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Kalman Filtering and Riccati Equations for 
Descriptor Systems 

Ramine Nikoukhah, Member, IEEE, Alan S. Willsky, Fellow, IEEE, and 
Bernard C.  Levy, Senior Member, IEEE 

Abstract-In this paper, we consider a general formulation of 
a discrete-time filtering problem for descriptor systems. It is 
shown that the nature of descriptor systems leads directly to the 
need to examine singular estimation problems. Using a “dual 
approach” to estimation we derive a so-called “3-block” form for 
the optimal filter and a corresponding 3-block Riccati equation 
for a general class of time-varying descriptor models which need 
not represent a well-posed system in that the dynamics may be 
either over or under constrained. Specializing to the time-in- 
variant case we examine the asymptotic properties of the 3-block 
filter, and in particular analyze in detail the resulting 3-block 
algebraic Riccati equation, generalizing significantly the results 
in 1231, 1281, 1331. Finally, the noncausal nature of discrete-time 
descriptor dynamics implies that future dynamics may provide 
some information about the present state. We present a modified 
form for the descriptor Kalman filter that takes this information 
into account. 

I. INTRODUC~ON 
N this paper, we address the problem of recursive I estimation for a general class of descriptor systems. 

Specifically the systems that we consider are of the form’ 

E,+,X(k -k 1) = A , X ( k )  -k U ( k ) ,  k 2 0 (1.1) 
y ( k  + 1) = Ck+’x(k + 1) + r ( k ) ,  k 2 0 (1.2) 

where the matrix E,+’ is I &  X nk+’, A, is I ,  X n&, and 
c&+ is pk+ X nk+ ’. Here U and r are zero-mean white 
Gaussian noise sequences with 
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The indexing choices in (1.1) and (1.2) have been made in part to 

simplify the subsequent development. For example, the use of the 
notation of r ( k )  in (1.2) rather than r(k + 1) is consistent with and 
simplifies (1.3). Specifically, with these choices, the noises u(k)  and r ( k )  
are possibly correlated, and both affect the information we acquire on 
x(k  + 1). 

where A.) denotes the mean and 6 ( k )  = 1 if k = 0 and 
0 otherwise. Also, we assume that x(0) is a Gaussian 
random variable independent of (uT(k) ,  rT(k))T,  with 
mean to and covariance Po, independent of (uT(k) ,  
rT(k))T? The problem that we consider in this paper is 
the recursive estimation of d k ) .  

Several aspects of this model deserve a comment. The 
study of descriptor systems, of course, has a rich and 
growing literature 191, [lo], [MI. Some of the motivation 
for this activity comes from applications in which the 
natural descriptions of systems involve both dynamics and 
constraints among variables, leading to models of the 
form (1.1) with a possibly singular matrix E on the left- 
hand side. Furthermore, in studies such as [351 it is argued 
that models of this type are a natural starting point for 
modeling when we are attempting to deduce relations 
among dynamically evolving quantities rather than impos- 
ing causative structure. Indeed in [19]-[21] as well as in 
our previous work [23]-[29], it has been emphasized that 
descriptor models such as (1.1) can be used to describe 
noncausal phenomena, e.g., where the variable “k” repre- 
sents space rather than time which typically involve such 
dynamics together with boundary conditions. In fact, in a 
subsequent paper [26], the results that we developed here 
are used for constructing efficient smoothing algorithms 
for such boundary-value models. 

A second point to note concerning the model (1.1) is 
that it allows the possibility that the dimensions of the 
problem [the number I ,  of dynamic constraints, the num- 
ber Pk of measurements, and the dimension nk of x(k)l  
may vary with k. As we shall see, this does not cause any 
difficulty in our analysis, but this is not our reason for 
including this level of generality. A better reason is that 
such a situation arises naturally in “recursive” descrip- 
tions of two-dimensional (2-D) phenomena. Specifically, 
as shown in [16], there are very natural directions of 
recursion for boundary-value models, namely in from, or 
out towards the boundary. The inward propagation, for 
example, involves propagating boundary conditions into 
the domain of interest. In 1-D problems, where the 
boundary consists of two points, inward propagation leads 
to a new boundary which also has two points. In 2-D 

The a priori information on the initial condition can also be modeled 
as an additional observation of the form (1.2), see Section 111 for more 
details. Final and intermediate conditions (if any) can also be incorpo- 
rated into observations (1.2). 
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however, the boundary of a compact domain changes size 
as we shrink or expand the domain. Thus, if we think of 
x(k) as representing the values of a process along such a 
shrinking or expanding boundary, we see that we have no 
choice but to deal with changing dimensionality. While we 
do not explicitly focus on such problems in this paper, our 
analysis contains all the elements necessary to make it 
directly applicable to 2-D estimation problems. 

Another reason for allowing the possibility of changing 
dimensionality is one that has other even more important 
implications. Specifically, rather than thinking of (1.1) as 
describing system dynamics, we may wish to think of it as 
providing a set of possibly noisy constraints on the behav- 
ior of x. From this perspective, the information in (1.1) 
plays essentially the same role as that in (1.2), the only 
apparent difference being that each piece of information 
in (1.1) concerns x at two consecutive points in time 
rather than the single-point-in-time nature of the infor- 
mation (1.2). From this perspective, allowing a change in 
dimensionality corresponds to allowing the possibility that 
at some points in time we might have more pieces of 
information than at others. Also, this perspective opens 
the question of the order in which these pieces of infor- 
mation are incorporated. For the most part, in this paper 
we will use the obvious ordering, namely (1.1) through 
time k to estimate x(k). However, there are other possi- 
bilities. In particular, in this paper we also consider the 
use of (1.1) over the entire time interval of interest, 
together with (1.2) through time k to estimate x(k) .  As 
we will see, when E, = I, there is no difference between 
these two cases, but there is a difference when one 
considers the case of E, singular, again emphasizing the 
noncausality of such models. Furthermore, the possible 
singularity of E, coupled with the interpretation of (1.1) 
as an additional source of “measurement” data leads 
directly to the need to consider the possibility that some 
“measurements” are perfect. Thus, in our formulation we 
allow the possibility that R, in (1.3) is singular. 

Recursive estimation for descriptor systems has been 
the subject of several studies in recent years [SI, 1131, [231, 
[24], [28], [33]. In particular, in [24] we addressed this 
problem in the context of optimal smoothing for well- 
posed, constant coefficient boundary-value descriptor sys- 
tems, i.e., systems of the form (1.1) and (1.2) which are 
square and constant (i.e., 1, = = n, Pk = p, and all 
matrices are constant), together with both the assumption 
that { E , A }  is a regular pencil and a set of boundary 
conditions which yield a unique solution to (1.1) for any 
input u(k) .  In that paper, we used the method in [l] to 
derive a 2n X 2n Hamiltonian (boundary-value descrip- 
tor) system for the optimal smoother also assuming that 
the measurement noise covariance R was nonsingular. In 
addition, we introduced a new generalized algebraic Ric- 
cati equation and showed that if a solution to this equa- 
tion existed, the Hamiltonian dynamics could be decou- 
pled leading to parallel forward and backward recursions 
reminiscent of the Mayne-Fraser smoothing algorithm. In 
subsequent work in developing a system theory for such 

systems, we obtained a set of necessary and sufficient 
conditions for the existence and uniqueness of positive 
definite solutions for this class of generalized Riccati 
equations [23], [28] and also provided a statistical interpre- 
tation for this solution. More recently, Wang and Bern- 
hard [33] have developed some closely related results by 
dualizing their work on optimal control for descriptor 
systems [7]. Because of this perspective, less attention was 
paid to statistical interpretations of the results, and also 
their approach deals with estimating Ex(k)  rather than 
x(k). On the other hand, Wang and Bernhard consider 
the more general case in which the pencil {E, A} need not 
be regular and in fact may not even be square (so that 
I # n )  and in this context develop analogous results on 
filter convergence and Riccati equations to those in [231, 
[281. 

