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We address techniques for the estimation of convex polygons from support-line measurements and introduce the
application of these methods to laser-radar data. The algorithms developed use varying degrees of prior infor-
mation. Quantitative assessments of their performance with respect to various parameters are provided. As
expected, prior information concerning object shape and orientation greatly improves performance. It is inter-
esting that nearly the same performance is obtained with and without prior information about object orienta-
tion, and this enables us to extract an estimate of orientation. These convex-polygon estimation techniques
are applied to the problem of target reconstruction from range-resolved and Doppler-resolved laser-radar data.
The resulting reconstructions provide size and shape estimates of the targets under observation. Although
such information can be obtained by other means (e.g., from reconstructed images using tomography), the pre-
sent methods yield this information more directly. Furthermore, estimates obtained by using these methods
are more robust to noisy or sparse measurement data and are much more robust to data suffering from registra-
tion errors. Finally, the present methods are used to improve tomographic images in the presence of registra-
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tion errors.

1. INTRODUCTION

In this paper we develop techniques for estimating convex
polygons from support-line measurements and introduce
the application of these methods to target reconstruction
from resolved laser-radar measurements. A support line
of a two-dimensional convex set is any line that just grazes
the boundary of the set, so that the set lies entirely in one
of the half-planes defined by the support line. Clearly, a
convex set is completely determined by its support lines at
all orientations, and it can be obtained by simply inter-
secting the corresponding half-planes. From a finite
number of support lines an approximation to the convex
set may be obtained in the same manner. However, any
physical measurements giving rise to support lines are, in
general, noisy, and simply intersecting the half-planes
may not yield satisfactory results. Prince' and Prince
and Willsky? formulated the problem of estimating a con-
vex set from noisy support-line measurements and studied
a variety of algorithms. (Greschak,® Stark and Peng,**
and others have done related work.)

Here we introduce three new estimation algorithms that
use varying degrees of prior information. The first is
simply an extension of an algorithm from Refs. 1 and 2,
which allows the measurements to be spaced nonuniformly
in angle. The reconstructed polygon has sides at the
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measurement angles. The second algorithm allows the
reconstruction angles to be specified independently of the
measurement angles. This corresponds to the incorpora-
tion of prior information concerning the shape of the ob-
ject in that the reconstruction is the best N-gon with sides
at fixed angles that fits the measurements. The final al-
gorithm is similar to the second algorithm except that ro-
tation of the constellation angles is allowed. Hence this
algorithm provides hoth an N-gon reconstruction and an
orientation estimate.

There are a number of applications in which support-
line information can be extracted from physical measure-
ments of an object. For example, as observed by Stark
and Peng,*® Prince,! and Prince and Willsky,? in tomo-
graphic imaging the nonzero extent of each transmission
projection provides support information on the underlying
mass distribution. Another possible application arises in
tactile sensing, in which the support information can be
obtained by a robot jaw repeatedly grasping an object.?
In these applications convex-set estimation algorithms can
be used to provide reconstructions of the object, either in-
dependently or in conjunction with other algorithms.

An application introduced and studied in this paper
is that of target reconstruction from laser-radar data.
Resolved laser-radar measurements of a target provide in-
formation about the extent of the target in space. For ex-
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Fig. 1. Block diagram of reconstruction procedure.

ample, a range-resolved measurement indicates where the
target begins in range along the radar line of sight (LOS).
If a plane is drawn perpendicular to the line of sight at
this range, the target lies completely to one side of this
plane and, in fact, is just grazed by it. Range-resolved
measurements from a number of aspects yield a set of sup-
port planes of the target that could conceivably be used to
obtain a three-dimensional estimate of the target. In this
paper we restrict our attention to the case in which all the
aspects, i.e., all the LOS’s, lie in a plane, so that the prob-
lem is reduced to two dimensions. In a similar manner,
Doppler-resolved measurements of a spinning target con-
tain support-plane information, which reduces to support-
line information under the restriction that all aspects lie
in a plane.

The basic reconstruction procedure described in this
paper may be decomposed in the manner indicated by
Fig. 1. In the first module support-line information is ex-
tracted from the laser-radar data by an estimation proce-
dure developed by others®’ for the location of knots in
spline approximations. The support-line measurements
obtained are, in general, noisy for various reasons. In the
second module the convex-set estimation techniques de-
veloped in this paper provide an estimate of the target,
given these noisy support-line measurements and prior
knowledge of target shape.

Section 2 provides the background and formulation of
the basic approach to the estimation problem. The three
specific estimators are presented in Section 3, along with
an assessment of their performance. In Section 4 we de-
scribe the laser-radar data, the way in which the data con-
tain support-line information, and the technique used to
extract this information. In Section 5 the reconstruction
algorithms are applied to range-resolved measurements
and Doppler-resolved measurements obtained through
simulated, laboratory, and field measurements. Recon-
structions obtained by using the present methods are com-
pared with reconstructed images produced by standard
tomographic methods.® Also, a method is introduced
whereby the tomographic reconstructions from unregis-
tered data may be greatly improved by using our recon-
struction algorithm as a preprocessor of the data. Finally,
in Section 6 our results are summarized and possible di-
rections for further work are suggested.

2. CONVEX-SET ESTIMATION FROM
SUPPORT-LINE MEASUREMENTS

In this section we first discuss the ideas of support lines
and support functions of convex sets. Although the exact
support values at all angles characterize a convex set, in
many applications only a finite number of noisy measure-
ments are available. Accordingly, we formulate and dis-
cuss the basic approach to the problem of estimating a
convex set from such measurements.

A. Background and Definitions
Using a coordinate frame fixed with respect to the set, we
define the support line of the set S at angle 6, [denoted
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by Ls(8,)] to be the line orthogonal to the vector w(f,) =
[cos 6, sin 6,]7 that just grazes the set (see Fig. 2). The
support value Ag(8,) is defined as the maximum projection
onto w(f,) of all points in S:

hs(@0) = sup s"w(8o), 03]

and its magnitude, |hs(f))|, is the minimum distance from
Ls(8,) to the origin. In fact, since all points on Lg(6,) have
the same projection onto w(,) —namely, the support value
hs(8,)—the support line may be expressed precisely as

Ls(80) = {x € R?|x"w(80) = hs(60)}. 2

From all this it follows that the set S lies in a particular
one of the two half-planes defined by Lgs(6,).

We will refer to hs(6) as the support function of the
set S. This function is continuous and periodic with pe-
riod 27  Sampling the support function at a finite num-
ber of angles 6,,0,,...,0) yields a support vector hg =
[hs(61) hs(8s) ... hs(@x)]T. Also, from Fig. 2 it should be
apparent that support lines provide no information about
concavities in the set, so that support lines at all orienta-
tions determine only the convex hull of the set. In fact,
the support function of a set uniquely determines the set
if and only if the set is convex. For this reason we restrict
our attention to convex sets in subsequent discussions un-
less otherwise stated.

Note further that if the support function of a set is
known for only a finite number of angles, the set is not
uniquely determined, since an entire equivalence class
of sets shares the same support vector. In this paper the
set that we associate with any given support vector is the
polygonal set bounded by the support lines, which is, of
course, the largest set in the equivalence class.

Although every convex set has a support function de-
fined on [0,27) that uniquely determines it, not every
function defined on this domain is the support function of
some set. Naturally, the same is true of support vectors.
A number of necessary and sufficient conditions for a
function to be a valid support function have been devel-
oped.®?® In this paper we will be using a version of the
following condition suitable for support vectors: A twice-
differentiable function A(8) is a valid support function if
and only if h"(8) + h(6) = 0 (for example, see Ref. 12).
Roughly, the reasoning behind this condition is that for
convex objects the curvature of the boundary is given by
K(6) = h"(#) + h(6) and may never be negative.

The derivations of several of the results to be described
in subsequent sections are facilitated by considering the

Fig. 2. Support line of a set.
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support function of a set, rather than the support vector.
In this continuous-angle framework, support functions
possess several useful properties that reduce in a natural
way to corresponding properties for support vectors. The
set S; consisting of a single point located on the x axis at
(x0,0) has support function kg, (6) = xo cos 6. Similarly,
the set S, located at (0, y,) has the support function
hs,(8) = yo sin 6. By the property of support functions
haos = ha + hp,'° where @ denotes the Minkowski set
sum defined by A® B = {a + bla € A,b € B}, we have
that the support function of a point (xo, y,) is given by
h(@) = xo cos 8 + yo sin 6. Now, by representing a poly-
gon Sp as the convex hull of its vertices (x;, y;) and from
the property that' hcnvaus = max(ha, hp), we find that
the support function of a polygon is given by hg,(0) =
max;(x; cos § + y,; sin 6). For a polygon the cusps of h(6)
correspond to the sides of the polygon, at which support is
transferred from one vertex to another. Denoting the
angles of the faces that intersect to form the ith vertex
by 6;,-; and 6;,, we may rewrite the support function of
a polygon as hg,(8) = x, cos 8 + y; sin & on [0,-,,6;] to
reveal more clearly the trigonometric spline form that
hsy(8) takes.

