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Internal Models and Recursive Estimation 
for 2-D Isotropic Random Fields 

Ahmed H. Tewfik, Member, IEEE, Bernard C. Levy, and Alan S. Willsky, Fellow, IEEE 

Abstract -Efficient recursive smoothing algorithms are devel- 
oped for isotropic random fields that can be obtained by passing 
white noise through rational filters. The 2-D estimation problem 
is shown to be equivalent to a countably infinite set of I-D 
separable two-point boundary value smoothing problems. The 
1-D smoothing problems are solved using a Markovianization 
approach followed by a standard I-D smoothing algorithm. The 
desired field estimate is then obtained as a properly weighted 
sum of the 1-D smoothed estimates. The 1-D two-point boundary 
value problems are also shown to have the same asymptotic 
properties and yield a stable spectral factorization of the power 
spectrum of the isotropic random fields. 

Index Terms -Stochastic processes, Markov processes, inno- 
vations methods, Fourier series, recursive estimation, random 
fields, stochastic differential equations, multidimensional 
stochastic processes, multidimensional signal processing, filter- 
ing, smoothing methods, modeling. 

I .  INTRODUCTION 
ROBLEMS involving spatially-distributed data and P phenomena arise in various fields including image 

processing, meteorology, geophysical signal processing, 
oceanography and optical processing. A major challenge 
in any such problem is to develop algorithms capable of 
dealing effectively with the increased computational com- 
plexity of multidimensional problems and that can be 
implemented in a recursive fashion. In one dimension the 
ways in which data can be organized for efficient process- 
ing are extremely limited and causality typically provides 
a natural choice. Furthermore, in one dimension, internal 
differential realizations of random processes were ex- 
ploited to develop an efficient estimation algorithm, 
namely the Kalman filtering technique. This has led re- 
searchers in estimation theory to investigate the extension 
of 1-D Kalman filtering and smoothing methods to non- 
causal 2-D random fields. The work of Woods and 
Radewan [ll, Habibi [21, Attassi [31, Jain and Angel [4], 
Wong [51, Ogier and Wong [61 to name a few, has shown 
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that such extensions do exist. However, the methods 
developed by these researchers are either approximate or 
can be applied only to a limited class of 2-D fields, 
namely to fields that can be described by hyperboIic 
partial differential equations, and which therefore are 
causal in some sense. 

Note that, unlike one dimension, the most natural 
estimation problem in higher dimensions is the smoothing 
problem, rather than the causal filtering problem. This is 
because in higher dimensions, the filtering problem re- 
quires an artificial partition of the data between past and 
future, whereas the smoothing problem does not assume 
any causal ordering of the data. The smoothing problem 
for 2-D random fields has been studied from an 
input-output point of view by Ramm [7] and by Levy and 
Tsitsiklis [81 among others. In particular, Ramm studied 
the integral equation governing the optimal linear filter 
for estimating a general random field given some observa- 
tions, while Levy and Tsitsiklis developed efficient Levin- 
son-like recursions for computing the optimal smoothing 
filter for the case where both the field of interest and the 
observations are jointly isotropic. 

The objective of this paper is to study the smoothing 
problem for a class of random fields that have noncausal 
internal differential realizations but which also have 
enough structure to allow the development of efficient 
recursive smoothing algorithms. Specifically, in this paper 
we investigate efficient recursive smoothing techniques 
for isotropic random fields z(T)' that can be represented 
as the output of rational 2-D filters driven by white noise, 
and which admit therefore simple internal differential 
models. Isotropic fields are characterized by the fact that 
their mean value is a constant independent of position 
and their autocovariance function is invariant under all 
rigid body motions, i.e., under translations and rotations. 
In some sense, isotropy is the natural extension of the 
notion of stationarity in one dimension. Furthermore, 
isotropic random fields arise in a number of practical 
problems such as the black body radiation problem [9], 
the study of underwater ambient noise in horizontal planes 
parallel to the surface of the ocean [lo], and the investiga- 
tion of temperature and pressure distributions at constant 
altitude in the atmosphere [Ill. 

'Throughout this paper we use 7 to denote a point in 2-D Cartesian 
space. The polar coordinates of this point are denoted by r and 0. 
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We show that the class of random fields that can be 
represented as the output of rational 2-D filters driven by 
white noise may be described in an input-output sense in 
terms of a 2-D filter whose impulse response is a modi- 
fied matrix Bessel function of the second kind and order 
zero. Furthermore, they admit an internal realization that 
involves the Laplacian operator. The motivation for study- 
ing this class of fields is that it can be used to describe a 
variety of physical phenomena such as the variation of the 
electric potential created by a random charge distribution. 

An important property of 2-D isotropic fields is that 
when they are expanded in a Fourier series in terms 
of the polar coordinate angle 0, the Fourier coefficient 
processes of different orders are uncorrelated [12, p. 51. 
Using the input-output model of the process z(r'), 1-D 
state space two-point boundary value (TPBV) models are 
constructed for the Fourier coefficient processes. Those 
models are then used to derive a 2-D space-invariant 
differential model with appropriate boundary condition 
for z(r') over a finite disk of radius R. Given noisy 
observations of the isotropic random field z ( 3  over the 
disk of radius R,  our approach is to reduce the 2-D 
smoothing problem to a countable set of decoupled 1-D 
smoothing problems for the uncorrelated Fourier coeffi- 
cient processes z k ( r )  corresponding to the process ~ ( 7 ) .  
The resulting 1-D TPBV smoothing problems are then 
solved using a Markovianization technique that trans- 
forms the noncausal model to a causal one to which 
standard 1-D smoothing techniques can be applied. Fi- 
nally, the best linear least squares estimate of z(F) given 
the observations is obtained as a properly weighted com- 
bination of the 1-D smoothed estimates of all the Fourier 
coefficient processes z k ( r ) .  Observe that by properly ex- 
ploiting the structure of isotropic random fields, a recur- 
sive solution to the smoothing problem for a noncausal 
isotropic process has thus been constructed. The recur- 
sions here are with respect to the radius r in a polar 
coordinate representation of the fields. 