While the restriction to the estimation of Ex(k) is not 
significant if E is invertible, it is substantive if E is 
singular. Furthermore, as we have hinted, the possible 
singularity of E and A, together with the objective of 
estimating all of x(k), leads directly to the need to 
consider the possibility of perfect “measurements” either 
through the dynamics (1.1) or the observations (1.2). In 
this paper, we develop a procedure for optimal recursive 
estimation that is valid in the most general framework 
with E and A not necessarily square nor invertible and 
with possibly singular measurement noise covariances. As 
we will see, considering such a problem leads to the 
introduction of what we refer to as “3-block” forms for 
Hamiltonians, filters, and Riccati equations. Such forms 
actually can be found in various contexts in a number of 
papers in estimation and control [3]-[51, 1141, [22l, [321, 
[341. Our work builds most directly on the approach of [34, 
chapter 111 and the machinery for singular estimation in 
[ l l ]  to derive not only a new 3-block Hamiltonian form 
valid in our general context but also a new 3-block gener- 
alized Riccati equation. In addition, in the constant di- 
mension/constant matrix case, we develop convergence 
and steady-state results for the algebraic version of this 
equation, thereby extending the earlier results in [231, [281, 
and [33]. 

In the next section, we present and review some of the 
basic concepts concerning maximum likelihood parameter 
estimation with particular emphasis on deriving a form 
that is valid when some of the measurements are perfect. 
In Section I11 these results allow us to address the filter- 
ing problem for the system (1.1) and (1.2) resulting in the 
3-block form for the descriptor Kalman filter and a corre- 
sponding 3-block Riccati equation. In Sections IV and V, 
we then focus on the time-invariant case. In the first of 
these sections, we generalize the results in [231, 1281, and 
1331 by studying in detail the asymptotic properties of the 
descriptor Kalman filter. In particular we provide condi- 
tions for filter stability and for the convergence of the 
solution to the Riccati equation. Conditions under which 
the resulting 3-block algebraic Riccati equation has a 
unique positive semidefinite solution are given, and in 
Section V we generalize the well-known eigenvector ap- 
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proach to solving standard Riccati equations [31], [32] to 
our 3-block form. Finally, in Section VI, we show how the 
estimation procedure we have developed can be modified 
to account for the information about x ( k )  contained in 
the future dynamic constraints. 

in [34] and [ll], can also be traced to early optimal 
control-based derivations of the Kalman filter such as in 
[61. 

Let V be a full rank square root of R (so that W T  = R). 
Then we can write U = Vw, where w is a zero-mean 
Gaussian random vector with covariance 1. If we then 

II. A LOOK AT MAXIMUM LIKELIHOOD ESTIMATION view the measurement 

y = HX + VW (2.5) In this section, we examine a few features of maximum 
likelihood (ML) linear estimation beginning with the sim- 
ple problem of estimating an unknown n-dimensional 
vector x based on the p-dimensional measurement vector. 

as a linear constraint on x and w, the ML problem is 
simply one of finding a pair (x, w )  satisfying (2.5) and 
maximizing the probability density of w or, equivalently, 

y = H x + u  (2.1) minimizing 
where U is a zero-mean Gaussian random vector with J ( w )  = (1/2)w'w. (2.6) . ,  . . 

covariance R .  While this is a well-studied problem it is 
worth making a few comments about it. First, note that 
the study of this estimation problem actually includes tip1iers* let 

This problem is readily solved using the Lagrange mul- 

least-squares Bayesian estimation for Gaussian vectors. 
Specifically, consider the problem of computing the least- 
squares estimate of a Gaussian random vector x with 
mean m and covariance P based on the measurement 
vector z = Cx + n where n is zero-mean Gaussian, inde- 

L ( ~ ,  x, A) = ( 1 1 2 ) ~ ' ~  + h T ( y  - HX - V w ) .  (2.7) 

Setting the partials with respect to w , x ,  and A to zero 
yields 

w - V T h = O  (2.8a) 
pendent of x, with covariance N .  It is straightforward to 
check that this problem yields the same estimate as the 
ML problem with 

H'A = o 
y - HX - VW = 0. 

(2 Ab) 
(2 .8~)  

Using (2.8a) to eliminate w gives the 2-block ( p  + n)- 

Y = ( ~ ) . H =  m ( ) , R =  (E i). (2.2) dimensional set of equations 

We focus here on the ML viewpoint, which in the next 
section will lead to our interpreting dynamic constraints 
as in (1.1) as additional pieces of information or measure- 
ments. A second point is that we focus here, for the most 
part, on the case in which x is estimable, i.e., in which 
(2.1) provides sufficient constraints so that we can in fact 
estimate all components of x. This is equivalent to assum- 
ing that H has rank n = dim(x), which, for example, is 
aways true in the Bayesian case (i.e., H in (2.2) obviously 
has rank n). 

The third and most important point for us is that we 
wish to consider ML problems where R may not be of full 
rank. If H and R have full rank, the solution to the ML 

A first obvious question about this set of equations 
concerns the invertibility of the ( p  + n )  X ( p  + n)  matrix 
in (2.9). Note that one obvious necessary condition is that 
H must have full-column rank, as otherwise the last n 
columns would not be linearly independent. a second 
immediate necessary condition is that the first p rows 
must be linearly independent. The following shows that 
this pair of conditions is also sufficient. 

Lemma 2.1: Let R be positive semidefinite and H a 
full-column rank matrix. Then, if [ R  H ]  has full-row 
rank, the matrix 

problem is easy to write out explicitly 

is invertible. 
i ML = ( H T~ - ' H  H T R  1 y . (2.3) 

- 

The error variance associated with this estimate is given Proofi Suppose that 

(2.10) 

(2.11) 

(2.4) Then 
xTR + y T H T  = 0 (2.12) 

The fact that the calculations can be described in such 
explicit form is extremely important as it allows us to 
obtain an explicit recursive structure for sequential esti- x'H = 0. (2.13) 
mation problems. What we would like to do is to obtain If we now take the transpose of (2.13) and multiply it on 
an equally explicit form when R is singular. To do this, we the left by Y~ we get 
begin by recasting the ML estimation problem as a 
quadratic minimization problem. This approach, described ~ ' H ' x  = 0 (2.14) 

and 
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which after substitution in (2.12) postmultiplied by x yields 

xTRx = 0 (2.15) 

which, since R is positive semidefinite gives xTR = 0. 
Together with (2.131, this yields x T [ R  HI = 0, which 
implies x = 0, since [ R  HI has full-row rank. Then 
(2.12) implies that yTHT = 0, and since H has full rank 

Assuming that (2.10) is invertible, we have from (2.9) 
we have y = 0, so that (2.10) is invertible. 

that 

and by direct calculation we find that iML is unbiased and 
has for error covariance 

(2.17) 

Writing 

we obtain the following simpler expression for P M L  : 

The condition that [ R  HI has full-row rank has a 
simple physical interpretation, namely that there are no 
redundant perfect measurements (i.e., that no indepen- 
dent linear combinations of the observations yield noise- 
free measurements of the same linear combination of 
components of x ) .  While this would certainly seem to be a 
reasonable assumption and can in principle be enforced 
by identifying redundancies and eliminating them, it is 
convenient to have a result that applies even when (2.10) 
is not in~ertible.~ In this case, as one might expect, it is 
necessary to use pseudoinverses. As discussed in [lll,  
there are various sets of properties one can impose in 
defining pseudoinverses. For our purposes here, it suffices 
to take the pseudoinverse Zt of a symmetric matrix Z to 
be any symmetric matrix for which 

zztz = z (2.20) 

(this is what is referred to in 1111 as a (1)-inverse). Then 
we have the following. 

