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Event-based estimation of interacting Markov chains with applications
to electrocardiogram analysis

PETER C. DOERSCHUK+Y, ROBERT R. TENNEY? and
ALAN S. WILLSKY?t

The problem of estimating the state of a distributed finite-statc Markov process
consisting ofl several interacting finite-statc systems each ol whose transition
probabilities are influenced by the states of the other processes is examined. The
observations on which the estimation procedure is based are continuous signais
containing signatures indicative of the occurrence of particular events in the various
finite-state systems. The problem of electrocardiogram analysis serves both as the
primary motivation for this investigation and as the source of a case study we
describe. The principal focus of the paper 1s on the development of an approach that
overcomes the combinatorial explosion of truly optimal estimation algorithms. We
accomplish this by constructing a systematic design methodology in which the
resulting estimutor consists of several interacting estimators. each focusing on a
particular sub-process. Important questions that we address concern the way in
which these estimators interact and the method cach estimator uses to account for
the influence of other sub-processes in its own model.

1. Introduction

In a companion paper { Doerschuk et al. 1990) we have developed a methodology lor
modelling electrocardiograms { ECGs) that could be used as the basis for ECG signal
processing analysis algorithms. We reler to Doerschuk et al. (1990) for the motivation
and review of past investigations that lead us to the spatial. temporal, and hierarchical
decompositions that are featured in our mcthodology. Here we will only introduce the
implications of these features for signal processing,

Our locus is on cardiac rhythms and therefore the [ocus of interest in this paper is
on the estimation of cardiac events as captured in the evolution of the interacting
finite-state processes that occur in the upper level of the cardiac models developed in
Doerschuk et al. (1990). In §& | and 2 of that paper we have provided a discussion
of the potential advantages in using these models as the basis for designing signal
processing algorithms.

However, while truly optimal estimation based on these modcls would achieve
these advantages, the computational load associated with optimal processing is
prohibitively large. Thus the major issue is the development of feasible, sub-optimal
estimation algorithms. In this paper we investigate the development of such
algorithms that take advantage of two important features of this class of estimation
problems. First, the estimation of event sequences in the upper level model is
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essentially 2 decoding problem (i.e. the ECG is an encoding of the discrete cardiac
events we wish to estimate). Consequently we make repealed use of an efficient
technique for optimal estimation of finite-state processes first devcloped for coding
applications, namely the Viterbi algorithm (Forney 1973). Second, since our models
are distributed, we can eonsider the design of distributed estimators, consisting of
interacting algorithms each focused on the job of estimating the state of a particular
sub-process. Such estimation structures offer the attractive possibility of implemen-
tation in a distributed processor, thereby allowing significant improvements in
throughput rates.

The design of such estimators also raises a number of important questions
independent of the ECG application. In particular, since the several sub-processes
of our upper level model interact strongly, it it not possible to estimate the state of
a sub-process without accounting for the influence on it of other sub-processes.
Consequently it is necessary to include a (hopefully aggregated) mode! of other sub-
processes that captures the dynamies of the interactions these sub-processes have with
the particular sub-processes being estimated. Also, it 1s necessary for the estimators of
interacting sub-processes to interact themselves (e.g. estimators of atrial and ven-
tricular activity most certainly have information worth sharing!). The inleraction
between estimators implies that each estimator needs an aggregated model of the
dynamics and uncertainties in the other estimators in order to interpret the information
it receives from the other estimators. In addition, since each estimator 1s using the same
raw data but is interested in only some of the events in the data, it may be necessary lo
provide information to each estimator concerning estimated times of occurrence of
other events in the ECG data (e.g. an atrial estimator may need estimates of R-wave
locations from the ventricular estimator in order to assist it in locating the much
smaller P-waves). Also, as one might expect, there may very well be a need for some
itcration in this process so that a high level of performance and consistency among the
estimators is achieved.

While clectrocardiogram analysis has provided the motivation and examplcs for
our work, there are a variety of other applications in which similar estimation
problems arise. In particular, consider interconnected power systems which arc made
up of strongly interacting components subject to events (such as gencrator trips and
linc faults) that can precipitate cvents in other parts of the system. An cxtremely
important problem is the design of distributed monitoring systems, and a critical
aspect of this problem is determining how Lo structurc the interaction among local
monitoring systems in order to produce a consistent and accuratc overall estimate of
system status. Similar issucs also arise in military contexts in distributed battle
management and assessment. Qur analysis begins in the next section with a case study
for the ECG application which allows us 10 introduce the major questions that arise in
designing distributed cvent estimation algorithms, In § 3 we then extract {from the case
study a general, systematic design approach for distribuied estimation of interacting
proecsscs. The paper conciudes with § 4 in which we discuss issues arising in the
cxtension of our results and in particular in the design of a complete ECG rhythm
tracking systcm.

