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Abstract. The problem considered is that of determining the shape of an object embedded within a medium from noisy 
tomographic projection measurements. In particular, the issue is addressed of  how accurately coarse features of  object 
geometry--size, elongation and orientat ion--can be characterized from noisy projection data. A maximum likelihood 
parameter estimation formulation is used and estimation performance is analyzed by evaluation of  the Cramer-Rao lower 
bound on the error variances of  the estimates. It is demonstrated that for measurements available at all projection angles 
and at a given noise level (1) object size and orientation are more accurately determined than is the degree of  object elongation, 
and (2) reliable orientation estimation requires a minimum degree of object elongation, and the required degree of  elongation 
is inversely related to the measurement signal-to-noise ratio (SNR). Based on these observations an iterative algorithm is 
proposed for estimation of  object geometry and results illustrating algorithm performance are presented. 

Zusammenfassung. Es wird das Problem betrachtet, die Form eines Objektes zu bestimmen, das von verrauschten tomographi- 
schen Daten umgeben wird. Insbesondere wird untersucht, wie genau man die wesentlichen Merkmale der Geometrie der 
Objekte--Gribl~e, Abstand und Orientierung--aus verrauschten Projektionsdaten bestimmen kann. Die Sch~itzung der Para- 
meter wird mit der Maximum-Likelihood Methode durchgefiihrt, die Giite der Sch/itzung wird mit Hilfe der unteren 
Cramer-Rao Schranke fiir die Fehlervarianzen analysiert. Es wird gezeigt, da~3 f/Jr Messungen, die fiir alle Projektionswinkel 
verfiigbar sind, bei einem festen gauschpegel (1) Objektgr613e und -orientierung genauer bestimmt werden k/Snnen als ihr 
Abstand, und dal3 (2) eine zuverl/issige Sch~itzung der Orientierung einen Mindestabstand der Objekte voraussetzt. Dieser 
Mindestabstand ist umgekehrt proportional zum Signalrauschverh~iltnis. Aufgrund dieser Beobachtungen wird ein iterativer 
Algorithmus zur Sch/itzung der Objektgeometrie vorgeschlagen, Beispiele zeigen seine Arbeitsweise. 

R6sum6. On consid6re le probl~me de d6terminer la forme d 'un objet dans une surface. Ceux-ci sont reconstitu6s h partir 
de projections tomographiques, en pr6sence de bruit. En particulier, on s'int6resse h savoir avec quelle pr6cision des 
caract6ristiques globales de la g6om6trie des objets---taille, allongement et orientation--peuvent se tirer de donn6es bruit6es. 
Une formulation de l 'estimation de param~tres ~t vraisemblance maximale (Maximum Likelihood) est utilis6e. Les perfor- 
mances de l 'estimation sont analys6es ~t l 'aide du crit~re de Cramer-Rao pour l'6valuation de la limite inf6rieure des variances 
de l 'erreur d'estimation. On d6montre deux choses pour des mesures prises $ tout angle de projection, en pr6sence d 'un 
niveau de bruit donn6. Premi6rement, la taille et l 'orientation de I'objet se per~oivent de mani~re plus pr6cise que son degr6 
d'allongement. D'autre part, restimation pr6cise de I'orientation n6cessite un certain degr6 d'allongement de l'objet, et le 
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degr6 d'allongement requis est inversrment 1i6 au rapport signal sur bruit (SNR) des mesures. Sur la base de ces observations, 
un algorithme itrratif pour l'estimation de la gromrtrie de l'objet est prrsentr, ainsi que des rrsultats illustrant les performances 
obtenues. 

Keywords. Reconstruction, tomography, projection, object, shape, estimation, performance, parametric, maximum likelihood. 

I. Introduction 

The problem of  reconstructing a multi-dimensional function from its projections arises in a diversity 
of  disciplines, typically in imaging applications. In these applications, one is interested in determining a 
profile characterizing the interior of a medium (e.g., x-ray attenuation coefficient) from integral or 
projection-type measurements obtained by external probing of  the medium. 

One popular  application is medical x-ray CAT scanning, where x-rays are directed along a collection 
of  straight lines lying in a plane intersecting the patient; the set of projection measurements so obtained 
are used to reconstruct the x-ray attenuation profile within the cross-section. Recently, a number of novel 
applications of similar reconstruction techniques have been explored, for example mesoscale oceanographic 
thermal mapping, quality control nondestructive evaluation, geophysical tomography and "stop action" 
imaging of  very rapidly changing media [3, 4, 6, 7, 9]. In contrast to medical CAT scanning, many of these 
applications are characterized by measurement limitations due, for example, to limitations in the number 
of measurement transducers, constraints on measurement time, or operational constraints limiting measure- 
ment view angle and /o r  SNR. These represent severe restrictions when the goal is to produce high 
resolution, artifact-free cross-sectional imagery, for it is well known that when the projection measurements 
are limited or noisy, the reconstruction inverse problem is ill-posed, having a numerically sensitive or 
noisy solution [10]. 

In a number of applications, particularly with limited measurement data, the ultimate goal of the 
processing is far more modest than obtaining high resolution cross-sectional imagery. More typically the 
objective involves quantitative and /or  qualitative assessment of  objects, regions or boundaries within the 
cross-section, e.g., thermal regions in ocean mapping, cracks and flaws in nondestructive material evaluation 
and certain anatomical features in medical scanning [6, 15, 17]. The focus of this paper is on the processing 
of limited or noisy tomographic projection data when the goals involve characterizing objects or regions 
in the medium. We model the unknown medium as the superposition of  a background medium and one 
or more local variations in the medium corresponding to objects. Furthermore each object is characterized 
by a small set of parameters corresponding, for example, to object location, size, and boundary shape. 
This type of  representation has previously been used to analyze the problem of locating an object from 
tomographic measurements [11, 12], where it was shown that the accuracy of object localization is 
characterized by a threshold behavior-- for  a given measurement geometry and measurement noise level, 
one can identify the smallest size of object that can be reliably located. 

In the present paper, that work is extended to the problem of  determining, from noisy projection 
measurements obtained by probing the exterior of a medium, the geometry of an object embedded within 
the medium. One question to be addressed is how accurately object geometry can be characterized from 
full-view data (projection measurements acquired from views completely surrounding the object); the 
limited view angle may be considered in a similar way. To establish insight, attention is focused in this 

paper on three attributes characterizing coarse object geometry, specifically size, elongation and orientation. 
These object attributes are considered as unknown quantities which are estimated directly from noisy 
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tomographic data using maximum likelihood (ML) parameter estimation. The statistical accuracy of these 
estimates is then characterized by evaluating the Cramer-Rao lower bound (CRLB) on the estimate error 

variances. 
Although the model under consideration is simple, it affords insight into the problem of  characterizing 

object geometry from tomographic data. For example, this analysis may be used to identify, for a given 
measurement geometry and noise level, the minimum degree of object elongation required to achieve a 
specified accuracy in object orientation estimation. This analysis also demonstrates that when all three 
attributes--size, elongation, and orientat ion--are simultaneously unknown, size and orientation can be 
estimated substantially more accurately than can the degree of elongation. 

The paper is organized as follows. In Section 2, notation is reviewed for both the tomographic 
reconstruction problem and for the object-based profile model described in [11, 12]. In Section 3 the 
profile model from [11, 12] is restricted to objects capturing the three features of object geometry already 
mentioned--size,  elongation and orientation. In Section 4 the problem is considered of ML estimation 
of the object geometry parameters and expressions are obtained for the log likelihood and ambiguity 
functions which are used to characterize estimation performance. In Section 5 the problem is specialized 
to the analytically tractable case of Gaussian objects and estimation accuracy is assessed for the individual 
problems of estimating size, elongation, and orientation. Section 6 illustrates the use of ambiguity functions 
in the evaluation of the robustness of the estimates of object geometry parameters to modeling errors. 
The results of these analyses suggest a particular structure for an iterative algorithm for object estimation. 
In Section 7 we present this algorithm and illustrate its performance characteristics. Conclusions are 
presented in Section 8. 