B. Formulation and Basic Approach

We model our support measurements yi, ¥z, ..., ¥u at mea-
surement angles 6,,0,,...,0y as consisting of the true
support values of the set h; = h(f;) corrupted by noise.
That is,y; = h; + n;fori = 1,2,..., M, where the {n,} are
samples from some noise distribution. We emphasize that
by noisy measurements we mean uncertainty in the sup-
port values and not in the measurement angles. The
measured support values y; constitute the elements of
what we refer to as the measured support vector y.

Because of the presence of the noise, the measurements
{y;} may not correspond to the set that gave rise to them
and, in fact, may not correspond to any set. We adopt the
approach introduced in Refs. 1 and 2 for estimating a con-
vex set by finding the valid support vector % that is closest
in some sense toy. As discussed in Refs. 1 and 2, a natu-
ral choice is to minimize Euclidean distance in support-
vector space. This choice, which corresponds to computing
the maximum-likelihood estimate of the set if the noises
n; have zero mean, are Gaussian, and are mutually uncor-
related, results in an estimation problem for which there
exists efficient computational algorithms.

As in all maximume-likelihood estimation problems,
whereas the criterion for choosing the estimate is deter-
mined by the principle of maximum likelihood—i.e., by
the accuracy with which the estimate fits the measure-
ments—the evaluation of the performance of the estima-
tor is made by examining the accuracy with which the
estimate matches the unknown being estimated. The
most common measures of performance used in such
problems are the bias in the estimate and its variance.
However, in the present context the bias and the variance
of the estimate h are rather indirect indicators of the
quality of the set reconstruction being performed. Since
we are more interested in minimizing some measure of
distance directly in object space, we evaluate the quality
of our reconstructions by using a direct quantitative mea-
sure of the error between the true object S and its recon-
struction S. The measure of error we use here is the area
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of their symmetric difference saS = (S u §)\\S N .§).
As we mentioned above, there are many convex sets
sharing the same (valid) estimated support vector 2. The
particular convex set S that we associate with A is the
polygon bounded by the support lines corresponding to .

The idea of choosing h as the valid support vector closest
to y can be given a nice geometric interpretation.* Spe-
cifically, the set of valid M-dimensional support vectors
forms a cone € in RY, and the estimation procedure can
be regarded as projecting the measurement vector y onto
% [see Fig. 3(b)]. To carry out this projection a charac-
terization of the support cone is required. Prince and
Willsky gave such a characterization by proving a neces-
sary and sufficient condition for a vector h to be a
valid support vector in the case of uniformly spaced mea-
surement angles. Our estimators require an extension of
this consistency condition to the case of angles that are,

/
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(b)
Fig. 3. (a) Support-line consistency, achieved only if L; does not
lie in the invalid region, shown hatched and to the right of the
dashed line at angle 0;. (b) Geometry illustrating the projection
of the invalid support vector y onto the support cone €.
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in general, nonuniformly spaced. This condition is a
discrete version of the consistency condition h"(6) +
h(8) = 0 for twice-differentiable support functions. In
fact, the discrete version can be obtained by using the
trigonometric-spline form of support function of a polygon
and interpreting the derivatives in a distributional sense.
The discrete condition can also be obtained from a geo-
metric approach as in Fig. 3(a). Given support lines L; ;
and L;., at 6,_; and 6;,,, a third support line at 6, is consis-
tent only if it lies to the left of the intersection point of
L;,_; and L;,;. Together with sufficiency as shown in
Refs. 1 and 2, this leads to the consistency condition for a
triplet of support values at adjacent and, in general,
nonuniformly spaced angles, given by Ref. 14:
hioy sin(6;1 — 6;) — ki sin(Biv; — 6:-1)

+ h,‘+1 sin(B,» - 0,‘-1) =0. (3)

Enforcing this inequality for all adjacent triplets yields a

necessary and sufficient condition for a vector to be a
valid support vector. Namely,
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angles, that is closest to the measurement vector y. The
solution is obtained by solving

M
h = argmin 3, (y; — h))%, 6)

Ch=0 =1

where C is given by Eq. (5). We refer to this estimator as
NUA, an acronym for nonuniform angles, since the present
algorithm is an extension of one developed by Prince and
Willsky for uniformly spaced angles. Since the cost func-
tion is quadratic and the constraints are linear, the so-
lution to this problem can be obtained by using standard
quadratic-programming (QP) techniques.’®® We note that
NuA as well as the algorithms of the following subsections
result in biased estimators (see Appendix A).

To illustrate the behavior of Nua, we consider the follow-
ing example. The original object used in this example is
an isosceles triangle with vertices at (0,2), (—0.25,0), and
(0.25,0). We use this triangle throughout the paper and
refer to it as the standard triangle. The data consist of
M = 24 uniformly spaced noisy measurements (o = 0.25).
Figures 4(a) and 4(b) depict the results in both object space
and support-function space by using the estimator Nua.
Figure 4(a) shows the bold outline of the true object (the

Ch=0, 4)
where
“Sil’l(ﬂz hd em) sin(01 - GM) 0
sin(@; — 0;) —sin(@; — 6,) sin(6; — 6;)
C= 0 sin(@, — 03) —sin(f, — 62) sin(6; —
0 - L .
sin(BM - OM—l) 0 0

Sin(01 - OM)

sin(f; — 6,)
0
63) 0 . (5

—Sil’l(61 - eM-1)

With such a consistency condition we can formulate sev-
eral estimation algorithms, which are discussed in Sec-
tion 3.

3. ESTIMATION ALGORITHMS

The estimation algorithms that we present in Sections 3-6
arise from increasingly general formulations of the prob-
lem of obtaining polygonal shape estimates from noisy sup-
port measurements. The most specific case, in which a
polygon with faces at a fixed number of uniformly spaced
measurement angles is estimated, was considered by
Prince! and Prince and Willsky.? A generalization of this
algorithm results in relaxing the assumption of uniform
spacing. A third formulation consists of estimating a
polygon with faces at a set of prespecified reconstruction
angles that are not necessarily the same as the set of mea-
surement angles. Both sets of angles are nonuniformly
spaced, in general. Fourth, we might permit rotations of
the prespecified constellation of reconstruction angles
in order to obtain joint orientation and shape estimates
of objects. The following subsections treat the three
generalizations.

A. Reconstruction with Sides at the Measurement Angles
In this problem we have a finite set of noisy support mea-
surements {yi,Ys,...,yu} at angles 6, < 8, < -+ < Oy.
We wish to reconstruct a convex polygon, or, equivalently,
the valid support vector h, with sides at the measurement

standard triangle), the noisy support lines, and the shaded
polygonal reconstruction produced by Nua. Correspond-
ingly, Fig. 4(b) shows the support function h(6) of the
true object, the noisy support values {y:}, and the support
function h(0) of the estimated object. The quantitative
measure of reconstruction error that we use throughout
the paper consists of the area of the symmetric difference
between the reconstructed object and the true object, nor-
malized by the area of the true object. This error is de-
noted by E and for the present example has the value
E = 1.56.

B. Best N-gon Fitting M Measurements with Fixed
Reconstruction Angles

In this section we exploit prior information about the
angles of the object’s sides to obtain reconstructions of
higher quality than those we expect to obtain by using Nua,
which uses no prior information. Specifically, we con-
sider the problem of determining the N-sided polygon with
prespecified face angles that best fits a set of noisy sup-
port values at M measurement angles. For example, one
might wish to reconstruct the best equilateral triangle
given a set of, say, 20 noisy measurements of an object
known a priori to be triangular.

In formulating this problem we let {6,,60,,...,0u},
{»1,¥2--.,yu}, and {1, ds, ..., ¢n} denote the M measure-
ment angles, the measured support values at these angles,
and the N reconstruction angles, respectively. Given
these quantities, we wish to estimate an N-gon specified
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Fig. 4. Examples of the algorithms (a), (b) NUa; (c), (d) BNGON; and (e), (f) BNGONROT for the standard triangle in object space and support-
function space for M = 24 uniformly spaced noisy (o = 0.25) measurements. In (b), (d), and (f) the support function of the standard
triangle is plotted with a thick curve, the noisy support values {y;} are marked by X’s, and the support function k(@) of the estimated

object is plotted with a thin curve.

by the consistent set of support values {h4($1), hs(d2),...,
h4(dn)} at the specified N-gon face angles that minimizes

M

J[h¢(¢1), h¢(¢2), ceey h¢(¢N)] = E [h¢(0z‘) - Yi]z, (7

i=1

where h4(0;) denotes the value at 6; of the support function
he() of our estimated N-gon [see Eq. (8) and the associated
explanation]. Equation (7) corresponds to finding a set of
support values [i.e., finding % 4(¢;) for all {] at the recon-
struction angles that minimizes the sum of the squared
deviations between the measured support values and the
values of the piecewise-sinusoidal support function of the
reconstructed polygon at the measurement angles.