2. Estimation example

The process (Fig. 1), whose state is 1o be estimated, models normal cardiac rhythm
with occasional re-cntrant—mechanism premature ventricular contractions (PVC);
these result from a normal excitation of the ventricles in eflect circling back on itself
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and causing additional ventricular contractions. Note several important features of
the model:

(a) The model consists of two sub-processes, one (the SA-atrial sub-model,
denoted CO, with state xp) representing the behaviour of the upper chambers
of the heart and the other (the AV-ventricular sub-model, denoted Cl, with
state x,) capturing the behaviour of the atrial-ventricular connection and the
lower chambers of the heart. The signatures modelled are the P-wave (corre-
sponding to atrial depolarization), the R- and T-waves (corresponding to a
normal ventricular depolarization—repolarization cycle) and the V-wave (corre-
sponding to an aberrant re-entrant PVC). The signatures are labelled P;, R;,
T., and ¥, respectively in the figure. The state transition probabilities {in-
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Figure 1.  Model of normal cardiac rhythm with occusional re-entran-mechanism PVCs: (a)

the two sub-processes; {b) the various signatures. Each occurrence of the P-, R-, T-, and
V-waves consists of the signature plus zero-mean noise of standard deviation 0-02, 0-2,
0-12, and 04, respectively. In addition the entire ECG is observed in zero-mean noise of
standard deviation 0-02.

cluding inter-sub-model interactions), the signature means and variances, and
the zero-mean obscrvation noisc variances are also shown in the figure.

(b) The interactions betwcen the sub-models are infrequent but arc extremely
strong. In particular, the diagram shown for the SA-atrial sub-model repre-
scnts normal activity which occurs unless x, = 13 (initiation of a PVC) in the
AV-ventricular sub-model. When such an event occurs, il is possible for the
eleetrical signal to propagate back to the upper chambers of the heart and in
essence reset the timing of the heart’s own pacemaker. This is captured by
modifying the transition probabilitics of x,; so that with probability 1/2, x, is
reset to state 25 when x, = [3, and with probability 1/2, x4, proceeds in a
normal fashion. in the x, sub-model the only transition probability affecied by
the value of xq is p}," In particular, x, =0 represents the resting state of the
veniricles, which is a trapping state (p), = 0} until the ventricles are excited
{pa, =1 for one time step) by an atrial contraction (xg = O}

{¢) The ECG measurcments are available at a rate four times the clock rate of the
Xg, X, processes. In order to allow signatures to start at any observalion
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sample, each signature appears four times with 0, 1, 2, or 3 leading zeros in the
mean and covariance sequences. (The subscripts on the wave labels indicate
the number of leading zeros).

(d) The initiation of re-entrant PYCs is modelled by transitions out of states 12
and 21 in sub-model C1. Occupancy of state 12 corresponds to the completion
of a normal R, T-wave pair, and from this state there is a probability of 0-9 of
returning to the resting state and a probability of 0-1 of entering state 13
corresponding to the initiation of a re-entrant PVC. Note that there is a much
higher probability (0-4) of initiating subsequent, consecutive re-entrant PVCs
(the 21-to-13 transition) which results in occasional occurrencs of bursts of
aberrant PVCs as are seen in episodes of ventricular tachycardia.

(e) The remaining states and transition probabilities model cardiac timing—
propagation delays, recovery time following contraction, eic. The model does
allow for some uncertainty in this timing behaviour and therefore some
variability in the heart rate (which with a Markov chain cycle 1ime of 0-04 s is,
on the average, 75 beats per minute). It is certainly possible to add even more
variability, but for simplicity we have not done that here,

Figure 2 shows a plot of several typical segments of a realization of this model.
(Recall the discussion of §4 in our companion paper (Doerschuk et al. 1990)
concerning the verisimilitude of the simulated ECG, especially the contrast between
modelling for physiological accuracy and modelling for signal processing utility),
Below the ECG tracing are several sets of annotations. The top row of annotations
indicates the true times and types of waves that are present in the data (corresponding
to the times at which transitions are made oul of state 0 in sub-model CO{P-wave)} and
states 4 (R-wave), 7 (T-wave), and 13 (V-wave) ol sub-modet C1). The remaining
rows represent various annotations constructed during the estimation process, with
the bottom row representing our final set of estimates.

A compact pictorial notation for interacting Markov chains is illustrated in Fig, 3.
Here the label CO denotes the SA-atrial sub-model and C1 the AV-ventricular sub-
model shown in Fig. 1. The arrows between C0 and C1 indicate that the state of each
sub-process influences the transition behaviour of the other. Also, the arrows labelled
P, R, T, and V indicate the waveforms initiated by each sub-process. In addition, the
variables hy, (n) denote the sequence of interactions initiated by C0 and impinging on
Cl. That is fy,(n) completely captures the influence CO has on the transition
probabilities of C! for the transition x,(n) — x,(n+ 1}. Referring to Fig. 1, we see that
we can define hy, (n} so that it takes on only two values

0 il xo(m)=0
hg (1) = . (1
1 otherwise
The only transition probability of C1 that is influenced by CO is
1 hg{n)=0
PoL = (2)
0 hy(m=1
Similarly we can define the interactions i, 4(n) from C1 impinging on C0 as

0 if . ) # 13
hlo(")-:{ o 3)

1 otherwise
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so that il hi,4(n) =0 the transition probabilities are as indicated in the figure, and if
h,a(n) =1 they arc the average of these values and a probability | reset to state 25
from any other state. Note that there arc far fewer values [or these interaction
variables than for the corresponding states, This fact is uscd in an essential way in
constructing several aggregate models used in our estimation methodology.

Our approach to state ¢stimation for such a process involves the design of a set of
interacting estimators, cach of which locuses on estimation for a particular sub-
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Figure 2. Several segments of a simulated ECG obtained wsing the model in Fig. 1.
Annotations below the traces refer to estimates produced at several points in the
esumation algarithm (see text).

process. Also, the existence of the interactions among sub-processes may require some
iteration. For the present cxample our estimator can be viewed as consisting of three
passes as follows.,

{a) Derive a preliminary estimate of ventricular activity (sub-model Cl).
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Figure 3. High-level block diagram represeniation of the model of Fig. 1.

