
Systems & Control Letters 14 (1990) 253-259 253
North-Holland

Parallel smoothing *

A.H. T E W F I K
Department of Electrical Engineering, Univ. of Minnesota,
Minneapolis, MN 55455, U.S.A.

A.S. WILLSKY

Laboratory for Information and Decision Systems and Depart-
ment of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

B.C. LEVY

Department of Electrical Engineering, University of California,
Davis, CA 95616, U.S.A.

Received 6 December 1988
Revised 16 October 1989

Abstract: This paper describes a smoothing algorithm that
involves the parallel processing of the data in subintervals with
little communication among the processors. Data in the subin-
tervals are first processed in parallel starting from subinterval
centers and processing outward to the subinterval boundaries.
After an exchange of information among processors, a final set
of parallel recursions, proceeding inward in each subinterval,
yields the desired estimates. The proposed procedure is found
in general to have a total on-line computational complexity
slightly higher than that of the non-parallel implementations.
However, since several processors are used in parallel, the
running time of this algorithm is much smaller than that of a
single smoother solution. Furthermore when the process to be
estimated is reversible, an even-odd decomposition of the
process yields a block diagonalization that yields a further,
considerable reduction in the required computations.

Keywords: Smoothing; reverse filter; forward filter; parallel
processing.

1. Introduction

has led to the development of a number of parallel
processing algorithms for optimal smoothing for
linear state variable models. In this paper we
present a new algorithm of this type which is
highly parallel in nature and requires minimal
communication among processors. As in [1-4],
our algorithm involves the partitioning of the data
interval of interest into subintervals, processing all
data segments in parallel and then combining the
results of these local processing steps. However,
the approach we present is a significantly different
alternative to these earlier methods. To under-
stand our approach conceptually, it is useful to
review two of the standard approaches to smooth-
ing illustrated in Figure 1. One of these is the
Mayne-Fraser two-filter smoother [5] in which the
smoothed estimate is computed by a forward-
filtered estimate and a reverse-filtered estimate.
These two estimates can be computed in parallel,
resulting in a total run time proportional to twice

Forward-Filtered Estimate
~- ~ Pointwise

t I Combination
TO T N of Estimates

Backward-Filtered Estimate

(a)

Foward- Filtered Estimate

TNI/Smoothed Estimate
I I available at this

TO 4 point
Reverse Smoothed Estimate
RecursJon

(b)

The advent of cheap and powerful processors
in the past few years, together with the relatively
high cost of communication has made decentral-
ized estimation schemes extremely attractive and

* This work was performed at MIT and was supported in part
by the National Science Foundation under Grant ECS-
8700903 and in part by the Army Research Office under
Grant DAAL03-86-K-0171.

Combination of Estimates !
Smoothed Estimate/ "Smoothed Estimate
Recursion ~ Recursion

4 ~ , L

Forward Filter Reverse Filter
I I
To TN

(c)

Fig. 1. Three processing structures for optimal smoothing: (a)
Mayne-Fraser processing structure. (b) Rauch-Tung-Striebel

processing structure. (c) A simple parallel algorithm.

0167-6911/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)

254 A.H~ Te~fik et al. / Parallel smoothing

the length of the entire data interval (once for the
filter computations, the other for their combina-
tion) and requiring the storage of these two inter-
mediate estimates over the entire interval. Note
also that both processors must have access to all
of the data. A second approach, the Rauch-
Tung-Striebel algorithm [5], begins with the for-
ward filtered estimate. At the end of this processing
step we have the full smoothed estimate at the
terminal point, and we then proceed with a recur-
sive recursion for the smoothed estimate, using the
forward filtered estimate as input. Because of its
serial nature the total run time of this algorithm is
proportional to twice the data interval length but
requires the storage of only one intermediate
estimate over the entire interval.