We also study the asymptotic properties of the 1-D 
causal state space Markovian models of the Fourier coef- 
ficient processes. Specifically, we show that all models 
tend asymptotically to the same space-invariant stable 
model regardless of the particular order of the Fourier 
coefficient which they describe. Furthermore, each model 
yields asymptotically a stable spectral factorization for the 
original isotropic field z(r'). 

This paper is organized as follows. In Section 11, we 
introduce an input-output model and an equivalent dif- 
ferential model for the class of 2-D isotropic fields to be 
studied. In Section 111, two-point boundary value models 
are developed to describe the 1-D Fourier coefficient 
processes corresponding to fields in the class that we 
study. Those models are then used to show that the fields 
that we consider can be described over a finite disk by a 
space-invariant differential model with appropriate 
boundary conditions. The smoothing problem for the 
isotropic random field z(F) given noisy measurements 
over a disk of radius R is defined and reduced to a 

countably infinite set of decoupled 1-D estimation prob- 
lem using Fourier series expansions in Section IV. The 
1-D smoothing problems are then solved using a Marko- 
vianization approach. Finally, Section V studies the 
asymptotic properties of the Markovian models corre- 
sponding to the Fourier coefficients of the signal. The 
Markovian models are shown to have the same stable 
space-invariant form and yield a stable spectral factoriza- 
tion for the signal process. 

11. RANDOM FIELD MODEL 
A.  Input -Output Model 

Isotropic random fields that can be obtained by passing 
white noise through rational rotationally symmetric filters 
can be described in several ways. Here, our starting point 
will be an input-output description of such fields in terms 
of a multidimensional Wiener integral. Specifically, the 
random fields z(?) considered in this paper are described 
over the plane R 2  by 

1 
X (  7)  = - - KO( A l7 -  ?()Bu( 3)  d?, FE R 2 ,  

257 R2 

where dT'=ak'dy' denotes an element of area. In 
(2.1142.21, x ( ~ ) ) E  R", z(F')E R P ,  and U ( ? ) €  R" is a 
random zero-mean two-dimensional white Gaussian noise 
process with 

(2.3) E [  U (  ? ) U T (  s')] = Zm6( r'- s'), 

where 1, is the m Xm identity matrix. The matrices 
K,(Ar) ,  B ,  and C are real matrices of appropriate dimen- 
sions. In particular, K, (Ar )  denotes a matrix modified 
Bessel function of the second kind and of order zero [131. 
Matrix modified Bessel functions of the first and second 
kinds arise naturally in the study of rational isotropic 
random fields. A brief discussion of some of their proper- 
ties appears in Appendix A. (For more details see [13] 
and the references therein.) In (2.1) the eigenvalues of 
the n X l  real matrix A are assumed to have strictly 
positive real parts. This insures that the 2-D shaping filter 
KO( A r )  is square-integrable. Furthermore, it guarantees 
that for any measurable and square-integrable n-vector 
f ( r ' ) ,  r' E R 2 ,  the Gaussian random variable 
l R z  f ' ( r ' )x ( r ' )  dr' has finite variance. Here, f T(r'> denotes 
the transpose of f(r'). The main property of the process 
x(F) defined by (2.1) is that it is a 2-D rational isotropic 
random field as is shown in Theorem 1. 

Theorem I :  The process x(F) defined by (2.1) is an 
isotropic random field, i.e., its autocorrelation function 
R J F ,  s') = E[x(r')xT(S-)]  is invariant under translations 
and rotations. 
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Proof: We will first show that R,(F,s') is invariant 
under translation. From (2.1) we have 

R,( F, s') = E [  x (  F)xT(  Z)] (2.4) 

Now perform the transformation 

i7= u'+ h' (2.6) 
to obtain 

R,( F, s') = 7 / K,T( A(?+ h - $1) 1 + 

47T R2 

*BBTK,( A\$+ h'- $ 1 )  di7. (2.7) 

This shows that R J F ,  s') is invariant under translation. 
Using this fact, we can write 

Rx(F,s ' )  = R,(i?,O), (2.8) 
where U'= 7- St Hence, 

* BBTK,T( Au) du', (2.10) 

where U'= (U,+) and u'= (U, e). Letting a = 4 - 8, we 
conclude from (2.10) and the periodicity of cos a that 

1 
R,( F, s') = 2 j Z T j m K , (  A( u 2  + u2 - 2uu cos a y 2 )  

4%- 0 0 

*BBTK,T( Au)ududa .  (2.11) 

Theorem 1 implies also that the output process z(F) is 
isotropic with autocorrelation function 

R,( 7, Z) = CR,( F, Z)C? (2.12) 

Since R,(.) is translation-invariant we can define its 
spectral density matrix S,(A), which is the 2-D Fourier 
transform of RJF): 

S,(T) = / ?,( F)e-'i'r*dF (2.13) 

= 2 5 ~ / ~ R , (  r)J,(  Ar)rdr (2.14) 

= (A2Zn + M)-'BBT(A2Zn + AIT)- '  (2.15) 

= S,( A )  3 (2.16) 

where we have taken advantage of the circular symmetry 
of R,(F) and M = A2.+0bserve that SJA) is rational in 
A ,  the magnitude of A .  Furthermore, the poles of the 
spectrum S,(A), obtained by setting p = j A  in (2.151, have 
a quadrantal symmetry property when plotted in the 
complex p-plane. 

R 

0 

B. Differential Model 

To develop an internal realization for the field z(F) we 
shalI need the notion of a generalized random field. We 
define a generalized random field as follows. Let 
( R , d , P )  be a probability space and 3?(Rd)  be the 
Schwartz space of n-vector functions on Rd, d 2 1, with 
square-integrable derivatives of all orders. Furthermore, 
let X ( R d )  be the family of generalized functions on 
X ( R d ) ,  i.e., the family of all linear functionals continu- 
ous in the topology of X. 