Let ¢., and ¢z, denote the reconstruction angles imme-
diately to the left and right of the ith measurement angle
8;, and let h;, and hg, denote the corresponding recon-
structed support values. Since the support function of a
polygon is piecewise sinusoidal with cusps at the face
angles, we can obtain the entire support function from
its values at the face angles by simply determining the
appropriate sinusoid in each interval. That is, the sup-
port function of the reconstructed object evaluated at 6; is
given by

sin(¢r, — 6:)
sin(¢r, — ¢1.)

sin(6; — ¢.,)
sin(¢r, — ¢1.)

h(b(oi) = hR,‘ . (8)

L;
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in general, nonuniformly spaced. This condition is a
discrete version of the consistency condition h"(6) +
h(8) = 0 for twice-differentiable support functions. In
fact, the discrete version can be obtained by using the
trigonometric-spline form of support function of a polygon
and interpreting the derivatives in a distributional sense.
The discrete condition can also be obtained from a geo-
metric approach as in Fig. 3(a). Given support lines L;;
and L;,, at 8,_; and 6,.,, a third support line at 8, is consis-
tent only if it lies to the left of the intersection point of
L;_;, and L;;;. Together with sufficiency as shown in
Refs. 1 and 2, this leads to the consistency condition for a
triplet of support values at adjacent and, in general,
nonuniformly spaced angles, given by Ref. 14:

~ 6;) — h;sin(6;4; — 0:-,)
+ h,’+1 sin(Oi - 0,’-1) =0. (3)

h;-, sin(;,

Enforcing this inequality for all adjacent triplets yields a
necessary and sufficient condition for a vector to be a
valid support vector. Namely,
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angles, that is closest to the measurement vector y. The
solution is obtained by solving

M
k= argmin >, (y; — h))?, (6)

Chz0 i=1

where C is given by Eq. (5). We refer to this estimator as
NUA, an acronym for nonuniform angles, since the present
algorithm is an extension of one developed by Prince and
Willsky for uniformly spaced angles. Since the cost func-
tion is quadratic and the constraints are linear, the so-
lution to this problem can be obtained by using standard
quadratic-programming (QP) techniques.’®*®* We note that
NUA as well as the algorithms of the following subsections
result in biased estimators (see Appendix A).

To illustrate the behavior of Nua, we consider the follow-
ing example. The original object used in this example is
an isosceles triangle with vertices at (0, 2), (—0.25,0), and
(0.25,0). We use this triangle throughout the paper and
refer to it as the standard triangle. The data consist of
M = 24 uniformly spaced noisy measurements (o = 0.25).
Figures 4(a) and 4(b) depict the results in both object space
and support-function space by using the estimator Nua.
Figure 4(a) shows the bold outline of the true object (the

Ch =0, 4
where
-—sin(02 - GM) sin(ol - GM) 0
sin(@; — 62) —sin(@; — 6;) sin(6; — 6,)
C = 0 sin(@, — 03) —sin(@; — 6;) sin(f; —
sin(OM - 9M‘1) 0 0

sin(6, — Ou)

sin(02 - 01)
0
62) 0 )

- Sin(el - 9M—1)

With such a consistency condition we can formulate sev-
eral estimation algorithms, which are discussed in Sec-
tion 3.

3. ESTIMATION ALGORITHMS

The estimation algorithms that we present in Sections 3-6
arise from increasingly general formulations of the prob-
lem of obtaining polygonal shape estimates from noisy sup-
port measurements. The most specific case, in which a
polygon with faces at a fixed number of uniformly spaced
measurement angles is estimated, was considered by
Prince’ and Prince and Willsky.? A generalization of this
algorithm results in relaxing the assumption of uniform
spacing. A third formulation consists of estimating a
polygon with faces at a set of prespecified reconstruction
angles that are not necessarily the same as the set of mea-
surement angles. Both sets of angles are nonuniformly
spaced, in general. Fourth, we might permit rotations of
the prespecified constellation of reconstruction angles
in order to obtain joint orientation and shape estimates
of objects. The following subsections treat the three
generalizations.

A. Reconstruction with Sides at the Measurement Angles
In this problem we have a finite set of noisy support mea-
surements {yi, y2,...,¥u} at angles 6, < 0, < -+ < 8y.
We wish to reconstruct a convex polygon, or, equivalently,
the valid support vector %, with sides at the measurement

standard triangle), the noisy support lines, and the shaded
polygonal reconstruction produced by nua. Correspond-
ingly, Fig. 4(b) shows the support function h(6) of the
true object, the noisy support values {y;}, and the support
function h(F) of the estimated object. The quantitative
measure of reconstruction error that we use throughout
the paper consists of the area of the symmetric difference
between the reconstructed object and the true object, nor-
malized by the area of the true object. This error is de-
noted by E and for the present example has the value
E = 1.56.

B. Best N-gon Fitting M Measurements with Fixed
Reconstruction Angles

In this section we exploit prior information about the
angles of the object’s sides to obtain reconstructions of
higher quality than those we expect to obtain by using Nua,
which uses no prior information. Specifically, we con-
sider the problem of determining the N-sided polygon with
prespecified face angles that best fits a set of noisy sup-
port values at M measurement angles. For example, one
might wish to reconstruct the best equilateral triangle
given a set of, say, 20 noisy measurements of an object
known a priori to be triangular.

In formulating this problem we let {6,,0,,...,0x},
{y1,¥2,---,»yu}, and {¢1, ds, ..., Pn} denote the M measure-
ment angles, the measured support values at these angles,
and the N reconstruction angles, respectively. Given
these quantities, we wish to estimate an N-gon specified
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Fig. 4. Examples of the algorithms (a), (b) NUa; (c), (d) BNGON; and (e), (f) BNGONROT for the standard triangle in object space and support-
function space for M = 24 uniformly spaced noisy (¢ = 0.25) measurements. In (b), (d), and (f) the support function of the standard
triangle is plotted with a thick curve, the noisy support values {y;} are marked by X’s, and the support function %) of the estimated

object is plotted with a thin curve.

by the consistent set of support values {h4(¢1), hg(d2), ...,
h4(¢n)} at the specified N-gon face angles that minimizes

M
J[h¢(¢l)y h¢(¢2)> ceey hd’(d’N)] = gl [h¢(ol) - yi]25 (7)

where £ 4(0;) denotes the value at 6; of the support function
h4(+) of our estimated N-gon [see Eq. (8) and the associated
explanation]. Equation (7) corresponds to finding a set of
support values [i.e., finding h4(¢;) for all i] at the recon-
struction angles that minimizes the sum of the squared
deviations between the measured support values and the
values of the piecewise-sinusoidal support function of the
reconstructed polygon at the measurement angles.

Let ¢;, and ¢, denote the reconstruction angles imme-
diately to the left and right of the ith measurement angle
8;, and let h;, and hg, denote the corresponding recon-
structed support values. Since the support function of a
polygon is piecewise sinusoidal with cusps at the face
angles, we can obtain the entire support function from
its values at the face angles by simply determining the
appropriate sinusoid in each interval. That is, the sup-
port function of the reconstructed object evaluated at 0; is
given by

sin(¢r, — 6:)

sin(¢r, — é1,) * T

Sin(¢Ri - ¢Li)

he(6:) = he,.  (8)
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From Egs. (7) and (8) our problem is formulated as

hy(d)
ho= h“'(‘d’Z) = argmin(Ahy — y)"(Ahy — ), (9)
: Chy=0
hip(w)

where y = [y1¥2...yu]" is the measurement vector, C is
the consistency matrix of Eq. (5) with the 6;’s replaced by
¢:’s, and A is an M X N matrix mapping the N support
values at the {¢;} to the corresponding N-gon support values
at the {¢;} by using Eq. (8). The ith row of the matrix A,
corresponding to the ith measurement, has two adjacent
(modulo N) nonzero entries, sin(¢g, — 6.)/sin(¢z, — ¢1,)
and sin(f; — ¢r,)/sin{¢r, — ¢1,), corresponding to the re-
construction angles ¢, and ¢g, on either side of 6.

We refer to the estimator of Eq. (9) as BNGoN. As before,
since the cost function in Eq. (9) is quadratic in the recon-
structed support values and the consistency constraint is
linear, the problem can be solved by QP techniques. Inci-
dentally, under certain conditions there may be nonunique
solutions. However, this is not the generic case, and we
refer the reader to Ref. 14 for details.

An example of BNGON similar to that discussed above is
shown in Figs. 4(c) and 4(d). The example consists of re-
constructing the best triangle with reconstruction angles
at 7.125°, 82.875° and 270° equal to those of the standard
triangle, given M = 24 uniformly spaced noisy (o = 0.25)
support measurements. The pictures in both object space
and support-function space are shown, with the recon-
structed object incurring an error of E = 0.17 with respect
to the true object.

The BNGON reconstruction in Fig. 4 originates from the
same set of measurements as the NUA reconstruction in
the same figure (i.e., the same noise realization was used),
permitting comparison of the two. Visually, it is clear
that the prior information that the true object is a triangle
with known face angles allows BNGON to outperform NUA.
This is also seen quantitatively by noting that Ego =
0.17, whereas E\, = 1.56. However, prior information
about the number of faces and the face angles of the true
object may not be known precisely, and in this case one
would expect some degradation in performance. Never-
theless, as we will see in Subsection 3.D, BNGoN still out-
performs Nua, even in the presence of a broad range of
errors in the prior information. Furthermore, one impor-
tant source of errors leads to a natural generalization of
the BNGON algorithm. Specifically, although in many
cases it may be reasonable to assume that one has prior
information about number of faces and their relative
angles, one would typically not expect to have prior infor-
mation about the absolute orientation of the object. In
Subsection 3.C we describe a generalization of the BNGON
that addresses this problem.