Lemma 2.2: Suppose that H has full-column rank. The 
ML estimate of x based on the measurement vector (2.1) 

Indeed, while it may be easy to keep track of and eliminate redun- 
dancies in a given set of measurements, it is more difficult to do this in 
an organized and easily expressible way when those redundancies may 
evolve dynamically and arise through the dynamic constraints as well as 
the measurements. 

is given by 

This estimate is unbiased and has for error covariance 

This result is proved in [ l l ] ,  although in our case we 
can say a bit more. Specifically, let 

(2.23) R H '  W U  
( H T  0 )  = ( U T  T ) '  

Then in the case where H has full-column rank, T is 
unique, while W and U will not be unless (2.10) is invert- 
ible. Note that from (2.21) 

-tML = UTy (2.24) 

so that the gains in the ML estimator may not be unique 
-reflecting the fact that there are nonunique ways in 
which to determine certain linear combinations of compo- 
nents of x exactly. On the other hand, the resulting error 
covariance should be unambiguously defined, and from 
(2.22), (2.23) we see that it is, since PML = -T. We refer 
the reader to Appendix A for a summary of several of the 
calculations and some results from [ l l ] .  In particular, we 
prove the identity 

(2.25) 

which is used below. 
If H does not have full-column rank, then, as we have 

indicated, x is not estimable so that the ML estimate of 
all x is undefined. Nevertheless, in such a situation vari- 
ous linear combinations of x may be estimable [e.g., 
obviously (x, + x 2 )  is estimable from the observation y = 
( x ,  + x2)] .  The precise definition of estimability given in 
[ l l ]  is that the linear combination of cTx is estimable if 
there exists a measurement linear combination dTy that is 
an unbiased estimate of cTx. An essentially immediate 
necessary and sufficient condition for this is that c must 
be in the range of H T .  Let r denote the rank of H and let 
H = H ,  H2 denote a full-rank factorization of H ,  i.e., H ,  
is a p X r full-column rank matrix and H2 is an r X n 
full-row rank matrix. Then, it is precisely z = H 2 x  whose 
ML estimate can be computed from y. Furthermore, from 
results in [113 we can deduce that 
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0 W J K  
Z J ’ O O  

is an unbiased estimate of z with associated error covari- 
ance 

both x and z.  If A,, and 2, are the Lagrange multiplier 
vector and estimate of x based on (2.28) alone, and if U, 
and P, are the associated estimator matrix and error 
covariance, we see from (2.9) and from identity (2.25) that 
they satisfy 

t 
R Hl 

‘,L= - ( O  ‘ ) ( H :  0 ] (:) 

Next, we prove several results that provide the justifica- 
tion for the recursive procedure that will be employed 
below for computing ML estimates. The first of these 
results states that for the purpose of estimating other 
variables, we can replace several measurements of a vari- 
able by its estimate based on these measurements. 

Lemma 2.3: Let x and z be unknown vectors and 
consider the observations 

a = H x + u  (2.28) 
b = JX + Kr + w (2.29) 

where U and w are independent, zero-mean Gaussian 
vectors with covariance matrices V and W, respectively. 
Suppose that x is estimable based on (2.28) only, and that 
t is estimable based on both (2.28) and (2.29). Let P, be 
the estimate of x based on (2.281, and let P, be the 
associated error covariance matrix. Then P, the estimate 
of x based on both (2.28) and (2.29), and its associated 
estimation error covariance P are identical to the esti- 
mate and estimation error covariance resulting from esti- 
mating x from (2.29) and the observation 

P , = x + u  (2.30) 

where U is zero mean and Gaussian, independent of W ,  

with covariance P,.  
Furthermore, the estimate 2 and estimation error co- 

variance of z based on (2.28) and (2.29) are the same as 
its estimate and error covariance based on (2.29) and 
(2.30). 

PrmF Since x is estimable from (2.281, H must have 
full-column rank. This, coupled with the assumption that 
z is estimable from both (2.28) and (2.291, implies that K 
has full-column rank. Consider the joint estimation of x 
and z based on (2.28) and (2.29). If A, and Ab denote the 
Lagrange multiplier vectors associated with observations 
(2.28) and (2.29), respectively, according to (2.9) the multi- 
plier vectors and estimates f and 2 satisfy the system 

H;A, + J;A, = o (2.38) 

where A, is defined as in (2.36). But (2.38) is just the 
third-block row of (2.31). 

Since the estimates of P and 2 obtained bv the batch 

* (2-31) 

We seek to compare this “batch” estimation method, 
where all the measurements are processed at the same 
time, with the “sequential” approach where we first esti- 

resulting estimate in the form of the summary measure- 
ment (2.30) with observation (2.29) in order to estimate 

and sequential methods are identical functionals of a and 
b,  and the statistical assumptions for a and b are the 
same under both methods, the error covariances are the 

Note that in the above proof, the assumption that x is 
estimable from (2.28) was needed to ensure that the 

mate x based on (2.28) alone, and then combine the same. 
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second-block column of (2.32) holds. On the other hand, 
the assumption that z is estimable from both (2.28) and 
(2.291, i.e., that K has full rank, was only required insofar 
as we wanted to discuss the properties of the ML estimate 
2 and the associated error covariance. It is not necessary 
if we are only interested in estimable linear combinations 
of the entries of z, and the above result can easily be 
restated in a way that does not require z to be estimable. 

Lemma 2.3 shows that previously processed measure- 
ments can be aggregated in the form of a summary 
measurement (2.30) for the variables that have been esti- 
mated. However, the summary measurement (2.30) will 
include estimates of variables that do not appear in subse- 
quent measurements and in which we are no longer 
interested. Conventional wisdom suggests that measure- 
ments associated to such exogenous variables can be 
discarded without affecting the estimation of the other 
variables. The following result, which is expressed in its 
most general form, provides a criterion for dropping un- 
needed measurements. 

Lemma 2.4: Consider the observations 

where x1 and x2  are two unknown vectors, and [U; 
is a zero-mean Gaussian vector with covariance 

U,']' 

Suppose that H3 has full-row rank, and H ,  has full- 
column rank. Then the ML estimate of x ,  based on both 
y ,  and y ,  is the same as that based on y ,  alone. 

The assumption that H ,  has full-column rank is intro- 
duced here to guarantee that x1 is estimable from the y ,  
measurement, but it can be removed if we only seek to 
estimate estimable linear combinations of the entries of 
X1. 