2. Background 

We begin by reviewing the reconstruction of a two-dimensional (2-D) function from its projections. 
Let f (x)  represent the value of the cross-sectional function (for example, x-ray attenuation coefficient) at 
a point specified by the vector x = (xl, x2)'. The projection o f f ( x )  at angle 0 is a 1-D function g(t, O) as 
shown in Fig. 1, which for given values of  t and 0 is the integral 

g( t, O) = f~_~ f~_o f(x)8( t -  x'O) dxl dX2= Ix,o= f(x)  ds --[ Rf]( t, O) (1) 

~x 2 

\ \ \ ~g(t,O) \ 
x ~ t  

Fig. 1. Pro jec t ion  at angle  O. 

x2 

l(t,O) 
Fig. 2. M e a s u r e m e n t  ray geometry .  
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along the line 

E(t, 0 )=  {x: xl cos O+x2 sin 0 = t} = {x: x'O = t}, (2) 

O -  (cos 0 sin 0)', (3) 

(t, O)c S - { ( t ,  0): - ~ <  t < ~ ,  0<~ 0 < or}, (4) 

as shown in Fig. 2. In (1), 6 (0  is the Dirac delta function. The integral equation (1) corresponds to the 
Radon transformation, which maps the 2-D function f :  R2~ R into a function on a half-cylinder g : S ~  
~; g(t, 0) is called the Radon transform o f f ( x ) ,  and is also denoted by [Rf](t, 0). 

The convolution backprojection (CBP) inversion formula [13] is one solution to the integral equation 
in (1); it assumes the availability of noise-free measurements at all (t, 0) values on the half-cylinder S, 
and is given by 

f ( x )  = g(t, O)v( t -x 'O,  0) dt dO = q(x'O, 0) dO "= [Bq](x) ,  (5) 

where the convolving kernel v(t, 0) is 0-independent with a Fourier transform with respect to t satisfying 
V(to) = I to I- The so-called backprojection operator (the integral with respect to 0) maps the function q: S--> R 
into the 2-D function )~:RE-->R; f (x )  is called the backprojection of q and is also denoted by [Bq](x). 

In the object-based model from [11, 12], the 2-D cross-section f (x)  is represented as the superposition 
of a background and N objects, 

N 

f (x)  :fb(X) + Y~ dkf(X -- Ck ; Yk)- (6) 
k = l  

Here, the kth object is located at the point Ck and has contrast or density dk ( f  is normalized so that 
f(0;  Yk) is unity). The density fluctuations of the kth object are characterized by the finite-dimensional 
vector of parameters Yk containing, for example, information about the object boundary shape and interior 
density fluctuations. The problem of estimating the object location Ck from noisy projection measurements 
was considered previously [11, 12]. 

In this paper, the problem of estimating the object geometry parameters Yk from noisy projection data 
is considered. For simplicity, and in order to establish insight, it is assumed that the background fb(x) is 
known (and without loss of generality taken to equal zero) and that only a single object (N  = 1) is present 
at a known location cl. The single object in the cross-section is considered to have unknown size, shape 
and orientation (i.e. 3' is unknown) and these parameters are estimated directly from noisy tomographic 
data. In Sections 3-5, the parameterization of object size, shape and orientation is discussed, and the 
performance of ML estimation of the geometry parameters is evaluated. The effect of errors in various 
modeling assumptions is a question of robustness, the analysis of which is addressed in detail in [ 11 ] and 
illustrated in Section 6. 

3. Representation of object shape 

There are various ways to characterize the boundary of an object. For example, if the object is convex, 
its boundary can be parameterized by the coefficients in a series expansion of its support function [ 14, 17]; 
alternatively, an object boundary may be approximately represented by a sequence of horizontally and 
vertically directed edge elements [2]. In the present analysis, a parameterization is considered that captures 
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in a simple way three important features of  object geometry--size,  elongation and orientation. In particular, 
the object under consideration is approximated as resulting from a simple circularly-symmetric reference 

object by the application of a series of spatial deformations--magnification (size attribute), stretching 
(elongation attribute) and rotation (orientation attribute). 

More specifically, consider a circularly-symmetric reference object located at the origin; let it be denoted 
by s(x), or since it is circular, 1 by Sp(r) in terms of the radial polar coordinate r. The Radon transform 
of this object is independent of the projection angle 0 and is denoted by gs(t). The energy in the Radon 
transform is denoted by 

~s = g~(t, O) dt  dO = xr g~(t) dr. (7) 

The object whose projections are measured is not necessarily circular; it is approximated by the function 
d.  f (x ) ,  where f ( x )  is an elongated object having elliptical contour lines. A circle can be deformed into 
an ellipse by linear coordinate transformation, and similarly, an appropriately chosen reference function 
s (x )  can be deformed into the approximating object f ( x )  by linear coordinate transformation, that is, 
f ( x ) - - s ( A x )  where A is a 2 x 2 matrix. For our purposes, we consider coordinate transformations that 
can be represented as A = AaA2A1, i.e. as the composite of up to three successive linear transformations: 

(1) Isotropic scaling of the coordinate system by a size factor R, 

0] 
A t =  1/ R ' 0 < R < o o .  (8) 

(2) Orthogonal stretching and compressing of the coordinate system to transform circular contours into 
ellipses with eccentricity (ratio of major to minor axes lengths) equal to h, 

0] 
x/A ' l < h < o o .  (9) 

(3) Rotation of  the coordinate system by the orientation angle ~b, 

[ cos ~b s i n a i  ~ ax 
A3=L-s in~b  cos , -~-<~th<~.  (10) 

As an example of these transformations, consider the reference function s (x )  to be an indicator or 
characteristic function on a unit-radius disk centered on the origin. Then d . f ( x ;  R, A, tb), the object 
resulting from the composite of the three coordinate transformations in (8)-(10), is a function that is zero 
everywhere except on an ellipse centered at the origin, where it takes on the constant value d. Note that 
the reference function s(x), or  Sp(r) in polar coordinates, is not restricted to being constant-valued; it 
may, for example, be a Gaussian object, Sp(r)= exp(-r2) .  

Summarizing, the cross-section whose tomographic projections are measured is modeled as containing 
the object d .  f ( x ;  R, A, ~b), which is the result of linear coordinate transformation (scaling, stretching, and 
rotation) of a specified circular object s(x) .  The  focus of this paper is to evaluate how accurately the 
parameters characterizing size R, eccentricity A, and orientation ~b can be estimated from noisy tomographic 
data. A number of the results obtained in the remainder of this paper are expressed in terms of 2-D 
Fourier transforms of objects, particularly objects resulting from the scaling, stretching and /or  rotation 

1 Because the circularly-symmetric reference object s(x) has circular contours {x: s(x) = constant}, it is hereafter referred to as 
circular. 
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coordinate transformations in (8)-(10). For convenience, the relevant Fourier transform relationships [1] 
are  s u m m a r i z e d  in  T a b l e s  1 a n d  2. 

Table 1 

Coordinate transformations in the spatial domain 

Cartesian coordinates Polar coordinates 

Original function S(Xl , x2) Sp( r, ~o ) 
Size transformation A l in (8) s( xl/ R , x2/ R ) Sp( r / R, ~o ) 
Eccentricity transformation a A 2 in (9) s(xl/x/A , x/-Ax2) sp(rh-l(A, ~), tan -L (A tan ¢)) 
Orientation transformation A 3 in (10) s(x I cos 4~ + x2 sin ~b, -x~ sin ~b + x 2 cos ~) Sp(r, ~ - ~b) 

a hut, ~0)- (A cos 2 ~+A -1 sin 2 ~)1/2 

Table 2 

Coordinate transformations in the frequency domain 

Cartesian coordinates Polar coordinates 

Original function 
Size transformation A I in (8) 
Eccentricity transformation a A2 in (9) 
Orientation transformation A 3 in (10) 

S(O)l , 0)2) 

R2S(Rtol, Rto 2) 
s (  C £  ,~, , ,o2/ ~ ) 
S(to I cos t~ +0)2 sin ~, -0)1 sin ~b+0) 2 cos 4~) 

So(p, g,) 
R2Sp(Rp, ~b) 
Sp(ph(A, ~b), tan-a(~ tan g,)) 
S~(p, ~, - ~ ) 

a h(A, ~)--(A COS 2 ~ 0 + ~  -1 sin 2 ~o) ~/2. 