It is relatively straightforward to devise an al-
gorithm that represents a modest improvement to
the computational demands of these two al-
gorithms. Specifically, as illustrated in Figure l(a),
we divide the data interval in half. The first
processing step then consists of the parallel imple-
mentation of a forward and reverse filter each of
which operates over only one half of the data
interval. At the point at which these computations
meet, we can combine the estimates as in the
Mayne±Fraser smoother to obtain the smoothed
estimate at that point, which can then be used to
initialize parallel Rauch-Tung-St r iebe l recursions
on each subinterval. In this case the total
processing time is proportional to the overall data
interval (we have two parallel R a u c h - T u n g -
Striebel algorithms over half the interval length)
plus one additional calculation at the centerpoint.
Data storage consists of two filtered estimates, but
each over only half of the data interval. Note also
that each of the processors needs to access only
half of the data and the communications between
processors is limited to the very simple trading of
filtered estimates at the common interval end-
point.

In this paper we present the generalization of
this simple algorithm to finer subdivisions of the
data interval. As we will see, this can lead to
significant reductions in processing time and data
accessing requirements, with minimal inter-
processor communication. When we divide the
interval into three or more pieces, the question
arises as to directions in which recursions should
proceed in each subinterval. The algorithm we
describe in Section 3 involves recursions that

propagate radially outward toward and inward from
the boundary points of each subinterval. The key
to developing these recursions is the use of a joint
dynamic model, described in the next section, for
a stochastic process x(t) and its time-reversed
version x (- t) . As we will also see in Section 2,
considerable simplifications arise for the case of a
stationary, time-reversible process if we transform
the joint x(t), x (- t) dynamics into a form yield-
ing the even-odd decomposition of the process. A
second question concerns the generalization of the
Mayne-Frase r combining step when we need to
merge information at several boundary points. As
we describe in Section 3, this generalization con-
sists of a discrete two-filter-like computation in-
volving only the interval end points. The result is
a parallel procedure which has several attractive
features and which is especially efficient for time-
reversible processes.

2. Outward dynamic models and even-odd decom-
positions

Consider the following, n-dimensional dynamic
model defined for - ½ T < t < ½ T:

~(t) = F (t) x (t) + G(t)u (t) , (2.1)

y(t) = H (t) x (t) + v(t) , (2.2)

where u(t) and v(t) are independent, zero-mean
white noise processes with unit intensity, indepen-
dent of the initial condition x (- ½ T) . From [6]
we have that the reversed-time Markovian model
for x(t) is given by

- -X(t) = - - I F (t) -{- G (t) G T (t) H l (t)] x (t)

- G(t)~ (t) (2.3)

where H(t) is the covariance of x(t) satisfying

~I(t) = F (t) H (t) + I I (t) F T (t) + G(t)GT(t)
(2.4)

and fi(t) is a unit intensity white noise indepen-
dent of the future of x(t). If we define

z (t) = Y l - l (- t) x (- t) , w (t) = f i (- t) , (2.5)

some algebra yields

~(t) = F T (- - t) z (t) -- I I - ' (- t) G (- t) w (t)
(2.6)

A.H. Tewfik et al. / Parallel smoothing 255

and combining this with (2.1), (2.2) yields the
following 2n-dimensional dynamic model defined
for 0 < t < ½T:

0
[2 (t)] [F(0t) F T (_ t)] [X (t)
[-~(t) [= [z(t) I

G(t)
+

0

0]
- / 7 - a (- t) G (- t)

[u (t)
" [w (t)] (2.7)

y (- t) (0 t) 0] [x (t)]
H (t) I - I (- t) J[z (t) j

[v (t)] (2.8)
+ L v (_ t) '

where, by construction, [u T (t) , w T (t)] T and
[vT(t), vT(--t)] T are independent, unit intensity
white noise processes. Note that (2.7), (2.8) de-
scribes a dynamic system for the joint evolution of
x(t) and x (- t) , propagating outward from 0 to
± ½T. Note also that while (2.7), (2.8) appear to
describe decoupled evolution for the two parts of
the state, statistical coupling exists, thanks to the
initial condition [x(0), z(0)] which has as its (sin-
gular covariance)

/ 7 (0) I]

I H - a (0) "