C. Best N-gon with Fixed Relative Spacing of
Reconstruction Angles

In this subsection we assume somewhat less prior informa-
tion than in BNGON by formulating a problem in which the
relative (rather than the absolute) angles of the object’s
sides are known. Specifically, let {61, 6,,...,0x} and {y(0,),
¥(82), ..., y(0x)} denote the M measurement angles and the
measured support values at these angles, as before. How-
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ever, unlike before, the reconstruction angles are given by
{¢1 + a»¢2 +a,.. "¢N + a}; where {¢l’¢21 .. wd’N} are
known and o € [0,27) serves as an unknown offset pa-
rameter fixing the absolute locations of the reconstruction
angles. Essentially, we wish to minimize the cost func-
tion in Eq. (9), with the exception that the estimator here
is free to rotate the constellation of reconstruction angles
in order to achieve minimum cost in the estimate. That
is, we wish to estimate jointly values of a and {h4(¢1 + @),
ho(dz + a),...,he(dpny + )} that minimize

J[av h¢(¢1 + a)) h¢(¢2 + a)v AR h¢(¢N + C!)]

M
= D [he(0:) — y(6)F, (10)

i=1
where, by using Eq. (8), 24(8,) is given by

sin(¢g, + a — 6;)
sin(¢r, — ¢Li)

sin(6; — ¢, — @) b

he(6:) = sin(¢r, — )

1

Li

and the {h,(¢; + @)} are constrained to be a set of consis-
tent support values.

Note that although criterion (10) is quadratic in the val-
ues of h, at the reconstruction angles ¢, + a,...,éy5 + a,
it is certainly not quadratic in « [see Eq. (11)]. Thus the
minimization of Eq. (11) is not a simple QP problem.
Nevertheless, the structure of this criterion does allow us
to obtain a reasonably efficient QP-based optimization al-
gorithm, which we refer to as BNGONROT. Specifically, let
Jx (@) denote the cost resulting from a best choice of sup-
port vector for a fixed value of a:

Jh¢(a)

= min J[Cl, h¢(¢1 + a), h¢(¢2 + a), ey h¢(¢N + a)] .
{ho(di+a)} 12)

Note that solving Eq. (12) for any given value of « is
simply a BNGON problem solved by means of a QP computa-
tion as described above. Note also that the minimization
of Eq. (10) corresponds to choosing a to minimize j (a).
Thus a brute-force approach to minimizing Egs. (10) is to
perform an exhaustive search over the values of Jj(a),
where each evaluation of this function involves a QP com-
putation. Our more efficient method involves a gradient-
like search for the optimum values of a. However, the
nature of the problem is such that there are two important
distinctions between our algorithm and a standard
gradient-descent algorithm. First, note that

Juy(a) = J[a, he*(@1 + a), he* (b2 + @),..., he*(dn + )],
13)

where hy*(¢p; + a),i = 1,..., N are the optimal values
of the reconstructed support vector for the given value
of @. Thus

deiya) 3 & aJ dhg*(¢: + a)
da da i=1 6h¢(¢, + a) Jda

14)

The difficulty here is that computing the sensitivity of
the optimal support values i s*(¢; + a) with respect to a is
not easy (since a QP optimization is involved). Thus, in-
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stead of Eq. (14), we simply use

& o ko + @), bt + ). h oy + @]

M .
=23 2p 1) - you1, a9)
i=1 a

where h4*(0,) is obtained from Eq. (11) with the A, kg, val-
ues corresponding to the k4*(¢; + a) and
dhy(0:) cos(dr, + a — 6)
da sin(¢r, — ¢L)

_cos(8; — ¢, — a)h
sin(gr, — ¢)
(16)

L;

The second key point is that J,(a) is, in general, a
highly nonconvex function of « (see Ref. 14 for examples
and discussion). Thus it is necessary to determine all the
local minima of J,(«) and choose the one with the lowest
cost. Since a is a scalar, constrained to lie between 0° and
360°, we can do this in the following manner.

We begin at a = 0° and solve the QP problem of Eq. (9).
Using the estimated support values, we compute Eq. (14)
and perform a gradient ascent or descent step, depending
on whether its sign is positive or negative, to obtain a new
value of a. We are then committed to performing gradi-
ent ascent until we reach the first maximum or gradient
descent until we reach the first minimum. We then per-
form the following steps repeatedly: (i) solve Eq. (9),
(ii) compute the gradient, and (iii) perform a gradient
step. Once an appropriate convergence criterion has been
met (as discussed below), indicating that a local minimum
or maximum has been found, we store this value of a. We
then advance by some small amount in a and, by solving
Eq. (9) and computing the gradient, determine whether
our next series of steps will consist of gradient ascent or
descent steps. Performing steps (i)-(iii) repeatedly, we
reach our next maximum or minimum. We continue this
traversal of the interval [0°,360°) until we have located all
maxima and minima and then choose the global minimum
&. Solving Eq. (9) with a = & yields the solution to our
problem.

The criterion for convergence is met when either of two
conditions is satisfied. The first condition is the usual
termination rule for standard gradient ascent or descent.
The need for a second convergence condition is due to the
inability of standard gradient-ascent/descent algorithms
(and their convergence criteria) to deal with cusps (dis-
continuities in slope) that can occur in the cost function
Ji,(a) (see Ref. 14). To deal with this we halve the step
size A of the gradient ascent or descent every time the
sign of the derivative changes (indicating that a maximum
or minimum has been crossed), provided that the magni-
tude of the derivative is sufficiently large (ensuring that
we are near a discontinuity in slope rather than a smooth
maximum or minimum). The second convergence condi-
tion is met when A falls below some specified value.

Because the algorithm is based on standard gradient-
ascent/descent methods, modified to obtain precise solu-
tions near cusps, we suspect that its limitations are
similar to those associated with the standard methods.
Most important is the trade-off of speed versus accuracy
as determined primarily by the choice of A and the conver-
gence criterion. For a given desired accuracy this algo-
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rithm is generally much more efficient than the brute-
force approach of solving a QP problem at each of many
independently chosen values of a and choosing the value
that has the lowest cost.

An example of a reconstruction produced by BNGONROT is
shown in Figs. 4(e) and 4(f). The true object and mea-
surements are the same as before. The reconstruction
forms an angle of a = 86.58° with the positive x axis.
The error E equals 0.42. Not surprisingly, the reconstruc-
tion is qualitatively and quantitatively far better than
that corresponding to Nua [see Figs. 4(a) and 4(b)]. More-
over, it is not much worse than the BNGON reconstruction
[see Figs. 4(c) and 4(d)], indicating that not much is sacri-
ficed in settling for a weaker prior knowledge, i.e., know-
ing relative rather than absolute reconstruction angles.

D. Performance Assessment of the Estimation
Algorithms

We have evaluated our algorithms by computing the aver-
age normalized symmetric difference area E for a range
of values of relevant parameters. In particular, this
Monte Carlo analysis is carried out versus measurement
parameters and quality of the prior information.

In Fig. 5(a) we show a plot of E versus measurement
noise level o for each of the three algorithms with M = 24
uniformly spaced measurements of the standard triangle.
Although the error for all three algorithms increases with
o as expected, the performance of BNGONROT is much better
than that of Nua but only slightly worse than that of BNGON
for relatively low noise levels. The difference in perfor-
mance between BNGON and BNGONROT becomes more pro-
nounced near o = 0.17. This threshold effect is exactly
that characterizing standard nonlinear estimators and is
analyzed below and in more detail in Ref. 14. However,
even with this increased degradation, BNGONROT’s perfor-
mance is much better than that of Nus. Figure 5(b) shows
a plot of E versus number of measurements M for Nua and
BNGON with noisy (o = 0.25) measurements of the standard
triangle. Again, BNGON outperforms NUA, where both yield
decreasing values of E with increasing M.

The performance of BNGON and BNGONROT is also depen-
dent on the quality of the prior information. That is,
if the quality of the prior information on which these
algorithms are based—the number of faces and their
absolute (for BNGON) or relative (for BNGONROT) angular
locations—is in error, then it is possible for these al-
gorithms to perform worse than the unconstrained Nua al-
gorithm, especially for more severe errors in the assumed
prior information. For example, let us examine the sensi-
tivity of BNGON to errors in assumed face angles. Specifi-
cally, we take M = 24 noisy (o = 0.25) measurements of
the standard triangle. However, we reconstruct a triangle
whose face angles are not the same as those of the stan-
dard triangle. Errors in the reconstruction angles con-
sidered are entire-configuration errors, in which all face
angles are rotated by the same amount, and single-angle
errors, in which only the first reconstruction angle, origi-
nally at 7.125° is in error. The angular error is denoted
by a. Figure 5(c) depicts plots of error E versus « for the
two types of error in the prior information. A dotted line
denoting the baseline performance level of Nua is included
for comparison. The figure indicates that for values
of a less than 69° entire-configuration errors are less
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damaging than corresponding single-angle errors. More-
over, on noting the intersections of the BNGoN plots with
the Nua baseline, we may conclude that for this particular
noise level one should tolerate single-angle errors of up to
=~17° and entire-configuration errors of up to ~29° before
abandoning the BNGoN algorithm and resorting to either
BNGONROT OT NUA.

