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Output Stabilizability of Discrete-Event 
Dynamic Systems 

Cuneyt M. Ozveren, Member, ZEEE, and Alan S .  Willsky, Fellow, ZEEE 

Abstract-In this paper, we investigate the problem of design- 
ing stabilizing feedback compensators for discrete-event dy- 
namic systems (DEDS) modeled as finite-state automata in which 
some transition events are controllable and some events are 
observed. The problem of output stabilization is defined as the 
construction of a compensator such that all state trajectories in 
the closed-loop system go through a given set E infinitely often. 
We also define a stronger notion of output stabilizability which 
requires that the state not only pass through E infinitely often 
but that the set of instants when the state is in E and we know 
it is in E is also infinite. Necessary and sufficient conditions are 
presented for both notions. We also introduce and characterize 
a notion of resiliency that corresponds to the system being able 
to recover from observation errors. Finally, an important issue 
in all problems involving DEDS is computational complexity. 
We provide some general bounds for our algorithms and discuss 
several conditions under which far smaller bounds can be 
achieved. 

I. INTRODUCTION 

ISCRETE-EVENT Dynamic Systems (DEDS) are dy- D namic systems, for which the evolution of the state is 
triggered by the instantaneous occurrence of discrete events. 
Such behavior can be found in many complex, man-made 
systems at some level of abstraction, such as flexible manu- 
facturing systems and communication systems. Although 
DEDS have been studied extensively by computer scientists, 
the notion of control of a DEDS has been introduced only 
recently [9], [IO], [ 121. This work has prompted a consider- 
able response from other researchers in the field in exploring 
alternate formulations and questions that build on the founda- 
tions of both computer science and control. Our work here 
and in [5] and [6] is very much in that spirit with, perhaps, 
closer ties to more standard control concepts. 

Our work differs in several important ways from other 
approaches found in the literature. Much of this work, for 
example in [l], [2], [8], [lo], [12], concerns itself with what 
can be thought of as linguistic questions in which the objec- 
tive is to control the system so that the resulting event 
sequence lies in a desired set or language of strings of 
events. In contrast, we focus here and in [6] on controlling 
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the state of the DEDS so that it returns regularly to a 
specified set of states E. Obviously, there are relationships 
between these settings just as there is between standard 
control problems dealing with input-output behavior and 
those dealing with internal state dynamics. Indeed in another 
part of our work [4] we make this connection much more 
explicit by constructing “target” state sets from which par- 
ticular “tasks”-modeled as sets of desired event 
strings-can be initiated. However, the more important dif- 
ference between our state-based approach and the linguistic 
methods pursued in the literature is our emphasis on stability 
and error recovery. For example, in a complex manufactur- 
ing system or a command and control system, desired behav- 
ior involves the coordinated action of many component sys- 
tems. Such systems are, however, subject to failures, errors, 
and other anomalous events, e.g., a transmission line failure 
in an interconnected power plant, an error in routing or 
coordination in an assembly process, or an incorrect interpre- 
tation of an alarm signal in a nuclear power plant. Obviously, 
in such a case, we would like to guarantee that the system is 
fail-safe, i.e., that it can recover from such events and avoid 
the catastrophic propagation of undesirable events or errors 
following an initiating anamoly that, for example, are charac- 
teristic of large-scale blackouts, computer network crashes, 
or the behavior of poorly-designed convolutional decoders 
(where the term ‘catastrophic error propagation” was 
coined). In our context, we think of E as the set of states 
from which normal (and desirable) behavior can commence, 
e.g., states in a manufacturing system corresponding to the 
system being set up for the production of a particular set of 
products. The normal operation of the system will certainly 
take us out of E,  as will the occurrence of anomalies, but 
what we wish to guarantee is that eventually we will return to 
E. Thus, as in standard feedback control contexts, we want 
to make sure that the transient response of our DEDS has 
desirable properties, in that we eventually return to effective 
operation following an anomaly. 

The second important difference between the framework 
we consider here and those found in the literature is the 
nature of the observation model used. In contrast to the 
approaches found in [1]-[3], [7], [ l l ]  in which observations 
include partial state and/or event information at each point in 
time, we consider a model in which we receive information 
intermittently about the evolution of the DEDS when certain 
“key” events occur. This type of event-driven observation 
seems to be natural in many complex systems such as manu- 
facturing or command and control systems in which only 
certain events (such as the completion of a task, the break- 
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down of a machine, the detection of a target) trigger the 
transmission of messages to a supervisor. One of the crucial 
issues that such a measurement model captures is that in a 
complex discrete-event system it is often the timing of 
information and events that is important. That is, for effective 
control of such systems-such as in preventing an initiating 
event sequence from causing a large-scale blackout in an 
interconnected power system- it is critical that sufficient 
information is available at a point at which there are effective 
control actions that can be taken. As shown in [5], one of the 
important aspects of our measurement model is that the level 
of our knowledge of the state fluctuates, so that, for example, 
the state may be known perfectly at intermittent points in 
time. As we will see, the design of output compensators must 
then explicitly deal with the timing of information and control 
action. For example, the availability of sufficient information 
to reconstruct the state of intermittent points together with the 
stabilizability of the system by full state feedback do not 
guarantee that the system can be stabilized by output feed- 
back, as one must indeed make sure that the information is 
available when it is needed. The use of a state-based frame- 
work allows us to express this crucial idea in an explicit and 
simple way. 

In the next section, we introduce the mathematical frame- 
work considered in this paper and briefly review those as- 
pects of [5] and [6] that we use here. The core of this paper is 
Section I11 in which we formulate two notions of output 
stabilization and present algorithms for constructing compen- 
sators for both. Since the observers we construct are DEDS 
which keep track of all possible trajectories consistent with 
the observed events, we will see that we can recast the output 
stabilization problem as the stabilization of the observer by 
state feedback. Also, since our observations are sporadic, we 
may or may not know exactly when the system has recov- 
ered and returned to E ,  and it is this distinction that leads to 
the two notions of stabilization that we investigate. Finally, 
in Section IV, we present an informal discussion of several 
related topics. In particular, as made clear in [ l l ] ,  computa- 
tional complexity is often a critical problem in DEDS control 
problems, and we describe how this issue enters in the output 
stabilization problem and discuss conditions under which 
efficient solutions can be obtained. In addition, we also 
extend the designs of Section I11 to obtain compensators that 
are resilient in the face not only of system anomalies but also 
observation errors. 

11. BACKGROUND AND PRELIMINARIES 

A .  System Model 

following quadruple: 
The class of systems we consider are defined over the 

G = (x, C,  r ,  U )  (2.1) 

where X is the finite set of states with n = I X 1 ,  C is the 
finite set of possible events, I’ C C is the set of observable 
events, and U = 2’, where c C is the set of controllable 
events. The dynamics defined on G that we consider are of 
the following form: 

x [ k +  ‘1 E f ( X [ k ] ,  U p +  ‘1) ( 2 . 2 )  

(2 .3)  

a [ k +  l ] ~ ( d ( x [ k ] ) n u [ k ] ) U  ( d ( x [ k ] ) n s ) .  