(b} Based on the observed ECG and the estimates from pass 1, compute an
estimate of atrial activity (sub-model CO0).

(¢) Refine the ventricular estimate based on the observed ECG and the estimates
of atriai activity lrom pass 2,

The results from (b) and {¢) form the final cstimatc, This approach paraliels the
heuristic approach humans take in first identilying high signal-to-noise ratio (SNR)
cvents (R- and V-waves), then using these estimates to assist in locating low SNR
events ( P-waves), and finally making adjustments to ensure accuracy and consistency.
While we describe these three steps as separate passes through the data. it is
straightforward to construct a pipelined structure in which the three steps proceed at
the same time.

We now turn to a detailed examination of cach of these three passes. Because the
first pass focuses on sub-modecl C1, it is naturai to include an exacl copy of this sub-
model in the estimator’s modcel. However, it is also necessary to model the interactions
impinging on the C1 sub-medel. i.c. i1y, (n). Possibilities range rom the exact model of
€0 depicted in Fig. t to no model. We use the simplest possible aggregate model for
sub-model CO with which we can still capture the full range of interactions with Cl,
specifically we use a two-state model, corresponding to the two possible values of
fig (M. In addition, we allow sub-model Cl 10 reset the state of our two-state
aggregate model, again reflecting behaviour secn in the full model. In the full
discussion ol our approach to estimation, this type of aggregate model is referred to as
an "50-sub-model’. Details for this example are given in Fig. 4.

There are several further points to make about this first pass. First. because the
P-wave has a small amplitude in comparision to the R- and V-waves, which are the
wives of primary concern for this pass, it is unlikely to be conlused with an R- or
V-wave. Therclore, though it is straightforward to define a 50 sub-process that initiates
P-waves, we have not done so. Second, onc can imagine several methods lor choosing
pin sub-model S0-—matching somc statistic ol the exact sub-model C0 or viewing p as
a design parameter to be chosen to optimize cstimator performance. In Doerschuk
(1985). several general statistical methods (which can be easily automated) are
described for choosing parameters to match particularly uselul statistics. In § 3 we
describe the statistical method used to obtain the value for p indicated in the figure.
Finally, with this paramecter specified, we have a complete model, and the first step
estimator is designed to produce a minimum probability-of-crror state trajectory
estimate for this model (i.c. estimates of the states of S0 and C1 as lunctions ol time)
bascd on the observed ECG. This computation and those in all of our estimators are
performed using the Viterbi algorithm (Forney 1973) which efficiently and recursively
computes the optimal smoothed state trajectory, i.c. the best state estimate at each
time is based on information belore and after that time.
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Figure 4, Model lor the first pass of the estimation algorithm: {(a) overall block diagram; (b}
detail of the S0 model—state 0 corresponds to h,,(n) =0, state | 1o hy,(n)=1.

The Viterbi algorithm requires the process to be markovian, while signatures (as in
this example) that lust more than one Markov chain cycle make the process non-
markovian. However, it is straighforward to markovianize the process by state
augmentation and because there are few transitions that initiate signatures, the
required augmentation does not radically increasc the size of the staic space. Though
straightforward, the details of this augmentation process are rather tedious and are
omitted.

The results of this first pass estimator arc illustrated in the sccond row of
annotations in Fig. 2, where we have indicaled the estimated times of occurrence of R-,
T-, and V-waves. For the most part these cstimates are quite accurate, thanks to the
high SNR of these waves, although there are infrequent false alarms in the estimates
caused by extra-long P—P intervals in which case the estimator aticmpted to match
a T-wave with an actual P-wave.

The second step in our overall estimation structure is o ¢stimate the state in the
SA-atrial sub-model. Therefore, i1 is natural to include an exact copy of the SA-atrial
sub-model in the estimator’s model. The only direet information from the ECG for
this step is the low SNR P-wave. Howcver, Lhere i1s also a great deat of indirect
information available through the causal relationship between P- and R- waves, and
V- and P-waves.

First consider interactions initiated by C0. That is, consider the causality between
P- and R-waves the latter of which only occur when the SA-atrial sub-model
successfully excites the AV-ventricular sub-model. The goal is to exploit the auxiliary
information concerning R-wave oceurrences determined in the first estimation pass.
Al the very least, one could imagine using the state estimatcs for SO from the frst pass
which are estimates of interactions impinging on the AV-ventricular sub-model. Since
the O-state in this sub-model corresponds to the O-state in the original sub-model CO
{and thus to attempts to excite sub-model C1), the estimates of times at which S0 is in
state 0 would be likely estimates of times at which Jiy, (#) = 0. However, because of the
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highly aggregated nature of 50, some of these estimates may be somewhat suspect.
However, when such an estimate is coupled together with a closely following
estimated occurrence of an R-wave (corresponding to the ¢stimate of the C1 sub-
process occupying state 4), the SO estimate is much more likely to correspond to a true
occurrence of an attempt al ventricular excitation. Consequently the information we
provide to pass 2 from pass 1, which we will refer to as estimated augmented
interactions, consists of the sequence of estimates of the states of S0 and Ct produced
in pass 1.