To carry our analysis further, we focus on the
time invariant stationary case, i.e. when F, G, and
H are constant and x(t) is a stationary process.
We also assume that (F, G, H) is a minimal reali-
zation so that, in particular, the constant state
covariance matrix H is the unique positive deft-
nite solution of the Lyapunov equation

F H + H F T + GG v = 0. (2.9)

Also, without loss of generality, we can assume
that G has full column rank and, thanks to the
following result, t h a t / 7 is diagonal and that there
exists a signature matrix

S = diag(In~,- In2)' nl + n2 = n,

such that

SF = FTs. (2.10)

Proposition. A minimal model of the form (2.1)-
(2.2) with F, G, H constant and 17 satisfying (2.9)
can be transformed into another minimal realization
(F, G, H, 17) such that there exists a signature
matrix S obeying

SF = fiTs,

and such that ffl is diagonal.

Proof. First, use the transformation

X(I) = /7-1/2X(t)

tO obtain a new realization (F, G, H, I } in which
the variance of the state process is identity. Next,
find a symmetric nonsingular P such that 1

pf i = fiTp. (2.11)

Decompose P as

p = VA1/ZSAX/ZvT

where V is a nonsingular orthogonal matrix, A a/2
is diagonal, and S is a signature matrix. Note that
A1/zSA 1/2= SA has the eigenvalues of P on its
diagonal. Apply the transformation

~(t) = A1/ZVTx(t)

to obtain a new minimal realization (F, G, H, A).
It is a simple matter to check that the state vari-
alice

E[~(t)y~V(t)] = A (2.12)

is diagonal, and that

s P = fi ts . []

Assume now t h a t / 7 is diagonal and that S and
F satisfy (2.10), and consider the following change
of variables, yielding the even and odd state
processes respectively:

x~(t) = x (t) + Sz (t) , (2.13)

Xo(t) = x (t) - S z (t) , (2.14)

and the even and odd observations ye(t) and
yo(t) as

ye(t) = y (t) + y (- t) , (2.15)

yo(t) = y (t) - y (- t) . (2.16)

1 The existence of a possibly nonsymmetric P (satisfying
(2.11)) follows from the similarity of ff and fiT. However in
this case, pT has the same property, as does the symmetric
matrix P + pT (see also [6]).

256 A.H. Te~fik et al. / Parallel smoothing

From (2.7), (2.8), specialized to the stationary
case, and (2.10) we find that

= ~o(t)]
n- l sa l[w(t)J (2.17)

with

E[[xe(°)]ix:(0) x>~l] Ltxo(O)/
=[(I+17j lS)(l~+S) /7--/7-1](2.18)

H - H -1 (1- H-1S)(H - S)

and

ye(t)]=l[H(I+FIS) H(l - l IS)][xe(t)]
yo(t)J H(/ - I IS) H(l+IIS)][Xo(t)

1
In general there is no particular reason to pre-

fer the model (2.17)-(2.19) over the model (2.7),
(2.8). However, we do obtain a considerable sim-
plification if the process y(t) is statistically time
reversible [7], i.e. if E[y(t)yT(O)] is symmetric for
all t (note that this is always true if y (t) is scalar).
In this case the results of [7] imply that

1 7 = I , H S = H, S G = GO (2.20)

where Q is an orthogonal matrix. From this we
find that (2.17) reduces to

[2(e(t)] 0][Xe(t) 0
FjL o t)]

0o]r , t, L.~(t)] (2.21)
where ~l(t) and ~2(t) are independent white noise
processes of unit intensity. Also the initial covari-
ance for (2.21) is

4 diag(I~,, 0, 0, I~2)

so that Xe(t) and Xo(t) are independent processes
(note that the initial uncertainty in x(0) is distrib-
uted between Xe(0) and Xo(0) according to the
structure of S). Furthermore (2.19) becomes

Ye(/) [Xe(t) [+1(t) ,o(,,]:[0" o]] Lxo(t) L82(t)
(2.22)

where ~l(t) and ~2(t) are independent white noise
processes with unit intensity, so that the even and
odd measurements are decoupled as well.