Obviously, knowledge of the precise number of sides of
the desired reconstruction is a powerful and, in some
sense, unrealistic piece of prior information. Thus it is of
interest to see how BNGON performance degrades as the
number N of reconstruction angles is increased. To do
this we again use 24 uniformly spaced noisy (o = 0.25)
measurements of the standard triangle. We start with
the correct triple of reconstruction angles at ¢, = 7.125°
¢ = 82.875° and ¢3 = 270° for N = 3. For all values of
N > 3 we choose ¢y such that it lies halfway between the
most distant adjacent pair of the previous N — 1 recon-
struction angles. For each value of N we solve the result-
ing BNGON problem in a Monte Carlo fashion to generate a
data point in Fig. 5(d). Through this constructive process
a constellation of 24 more or less uniformly spaced recon-
struction angles is built up. The performance of BNGON
for the set of reconstruction angles constructed in this
manner is compared with the baseline performance of
NUA, which uses the set of 24 uniformly spaced measure-
ment angles. From the plot we may conclude that for a
polygon of N sides, as long as the N reconstruction angles
are known, adding extraneous reconstruction angles de-
grades performance but not to the extent that switching
to Nua yields better performance. This is particularly ap-

parent from the fact that BNGoN performs significantly
better than Nua near N = 24, indicating that the original
three reconstruction angles that are not available to Nua
are quite helpful to BNGON.

Finally, we investigate the performance of BNGONROT in
estimating the orientation parameter a. In Appendix B
we analytically determine the Cramer-Rao lower bound '’
on the orientation-error variance as well as an approxi-
mate expression for the probability of obtaining anomalous
orientation estimates (the threshold phenomenon men-
tioned above). Together, these expressions describe the
orientation-error variance for a range of noise levels, which
is given by

var(a — &|aume) = [1 — Pr(4)J(CRB) + Pr(A)(180°)*

~[1- 5ol

0_2

X R (a) oh(a)
Ja Ja

1 -H o
+ 5 exp('&?)(lso )2, a7

a=Qtrue

where the probability Pr(A) of an anomalous orientation
estimate, the Cramer-Rao bound (CRB), and H are given
in Appendix B.

Monte Carlo simulations supplementing this analytical
error analysis are also performed. As before, we use
M = 24 uniformly spaced measurements of the standard
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triangle so that the true orientation, or offset parameter,
is given by @i = 90°. Figure 6 compares the analytical
expression for the standard deviation of the orientation
estimate with the Monte Carlo results for a range of noise
levels. Plots of [var(a — &| @] versus o are shown on
both normal and logarithmic scales, with each Monte Carlo
data point representing 200 noise realizations. The
Monte Carlo results agree reasonably well with rela-
tion (17) and, as expected for a nonlinear estimator, ex-
hibit dramatic threshold behavior as the noise variance
increases from low values, where the CRB dominates, to
higher values, where Pr(A) is significant.

4. LASER-RADAR DATA AND EXTRACTION
OF SUPPORT-LINE MEASUREMENTS

In this section we describe the laser-radar data to be used
as input to the reconstruction algorithms (namely, range-
resolved and Doppler-resolved data). We then discuss the
way in which the laser-radar data can serve to provide
support line information, and we describe a technique to
extract such support measurements from the data. Pre-
vious work in reconstructing targets from such laser-radar
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data have primarily employed techniques from trans-
missive tomography.®'® These transmissive tomographic
techniques are designed to provide reconstructions of an
object’s mass density, given measurements of line integrals
of this mass density. As we discuss in Section 5, laser-
radar measurements have precise interpretations as inte-
grals of object reflectivity over that portion of object area
falling into a particular range or Doppler bin (i.e., at a
particular range from the sensor or with a particular
Doppler shift). Indeed, as analyzed in detail in Ref. 19,
although standard tomographic reconstruction (using, for
example, filtered backprojection) does not exactly invert
these measurements, it can, in principle, produce a reason-
ably well-focused image of the object, providing shape in-
formation and, less accurately, a map of reflectivity.

Our motivations for using convex-set reconstruction
techniques to process laser-radar data are twofold. First,
as we discuss in Subsection 4.B, laser-radar measurements
do provide direct information about support lines to an ob-
ject, and thus, if one is interested only in estimating ob-
ject shape, use of our convex-set reconstruction methods
provides this information directly, without the need for
tomographic reconstruction. Second, as we discuss in
Section 5, typical laser-radar situations involve relative
motion of object and sensor to obtain data at different ori-
entations. However, in contrast to medical imaging ap-
plications, the measurement process is far less tightly
controlled and is subject to far more uncertainty. This can
lead to registration errors that can severely degrade the
quality of tomographic reconstructions. We will see later
in this section that our convex-set reconstruction proce-
dures provide an effective means for correcting such reg-
istration errors and thus can be of considerable value even
if the ultimate goal is a full tomographic reconstruction.

A. Laser-Radar Data and Problem Scenario

By illuminating a target and receiving the reflected signal,
laser radars provide information about the surface charac-
teristics of the target. Laser radars can be designed to re-
solve the return from the target with respect to various
quantities.?**! In this paper we restrict our attention to
range-resolved and Doppler-resolved laser-radar data.
Furthermore, we consider only the case of a monostatic
radar, in which the transmitter and receiver are at the
same location.

A range-resolved measurement (also called a range spec-
trum) is one in which the return is distributed in range
along the LOS of the laser radar. That is, only those parts
of the target that are a distance r, away from the laser
radar (with distance measured along the LOS) may con-
tribute to the value of the range spectrum at range r,. Al-
though a range-resolved measurement ideally has perfect
range resolution, in practice it takes the form of a histo-
gram with bins of finite range extent, where each bin is
referred to as a range bin. Such a measurement then ac-
tually corresponds to a set of measurements as a function
of range.

Alternatively, for a target undergoing motion, different
parts of the target may have different components of ve-
locity along the LOS. A Doppler-resolved measurement
(also called a Doppler spectrum) is one in which the return
is distributed with respect to these variations in velocity.
As with a range spectrum, the Doppler spectrum takes the
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form of a histogram. The value associated with a particu-
lar Doppler bin arises from the return of all illuminated
parts of the target with the corresponding component of
velocity along the LOS.

The received intensity from a surface illuminated by a
laser radar is dependent on the geometry and reflectance
properties of the surface. The reflectance properties are
commonly characterized by a function known as the bidi-
rectional reflectance distribution function.”? For the
case of a monostatic radar and a surface with isotropic
reflectance properties, the bidirectional reflectance distri-
bution function is given by p(¢), where i is the angle be-
tween the LOS and the local surface normal. In the case
for which the wavelength of the illumination is large com-
pared with surface aberrations of the target, the received
intensity is proportional to

o= 277J] pWcos® YdA, (18)
s

where the integration is performed over the visible (illumi-
nated) part of the surface, denoted by S. The quantity o
is referred to as the laser-radar cross section of the target.
Hence for resolved data the intensity value associated with
a particular bin is proportional to the laser-radar cross
section arising from those portions of the target that con-
tribute to that bin.

In this paper we investigate some methods to recon-
struct a target from a series of range-resolved or Doppler-
resolved measurements, using the algorithms described in
Section 3. Throughout we consider only the case in which
the data are taken at aspects around a great circle, so that
the LOS’s all lie in a plane. With this restriction the en-
tire situation is reduced to a two-dimensional problem in
the plane containing the LOS’s.

For range-resolved measurements we can consider the
data as being obtained either with a single sensor revolv-
ing around a stationary target or with the sensor fixed
and the target rotating, with known rotation rate, about an
axis perpendicular to the plane in which the measure-
ments are taken. For Doppler-resolved measurements,
resolution of the target requires target motion, and so in
this case we assume that the target is rotating as above
with a fixed sensor.

Alternatively, in either case we may think of the data as
being obtained simultaneously by a number of sensors dis-
tributed about the target. Also, as in previous work using
tomographic techniques,®®*® we make several assump-
tions. Specifically, as we shall see, knowledge of the rela-
tive positions of the sensors is needed for reconstruction
of targets from both range-resolved and Doppler-resolved
measurements. In addition, for Doppler-resolved mea-
surements we assume that the target is rotating about an
axis perpendicular to the plane of aspects, with a known
rotation rate. Moreover, if the target is translating, the
Doppler velocity of the target’s center of gravity relative to
each sensor must be known. Since each sensor is presum-
ably tracking the target, we assume knowledge of the nec-
essary quantities. In what follows we view the problem
from this multisensor perspective.