In order to use the estimated augmented interactions we must model the errors
they contain. Note, however, that the errors of importance here are not only
memoryless errors (which could be modeiled by static misclassification probabilities)
but also errors in timing (e.g. the estimated time of occurrence of an R-wave may be in
error by one or two samples). Consequently, we need a dymamic model for the way in
which estimated augmented interactions provide information about CO. This is
accomplished, as illustrated in Fig, 5, by modelting the estimated inieractions, denoted
by z,, as the observed outputs of an additional sub-model of a class we refer to as §/
sub-models. This additional sub-model receives interactions from €0, whose state we
wish 1o estimate. In order to model the fact that the estimates in z,(n) may contain
timc shifts relative to the actual values of the interactions hg,{n), we take as the state of
the S1 sub-mode! a vector of the most recent interaction values. To minimize the size
of the 51 state space, one clearly wishes to minimize the dimension of this vector. For
this study we found a dimension of 2 to be adequate, so that the state of 51 at time n is
{ho {n—=1) Iy, (n—2)). By cxamining C0, we see that it is impossible for &, to equal

St Moadel itxg(n)=0

WO B

1
S1 Model if xgin) w©

()

$2 Model (p=0.00784]
p

(c)

Figure 5.  Model for the second pass. {The sub-model CO is reset, i.c. its transition rates are as
given in Fig. 1 with x, = 13, only if the §2 process is in state 2))
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0 at consecutive times, Thus, there are only three possible S1 states which we have
coded as lollows in Fig. 5:

0=(0 1), 1=(1 0), 2=(1 )

Since hg, is a deterministic function of the state of CQ 11 is straightforward to derive the
way in which x,(#n) affects the transition behaviour of S1 (Fig. 5).

As in all of our models, the observation z,(n) is associated with transitions in the
51 sub-process which correspond 10 triplets (hg (s — ¥} hg,(n—2) hg(n=3)) of
interactions., Qur measurement model is then the set of ¢onditional probabilities

Priz,(m g in—1) hg(n—=2) hg(n—3)) (4)

Since the Viterbi algorithm provides us with non-causal estimates, we are [ree to build
some non-causality into this model. Consequently, we have chosen to take z, (1) as the
pass | estimate at time n — 2, which therefore provides an estimate of hg, (n — 2). Thus
the model allows us to capture time shilts of + 1. The specification of (4) can be
obtained by analysis of the performance of the first step estimator. We have estimated
these quantities via simulation.

We now must consider the interactions ho(n) initiated by C1 and impinging on
€0, i.c. the efleet of V-wave occurrences on CO. There is a similarity here with the
modelling of SO in the first pass but in the present context we also have the estimates
from pass 1 which tell us something about these interactions. Specifically, since we
uscd the exact Ct sub-model in pass t, we can deduce estimates of h, (see (3}). We
take these estimates as our observation z, for pass 2 (without any augmentation as
was done for z; since the first step cstimator used an exact model for Cl and
consequently should produce comparatively accurate estimates). Also, as with the S1
sub-model, we need to model possible estimation timing errors, so again we take the
state of §2 to be a set of the most recent interactions, in this case (h,g{n) I o(n— 1}).
(Note that there is some asymmetry in comparison with the St sub-model where the
state was lagged one step. This is a result of the fact that in the S1 sub-model, hg,{n) isa
deterministic function of x4(n). Thus for the state xg{n) to correetly ‘influence’ the next
transition in S1, we needed to introduce the time delay in defining the S1 state. This is
not needed in S2, since there is no such deterministic coupling.) In this example 1t is
impossible for h,, to equal one at two consecutive times, and thus we can ecode the
feasible 82 states as

0=(0 0). I=(0 1), 2=(1 0)

In this cxample, the CO sub-model transition probabilities are shown in Fig. 1 for
Xg,(n) =0 or t and incorporate the (+5 probability reset to state 25 when xg,(n) = 2.
The S2 model is illustrated in Fig. 5. Note that as with S|, there is a parameter p to be
chosen to specily the 52 transition probabilities. This parameter was also chosen to
match statistics of the true h,, process using a general method described in the next
section. Finally, the observation z,(n), which is the pass 1 estimate of h,o(n— 1), is
modelled as resulting from S2-transitions. Thus again we must specify a distribution,
namely

Prizo(mlho(n) Ioln—1) ho(n—2)

which we have again done by simulation.
This completes the specification of the second pass model. Note the complete
absence of R-, T-, and V-waves. For the pass | estimtion algorithm we argued that it
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was reasonable to consider omitting P-waves from the model since

{a) we were focusing most attention on sub-model Cl
(b) the P-waves were of low amplitude.

In pass 2, the first argument holds (here we are focusing on CO0), but the latter does
not, In the general procedure described in ihe next section, we allow for the possibility
of taking such waves into account through so-called subtractor sub-models. Howcver,
as the results in this section and in Doerschuk {1985} indicate, for ECG-type models,
such as the one considered here, that is unnecessary. Intuitively such waves can be
ignored in thc pass 2 estimation algorithm because through z,(n) and z,(n) we are
providing indications of the times at which these waves occur. Given then the coupling
between these waves and the likely times of P-waves, captured in the original C0-Cl
model and in our simplified pass 2 CO-$1-52 model, the pass 2 estimator will not try
to account for R-, T-, and V-waves by placing P-waves in their locations.

A second issue we have ignored is that of allowing the C0 sub-model to influence
the 52 sub-model motivated by the fact that the C0 sub-model does influence the Ci
sub-model. However, it is precisely this influencc that is focused upon in the S1 sub-
model, while the 52 sub-model focuses on that part of the Cl sub-model, dealing with
V-waves, which is unaffected by the CO sub-model. Consequently, while our general
modelling methodology allows CO to influence §2. it is not nccessary to include this bit
of complexity in the present context.