Proog Let A, and A, be the Lagrange multiplier 
vectors associated with the y ,  and y z  measurements, 
respectively, and let 2, and 2, be the estimates of x ,  and 
x 2  based on both y ,  and y,. According to (2.9), they 
satisfy the system 

Since H3 has full-row rank, the relation H3Th2 = 0 implies 
that A, = 0, so that we can delete the second- and 
fourth-block rows and columns from (2.40). This gives 

which is precisely the system corresponding to the ML 
estimation of x1 (or estimable linear combinations of its 

The combination of Lemmas 2.3 and 2.4 provides a 
general mechanism for generating ML estimates recur- 
sively. Specifically, consider the two observations 

a = Hx, + Gx, + U (2.42) 

b = J x , + K z + w  (2.43) 

where we assume that x, and x2 are jointly estimable 
from (2.421, i.e., [ H  GI has full-column rank, and z is 
estimable from (2.42) and (2.43), i.e., K has full-column 
rank. As in Lemma 2.3, we assume that U and w are 
zero-mean independent Gaussian vectors with covariance 
V and W, respectively. From Lemma 2.3, we see that the 
measurement (2.42) can be replaced by the summary 
measurements 

E, = x, + u1 (2.44a) 

2, = x ,  + u2 (2.44b) 

where 2, and E, denote the ML estimates of x ,  and x 2  
based on (2.42) alone, and the covariance of [UT U;]' is 
the corresponding estimation error covariance. Then, the 
ML estimates of x ,  and z based on both (2.43) and 
(2.44a) and (2.44b) are the same as those derived from 
(2.42) and (2.43). But x2 does not appear in observation 
(2.43), and the system obtained by combining (2.43) and 
(2.44a) and (2.44b) satisfies the assumptions of Lemma 
2.4, so that for the purpose of estimating x ,  and z we can 
drop the measurement (2.44b). This shows that the ML 
estimates of x ,  and z based on both (2.43) and the 
summary measurement (2.44a) are the same as those 
based on (2.42) and (2.43). This general procedure, 
whereby previously estimated variables are replaced by 
summary measurements, and irrelevant variables are dis- 
carded, constitutes the basis for the descriptor Kalman 
filtering method of Section 111. 

Finally, we prove the intuitively obvious fact that for a 
given measurement set, if the noise covariance increases, 
the error covariance of the ML estimate also increases. 

entries) from y ,  alone. 

Lemma 2.5: Consider the observations 

y1 = Hx + U ,  (2.45a) 

y ,  = Hz + u2 (2.45b) 

where U, and U ,  are zero-mean Gaussian vectors with 
covariances V, and V,, and suppose that H has full-col- 
umn rank. Then, if V, 2 V,, the estimation error variance 
associated with estimating x based on (2.45a) is less than 
or equal to the estimation error variance for estimating z 
based on (2.45b). 

Proofi Let A?,, P, and E,, P2 denote the ML estimates 
and estimation error covariances associated with (2.45a) 
and (2.45b), respectively. 

As shown in Appendix A 

2, = u;ry,, P2 = u;v,u2 (2.46) 
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p,+l = ( 0  0 I )  

where U: is a left inverse of H satisfying some additional 
conditions. Consider then the following estimate of x: 

z = u:yl. (2.47) 

Since UTH = I, this is an unbiased estimate; however, it 
may be suboptimal. Thus 

P,  I&+ - X ) ( x  -.)’I = U2’V1U2 I u,’v2u2 = P2. 
(2.48) 

-ST Rj Cj+l  

E:+ 1 CT+l 0 I 

111. THE DESCRIPTOR KALh4AN FILTER 
We are now in a position to consider the recursive 

estimatian problem for the system (1.1)-(1.3). As we have 
indicated, here we adopt an ML perspective, viewing the 
dynamics (1.1) and prior density on x(0) as additional 
measurements. Specifically, in this section we describe the 
recursive computation of the filtered estimate P( j )  which 
we define as the ML estimate of x ( j )  based on the 
“measurements” in (1.1) and (1.2) for k = O,. . . ,  j - 1 
together with the “measurements” provided by the prior 
information about 4 0 )  

where v is zero-mean Gaussian and independent of u ( k )  
and r (k ) ,  and with covariance Po. Specifically, (3.1) and 
(1.11, (1.2) for k = O ; - - , j  - 1 provide us with set mea- 
surements of the unkown vector [xT(0>,  ~‘(l),..., xT( j ) ] .  
Examining this set of measurements we see that the only 
terms in these equations involving x ( j )  are of the form 
Ejx( j )  and C j x ( j ) .  Thus, a necessary condition for x(  j )  to 

be estimable is that (2) have full-column rank. By 

induction, using the recursive ML estimation procedure 
outlined in Section 11, and the fact that x(0) is estimable 
from (3.0, we can show that this is also a sufficient 
condition for estimability and, in fact, we can establish the 
following. 

Lemma 3.1: Let 6 denote the error covariance associ- 
ated with the filtered estimate P( j ) ,  with P(0) = io and Po 
given by the prior distribution for x(0). Then 3 j + 1) and 
P. are, respectively, equal to the ML estimate of x ( j  + 
ljiafnd its associated estimation error covariance based on 
the following observations: 

r ( i  + 1) = C j + i x ( j  + 1) + (3.2) 

A j P ( j )  = E j + l x ( j  + 1) + A j v ( j )  - u ( j )  (3.3) 

where v ( j )  is a Gaussian random vector, independent of 
r( j ) ,  with zero mean and variance P.. 

Applying Lemma 2.1 to (3.2), (3.3$ provides us with the 
3-block form of the descriDtor Kalman filter summarized 

the following recursions: 

(3.4) 

in the following. For this reason we conjecture that there is a connection between the 
estimation dual of Bender and Laub [4], [5] and the work in [33] in which 
the focus is on estimating fi(k). This is only of tangential interest here fieorem 3.1: ne filtered estimated i( + 1) and the 

corresponding error variance Pi+ can be obtained from and thus is not pursued. 
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only that (E) has full-column rank, but also that ( E  Q)  
has full-row rank, S = 0, and R is invertible. Their analy- 
sis can be interpreted as estimating E d j )  = Ax(j  - 1) + 
u( j  - 1) based on observations y ( k )  for 0 5 k I j - 1. In 
this case, they obtain the following Riccati equation for 
the error covariance Cj of this one-step predicted esti- 
mate: 

Xi+' = ( 0  A ) M ; ' j  ' j  0 )h47'(JT) + Q 0 CTR-'C 

with 

(3.7) 

To see how (3.6) and (3.7) can be obtained from (3.5), 
note that 

cj =AP,AT+ Q (3.8) 

and thus using (3.5) and the fact that in Wang and 
Bernhard's case past and present observations and dynam- 
ics do not supply redundant perfect information, we ob- 
tain the following recursion for Xj: 

R 0 C - '  
zj+l= - ( O  0 A ) [ : T  2 a ]  [lT] + Q .  

(3.9) 

Then the use of the standard block-matrix inversion re- 
sults allows us to express (3.9) as 

where Mj is defined as in (3.7). It turns out that (3.10) is a 
simplified version of (3.6). To obtain (3.10) from (3.61, 
note that 

X j + '  = ( 0  A)A4:'( ' j  0 )A4;'(JT) + Q 0 CTR-'C 

= ( 0  A)MJ7' M .  - [ ( j T  2CTR-'C 

= ( 0  A)MF1(JT) - ( 0  A ) M T '  

= - ( 0  A)M;'(lT) + Q .  (3.11) 

If in addition, Xj is invertible, we can express the 
inverse of Mj in (3.10) in terms of its block entries, so that 

X j + ]  =A(ETXJT'E + CTR-'C)-'AT + Q (3.12) 

which is the Riccati equation that we had considered 
earlier in [28]. In the nondescriptor case ( E  = I ) ,  (3.12) 
reduces to the standard Riccati equation of Kalman fil- 
tering 

Xi+' =A(ZJr' + CTR-'C)-'AT + Q. 

IV. STABILITY AND CONVERGENCE OF THE 
DESCRIPTOR KALMAN FILTER 

(3.13) 

In this section, we study the asymptotic properties of 

(4.1) 
k 2 0 (4.2) 

where matrices E and A are 1 x n, C is p X n, and U and 
r are zero mean, white, Gaussian sequences with covari- 
ance 

the descriptor Kalman filter in the time-invariant case 
Ex(k + 1) = h ( k )  + U(/?), k 2 0 

y ( k  + 1) = Cx(k + 1) + r ( k ) ,  

In particular, the results presented in this section general- 
ize those in [23], [28] and [33] for descriptor systems and 
the usual results for standard causal systems. Note that as 
in 1331 in our development we do not require that I = n,  
so that (4.1) need not be square and even if it is, we do 
not require { E , A )  to define a regular pencil. In the 
context of viewing (4.1) as simply providing another source 
of measurements, we see that it is quite natural to remove 
this restriction. Also, as before, we allow the possibility 
that R is singular as well. 