Here, x [ k ]  E X  is the state after the kth event, ~ [ k ]  E C is 
the ( k  + 1)st event, 2nd U[ k ]  E U is the control input after 
the kth event and a denotes the complement of a. The 
function d :  X -+ 2’ is a set-valued function that specifies the 
set of possible events defined at each state (so that, in 
general, not all events are possible from each state), and the 
function f :  X x C -+ X is also set-valued, so that the state 
following a particular event is not necessarily known with 
certainty. The set d( x) represents an “upper bound” on the 
set of events that can occur at state x ,  whereas the set 
d( x) n 3, is a lower bound. The effect of our control action 
is adjusting the set of possible events between these bounds, 
by disabling some of the controllable events, i.e., elements of 
the set d ( x )  n (P. Note that with a slight increase in nota- 
tional complexity, we can consider the slightly more general 
model in which the controllability of some events may vary 
from state to state (see [6]), and indeed all of the results in 
this paper can be extended to this case. Furthermore, we 
assume in this paper that C r. While it is again possible to 
extend our results to the case when this is not true, this 
assumption seems to be a natural one as it is consistent with 
the usual control formulation in which the control signals 
generated by a compensator are in fact observable by the 
compensator. 

Our model of the output process is quite simple: whenever 
an event in r occurs, we observe it, otherwise, we see 
nothing. Specifically, we define the output function h:C + I? 
U { E } ,  where E is the “null transition,” by 

U i f a E I ’  
E otherwise. h ( a )  = 

Then, our output equation is 

y [ k +  I ]  = h ( u [ k +  1 1 ) .  ( 2 . 5 )  

Note that h can be thought of as a map from C* to r*, 
where I?* denotes the set of all strings of finite length with 
elements in I’, including the empty string E. In particular, 

The quadruple A = (G, f ,  d ,  h )  representing our system 
can also be visualized graphically as in Fig. 1 .  Here, circles 
denote states, and events are represented by arcs. The first 
symbol in each arc label denotes the event, while the symbol 
following ‘ ‘ 1’’ denotes the corresponding output. Finally, we 
mark the controllable events by “:U”. Thus, in this example, 

CP = { a } .  Note that in some cases (especially when consider- 
ing DEDS representing observers and compensators), all 
events are observable. In such cases we will write our 
automaton as a triple A = (G, f, d )  with h understood to 
be the identity. 

There are several basic notions that we will need in our 
investigation. The first is the notion of liveness. Intuitively, a 
system is alive if it cannot reach a point at which no event is 

h ( U ,  . * .  U,) = h ( U , )  - *  * h(u,). 

X =  (0, 1 ,  2 ,  3 ,  41, = {a, 0, 6 ,  r = {a, 01, and 
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u / a  

Fig. 1 .  A Simple Example. 

possible. That is, A is alive if vx E X ,  d( x) # 8. We will 
assume that this is the case. A second notion that we need is 
the composition of two automata, A i  = (Gi, f i ,  di ,  h i )  
which share some common events. Specifically, let S = C ,  
n C, and, for simplicity, assume that rl fl S = rz n S and 

n S = a2 fl S (i.e., any shared event observable (con- 
trollable) in one system is also observable (controllable) in 
the other). The dynamics of the composition are specified by 
allowing each automaton to operate as it would in isolation 
except that when a shared event occurs, it must occur in 
both systems. Mathematically, we denote the composition by 
A , ,  = All1 A ,  = (GI,, f 1 2 ,  4 2 ,  h,,), where 

GI,  = ( X ,  x x,, C, U c,, r, U r2 ,  2*1~*2) 
(2 4 
(2.7) 

U(dI (Xl)  fl +2))  (2.8) 

f l Z ( X 9  U )  = f , ( x 1 ,  0) X f , ( X , >  0) 

4 2 ( x )  = (d , (x , )  n 3) U ( d 2 ( X 2 )  n 3)  

U if U E ~ ,  U rz 
E otherwise. 

Here, we have extended each f i  to all of C, U C, in the 
trivial way, namely, f i (x l ,  a)  = x, if a # C i .  Also, the 
combined effect of the individual inputs u , [ k ]  C U, and 
u 2 [ k ]  C U, in the dynamics of the composite is given by 

U ( u 2 [ k ]  n S) U ( ~ , [ k ]  n ~ , [ k ] ) .  (2.10) 

B. Stability and Stabilizability 

In [ 6 ] ,  we define a notion of stability which requires that 
the trajectories go through a given set E infinitely often. 

Definition 2.1: Let E be a specified subset of X .  A state 
x E X is E-prestable if there exists some integer i such that 
every trajectory starting from x passes through E in at most 
transitions. The state X E X  is E-stable if A is alive and 
every state reachable from x is E-prestable. The DEDS is 
E-stable (respectively, E-prestable) if every x E X is E- 

As discussed in Section I, the Set E should be thought of 
as the set of states from which the desired system behavior 
can commence, and thus we wish to return to it after the 
occurrence of an anomaly or the completion of some opera- 
tion. 

stable (respectively, E-prestable). o 

Definition 2.2: The radius of A is the length of the 
longest cycle-free trajectory between any two states of A .  
The E-radius of an E-stable system A is the maximum 
number of transitions it takes any trajectory to enter E .  0 

Note that an upper bound on both the radius and the 
E-radius, for any E ,  of an E-stable system is n. We refer the 
reader to [6] for a more complete discussion of this subject 
and for an O( n2)  test for E-stability of a DEDS. Finally, we 
note that in [6] and Definition 2.1, we require liveness in 
order for a system to be stable so that trajectories can be 
continued indefinitely. While we will continue to require 
liveness in this paper as we consider compensator design, 
there are occasions on which it is useful to consider a notion 
of weak stability, in which all the conditions of Definition 
2.1 are met except that A may not be alive. Thus, for a 
weakly E-stable system, all trajectories pass through E and 
can only die in E. We note without proof that the algorithm 
developed in [6] for stability can be used without change to 
test for weak stability. 

In [6] ,  we study stabilization by state feedback. Here, a 
state feedback law is a map K :  X -+ U and the resulting 
closed-loop system is A ,  = (G, f, d K ,  h )  where 

d K ( X )  = (d(x)  n K ( x ) )  U (d(x) f l  q ) .  (2.11) 

Definition 2.3: A state x E X is E-prestabilizable (re- 
spectively, E-stabilizable) if there exists a state feedback K 
such that x is E-prestable (respectively, E-stable) in A , .  
The DEDS is E-stabilizable if there exists a state feedback 

0 
We refer the reader to [6] for a more complete discussion 

of this subject and for an O( n3)  test for E-stabilizability of a 
DEDS, which also provides a construction for a stabilizing 
feedback. 

C.  Observability and  Observers 

In [ 5 ] ,  we consider the problem of constructing estimates 
of the current state of a DEDS based on knowledge only of 
the observable event sequence. In order for this to be mean- 
ingful, we obviously would like to preclude the possibility 
that our DEDS can generate arbitrarily long sequences of 
unobservable events, i.e., events in I;. A necessary and 
sufficient condition for checking this is that if we remove the 
observable events, the resulting automaton A I = (G, f, 
d fl F,  h )  must be weakly D,-stable, where Do is the set 
that only have observable transitions defined, i.e., Do = { x 
E X  I d( x)  n = fl} . This is not difficult to check and will 
be assumed. 