3. The parallel smoothing algorithm

In this section we describe a parallel algorithm
for computing the optimal estimate of x (t) satisfy-
ing (2.1) for T O < t 1 < T u given the measurements
(2.2) over the same interval. The procedure we
describe involves three steps. To begin, we divide
[To, T N] into N equal intervals [~_ ~, T,], i =
1 N, each of length T.

Step 1. As illustrated in Figure 2(a) this step
consists of the parallel computation of outward
filtered estimates on each subinterval. Specifically,
consider one of these intervals, say the i-th, and
let - 1 T < t < 1T denote the independent varia-
ble measured relative to the center of this interval,
namely T, l + ½T. Over this interval, we recur-
sively compute

~ (t l - t , t) and : ~ (- t l - t , t)

and their error covariances for 0 < t < ½ T, where
~(s I - t, t) denotes the estimate of x (s) based on
(y (r) l [r I < t }. Using the similarity transforma-
tions as described in the preceding section, we see
that this is a standard Kalman filtering computa-
tion using, for example, the model (2.7), (2.8) for a
general, time varying model or (2.21), (2.22) for
stationary models with time-reversible outputs.

r,, r,, r,, ,q
k~' 'J) \~' 'U \~' ' l)

(o)

) 0 0 (
(b)

,~ (~, ,~ (~, ,~ (~,
' j) \~, ,J) \~' ,J) ~,

(el

Fig. 2. Parallel processing algorithm. (a) Step 1: Outward filter
propagation. (b) Step 2: Communication among processors to
estimate endpoints. (c) Step 3: Inward computation of

smoothed estimate.

A.H. Tewfik et al. / Parallel smoothing 257

Step 2. Let us now revert back to the original time
reference. From the endpoints of the subinterval
computations of Step 1 we now have computed

~(T-a IT-,, ~) and ~(T IT-a, T),

i.e. the estimates of the endpoints given local data,
and their corresponding error covariances

P (T - 1 1 T - ~ , T) and P (T I T - a , T) -

What we accomplish during the second step of the
computation is to use these local estimates to
compute x(T IT0, TN), i.e. the full smoothed
estimate at each of the endpoints based on all of
the data. The form of the required calculations,
which can be deduced from the smoothing results
of [8,9], consists of a Mayne-Fraser-like two-filter
computation involving the endpoints only, as il-
lustrated in Figure 2(b). In particular the forward
recursion computes the estimates

2 (T _ , IT0, T/) and 2 (T I T 0, T)

and the corresponding error covariances as i in-
creases, starting with initial conditions

2(T0 17,0, 7"1) and 2(T a IT0, 7,1).

The processing involves communication from
processor to processor as i increases, using only
the endpoint filtered estimates computed in Step
1.

Specifically using the results of [8,9], we obtain
the following recursions:

~(T-~ 17,o, T)

= e(T_, 17"o, T)

" [P-a(T/_ 1 [To, T-1))~(T/-1 [To, Ti-l)

+e-a(T-1 IT-l, T)~(T-a IT-l, T)],
(3.1)

~(T 17,0, T)

= ~(r, IT-a, T)

+ e ; (-~r , ½r)

• [~(T-a 17,o, T)-~(T-1 It,_1, T)].
(3.2)

The covariance P(T-a IT-l , T/) is one of the
endpoint covariances computed in Step 1. The
other covariances and quantities required in (3.1),

(3.2) are computed recursively as follows (again
based on [8,9]):

e-l(T_a 170, T)

= P-a(T,-1 IT0, T~-a)+ e - a (T , - , IT- l , T)

- H -a, (3.3)

e(T IT0, T)

= e(T IT-a, T)

+ ~;(- ~T, ~T)

• [e(T-a 17,0, T) - e (T - a IT-a, T)]
• ~ r (_ ½T, ½T) , (3.4)

Here the transition matrix ~ for each interval is
calculated as follows, where we again revert to the
locally centered variable t:

~ (- ½ T , t)

= (F(t) - - ed (t)nT(t)n (t))~ (- -½T, t),
(3.5)

• ; (- ½ T , - ½T) = I , (3.6)

with Pd(t) computed from

Pd(t) = F(t)Pd(t) + Pd(t)FT(t)