Note that in our model we consider z; and z, to be independent measurements,
which is clearly erroncous since they are both determined by the pass 1 estimation
process. One can certainly construct a more complex model involving a joint
distribution of z,, z, given the combined information in the most recent transitions of
St and §2, but this was not found o be necessary (since again z, and z, focus on
different portions of the overall model).

In summary, the second pass of our procedure consists of the minimum
probability-of-error estimation of the state trajectory of the model given in Fig. §
given the ECG mcasurement and the derived measurements z, and z, from the first
pass. The results for this example are given in the third row of annotations in Fig. 2
showing the times at which P-waves were estimated to have occurred. Comparing this
to the top row of annotations we see that performance is quite good. Note that the
crroneous R, T-wave pairs from pass | ncar 1366 and 138:3s did not lecad to any
crroneous P-waves in pass 2, thanks to our modelling of z, which incorporated the
possibility of such false alarms, Note also the occurrence of P-wave timing errors (as
illustrated near 80-2 and 9%-9s) all of which underestimate the P—R interval. Finally,
note that it 1s possiblc in our model {(and in the heart) for P- and V-waves to occur
nearly simultancously or for V-waves to pre-empt an already occurring P-wave from
initinting a normal R-wave. Having knowledge of this, the pass 2 estimator will
attempt to insert P-waves when the timing secms likely, even though the presence of
V-waves may obscure the P-wave. An cxample of correct estimates of this type can be
found near 99s. A false alarm can be seen near 82-6s, and a missed deiection near
£3-3 5. While the value of such estimales is suspect (and not of particular consequence)
they do provide rather graphic examples of the way our ¢stimator uses the timing and
control information embedded in our models.

The third pass of the estimation process, whose purpose is to provide improved
and consistent estimates of ventricular activity, is based on a model, illustrated in
Fig. 6, with structure analogous to that of pass 2 {with the roles of sub-models CO
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Figure 6. Block diagram of the model for the third pass.

and C1 interchanged). We omit the details of the construction, as they are exactly anal-
ogous 1o those in pass 2. The estimator is again a minimum probability-of-error
estimator using the ECG and the derived measurements z,, z,.

The result of applying this estimator is illustrated in the fourth row of annotations
in Fig. 2. The finai, overall estimate (row 5) consists of the CO-state estimate of pass 2
(row 3) and the Cl-state estimate of pass 3 (row 4). Comparing the top and bottom
rows we see that the estimator has performed quite well. Disregarding the initial
heartbeat (which was missed in pass 3 because of the specific way in which we
implemented the initialization of the latter passes of our algorithm) all R-, T-, and
V-waves were detected and located with no false alarms. Note that while there had been
several false R, T-wave estimates in pass 1, these have been completely eliminated in
pass 3, in which we have the benefit of using estimates of CO-behaviour in order to
enforce consistent overall estimation.

The estimation of P-wave occurrences is ailso quite good. Quantifying this
performance. however, is an interesting question itsell, since one is clearly not just
interested in estimation errors at points in time but also in timing errors at points in
the estimated evenl cycle—i.e. an estimation error of one time sample in locating a
P-wave should not be thought of as a missed detection but rather as a timing error.
Much more on the issue of performance measures for event-oriented estimation
problems can be found in Doerschuk {1985). This exampie does, however, indicate the
main ideas. In ¢xamining the results of the full simulation we find that there are only
two isolated false positive P-wave indications and onc isolated false negative
(neglecting the initial heartbeat), where by ‘isolated’ we mean that there is no nearby
P-wave in the true or estimated state trajectories. Given that there are 230 heartbeats
in this simulation, these correspond to a false positive rate of 0-009 and a false negative
ratc of 0-004. There are also 23 other paired false positives and negatives, where we
have used the criterion of associating estimated and actual P-wave locations only if
the waveforms at these locations overlap. This corresponds to a paired error rate of
0-10. Note that in our model, every R-wave musi be preceded by a P-wave, and thus
this pairing is to be expected. 1t is worth noting that in each of these paired errors. the
estimated P-wave location was closer to the R-wave than the true R-wave, indicatling
a bias that may be removable (and is most likely due to the pass 2 estimator
correlating the P-wave with the initial portion of the R-wave).

In Doerschuk (1985) we consider a variety of other models. For example, we have
examined models with transient AV block. i.e. models in which not every attempi at
ventricular excitation leads to an R-wave, even if the ventricles are apparently in the
resting state. Because of the additional freedom in the model. one would expect some
drop in performance. However the drop i1s extremely small for estimators based on the
principles outlined in this section and formalized in the next,
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3. General design methodology

The example of § 2 illustrates the major clements of a general estimator design
methodology lor distributed Markov chains which is described in this section.
Specifically, consider the estimation of an inicrconnection of sub-processes, denoted
Cy, Cy, ..., Cy, with states x,, X,, ..., Xy, given measurements of signals containing
signatures corresponding to particular state transitions in thcse sub-processes. Let
h;;(n) denote the interaction initiated by C; and impinging on C; at time #. This
interaction is a deterministic function of x;(n}, and the transition probabilities of C;
are deterministic functions of {/1;(n)|i # j}. The assumption is that the set of possible
transition probabilities for each C; (and thus the set of possible values of {h;(n) }i # j})
is quite small.

Our overall estimator consists of an interconnection ol local estimators (LEs), each
of which focuses on the estimation of one of the sub-processes. Because of the
existence of interactions with, and events in, the obscrved data due to other sub-
proccsses, cach LE not only must take these effeets into account in its model but also
must communicate with the other LEs.