Definition XI: The system (4.1), (4.2) is called de- 
tectable if 

has full-column rank for all (s, t )  # (0,O) such that Is1 2 Itl. 
It is called stabilizable if 

SC -ST -s R 1 s E - ~ A  Q 

( 
has full-row rank for all (s, t )  # (0,O) such that Is1 2 It!. 

These definitions generalize other similar definitions in 
the literature [7], [22]. Note, for example, that these 
definitions reduce to the classical notions of detectability 
and stabilizability when E = I and R > 0.5 

' In this case our detectability condition reduces to - A having 

that Q = BET and S = BDT for some matrices B and D, stabilizability 
in this case corresponds to (SI - A E )  having full-row rank for Is1 > 1. 

full-column rank for all Is1 > 1. Also, with R > 0 and since (4 (4.3 implies 
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The following generalizes the usual result that de- 
tectability implies the existence of a stable observer. An 
important point to note here, however, is that our ob- 
server (4.4) is an explicit causal system, even if (4.11, (4.2) 
are implicit, a direct consequence of estimability. 

Theorem 4.1: Let (4.1), (4.2) be detectable, then there 

where C t  is any left inverse of C, .  Then 

([ :)([ ; , ) + F ( o  c2) = I  (4.12) 

and 
exists a stable filter 

( I  D ) (  
A 1 2 )  = (Ai ,  + DA21 A12 +DA22 

x , ( k  + 1) = A , x , ( k )  + K , y ( k  + l), x,(O)  = xo 0 0 A21 A22 0 0 
(4.4) (4.13) 

i.e., such that A, is a stable matrix (all eigenvalues have 
magnitude less than one) and with 

lim ~ [ ( x ( k )  - x , ( k ) ) ( x ( k )  - x , ( k > ) T ]  < W. (4.5) 
k + =  I D  

Proof of Theorem 4.1: We start the proof by showing 

Lemma 4.1: Let (4.0, (4.2) be detectable. Then there 

which is stable because A,, + DA,, is stable. Thus, by 
taking 

- (4.14a) L e = v ( o  0)' 

the following lemma. L ,  = w (4.14b) 

exists a left inverse ( L ,  L , )  of (E), i.e., 
the lemma is proved. w 

Continuing the proof of the theorem, note that using 
L , E  + L,C = I (4.6) 

such that L , A  is stable. 
Proof of Lemma 4.1: First note that the lemma is 

trivially true if C has full-column rank, since we can 
inverse of C .  Assum- 
has full rank, we can 

the above lemma, we can express x ( k  + 1) as 

x ( k  + 1) = L , A x ( k )  + L , y ( k  + 1) + L , u ( k )  - L , r ( k )  
(4.15) 

simply take Le = 0 and L ,  = a 
ing this is not the case but that 

where L , A  is stable. If we now define 

x s (  k + 1) = L,Ax,( k )  + L,y(  k + 1) (4.16) 
find invertible 1 x 1 and n X n matrices U and V such 
that we can easily see that 

lJEV= (: ."U) (4'7) 
k+-=  lim L [ ( x ( k )  - x , ( k ) ) ( x ( k )  - x , ( k ) ) ' ]  = P, (4.17) 

(4'8) 

where the Partitions in (4.7), (4.8) are compatible, I de- 
where P, is the unique positive semidefinite solution of 
the LYaPunov equation 

C V = ( O  C2) 

notes a sqiare identity matrix, and C ,  has full-column 
rank. If we partition U A V  similarly as -s. L; 

pS - ( L , A ) P , ( L , A ) ~  = (Le  " I (  -?T R ) [ L : ) '  
U A V =  ( i t :  (4.9) (4.18) 

A 22 

The theorem is thus proved. 
Detectability alone, of course, does not guarantee that 

the descriptor Kalman filter converges to a stable filter. 
However, as would also be expected from what we know 
for causal systems, detactability does tell us something 
about the descriptor algebraic Riccati equation. 

algebraic descriptor Riccati equation 

the detectability of (C ,  E ,  A )  implies that 

has full-column rank for Is/tl 2 1, which means that 

exists a matrix D such that A , ,  + DA,, is stable. Next, 
let F be any matrix satisfying 

( A l l ,  -A21) is in the sense* nus, there Theorem 4.2: Let (4.1), (4.2) be detectable. Then the 

-," E] t (:) 
0 (4.19) -DE22 (4.10) 

P =  - ( O  0 I )  
CT 0 For example, we can take 

has a positive semidefinite solution. 
Pro08 We prove the existence of a positive semidefi- 

nite solution P to (4.19) by showing that the descriptor 
(4.11) 
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Riccati recursion 

A F ) A T + Q  - S  E 

CT 0 
= - ( o  0 I )  

(4.20) 

with Po = 0 is monotone increasing and bounded. This of 
course implies the convergence of pk, which, from (4.20) 
implies that this limit, which must be positive semidefi- 
nite, satisfies (4.19X6 

To see the boundedness of pk, consider the stable filter 
(4.16) with x,(O) = .Fo. It is then clear that the associated 
error variance matrices P,(k) converge asymptotically to 
P, the unique solution of (4.181, and that thanks to the 
optimality of the descriptor Kalman filter, pk I P,(k). 

We show that Pk is monotone increasing by induction. 
Clearly 

(4.21) P, 2 Po = 0. 

Now suppose that 

(4.22) 

P, is the estimation error covariance associated with esti- 
mating x(j) based on 

In the following, it is useful to have available an alter- 
nate form for the Kalman filter equation (3.4), (3.5) in the 
time-invariant case. Obtaining this requires the following 
which is proved in Appendix A: 

Lemma 4.2: Let R be a positive semidefinite matrix and 
H a full-column rank matrix. Then 

and 

Using this result, it is straightforward to verify that the 
Riccati recursion (4.20) can be rewritten as 

(4.28) 

with 

) is 

4- 1 is the estimation error 

A v ( j  - 1) - u ( j  - 1) 
where the covariance of 

[ u j - : ; + ~  - s ]  * 

covariance associated with estimating x ( j  + 1) based on 
Thus, we have that the descriptor Kalman filter (3.4) takes 
the form R 

R(k + 1) = L k A ( k )  + Kky(k + 1). (4.30) 
4 j )  

(y(j + 1,) = ( : ) x ( j  + 1) + Via similar manipulations we can also rewrite the alge- 
braic Riccati equation (4.19) as (4.24) 

Q - S  L~ ( - S T  R ) ( K T )  
where the covariance of P = ( L A ) P ( L A ) T + ( L  K) 

(4.31) -’ ]. But from (4.22) we see that 
R 

A P , A T + Q  - S ]  2 [ A P , - , A T + Q  - S ]  (4.25) 

(4.32) R - S T  R 
. .  

and thanks to Lemma 2.5, we conclude that ?+ , 2 P,. rn 

The usual argument here involves a right-hand side which includes 
matrix .inveres for whiFh we c~ deduce convergence, by the Fonthuify 
of the mversion operation. While the full generallzed inverse 111 (4.20) is 

not unique, the lower right-hand block is, due to the fact that (E) has 
full-column rank. Indeed in Appendix A we give an explicit form for this 

block which involves true inverses (identify 
A). (C ST R )  

In the following, we consider the behavior of the Kalman 
filter and Riccati equation when the system is both de- 
tectable and stabilizable, obtaining a generalization Of 
well-known results for causal systems. Note that stabiliz- 

E Q S  

implies that 
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has full-row rank, which in turn implies that Let us first show that LA is stable when P is taken:as 
any positive semidefinite solution of (4.31). Suppose LA is 
not stable. Then there exist a complex number A and a 
complex row vector U such that (AI 2 1 and 

uLA = AV. (4.40) 

E A P , A T + Q  S 

R 

has full-row rank for all P, 2 0, so that in this case the 
pseudoinverses in (4.291, (4.32) are in fact inverses. 