+ G(t)GT(t) - pd(t)HV(t)H(t)Pd(t) ,

(3.7)

e~(- ½7,) =0. (3.8)

Alternatively, ~ o (- ½T, ½7,) can be obtained as

• ;(-½7,, ½7,)= e(T_~, T)e-~(T_a IT-a, T)
(3.9)

(cf. [9]), where P(T-a , T) is the cross-covariance
of the Step 1 filtering errors at t = T-1 and t = T,
and is readily obtained from the Step 1 covariance
calculations. The term / / -1 is subtracted in eq.
(3.3) to account for the fact that the a priori
information on x(.) was used twice, in computing
both

2(T,-a ITo, T-a) and 2 (T-a IT- l , T)-

In parallel with this forward recursion, there is
also an analogous backward recursion. Specifi-
cally, a set of equations for computing

.~(TIT/, TN) and P (TIT , , TN),

258 A.H. Tewfik et al. / Parallel smoothing

given

)~(Tt+ 1 [Zt+l, TN) and P(T~+~ IX+,, TN)

can easily be derived from [8,9], and in fact, this
set of equations is very similar to the set of
equations (3.3)-(3.6).

Note that, at the end of this calculation,

~ (T i I T 0, T,) and ~(~[T~, TN)

and their respective covariances

P(T, [To, T,.) and P(T, IT,, TN)

for all i are available, and can be used to compute
the optimal smoothed estimates of x(t) at all of
the endpoints, using standard smoothing results:

IT0, TN)

= Ps(T,]To, TN)(p-I(Tg IT0, T,)~(T, [To, ~)

IT, IX, 7"N)), (3.10)

IT0, TN)= P-I(ITo,

IT,, T N) - H '
(3.11)

Step 3. In this last step, the data is processed in
parallel in a radially inward direction toward the
center of each interval, to yield the optimal
smoothed estimate of x(t) for all t. Let us again
revert to the locally centered time index for the
i-th interval. The computation (3.10), (3.11) then
provides us with the optimal smoothed estimate of
x(.) at the endpoints. As illustrated in Figure 2(c),
we can then use the Rauch-Tung-Str iebel al-
gorithm (based, for example, on the model (2.7),
(2.8) or (2.21), (2.22)) starting from these end-
points in order to reprocess the filtered estimate in
an inward direction in order to compute the opti-
mal smoothed estimate. Specifically let X~o(t) de-
note the state of our outward model (i.e. as in (2.7)
or (2.21)). Then the optimal smoothed estimate of
Xeo(t), 2~o(t), for 0 < t < ½T is obtained as the
solution of the backwards equation

d ~ o (t)
dl = (~ + ~ f f fTp~°X(t)) xS (t)

-- fgfflTp~ol(t)~eo(t) (3.12)

with the initial condition ^s 1 Xeo(7 T) obtained from
Step 2. Here, the matrices ~- and ff are the

dynamic matrices of the outward model (from
(2.7) or (2.21)) and 2eo(t) and Peo(t) are the
filtered estimate and error covariance calculated in
Step 1.

4. Computational complexity

Let us first focus on the on-line complexity,
both in terms of total computations required and
the efficiencies due to parallelization. A careful
examination of Steps 1 and 3 of our algorithm
reveals that the total computational toad, in the
worst case, is roughly ~ times the total load of the
standard Rauch-Tung-Str iebel algorithm. Since
the actual run time of these two steps is propor-
tional to 1/N times this load, we see that substan-
tial savings in run time are achievable if a number
of processors are used. Furthermore, in the re-
versible case the total load of Steps 1 and 3 equals
that of Rauch-Tung-Str iebel , yielding a further
savings. Of course these savings are somewhat
countered by the on-line computations involved in
Step 2. Note that Step 2 only involves updating
estimates at the interval endpoints, which, unless
N is quite large, are quite few in comparison to
the total number of data points. Thus the on-line
load of Step 2 is typically negligible compared to
that of Steps 1 and 3. It is worth noting, however,
that the total run time for our algorithm is the
sum of a term proportional to 1/N (Steps 1 and 3)
and a term proportional to N (Step 2), so that
there is an optimum number of processors in
terms of minimizing run time. Note also that our
algorithm offers advantages in data accessing, as
each processor needs to use only a small part of
the data, and the cost of this is the communication
of n numbers (the forward and backward recur-
sions of Step 2) to each of its neighbors. Note also
that the total computational complexity of our
procedure is lower than that of other parallel
algorithms.