We will make use of some notation introduced in [ 5 ] ,  [ 6 ] .  
Specifically, R( A ,  x)  denotes the set of states reachable 
from x ,  and we let Y denote the set of states that either have 
observable transitions defined to them or that are purely 
initial in that there are no transitions to them from any state. 
Let q = I Y 1 .  Also, let L ( A ,  x)  denote the language 
generated by A ,  from the state x EX,  i.e., L( A ,  x) is the 
set of all possible event trajectories of finite length that can be 
generated if the system is started from the state x.  Also, let 
Lf( A ,  x)  be the set of strings in L( A ,  x) that have an 
observable event as the last event, and let E ( A )  = 

K such that A ,  is E-stable. 
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Ux,,L( A ,  x )  be the set of all event trajectories that can be 
generated by A .  Finally, given s E L (  A ,  x )  such that s = 
p r ,  p is termed a prefix of s and we use s l p  to denote the 
corresponding suffix r .  

In [ 5 ] ,  we present a straightforward design of an observer 
that produces "estimates" of the state of the system after 
each observation y[ k ]  E r. Each such estimate is a subset of 
Y corresponding to the set of possible states into which A 
transitioned when the last observable event occurred. Mathe- 
matically, if we let a function x : h ( z ( A ) )  -+ 2' denote the 
estimate of the current state given the observed output string 
t E h( L( A ) ) ,  then 

a ( t )  = { x ~ Y 1 3 y ~ X a n d s ~ L ~ ( A ,  y)suchthat 

h ( s )  = t and x ~ f ( y ,  s)}. (2.12) 

The observer, for which the state space is a subset 2 of 2', 
and the events and observable events are both r ,  is a DEDS 
which realizes this function. Suppose that the present ob- 
server estimate is i [ k ]  E Z and that the next observed event 
is y[ k + 11. The observer must then account for the possible 
occurrence of one or more observable events prior to y[ k + 
11 and then the occurrence of y [ k  + 11 

i [ k +  11 = w ( i [ k ] , y [ k +  11) 
- 

'xeR(A l e . i [ k ] ) f (  x, y[ + '1)  (2'13) 

y [ k +  l] E u ( 2 [ k ] )  h ( U x , R , , ( r , i ( k l ) ( d ( X )  " E k ] )  
u ( ~ ( x )  n 6 ) ) .  (2.14) 

The set Z is then the reach of { Y} using these dynamics, 
i.e., we start the observer in the state corresponding to a 
complete lack of state knowledge and let it evolve.' Our 
observer then is the DEDS 0 = ( F ,  w, U) (with identity 
output), where F = ( Z ,  r ,  I', U ) .  The observer for the 
example in Fig. 1 is illustrated in Fig. 2. 

In [5], we investigate a notion of observability correspond- 
ing to the requirement that at intermittent points we know the 
state of A exactly, which is equivalent to 0 being stable 
with respect to its singleton states. We also show that if A is 
observable then all trajectories from an observer state pass 
through a singleton state in at most q2 observable transitions. 
Thus, since there are at most q singleton states, the longest 
cycle-free path in 0 must have length less than q 2 ( q  + 1) so 
that the radius of 0 is at most O(q3). This will play an 
important role in bounding both the complexity of our algo- 
rithms and the maximum number of transitions it takes a 
trajectory from a state, in an output stabilizable system, to 
pass through E. 

An important aspect of our work is our treatment of 
resiliency or error recovery. Specifically, suppose that the 
observed sequence of transitions includes errors correspond- 
ing to inserted events, missed events, or mistaken events. We 
term an observer resilient if after a finite burst of such 

' To get 2, we consider the richest possible behavior by enabling all 
controllable events, I.e., we let u [ k ]  = @. 

Fig. 2.  Observer for the system in Fig. 1 .  

measurement errors, the observer resumes correct behavior 
in a finite number of transitions, i.e., the current observer 
estimate includes the current state of the system. In [5], we 
construct a resilient observer by extending w and v as 
follows: 

u R ( i )  = r .  (2.16) 

That is, if an observed event y is inconsistent with the 
present estimate i of the system state, we reset the observer 
to the initial state { Y )  . The resulting system OR = ( F ,  wR, 
v R )  is a resilient observer if A is observable [5]. 

D. Compensators 

closed-loop system A ,  is the same as A but with 
We define a compensator as a map C:r* -+ U. Then, the 

a [ k +  11 E d c ( X [ k ] , S [ k ] )  

( d ( x [ k ] )  n c ( h ( s [ k ] ) ) )  U ( d ( x )  n 5 )  (2.17) 

where s [k]  = a[O] . . * a [ k ]  with a[O] = E :  for output stabi- 
lizability, we only need to define compensators for strings 
h( E (  A ) ) .  However, when we talk about resiliency in Section 
V ,  we need to worry about defining C for arbitrary strings in 

One constraint we wish to place on our compensators is 
that they preserve liveness. Thus, suppose that we have 
observed the output string s, so that our observer is in x(s) 
and our control input is C(s) .  Then, we must make sure that 
any x reachable from any element of i ( s )  by unobservable 
events only is alive under the control input C(s) .  That is, 
for all X E R (  A 1 r, i(s)), d,(x, s) should not be empty. 
This leads to the following definition. 

Definition 2.4: Given Q C X ,  F C +, F is Q-compati- 
ble if for all X E R ( A  IF, Q), (d (x )  n F )  U (d(x)  n $) 
# 6. A compensator C is A-compatible if for all S E  

0 
Finally, note that the class of compensators that we have 

defined is quite large. As we will see in the next section, we 
can actually restrict attention to a computationally more 
useful subclass of compensators each of which can be real- 
ized as the cascade of a finite-state automaton followed by a 
memoryless function of the state of this automaton. For 
example, one class of compensators that we will encounter is 

r*. 

h(E(  A ) ) ,  C(s) is x(s)-compatible. 
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the class of 0-compatible compensators, i.e., those that can 
be realized as the cascade of the observer 0 for A and a 
memoryless observer feedback function K so that C(s) = 
K(w({ Y ) ,  s)). 0 

111. Two NOTIONS OF OUTPUT STABILIZABILITY 

The obvious notion of output E-stabilizability is the exis- 
tence of a compensator C so that the closed-loop system A ,  
is E-stable. Because of the intermittent nature of our obser- 
vations, it is possible that such a stabilizing compensator may 
exist, so that we are sure that the state goes through E 
infinitely often, but so that we never know when the state is 
in E. For this reason, we define a stronger notion of output 
stabilizability that not only requires that the state pass through 
E infinitely often but that we regularly know when the state 
has moved into E. We begin with this later notion which is 
easier to analyze. Also, in linear system theory, observability 
is not required for a system to be output stabilizable, and the 
basic results we present in this section do not assume observ- 
ability. On occasion, however, we will see that the assump- 
tion of observability leads to useful complexity bounds. 

A .  Strong Output Stabilizability 
Definition 3.1: A is strongly output stabilizable if there 

exists a compensator C and an integer i such that A ,  is 
alive and for all p E E( A ,) such that 1 p 1 L i ,  there exists 
a prefix t of p such that I p / t  1 5 i and i ( h ( t ) )  C E, i.e., 
so that we know that the state is in E. We term such a 
compensator a strongly output stabilizing compensator. 

The next result shows that we can restrict attention to 
observer feedback. 

Proposition 3.2: A is strongly output stabilizable iff there 
exists a state feedback K :  Z + U for the observer such that 
X I  in A ( (  0, is E,,-stable, where X I  = {(x ,  { Y } )  1 X E  
X }  is the set of possible initial states in A ) I  0, and where 
E,, = {(x ,  2) E Y x Z I 2 c E }  is the set of composite 
states for which the system is in E and we know it. 