Theorem 4.3: Suppose that (4.0, (4.2) is detectable and 
stabilizable. Then for any initial condition Po, the solution 
Pk of the Riccati equation 

From (4.31) we got that 

(1 - IAI2)vPvH = U (  L K ) ( S T  R ) ( K T )  LT v H  (4.41) 

where ( . ) H  denotes the conjugate-transpose. Since the 
right-hand side of (4.41) is nonnegative and its left-hand 

pk  + 1 = ( k A p k  ( k A )  

+ ( L k  K k )  ( is) [ " ] (4.33) side, nonpositive, we must have 
- ST KIT - 

& (4.42) K ) ( s T  Q s  R )  ='* 

C T  0 But from (4.38) and (4.40) we have 
1 

( L k  K k ) = ( O  0 1 )  

AvLE = vLA - AvKC. (4.43) 

From (4.42) and (4.43) it follows that 

converges exponentially fast to the unique positive 
semidefinite solution of the algebraic descriptor Riccati 
equation 

Q - S  L~ ( -ST R ) ( K T )  
P = ( L A ) P ( L A ) T + ( L  K )  

(4.35) 

A P A T + Q  -s E ' 

cr 0 
( L  K ) = ( O  0 I )  

= 0. (4.44) 
A E - A  Q S 

K ) (  AC S T  R 

which since u(L K )  # 0 K4.40) implies uL # 01 contra- 
dicts the stabilizability assumption. Thus, LA is stable. 

Next we can show that there exists a unique positive 
semidefinite solution of (4.31). Specifically, suppose that 
P' and P 2  are two such solutions, and let 
[L' K' l , [L2  K21 denote the corresponding matrices 
in (4.32). Then L' A and L2 A both are stable, and, as 
shown in Appendix B 

P I  - ~2 = ( ~ 2  A ) (  P I  - L' A ) ~  (4.45) 

. (4'36) so that iterating (4.45) 

T k  Furthermore, the steady-state Kalman filter P I  - ~2 = lim ( L ~ A ) ~ ( P ~  - P ~ ) [ ( L '  A )  ] = 0. 
k + =  

i ( k  + 1) = M ( k )  + Ky(k  + 1). (4.37) (4.46) 
is stable. 

Proofi From Theorem 4.2, we know that there is at 
least one positive semidefinite solution to (4.39, (4.36). 
What we would like to show is that this positive semidefi- 
nite solution is unique, that P, in (4.33), (4.34) converges 
to P exponentially fast for any initial condition Po, and 
that the resulting steady-state Kalman filter (4.37) is expo- 
nentially stable, i.e., that LA is a stable matrix. Note that 
by using (4.27), it is not difficult to show that 

LE = I  - KC. (4.38) 

Thus, premultiplying (4.1) by L ,  using (4.2) and (4.371, and 

Finally, we can show that converges to P exponen- 
tially fast for any initial condition Po. First note that 
pIo  I P, where qo is the error covariance for the problem 
starting from Po = 0. We already know that P,' -+ P .  
Thus, if we can find a sequence U: so that P, I U: and 
U: -+ P exponentially fast, we will be finished. We accom- 
plish this by letting be the error covariance of the 
estimator defined by the steady-state filter (4.37) for all k, 
starting with the same initial estimate as the optimal 
Kalman filter. Thus, WO = Po and U: 2 P, for all j 2 0. 
Furthermore, from (4.39) 

Q - S  L defining Z(k) = x ( k )  - P(k), we see that 

Z(k + 1) = M ( k )  + L u ( k )  - K i ( k )  (4.39) = (LA)Y(LA)T + ( L  K ) (  - s T  R ) ( K )  

(4.47) so that this will imply the stability of the error dynamics. 
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which, thanks to the stability of LA, converges exponen- 
tially fast to the unique positive semidefinite solution of 

-s L ( -:T R ) ( K )  
W = ( L A ) W ( L A ) T + ( L  K )  

(4.48) 

and a comparison to (4.31) yields that W = P, completing 

Again we note that the results of this section represent 
a generalization of those in [28], [331. Furthermore, they 
represent what to our knowledge is a new derivation for 
the more frequently studied singular estimation problem 
(E = I, R singular). 

the proof. 

v. CONSTRUCTION OF THE !h'EADY-sTATE FILTER 
In this section, we show that the solution of the alge- 

braic descriptor Riccati equation can be constructed by 
using the eigenvectors and generalized eigenvectors of the 
pencil 

([ C S T  ;R),  [i iT iT)]. (5.1) 

A similar pencil was also introduced in [22] for the study 
of the LQ control problem for descriptor systems, al- 
though 3-block Riccati equations are neither introduced 
nor studied. 

Throughout this section we shall assume that the sys- 
tem is detectable and stabilizable. The results we present 
here generalize the usual results [17], [311, [321 for stan- 
dard causal (E = I )  systems for the case of singular 
measurement noise, and our results of [23], [281 to the 
case where R may be singular and in addition {E, A) 
need not be regular nor even square. Before beginning, 
let us introduce the following notation: 

E -Q S 

0 AT 

The pencil (5.1) can now be expressed as 

{(: iq(: ; r ) ) *  

and the descriptor Riccati equation as 

(5-3) 

P =  - ( O  Z) (QKT FT + F ) - I ( ; ) .  0 (5.4) 

We begin with the following. 

eigenmode on the unit circle. 

unit circle 

Lemma 5.1: The pencil (5.1) is regular and has no 

Proof- All we need to show is that for all z on the 

0 K T  0 FT (5.5) 

is invertible. Note that thanks to the detectability assump- 
tion which can now be stated in terms of the new notation 
as: "SF - tK has full-column rank for (s, t )  # (0,O) and 
Is( 2 Itl," we can see that F + ZK has full-column rank for 
all z on the unit circle. Now suppose that (5.5) is not 
invertible, which means that there exist U and U not 
simultaneously null such that 

0 K T  i- zFT (5.6) 

If we now let 
r = z K + F  (5.7) 

ru - G ~ =  o (5.8) 

r H u  = 0. (5.9) 

from (5.6) it follows that 

If we now multiply (5.8) and (5.9) on the left by uH and 
uH, respectively, and take the transpose conjugate of (5.9) 
and subtract from (5.8), we get 

uGuH = 0 (5.10) 

which since G is symmetric positive semidefinite implies 
that G u  = 0. Thus, since r has full-column rank, (5.8) 
implies that U = 0. But we also have that uH( r G )  = 0 
which thanks to the stabilizability assumption implies U = 
0, contradicting the assumption that U and U are not 

Lemma 5.2: The pencil (5.1) has exactly n stable eigen- 
simultaneously null. 

modes. 
Proofi Let 

= det( SF + tK 'KT -sG + " T ) .  (5.11) 

Then 

= det( tF + SK 'KT - tG + s F T ) .  (5.12) 

From 

(i & ) ( S F  + tK -sG 
0 s K T + t F T ) ( z c  !) 

t K T + s F T ) T (  z/s 0 I )  (5.13) 
= (i i ) ( t F + s K  - tG 

we find 

t"Pp(s, t ) t -"  = sI+Pp(t, s)s-" (5.14) 
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so that tion 

t"P-"p(s , t )  = d + P - " p ( t , s ) .  (5.15) 

If we denote the number of zero eigenmodes by S o ,  stable 
but nonzero eigenmodes by a,, unstable eigenmodes by S,,  
and infinite eigenmodes by &, from (5.15) and the fact 
that there are no eigenmodes on the unit circle, we 
conclude that 

S, = 8, (5.16a) 

(5.16b) 6, - So = 1 + p - n. 