By a generalized n x 1 vector random field z(F',w), 
FE Rd,  w E R, we mean that the mapping z(f, W )  = 
( f ,  z )  = / , , fT(F)z(F,o)dF from 3?(Rd)X R to R' is 
such that 

1) z ( f , w )  is a random variable with a finite variance 

2) z (  .) E Z ( R d )  with probability one. 

The correlation functional of z(  f ,  w )  is defined as the 

for every f E x ( R ~ ) ,  

bilinear functional 

In particular, for an isotropic generalized random field 

K,(F,s ' )  = K*(Ir'-d), 
i.e., K , ( - )  is invariant under rotation and translation. 
Note that any mean-square continuous isotropic random 
field with a finite variance is also a generalized isotropic 
random field in this sense. 

For ~ ( f ,  w )  = ( f ,  z )  we define the operation of differ- 
entiation as it is usually defined for ordinary generalized 
functions: 

Dk'Z( f ,  w )  = ( - l)Ik'(Dk'f, z ) ,  
where 

r'= ( r ,  , . . . , r d )  E Rd 
+ 
k = ( k , ,  . . . , k d )  

lZl= k ,  + . . . + k, .  

By abuse of notation we use Dk'z(F,w) to denote the 
generalized derivative of z(F, w )  that may not exist in any 
usual sense. In particular, D k z ( F , w )  has to be inter- 
preted as meaning that the mapping 

&( f ,  w )  = ( f ,  DkZ) = ( - l ) ' k ' ( D L f ,  2 )  

is a random variable with a finite variance for every 
f E 3?(Rd) .  Note that in the previous equation the first 
equality only makes sense when interpreted according to 
the second equality. 

Now recall that in 1-D stationary random processes 
that can be obtained by passing white noise through 
rational 1-D stable filters have time-invariant state space 
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models over the real axis. An analog result holds for the rational stable and proper 2-D circularly symmetric linear 
class of isotropic random fields that we are studying. filter has a realization of the form (2.1M2.2) or 
Specifically, the random field x(F) in (2.1) is a general- (2.17)-(2.18). 
ized solution [14] of the stochastic equation Proof: Consider the scalar generalized 2-D random 

(ZJ’ - A’)x( F) = Bu( y‘) (2.17) field z ( 7 )  that satisfies the partial differential equation 

z(F)=Cx(y’). (2.18) 

In (2.17), Vzx(F) has to be interpreted as previously 
indicated. 

More precisely, let Lt = (Z,V’ - A Z T )  be the adjoint of 
the operator L = (ZJ’ - A’). x(F) is a solution of the 
stochastic differential equation (2.17) in the sense that for 
any vector f ( F )  E X ( R 2 )  the Gaussian random variables 
u1  = (Lt f ,  x ) ,  and u2 = ( f ,  Bu)  are equal with probability 
one. Indeed, using the facts that 

( Ltf, g ) = ( f , Ls ) > f , g E L2 ( R2 ) 7 (2.19) 
1 

2 T  
(ZJ’ - A’) -KO( AIF- sil) = Zn6( 7- 3) , (2.20) 

we find by direct substitution that 

E[( U1 - 4 1  = 0, 

E [ (  u1  - v’)’] = 0 .  

Note that x(F) is not the unique 
(2.17). In fact, the isotropic process 

P (  a ,  L) z (  F) = Q (  a ,  ar ,  “ ) U (  ar ,  F), (2.24) 
a r ,  a r ,  

where 477 is a 2-D white noise process of intensity Z,. 
Here, P(sl,s2) and Q(sl,s,) are 2-D polynomials in the 
variables s1 and s2. Equation (2.24) imglies that z(F) is 
the output of a rational 2-D filter H ( A )  driven by the 
noise process U(?) ,  where 

The spectrum of z(F) is given by 
7 

(2.25) 

s,(q = J H ( i y .  (2.26) 

In [12, p. 231, Yadrenko shows that the process z(F) is 
isotropic if and only if the 2-D polynomials P ( . ,  .) and 
e(*, .) are functions of A =(A: + only, i.e., if P ( . ,  .) 
and e(-, -1 are of the form 

(2.21) 

(2.22) 

weak solution of n 

P ( j A l , j A z ) =  p,(-A’),=P(-A’),  (2.27) 
k = O  

where Z,(Ar) denotes a matrix modified Bessel function 
of the first kind and of order zero [131, is also a weak 
solution in the above sense. However the covariance of 
y ( 7 )  is not well behaved at infinity. In particular, y ( 7 )  
does not define a valid generalized isotropic random field 
since there exists f ( . ) ~  X ( R 2 )  such that the random 
variable ( f ,  y )  has an infinite variance (e.g., for f ( F )  = 
Cr, A = a2 > 1, LYE R ,  and B = 1). Note also that while 
in 2-D the weak solution x(?) of (2.17) is an ordinary 
random field that is not mean-square differentiable (i.e., 
all the derivatives of x(F7 are generalized random fields), 
an examination. of the power spectrum of each weak 
solution of (2.17) in M-D reveals that all the weak solu- 
tion of (2.17) in dimension higher than 2 (i.e., in Rm, 
m > 2) are generalized random fields. 

C. Motivation 

The motivation for considering models (2.1H2.3) or 
(2.17)-(2.18) is that they can be used to describe a large 
class of physical phenomena such as the variation of the 
electric potential created by a uniformly distributed ran- 
dom sources in a lossy medium, where the loss is de- 
scribed here by A’. Another important motivation for 
considering such a model is as follows. 