Proof: We need only prove that given any strongly 
output stabilizing compensator C,, we can construct another 
which is 0-compatible. To begin, let l i  be the set of length i 
elements of h ( i (  A ) )  and let Z ,  = { { Y }  } be the singleton 
set containing the initial state { Y }  of 0. Also, let K({ Y } )  
= Cl(€).  Next, let SI,; e ,  SI,, be a collection of disjoint 
subsets of I ,  such that 1) U,S,, = I,; 2) for all U E  SI;, 
U({ Y } ,  a)  = 2, for some i i e  Z ;  and 3) for any SIi, SI,, 
i # j ,  2; # 2,. Let us term such a collection of subsets an 
1,-collection. For each ai$ Z,, pick some CY, E SIi and let 
K ( 2 ; )  = C,(CY;) .  Construct a compensator C, such that for 
all output strings of the form us, for some U E S I i ,  C,( as) = 
C,(a;s).  Clearly, C, is a strongly output stabilizing compen- 
sator for A .  Also, let Z, = Z,U U;,?; which denotes the 
set of observer states for which we have defined K so far. 

We repeat this construction for I , ,  I,, etc. After step 
j - 1, C, is a strongly output stabilizing compensator for A ,  
and we will have defined K for observer states Z ,  that can 
be reached by { Y }  with output strings of length at most 
j - 1. At step j ,  let S j l , .  . . , S,,,_ be the Ij-collection. For 
each Zi such that U({ Y } ,  S j i )  = xi and 2; $ Zj, pick some 

a, E S,, and let K (  2,) = C,(a,). Construct a compensator 
C,+ , such that for all output strings of the form ts, for some 
t ES,,, C,+,(ts) = C,(r,s). Clearly, C,+, is a strongly out- 
put stabilizing compensator for A .  Also, let Z, + , = Z, U U, 

Proceed in this fashion until, at some step j ,  Z, = 2, 
which implies that we have defined a feedback for all ob- 
server states. The reach of X I  in A 1) 0, is alive since by 
construction K ( 2 )  is 2-compatible. Since also C, is a 
strongly output stabilizing compensator for A ,  the compen- 
sator C defined by C(s) = K(u({ Y } ,  s)) is a strongly 
output stabilizing compensator for A .  Therefore, X I  in 

0 
Corollary 3.3: A is a strongly output stabilizable iff there 

exists a state feedback K : Z  + U for the observer such that 
0, is stable with respect to E, = { X E Z 1 2 C E}  and for 
all 2 E Z, K (  2) is 2-compatible. Furthermore, if A is also 
observable, then the trajectories in the reach of X I  in A 11 0, 
go through E,, in at most O(nq3)  transitions. 

Proof: The first statement follows from the fact that 0 
by itself captures the behavior of A .  The second follows 
from the fact that E,-radius of 0, (and hence the E,,-radius 
of A 11 0,) is certainly no longer than the uncontrolled radius 
of 0 and from the fact that by assumption there are at most 
n unobservable transitions between observable events. 0 

As an example, consider the system in Fig. 3,  where 
E = { 1, 2) and where all events are observable. Note that in 
this case, we need to check the stabilizability of the observer 
with respect to E, = (2) .  We achieve stability if CY is 
disabled at the observer state { 0, 2 ) .  

Corollary 3 .3  essentially tells us that we can test strong 
output stabilizability by testing the observer for stabilizability 
by (observer) state feedback, while preserving liveness of 
A 11 0,. In [6]  we develop an algorithm that tests for and 
constructs stabilizing state feedback laws for DEDS. The 
following extends this, with the key difference being the 
check for compatibility. 

Proposition 3.4: The following algorithm is a test for 
strong output stabilizability . 

Algorithm: Let Z, = E, and iterate 

2,. 

A 11 0, is E,,-stable. 

. 

P,+, = { X E ~  n Z, 1 { y ~ U ( a )  1 ~ ( i ,  y) EZ,} 

contains U( 2) n & and is 2-compatible} 

~ ( 2 )  = { ~ E u ( X ) I ~ ( X , ~ ) E Z ~ }  n @ f o r X E ~ , + ,  

Zk+l = z, " Pk+l .  

Terminate when Z,+ , = Z, Z*. A is strongly output 
stabilizable iffZ = Z". The corresponding feedback is K as 

Here, 2, consists of all observer states that can be driven 
to E, in k or fewer steps by the application of 2-compatible 
feedback. The complexity of this algorithm is determined by 
the number of states in Z that must be examined at each step 
times the number of steps. The former is bounded by I Z 1 ,  
while the latter is bounded by the radius of 0. Thus, for an 
observable system we see that the complexity of this algo- 
rithm is O(q3 1 Z 1 ) .  Also, if a system is strongly output 

computed above. 0 



930 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 36, NO. 8 ,  AUGUST 1991 

System 

Observer rn 

Fig. 3 .  Example for strong output stabilizability (all the events 
are observable). 

stabilizable there is in general a range of stabilizing compen- 
sators ranging from maximally restrictive (in which we can- 
not disable any additional events while preserving liveness) to 
minimally restrictive (in which enabling any other events 
would violate stability). By modifying the aforementioned 
algorithm so as to compute at each stage those new observer 
states in Z n 2, which can be driven to Z, with the fewest 
enabled inputs (that still preserve liveness), we can obtain a 
maximally restrictive feedback. As discussed in [6] ,  from 
this, one can also construct a minimally restrictive feedback 
by enabling events until stability is violated. 

B. Output Stabilizability 
In this section, we study the following somewhat weaker 

notion. 
DeBnition 3.5: A is output prestabilizable (respectively, 

output stabilizable) with respect to E if there exists a 
compensator C such that for any initial state X E X ,  the 
resulting X-trajectory in A, is guaranteed to pass through 

0 
A trivial observation is that in the case of full state 

feedback any feedback law K ( x )  which makes A ,  E- 
prestable while preserving liveness obviously makes A E- 
stable. In the case of output feedback, it is not true that an 
arbitrary compensator C that prestabilizes A while pre- 
serving liveness also stabilizes A,. The reason for this is 
that C is a dynamic compensdtor, and there is no guarantee 
that after having initially driven the system through E that 
the dynamics of C will generate controls that guarantee 
return visits to E. If, however, we have a point in time by 
which we know that A ,  has visited E ,  then we can simply 
restart the compensator to guarantee a return visit, i.e., by 
modifying the prestabilizing compensator, we can construct a 
stabilizing one. 

To see that this is possible, suppose that C is an output 

E (respectively, through E infinitely open), 

prestabilizing compensator that preserves liveness. Then, for 
each x E X ,  there exists an integer i such that the trajectories 
from x in A ,  go through E in at most i transitions. Thanks 
to our assumption that A cannot generate arbitrarily long 
sequences of unobservable events, for each X E X ,  there 
exists an integer j such that the trajectories from x in A ,  go 
through E in at most j observable transitions. Let j *  be the 
maximum over all j .  Then, we know that the trajectories in 
A ,  go through E in at most j *  observable transitions 
independently of the initial state. This allows us to construct 
a stabilizing compensator C’ by restarting C every j*  transi- 
tions. Specifically, given s E h( E(  A,)) ,  let s* denote the 
suffix of s for which 1 s* I = 1 s 1 mod j * ,  and let C’(s) = 
C(s*). Clearly, A,, is alive. Also, A c  is E-stable since it 
is guaranteed to go through E at least once every j*  observ- 
able transitions. 