Finally, note that, whether we have a multisensor system
or a single-sensor system that uses relative motion be-
tween target and sensor to obtain multiple viewing angles,
we must eventually deal with registration errors between
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measurements taken at different views. For example, er-
rors in the knowledge of the distances of two sensors to
the target will cause an error manifesting itself as a rela-
tive shift in range-resolved data provided by the two sen-
sors. Analogous registration errors also arise in the case
of Doppler-resolved data (resulting, for example, from er-
rors in knowledge of individual sensor velocity).

B. Support-Line Measurements from Laser-Radar Data

As illustrated in Fig. 7(a), given a range-resolved mea-
surement, the minimum range rp, with nonzero return
intensity indicates that the distance from the sensor to
any part of the target is at least rn;,. Under far-field as-
sumptions this indicates that the target lies completely on
one side of the plane perpendicular to the LOS at range
rmin. Moreover, since some part of the target is at range
Fmin, this plane actually grazes the target. Hence this
plane is precisely a support plane of the target. (Note
that the maximum range r,, with nonzero return inten-
sity does not necessarily provide another support line,
since parts of the target at ranges greater than rp,, may
not be visible to the radar.) However, under our restric-
tion that the LOS’s all lie in a plane, the problem is effec-
tively reduced to a two-dimensional one, as mentioned
above. That is, we need only to consider the projection of
the target in the plane of LOS’s. The support-plane infor-
mation contained in the data corresponds to support-line

support line
LOS
—————-
e
range
(@)
[
support line
LOS
D Rt
support line
cross
range
)

Fig. 7. Diagrams showing how (a) range-resolved and
(b) Doppler-resolved measurements give rise to one and two
support lines, respectively.
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information of the target’s projection. Hereafter, use of
the word “target” refers to the two-dimensional projection
of the actual target.

A Doppler-resolved measurement contains similar infor-
mation. For a target undergoing simple rotation with
known rate w, the Doppler frequency that is due to a point
on the target is proportional to the distance from the point
to the rotation axis in a direction perpendicular to the
LOS (also called the cross-range distance of the point).
The minimum and maximum Doppler frequencies, D,
and D,,,,, respectively, with nonzero return intensity cor-
respond to the minimum and maximum cross range of
any part of the target [see Fig. 7(b)]. Thus from a
Doppler-resolved measurement we can extract two lines
parallel to the LOS that graze the target that lies between
them. Hence two support lines of the target are obtained
in this case.

To identify the support values(s) associated with the
support line(s) provided by a range or Doppler spectrum,
we need a coordinate frame. This frame must serve as a
common reference for all the aspects, so that the sets of
data may be spatially aligned, or registered. For range-
resolved measurements the assumption that the positions
of the laser radars are known relative to one another al-
lows us to establish such a frame, say, with origin at the
average of the laser-radar position coordinates and 0° as-
pect defined by the LOS of the first laser radar. The re-
sulting position and orientation of this coordinate frame
are, of course, arbitrary. Given such a coordinate frame,
the support value corresponding to the ith laser radar’s
range spectrum is equal to the minimum nonzero range
'min Subtracted from the distance from the laser radar to
the origin along the ith LOS. The set of support values
obtained in this manner for the set of laser radars forms a
support vector y.

A coordinate frame for Doppler-resolved mesurements is
established in the same way as for range-resolved mea-
surements. From above, the ith sensor (at aspect 6,)
gives rise to support values at 6; = 90°. Since target
cross range is proportional to Doppler frequency after the
Doppler spectrum is shifted by the Doppler frequency
shift D; produced by the target’s translational velocity
relative to the sensor, the support values are given by
(A/2@)|Dmin — D;| and (A/20)|Dpax — D;|, where A is the
wavelength of the laser illumination.

Since a Doppler spectrum at aspect ; provides two
support values at 6; * 90°, the aspects 6, and 6, + 180°
yield duplicate support values if the support values are
free of noise. For noisy data the duplicate values may
be averaged, thereby reducing the noise in the support
measurements.

In general, the resulting support vector y arising from
range or Doppler data is noisy and may be invalid because
of two types of measurement error. One type of error
arises from incorrectly estimating the values of ry;, or
Dyin and Dy, amid noise in the range or Doppler spec-
tra. The technique used to estimate 7ruin, Duin, and Doax
from the laser-radar data is briefly described in Subsec-
tion 4.C. Second, incorrect knowledge of the relative
laser-radar positions (and, for Doppler data, incorrect
knowledge of the Doppler velocity of the target’s center of
gravity relative to each sensor) leads to registration errors.
Errors in knowing the laser-radar positions may also cause
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angular errors (i.e., errors in knowing the aspects). How-
ever, in this paper we ignore angular errors and assume
throughout that the aspects of the measurements are
known perfectly.

C. Knot Location

Although determining ry;, or Dy and Dy, is trivial if the
data are noise free, such a determination for noisy data
is a difficult problem in general. The most obvious
method— thresholding the data—suffers greatly from its
nonrobustness to noise spikes in the data. As a result,
we turn to a method based on a technique developed by
Willsky and Jones®* for detecting abrupt changes in dy-
namic systems and later applied by Mier-Muth and Willsky’
to spline estimation. To cast our problem in the frame-
work of Ref. 7, we model the range or Doppler spectrum as
a linear spline, or piecewise-linear function. The points
of discontinuity in the derivative are referred to as knots.
Our goal is to determine the first knot in a range spectrum
and the first and last knots in a Doppler spectrum.

The basic approach consists of using a Kalman filter
based on a linear-ramp model for the range or Doppler
spectrum. Initializing the filter with zero slope, we run
the filter along the spectrum. At each bin we use the
innovations sequence to determine a set of maximum-
likelihood estimates of the slope of the ramp at the current
bin, assuming that a knot was located at each of the pre-
vious bins in some finite window. Using the maximum-
likelihood estimates for each bin in the window, we
perform a generalized-likelihood-ratio test for the knot-
present and knot-absent hypotheses to determine whether
a knot actually exists at the locations of any of the
maximume-likelihood estimates. The first bin for which
the generalized-likelihood ratio exceeds a prespecified
threshold corresponds to the first knot in the spectrum.
For a Doppler spectrum, to locate the last knot we repeat
the above process, running the Kalman filter backward
along the spectrum. Details concerning the implementa-
tion and performance of this algorithm may be found in
Refs. 6, 7, and 24. Note that the resulting support-line
measurements are subject to two sources of error, namely,
the error in knot location resulting from noise and regis-
tration error, which causes a shift in the entire range- or
Doppler-resolved measurement. For range-resolved data
this registration error enters as additive measurement
uncertainty in one support line to be extracted. For
Doppler-resolved data the registration error also enters
additively—with opposite signs—in the two extracted
support-line measurements.

In concluding this section we note that it is in general
more difficult to locate knots in a Doppler spectrum than
in a range spectrum. This difference is due to the prop-
erties of typical target materials combined with the view-
ing geometries associated with the two data types.?® In
particular, the values of the laser-radar return at ranges
just higher than r;, are determined by parts of the target
whose surface normals roughly coincide with the LOS.
As a result, ¢ = 0°, maximizing cos ¢ in Eq. (18). Fur-
thermore, since materials typically give high-intensity re-
turn at near-normal incidence and low-intensity return at
near-grazing incidence, the bidirectional reflectance dis-
tribution function p(y) is near maximum. Hence range
spectra generally exhibit an abrupt increase in intensity
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at the knot having range rn;,. In contrast, the values of
the laser-radar return at Doppler velocities just greater
than Do, and just less than Dy, are determined by parts
of the target having surface normals that are nearly per-
pendicular to the LOS. Consequently, = 90°, giving rise
to values of cos ¢ and p(y) that are nearly zero. Hence
Doppler spectra generally vary slowly in intensity near the
two knots.

5. TARGET RECONSTRUCTIONS FROM
LASER-RADAR DATA

In this section we apply the knot-location technique dis-
cussed in Subsection 4.C and the convex-set estimation al-
gorithms of Section 3 to laser-radar measurements of
several targets in order to obtain shape estimates of the
targets. The examples presented are those of reconstruc-
tions from sets of range and Doppler spectra obtained
through simulated, laboratory, and field measurements.

A. Convex-Set Reconstructions
The data for the first two examples are simulated®® range-
resolved and Doppler-resolved measurements of a cone
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Fig. 8. (a) Conical object and associated support-line measurements from simulated range-resolved data with ooy = 0.50 m and recon-
structions using (b) NUa, (¢) BNGON, and (d) BNGONROT.

with a height of 200 cm, a radius of 25 cm, and Lambertian
reflectance characteristics. The cone is positioned with
the center of its base at the origin of a coordinate frame
and is oriented such that its axis of symmetry lies in the
xy plane. In order to be resolved in Doppler, the cone
rotates in the xy plane about the z axis at one revolution
per second in a manner resembling end-over-end tumble.
Measurements are taken at an instant in time when the
cone’s axis is aligned with the frame’s x axis, at 72 as-
pects uniformly spaced around the great circle of radius
10,000 m in the xy plane, and with a resolution of 2 cm for
the range data and a resolution of 3.750 kHz for the
Doppler data.