The  ob j ec t  d.  f ( x ;  R, A, ~b) r e su l t ing  f r o m  the  c o o r d i n a t e  t r a n s f o r m a t i o n s  has  a R a d o n  t r a n s f o r m  d e n o t e d  

b y  d.  g(t,  O; R, A, 4~). As s h o w n  in  A p p e n d i x  A, the  ene rgy  o f  this  R a d o n  t r a n s f o r m  m a y  be  wr i t t en  in  

t e rms  o f  ~s, the  R a d o n  t r a n s f o r m  ene rgy  o f  the  s y m m e t r i c  r e fe rence  ob jec t  s(x) ,  as 

i 0 i  o ~ ( d , R , A ) = d  2 g2(t, O; R ,A ,  ~ ) d t  dO=dgR3q(A)~s .  (11) 

The  R a d o n  t r a n s f o r m  e n e r g y  d e p e n d s  o n  ob j ec t  eccen t r i c i ty  as 

2for~2 1 (12) 
q(A)  = h(A, gb) d~b, 

w he r e  

h(A, ~ b ) -  [A cos 2 (f) .~_ ~--1 s in  2 (])]1/2. (13) 

N o t e  tha t  q ( A ) =  q(A -1) a n d  q ( 1 ) =  1; the  R a d o n  t r a n s f o r m  ene rgy  d e p e n d e n c e  o n  eccen t r i c i ty  q(A)  is 

p l o t t ed  in  Fig.  3. 

4. Maximum likelihood parameter estimation 

Let the  n o i s y  p r o j e c t i o n  m e a s u r e m e n t s  be  g iven  b y  

y( t ,  O)= d .  g(t ,  O; R, A, d?)+ w(t, 0), 
Signal Processing 
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Fig. 3. Radon transform energy dependence on eccentricity A. 

where measurements are taken at all points on the half-cylinder S defined in (4); w(t, O) is a zero-mean 
white Gaussian noise process with spectral level No~2 [18]. The problem of characterizing the object 
geometry from noisy tomographic measurements may now be stated as: given noisy measurements of the 
Radon transform as shown in (14), estimate the object density d, size R, eccentricity h, and orientation 
th. It should be noted that, with the exception of the density factor d, these parameters enter the problem 
nonlinearly and lead to a nonlinear estimation problem of small dimensionality. This is in contrast to full 
image reconstruction, in which a linear estimation problem of high dimensionality is solved. 

We consider now the problem of ML estimation of the three parameters R, h, and th that characterize 
the object's size, elongation and angular orientation. ML estimates of these parameters are the values that 
maximize the log likelihood function [18] 

L(R,A, th; Y)=Noo - ~ Y ( t ' 0 ) g ( t ' 0 ; R ' A ' q b ) d t d 0  

No g2(t, 0; R, h, 6)  dt dO. (15) 

The log likelihood function is the sum of two terms, the first of which is the result of 2-D matched 
filtering of the measurements y(t, 0) with the Radon-space (i.e. (t, 0) coordinate system) filtering template 
g(t, O;R, A, ¢b) and the second of which compensates for the energy in the Radon-space matched filtering 
template. 

In order to compare the estimated and actual parameter values, let R a ,  Aa, ~b a denote the actual object 
parameters and g(t, 0; R a ,  Aa, ~ba) the Radon transform of the actual object. The ambiguity function, or 
expected value of the log likelihood function, is given by 2 

a(R, A, ~b; ga,  Aa, ~ba) = - ~ o  g(t, 0, Ra, Aa, ~ba)g(t, O; R, A, ~b) dt dO 

No g2(t, 0; R, A, 6)  dt dO. (16) 

As shown in Appendix B, the ambiguity function depends on object size R only through the ratio R/Ra 
and depends on object orientation ~b only through the difference A~b- ~b- ~ba. It may be written as the 

z This formulation and the subsequent analysis may be extended to the case of  limited view angle (continuous but limited angular 
coverage in 0) through the introduction of  a Radon space window or sampling function such as ~:a(t, 0) in Appendix A of  [12]. 
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product of  an SNR measure and a normalized ambiguity function, 

Ca a*(g /ga ,  A, Aa, A~b). (17) a(R,  A, t~; Ra,/~a, t#a) ='Noo 

Here ~:a is the energy in the Radon transform of  the actual object. From (11) 

Ca = dE R3aq( Aa)~s (18) 

and the normalized ambiguity function is given by 

a*(R/Ra,  A, A,, A~b) = q(Aa)~-----"~ 

q(A) ( R )  3 
q(Aa) "~a " (19) 

In this expression, q(.  ) is the Radon-space energy dependence on object eccentricity given in (12), and 
Sp(r) is the Hankel transform of Sp(r), i.e. a central section of the 2-D Fourier transform of s(x). 

The ambiguity function plays a key role in performance evaluation for parameter estimation problems. 
In particular, the CRLB is computationally obtained by evaluating the inverse of the second partial 
derivative of  the ambiguity function at its peak. What this corresponds to is a linearized error analysis 
assuming that the estimate is not far from the true parameter value. For linear estimation problems the 
ambiguity function is quadratic and the CRLB in fact yields the exact error variance. For nonlinear 
problems, such as those considered here, the ambiguity function is not quadratic and indeed does not 
fall off nearly as quickly away from the peak. Thus typically there is an increased probability that the 
measurement noise may cause the ML estimates to occur at a likelihood function peak situated far from 
the true parameter values; in this case, the estimate has large error and is said to be anomalous. The 
probability of  obtaining an anomalous estimate may also be characterized from knowledge of  the ambiguity 
function [11, 12, 18]. In what follows we will display the ambiguity functions and will focus our detailed 
analysis on the CRLB computation which is relevant in the case of  moderate to small noise levels. 

The expressions developed thus far apply for an arbitrary choice of  the circular reference object Sp(r). 
In the following section, the problem of ML geometry estimation is examined in more detail for the 
analytically tractable case of  Gaussian objects. Furthermore, to simplify the interpretation and develop 
insight into the problem of  estimating object geometry from tomographic data, the three-parameter problem 
is considered as three separate sub-problems with one parameter unknown at a time. The object size 
estimation problem is considered first in which the object is taken to be circular (A = Aa = 1 and A~b = 0). 
The eccentricity estimation problem is then considered in which the size and orientation are taken to be 
known (R = R~ and A4~ = 0). Finally, the orientation estimation problem is considered in which object 
size and eccentricity are assumed to be known (E = Ra and A = A~). 

