 5 we presented results demonstrating the basic utility of our algorithm
and general framework. We characterized the fundamental differences in observability
between different types of primitives, and illustrated how these differences impact the
estimation of primitives of each basic type. We characterized the performance of our
algorithm on a set of single-primitive targets and then demonstrated that when faced
with more complex multiple-primitive targets posing a more difficult data association
problem, the algorithm can successfully disambiguate the various responses to produce
estimates of similar quality to those obtained from the single-primitive targets.

The fundamental contribution of Chapter 6 is the expansion of the basic framework
to accommodate partially obstructed primitives, an important consideration in the mod-
eling of real targets. We proposed to accommodate obstruction in a manner that was
extremely well-tailored to the existing framework. In particular, we introduced an addi-
tional set of hidden variables that enabled the consideration of obstruction effects in the
EM framework. These variables took the form of binary obstruction indicators for each
primitive in each image. We described how these variables could be incorporated into
our algorithm with a few simple modifications. The E step of the modified algorithm
entails computation of the probabilities that each of these additional hidden variables
takes on either of its possible values. The M step then utilizes these probabilities to ob-
tain a new target model estimate. We presented results demonstrating the effectiveness
of this method.

In Chapter 7 we proposed a further expansion of our framework to enable explicit
modeling of primitive noncanonicity, another important phenomenon exhibited by real
targets. We proposed a general methodology whereby specific classes of noncanonicity
are accommodated by augmentation to the target parameterization. Although such an
approach would in general result in a significant increase in the computational require-
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ments of the algorithim, we proposed a fundamental modification to the M step that
limits the computational impact of such an augmentation. In particular, we proposed
to separate the estimation of primitive type from that of all other parameters. In the
modified M step, type classification is achieved by maximizing a type-dependent em-
pirical likelihood function for a data-dependent summary statistic. Estimation of all
other primitive parameters is then achieved conditional on this type classification. This
has the effect of making unnecessary the maximization over all primitive types’ aug-
mented parameters to obtain a single primitive’s parameter estimate. We implemented
our general approach in the context of a specific class of noncanonicities important for
proper modeling of SLICY, a benchmark target of considerable interest to the model-
based ATR community. We demonstrated that the modified algorithm is capable of
successfully accommodating many of the noncanonical effects displayed by SLICY. A
final contribution of Chapter 7 was the outline of a method for distinguishing between
estimates corresponding to legitimate target primitives and those corresponding to un-
modeled response mechanisms.

B 8.2 Suggestions for Future Research

The research presented in this thesis suggests numerous directions for further investi-
gation. In this final section we describe several such directions. We list them in rough
order of increasing conceptual challenge.

Super-Resolution of Scatterers by the Feature Extractor

One shortcoming of the feature extraction technique described in Section 3.2 and uti-
lized throughout this thesis is its inability to resolve closely located target primi-
tives. (This presented a particular difficulty in the estimation of the parameters of
one of SLICY’s trihedral components in Chapter 7.) Modification of the feature ex-
tractor to enable super-resolution of distinct scatterers would correct this shortcoming.
There are a wide variety of techniques for super-resolution of features in SAR image
data [7,15,24,51,86,93]. The techniques of [86, 93], described in Section 2.4.2, are
designed not only to super-resolve scattering centers but also to provide estimates of
various non-locational attributes of those scattering centers. Utilization of one of these
techniques would enable more robust extraction of SAR image features. As long as the
chosen feature-extraction technique could be characterized statistically in the manner
of Section 5.1.2, replacement of the existing feature extractor with a more sophisticated
technique could be accomplished with no fundamental modification to the existing al-
gorithm.

Modeling Dependences between Report Components

One of the basic assumptions used to facilitate construction of a measurement model in
Section 3.3 was the conditional independence of individual report components given 6
and A. This is an unrealistic assumption. For instance, high-amplitude image features—
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1.e., features with a high signal-to-clutter ratio—will tend to be extracted more accu-
rately than low-amplitude image features and will thus tend to exhibit smaller location
covariances and type confusions. Additionally, as described in Section 3.1, the reports
corresponding to double-bounce returns from trihedrals exhibit large location errors
because they do not emanate from the trihedral apex; this, coupled with the fact that
such reports will usually be classified as even-bounce reflections, implies that there is a
dependence between the location and polarimetric-signature-type components for tri-
hedral reports. A more realistic measurement model would describe dependences such
as these. The use of such a measurement model would not significantly complicate
the algorithm: as long as the measurement-model pdf could be easily evaluated for
the components of any report Zj ;, the E and M steps of the algorithm could proceed
with no fundamental changes. The primary difficulty facing implementation of such a
modification is the task of learning these dependences reliably. Although complete spec-
ification of the measurement model in its current form requires determination of only
a handful of parameters (summarized in Table 3.2), complete specification of a mea-
surement model in which report components are interdependent would likely require
determination of a much wider set of parameters.