Finally noting that 

6, + Ss + 8, + 6, = n  + 1 + p  (5.17) 

we get that the number of stable eigenmodes 6, + Ss = n. 

Theorem 5.1: Let the columns of 

[:I 
[E  ;".' ; R ) [ ; ]  = [: E". :T)[:]J 

form a basis for the eigenspace of the pencil (5.1) associ- 
ated with its n stable eigenmodes, i.e., 

E - Q - S X  A O  X 

(5.18) 

where J is stable. Then, P, the unique positive semidefi- 
nite solution of the algebraic Riccati equation (4.19) is 
given by 

P = X ( E T Y l  + C T Y l ) - ' .  

Pro08 Using notation (5.2) and letting 

(5.19) 

y =  (2) (5.20) 

we must show that 

P = X ( m ) - l .  (5.21) 

To construct a real basis 

and a real stable matrix J satisfying (5.18), we need only 
to compute the generalized real Schur decomposition [ 15, 
p. 3961 

(5.22a) 

(5.22b) 

of the pencil (5.11, where Q and 2 are orthogonal matri- 
ces, M is quasi-upper triangular, N is upper triangular, 
and where the n X n blocks M, and N, in the decomposi- 

correspond to the stable eigenmodes of the pencil (5.11, 
i.e., J = N,-'M, is stable. Then, if 2, is the matrix formed 
by the first n columns of 2 we have 

2, = (;). (5.24) 

From (5.18) we have 

F X - G Y = K X J  (5.25) 
K T Y  = FTYJ. (5.26) 

Premultiplying (5.25) by Y T  and taking into account the 
transpose of (5.26), we find that YTFX satisfies the Lya- 
punov equation 

YTFX = Y T G Y  + JTYTFXI.  (5.27) 

Let us show that F T Y  is invertible. Suppose that F T Y  is 
not invertible, so that there exists w # 0 such that FTYw 
= 0. Then, from (5.27) we see that 

GYw = 0 (5.28) 

w T Y T (  F G )  = 0. (5.29) 

G )  

Yw = 0. (5.30) 

Multiplying (5.26) on the right by w and using (5.30) we 
see that 

F ~ Y J W  = 0. (5.31) 

Thus, we have shown that the right null space of F T Y  is 
J-invariant. This implies that there exists an eigenvector 
w # 0 of J in the right-null space of F T Y ,  i.e., 

FTYw = 0, Jw = Aw.  (5.32) 

Multiplying (5.25) on the right by w and taking into 
account (5.32) gives 

so that 

But the stabilizability assumption implies that ( F  
has full-row rank, so that 

( F  - A K ) X w  = 0. (5.33) 

Since J is stable, IAl < 1. The detectability assumption 
then implies that F - AK has full-column rank, so that 

x w  = 0. (5.34) 

Combining (5.30) and (5.34) yields 

( ; ) w  = 0 (5.35) 

and since 
This is a contradiction, so that F T Y  must be invertible. 

(5.25) we obtain 

has full-column rank, we must have w = 0. 

Now, if we solve for J in (5.26) and substitute it in 

F X =  [ G  + k X ( F T Y ) - l K T ] Y  (5.36) 

($1 
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fro ? which we get the previous sections. However, in the time-invariant case, 
the structure of the information provided by the future 

Ex(k  + 1) = R u ( k )  + u ( k )  k 2 j (6.2) 

[ G  + KX(;rY)-’K‘ 

This implies 
is independent of j .  In this section, we show that in this 
case we can replace the effect of future dynamics with just I-’ ( 0 

) one observation G + KX(FTY)-‘KT 
(5.38) W j )  = 4.d (6.3) 

where w is zero mean, and F and the covariance V of w 
are time invariant. Thus, the problem is to find F and V 
in terms of E, A and Q (the covariance of U). 

so that if P = X ( F T Y ) - ’ ,  we have 

p =  - ( O  , ) (G+- FT F)-l(;) 0 (5-39) Rewriting (6.2) as a matrix equation we obtain 

i.e., P satisfies the algebraic descriptor Riccati equation 

-A E . .  . .  
(4.19). Since Y TFX solves the Lyapunov equation (5.39), it 
is positive semidefinite, so that 

P = (F‘Y)-T(YTFX)(F‘Y)-’ (5.40) 
is also positive semidefinite. 

VI. AN ADJUSTED ESTIMATE TO ACCOUNT FOR 
“FUTURE” DYNAMICS 

The estimation problem we have considered in the 
preceding sections involved the recursive computation of 
estimates of x(k) based on dynamics and observations 
only in the past and present. As we have pointed out, 
descriptor dynamics allow the possibility of noncausal 
behavior and thus it would also seem reasonable to con- 
sider the recursive computation of estimates that incorpo- 
rate future dynamics. Specifically, suppose that we now 
define the estimate 3 j )  as the ML estimate of x(  j )  based 
on the true measurements (1.2) for k = O,..., j - I, the 
“measurement” (3.1) provided by the prior information 
about do), and the dynamics (1.1) for all k ,  as opposed to 
0 s k I j - 1 as we did previously. In the usual casual 
case, i.e., 1, = Itk = n, E = I, the inclusion of these “fu- 
ture” dynamics provide no additional information about 
d j ) ,  as they provide no constraints on d j ) .  That is, 
consider 

0 = E j + , x ( j  + 1) - A j x ( j )  - u ( j ) .  (6.1) 

The relation (6.4) provides some information not only 
about x ( j ) ,  but also about the vectors x(k) for k > j ,  
which are not directly of interest and can be viewed as 
exogenous variables. In order to isolate the information 
about x ( j )  that is contained in (6.41, our first step will be 
to bring (6.4) to the form (2.39), so that Lemma 2.4 can be 
applied. This requires using block-row manipulations to 
eliminate the vectors x ( k )  with k > j from as many equa- 
tions as we can, thereby enabling us to drop the remaining 
measurements. Specifically, suppose that 

Then, from (6.41, we get 

If Ej+’ = Z (or more generally, if it is surjective) then -T,AX( j )  = TU( j + i) (6.6) 
since x(  j + 1) is completely unknown in the ML formula- 
tion, (6.1) provides no constraint on x ( j > .  However, if which is of the form (6.3). So the problem becomes one of 
Ej+ is singular, (6.1) does provide nontrivial information finding the highest-row rank matrix satisfying (6.5). We 
about x ( j )  (e.g., consider the extreme case of Ej+l = 0). can rewrite (6.5) as 
In general, of course, the situation is even more complex, 

I 

since x ( j  + 1) may also be subject to constraints due to T(z)(zE - A )  = -ToA (6-7) 
dynamics further into the future: In the general time-vary- 
ing case there is no bound on how far into the future one where T ( z )  = To + zTl + z2T2 + and thus we need to 

must look in order to capture all possible dynamics. In find the PolPomial matrix T ( z )  Of largest rank such that 
such a particular case, what we would need to do each 
time is to filter backward the “measurements” corre- 
sponding to future dynamics in order to obtain the correct 
adjustment to the forward filtered estimate developed in 

T(  z) (  zE - A )  = constant matrix. (6.8) 

Let us denote the unknown right-hand side of (6.8) by F ,  
and let U(z) and S be, respectively, unimodular and 
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permutation matrices for which thanks to (6.20) we have 