During the initial pass through the data the LEs have no previous information to
communicate and the LE for a specific submodcl C; will in gencral nced the following,

{a) A complete model of the sub-process C; on which it is focused.
(h) A model of the interactions impinging on C,.
{c) A model of the waveforms gencrated by the other sub-modets.

The modeli referred to in (k) is called an S0 sub-model, and a major objective is to
make it as simple as possible in order to keep the LE as simple as possible. (There are
two distinct ways in which one can perform this modelling step and several that foliow.
In particular, in this section we describe the construction of a single SO sub-model
capturing the interactions impinging on C; from all other sub-processes. In Doerschuk
(1985), an analogous approach is described for constructing separate S0 sub-models for
the interactions initiated by each of the other sub-processes.)

Woe have taken the states of the S0 sub-model to be in one-to-one correspondence
with the possible values of the N-tuple {h;;(n)|i=j}. In order to set the transition
probabilities for the 80 sub-model, our primary approach has been to match these one-
step transition probabilities to the actual steady-state versions within the original
process. That is, to

,.Ii.m Pr ({hu("“i # i {hij(" - Dl ?Ef}a {hji'(" —I}= hji“ #i}) (5
Unlike {x,(n)|f #j} conditioned on {h;(n}]i #j}, lhe highly aggregated {h U(n)li;bj}
conditioned on {h;(n)|i + ) is typically not a Markov chain and therefore the limit in
{5) is not a trw:al computation, though it is stralghtforward once the ergodic
probabilities for {x;(n)|isj} have been computed Typically for models with
infrequent changes in interactions, most of the transition probabilities specified in {5)
are Q0 or 1, and there are only a lew parameters {such as p in Fig. 4) for which this
computation is necessary. (Indeed for alf of the cases considered in Doerschuk (1985)
the model was exactly as in Fig. 4—with different values of p—since in all of our cases
there have been only two interaction values, one of which could not occur at
consecutive times.}

Note that we have included conditioning on {#;(n— 1)|i# j}, which reflects the
influence C; has on the other sub-processes. This results in the transition probabilities of
50 being influenced by the state of C;. Again we typically expect this influence to
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manilest itself as a small number of possible values for a small subset of the transition
probabilities (e.g. in our case study only the parameter p in Fig. 4 is influenced, and it
only takes on two values).

Finally, note that there are cases in which the matching of the steady-state statistic
(5) may be inappropriate since it assumes, in essence, that the transition probabilities of
{x;(m]i+j} do not change very frequently (so that steady state is actually achieved).
That is, (5) assumes that the interactions ky{(n) are constant so that the time variations
observed in the actual x;(n) process must not lead to frequent changes in the
interactions h,(n). We refer the reader to Doerschuk (1985) for examples violating this
assumption and in which we must set the 50 transition probabilities in a different
manner. Note that this assumption is in fact violated in our case study. In particular,
while it is certainly true that h,, = 0 for long periods of time, k,, = 1 cannot possibly
occur al any two consecutive times. In this case, since h,, = 1 corresponds to a reset of
CO0 to state 25, and since all states in CO other than 0 correspond to hy, =1, it is
reasonable to reset the state of S0 to 1 whenever x, = 13. This is what is specified in
Fig. | and what we would calculate from (5). Thus (5) is often useful even if the
assumption on which it is based is violated.

The model referred to in (c), denoted §3, is one of the subtractor sub-models,
referred to in the previous section. It is incorporated in order to keep the LE from
interpreting waveforms generated by other sub-models as coming from C;. Our desirc
is to present the LE with observations conlaining only those signatures generated by
C;. Since this is not possible, we equip the LE with a mechanism for estimating when
other signatures have occurred so that it can in effect subtract out their effects. In
general, one can construct a separate §3 sub-modei for each signature not initiated by
C;. While it is possible to coupie these sub-processes with the C; and $0 sub-models,
we have obtained good results with the simpler structure shown in Fig. 7, in which
cach 53 sub-model is a completely autonomous, aggregated process that produces
interarrival statistics for the wave of interest identical to those produeed by the exact
model. Let t55(n) denote the time between the nth and (n + 1)th occurrence of the
signature S in the original process. Then we choose the two parameters p and g to
match the probability that signatures occur at successive times and the mean time
between successive signatures. That is

p=1— lim Prt(n)=1] (6)
P .
E+ I= liﬂ; E[ts5(m)] (7)

Again the statistics in (6), (7) can be calculated from the ergodic probabilities of the
full model. In most cases Pr[zg5{n) = 1] =0, so that

1

q (8)

= Tim E[ts5(m] — |

n—*an

Figure 7. $3 chain. Here the 0-0 and 0O-1 transittons initiate the signature denoted by §.
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Thercfore, in our general methodology we construct each initial LE model using
C;. 50, and S3 components as illustrated in Fig. 8 and compute the initial pass
minimum probability-of-crror estimates for cach LE. We are then in a position to
consider u refinement pass, in which cach LE reprocesses the data, together with
information provided from the initial passes of the LEs.

The LE for sub-process C; will in general need the foliowing elements in its model
for o refinement pass.

(i) A complete model of C;.

(ii) A model of the information provided by the previous pass concerning
interactions initiated by C;.

(iit) A model of the information provided by the previous pass concerning
interactions impinging on C;.

(iv) A model of the information provided by the previous pass concerning times of
occurrence of waveforms gencrated by the other sub-processes.

Eletnents (ii) and (iii) together correspond to (b) in the initial pass. They are split here
because:

(1 it simplifies modelling the information

{2) the information referred to in (i) and (iii) typically comes rom different
sources or is of very different accuracy or structure, since each LE has an
accurate model of its own sub-process but only highly aggregated models of
the others.