Construction of a Finer-Grained Confidence Statistic for Primitive Estimates

In Section 7.6 we introduced the concept of a confidence statistic that would quantify the
degree of certainty in the estimates produced for each target primitive. We also outlined
a method for distinguishing between legitimate and spurious primitive estimates. This
method essentially provides a binary confidence statistic representing a hard-threshold
decision about the validity of each estimate. A more general and informative approach
would be to provide a continuously varying score statistic. Although the expected-log-
likelihood function or the related Q; statistic of Section 7.6 each provide a continuously
varying measure of the goodness-of-fit of an estimate to the data, these statistics are
not truly informative in their own right. They are informative only in a relative sense:
the value of Q; attained by any primitive estimate is meaningful only in comparison to
a value attained by other estimates, or in comparison to a threshold determined from a
representative set of such estimates. A better confidence statistic would be informative
not only in a relative sense, but also in an absolute sense. For instance, one absolutely
informative confidence statistic would be a score between 0 and 1 that represents the
probability of an estimate being legitimate.

The histograms of Q; presented in Section 7.6 could be used as the basis for con-
struction of a more informative confidence statistic. In particular, these histograms can
be considered empirical approximations of the pdfs of Q; under the competing hypothe-
ses that an estimate is legitimate or spurious. In this interpretation, assuming that any
estimate is a priori as likely to be spurious as legitimate, any value of Q; attained by
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any primitive estimate could be used to specify a posterior probability of legitimacy:

AN Qi)
BlQ) = Gy + (@) ®.1)

where p;(Q;) is the pdf for the Q; statistic under the hypothesis that primitive 7 is
legitimate, and ps(Q;) is the pdf for the @; statistic under the alternative hypothesis

that primitive 7 is spurious. The validity of F)(Q;) as a true measure of legitimacy
would depend on the accuracy of the empirical pdfs p;(Q;) and p,(Q;) in capturing
the variation in Q; for legitimate and spurious estimates. If pdfs were available for a
statistic other than Q;, or if a different statistic were found to be more informative in
distinguishing between legitimate and spurious estimates, that statistic could be used

as the basis for P, in (8.1).

Expansion of the Set of Extracted SAR Image Features

The feature extraction technique we use throughout this thesis is based on a simple peak
extractor, as described in Section 3.2. It provides a relatively coarse-grained description
of image features in terms of their locations, amplitudes, and basic polarimetric signa-
ture types. While this feature extractor is sufficient to provide a basic description of
SAR images, an extraction technique that provides a more fine-grained representation
of image features would provide more information about the primitives that generate
those features, and could thus aid in the construction of an accurate target model.
For instance, our feature extraction technique neglects relevant information such as
the GTD frequency dependence of scatterer responses [54,85, 86], scatterer anisotropy
across the imaging aperture [57,58], and polarimetry information beyond that provided
by the existing binary type-classification parameter [92,104]. Development of a feature
extractor to provide this information, or utilization of an existing SAR image feature
extraction technique that provides some of this information (such as those of [86,93])
could aid the generation of target models. In particular, additional image-feature in-
formation could be used not only to improve the quality of estimates of existing target
parameters, but also to aid in the estimation of additional parameters in an augmented
target parameterization. (We discuss expansion of the existing target parameterization
shortly.)

Conceptually, any feature extractor that provides measurements that can be related
to individual target primitives in terms of the set of hidden label parameters could be
used in the existing framework. One extremely general approach to feature extraction
would be to characterize SAR image chips or phase histories in terms of a library of
appropriately chosen basis functions in the range/cross-range domain (for images) or
the frequency/azimuth domain (for phase histories).! A feature extractor operating in

'In fact, such an approach underlies the super-resolution algorithms of [86,93]: although these
techniques describe scatterers in terms of a handful of physical parameters similar to those provided
by our feature extractor, this is accomplished by decomposing a phase history into a sum of complex
frequency /azimuth basis functions.
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this way would provide not merely a single scalar amplitude parameter ay ;, but instead
a vector of basis-function coefficients ay, ;. (This approach is similar to those of [14,70],
although these efforts focus on the characterization of one-dimensional range profiles
rather than SAR images.) Such an approach would provide a more flexible means
for describing observed SAR image features by enabling accurate characterization of
responses not succinctly or naturally described by a handful of physically motivated
parameters. For instance, such an approach could enable more natural description of
resonant respounses generated by periodic symmetries in target structure [62, 70], dis-
persive responses generated by cavities or similar structures [14,62,70], or non-localized
respouses generated by target components that produce strong returns over multiple
resolution cells. Challenges to the implementation of such an approach would be the
construction of an appropriate library of basis functions and the development of a mea-
surement model relating ay, ; to @ for that library.