There are two important points in the preceding discus- 
sion. The first is that since we know that output prestabiliz- 
ability plus liveness is equivalent to output stabilizability , we 
can focus on the former, simpler notion, i.e., we need only 
worry about driving the system to E and then specifying the 
restarting mechanism to guarantee return visits to E. The 
second is that the existence of j *  implies that output stabiliza- 
tion, when possible, can be accomplished via a compensator 
with finite memory. As we now show, in contrast to the 
strong output stabilization case in which the observer pro- 
vided the required memory for stabilization, we will need a 
bit more memory here. In particular, our construction of a 
prestabilizing compensator involves 1) constructing a modi- 
fied observer which also keeps track of the states the 
system can be in i f  the trajectory has not yet passed 
through E,  2 )  formulating the problem of prestabilizing A 
by output feedback as a problem of stabilzing this observer 
by state feedback, and 3) constructing a prestabilizing com- 
pensator by using this observer and the state feedback con- 
structed in 2). 

To provide the motivation behind our approach, consider 
the system in Fig. 3. For output stabilizability, we do not 
really need to disable CY (as we had to for strong output 
stabilizability). Consider the loop in the observer that consists 
of the states { 1, 3)  and (0, 2) .  If the system is in state 1 
(respectively, state 2), it is already in E. If the system is in 
state 3 (respectively, state 0), it makes a transition into E 
after the next event. Therefore, A is stable and thus is 
trivially output stabilizable (without disabling any event). 
This example illustrates the key idea in our analysis of output 
stabilizability : we must keep track of those state trajectories 
that have not yet passed through E;  if that set becomes empty 
at some point, we will know that the system has passed 
through E ,  although we may not know the point in time at 
which it did. 

The following construction allows us to perform this func- 
tion: Delete all events in A that originate from the states in 
E and construct the corresponding observer. Let A ,  denote 
this system and let 0, = (FE, w,, U,) denote its observer. 
For example, Fig. 4 illustrates such an automaton and ob- 
server for the system in Fig. 3. The observer 0, captures all 
the behavior of A until its trajectories enter E. When we 
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Fig. 4. Example for A ,  and 0, (all the events are observable). 

look at the states of 0,, we see that there are some “trap- 
ping” states, each of which is a subset of E and thus has no 
events defined. Let us consider an event trajectory s in A 
and the corresponding trajectory h(s)  in 0, that starts from 
the initial state { Y } .  If the trajectory ever evolves to a 
“trapping” state in 0,, then we know that it has passed 
through E in A .  Other states of 0, may have some 
elements in E and some elements that are not in E. Let 2 
be such a state of 0,, then for a trajectory that evolves to 2, 
the system can be in one of the states in 2 n E only if that 
trajectory has not passed through E yet. Even though 0, 
keeps track of trajectories that have not passed through E 
yet, it does not keep track of enough information to design a 
prestabilizing compensator, since, in order to preserve live- 
ness, we also need to know all the states that the system can 
be in so that we can check if our control input keeps the 
system alive: the automaton 

together with the initial state ( Y ,  Y )  keeps track of all the 
information we need for designing an output stabilizing com- 
pensator. Note that 

and uQ((yl, y,)) = u,(y,). The state space of Q, is W = 
R(Q, ( Y ,  Y ) ) .  Fig. 5 illustrates the automaton Q for the 
system in Fig. 3. Note that the number of states of Q is the 
same as that of 0,. For each state of Q, the second 
component denotes the set of states that the system can be in, 
whereas the first component denotes the set of states that the 
system can be in if the trajectory has not gone through E 
yet. 

The following lemma shows that the problem of output 
prestabilization can be formulated as a problem of prestabi- 
lization of Q. The key is to find a state feedback K for Q, 
which we can then adapt to a corresponding compensator for 
A ,  and which forces all trajectories in QK to have finite 
length. This in turn will force corresponding trajectories in 
A to go through E in a finite number of transitions. In doing 
this, however, we need to make sure that the compensator for 
A keeps A alive. 

Lemma 3.6: A is output prestabilizable with respect to E 
while preserving liveness iff there exists a feedback K :  W + 

U such that for all 

(11). (121. A 11.31) (0.2))  

Fig. 5 .  Example of the automaton Q (all the events are observable). 

K ( ( y , ,  y 2 ) )  is y ,  = compatible, and QK is prestable with 
respect to its dead states, i.e., with respect to the states y 
such that uQK(y) # d. 

Proof: 
(+) Straightforward by assuming the contrary. 
(+) We claim that the compensator defined by 

for s € L ( Q K ,  ( Y ,  Y ) )  and C(s) = Q, for all other s, 
prestabilizes A and we prove this as follows: thanks to the 
compatibility condition, A 

h ( z ( A c ) )  C L ( Q K ,  ( Y ,  Y ) ) r * .  

Given s E E( Ac) ,  if s E L(Q,, ( Y ,  Y ) )  then the trajectory 
may not have passed through E yet. If s $ L ( Q K ,  ( Y ,  Y ) ) ,  
suppose that s = p a  for some p E L(QK, ( Y ,  Y ) )  and 
UE r. Since a is not defined at we,(( Y ,  Y ) ,  p ) ,  a could 
have occurred only if the trajectory has already passed through 
E. Since also all strings in L(QK, ( Y ,  Y ) )  are finite and C 

In order to construct a compensator as proposed by the 
above lemma, let us first characterize the states in Q that we 
can “kill” while preserving liveness in A .  In particular, let 
E ,  be the set of states y = ( y ,, y 2 )  E W so that we can find 
a y, compatible set of events F C Q, which, if used as a 
control input at y ,  disables all events defined from y ,  i.e., 

is alive. Also 

preserves liveness, A is E-prestable. 0 

EQ = { y = ( ~ 1 ,  y 2 )  E W 1 3F C Q, such that uQF( y ) = 0 
and F is y,-compatible} (3.3) 

where uQF(y)  = ( u Q ( y )  r\ F )  U ( v Q ( y )  n z). For exam- 
ple, consider the system in Fig. 6, where Fig. 6(a) illustrates 
A ,  (b) illustrates A,, (c) illustrates the observer 0 for A ,  
and (d) illustrates the observer 0, for A,. The automaton Q 
for this example is illustrated in Fig. 7(a). Note that we can 
disable 0 at both of the states (2, 123) and (2, 2) so that no 
transitions are enabled in Q at these states, but the states 1, 
2, and 3 remain alive in A .  Thus, E, = ((2, 123), (2, 2)). 
Thus, what we have shown is the following. 

Proposition 3.7: A is output prestabilizable while preserv- 
ing liveness iff there exists a state feedback K O  such that QK, 
is EQ-prestable and for all ( y l ,  y 2 )  E W ,  K ( ( y , ,  y,)) is 
y,-compatible in A .  Furthermore, the compensator defined 
by 

= K (  ‘7 ‘> 7 ’1) 
for s e L ( Q K ,  ( Y ,  Y ) )  and C(s) = for all other s, 
prestabilizes A ,  where 
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(C) (d) 

observer 0 for A.  (d) the observer 0, for A,. 
Fig. 6. Output stabilizability example. (a) The system A. (b) A,. (c) The 

(a) (b) 

Fig. 7 .  Output prestabilization of Fig. 6 (recall that a and p are both 
controllable and observable). (a) Automaton Q. (b) QK as computed by 
algorithm 3.8.  