Theorem 2: Any generalized isotropic random process 
that is obtained by passing 2-D white noise through a 

Q ( j A , , j A , )  = 5 qk( - = Q( - A’). (2.28) 
k = O  

In this case, the model (2.24) reduces to 

P ( V ’ ) z ( 7’) = Q ( V ’ ) u ( F) . (2.29) 

Furthermore, if n > 4 ,  we can compute a stable spectral 
factorization of s=(- A’)= IH(- A ’ ) I ~  

Q( - A’) 
H (  - A’) = ~ 

P(  - A’) 
(2.30) 

= C( - A’Z, - A’)-IB,  (2.31) 

where the eigenvalues of A have strictly positive real 
parts. This condition is necessary to insure that for any 
measurable and square integrable scalar function JTF) 
the Gaussian random variable ( f ,  2) has finite variance, 
where 

L 
z ( F )  = - -1 h ( 7 -  ?)Bu( ?) d?, FE R’, (2.32) 

and h(F)  is the inverse Fourier transform of H ( 2 ) .  Using 
any of the standard 1-D state-space realization techniques 
with the variable s replaced by A’ and the operator d / dt 
by the operator V2, we can obtain a state space realiza- 
tion of z(?) in the form (2.17)-(2.18) or an input-output 

0 
We see therefore that the class of random fields with 

the representation (2.1)-(2.2) or (2.17)-(2.18) is quite 
large. 

2 r  R2 

representation of the form (2.0-42.2). 

- 

- 1  
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111. FOURIER SERIES COEFFICIENTS 
An important property of 2-D isotropic fields is that 

when they are expanded in a Fourier series in terms 
of the polar coordinate angle 8, the Fourier coefficient 
processes of different orders are uncorrelated [12, p. 51. 
Specifically, any isotropic random field fc.1 can be ex- 
panded in a series of the form 

m 

k = - m  

where the equality holds in the mean square sense. In 
(3.1) the kth-order Fourier coefficients process f k ( r )  is a 
1-D nonstationary process given by 

Furthermore, [12, p. 51 

E [ f k  ( r 1 fi“ ( s 11 = ( jR% ( A 1 Jk ( A r ) Jk ( A s )  d A )  %, I 

V r , s .  (3.3) 

Here, f y ( r )  denotes the complex conjugate transpose of 
f , ( r ) ,  Sf(A) is the power spectral density matrix of f(.), 
Jk( ) is a Bessel function of the first kind and order k and 
ak,/  is a Kronecker delta function, i.e., ak, [  = 1 if k = 1 
and ak,[ = 0, otherwise. Thus, by using Fourier series 
expansions of isotropic random fields it is possible to 
reduce the study of any problem involving such fields into 
the study of a countably infinite number of 1-D equivalent 
problems for the Fourier coefficient processes. 

A .  State-Space Models for the Fourier Processes 

Let us now use the model (2.1142.21 for the process 
z( 7’) to construct 1-D state-space two-point boundary 
value models for the Fourier coefficient processes z k ( r )  
over a finite interval [0, RI. Those models will be used in 
the next section to develop recursive solutions to a 
smoothing problem for d*). 

Theorem 3: A two-point boundary value (TPBV) model 
describing z k ( r )  and y k ( r )  over the interval [O, RI is given 
bY 

z k ( r )  = C X k ( r )  (3.6) 

&(O) = 0, with probability 1 (3.7) 

with the boundary conditions 

and 

77k(R) N ( O , n ? p ) )  (3.8) 
with 

1 m  
nVk( R )  = -/ K k (  As)BBTK,T( A s ) s d s .  (3.9) 

2 r  R 

Here, u k ( r )  and u k ( r )  are two one-dimensional zero-mean 
white Gaussian noise processes with covariance 

(3.10) 

In Theorem 3 Z,(Ar) and K , ( A r )  are matrix modified 
Bessel functions of the first and second kind respectively, 
and of order k .  (See Appendix A and [131.) 

Note that the TPBV model dynamics (3.4) are ex- 
tremely simple, consisting of a gain matrix multiplying the 
input noise process u k ( r ) .  This is to be contrasted with 
the more complicated dynamics of an equivalent Marko- 
vian model for z k ( r )  that we shall develop in the next 
section. 

Proof: To derive (3.4)-(3.6), we shall use the follow- 
ing identity [131: 

K,(AJr‘- $1) = C r k ( A r , ) K , ( A r , ) e ’ k ( e - ~ ) ,  (3.11) 

where F=( r ,O) ,  s’=(s,b), r <  =min(r,s), and r ,  = 

max(r, s). Substituting (3.11) into (2.1) we obtain 

k 

.Bu( ?) d?, (3.12) 

Bu( ?) d?))  , (3.13) 

where the second equality holds in the mean-square sense. 
Evaluating the integral with respect to the angular vari- 
able for each term on the right-hand side of (3.13) we 
obtain 

m 

x(F) = x k ( r ) e j k e ,  (3.14) 
k = - m  

where 

x k ( r )  = - K k ( A r ) ~ r z k ( A s ) B u , ( s ) s d s  
0 

- Z,(Ar)/ l ;u,(As)Bu,(s)sds .  (3.15) 
r 

Thus the kth Fourier coefficient of ~ ( 7 ’ )  is xkkr). 

e - j k 8 / 2 7  and integrating from 0 to 27,  we obtain 
Furthermore, upon multiplying both sides of (2.2) by 

(3.16) zk( r )  = Cx,( r ) .  
Define the state variables t k ( r )  and q k ( r )  by 

[ , ( r )  = - / r Z k ( A s ) B u k ( s ) s d s  (3.17) 
0 

and 

q k ( r )  = -lmK,(As)Bu,(s)sds. (3.18) 

1 
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Then, it follows from (3.15)-(3.18) that a TPBV model entia1 equations 

k 2  
describing z k ( r )  over the interval [O,R] is given by the 
system (3.4H3.6). 0 d2X,o +---( d y k ( r )  A2+-1 r 2  ) x k ( r ) = U k ( r ) ,  

dr2 r dr 
B. Differential Random Field Model ouer a Finite Disk 

In 1-D stationary random processes that may be ob- 
tained by passing white noise through rational filters can 
be described over a finite or semi-infinite interval by 
time-invariant state space models with appropriate initial 
conditions. In particular, the initial conditions are chosen 
to guarantee that the covariance of the state space model 
is initially equal to its steady state value. Theorem 3 can 
be used to show that an analog modeling result holds for 
the class (2.1H2.2). Specifically, this class admits an 
internal description of the form (2.17) with appropriate 
boundary conditions as the following theorem indicates. 