Augmentation of Primitive Descriptor Vectors to Include Additional Physical Attributes

The target parameterization developed in Section 3.1 relies on a small but descriptive
set of parameters to describe the physical attributes and predicted scattering responses
of target primitives. In Chapter 7 we proposed an augmentation to this basic pa-
rameterization to include a discrete parameter indexing a set of “subtype” scattering
responses for each basic primitive type. Although either parameterization enables com-
pact and informative representation of a variety of primitives and their responses, it
could be expanded to include additional physically based primitive descriptors. (We
discuss augmentation or replacement of the existing parameterization to include a more
general class of descriptors, i.e., descriptors that do not necessarily correspond to phys-
ical primitive attributes, shortly.) For instance, as described in Section 3.1, our chosen
parameterization does not include descriptors for primitive dimension (other than the
dimension-related base amplitude), although this quantity provides important physi-
cal information and is useful in predicting the scattering respounse of a primitive. In
Chapter 7 we describe other potential augmentations to the primitive parameterization.
As described in Chapter 7, the primary effect of the inclusion of additional primitive
descriptors on the algorithm would be an increase in complexity of the M step. In
particular, maximization over additional primitive descriptors will likely impose a sig-
nificant additional computational burden. (Investigation into maximization techniques
other than those used here is thus another potential area of research.)

A fundamental question associated with the augmentation or modification of the
primitive descriptor vector is how to choose descriptors that are not only informative
but also robustly estimable. Inclusion of parameters that cannot be reliably estimated
from extracted SAR image features would offer no benefit to a model-based ATR system
and would have the drawback of complicating the implementation of a target model
generation algorithm. Augmentation of the primitive descriptor vector to include ad-
ditional physical attributes should be guided by investigation of the observability of
potential descriptors in the primitive response. Development of a principled approach
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to such an analysis represents a conceptual challenge.

Proper Modeling of Multiple-Primitive Responses

A fundamental assumption (perhaps the fundamental assumption) of our framework
is that any image feature can be uniquely associated with a single target component,
and that any target component produces at most a single feature in any image. This
assumption dictates the basic structure of our measurement model and algorithm. In
particular, the E step of the algorithm calculates the probability of correspondence of
each image feature to each hypothesized target primitive under the assumption that
there is a unique set of correspondences; the M step then provides a parametric tar-
get model by utilizing these correspondence probabilities to weight each measurement.
Modification of this assumption to allow a single image feature to be attributed to
multiple primitives, or to allow a primitive to generate multiple image features (e.g.,
not only a “canonical” feature but also a multiple-primitive feature through interaction
with another target component) could require fundamental modifications to the basic
structure of our framework.

Conceptually, one approach to accommodating multiple-primitive responses would
be to expand the definition of the label parameters A to recognize such responses. For
instance, we could modify (3.15) to write

i, if report Zyj ; corresponds to target primitive 1,
Akj =10, if report Zy ; is spurious (corresponds to no primitive), (8.2)

—1 if report Zj ; is a multiple-primitive response.
For reports for which A ; = —1, we could introduce a new hidden variable p;, ; describ-
ing the origin of the report:

[il zn} if report Zy, ; corresponds to primitives iy,... oy,
Ky = 7 (8.3)

0, if report Zy ; is not a multiple-primitive response.

This would require a change in the measurement model to enable description of multiple-
primitive reports in terms of the primitives indicated by gy, ;. Such a modification would
probably be nontrivial—even predicting the locations of multiple-primitive responses
in the slant plane could require high-level geometrical reasoning. Even if such a modi-
fication to the measurement model could be achieved in a straightforward fashion, this
modification would have important ramifications on the E and M steps of the algorithm.
The E step would require calculation of the probabilities of p,, ; taking on each of its
possible values; the M step would entail simultaneous maximization over all 8; due to
the primitive coupling introduced by the modeling of multiple-primitive reflections.
Assuming the E step were tractable, one possibility for circumventing the M-step
primitive coupling would be simply to neglect the informative value of the multiple-
primitive reports in forming primitive parameter estimates. In other words, we could
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simply ignore all reports for which Ay ; = —1 in the implementation of the M step,
and determine each 6; using only Pr(\,; = i|Zi, 0™ as in the existing algorithm.
This would be an approximation to the optimal approach that might serve to make
consideration of multiple-primitive reports tractable.

Development of Empirical Response-Based Primitive Descriptors

Most of the attention in this thesis has been given to primitive descriptors that are
directly tied to physical attributes of the primitives they represent. For instance, pose
and location each describe a basic physical primitive attribute. Other potential descrip-
tors we have considered, such as additional dimensions or the angles between primitive
components, are also physically based. A different approach to the construction of a
primitive parameterization framework is to employ descriptors that are more naturally
viewed not as physical attributes, but as scattering-response attributes. The subtype
approach to dealing with noncanonicity introduced in Chapter 7 essentially represents a
step in this direction: although the trihedral and tophat subtype responses considered
in that chapter were intended to represent the effects of specific geometrical pertur-
bations on the scattering responses of those primitives, such a physical basis was not
essential to the specification of subtype responses.