5. Gaussian object 

The log likelihood and ambiguity functions presented in the previous section are evaluated in this 
section for the case of  Gaussian objects (see [11] for some extensions to more general objects). Begin 
with the circular Gaussian reference object 

sg(r) = exp(-r2) .  (20) 
Signal Processing 
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The Hankel transform of  sg(r) is 

Sg(p) = nr exp(-zr2p 2) (21) 

and the energy in the Radon transform of Sg(r) is 

~:g = x/-~ ' rr  2. (22) 

By substituting (21) and (22) into (19), and noting that 

o'~ e -a2p2 dp = x/~/2a, (23) 

an expression is obtained for the Gaussian object normalized ambiguity function 

2x/2 Io ] ( R ] 2 [  1 {hE(Aa, qJ)+(R/Ra)2hE(A, ~O+ A~b)} -1/2 d o a*(R/Ra, A, Aa, Aqb) = q(Aa) kRa,/ Lw 

q(A) ( R )  3 
q(A~) ~ " (24) 

5.1. Size estimation 

Consider first the problem of  using noisy full-view projection measurements to estimate the size of  a 
Gaussian object that results from isotropic coordinate scaling (the coordinate transformation A1 in (8)) 
of the circular Gaussian reference object. The size estimation ambiguity function for this case is given by 

a(R, Ra)=( sr--~o ) a*(R/Ra), (25) 

where Sra is the actual object Radon transform energy d2R3~g and a*(R/Ra) is the special case of the 
normalized ambiguity function in (24) when A ---Aa = 1 and A~b = 0. The normalized ambiguity function 
is plotted in Fig. 4 along with the normalized ambiguity function for the case of a disk object (everywhere 
zero except on a disk of radius Ra, where it takes on a constant value)• The close resemblance of these 
two curves indicates that the ambiguity function for object size estimation is not sensitive to the detailed 
density variations within the object boundary. Furthermore, these two ambiguity functions attain their 
maximum value at the true size R = R~ and decrease monotonically and relatively rapidly away from this 
point. Qualitatively, this suggests good estimation performance, since the peak will not shift significantly 
with the addition of  a small amount of noise. 

The CRLB on the size estimate error variance is obtained by evaluating the second partial derivative 
of  the ambiguity function with respect to the parameter R at R = R a .  The normalized CRLB on the size 
estimate error variance is derived in Appendix C and is given by 

2 No 
(26) 

\ R J  11 ~:a 

This bound on the relative error in the size estimate is simply a constant divided by the SNR. From 
(18), the Radon space signal energy varies as d2R 3, so two objects with different sizes but the same value 
of d2R 3 a r e  characterized by the same relative error variance of  the size estimate. Since signal energy 
depends on the third power of size R, relative size estimation error variance decreases very rapidly with 
object size. 
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Fig. 4. Normalized size ambiguity functions for Gaussian and 
disk objects. 
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Fig. 5. Normalized eccentricity ambiguity' function; ")[a ~ 4. 

5.2. Eccentrici ty  es t imat ion 

Consider now the problem of  estimating the eccentricity of  a Gaussian object, assuming that all other 
details such as location, size and orientation are known a priori. For a circular Gaussian object of  known 
size R, which is elongated by undergoing the coordinate transformation in (9) with an unknown eccentricity 
factor Aa, the eccentricity estimation ambiguity function is 

a(A, ' ~ a )  =~oo a*(A, A,). (27) 

Here ~:, is the actual object Radon transform energy d2R3q(A , )~g  and a*(A, A,) is the special case of the 
normalized ambiguity function in (24) Where R,  = R and A~b = 0, which can be reduced to the expression 

/~a) 2~/2 ~x/4/~aq(~%/~a) q(/~) (28) 
a*(A, = ~ ~  q(Aa)" 

Fig. 5 is a plot of  this expression when the actual object eccentricity Aa is equal to 4. The peak of  the 
ambiguity function occurs at the true parameter value, however, the function does not decrease rapidly 
away from the true value. Indeed the value of  the ambiguity function is within 30% of  the peak over a 
large range of  eccentricities. This suggests that accurate estimation of object eccentricity requires a high 
measurement SNR, even when all other parameters are known perfectly. Also, the slow rate of decrease 
of the ambiguity function for large eccentricities is indicative of the difficulty in distinguishing the shapes 
of  highly eccentric objects. 

The CRLB on the error variance of  the eccentricity estimate is obtained by evaluating the second 
derivative of  the ambiguity function with respect to A at A = A,; the normalized CRLB is given by 

( }-, 
2 3 2 -- [h (A , ,~b)]  -s/2 c o s 2 @ - l s i n 2 0  dO 

~aa ~>3d RaAa~gtTrJ 0 A a 

4 q(Aa) No = 4 No Aae [1,20], (29) 
3 ~ 3d2R~ scg ' 

where the last line is obtained by numerical evaluation [ 11]. The lower bound on the relative error variance 
in the eccentricity estimate is essentially a constant times q(Aa) divided by the SNR. For a fixed noise 
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d Ra have the same normalized eccentricity estimate error level No, all objects with the same value of 2 3 
variance, regardless of their eccentricity, i.e. relative eccentricity error variance does not decrease as the 
object becomes more eccentric. 

5.3. Orientation estimation 

Consider finally the problem of estimating the angular orientation of an elongated Gaussian object 
from noisy full-view projection measurements. For a circular Gaussian object of known size Ra which 
undergoes the eccentricity coordinate transformation in (9) with a known eccentricity factor Aa, and then 
undergoes the rotation coordinate transformation in (10) with an unknown rotation angle &, the orientation 
estimation ambiguity function is 

a(A~b) =-~-  a*(A~b). (30) 
No 

Here ~a is the (h-independent actual object Radon transform energy d2R3q(Aa)~g, and a*(A~b) is the 
special case of the normalized ambiguity function in (24) where R = Ra and A = Aa. Note that a*(A~b) is 
symmetric in A~b (because the eccentric object is centrally-symmetric or balanced) and a*(A~b, Aa)= 
a*(A~b, ;ta 1) since these are ambiguity functions for the same object rotated by 90 °. The normalized 
orientation ambiguity function is plotted in Fig. 6 for several values of actual object eccentricity Aa. 
Narrow objects have a more sharply,peaked orientation ambiguity function, qualitatively confirming the 
intuitive notion that the estimation of orientation is more reliable for eccentric as compared to nearly 
circular objects. 
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Fig. 6. Normalized orientation ambiguity function for a 
Gaussian object for several values of eccentricity. 
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Fig. 7. Normalized orientation Cramer-Rao bound. 

This may be expressed more precisely by calculating the CRLB on the orientation estimate error variance, 
which may be evaluated as the inverse of the second partial derivative of the ambiguity function evaluated 
at ~b = ~ba, 

o-~,~ N° q(Aa){3 I R I ; / 2  1 --~a 8 (A2] -- Aa)2 h (A,, 0) -5/2 sin2(2~) d~ 

+ ( Aa' - Aa)[ 2 y~/2 h( Aa, ~b )-3/2 cos( 2~ ) d~b ] } -1 

No 
-- d2Ra~g Y(Aa)- (31) 

V o l .  18 ,  N o .  1,  S e p t e m b e r  1 9 8 9  
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Y(A,), the dependence of the error variance bound on object eccentricity, is plotted in Fig. 7. The 
bound is seen to be a rapidly decreasing function of  eccentricity, which is expected since it is easier to 
estimate the orientation of more eccentric objects. Thus, the CRLB is a decreasing function of  both SNR 
and object eccentricity; this suggests the possibility of  adapting the model complexity (number parameters 
or degrees of  freedom) to the measurement quality, which is explored in the following section. 

5.4. Selecting the modeled object complexity 

Fig. 7 confirms the intuitive notion that the estimate of the angular orientation of  the object improves 
as the object becomes increasingly elongated and with increasing SNR. Conversely, for values of  Aa 
approaching unity (object contours nearly circular) the bound approaches infinity, that is, a very high 
SNR is required to estimate the orientation. However, in the case of a nearly circular object, orientation 
is a far less important parameter than say object size, which could in this case be determined by using a 
simpler circular object model. Here, we turn this intuitive notion into a precise decision rule for selecting, 
based on knowledge of  the SNR d2R3~g/No and an estimate of  object eccentricity A, between the following 
two hypotheses: 

Ho: the object is nearly circular (A ~ 1), 
H~ : the object has an elongated geometry (A > 1). 