As discussed in the previous section, the models reflerred to in {i1) and (113}, denoted
51 and 52 sub-models. respectively, must capture the timing and cstimation
uncertainties [rom the previous pass. Each accomplishes this by taking as its state
spacce a moving window of the most recent interactions. In particular, the state of the
51 sub-model consists of a window of the most recent values of the N-tuple {h;[i # j}
while the state of the §2 sub-model 1s a window of the most recent values of the N
tuple {h;1i % j}. (Recall from the previous section that there is some asymmelry in the
windows here, with the window lor S1 stopping at time n — I, and the window for 52
stopping at time n.) An objective in designing these models is to keep the window
lengths, K| and K, small in order to minimize state space size. This desire is balanced
by the nced 10 model estimation timing errors (since the maximum such symmetric
error that can be modelled corresponds to half the window length). In our work we
have always luken this window length equal to two.

The S1 dynamics arc essentially a shift rcgister memory, since each h(n) is a
deterministic function of x,(n) and since the lull C; model is used by the LE.

C: t—m— waveforms initioted by Cj

S0 S3 waveforms
initiated by
other sub-models

Figure 8. Structure of a general LE model for an inttial pass.
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Specifically, given x{(n), the transition

xs(m) = {hpmhji#j, m=n—K,,...,n—1}
l
xg{n+ D={hyimlizj,m=n—-—K,+1,..n}

is deterministic, that is, for each present state there is onc next state (whose identity
depends on x;(n}) that §1 will occupy with probability 1.

The dynamics of the §2 sub-model are not deterministic. As in the 50 sub-model,
we choose the $2 transition probabilities to match those in the original process. In
particular, we choose these to equal

lim Pr({h;(m)|i#jm=n—K,+2,...n+1}|

{himyli#jm=n—K,+ 1. n} hn|i#ji})  (9)

By including the conditioning on {h,(n)|i#j} we can capturc the intcractions
initiated by C; and impinging on the other sub-processes (and therefore, in the LE
model, on §2). However, as discussed in the previous section, the effects of these
interactions are the primary concern of the St sub-model, and thus it is worth seeking
and typically possible to find a far simpler model. In fact throughout our work we
have been able to completely eliminate the influence of C; on §2 {which then operates
autonomously, generating the interactions that impinge on C;). This can be done by
using (9) with {h;(n)|i #j} set cqual to the values that represent the most usual
interaction or by computing the average of (9) over the possible values of {hj;(n)]i s}
using their ergodic probabilities. We have used the latter of these two methods. (In our
ECG examples, the first method corresponds to no atltempl at interprocess
excitation, as such electrical excitations occur over relatively short time periods—
usually a single time sample.)

Consider nex1 the modelling of the ‘measurements’ provided by the previous data
pass. With respect 1o S1, we have. in general, the following sources of information
concerning the interactions initiated by C;.

(a) The previous state estimate of C; [rom its associated LE. From this we can
directly compute an estimate of {h;(n)|i #j}.

(#) The augmented interactions from cach of the other LEs. These consist of the
estimate of the interaction impinging on the C; sub-model associated with each
LE (obtained from the aggregated SO sub-model used by the LE and the
corresponding C;-stale estimatc.

Together this information forms a measurement, which we decnote z,(n), and we
model the information contained in z,(n) by

Prizim)|[{h(m)li#jm=n—K,—1,...n—1} (10)

As discussed in the previous section, we have the flexibility of introducing some non-
causality in order to model positive and negative timing errors. That is, we take z,(n)
to be previous pass estimates indicated in (a) and (b) evaluated at time n— 1 — K, /2.
Finally, while it is possible to devise analytical methods to obtain approximations flor
{10), we have found it easier to evaluate these distributions by simulation.

For $2, we have the following sources of information concerning interactions
impinging on C;.
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(i) The augmented estimated interaction provided by the previous pass of the LE
for C;.

(it) The estimated state of each C; provided by the associated LE. From these we
can directly compute estimates of each Ji;;{n).

This information forms the measurement z,{n), which is modelied via
Pr(z,(m|{h;(m)i#j, m=n—K,, .. n}) (1

Again we introduce some non-causality by taking z,{(n) to be the previous pass
information evaiuated at n — K, /2, and we determine (11) by simulation.

Finally, consider modelling the information available [rom the previous pass
concerning wavelorms generated by other sub-models. Each such waveform is
modelled by a sccond type of subiractor model denoted §4 which is similar in
structure and principle to §2 sub-models. Consider an 54 sub-model corresponding to
a particular wavelorm generated by sub-model C,. The measurement z,{n) provided
by the previous pass LE for C; is a sequence of binary annotations—0 if the LE
estimates that the particular C, wavelorm was not initiated at that time sample and 1 if
the estimate is that the waveform was generated. The state of the §4 sub-model is a
window of the most reeent true values of these binary annotations. As with 82, the
transition rates of this model are chosen to match the corresponding transition rates
of sequences of binary annotations in the full model. If the counterpart to (9) is used,
the 54 model will, in general, be influenced by C;. Again, as in the case of 52, we have
typically simplified this model so that §4 is autonomous, by averaging out the C;-
dependence using the ergodic distribution for x;(n).

The output of the S4 chain is a sequence of occurrences of the wavelorm being
modelled. Such outputs occur at all 84 transitions to states with a | as the most recent
annotation. The auxiliary observation z,{n) is again modelled via a probability
distribution conditioned on the most rccent S4 transition. We have determined
distributions of this type via simulation.