K (  Y = (U, 3 Y 2 ) )  

F c CP I uQF( y )  = 0 and F is y,-compatible 

if y € E Q  

otherwise. 0 
Appropriately modifying algorithm 3.4 for Q we also have. 

Proposition 3.8: The following algorithm is a test for 
output prestabilizability while preserving liveness. 

Algorithm: Let 2, = EQ and for y = ( y , ,  y,) E E,, let 
K ( y )  = F C CP where F is such that uQF(y)  = 0 and f is 
y,-compatible. Iterate 

p k + i  = { Y E  F V ~  2 k  I { Y E ~ Q ( Y )  I w, (Y>  Y> E Z ~ }  

contains U,( a )  n & and is y,-compatible in A }  

K ( y )  = { Y E U Q ( Y )  1 w Q ( Y ,  Y ) € ' k }  n' for Y E P k + l  

Z k + l  = Zk U P k t l .  
Terminate when Zk+, = Z ,  = Z * .  A is output prestabiliz- 
able iff ( Y ,  Y )  E Z * .  The corresponding feedback is K as 

Note that if A is observable, the bound on the radius of 0 
implies that A ,  goes through E in at most O(nq3) transi- 
tions and that the aforementioned algorithm has complexity at 
most O(q3  I W 1 ) .  Also, as is the case for strong output 
stabilizability , it is possible to construct maximally and mini- 
mally restrictive prestabilizing compensators. 

Fig. 7(b) illustrates the closed-loop system QK after this 
algorithm is applied to Q in Fig. 7(a). In order to construct a 
compensator that prestabilizes the system in Fig. 6(a), we use 
the range of (123, 123) in QK as follows: initially (i.e., 
before any observable events are seen so that we are in (123, 
123) of QK), we disable 0. After CY is observed (so that the 
state in QK is (1, 12)), CY is disabled, while 0 is enabled, and 
finally, after 0 is observed (corresponding to a transition to 
the state (2, 123)), 0 is disabled while CY is enabled. When CY 
occurs again, we know that all the trajectories have passed 
through E ,  and thus we do not care about what the control 
input is after this point as long as it keeps the system alive. 

As discussed previously, we can now construct a stabiliz- 
ing compensator by restarting our prestabilizing compensator 
after we are certain that the state has passed through E. We 
now present an approach which allows us to detect, as soon 
as possible, that the trajectory has passed through E. Given 
an output prestabilizable A ,  suppose that C is the corre- 
sponding compensator and K is the corresponding Q-feed- 
back for C.  Recall that for QK,  no event are defined at states 
( y l ,  y,) E E,, and in general, given some y = ( y , ,  y,) E 
R(QK,  ( Y ,  Y ) ) ,  not all events defined at y ,  are defined at 
y .  Given an output trajectory of A , ,  let us trace the corre- 
sponding trajectory in QK starting from the state ( Y ,  Y ) .  
Suppose that we observe a transition which is not defined at 
the current state of QK.  By the way we have constructed QK 
we know that the occurrence of such a transition implies that 
the trajectory has already passed through E. This is precisely 
the mechanism which we use to detectthat the trajectory has 
passed through E. So, given s E h( L( A , )  U L( Q K ,  ( Y ,  
Y ) ) ,  let y = we,(( Y ,  Y ) ,  s) and suppose that the next 
observation is a transition a y! uq,( y ) ,  and thus we know that 
the trajectory has passed through E. At this point, we wish to 
force the trajectory to pass through E again, but in doing so, 
we can use our knowledge of the set of states that the system 
can be in at the time we have detected that the trajectory has 
passed through E ,  i.e., w ( y , ,  a).  What we would then like 
to do is to have q transition to the state z = ( w ( y 2 ,  a), 
w ( y , ,  a)). However, as we have defined it so far, z may 
not be in W .  What we must do in this case is to augment W 
with all such z ' s  and any new subsequent states that might 
be visited starting from such a z and using an extension of 
the dynamics of Q. Specifically, the dynamics of q given in 
(3.2) can be defined for arbitrary subsets y , ,  y, c Y ,  as can 
its restriction wQK by feedback. We modify this definition as 
follows: if w E K ( y , ,  a )  = 0, then we set w Q K ( ( y , ,  y,), a)  

computed above. 0 
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to (w(y , ,  a), w(y, ,  a)). Let W“ be the union of the 
reaches of all states of the form (Y’, Y’) with Y’ C Y and 
define Q“ = ( F a ,  w, U) where F” = (W“, F, r). Note that 
EQ C W“ and R ( Q K ,  (Y ,  Y)) C W“. If in fact any z = 
( Y’, Y’) is prestabilizable with respect to R(QK,  ( Y, Y)) in 
Q“, then we can force the trajectory to pass through E. It is 
straightforward to check (by assuming the contrary) that 
prestabilizability of Q is sufficient for being able to do this. 

Proposition 3.9: If there exists a feedback K for Q such 
that QK is EQ-prestable and K ( y )  is y,-compatible, then 
there exists a feedback K’ such that for any Y’ C Y, 
z = ( Y’, Y’) is prestable with respect to R ( Q K ,  (Y ,  Y))  in 
Q f f r ,  and K’(y)  is y,-compatible for each y = ( y , ,  y,) E 

In order to construct an output stabilizing compensator, we 
use the aforementioned proposition recursively as follows: let 
K O  be a feedback that prestabilizes Q and preserves liveness, 
as can be constructed using the algorithm in Proposition 3.8 .  
Let Z, represent the initial state of QKo and let WO repre- 
sent the range of Z,, i.e., the states we may be in when we 
know that the trajectory has already passed through E: 

R(Q2.9 z).  0 

z, = ( y ,  y )  (3 .3 )  

WO = R(QK, ,  Z o ) .  (3 .5)  

We then augment Z, to include the states to which we may 
“reset” our compensator, i.e., 

z, = z, U { ( a ,  a )  1 a = w(y,, a )  

for some y = ( Y , ,  y 2 )  E WO and 0 E 6( y 2 ,  K O (  Y ) ) }  

(3 4 
where C(Y*, = (U(Y2) n K,(y))  U ( U ( Y 2 )  n %. 
Next, we find a feedback K, that satisfies Proposition 3.9 for 
each (Y’, Y’) E Z,. Note that we can always choose K, so 
that it is an extension of K O ,  i.e., K , ( y )  = K,(y) for 
y e R ( Q K 0 ,  Zo>. Then, we let W, = R(QK,,  Z,). Proceed- 
ing in this fashion, we construct W,, W,, etc., and the 
corresponding extensions of the feedback law, until W,, , = 
W, = W‘ for some k (note that k must necessarily be 
finite). Let K’ be the corresponding feedback, then 

0 QK, is EQ-prestable, 
K’(y)  is y,-compatible for all y E W‘, and 

0 for all y E E ,  W’ and a E G (  y,, K’( y ) ) ,  

Finally, we construct an automaton Q’ = (F’, w’, U’) 
where F’ = (W‘, r, r) which includes the transitions to 
states in Z’, i.e., 

(W(Y2, a), NY,, 0)) EW’. 