Theorem 4: The process x(?) given by (2.1) is the 
unique solution to (2.17) over the disk D, ={E r < R} 
with the boundary conditions 

1) 

E[(c..(F))2] (3.19) 

for any finite norm n-vector c ,  
2) 

m 

= Z,( AR)IITk( R)ZF( AR)e'k'e-4) (3.22) 
k = - m  

with 

I I J R )  = - / " K , ( A , ) B B ' K ~ ( A , ) s d s , .  1 (3.23) 

2 r  R 

Furthermore, 

E [ p ( R , e > ~ ' ( r , 4 ) ]  = 0 ,  for r < R .  (3.24) 

--cc< k <W. (3.25) 

Furthermore, by choosing the state variables 

we find that for each k (3.25) is equivalent to the state 
space model (3.4143.5). 

To derive an initial condition for t k ( r )  and a final 
condition for q k ( r )  we proceed as follows. First observe 
that for k # 0 (3.3) implies that x J 0 )  = 0 with probability 
one. Combining this fact with the asymptotic behavior of 
Z,(Ar) and K J A r )  as r tends to zero (cf. Appendix A) 
we conclude that tk (0)  = 0 with probability one for k # 0. 
Furthermore, (3.19) indicates that each component of 
x ( . )  has a finite variance. In particular, this property 
holds at and near the origin. Now x(0) = xo(0) since for 
k # 0 x,(O) = 0 with probability one. But 

By combining the previous discussion with the asymptotic 
behavior of Z,(Ar) and K, (Ar )  as r tends to zero we 
conclude that to(0)  = 0 with probability one. Hence, tk (0 )  
= 0 with probability one for all k. 

Next observe that for any f ( - )  E X ( R 2 )  the mapping 
$df, w )  can be expressed as 

where the equality holds in the mean-square sense, f k ( r )  
is the kth-order Fourier coefficient of f ( . >  and 

Using this fact, (3.111, and (3.261, it follows that 
m 

p( R , @ )  = Zk( AR)vk(  R ) e J k e ,  (3.30) 
k = - m  

where the equality holds in the mean-square sense. Thus 
(2.17) together with the boundary conditions (3.19)-(3.20) 
over the disk D, is equivalent to the countably infinite 
set of TPBV models (3.4143.5) with the boundary condi- 
tions (3.7H3.8). Since for each k the system (3.4143.5) 
with the boundary conditions (3.71433) has a uniaue 

Here, a / a n  and dl denote respectively the normal 
derivative with respect to r and an infinitesimal 
element of arc length along r. Furthermore, the 
notation ax/an( i+)  has to be interpreted as in Sec- 
tion 11-B. 

Proof: By substituting the Fourier series expansions 
of x ( * )  and U ( . )  into (2.171, we find that (2.17) is equiva- 
lent to the countably infinite set of 1-D stochastic differ- 

solution x k ( r ) ,  we- conclude that (2.17) together with ;he 
boundary conditions (3.19)-(3.20) over the disk has the 
unique solution x ( 7 )  defined in (2.1). 
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Finally, observe that since q k ( R )  depends only on the separable, i.e., the boundary conditions tk (0 )  and q k ( R )  
are decoupled (cf. [15]). Hence, a Markovian model of the values of u, ( r )  with r > R,  (3.30) implies that 

E [ p ( R , e ) u T ( r , 4 > ]  = 0 ,  for r < R .  0 (3.31) 

IV. THE SMOOTHING PROBLEM 
A. Problem Statement 

Let 

y ( F') = Z (  r') + U (  T') , F'E D, (4.1) 
with D, = (Z r I R),  be noisy observations of the isotropic 
field z(F)  defined by the model (2.1)-(2.2). Here, U ( ? )  is 
a two-dimensional white Gaussian noise field of dimen- 
sion p uncorrelated with u(F') and P(R,O), and with 
intensity V ,  where V is a positive definite matrix. Thus, 

same order as the model (3.4)-(3.8) can be constructed 
for x k ( r )  by reversing the direction of propagation of 
qk( r )  using a technique introduced by Verghese and 
Kailath [ 161 for constructing backwards Markovian mod- 
els. Specifically, if we extract the part a , ( r )  of u k ( r )  that 
may be estimated from {qk (s ) ,  0 I s I r ) ,  we find that 

a , ( r )  = ~ [ u ~ ( r ) I q ~ ( s ) ,  O I S S ~ ]  

= E [  U k (  r)rlkH( r ) ]  E [  T k (  r)77kH( r ) ]  - l11k( r )  

where 
1 - m  

nVk(r> = -1 K,(A~)BB'K[(As)s~s. (4.9) 
(4.2) 2 7 ~  r 

(4.4) 

E[u(r ' )uT(s ' )]  =o ,  

E [  U (  F') U'( Z)] = V6( F'- Z) , 

E [ U ( F ' ) P ' ( R , e ) ]  = o ,  (4.3) It may then be shown that the process i i k ( r )  defined as 

f i k (  r )  = U,( r )  - a,( r )  (4.10) 

where a(?) denotes a two-dimensional delta function. is a white process with the same z r n / 2 r r r  as 
U,( r ) .  Substituting (4.10) and (4.8) into (3.4)-(3.8) yields 
the forwards propagating model: The estimation problem that we consider here consists in 

computing the conditional mean 

i ( d ~ )  = E [  Z(F)IY(S'): o 5 s I R I ,  for all FE D ~ .  