Finally, let us briefly comment on the off-line
complexity. In general the off-line computational
requirements for Steps 1 and 3 are roughly twice
those for the Rauch-Tung-Str iebel algorithm,
while in the reversible case the complexity for
these steps is the same as for the standard al-
gorithm. The off-line computations involved in
Step 2 (given by (3.3), (3.4), (3.9), and (3.11)) are
comparatively expensive per point, but again there

A.H. Tewfik et al. / Parallel smoothing 259

are usually relatively few such endpoints. Further-
more for stationary processes (3.9) need only be
calculated once.

case the savings in run time and in data accessing
should be even more dramatic.

5. Conclusion

In this paper we presented a new parallel
smoothing algorithm based on a partitioning of
the data interval and the use of outward dynamic
models in each subinterval, leading to parallel
outward-recursive processing in each interval, fol-
lowed by the propagation of information concern-
ing interval endpoints and then parallel inward-re-
cursive processing. The total on-line computa-
tional complexity of this procedure is at worst
only marginally higher than that of non-parallel
implementations. However, since a number of
parallel processors are used, the running time of
this algorithm is much smaller than that of single
smoother procedures. A natural extension of this
work is to consider parallel algorithms for smooth-
ing for boundary-value processes - i.e. processes
described locally by a model of the form (2.1)-(2.2)
but with noncausal boundary conditions (cf. [10]).
An interesting issue is the interpretation of infor-
mation contained in data outside a particular in-
terval as a boundary measurement. With such an
interpretation, we should be able to use the results
of Adams et al. [10] to derive another class of
parallel smoothing algorithms. Furthermore it
should also be possible to extend these ideas to
estimation for two-dimensional fields, and in this

References

[1] U.B. Desai and B. Das, Parallel algorithms for Kalman
filtering, Proceedings of the 1985 American Control Con-
ference (Boston, MA, June 1985) 920-921.

[2] S.R. McReynolds, Parallel filtering and smoothing al-
gorithms, IEEE Trans. Automat. Control 19 (1974) 556-
561.

[3] M. Morf, J.R. Dobbins, B. Friedlander and T. Kailath,
Square-root algorithms for parallel processing in optimal
estimation, Automatica 15 (1979) 299-306.

[4] G. Meyer and H. Weinert, An approach to reliable paral-
lel data processing, Proc. of the 21st IEEE Conf. on
Decision and Control (Orlando, FL, 1982).

[5] A. Gelb, Ed., Applied Optimal Estimation (M.I.T. Press,
Cambridge, MA, 1974).

[6] O. Taussky and H. Zassenhaus, On the similarity transfor-
mation between a matrix and its transpose, Pacific J.
Math. 9 (1959) 893-896.

[7] J.C. Willems, Time reversibility in deterministic and sto-
chastic dynamical systems, in: R.R. Mohler and A.
Ruberti, Eds., Proc. 1977 US-Italy Seminar on Variable
Structure Systems (Springer-Verlag, Berlin-New York,
1978) 318-326.

[8] D.G. Lainiotis, Optimal linear smoothing; Continuous
data case, Internat. J. Control 17 (1973) 921-930.

[9] G. Verghese, B. Friedlander and T. Kailath, Scattering
theory and finear least-squares estimation, Part III: The
estimates, IEEE Trans. Automat. Control 25 (1980) 794-
802.

[10] M.B. Adams, A.S. Willsky and B.C. Levy, Linear estima-
tion of boundary value stochastic processes, Part II; 1-D
smoothing problems, IEEE Trans. Automat. Control 29
(1984) 811-821.