We can imagine specifying the response of any primitive in terms of a superposition
of basis functions (possibly unique to each primitive type) on the viewsphere. A prim-
itive descriptor vector could then be constructed to represent the primitive in terms
of the attributes of the basis functions that best describe its response. In particular,
given a dictionary Dy of basis functions associated with a primitive of type 6!, we could
represent the overall %cattering response S(1, ¢) of that primitive as

S, 0) =Y Vjsm; (©,0),  sm; (¥, ) € Dy, (8.4)

=1

t.e., as a scaled superposition of elements chosen from the dictionary Dy:. In this

framework the descriptors 67 and 6% would be replaced by a set of descriptors including
the set of indices {m;}7_; and the set of coefficients {v; };?:1.2

Implementation of the approach just described involves two important conceptual
challenges. First is the enforcement of sparsity in the representation of any primitive
response, i.e., the limitation of n to be a small integer. This is desirable both in
consideration of the basic model-based ATR paradigm and in order to enforce some
regularity in the responses from hypothesized primitives. Sparsity could be enforced in
a number of ways. For instance, we could fix n to be a previously specified small integer
and use matching pursuit [67,70] to obtain the superposition of n basis elements that
minimizes the ¢?> mismatch between the predicted and observed primitive scattering

2The basic canonical parameterization actually represents a special case of this approach in which
each Dyt consists of rotations of a single basis function Syt (.) on the viewsphere, n is required to equal

1, 6% selects a particular rotation of Sg¢(.), and 0 scales this basis function.
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responses. Alternatively, we could utilize high-resolution pursuit [47], a decomposition
technique similar to matching pursuit but which is more sensitive to local structure
in the selection of its basis elements. We could also use basis pursuit [17] to obtain a
sparse representation of the form of (8.4) by minimization of an objective function that
penalizes both the ¢(? mismatch between the observed and predicted primitive responses
and the ¢* sum of the scaling coefficients.

The second, more fundamental conceptual challenge associated with this approach is
the construction of an appropriate dictionary Dy for each primitive type. An effective
dictionary would enable accurate modeling of the kinds of responses observed from
each primitive type and would simultaneously encourage sparsity by containing basis
functions that in some sense capture the primary modes of variation in these responses.
There are a number of general techniques geared to the selection of a low-dimensional
basis for representation of a family of signals, ranging from pursuit techniques [17,44,
47,67] to principal components analysis [52,55] to other so-called “best basis” selection
techniques [20,90,101]. In general, however, the selection of an appropriate dictionary
for representation of a class of signals is difficult. Construction of response dictionaries
for the different primitive types, or construction of a “super-dictionary” capable of
succinctly modeling the response from any primitive type, would be a fundamental step
in the representation of targets for model-based ATR.
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Appendix A

Construction of Primitive Scattering
Functional Models

As indicated in Section 3.2, our models for the RCS responses from the four basic prim-
itive types are based on PO and constructed from the components in Table 2.1. Central
to these models are the log-shaping functions Solg(.) that, along with base amplitude
and polarimetric scaling factors, enable us to predict the RCS of a primitive of type 6!
as in (3.5), reproduced here for convenience:

A8, Yk, d1) = 07 + Sy (U 1ox 1 1) + Cpol. (A1)

Here we detail the construction of the Sy:(.) and the other components of (A.1) for
each primitive type. '

As described in Sections 2.3.2 and 3.1, a single primitive might have not only a
primary reflection mechanism but also one or more secondary reflection mechanisms.
For instance, a trihedral’s primary reflection mechanism is a triple-bounce response,
by which incoming rays are backscattered after being reflected in turn from all three
component plates; its secondary reflection mechanisms are the single- and double-
bounce responses observed at oblique angles, where incoming rays are backscattered
after being reflected from ounly one or two component plates. Figure A.1 depicts the
contribution of individual reflection mechanisms to the overall trihedral response: the
contributing components include a triple-bounce reflection mechanism (Figure A.la),
three double-bounce reflection mechanisms produced by pairs of the trihedral’s plates
(Figure A.1b), and three single-bounce reflection mechanisms produced by individual
plates (Figure A.lc).! These responses are summed to yield the overall response in
Figure A.1d. (Azimuth and elevation are defined as in Figure 2.10; the trihedral di-
mension used to generate the responses of Figure A.1 is a = 28.0 cm.)