Following [8], we shall solve this smoothing problem 
using Fourier series expansions of the observation, signal 
and observation and process noise processes. Substituting 
the Fourier series expansions of y ( . ) ,  d . 1 ,  and U ( . )  into 
(3.1) yields 

y k ( r )  = z , ( r ) +  u k ( r ) ,  O s r  I R.  (4.6) 

Since the Fourier coefficient process of different orders 
are uncorrelated our original two-dimensional estimation 
problem requires only the solution of a countable set of 
decoupled 1-D smoothing problems for the Fourier coef- 
ficient process z k ( r )  given the observations y,(s) over the 
interval 0 I s I R. Once the smoothed estimates i,(rIR) 
= E [ z k ( r ) I y k ( s ) :  0 I s I RI are found, i ( d R )  may be 
computed as 

with 

E 

(4.12) 

(4.15) 

m and where 
(4.7) Gk( r )  = L Z , (  Ar)BB'K;( Ar)II;j( r )  (4.16) 

2%- 
where the equality in (4.7) is to be understood in the 
mean-square sense. In practice, of course, one would 
consider only a finite number N of the previous one- 
dimensional estimation problems. 

B. 1-D Smoothers 

and 
r 

2rr 
Fk( r )  = - - K k (  Ar)BB'K;( Ar)II;i( r ) .  (4.17) 

The initial conditions for the state-space model (4.11) at 
r = 0 are given by [;;;;;I - N(O, WN (4.18) 

= [; nVk(o)] (4.19) 

Let us now develop a solution to the 1-D TPBV 
smoothing problems for the Fourier coefficient processes. 
Our solution is based on a Markovianization procedure 
followed by standard 1-D smoothing techniques. 

The main feature of the TPBV model (3.4)-(3.8) de- 
scribing the kth-order Fourier coefficient is that it is 

with 
0 
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Fig. 1. Outgoing and incoming radial recursions. 

where we have used the fact that 

J q t k ( 0 ) 7 7 k H ( O ) ]  = 0. (4.20) 

Here, q f ( r )  denotes the complex conjugate transpose of 
qk(r ) .  The smoothing problem associated with the system 
(4.1044.12) over [0, RI is a standard causal smoothing 
problem and can be solved using any of the 1-D smooth- 
ing techniques such as the Mayne-Fraser two-filter for- 
mula [17]-[18], or the Rauch-Tung-Striebel formula 1191, 
among others. 

Note that the TPBV model (3.4H3.8) is well posed in 
the sense of [201, since z k ( r )  can be expressed uniquely in 
terms of u k ( r )  and qk(R).  Furthermore, observe that 
q k ( R )  is independent of u k ( r )  for r I R. Thus, we could 
have directly applied the results of [201 to the TPBV 
model (3.4)-(3.8) to obtain the Hamiltonian TPBV system 
tbat governs the smoothed estimates of t k ( r )  and qk(r ) ,  
t k ( r )  and i jk(r).  Conceptually, the difference between the 
approach that we presented and that of [201 lies in the 
way they deal with the boundary conditions for the 
smoother. In the method of Adams et al., the boundary 
conditions are replaced initially by zero boundary condi- 
tions and a two-filter smoothing formula with simple 
dynamics is used. Once all the measurements y k ( r )  have 
been processed, a second step is required to take the true 
boundary conditions into account. On the other hand, the 
Markovianization approach deals with the boundary con- 
ditions directly as the measurements are processed. It 
does so by properly incorporating the boundary condi- 
tions into the dynamics of the estimator, a step that 
results in a more complicated smoqther implementation. 

Once the smoothed estimates t k ( r )  and i jk(r)  have 
been computed for all k ,  the smoothed estimate z^(VR) 
of z (7 )  can be found as 

W 

? ( F I R )  = c ( K ~ ( A ~ ) & )  + z k ( ~ ~ ) i j k ( ~ ) ) e l k 0 .  
k = - w  

(4.21) 

Finally, as noted earlier, the two efficient processing 
schemes that we have developed for estimating isotropic 
random fields of the form (2.1142.2) or (2.17)-(2.18) are 
based on a concept of causality where the data is pro- 
cessed outwards or inwards with respect to a disk of 
observation as shown in Fig. 1. Observe that this concept 
of causality follows naturally from the special geometrical 
structure of isotropic random fields. 

v. ASYMPTOTIC BEHAVIOR OF THE DIFFERENTIAL 
MODELS AT INFINITY 

The Fourier coefficient processes x , ( r )  have a finite 
variance for all r E R since by definition x(F) has finite 
variance over the whole plane (see Section 11-A.) Hence, 
the optimal estimator for the Fourier coefficient process 
x , ( r )  written in integral form, must have a well-behaved 
kernel for all r .  However, the matrices appearing in 
(3.4H3.6) and (4.11)-(4.12) are not well behaved as r 
tends to zero or infinity. This ill-behavior is due to the 
singularity of K, (Ar )  and Zk(Ar) as r tends to zero and 
infinity respectively [ 131. Furthermore, model (4.1 1)-(4.12) 
defines a singular estimation problem as r tends to infin- 
ity. This follows from the fact that the intensity of the 
noise processes uk(r ) ,  i,(-) and U,(.) varies as r - ’ .  The 
singularity of the model (4.11)-(4.12) as r tends to zero is 
of no practical consequence and a strategy for dealing 
with it is briefly discussed in [21]. Here, we introduce 
differential models for the Fourier coefficient processes 
that are well behaved as r tends to infinity. 

A. Models 

the state transformation 
The models that we develop are obtained by applying 

to model (4.1 1)-(4.12), followed by a normalization of all 
the processes. The normalization consists in multiplying 
all processes by r1I2, which forces the intensity of the 
noise processes to be a constant. 