Then, the compensator defined by 

p 1123. 

a 

Fig. 8 .  Output stabilization of Fig. 6 (recall that both CY and 0 are 
controllable). (a) Adding the new states (through the dashed arcs). (b) Q .  

for all S E L ( Q ’ ,  ( Y ,  Y)) stabilizes A. Thus the compen- 
sator consists of the automaton Q’, started in ( Y ,  Y )  and the 
feedback K’: W‘ 4 2’ so that the desired compensator is 
given by (3.9). For example, for the system in Fig. 6, we 
need to prestabilize the state (12, 12) (see Fig. 8(a)). The 
resulting automaton Q’ that produces the desired compen- 
sator is shown in Fig. 8(b). 

IV. DISCUSSION 

In this paper, we have introduced and studied concepts of 
output stabilization for discrete-event dynamic systems. Key 
features of our formulations, which distinguish it from many 
of the problems and approaches considered in the literature 
are the focus on stability, i.e., the ability of the system to 
recover from anomalies without catastrophic error propaga- 
tion, and the event-driven observation model which raises the 
important question of the coordinated timing of information 
and control action. The work presented here and in [5] and 
[6] also provide the basis for our work on controlling DEDS 
so that particular tasks are completed, where the completion 
of a task is modeled by the occurrence of one of a specific set 
of event sequences. Such a problem obviously brings our 
work much closer to the linguistic framework of [ll-[3], 
[8]-[lo], [12]. However, by using a state framework-and 
by constructing sets of states Ei corresponding to allowable 
starting states for completion of tasks i-we can not only 
design controllers that supervise the completion of tasks, but 
can in fact address the problem of achieving acceptable 
transient behavior by making the supervised system stable in 
the presence of anomalies and errors. Also in [4], we con- 
sider the design of systems that accept task sequence com- 
mands as inputs and produce the desired control inputs. In 
this context, it is essential that task completion be detectable 
and thus the notion of strong output stabilizability developed 
here plays an important role. Indeed, combining all of these 
pieces leads not only to a methodology for task-level control 
but also to a procedure for the hierarchical modeling of 
DEDS in which strings (corresponding to tasks) at the lower 
level are modeled as single events at the higher level. 

Several additional points deserve some comment. First, as 
we have remarked, one of the key features of our intermittent 
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Fig. 9. Stabilizable, observable, but not output stabilizable system (all the 
events are controllable and observable). 

observation model is that it highlights the importance of the 
coordinated timing of information and control action. Indeed 
the natural notion of observability for this measurement 
model, together with stabilizability do not imply output 
stabilizability in our framework. For example, consider the 
system in Fig. 9, where all the events are controllable and 
observable. This system is stabilizable by disabling 0 at state 
1 and a at 2 ,  and it is also observable. However, it is not 
output stabilizable, since we can never distinguish between 
states 1 and 2, and thus we cannot selectively disable a or 0, 
i.e., timing of information and control action are incompati- 
ble. The same phenomenon can also be found if we use a 
slightly more general model including partial and possibly 
sporadic state information. 

In contrast, as discussed in [4], this phenomenon cannot 
occur if one uses a strong notion of observability representing 
a slight generalization of the concept used, for example, by 
Ramadge in [7]. Specifically, if, following an initial tran- 
sient, the system state is known perfectly after every observ- 
able transition, then this plus stabilizability imply output 
stabilizability . More precisely and generally, let K ,  denote 
an observer feedback chosen so that (1) the observer remains 
alive and we also maximize the size of the set E, of observer 
singleton states that is invariant under the dynamics of OK,; 
and ( 2 )  0 is E,-stable (so that with this feedback the state of 
the system is guaranteed to be known perfectly and to be in 
E, following each observable event after an initial transient). 
If E fl E, # 0 and if A is E fl E,-stabilizable, then the 
system is in fact output stabilizable. Indeed, if K ,  is the state 
feedback that achieves E fl E,-stability, then the output 
compensator can be constructed by merging the separately 
constructed observer and state feedbacks: 

( 4 4  K,( x) fl K,( x) if i = { x} EE, 
otherwise. 

K ( i )  = 

We refer the reader to [6] for a general discussion of the 
computation of controlled-invariant sets and to [4] for details 
of the preceding development which also introduces a proof 
that the computational complexity of the testing of these 
conditions and the construction of the feedback (4.1) is 
guaranteed to be at most O(q4). This is a nontrivial point 
since, as made clear by Tsitsiklis [ l l ] ,  the construction of 
controllers based on partial information in general has expo- 
nential complexity. As we have seen, the complexity of the 
procedures we have presented in Section I11 are (under the 
assumption of observability) of polynomial order in q times 
the cardinality of the observer state space. As discussed in 
[5], the observer state space for an observable system can in 

fact be exponential in q. While for many systems the ob- 
server is in fact much smaller than this, It is important to 
investigate conditions under which polynomial complexity 
can be guaranteed. In [5] we provide a tighter bound on 
observer complexity that can often be useful, and the con- 
struction described in the preceding paragraph, for systems in 
which state observability can be maintained after every ob- 
servable transition, represents another potentially useful spe- 
cial case. Similarly in [4], we describe another such case 
which involves the concept of always observable states [ 5 ] .  
Specifically, a state x is always observable if whenever the 
system is in x, the observer estimate { x}. If the observer is 
stable with respect to always observable states and if A is 
E-stabilizable when we only allow control action when we 
are in always observable states, then we can clearly design a 
stabilizing output compensator since we will know exactly 
when we are in such a state and, thanks to stability with 
respect to always observable states, this will happen regu- 
larly. We refer the reader to [ 5 ] ,  [4] for details and for a 
proof testing these conditions and constructing the required 
compensator having O( q4) complexity. 

Finally, as in [5] ,  we can address the problem of designing 
output compensators that are resilient in that they maintain 
system liveness and stability in the presence of a burst of 
observation errors, where such a burst can include missed 
detections of observable events, incorrect insertion of extra- 
neous detections of such events, and erroneous identification 
of events. In such cases, our compensators must be based on 
the resilient observer of [5], discussed in Section 11. The 
more major impact on our design of compensators is caused 
by the fact that errors might cause the system and the 
observer to be in arbitrary and unrelated states. Thus, in 
order to guarantee liveness of the closed-loop system, we 
must use X-compatible feedback. Specifically, it is not dif- 
ficult to verify [4] the following variation of the result in 
Section 111-A. 

Proposition 4.1: An observable system A is resiliently 
strongly output stabilizable with respect to E iff there exists a 
state feedback K for the observer such that OK is E,-stable 

0 
An algorithm for testing resilient strong output stabilizabil- 

ity and constructing a feedback is identical to Algorithm 3.4 
except that when we search for a feedback, we search for one 
that is X-compatible, as opposed to i-compatible, and the 
computational complexity is again O(q3  1 2 I). Thus, if we 
can find K that satisfies Proposition 4.1, then C(s) = 
K (  wK,({ Y , }  , s)) is a resiliently strongly stabilizing com- 
pensator for A ,  where wKR denotes the closed-loop dynam- 
ics of 0, using feedback K .  