To reconstruct the targets we first locate the knots by
the Kalman filtering technique described in Subsec-
tion 4C and convert them to support values. If knot-
location errors and registration errors for each aspect are
modeled by statistically independent samples from zero-
mean Gaussian distributions with variances o® and o,
the effective measurement error is Gaussian with variance
Oei? = O’ + Org” for range-resolved data. However, for
Doppler-resolved data at an even number of uniformly
spaced aspects, (i) registration errors for aspects 180°
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apart are negatives of each other and (ii) the duplicate
support-value measurements provided by aspects 180°
apart are averaged. As a result, the knot-location error
may be modeled by drawing samples from a Gaussian dis-
tribution with variance ¢?/2 for each aspect. The regis-
tration error may be obtained by drawing samples from a
Gaussian distribution with variance o..>/2 for aspects 6,
62,...,0u2 and using the negatives of these samples for
the aspects Ouz+1,0m2+2,-..,0u. The effective measure-
ment error is given by the sum of these two errors for
each aspect.

The support lines resulting from locating knots and cor-
rupting the support values by measurement noise are
shown in Fig. 8(a) for range-resolved data with noise level
et = 0.50 m. The reconstructions produced by Nua,
BNGON, and BNGONROT from this set of noisy support-line
measurements are shown in Figs. 8(b)—8(d). The display
conventions of this figure will be used throughout this sec-
tion. The reconstructions exhibit behavior similar to that
seen for the standard-triangle reconstructions of Subsec-
tions 3.A-3.C. In particular, the prior knowledge of rela-
tive reconstruction angles allows BNGONROT to outperform
NUA dramatically but does not cause it to underperform
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BNGON significantly, since BNGON uses absolute-angle infor-
mation. Also, the quality of the reconstructions is rather
impressive in light of the fact that the noise level is so
high, having a standard deviation equal to the full width
of the target. The corresponding results for the Doppler-
resolved measurements arising from knot-location error
(0w = 0.25 m) and registration error (o, = 0.25 m) are
shown in Fig. 9.

The next example is one of reconstructing a triconic tar-
get with a height of 203 cm and a base radius of 39.5 cm
(shown outlined in Fig. 10), given laboratory range-resolved
measurements. The laboratory measurements were
taken on a 10-m indoor range at 72 uniformly spaced as-
pects in the horizontal plane containing the target’s axis
of symmetry, with a range resolution of 1 cm. See Ref. 8
for details of the experimental setup. Support lines and
reconstructions using the three estimators are shown in
Fig. 10 for the uncorrupted laboratory data and in Fig. 11
for the laboratory data corrupted by adding additional
knot-location errors with oo = 0.25 m. Note that the
uncorrupted laboratory data did contain some modest
amount of noise, resulting in some errors in knot location.
However, in a real system somewhat larger errors than are
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Fig. 9. (a) Conical object and associated support-line measurements from simulated Doppler-resolved data with 0w = o = 0.25 m and

reconstructions using (b) NUa, (¢) BNGON, and (d) BNGONROT.
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Fig. 10. (a) Triconic object and associated support-line measurements from laboratory range-resolved data with o = 0 m and recon-

structions using (b) NUa, (c) BNGON, and (d) BNGONROT.

present in this controlled laboratory environment would
be expected, and this provided the motivation for examin-
ing the effect of additional knot uncertainty in Fig. 11.
(Note that the o value chosen is significant with respect
to the target base radius). Also, since the target is not
convex, support values using BNGON and BNGONROT are re-
constructed at five angles corresponding to the sides of
the convex hull of the target.

Finally, we present reconstructions from Doppler-
resolved field measurements. The target, a scaled alu-
minum model of the Thor-Delta rocket body [shown
outlined in Fig. 12(a)], was rotated at approximately
1 rpm about an axis normal to its axis of symmetry. The
measurements, taken at 72 aspects in a plane normal to
the rotation axis, were made by using a 10.6-um CO
narrow-band laser radar on a 5.4-km ground range and
had a Doppler resolution of approximately 200 Hz. De-
tails of the experiment may be found in Ref. 8. Support
lines and reconstructions produced by the three algo-
rithms are shown in Fig. 12 for the uncorrupted data and
in Fig. 13 for the field data corrupted with measurement
noise (o = 0.10 and o+, = 0.10). Again, since the target
is not convex, support values using BNGON and BNGONROT

are reconstructed at eight angles corresponding to the
sides of the convex hull of the target.

B. Comparison with and Improvements to Tomographic
Imaging Methods

In previous work standard methods of tomographic image
reconstruction?® were applied to range-resolved and
Doppler-resolved laser-radar data.3'® In this subsection
we compare the convex-set reconstructions of Subsec-
tion 5.A with reconstructions produced by using the
tomographic methods. We then examine the effect of
registration errors on both methods. As we shall see, the
present algorithms are robust to registration errors, in
contrast to tomographic reconstructions, which are rather
sensitive to these errors. Finally, we show that the ro-
bustness of the present algorithms can be used to improve
dramatically tomographic reconstructions from data with
registration errors.

All the tomographic reconstructions in this sub-
section were obtained by using the standard method of
filtered backprojection. (See Ref. 26 for methods of
transmission tomography, and see Refs. 8 and 18 and
the references contained therein for the application of
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these methods to laser-radar reflective data.) Parts (a) of
Figs. 14-17 show filtered backprojection reconstructions
from the four data sets (free of registration errors) used in
Subsection 5.A. It should be noted that we thresholded
the Doppler data sets before backprojecting them in order
to improve the tomographic reconstructions. This is nec-
essary since typically the high intensities are near the
center of a Doppler spectrum and tend to give rise to a
dominant high-intensity region in the center of the re-
construction. Incidentally, we threshold the data sets
before backprojecting rather than thresholding the recon-
structed images themselves, since the former approach ap-
pears to yield better results.

Unlike the convex set reconstructions [shown in
parts (b)-(d) of Figs. 8-13], the tomographic reconstruc-
tions contain intensity information within the outline of
the target. Furthermore, the tomographic images differ
from their convex-set counterparts in that they do not
provide direct size or shape estimates of the target. Al-
though, in principle, techniques for extracting edge and
shape information could be used, the usual difficulties as-
sociated with image processing would be faced. This is
especially true of reconstructions arising from Doppler
data, where, for reasons suggested in Subsection 4.C and
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described and demonstrated in Ref. 23, reconstructed
edges are not highlighted but are instead overwhelmed by
the high intensities that are reconstructed in the interior
of the target. Even if thresholding is used as mentioned
above, edges in the reconstructions from Doppler data are
not sufficiently highlighted.

Like the convex-set algorithms, tomographic techniques
require knowledge of a common reference point without
which registration errors occur. The introduction of reg-
istration errors in the data has disastrous effects on the
tomographic reconstructions that result. Parts (b) of
Figs. 14-17 show the tomographic reconstructions result-
ing from shifting the data in each spectrum by an amount
given by a zero-mean Gaussian random variable with
standard deviation o, = 0.50, 0.25, 0.25, and 0.10 m
(with the shifts for the spectra being independent of one
another except for the Doppler data sets, for which shifts
for aspects 180° apart are negatives) and then using fil-
tered back-projection. Clearly, one cannot expect any
image-processing algorithm to extract shape information
successfully from the tomographic images in these figures.

In contrast, the convex-set algorithms are rather robust
to registration errors. This is seen from the reconstruc-
tions shown in parts (b)-(d) of Figs. 8, 9, 11, and 13, which
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Fig. 11.
structions using (b) Nua, (c) BNGON, and (d) BNGONROT.

(a) Triconic object and associated support-line measurements from laboratory range-resolved data with o = 0.25 m and recon-
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Fig. 12. (a) Thor-Delta rocket body and associated support-line measurements from field Doppler-resolved data with o = ore = 0 m

and reconstructions using (b) NUa, (c) BNGON, and (d) BNGONROT.

were obtained from data suffering from registration errors
identical to those used for the tomographic reconstruc-
tions (i.e., the same noise realizations were used) and from
knot-location errors with the same standard deviations
as above.

The difference in the robustness of tomographic and
convex-set methods to registration errors is due to the fact
that the convex-set algorithms attempt to register the
data in the reconstruction process by using implicit infor-
mation about the consistency of the measurements. That
is, in adjusting the support values to achieve consistency,
the algorithms are essentially shifting each range or
Doppler spectrum such that the sum of the squares of the
shifts is minimal and such that the set of shifted laser-
radar data is registered data for some target.

In fact, we may exploit this registering property of the
convex-set algorithms as an aid to tomography for data
sets with registration errors. Specifically, we start with
a possibly inconsistent set of measured support values {y.},
which are estimated from the laser-radar data by knot lo-
cation. If we have no prior information about the target’s
shape, we use Nua to obtain a consistent set of support
values {h;}. If we have prior shape information, we use

BNGON Or BNGONROT to estimate a consistent set of support
values at the reconstruction angles and then sample the
(piecewise-sinusoidal) support function of the recon-
structed polygon at the measurement angles to yield a
consistent set of support values {h;}. Then, given the {h;}
and {y;}, we shift the ith range or Doppler spectrum by an
amount h; — y,, for all values of i. The resulting regis-
tered data set is then processed tomographically by fil-
tered back-projection.