Note that by using (3.5) we can identify 

Note also that the transformation Tk(r )  has the proper- 
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Fig. 2. Model for y k ( r )  for large values of r .  

ties that 

Identities (5.4)-(5.5) can be derived by using the recur- 
rence relations for modified Bessel functions [13] and the 
Wronskian identity [13] 

Zk+l(  A r ) K , ( A r )  + -Ik( A r ) K k + l (  A r )  = A-lr - ' .  ( 5 . 6 )  

If we apply the state transformation T,(r) to the model 
(4.11H4.12) and if we introduce the normalized processes 

Z , ( r )  = f i a k ( r ) ,  (5.7) 
where a k ( r )  stands for ,yk(r), u , (r) ,  y J r )  or u,(r), we 
obtain 

where 

, (5 .10)  

(5 .11)  

k 
--I A 

A + D k ( r )  -___ ( k  + ' )  I + E,( r )  

21r 

i r  A,( r )  = 

D k ( r )  = - - r - A - ' B B T K f ( A r ) n ~ ~ ( r ) K , , , ( A r ) A ,  

E k ( r )  = - IA- 'BB'~kT(Ar)n;;x l (r )K, (  A r ) A ,  
21r 

(5 .12)  

and where Z k ( r )  and U k ( r )  are two uncorrelated zero- 
mean Gaussian noise processes with intensities 1/27r and 
V / 2 7  respectively. Note that this implies that (5.8)-(5.9) 
defines a nonsingular estimation problem. 

Let us now make two comments. First note that the 
transformation T,(r), its inverse T; ' ( r )  and the normal- 
ization gain r1I2 blow up as r tends to infinity. (The 
transformation T,(r )  and its inverse T i 1 ( ? - )  blow up as r 
tends to infinity because of the singularity of the matrix 
functions Z,(Ar) as r tends to infinity.) However, the 
normalized processes that appear in (5.8)-(5.9) are well 
behaved and have a finite variance as r tends to infinity. 
In fact, by using the asymptotic forms of K, (Ar )  and 
Z,(Ar) as r tends to infinity (cf. Appendix A) and (5.11, it 
can be shown that the process ,yk(r) has a variance that 
tends to zero as r - l  as r tends to infinity. Furthermore, 
recall that the intensity of the noise processes u,(r)  and 
u k ( r )  is also proportional to r - ' .  Hence, the variance of 
all the Fourier coefficient processes tends to zero as r-' 

Fig. 3. Filtering procedure for large values of r .  

as r tends to infinity. This is precisely the reason why we 
have to keep a very large number of terms in (4.21) to 
obtain meaningful results as r tends to infinity. Note that 
this also implies that all the normalized processes are well 
behaved with variances and noise intensities that tend to 
a finite constant as r tends to infinity. 

Second, observe that the model (5.8)-(5.9) shows that 
we can interpret the Fourier coefficient process y k ( r )  as 
being the output of a cascaded system which is driven by 
the nonsingular noise processes U k ( r )  and U,(r). The 
cascaded system consists of a system that is well behaved 
as r tends to infinity followed by a gain stage with a gain 
of r-1/2, as shown in Figs. 2 and 3. 

B. Asymptotic Behauior 

To study the asymptotic behavior of model (5 .8bG.9 )  
as r tends to infinity, we note that, as r tends to infinity, 
the modified Bessel functions K , ( A r )  and Z,(Ar) have 
the asymptotic forms [13] 

I , ( A ~ )  - ( 2 7 r ~ r ) - " * e ~ r ,  (5.13) 

K , ( A r )  - ( 2 ~ r / . r r ) - ' / ~ e - ~ ' .  (5.14) 

Hence, if we assume that the pair ( A ,  B )  is controllable, 
we obtain 

lim Dk( r )  = lim - A-'BBTe-ATr 
r - m  r - m  

where Q is the matrix 

Note that since - A is a stable matrix and since the pair 
( A ,  B )  is controllable then Q is the unique positive defi- 
nite solution of the matrix equation [22] 

- AQ - Q A ~ +  B B ~ =  0.  (5.17) 

Similarly, we have 

lim E,( r )  = D. (5.18) 
r + m  

I 
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Thus, as r tends to infinity the Markovian model Hence, we have 
(5.8145.9) takes the form 

Wf( s)W?( - s) = W,( s)W:( - s) 

= (sZ + A )  - '( $1 - A )  - 

where 

(5.21) 

Note that the asymptotic model (5.19)-(5.20) implies that 
the model (5.8145.9) is well behaved as r tends to infin- 
ity. Note also that the asymptotic model (5.19)-(5.20) is 
space invariant and does not depend on the order k of 
the Fourier coefficient process under consideration. This 
reflects the fact that as r tends to infinity all the Fourier 
coefficient processes have an equal importance in the 
sense that we would have to retain a very large number of 
terms in (4.21) to obtain meaningful results, as was al- 
ready observed. This also implies that for large values of r 
we can use the same filter to obtain smoothed estimates 
of all Fourier coefficients. 

=S,(A) IA = - j s ,  (5.28) 

which proves that the asymptotic model (5.19)-(5.20) does 
lead to a stable spectral factorization of SJA). In particu- 
lar, note that (5.28) means that even though the Marko- 
vian models (5.81-6.9) of different order Fourier coeffi- 
cients converge at different rates (which are functions of 
k )  to the asymptotic model (5.19)-(5.20), each does 
asymptotically lead to a stable factorization of SJA). In 
other words, it suffices to consider the asymptotics of the 
Markovian model of any Fourier coefficient to obtain a 
stable spectral factorization of S,(A). Note also that the 
results of [16] imply that (sZ- A + BBTQ-')-'B is the 
transfer function of a stable forward Markovian model 
corresponding to the stable backwards Markovian model 
with transfer function (sZ - A)-'B.  

C. Stable Spectral Factorizations 

Model (5.19)-(5.20) provides a stable spectral factoriza- 
tion of SJA). In particular, observe that the transfer 
function associated with (5.19) is 

wf(s) = A ( ~ z +  A)- ' (+  A + A - W P Q - I A ) - ' A - ~ B  

D. Stability Analysis 

Finally, observe that according to tke previous subsec- 
tion all the eigenvalues of the matrix A' lie in the left half 
s-plane. Thus, the asymptotic model (5.19)-(5.20) is expo- 
nentially stable. Hence, by direct application of Theorem 
4.11 of [23], we obtain the following asymptotic stability 
result for the Kalman filter associated with (5.19)-(5.20). 