Similarly, necessary and sufficient conditions for resilient 
output stabilizability parallel those of output stabilizability 
except that we need to use X-compatible feedback. In this 
case, we need to use a resilient version of the automaton Q 
defined in Section 111-B. Specifically, for any feedback K 
defined on Q K ,  we define Q K R  = (G,,, wKR,  u K R )  so that 

and for all i E Z ,  K(  i )  is X-compatible. 
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disable a 

disable a 

disable p 

disable p 

Fig. 10. Resilient output stabilizing compensator for Fig. 6. 

UKR = r .  (4.3) 
We state the following companion of Proposition 3.7 where 

{ Y =  ( Y ~ ~ Y ~ ) ~ W I ~ ~ C +  

such that uQF( y )  = 6 and F is X-compatible) . (4.4) 

Proposition 4.2: An observable system A is resiliently 
output stabilizable iff there exists a state feedback K such 
that QK is EQ-prestable and for all Y E  W ,  K ( y )  is X- 
compatible in A .  Furthermore, the compensator defined by 
C(s) = K (  wKR(( Y ,  Y ) ,  s)) for all s E I’* resiliently stabi- 
lizes A .  0 

An algorithm for testing resilient output stabilizability and 
constructing a feedback can be generated from Algorithm 3.8 
in a straightforward fashion. In particular, we use EQF in 
place of E ,  in Algorithm 3.8 and we check X-compatibility, 
instead of y,-compatibility . 

For example, the feedback we computed for Q in order to 
stabilize the system in Fig. 6 is also X-compatible (see Fig. 
8(b)), since, in this case, disabling either, but only one of, a! 
or /3 does not disable all the events in any state of the 
system. A resilient output stabilizing compensator for the 
system in Fig. 6 is illustrated in Fig. 10 for which the initial 
state is (123, 123). 

REFERENCES 
H. Cho and S. I. Marcus, “On the suprema1 languages of sublan- 
guages that arise in supervisor synthesis problems with partial obser- 
vations,” MCSS, vol. 2, no. 2, pp. 47-69, 1989. 
R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya, “Supervisory 
control of discrete-event processes with partial observations,” IEEE 
Trans. Automat. Contr., vol. 33, no. 3, pp. 249-260, Mar. 1988. 
F. Lin and W. M. Wonham, “On observabililty of discrete event 
systems,:’ Informat. Sci., vol. 44, pp. 173-198, 1988. 
C. M. Ozveren, “Analysis and control of discrete event dynamic 
systems: A state space approach,” Ph.D. thesis, M.I.T., Cambridge, 
MA, Aug. 1989; also in Laboratory for Information and Decision 
Systems,, M.I.T., Cambridge, MA, Rep. LIDS-TH-1907, Aug. 1989. 
C. M. Ozveren and A. S. Willsky, “Observability of discrete event 
dynamic systems,” IEEE Trans. Automat. Contr., vol. 35, no. 7 ,  

C. M. Ozveren, A. S .  Willsky, and P. J .  Antsaklis, “Stability and 
stabilizability of discrete event dynamic systems, ” Laboratory for 
Information and Decision Systems, M.I.T., Cambridge, MA, Rep. 
LIDS-P-1853, Feb. 1989; also in J .  ACM (to be published), 

PP. 797,806, July 1990. 

P. J .  Ramadge, “Observability of discrete event systems,” in Proc. 
Conf. Decision Contr., Dec. 1986. 
- , “Some tractable supervisory control problems for discrete event 
systems modeled by buchi automata,” ZEEE Trans. Automat. 
Contr., vol. 36, pp. 10-19, Jan. 1989. 
P. J. Ramadge and W. M. Wonham, “Modular feedback logic for 
discrete event systems,” SIAM J .  Contr. Optimiz., Sept. 1987. 
- “Supervisory control of a class of discrete event processes,” 
S I A M / .  Contr. Optimiz., vol. 25, no. 1, Jan. 1987. 
J .  N. Tsitsiklis, “On the control of discrete event dynamical systems,” 
Math. C. S .  S . ,  1989. 
A. F. Vax and W. M. Wonham, “On supervisor reduction in discrete 
event systems,” Int. J .  Contr., 1986. 

Cuneyt M. Ozveren (S’82-M’84-S’84-M’89) 
was born in Istanbul, Turkey on July 20, 1962. He 
received the B.S. and M.S. degrees in electrical 
engineering and computer science, the Electrical 
Engineer degree, the M.S. degree from the Sloan 
School of Management, and the Ph.D. degree in 
electrical engineering, all from the Massachusetts 
Institute of Technology, Cambridge, in 1984, 1987, 
1987, 1989, and 1989, respectively. 

He is currently a Principal Engineer at Digital 
Equipment Corporation, working on the design and 

the implementation of a high-speed communications switch. From January to 
August 1988 he conducted research at the Institut de Recherche en Informa- 
tique Et Systkmes Aleatoires, France, and from September to December 
1989 he was a Postdoctoral Research Associate at the Laboratory for 
Information and Decision Systems at M.I.T. His interests are associated with 
the analysis and control of large scale dynamic systems including applica- 
tions to communications systems, manufacturing systems, and economics. 

Dr. Ozveren is a member of Sigma Chi, Tau Beta Pi, and Eta Kappa Nu. 
In 1989 he was a finalist for the 28th IEEE Conference on Decision and 
Control Best Student Paper Award. He is also the 1989 recipient of the 
Pugh-Roberts Associates Prize in Computer Simulation Applied to Corpo- 
rate Strategy. 

Alan S. Willsky (S’7O-M’73-SM’82-F’86) re- 
ceived the S.B. and Ph.D. degrees from the Mas- 
sachusetts Institute of Technology, Cambridge, 
MA, in 1969 and 1973, respectively. 

From 1969 through 1973 he held a Fannie and 
John Hertz Foundation Fellowship. He joined the 
M.I.T. Faculty in 1973, and his present position is 
Professor of Electrical Engineering. From 1974 to 
1981 he served as Assistant Director of the M.I.T. 
Laboratory for Information and Decision Systems. 
He is also a founder and member of the board of 

directors of Alphatech, Inc. He has held visiting positions at Imperial 
college, London; L’Universitk de Paris-Sud; and the Institute de Recherche 
en Infonnatique et Systkmes albatoires in Rennes, France. He is Editor of 
the M.I.T. Press series on signal processing, optimization, and control. He 
has been an Associate Editor of several journals. He is the author of the 
research monograph Digital Signal Processing and Control and Estima- 
tion Theory and is co-author of the undergraduate text Signals and 
Systems. His present research interests are in problems involving multidi- 
mensional and multiresolution estimation and imaging, discrete-event sys- 
tems, and the asymptotic analysis of control and estimation systems. 

Dr. Willsky has been an Associate Editor for the IEEE TRANSACTIONS ON 

AUTOMATIC CONTROL, and has served as a member of the Board of 
Governors and as Vice President for Technical Affairs of the IEEE Control 
Systems Society, and was Program Chairman for the 1981 Bilateral Seminar 
on Control Systems held in the People’s Republic of China. In addition, he 
gave the opening plenary lecture at the 20th IEEE Conference on Decision 
and Control, and in 1988 was made a Distinguished Member of the IEEE 
Control Systems Society. He was Program Chairman for the 17th IEEE 
Conference on Decision and Control. In 1975 he received the Donald P. 
Eckman Award from the American Automatic Control Council. He was 
awarded the 1979 Alfred Nobel Prize by the ASCE and the 1980 Browder J .  
Thompson Memorial Prize Award by the IEEE for a paper excerpted from 
his monograph. 