We construct the Sye(.) for the trihedral, tophat, dihedral, and cylinder as sums
of individual response mechanisms tabulated in Table 2.1. In particular, we take each

! Although the three individual double-bounce components of Figure A.1b are identical except for
unique Euler angle orientations, as are the three single-bounce components of Figure A.1lc, the projec-
tion of azimuth and elevation coordinates from the viewsphere onto a rectangular array distorts each
response differently.
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Construction of trihedral response model from multiple reflection mechanisms. The

overall trihedral response (d, lower right) is a combination of several distinct reflection mechanisms:
a triple-bounce reflection mechanism (a, upper left), three properly rotated double-bounce reflection
mechanisms (b, upper right) and three properly rotated single-bounce mechanisms (c, lower right).
Although an observed response would be a coherent sum of these responses, taking the relative phases
between the components into account, our models are formed as a noncoherent sum of the responses
due to the complication the introduction of primitive dimensions would introduce into the scattering

models.
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L. relevant
rimitive components of Sy« (1! / . . 6¢
p P ot (Vi k> Gir) dimensions i

one trihedral triple-bounce response .
trihedral three dihedral double-bounce responses a 101og,, (&Wi)
three rectangular-plate responses
one tophat double-bounce response

2
fophat one cylinder-shaft response h 101ogy (2korh?)
dihedral one dihedral double-bounce response ab 101ogy, (2k2a2b2)
two rectangular-plate responses n
cylinder one cylinder-shaft response h 101og;q (koth)

Table A.1. Primitive scattering model composition.

Sgt(.) to be a noncoherent sum of one or more of the components of Table 2.1, with
any primitive dimensions relevant to the determination of the shaping functions of
these components fixed at empirically chosen values (see Chapter 5). The component

reflection mechanisms used to construct the Sy (.) are listed in Table A.1, along with the

primitive dimensions (see Figure 2.10) that affect the component shaping functions.?

Construction of the Sy (.) in this way embodies two approximations: first, it neglects
the dependence of the Sflaping functions of Table 2.1 on primitive dimensions, and
second, it neglects the relative phases between the component reflection mechanisms
(dependent on primitive dimensions and relative viewing angle) that will affect the
coherent combination of the primary and secondary reflection mechanisms to dictate the
overall response. As indicated in Section 3.2, these approximations are made to avoid
the algorithmic complication the introduction of primitive dimension would create. The
effects of these approximations are examined in Chapter 5.

Each Sgt(.) is scaled to give a maximum value of 0 dBsm, so that 6¢ in (A.1) is taken
for each prﬁnitive type to be the value indicated in Table A.1. The remaining term in
(A1) is cpol, the effective gain achieved by using multiple polarimetric channels, i.e.,
by taking RCS to be the squared-magnitude of a polarimetric vector g of the type in
(3.7). It can be seen from Table 2.2 that any canonical odd- or even-bounce reflection
mechanism will give ||g|* = 2, so ¢y is a constant that adds an effective gain of 3 dBsm
(i.e., 20log,( 2) for any primitive type.

?We do not include circular-plate components in the overall tophat and cylinder shaping functions.
This is motivated by the narrow mainlobe of the circular-plate responses, the large angular separation
between these primitives’ primary response mechanisms and the circular-plate specular directions, and
the relatively computationally intensive Bessel term in the circular-plate response (see Table 2.1).
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Appendix B

Derivation of the
Expected-Log-Likelihood Function

We require an explicit expression for Q(O\G["}) in order to describe the E step of the
EM method as presented in Section 4.2. The general form of the E step is given in
(4.5), reproduced here for convenience:

Qo) = E [logp()\, Z|0) ‘ Z. 9[”*1]]

B.1
= 3" [lozp(A 210)] p(A|2. 61" 1), B
AEA
Utilizing the independence assumptions of Section 3.3, we can rewrite (B.1) as
K
Qo) = lZ logpuk,zue)] P(ALIZ, 81) - p(A\ ArlZ, 61)
A€A Lk=1 (BQ)

K
=> > [10gp()‘kazk‘6)} - p(Ak|Zk, 6M) - p(A\ AL|Z\ Z, 01,
k=1 A€A

where the notation “A\ Ag” is shorthand for “Aq,..., Ag_1, Akt1,..., Ax.” (An anal-
ogous definition applies to “Z \ Z.”) It then follows that

K
Qo) =" [ 3 [logpw,zke)}p(xkzk,eW)]

1T s\ az\ zee) |
A\ALEA\A,

because p(Ag|Zg, ")) is constant with respect to A\ Ag. The final summation in (B.3)
clearly evaluates to 1, thus

K
QI8 =3 3™ [log (e Zel0) | p(An|Z, 61, (B4)

k=1ApEAg

201



202 APPENDIX B. DERIVATION OF THE EXPECTED-LOG-LIKELIHOOD FUNCTION

Replacing log p(Ag, Z;|@) in the above expression with its value according to (3.42)
yields, after some rearrangement of terms,

p(Ar|Zy, 81"

N
Q(oel"! Z > l—vFAv—log<Mk!>+Zlog (1 - Ppi,)

k=1 XAy =1

K
+Z Z Z [logpFA(ak,j)}P()\k\Zkae[n])

/
Dk)\
+ E E E [ — Tk og 2n(det R)Y? —log oV 27
k=1 AcEAy jidg ;70 j

1 B
=5 (Xe; =7 (0x,)) R (xij — mi(6,,))

+log pj, ; — (ak; — A(9Ak,j,¢k,¢k))2] P(Ae|Zy, 01).