Various criteria may be used to develop a decision rule for these hypotheses, and our criterion is based 
on the observation that if the available measurements do not provide a high quality orientation estimate 
(i.e. the error variance is too large), it is more appropriate to assume that the object is circular. In particular, 
suppose that an a priori limit K exists "on the maximum acceptable value of orientation estimate error 
variance tr2~. The decision rule we propose is to decide H1 if and only if the bound on the error variance 
of the orientation estimate does not exceed K, that is, decide H1 if and only if: 

No Y(~)<K (32) 
d 2 R a ~ g  

o r  

2 3 
y(~)  < d R ~:~ K (33) 

No 

or, since Y(A) is a monotonically decreasing function, 

f d2R3g~ K} K). 
~t > Y-1 / No ~g -- Amin(SNR, (34) 

Thus, given a minimum acceptable orientation error variance K and knowing the measurement SNR, 
the rule in (34) may be employed to decide, based on the estimated eccentricity ~, whether to use an 
elliptical model (with a corresponding orientation estimate meeting the accuracy specification K) or, 
because sufficient orientation accuracy cannot be insured, to use a simpler circularly symmetric model. 
An example of  this decision rule will be presented in Section 7. 
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6. Robustness analysis 

The ambiguity function analysis we have described can also be used to study robustness of  the parameter  
estimates to various modeling errors. A complete treatment of  this topic is given in [ 11 ]. We limit ourselves 
here to a brief  illustration which also allows us to draw several important conclusions that lead directly 
to the algorithm described in the next section. Specifically, we examine here the robustness of both size 

and orientation estimates to errors in knowledge of object eccentricity. 

6.1. Size estimation in the presence o f  eccentricity errors 

In this subsection we examine the robustness of  the estimate of  object size to errors in knowledge of 
object eccentricity. The size ambiguity function evaluated in the presence of eccentricity mismatch (i.e. 

when the modeled and actual eccentricities differ) is a special case of  the three parameter  ambiguity 
function in (17) when 0 = 0a=0  (the rotation transformation is not applied) and is given by 

a(R ,  A, 0, Ra, Aa, 0) =-~o a * ( R / R a ,  A, Aa, 0), (35) 

where a* is given in (19). Specializing to the case of  a Gaussian object yields 

{ ()La-t - R 2 

1 ,i'~ q 
-I- ( ~ +  ( ~ )  2 A1--) sin2 ~s~ ddsJ 

(36) 

Notice that when A = ,~, = 1 (circular object), (36) reduces to the size ambiguity function plotted in Fig. 
4 and the peak occurs at R / R a  = 1. 

Fig. 8 displays a* as a function of object size for five values of  A when the actual object has eccentricity 
Aa = 4. This figure indicates that when the eccentricity is not accurately known a priori, the peak of  the 
size ambiguity function does not occur at R / R ,  = 1, i.e. the estimate is biased. While this shift in the peak 
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R/R° Fig. 9. Normalized size ambiguity function when the modeled 
Fig. 8. Normalized size ambiguity function in the presence of object is circular (A = 1) but the actual object has eccentricity 

eccentricity modeling errors; Aa=4. A a = l, 4, 9 and 16. 
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location with eccentricity modeling error is not negligible, it should be noted that the extent of  peak shift 
is relatively mild the peak shifts upward by less than 3% when the eccentricity is overmodeled by a 

factor of  4 and shifts downward by about 7% when eccentricity is undermodeled by a factor of 4 (i.e. 
when an object with eccentricity 4 is modeled as being circular). 

This last case of  a circular modeled object is interesting in its own right, since in practice one may have 
no reason to believe a priori that the object is eccentric. Consequently, it would be reasonable in such a 
situation to use a circular object model to determine object size. Fig. 9 is a plot of the normalized size 
ambiguity function in (36) for the case where a circular (A = 1) modeled object is used to estimate the 
size of  an actual object that is either circular (Aa = 1) or eccentric with Aa = 4, 9 or 16. Here, the ambiguity 
function peak occurs at the true parameter value only when the eccentricity is correctly modeled (Aa = 1); 
when the eccentricity is undermodeled (using a circular model when Aa = 4, 9 and 16) the peak location 
is shifted downward to R / R a  values of 0.94, 0.84 and 0.75 respectively. 

Consequently, estimating the size of  an eccentric object by using a circular model results in a biased 
estimate. It should be noted, however, that the amount of bias is relatively modest--modeling an object 
with eccentricity Aa = 16 as being circular represents a very significant modeling error, yet it results in a 
shift of only 25% in the position of the size ambiguity function peak. 

In summary, the ambiguity function in (36), along with Figs. 8 and 9 indicate that an unbiased size 
estimate is not obtained when the actual object's eccentricity is unknown and is modeled incorrectly. 
However, the magnitude of the bias in the size estimate is a slowly increasing function of  eccentricity, 
both indicating that useful initial estimates can be obtained using a circular model and suggesting an 
iterative approach developed in the next section in which a refinement in size estimate can be made after 
eccentricity is estimated. 

6.2. Orientation estimation in the presence o f  eccentricity errors 

In order to obtain a meaningful estimate of eccentricity it is necessary to have a good estimate of  
orientation. Consequently, an important question concerns our ability to estimate orientation when accurate 
knowledge of  eccentricity is not yet available. In this subsection, we consider the robustness of the 
orientation estimation problem to errors in the a priori value of  object eccentricity. In particular, we 
evaluate the orientation ambiguity furtction when the actual and modeled eccentricities differ. 

In the presence of eccentricity modeling errors, the orientation ambiguity function is a special case of 
the three-parameter ambiguity function in (17) when R = Ra and is given by 

a ( R a ,  A, ~b; ga ,  )ka, (~a) = ~ o  a*(1, A, Aa, A~)), (37) 

where a* is given in (19). Specializing to the case of  a Gaussian object yields 

• 2,V~ f i f o ,  { a*(1, A, Xa, a6)  ---- q--~-~a) l ~ /~a COS2 l# "~- ~ COS2 (~/'~ m (~) 

+ 1  sin2 o + l s i n  2 1-~/2 q '~a (~/'l- m t~) f d ,J 
q(A) 

q(Aa)" 
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Fig. 10 displays a* as a function of A~b for several values of  modeled object eccentricity when the true 
object satisfies ha:4. Even with eccentricity modeling errors the orientation ambiguity function is 
symmetric with its peak situated at the true orientation value. Consequently, if one were to hypothesize 

a value of  h and estimate only the orientation ~b, the resulting estimate would be unbiased. When a value 
of eccentricity is selected that is smaller than the true value, the ambiguity function has a broader  peak 
than it does when the true value is used, indicating that the orientation can not be estimated as accurately 
as it can when the true eccentricity is known. When a value of eccentricity is used that is larger than the 
true value, the ambiguity function has approximately the same degree of sharpness but the peak value is 
smaller than it is when the true value is known. 

1.0 

-o- 

,ff 0.5 

% 

0 

X=2 

16 

-8'o ' - / o '  ' 4'o' 
L~@ (degrees) 

Fig. 10. Normalized orientation ambiguity function in the presence of eccentricity modeling errors; A~ = 4. 

This suggests that while the best estimation performance is obtained in the matched (eccentricity known) 

case, orientation estimation performance is relatively insensitive to errors in the a priori eccentricity value. 
The orientation estimation problem, then, may be approached by using some nominal  (but possibly 

incorrect) value of eccentricity, where, as indicated by Fig. 10, it is preferable to overestimate rather than 
underestimate the eccentricity. 

In this section we have illustrated methods for analyzing the robustness of  geometric parameter  estimation 

to modeling errors. A more complete investigation of robustness is presented in [11] corroborating what 
we have illustrated here, namely that geometric parameter  estimation is quite robust to modeling errors. 

Moreover,  the conclusions that can be drawn from the results presented in this section and in [11] suggest 
a particular iterative algorithm for the simultaneous estimation of several geometric parameters.  This is 

the subject of  the following section. 

7. Iterative algorithm and experimental results 

The analysis presented in the preceding sections and in [11, 12] yields, among others, the following 
conclusions: 

• Object location estimation is extremely robust to errors in modeled object shape, e.g., to errors in 
assumed object eccentricity and size. In general, less degradation is obtained if object size is 
overestimated rather than underestimated 3 (see [11, 12]). 