Theorem 5: The Kalman filter associated with the model 
=(sZ+ A ) - ' ( s Z - A + B B ' Q - ' ) - l B .  (5.22) 

The formula (5.19H5.20) is asymptotically stable. Furthermore, the 
error covariance associated with the normalized process 
Xk(r)  converges to a non-negative definite matrix p as r 
tends to infinity, where iS the solution Of the algebraic 
Riaat i  equation 

(5*23) 

- A + BB'Q-' and A have the same eigenvalues. There- 
fore, Wf(s) will have its poles in the left half-plane since 
all the eigenvalues of A have a positive real part by 
assumption. Note that this also implies that the matrix A' 
is a stable matrix. Furthermore, observe that 

- A  + BBTQ-' = QA'Q-' 

(which is easily derived from (5.17)) now shows that 

0=ZF+FZT+ BBT-FcTV-'cF, (5.29) 

where matrix A' is defined in (5.21). 

W,(s)W) = W b ( S ) ,  (5.24) VI. CONCLUSION 
where 

W,( s) = ( sl + A )  - '( sl - A )  - ' B  

= ( 2 1 -  A 2 ) - l B  

= ( s2Z - M ) - ' B , 
and 

U(S) = I +  B ' Q - ' ( s l - A ) - ' B .  

It is easy to verify that U(s)  is a paraunitary or 
transfer function in the sense that 

U( s )UT(  - s) = U'( - s)U( s) = I .  

In this paper we have obtained efficient recursive esti- 
mation techniques for isotropic random fields described 
by noncausal internal differential realizations. By exploit- 
ing the properties of isotropic random fields, we showed 
that the problem of estimating an isotropic random field 
given noisy observations over a finite disk of radius R is 
equivalent to a countably infinite set of decoupled one- 
dimensional two-point boundary value system (TPBV) 
estimation problems for the Fourier coefficient processes 
of the random field. We then solved the 1-D TPBV 
estimation problems using a Markovianization approach 
followed by standard 1-D smoothing techniques. The 
smoothing schemes that we have developed result in a 
processing structure that is recursive with respect to the 

(5*25) 

(5.26) 
allpass 

(5.27) 
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radius r in a polar coordinate representation of the field. 
A brief discussion of the numerical implementation of the 
smoother derived in Section IV may be found in [211. We 
have also studied the asymptotic behavior of the Marko- 
vian models that we developed as the radius R of the disk 
of observation tends to infinity. In particular, we have 
shown that the asymptotic form of all models is the same 
and is stable and spatially invariant. Furthermore, the 
asymptotic model led to a stable spectral factorization for 
the original 2-D signal. 

Observe that the approach that we have used to solve 
the smoothing problem for isotropic random fields has 
elements of the approaches that use a full Karhunen- 
Loeve expansion of the 2-D field and those that use the 
values of the field directly. In 1-D and 2-D one can 
certainly use full Karhunen-Loeve expansions of 1-D 
processes or 2-D fields to solve estimation problems. The 
disadvantage of such an approach is that it leads to a 
nonrecursive scheme for estimating a set of random vari- 
ables. On the other hand, we expanded a 2-D field in a 
Karhunen-Loeve expansion in terms of the coordinate 
angle 8 only. This mixed approach lead to a set of 1-D 
random processes (rather than random variables) that 
have recursive internal representations. By exploiting 
those recursive representations we were able to develop 
the computationally efficient recursive estimation schemes 
of Section IV. 

Note also that the approach that we have used in this 
paper carries over to the case where the source term U(*) 
appearing on the right-hand side of (2.1) is not spatially 
white but has a covariance function that is invariant under 
rotations only. In particular, it applies to the case where 
the field U(.) has a covariance function of the form 

E [ U ( F + ) U ~ ( T ) ]  = K , ( r , s ) K , ( 8 - 4 )  

= K , ( r , s )  C u k e j k ( e - b ) ,  (6.1) 
k 

where K , ( r , s )  is a positive definite function of the vari- 
ables r and s that is assumed to have a finite-dimensional 
state-space realization. Our approach can also be used in 
the case where the matrices, A ,  B, and C of (2.1142.21 
are functions of the polar coordinate variable r only. In 
both of these cases the Fourier coefficients of the pro- 
cesses x(.), d.), U(.) and y ( . )  are uncorrelated. How- 
ever, alternative estimation approaches have to be devel- 
oped to deal with the case where the source term U(*) has 
a covariance function that is not invariant under rota- 
tions. This latter case is of importance in a number of 
applications, e.g., in ocean acoustics where the source 
term U(.) is often homogeneous with a 2-D power spec- 
trum that has an angular dependence only in the wave- 
number plane. 

. 

APPENDIX 
In this paper, we make frequent use of the matrix 

modified Bessel functions of the first and second kinds, 
Zk(Ar) and K k ( A r ) .  These functions are a generalization 

of the corresponding scalar modified Bessel functions, 
and they satisfy the matrix differential equation 

( Zn( -$ + ig  - :) - A z ) F ( r )  = O  (A.l) 

with the limiting forms 

KO( A r )  - In ( A r )  , (A.3) 

( k  - l ) !  (;)-* 
K k ( A T )  - ~ - , k z l ,  (A.4) 

2 

as r tends to zero, and with the asymptotic forms 

( AP - ( 2 r ~ r  ) e A r ,  (A.5) 

as r tends to infinity. Thus zk(Ar) and K k ( A r )  are 
regular at r = 0, and as r tends to infinity, respectively. 

I k ( A r )  and K k ( A r )  have the series expansions 

( Ar \’” 

Ar 2n (,I 
where U-) is a Gamma function and @(x)= d(ln(x))/dx 
is the Psi or Digamma function. 

Bessel functions have a number of useful properties 
that are listed in [13]. 
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