202
(B.5)

We will consider the terms of (B.5) line by line. Note that all terms in the first line of
this equation are constant given Zyg, so the first line of (B.5) evaluates to

K N
Z [—WFAV — log(My!) + Zlog (1- Ppﬁw-) (B.6)
k=1 i=1
The second line can be rewritten as
K My
> [IOgPFA(ak,j)] Pr(\; = 0|Z, 6™). (B.7)
k=1j=1
To evaluate the next lines, let us define an indicator function for each ¢ = 0,1,...,V:
17 /\kf = ia
I{)\kj:i} = ! . (B8)
’ 0, )\k,j #£ 1.
Then the third line of (B.5) can be written as
K My, 5
FA n
> 1D I, =0y log (T) P(Ak|Zg, 61), (B.9)

k=1AreA; | J=1
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which evaluates to

K My

2.2 [ ( )] Pr(\y,; = 0|Zy, 61"). (B.10)

k=1 7=1

We can use the indicator functions of (B.8) similarly to evaluate the remaining three
lines of (B.5) (i.e., the final summation) by noting that for any function {(\ ;) we have

N M,
Z Yo > Cwp(Ak|Z, 6 Z > [ZZI{)\k’j:i}:|<<)\k7j)p<Ak‘Zkae[n})
k=1 ApE€A jiAg ;70 k=1AgeA, i=1 j=1
K N My
ZZZ@ ) Pr(Ae; = i|Zy, 01]),
k=1 1i1=1 j=1
(B.11)
so that the final three lines of (B.5) evaluate to
K N M,
ZZZ log — log 2nr(det R)Y/? — log 04V/27
k=1 i=1 j=1 ki
1 _ B.12
— 5 Gy — m(00)T R (i — mi(6) (B12)
1 . n
+log p j — 292 (ak,j — A(@;Wﬁk))ﬂ Pr(\j = i|Zy, 0").
Combining (B.6), (B.7), (B.10), and (B.12), we can now write (B.5) as
N
Q161" =" Quoi10") + i
=1
N K (B.13)
=> Qi (6:61) + Cik.
i=1 k=1
where
Ppl; 1 2
Qix (616" ;Pr Mg = i|Zy, 0! 10g1_7PD;w_ 307 (ak; — A(Oi, Yy, dr))
/ 1 T -
+log pfj — = (% — mk(0:)" R (xpj — w4 (6;))

2

+log(1 — Ppy, ;)
(B.14)
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K My,
Y n
Ck =) l_’YFAV —log(My!) + > [IngFA(akJ) + log (%ﬂ Pr(Ac; = 0|Zy, 61")
j=1

Mk N
- Z Z (log 27(det R)'/? + log aa\/27r) Pr(\j = i|Zg, g[n])] )

j=1i=1
(B.15)

Note that each Qi7k(9i|9£n]) depends only on a single primitive and the reports in a
single image, and that Ck is constant with respect to 6.



Appendix C

Construction of Trihedral and
Tophat Subtype Responses

In Chapter 7 we utilize a set of trihedral and tophat subtypes intended to model some
of the variation in these primitives’ geometries associated with a specific type of non-
canonicity. In this appendix we detail the construction of the scattering responses for
these subtypes.

B C.1 Trihedral Subtype Responses

The three trihedral subtype responses are depicted in Figure 7.11. As indicated in
Section 7.4.4, these responses are heuristic approximations to the types of responses
produced by trihedrals whose geometries differ from that of the canonical square-plate
trihedral as depicted in Figure 7.9. In particular, compared to the canonical trihedral,
subtype 2 will produce stronger responses at viewing angles near its extended axis, and
subtype 3 will produce stronger responses at viewing angles near its extended base.
GO predicts that the response of any trihedral will depend on the projected area of
the region producing a triple-bounce reflection. In particular, if the projected area of
this triple-bounce region at a given viewing angle is A, (¢, @'), then GO predicts a
trihedral RCS of [92]

4
Otri = ;kgA%b(lp/?(b/) (Cl)

For the canonical square-plate trihedral depicted in Figure 2.10, Ay, (¢, ¢') can be
expressed in closed form:

i(‘ll_W)’ m; <

2 ng

A (¥, ¢') = (C.2)

(i) m>y

where a is the square-plate length and where [;, m;, and n; are the direction cosines
between the viewing angle (¢, ¢') and the trihedral axes, ordered so that l; < m; < n;:

(1, m4,15) = S0Ttmin—max(sin ', cos ' sin @', cos ¢’ cos ¢). (C.3)
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Note that
[ +mi+nf =1, (C.4)

and that Ay, (¢, ¢') (and thus o) will be maximized when l; = m; = n;.
Unfortunately, in the general case in which a trihedral response is produced by three
plates of varying shapes or sizes, there is no closed-form expression for A, (¢, ¢'). Exact
determination of the triple-bounce area will generally require numerical integration [94].
To mimic the effects of geometrical perturbations of the type depicted in Figure 7.9 on
the trihedral response, we thus rely on a heuristic approximation in which the trihedral
response is changed by a modification to (C.3). In particular, to construct the trihedral
subtype responses of Figure 7.11 we independently scale each element of (C.3), taking

a3 a3

cos 1)’ sin¢’, — cos v’ cos ¢’> , (C.5)

7~ ~ ap . /

(li, mq, nz) = S0I'tmin—max — Sln¢ v T -

Qg Qg Qg

where aj, g, and ag are arbitrary positive coefficients and where o is a normalization
coefficient:

afy = (a2 sin? ¢ + a3 cos® ¢’ sin? ¢’ + a3 cos® ¢ cos? @) ~12, (C.6)

We then use I;,77;, and 7i; to calculate A, (¢',¢') as in (C.2), which in turn allows
calculation of the trihedral response as in (C.1). By selecting appropriate values for
aq, @z, and ag we can perturb the canonical trihedral response so that Ay, (¢, ¢') and
ot are maximized at a viewing angle closer to one of the trihedral axes, as is the case
for a trihedral of subtype 2, or at a viewing angle closer to one of the trihedral bases,
as is the case for a trihedral of subtype 3. We obtain the response for subtype 2 using

Qi 0.5
Q| = 1 5 (C7)
(0%} 1

and the response for subtype 3 using

Qi 0.6
az| = 10.6] . (C.8)
Qa3 1

B C.2 Tophat Subtype Responses

As with the trihedral, the GO approximation to the tophat response relies on the deter-
mination of the projected area of a multiple-bounce region—in this case, the projected
area Aq, (¢, ¢') of the tophat base and cylinder-shaft region generating a double-bounce
reflection. In particular, GO predicts that given this double-bounce area, the RCS of a
tophat with cylinder radius r will be [12]

k
Tiop = 3 Adn(V, ). (C.9)
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(UKo

h

I i
‘o

h

subtype 2 subtype 3 subtype 4

Figure C.2. Dimensions used to construct square- and rectangular-base tophat subtype responses.

For a circular-base tophat with cylinder radius 7, base radius b + 7, and height h, the
projected double-bounce area can be shown to be approximately [12]

4rbsind’, 0 <)’ < arctan (h)

C.10
4rhcos 1), arctan( ) <y < E ( )

Adb(wla d)l) = {

When b = h, substitution of (C.10) into (C.9) gives the canonical tophat response as
listed in Table 2.1. For tophats of arbitrary base shape, however, determination of
Agr (¥, ¢') is problematic and in the general case requires numerical integration [12].
We thus rely on an approximation to Agp(¢)’,¢') to form the subtype responses for
the four tophat subtypes depicted in Figure 7.12. In particular, consider the tophat
geometry depicted in Figure C.1. This tophat has height h, cylinder radius r, and a
rectangular base whose extent from the cylinder at any viewing azimuth ¢’ is denoted
by 0'(¢'), as pictured. We assume that the double-bounce region of such a tophat can
be approximated by the corresponding double-bounce region of a circular-base tophat
of cylinder radius r, base radius b'(¢') + r, and height h. We thus model

4rd(¢')siney’, 0 < ' < arctan (b,(¢,)>

. g (C.11)
4rh cos ¢, arctan b,(¢ <Y< g,

A (', ¢') =

which then allows RCS to be modeled as in (C.9). We construct the latter three tophat
subtype responses depicted in Figure 7.14 in this way, using square- and rectangular-
base dimensions as pictured in Figure C.2.
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Appendix D

Symbol

Summary of Notation

Definition

General Notation

-
[+
- llq
()
\

S:H:%

det

p(.)
Pr(.)

R

Ry

Rn
sinc(+)
W[u,v](')
L

absolute value
2-norm

Q-norm (for positive-definite Q), i.e., ||x||q = (x* Qx)'/?

n!
m!(n—m)!

combination operator, i.e., (;) =
set difference

estimator of specified quantity
convolution operator, i.e., z(t) * h(t) = [T a(r)h(t — 7)dT
cardinality

empty set

determinant

expectation

probability density function or probability mass function
probability of specified event

real numbers

non-negative real numbers

space of real n-vectors
sin &
€T
1-D unit-amplitude window function extending from u to v

sinc function, i.e., sinc(z) =

non-negative integers

Radar and Propagation Phenomenology

£(.) or &[]
f

g(s; )

speed of light

continuous or discrete measurements of field strength
frequency

carrier or center frequency

2-D complex reflectivity density function
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Symbol Definition