3 This is intuitively clear since a small object can be centered at many locations and still be completely contained within a larger 
version of the object. 
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Fig. 11. Flow graph for the iterative single object estimation algorithm. 
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Fig. 12. Results from intermediate steps of the estimation of an elliptical object with SNR= 0 dB. The solid lines represent the 
actual object (c = (0, 0), R = 10, A = 9, ~b = 0°), and dashed lines correspond to the iterative estimates of the object geometry: 
(a) estimate after localization step: c = (-2.52, 0.42), /~ = 12, ~ = 1, ~ = 0.0°; 
(b) after one complete iteration: $ = (-2.52, 0.42), /~ = 7.8, A = 10.7, ~ = 0.0°; 
(c) aftertwoiterations: ~'= (1.26, 0.0), /~=10.0, ~t=8.6, ~=0.0°; 
(d) third and final estimate: ~ = (0.0, 0.0), /~ = 10.0, ~ = 9.3, ~ = 0.0 °. 
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_ 

- - - s .  - .  

Fig. 13. Est imation of  an elliptical object at four  SNRs.  The solid lines represent  the actual object (e = (0, 0), R = 10, A = 9, 4' = 0°), 
the dashed lines cor respond  to the final estimated object geometry at four  SNRs.:  
(a) SNR = 0 dB, g" = (0.0, 0.0), /~ = 10.0, ~t = 9.3, ~ = 0.0°; 
(b) SNR=-8.7dB, ~= (0.84, 0.0),  /~=10.0, ~ 9 . 3 ,  ~=0.0°; 
(c) SNR=-17.4dB, g'=(1.26,0.0), /~=10.2, ~=8.2, ~=-1.8°; 
(d) SNR = -26.1 dB, ~ = (-0.84, -0.84), /~ = 10.4, )t = 11.4, d~ = -18.0 °. 

• Object size est imation has a mild bias in the presence o f  eccentricity errors which increases very 

slowly as the extent o f  this error increases. 

• Orientat ion est imation remains unbiased in the presence o f  eccentricity errors, and per formance  

improves as eccentricity increases. 

• Of  the three geometry attributes studied, eccentricity est imation is the most  sensitive to noise, 

or ientat ion errors, etc. 

• Est imation o f  all parameters  are robust  to errors in the choice of  the circular profile. 
These observat ions suggest the fol lowing iterative algori thm for the s imultaneous est imation o f  object 

location,  size, or ientat ion and eccentricity. 

• Initially assume that  the object is a large circular object, and estimate its location 4. This estimate will 

be unbiased.  
• Given the estimated location,  estimate object size still assuming that the object is circular. This 

estimate may  be mildly biased if the object is not  circular. 
• Given estimates o f  the object location and  size, estimate object orientat ion assuming a nominal  value 

o f  eccentricity. This estimate will be unbiased.  
• Given estimates o f  object location, size and orientation,  estimate eccentricity. 
• Upda te  iteratively the estimates o f  location,  size, orientat ion and eccentricity (in this order) using 

the latest estimates o f  the remaining parameters.  

4 See [11, 12] for a detailed discussion of  ML est imation of  object location. 
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CZ?  

Fig. 14. Final estimation results at 0 dB for elliptical objects having eccentricities Aa = 9, 6, 3 and 1. The dashed lines correspond 
to the final estimated object geometry: 
(a) ;q = 9: ~ = (0.0, 0.0), /~=10.0, ~t=9.3, 4=0.0°; 
(b) Aa=6: ~=(0.42,--0.84), R=9.8, ~.=6.5, ~=-1.8°; 
(C) ;ta=3:~=(0.0,0.0), k=10.0, ~.=2.4, ~=1.8°; 
( d ) ) t ,  = 1: g. = (0.0, 0.0), /~ = 10.4, .~ = 1.2, d~ = - 5 7 . 6  °. 

A flow graph of this algorithm is given in Fig. 11. Note that this algorithm belongs to a class of  
optimization algorithms known as cyclic coordinate descent algorithms [8], in which each iteration consists 

of  four 1-parameter optimization steps, and each 1-parameter optimization is carried out by line search. 
In all of  the experiments reported here, the initial circular object size R in the first step of  the algorithm 

was taken to be 12 and the initial eccentricity A in the fourth step was set to 5. 
Experimentation with this algorithm has demonstrated that it has excellent convergence properties. 

Typically, estimates are obtained in a single iteration, and one or two further iterations provide the small 
amount  of  fine tuning needed for final conversion. Fig. 12 is representative of  the algorithm performance.  
In this example,  the true object is the ellipse shown with the solid line 5. Measurements at a SNR 6 of 0 dB 

are used to produce the estimates shown with dashed lines. Fig. 12(a) shows the result after the very first 
step of the iteration, i.e. object location estimation assuming that the object is a large circle. While the 
location estimate is slightly in error, it is quite good. Note that the error is primarily in the horizontal 
direction which is to be expected since the error in fitting a circle to the data has very little sensitivity to 
horizontal translations about the true object center. Fig. 12(b) shows the estimate after one full pass 
through the iteration, i.e. after R, ~ and A have been estimated in succession but no re-estimation has 
been done. Despite the initial location error, the fit is relatively good, with good estimates of  $ and A. 

5 In all  o f  the resul ts  desc r ibed  in this  sect ion,  the c i rcu la r  reference func t ion  is an  ind ica to r  func t ion  on  a un i t - rad ius  disk.  
6 All expe r imen t a l  resul ts  in the  sect ion involve  a d iscre te  ra ther  than  con t inuous  set  o f  measuremen t s .  Consequen t l y  a d iscre te  

def ini t ion of  S N R  is used,  n a m e l y  S N R  = 20 log (ED/O'2), where  ~2 is the var iance  of  each m e a s u r e m e n t  and  the s ignal  energy  is 

e D =  ~ g2(tm, 0j) where  the sum is over  al l  measu remen t s  (tin, Oj). 
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! 

Fig. 15. Estimation results for an elliptical object with a limited amount of 0 dB measurement data. The dashed lines correspond 
to the final estimated object geometry: 
(a) 45 views, 11 rays/view, ~ = (0.0, 0.0), /~ = 9.8, ~t = 8.8, ~ = 0.0°; 
(b) 20views, 25 rays/view, ~= (0.0, 0 .0) ,  /~=10.2, ~=9.2, t~=-l.8°; 
(c) 20views, llrays/view,~=(0.0,0.0), R=9.6, ~t=8.4, ~=1.8°; 
(d) 5views, 11 rays/view, ~'=(-2.10, -0.42), /~ =8.6, ~t=2.2, ~ =-18.0 °. 

These improved estimates then allow extremely rapid fine tuning of the estimate during the second (Fig. 
12(c)) and third (Fig. 12(d)) iterations. 

The remaining results described in this section provide a picture of  the performance characteristics for 
this problem. In Fig. 13 we show the effect on the final estimation accuracy of decreasing the S N R - - f r o m  
0 dB in Fig. 13(a) to -26.1 dB in Fig. 13(d). The behavior  seen here is typical of  nonlinear estimation 

problems: as one decreases SNR, one sees a gradual deterioration in performance (Figs. 13(a)--(c))  until 
a threshold level is reached. For SNRs below this level, there is a significant probabili ty that highly 
anomalous estimates will be made, as in Fig. 13(d). This provides us with a clear limit over which it makes 
sense to estimate object shape parameters.  Note that because we are only seeking a very small number  
of  degrees of  freedom, we can achieve good performance at quite low SNRs. 