U( z) (  ZE - A)S  = jN:) K ( z ) )  (6.9) 
( 0  7‘2(z) )U( z ) Q  = 0. (6.21) 

Finally, we get 0 

where N ( z )  is square and invertible. Then, if we denote 

F S =  (F1 F2) (6.10a) 

T(z)U-’(t) = (Tl(Z) 7’2(z))  (6.10b) 

we must have 

T , ( z ) N ( z )  = Fl (6.1 la) 

T , ( z ) K ( z )  = F2 (6.11b) 

which implies_that 
I K ( z ) N - l ( z ) F 1  = F2 (6.12) 

or equivalently 

Constant solutions (F1 
by noting that if 

F2) to (6.13) can be constructed 

where p ( z )  is a scalar polynomial and Li’s are constant 
matrices, then (6.13) is equivalent to 

(F1 F2)(Lo L1 * * *  Lm) = O .  (6.15) 

Let (fll 
be the highest rank (full-row rank) matrix for which 

f 1 2 )  be a highest rank solution to (6.15). Let W 

MI N- ( z ) = polynomial. (6.16) 

Then, let 

Fl = Ml, F2 = M2. (6.17) 

We get 

F = (F1 F2)S-l (6.18) 

and 

T ( z )  = ( F I N - ’ ( z )  T 2 ( z ) ) U ( z )  (6.19) 

where T2(z)  is any arbitrary polynomial matrix. It turns 
out that, without loss of generality, we can pick T2(z)  = 0. 
This is due to an implicit assumption that was made 
throughout this paper, namely that the dynamic equations 
are consistent for all possible choices of inputs u(k) ,  i.e., 
no constraints on the inputs are imposed by the dynamic 
equations. It is straightforward to verify that this requires 

Left-kerQ 3 Left-ker [ zE - A ]  (6.20) 

which is called the compatibility assumption. 
To see why the compatibility assumption implies that 

the choice of T 2 ( z )  does not matter, simply note that 

P 
F x ( j )  = T u ( j  + i )  (6.22) 

i =  1 

where Zip_ lT,zi = T ( z ) .  Thus, we obtain (6.3) with 
P 

V =  T,QTT. (6.23) 

Using (6.3), we can construct the “true” or “adjusted” 
descriptor Kalman estimate by correcting the result of the 
Kalman filter to incorporate this additional observation. 
In particular, using the methods developed in the previous 
sections, we construct the optimal estimate i ( j )  of x ( j )  
based on past dynamics and observations. This “informa- 
tion” is completely coded by the observation 

i(i) = x ( J )  + v(i) (6.24) 
where v(j) is a zero-mean Gaussian vector with covari- 
ance q, where 6 satisfies the Riccati equation described 
previously. If we now add future dynamics, we have to find 
the optimal estimate of x ( j )  based on the observation 

i=  1 

Since future dynamics are independent of past dynamics 
and observations, the new Ka1m:n estimate Z ( j )  and the 
corresponding error covariance 6 are given by 

and 

VII. CONCLUSIONS 
In this paper, we have derived Kalman filtering recur- 

sions for a general class of discrete-time descriptor sys- 
tems where the noise covariances were allowed to be 
singular. By using a Hamiltonian (or dual) formulation of 
the ML estimation problem, the optimal filter and the 
associated Riccati equation for the error covariance were 
expressed in 3-block form. In the time-invariant case, the 
asymptotic behavior of the optimal filter was examined 
and characterized in terms of the corresponding 3-block 
algebraic Riccati equation. Finally, under standard de- 
tectability and stabilizability conditions, it was shown that 
the positive semidefinite solution of the algebraic Riccati 
equation could be obtained by constructing the general- 
ized Schur form of a 3-block matrix pencil. 

Although we have focused primarily on descriptor sys- 
tems, it is worth noting that because of the 3-block forms 
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we have introduced, our results already present a number 
of advantages over existing Kalman filtering techniques 
for systems with standard dynamics (E = Z) but with 
singular measurement noise. For example, in the absence 
of redundant perfect information, the 3-block filter and 
Riccati equations of Theorem 3.1 require only standard 
matrix inverses, whereas solutions proposed until now 
require the use of pseudo inverses (see [12, section VIII). 

One obvious direction in which the results of our paper 
can be extended consists in dualizing our results by con- 
sidering the descriptor LQ control problem. Preliminary 
results in this direction appear in [30, section VI]. Other 
interesting results for the descriptor LQ control problem 
have been derived in [7] and [22]. Another possible exten- 
sion would involve considering the continuous-time de- 
scriptor Kalman filtering problem. Unfortunately, the con- 
tinuous-time version of the problem discussed here may 
not be completely meaningful. This is due to the fact that 

Next, note that from (A.8) and the invertibility of H TH,  
we have that T is also unique and given by 

T =  - ( H  TH ) - ' H  T D H ( H ~ H ) - ' .  

UTH = ( H T H ) - ' ( H T H )  = z 

(A.IO) 

( ~ . i i )  

Also, from (A.4), (A.6) and the invertibility of H TH 

proving (4.27) of Lemma 4.2, so that U T  is a left inverse7 
of H. Thus, from (2.21) 

PML = ( 0  Z)Z'(  :)Zt( ). (A.13) 

However, from (AA), (A.9), and (A.ll)  we see that 

unlike the discrete-time case, where the singularity of the 

sponse, for continuous-time systems the singularity mani- 

P,, = U T D H ( H T H ) - ~  
system dynamics gives rise to a noncausal impulse re- 

fests itself by the fact that the output contains derivatives 
of the system input. White Gaussian noise is the input for 
the filtering problem, the output will contain white-noise 
derivatives, thereby necessitating a formulation of the 
filtering problem in terms of generalized stochastic pro- 
cesses. 

APPENDIX A 
SOME RESULTS ON BLOCK PSEUDO INVERSES 

Here we summarized and specialize several of the re- 
sults in [lll concerning the generalized inverse [in the 

= - UTHTHTH( H T H ) - '  = - T (A.M) 

proving (2.22) as well as (4.26) of Lemma 4.2. 
Finally, to prove identity (2.25), we note that by sum- 

ming (A.8) and (Ao9) and postmultiplying by H ( H T H ) - ~ ,  

we obtain 
(A.15) R U + H T = O  

which gives (2.25) when combined with (A.11). 

APPENDIX B 
DERIVATION OF (4.45) 

k t  
sense of (2.2011 of the matrix 

when H has full-column rank, i.e., when ( H T H )  is invert- 
ible. Let 

men 

P ' - P 2 = ( 0  0 Z)(Ln$-a:) 
( A 4  

w u  

denote any symmetric matrix satisfying (2.20), which in 
this case reduces to 

RWR + RUHT + HUTR + HTHT = R 

From identity (2.25), there exists A such that 

(A.3) [si =a2A 
RWH + HUTH = H (A.4) so that 

H T W H =  0. (AS)  

In [ l l ]  the following results are proved 

RWH=O (A.6) which using the property (2.20) of pseudo inverses yields 

D = R + RWR is uniquely determined by R and H 
(A.7) 

H T H T =  -D ( A 4  
7Note that UT is not an arbitrary left inverse of H as there is the 

(A'9) additional constraint (A.9) that U must satisfy. RUHT = D. 
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Similarly we can show that 

( 0  0 z>n,n: = ( 0  0 Z). (B.6) 
Now, by using identities (B.5) and (B.6) in (B.2) we get 

. (B.7) P ’ - P 2 = ( 0  0 z)n:(n, -n,>n: 0 i: 
But 

0 0  
n, - n, = 

Thus 

= (L2A)( P’ - P’)( LIA‘). (B.9) 
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