Parts (c) and (d) of Figs. 14 and 15, parts (c)-(e) of
Fig. 16, and part (c¢) of Fig. 17 show the tomographic
reconstructions that result from this process. The tomo-
graphic reconstructions resulting from preprocessing by
each of the three convex-set algorithms are not included in
some of the figures. In the cases for which the recon-
struction corresponding to BNGON was omitted, it could not
be distinguished from that corresponding to BNGONROT. In
the case for which reconstructions for both BNGON and
BNGONROT were omitted, they were indistinguishable from
that corresponding to Nua. Clearly, when the various
images within each of Figs. 14-17 are compared, the im-
provement obtained by using the registration-correction
method is dramatic.
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6. SUMMARY AND SUGGESTIONS FOR
FURTHER WORK

In this paper we first developed and studied several tech-
niques for estimating convex sets from a set of noisy
support-line measurements. The basic approach to these
methods involves reconstructing a polygon close to the
measurements while enforcing a consistency condition and
using prior information, if available. The algorithms are
computationally feasible, with two of the estimators result-
ing in QP problems and the third having a QP core. The
performance of the algorithms was assessed with respect
to several parameters. As expected, if accurate prior in-
formation is available, then BNGON and BNGONROT substan-
tially outperform nua. The performance of BNGONROT is
comparable with that of BNGON, and BNGONROT eliminates
the need for prior orientation information. Its ability to
provide orientation estimates may be useful in certain
applications.

We also introduced the use of these methods for recon-
structing targets from resolved laser-radar data. The
reconstruction process consists of first extracting support-
line measurements from the data and then producing a
shape estimate by using the convex-set estimation tech-
niques. The application of these techniques to laser-radar
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data obtained through simulated, laboratory, and field
measurements was demonstrated. The reconstructions
obtained were compared with those produced by tomo-
graphic imaging methods, and this comparison resulted in
the following observations. First, shape estimates are ex-
plicitly provided by our algorithms, whereas tomographic
images can provide target-shape information only after
the use of image-processing techniques with their atten-
dant difficulties. Second, we investigated the effects of
registration error on both methods and found that the to-
mographic methods experience substantial degradation,
unlike the present methods, which are rather robust.
These observations motivated us, in an effort to improve
the quality of tomographic images, to exploit the tendency
of our algorithms to correct unregistered data.

Our reconstruction algorithms might be extended in a
variety of ways. One such extension may consist of devel-
oping more general formulations of the best N-gon algo-
rithm, so that less stringent prior shape information could
be used. For example, one might consider a formulation
in which only the number but not the values of the re-
costruction angles are specified. A more general formu-
lation might leave both the number and the values of the
reconstruction angles unspecified but would penalize
larger numbers of reconstruction angles. Also, it may be
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Fig. 13. (a) Thor-Delta rocket body and associated support-line measurements from field Doppler-resolved data with gy = oreg = 0.10 m
and reconstructions using (b) NUa, (¢) BNGON, and (d) BNGONROT.
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Fig. 14. Tomographic reconstructions from range-resolved measurements of a conical object with oyr = 0.50 m from (a) data without
registration errors, (b) data with registration errors, (¢) data with registration errors corrected by Nus, and (d) data with registration er-

rors corrected by BNGONROT.

interesting to develop algorithms that provide smooth,
rather than polygonal, shape estimates of objects. Incor-
porating the effects of noise into the measurement angles
may be useful in some applications. Another useful gen-
eralization would be to extend the algorithms to three
dimensions.

There are several possibly interesting extensions re-
garding the application to laser-radar data. After the re-
striction that aspects lie in a plane is relaxed (i.e., when
general aspects are permitted in three dimensions), shape
estimates of a target (rather than those of its projection
onto a plane) will be obtained. In addition, the applica-
tion of our methods to two-dimensional laser-radar data
resolved in both range and Doppler may provide three-
dimensional target-shape estimates. Extending the view-
ing geometry to allow bistatic observations might prove
useful as well.

APPENDIX A: PERIMETER BIAS IN THE
ESTIMATOR

The convex-set reconstruction algorithms described in this
paper produce estimates that appear on average larger
than the true object. Here we point out the origin of this
bias for Nua and quantify it through a Monte Carlo ap-
proach when the true objects are ellipses.

If the noisy support vectory = h + n lies in the support
cone %, then the NUA estimate is given simply by h =
On the other hand, if y € %, then the estimation proce-
dure consists of projecting y onto ¢ to yield the estimate
h = P;(y) [see Fig. 3(b)].

Some quantitative measure of the size of a reconstructed
object is necessary for discussing bias in the estimator,
One such measure is the magnitude of the projection of A
onto the vector e = [11...1]7, where the projection is
denoted by P,(h). This quantity is proportional (with pro-
portionality constant VM) to the perimeter of the re-
constructed set, since the perlmeter of a set having
support function £(6) is given by [2"h(6)d6, an expression
whose discrete counterpart is (1/M}h e = (1/M) El-lh =
(1/V/M ) Py(k) for a set having support vector £ with uni-
formly spaced measurements.

Since it is not possible to illustrate the M-dimensional
support cone for meaningful values of M (i.e., M = 5), we
use a two-dimensional illustration to provide the basic
idea. Note that the vector e defines the center axis of the
support cone. Thus consider the geometry of Fig. 18.
Here the cone boundaries are given by the two heavier
lines, and e is the center axis. The measurement is given
by yo = h + ny, where n, is zero-mean noise and h is some
point in the cone. In the case illustrated, y, is not in the
cone, and the Nvua algorithm yields the estimate hy =
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Py(y0). Note that P;[Pi(yo)] > Pi(yo), i.e., the estimate in
this case has a larger projection ontoe. Thus,ifwelet A =
P,(h), let pn(n,) denote the Gaussian-noise probability-
density function, and let u denote the expected value of
Py[ Py(y0)], then

I =j Py(h + ng)pa(no)dng
h+ng valid
+ | PAPi(h + no)lpa(ro)dno
h+ng invalid
> [ Bk + no)paeoddng
K itg valid
+ I Pa(h + no)pa(no)dne
h+ng invalid

= f Py(h + nu)Pn(ﬂn)d"u = A, (19)
all h+nyp

where the last equality follows from n, being zero mean.
Also, as the variance of the noise increases, a larger
fraction of the noisy support vectors are invalid ones.

(@

(b)

Fig. 15. Tomographic reconstructions from Doppler-resolved measurements of a conical object with ow = o
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Consequently, the bias is an increasing function of noise
variance. We refer the reader to Ref. 14 for a quantitative
evaluation of the bias based on Monte Carlo simulations.

APPENDIX B: DERIVATION OF LOWER
BOUND ON ERROR VARIANCE OF
ORIENTATION ESTIMATE

As in all nonlinear estimation problems, the CRB' pro-
vides a lower bound on estimation-error variances. In
principle, in the problem of interest here we need to con-
sider the joint estimation of all the support values {h4(¢:)}
as well as the orientation angle «. However, since we
wish to focus here on accuracy in estimating a, for sim-
plicity let us look at the case in which the {hy(¢;)} are
known. The CRB for this problem obviously provides a
lower bound on orientation-error variance for the original
problem in which the {h(¢;)} must be estimated as well.
For our simpler problem the observation vector is given by
y = h(a) + n, where n ~ N(0,0°]) and the ith component
of h(a) is the true support value induced at 6, when the
object has an offset of «, as given by Eq. (11). The CRB
on the error variance of any unbiased estimate of «a is

©

(d)

= 0.256 m from (a) data

without registration errors, (b) data with registration errors, (c) data with registration errors corrected by Nua, and (d) data with registra-

tion errors corrected by BNGONROT.
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(@)

©

Fig. 17. Tomographic reconstructions from field Doppler-
resolved measurements of a cone with oy = o, = 0.10 m from
(a) data without registration errors, (b) data with registration er-
rors, and (¢) data with registration errors corrected by NUaA.

Py (Py(¥e))
Pa(ye)

Fig. 18. Support-cone geometry illustrating the fact that
Py[ Py(¥p)] is farther along e than is P,(yy), leading to bias in the
estimator.
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take the estimation-error variance when a global error
occurs as the constant value (180°)%

Thus we have characterized the estimation-error vari-
ance var(e — &|a.) for the low-noise and high-noise
regimes. For intermediate noise levels the error variance
can be approximated, as in Ref. 17, by a linear combina-
tion of the error variances in the low-o and high-o cases,
where the weighting function is the probability of anom-
aly, or global error Pr(A), as a function of & For the stan-
dard triangle we may approximate this probability by
formulating a binary-hypothesis-testing problem in which
the two hypotheses are a = 90° (zero error) and a = 270°
(180° global error). Using standard results on Gaussian
binary hypothesis testing,'” we find that the resulting
probability of anomaly is given by

VH 1 ~H
Pr(A) = Q(Q—fr) = r exp(gog) * (21)

Here Q(x) = [*.p.(ng)dn, and H is the norm square of
the difference in the means of the support-vector measure-
ments under the two hypotheses. That is,

H = [h(270°) — R(90°)]"[A(270°) — h(90°)]. (22)

Combining these results yields the orientation-error vari-
ance, formula (17).
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