Radar and Propagation Phenomenology, continued

ko wavenumber, i.e., kg = @

T transmit-pulse duration

« PO- or GTD-predicted frequency-dependence exponent
O range resolution

Oy cross-range resolution

e chirp rate

o radar cross section

Oir radar cross section for transmit/receive polarization tr
0] absolute viewing azimuth

@' relative viewing azimuth

0 absolute viewing elevation/depression

! relative viewing elevation/depression

Target Parameterization and Scattering Models

A(0;,,9) predicted log-RCS of primitive ¢ at elevation v, azimuth ¢
Cpol effective multiple-polarimetric-channel gain

H; 2 x 3 ground-to-slant-plane projection matrix for image k
N target model order

ny number of discrete primitive types

Sy, ¢ PO-based log-shaping function describing relative amplitude

of a primitive of type t at relative viewing elevation 1/’ and
relative viewing azimuth ¢’

0 target parameter vector
0, parameter vector for primitive 7
¢ base amplitude of primitive ¢
0? all parameters for primitive ¢ other than type and location
o> Euler-angle pose of primitive 4
or radius of curvature of primitive ¢
6! type of primitive ¢
ox location of primitive ¢
7 (0;) predicted location of primitive 7 in image k
038 center viewing azimuth of image k
;k relative viewing azimuth of primitive ¢ in image &
Vg center viewing elevation of image k

ik relative viewing elevation of primitive ¢ in image k
7
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Symbol

Definition

SAR-Image Features

a/k7j
Ly,
K

tk,j

XkJ
Zy;
Zy,
Z

extracted log-magnitude amplitude of report j in image k
number of false alarms in image &

number of SAR images in the data set

number of reports in image k

binary polarimetric-signature type classification of report j
in image k

extracted 2-D location of report j in image k

feature vector for report j in image k

feature vector for all reports in image k

feature vector for reports in all images

Measurement Model

Prals)
Pp(.)
Ppii

/
Pk,j
Oq

Algorithm

Qmin

false-alarm-amplitude probability density function
amplitude-dependent probability-of-detection function
predicted probability of detection of primitive ¢ in image k
extracted-location covariance

sensor volume

false alarm rate

detection indicator for primitive ¢ in image k

vector of detection indicators for all primitives in image k
label parameter for report j in image k

vector of label parameters for all reports in image k
vector of label parameters for all reports in all images
space of all possible Ay

space of all possible A

extracted-type confusion matrix

(Ox,;»tk;) element of p

extracted-amplitude standard deviation

minimum report amplitude for clustering in initialization
minimum number of reports in cluster for initialization
probability of primitive discovery

discovery-conditional probability of correct primitive type
identification
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Symbol

Definition

Algorithm, continued

Q(o]6")
Qz‘(9z‘|‘9£n])
Qi (6;16™)

T'gate

6"
o [n]

Obstruction
P,

Bi k

B

B

By

B

Noncanonicity

fa

expected-log-likelihood function

primitive-i-dependent components of Q(O\O[n])
image-k-dependent components of Qi(6i|0£n])

E-step gate radius

chi-squared-statistic dissimilarity threshold in initialization
estimate of @ from iteration n

estimate of 8; from iteration n

estimate of #; from iteration n

prior probability of obstruction of any primitive in any image
obstruction indicator for primitive 7 in image k

vector of obstruction indicators for all primitives in image k
vector of obstruction indicators for all primitives in all images
space of all possible 3,

space of all possible 3

fraction of images in data set with detections of given
primitive

fraction of detections of given primitive with odd-bounce t; ;
detection-viewing-angle orientation matrix

number of subtypes for a primitive of type ¢

components of Q(8"[6") that depend on OEn]
primitive-estimate-legitimacy discrimination statistic
summary statistic for type classification

nth largest eigenvalue of M

subtype of primitive ¢

label-parameter estimate for report j in image k

vector of label-parameter estimates for all reports in all
images
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Glossary of Acronyms

Acronym Definition

ATR automatic target recognition

AVSD average viewsphere sampling density

CAD computer-aided design

cdf cumulative distribution function

dBsm decibel-scale square meters

DFT discrete Fourier transform

ECM expectation-conditional-maximization

EM expectation-maximization

FM frequency modulation

HH horizontal-transmit, horizontal-receive polarization
HV horizontal-transmit, vertical-receive polarization
GLRT generalized likelihood-ratio test

GO geometrical optics

GTD geometrical theory of diffraction

LLSE linear least-squares error

ML maximum likelihood

MRF Markov random field

MSTAR moving and stationary target acquisition and recognition
pdf probability density function

pmf probability mass function

PO physical optics
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Acronym Definition

PWDE Parzen-window density estimator

RCS radar cross section

rmse root-mean-squared error

ROC receiver-operating characteristic

ROI region of interest

SAR synthetic aperture radar

SBR shooting and bouncing rays

SLICY Sandia Laboratories implementation of cylinders
TLS total least-squares

VH vertical-transmit, horizontal-receive polarization
VvV vertical-transmit, vertical-receive polarization
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