The structure of the models on which cach LE refinement pass is based is depicted
in Fig. 9. In principle one can envision making several refinement passes, with the final
estimate consisting of the collection of C;-state estimates from the final passes of the
corresponding LEs. The primary purpose of the refinement passes is to improve the
accuracy and consistency of this set of estimates. In particular, if one implemented a
single. optimal estimator for the full process, one would know for certain that all
transitions prescnt in the final state estimate would be consistent (i.e. have non-zero
probability in the futl process). When one uses a cellection of distributed, simpier LEs,
there is no such guarantee, but the co-ordination made possible by refinement passes
makes the cocurrence of inconsistent estimates extrememely unlikely,

In the examplc of § 2, the first refinement pass (pass 2) is crucial because it is the
first pass to focus on sub-model €O, The second refinement pass (pass 3) is less

[T
waveforms
initiated by
other sub-models

Figure 9. Structure of a general LE model for a refinement pass,
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important, though it does correct several false positive errors made by pass 1.

The complete procedure we have described requires the implementation of a full
set of LEs for the initiat pass (based on medels as in Fig. 8) and subsequent refinement
passes (each based on its own model as in Fig. 9). As in our example in § 2, it is
typically possible to simplify this design considerably. First of all, for each LE it 1s
often not necessary in the initial pass to include subtractor sub-models §3 for
waveforms of low SNR compared to the waveforms generated by the sub-model
corresponding to the LE. Also, as we showed, it may not be necessary to include any
S$4 sub-models, since the information provided through St and $2 sub-models
essentially provides timing information that aliows the LE to avoid intervals in which
these interfering signatures may appear. In Doerschuk (1985) were presented compara-
tive results with and without §3 and 54 sub-models that support these simplifications.

It is also typically possible to eliminate many of the LEs from each pass. For
example, in the initial pass, one typically would implement LEs only for sub-models
generating the higher SNR signatures (such as R-waves), since the performance of
initial pass LEs for other sub-models with only low SNR signatures {or no signatures,
as is the case for some rhythm models described in Doerschuk (1985) and Doerschuk
et al. (1990)) will generally be unsatisfactory. Also, in order to achieve consistency, we
do not need to refine all LEs in subsequent passes. [n particular, we typically can
implement an alternating iterative structure much as in the example in which we
initially estimate the C; with high SNR signatures, then use these estimates to estimate
only the remaining C; during the next pass; these estimates can then be used in turn
during the following pass in the re-estimation of the C;{rom the initial pass in order to
improve the accuracy and consistency of the C;-state estimates. Note that in addition
to eliminating entire passes of LEs, such a structure reduces the quantity of z, and z,
measurements to be processed by the remaining LEs. In fact, the full set of such
information described previously has some redundancy, reflecting the fact that
perhaps not all of this intermediate processing is needed. The structure described
above simplifies the design by removing these redundant sources of information. In
Doerschuk (1985) were presented results that favourably compare reduced designs of
this type to estimators incorporating more or all of the LEs at each stage.

4. Conclusions

In this paper we have presented a methodology for the distributed estimation of
interconnected finite-state processes given the observation of signals containing
waveforms initiated by events in the various processes. The motivation for our work is
the problem of automated ECG analysis, but the methods we have developed are of
potential use in a variety of other applications, such as the monitoring of distributed
power networks.

The approach we have developed highlights the major issues that must be
addressed in designing distributed estimators, namely the aggregated modelling of the
interactions between other portions of the overall process and the particular sub-
process being estimated and the dynamic modelling of the information provided by
other estimators as part of the process of producing coordinated, consistent estimates
of ail the sub-processes. We have presented systematic procedures for constructing
these models that can in fact be used as the basis for a completely automated
estimator design procedure (Doerschuk 1985).

In order to illustrate the various elements of our design process, we have presented
a case study corresponding to the tracking of a particular cardiac rhythm using
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synthetic data. The results presented indicate the potential of this design method. Two
major issues remain to be considered, however, before a complete ECG rhythm
analysis system can be constructed. In particular, while our distributed design yields
estimators with far more modest computational demands than the corresponding
optimal estimator, several steps can be laken to simpiify these computations even
more. First, as mentioned previously, it is possible to construct pipelined versions of
our multi-pass estimators in which all passes are performed at the same lime rather
than in sequence, This achieves a several-fold increase in processing throughput. Also,
the nature of the models arising in ECG analysis offer another possibility for
simplification. Specifically, these finite-state processes typically display multiple time
scale bchaviour (as actual signature-initiating events occur at a far lower rate than the
sampling rate needed to capture interprocess timing). Consequently, it may be
possible to use results on hierarchical aggregation of processes with several time scales
{Coderch et al. 1983) 1o construct more efficient estimators that not only display the
spatial but also the temporal decomposition of these processes.

Finally, it is imporlant to realize that the problem of rhythm tracking addressed
here is only a first step in a rhythm diagnosis system. Specifically in such a system one
wishes to identify the underlying distributed process model from a set of such models
representing different cardiac rhythms. As in standard system identification problems,
the computation of the likelihoods for a set of models can be performed efficiently
using the estimates produced by estimators based on each of the models (e.g. see
Gustafson et al. (1978) for an application of this idea to ECG rhythm analysis based
on R-wave location data only). In Doerschuk (1985} we describe an approach to
constructing such likelihoods based on the outputs of a set of estimators of the type
described in this paper, but work remains to be performed to test this method and to
develop efficient impiementations.
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