Fig. 14 illustrates performance as a function of  true object eccentricity (A = 9, 6, 3 and 1) at a fixed 
SNR of  0 dB. As predicted by our analysis, the best performance is obtained for highly eccentric objects. 
As eccentricity decreases toward unity, orientation and eccentricity estimates degrade. Note, however, 
that the fit error, i.e. the difference between dashed and solid objects, degrades only mildly. This is not 

surprising, as the sensitivity of  the estimated object boundary to orientation errors decreases as eccentricity 
approaches unity. Indeed in Fig. 14(d), the orientation estimate is essentially irrelevant as the true object 
is a circle. I f  we had used the decision rule (34) in this case, we would have decided that the estimated 
eccentricity of  1.2 was negligibly close to unity and would have rejected the more complex model in favor 
of fitting a circle. The result in this case is an estimate of  object location and size almost identical to the 
true values, removing essentially all of the remaining fit error present in Fig. 14(d). 
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C 

Fig. 16. Estimation of an elliptical object in the presence of an unmodeled circular object, no noise. The solid lines represent the 
actual elliptical object (e = (-20, 0), R = 15, A = 4, tb = 0 °) and the actual circular object of size R = 10, the dashed lines correspond 
to the final estimates of the object geometry: 
(a) circular object at c = (40, 0): ~ = (-19.3, 0.0),/~ = 15.4, 5t = 4.0, ~ = 0.0°; 
(b) circular object at e = (35, 0): ~ = (-19.3, 0.0),/~ = 15.6, ~t = 4.0, ~ = 0.0°; 
(c) circular object at e = (30, 0): ~ = (-4.2, 0.0), R = 17.8, ~ = 7.8, ~ = 0.0°; 
(d) circular object at c = (25, 0): ~ = (-6.3, 0.0), /~ = 17.8, X = 7.0, ~b = 0.0 °. 

A l t h o u g h  we  h a v e  n o t  d i s c u s s e d  the  ana lys i s  o f  this  p r o b l e m ,  it is p o s s i b l e  to use  th is  s a m e  a l g o r i t h m  

w h e n  o n e  has  a v a i l a b l e  o n l y  l i m i t e d  a m o u n t s  o f  d a t a  [11, 16]. Fig.  15 i l lus t ra tes  t he  effect  o f  l im i t ed  d a t a  

on  e s t i m a t i o n  a c c u r a c y .  Figs.  15(a) a n d  15(b) s h o w  e s t i m a t i o n  p e r f o r m a n c e  fo r  t w o  cases  in w h i c h  the  

to ta l  n u m b e r  o f  l ine  i n t eg ra l  m e a s u r e m e n t s  a re  r o u g h l y  the  s a m e  (495 in (a) ,  500 in (b)) ,  bu t  t h e y  a re  

d i s t r i b u t e d  d i f f e ren t ly  in t a n d  0. Spec i f i ca l ly  in Fig.  15(a) we  use  a g r ea t e r  n u m b e r  o f  v i e w i n g  ang le s  

(45 vs. 20) a n d  f e w e r  l ine  in tegra l s  pe r  v i e w  (11 vs. 25). C o m p a r i n g  these  two  f igures  we  see tha t  b e t t e r  

p e r f o r m a n c e  is a c h i e v e d  i f  g r ea t e r  a n g u l a r  d ive r s i ty  is used .  Th is  is f u r t h e r  e m p h a s i z e d  in  t he  r e m a i n i n g  

f igures.  In  p a r t i c u l a r ,  F i g .  15(c) uses  t he  s a m e  n u m b e r  o f  v i e w i n g  ang les  as in Fig.  15(b) ,  bu t  less t h a n  

h a l f  the  m e a s u r e m e n t s  p e r  v iew.  T h e r e  is o n l y  v e r y  s l ight  p e r f o r m a n c e  loss,  i n d i c a t i n g  the  l o w  sens i t iv i ty  

to the  n u m b e r  o f  m e a s u r e m e n t s  p e r  v iew.  In  Fig.  15(d) ,  the  a n g u l a r  d ive r s i ty  has  b e e n  d r a s t i c a l l y  

r e d u c e d - - o n l y  5 v i e w s - - a n d  as can  be  seen ,  at  this  p o i n t  t he r e  is n o t  e n o u g h  a n g u l a r  i n f o r m a t i o n  to  

o b t a i n  a r e a s o n a b l e  fit. 

F ina l ly ,  in Figs.  16 a n d  17 we p r e s e n t  s o m e  resul t s  i n d i c a t i n g  the  leve l  o f  r o b u s t n e s s  to  the  p r e s e n c e  

o f  a d d i t i o n a l  ob jec t s  in the  f ield o f  v i e w  w h e n  the  p a r a m e t e r s  fo r  o n l y  o n e  o b j e c t  a re  b e i n g  e s t i m a t e d  7. 

7 In the presence of multiple objects, one could proceed with an N-object formulation as shown in (6), in which case the Radon 
transform in (1) would be a sum over N objects and the log likelihood function in (15) would contain sums over N objects, where 
R, A and tk would be N-vectors. A simultaneous fit to all N objects could then be carried out as a direct maximization of the 
corresponding log likelihood function. In a case where two or more objects of similar energy are situated in close proximity, a 
multiple object formulation is preferred. 
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Fig. 17. Es t ima t ion  of  an e l l ip t ica l  object  in the p resence  of  an  u n m o d e l e d  c i rcu la r  object  centered a long  a ray 05 = ~r/4, no noise.  

The sol id  l ines  represent  the ac tua l  e l l ip t ica l  object  (e = ( - 2 0 ,  0), R = 15, A = 4, 05 = 0 °) and  the actual  c i rcu la r  object  of  size R = 10, 

the dashed lines correspond to the final estimates of the object geometry: 
(a) circular object at c = (15, 35): ~ = (-19.7, 0.0), /~ = 15.6, ~ = 3.8, ~ = 0.0°; 
(b) circular object at e = (10, 30): ~ = (-19.7, 0.0), /~ = 16.0, ~ = 3.6, .~ = 0.0°; 
(c) circular object at c = (5, 25): ~ = (-18.1, 0.42),/~ = 16.4, ~ = 4.0, q~ = 1.8°; 
(d) circular object at e=(0,20): ~= (-18.5, 0.8), /~ = 16.4, ~t=3.6, ~=0.0 °. 

In  each  figure the la rger  ob jec t  is an e l l ipse  o f  size R = 15 and  the smal le r  objec t  is a circle  o f  size R = 10. 

No te  tha t  the  circle is not  pa r t i cu la r ly  smal l  c o m p a r e d  to the  el l ipse,  a l though  its R a d o n  space  energy is 

one th i rd  tha t  o f  the  el l ipse.  In  each  figure we show results  o f  no ise- f ree  es t imat ion  o f  a s ingle e l l ip t ica l  

ob jec t  when  the t rue dens i ty  field consists  o f  the  two objects ,  wi th  vary ing  cen te r - to -cen te r  separa t ions .  

In  Fig. 16 the  c i rcular  ob jec t  is a l igned  with  the  ma jo r  e l l ipse  axis at a d i s tance  tha t  decreases  f rom Figs. 

16 (a ) - (d ) .  Fo r  m o d e r a t e  d is tances ,  e s t ima t ion  p e r f o r m a n c e  is affected in only  a m i n o r  way. As the circle  

is moved  closer ,  however ,  the  s ignif icant  a m o u n t  o f  circle R a d o n  space  energy,  espec ia l ly  in the  ver t ical  

and  near -ver t ica l  p ro jec t ions ,  causes  the  es t imate  to a t t empt  to fit bo th  objec ts  at once.  This  p rov ides  us 

with an i nd i ca t i on  o f  in te r -ob jec t  spac ings  tha t  can  be  to le ra ted  wi thou t  resor t ing  to a dd i t i ona l  p roc e du re s  

(such as de tec t ing  the gap  in the  ver t ical  p ro jec t ions  c o r r e spond ing  to l ine in tegrals  be tween  objec ts ) .  

No te  tha t  Fig. 16 is in fact  a wors t -case  s i tua t ion ,  as the  circle is a l igned  with the  e l l ipse ' s  ma jo r  axis. In  

Fig. 17, the  circle  is cen te red  a long  a l ine tha t  is at  45 ° to hor izonta l .  In  this case the  fit to the e l l ipse  is 

only  mi ld ly  affected even for  very close spac ings  be tween  the objects .  

8. Conclusions 

The p r o o i e m  laas been  cons ide red  o f  e s t ima t ing  the size, eccent r ic i ty  and  o r i en ta t ion  o f  an  ob jec t  wi th in  

a c ross-sec t ion  of  a 2-D m e d i u m  f rom noisy  t o m o g r a p h i c  data ,  i.e. no i sy  obse rva t ions  o f  the  R a d o n  

Vol. 18, No. 1, September 1989 



84 D.J. Rossi et al. / Tomographic object shape estimation 

transform. The object in the cross-section has been modeled as the result of applying one or more of the 
linear coordinate transformations in (8)-(10) to a circular reference object, with the coordinate transforma- 
tions parameterized by three variables corresponding to object size, eccentricity and orientation. ML 
estimation of these parameters was investigated via evaluation of the ambiguity function and the CRLB 
on the estimate error variance, and results were illustrated for the class of Gaussian objects. It was 
demonstrated that for measurements available at all projection angles and at a given noise level, (1) object 
size and orientation can be estimated more accurately than the degree of object elongation and (2) reliable 
orientation estimation requires a minimum degree of object elongation, and the required degree of 
elongation is inversely related to the measurement SNR. This result was used to derive a simple decision 
rule for selecting the appropriate complexity of the modeled object (circular versus elongated). 

We have also presented some analysis of the robustness of the ML geometry estimation procedure to 
modeling errors such as incorrect knowledge of object location and eccentricity. Further results along 
these lines may be found in [11]. Generally, geometry parameter estimation has been found to be quite 
robust to a variety of modeling errors. Based on this analysis, we have developed an iterative algorithm 
for geometry estimation and have demonstrated its efficiency. We have also presented results illustrating 
the performance characteristics for this problem. These results both indicate the inherent robustness of 
this problem and also provide clear indications of the range of situations in which such a procedure is 
effective. 
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Appendix A. Radon-space energy of an eccentric object 

The Radon-space energy st(d, R, A) in (11), which is independent of the object orientation parameter 
~b, is given by 

st(d, R, A) = d 2 g2(t,O;R,A,d~)dtdO. (A.1) 

By the definition of the back-projection operator defined in (5), this may be written as 

st(d, R, A) = dE[B(g * g)](x)lx=o, (A.2) 

where * denotes 1-D convolution in the t variable. Noting that g is the Radon transform o f f  as defined 
in (1), 

st(d, R, A)= d2[B(Rf* R f ) ] ( x ) l x = o  = d2[f** f * *  [-~l] (x)l~=o, (A.3) 

where ** denotes 2-D convolution, and the last line follows from repeated application of the equality [5, 12] 

[B(Rf* v)](x) = [ f  ** Bv](x). (A.4) 

That is, the CBP of [Rf](t, 0) with convolving kernel l,(t, 0) may be written as the 2-D convolution of 
f(x) with the back-projection of z,(t, 0). 
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Denoting the 2-D inverse Fourier transform as F~I{ • }, (A.3) may be written as 

~(d ,R ,A)=d 2 F2' F2(p,~b) (x)lx=o=d 2 2 Fp(p, ~b ) dp d~b 

= d2R" S~,(Roh(,~, ~,)) do d4,. (A.5) 

The last line follows because f (x)  is the result of applying the scaling and stretching transformations in 
(8)-(10) to the circular object s(x), and from Table 2 and h(A, ~0) defined in (13), 

Fp(p, ~) = R2Sp(Rph(X, ~b)). (A.6) 

Note that from (A.5) the Radon space energy SOs of the reference object Sp(p) is 

~ = ~(1, 1, 1) = S~(p) dp d ~  = ~r S~(p) dp. (A.7) 

Now by a change of variable, (A.5) may be written as 

' ( d ,R ,A)=d2R3Io{h(A ,~b)} - ld~I~S2(p)dp=d2R3q(A)~s ,  (A.g) 

where q(A) is defined in (12). 

Appendix B. Geometry parameter ambiguity function 

To simplify the notation, let the subscripts a and m correspond to the actual object (characterized by 
R~, ha, ~b~) and modeled object (characterized by R, A, ~b), respectively. The ambiguity function in (16) 
may then be expressed as 

a(R,A, qb;Ra, Aa, gba)=-~o g~(t,O)gm(t,O)dtdO--~oJo g2m(t,O) dtdO. (B.1) 

The first term may be interpreted as a convolution back-projection operation (equation (5)) evaluated at 
the origin, and the second term may be rewritten using (11), 

2d 2 d 2 
a(R, )t, ~b; g , ,  Aa, th,) =--Noo B[g~ * gm](X)l~=o--77 g3q(A)~s 

lvo 

(B.2) - -  : , , m J x  / i x = O  - - / -  
N o  No Lq(X.) 

where R and B denote the Radon transformation and back-projection operators in (1) and (5), * denotes 
I-D convolution with respect to the t variable, and the actual object energy ~:a is given in (18). Using the 
equality in (A.4), denoting the 2-D inverse Fourier transform by F21{ • }, and letting F,(p, ~) and Fro(p, ~) 
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denote the 2-D Fourier transform of the actual and modeled objects in polar coordinates, 

2d2[  [~] ~arq(A)(R~3] 
a(g,h, cb;ga, ha,~a)=-~o fa**fm** (x)l,,=o-'--~oLq-~)k-'~aa] j 

1 sr~ [ q ( A )  R 3 
=2d2[F2l{Fa(p'~t)Fm(p't]l)~[)](X)]x=°-NoLq-~a) ('-Raa) 

R 3 

The actual and modeled objects are obtained from the circular object s(x) (or Sp(r) in polar coordinates) 
with 2-D Fourier transform S(oJ) (or Sp(p) in polar coordinates) by application of the coordinate 
transformations in (8)-(10). Using the Fourier transform relationships in Table 2, 

a(R'A'q~;R"'A"'d~)=-N-~o oo R2"Sp(pR"h(A~'O+d~"))R2Sp(pRh(A'O+r~))dpdO 

No Lq-~)  

=No ~ ~ Sp(ph(Aa,O))Sp ,. a h(A,t,b+~-~ba) dpdO 

Ca F q ( ~ )  R 3 

where the last line follows by a change of variable. 

Appendix  C. S i ze  est imate  C r a m e r - R a o  bound 

Consider an arbitrary (not necessarily Gaussian) circular object Sp(r) with Hankel transform Sp(p). 
The size estimation ambiguity function is the special case of (17)-(19) where A = Aa = 1 and Ad~ =0. It 
may be expressed as 

a(R' Ra)=~-~o\Ra, Jo Jo ~--'~o k'-~a/ " (C.1) 

Let the first two partial derivatives of Sp(p) with respect to p be denoted by S'o(p) and S~(p). The second 
partial derivative of a(R, R~) in (C.1) is given by 

OR E No T~ ~ Jo kRJ Sp(p)Sp dp 

16"rrRfo°(-~ ) '(P-~) - ~ - ~  Sp(p )Sp dp 
~R~ 

+ 8 ~  f °~ Sp(p )Sp( ~ )  d 6R'] 
~:~R-:--~ 2a Jo P - R-~~J" (C.2) 
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The CRLB on the size estimate error variance may then be written in terms of the size log likelihood 

function as 

[ EfO2L(R)~1-1 [ f  02a(R'Ra) } ]-1 No (C.3) 
Or2~ L -- [ T J J  = - - E l  -'~2 JR=R a -- 2d2Ra(3C~-  ~') ' 

where the expected value of L(R) has been replaced by a(R, Ra)[(R=R~) which follows from (15) and (16), 
and where 

-- 2,tr Io  Sp(p)[2Sp(p) + 4pSi(p) + p2Sp(p)] dp. (C.4) 

For the special case of the Gaussian object in (20), ~ in (C.4) equals (Tr/2) 25, Cs = ~g in (22) and the 
CRLB becomes 

4 >(_q2'r No 1 
\~r] L22d2RaJ (C.5) 

or after normalizing, 

'R~ 2 2 No 
_---_ >I , (C.6) 
/Ca/ 11 Ca 

where  Ca= 2 3 d RaCg is the actual  object R a d o n  transform energy in (18). 
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