
Event-based estimation of  interacting Markov chains with applications 
to electrocardiogram analysis 
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'lhc problem o l  cstimaling the statc of a distributed finite-slate Markov process 
consisting of several interacting linite-state systems each of whose transition 
probabilities are influenced by the states of the other processes is examined. The 
observations on which the estimation procedure is  based are continuous signals 
containing signatures indicative ofthe occurrence olparticular events in the various 
linite-state systcms. The problem of electroci~rdiogram analysis serves both as the 
primary motivation for this investigation and as the source of a case study we 
describe. The principal locus ofthe paper i s  on the development of an approach that 
overcomes the combinatorial explosion of truly optimal estimation algorithms. We 
:~ccornplish this by constructing ;I systematic design methodology in which the 
resulting estimator consists of sevcral interacting estimators. each focusing on a 
p;irticular sub-process Important questions that we address concern the way in 
which these estimators interact ;ind the method each estimator uses to account lor 
the influence of other sub-processes in i t s  own model. 

I. Introduction 
I n  a companion paper (Doerschuk cr ol. 1990) we have developed a methodology for 

modelling electrocardiograms (ECGs) that could be used as the basis for ECG signal 
processing analysis algorithms. We refer to Doerschuk el a/. (1990) lor  the motivation 
and revicw of past investigations that Icnd us to the spatial. temporal, and hierarchical 
decompositions that :ire 1e;ttured in  our methodology. Here we wil l  only introduce the 
implications of these features for signal processing. 

Our  focus is on cardiac rhythms and therefore the focus of interest i n  this paper is 
on the estim;ition of cardiac events as captured in  the evolution o f  the interacting 
finite-state processes that occur i n  the upper level o f  the cardiac models developed in  
Doerschuk 01 ol. (1990). I n  $+ I and 2 o f  that paper we have provided a discussion 
o f  the potential advantages in using these models as the basis for designing signal 
processing algorithms. 

However, while truly optimal estimation based on these models would achieve 
these advantages, the computational load associated with optimal processing is 
prohibitively large. Thus the major issue i s  the development o f  feasible. sub-optimal 
estimation algorithms. I n  this paper we investigate the development of such 
algorithms that take advantage of two important features of this class of estimation 
problems. First, the estimation o f  event sequences i n  the upper level model i s  
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essentially a decoding problem (i.e. the ECG is  an encoding of the discrete cardiac 
events we wish to estimate). Consequently we make repeated use of an efficient 
technique for optimal estimation of finite-state processes first developed for coding 
applications, namely the Viterbi algorithm (Forney 1973). Second, since our models 
are distributed, we can consider the design of distributed estimators, consisting of 
interacting algorithms each focused on the job of estimating the state o fa  particular 
sub-process. Such estimation structures offer the attractive possibility of implemen- 
tation in a distributed processor, thereby allowing significant improvements i n  
throughput rates. 

The design of such estimators also raises a number of important questions 
independent of the ECG application. I n  particular, since the several sub-proccsses 
of our upper level model interact strongly, i t  i t  not possible to estimate the state of 
a sub-process without accounting for the influence on i t  of othcr sub-processes. 
Consequently i t  i s  necessary to include a (hopefully aggregated) model of other sub- 
processes that captures the dynamics of the interactions these sub-processes have with 
the particular sub-processes being estimated. Also, i t  i s  necessary for the estimators of 
interacting sub-processes to interact themselves (e.g. estimators of atrial and ven- 
tricular activity most certainly have information worth sharing!). The interaction 
between estimators implies that each estimator needs an aggregated model of the 
dynamics and uncertainties i n  the other estimators i n  order to interpret the information 
i t  receives from the other estimators. I n  addition, sinceeach estimator i s  using the same 
raw data but i s  interested in only some of the events in the data, i t  may be necessary to 
provide information to each estimator concerning estimated times of occurrence of 
other events in the ECG data (e.g. an atrial estimator may need estimates of R-wave 
locations from the ventricular estimator in order to assist i t  in  locating the much 
smaller P-waves). Also, as one might expect, there may very well be a need for some 
iteration in this process so that a high level of performance and consistency among the 
estimators i s  achieved. 

While clcctrocardiogram analysis has provided the motivation and examples for 
our work, there are a variety of other applications in which similar estim;~tion 
problems arise. I n  particular, consider interconnected power systems which arc made 
up of strongly interacting components subject to events (such as generator trips and 
linc faults) that can precipitate events in othcr parts of the system. An extremely 
important problem is  the design of distributed monitoring systems, and a critical 
aspect of this problem is determining how to structure the interaction among local 
monitoring systems in order to produce a consistent and accurate overall estimate of 
system status. Similar issues also arise in military contexts in distributed battle 
management and assessment. Our analysis begins in the next section with a c;tse study 
for the ECG application which allows us to introduce the major questions that arise in 
designing distributed event estimation algorithms. I n  $ 3 we then extract from the case 
study ;I general, systematic design approach for distributed estimation of interacting 
processes. The paper concludes with $ 4  in which we discuss issues arising in the 
extension of our results and in particular in the design of a complete ECG rhythm 
trdcking system. 

2. Estimation example 
The process (Fig. I), whose state i s  to be estimated, models normal cardiac rhythm 

with occasional re-entrant-mechanism premature ventricular contractions (PVC); 
thcsc result from a normal excitation of the ventricles in erect circling back on itself 
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Evenf-based esrimarion of interacring Markou chains 287 

and causing additional ventricular contractions. Note several important features of 
the model: 

(a) The model consists of two sub-processes, one (the SA-atrial sub-model, 
denoted CO, with state x,) representing the behaviour of the upper chambers 
of the heart and the other (the AV-ventricular sub-model, denoted CI, with 
state x , )  capturing the behaviour of the atrial-ventricular connection and the 
lower chambers of the heart. The signatures modelled are the P-wave (corre- 
sponding to atrial depolarization), the R- and T-waves (corresponding to a 
normal ventricular depolarization-repolarization cycle) and the V-wave (corre- 
sponding to an aberrant re-entrant PVC). The signatures are labelled Pi, Ri, 
'&, and ): respectively in the figure. The state transition probabilities (in- 
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Signatures 

R 

(h i  

Figure I. Model of normal cardiac rhythm u.ith occasional re-cntrant-mechanism PVCs: (o) 
the two sub-processes; ( h )  the various signatures. Each occurrence of the P-. R-, T-, and 
V-waves consists or the signature plus zero-mean noise olstmdard deviation 0.02, 0.2, 
0.12, and 0.4, respectively. In addition the entire ECG is  observed in zero-mean noise or 
standard deviation 0.02. 

cluding inter-sub-model interactions), the signature means and variances, and 
the zero-mean observation noisc variances are also shown i n  the figure. 

(h) The interactions between the sub-models are infrequent but are extremely 
strong. I n  particular, thc diagram shown for thc SA-atrial sub-model repre- 
sents normal activity which occurs unlcss x ,  = 13 ( init iation o f a  PVC) i n  the 
AV-ventricular sub-model. When such an event occurs, i t  is possible for the 
electrical signal t o  propagate back to the upper chambers o f  the heart and i n  
essence reset the t iming of [he heart's own pacemaker. This is captured by 
modifying the transition probabilities ofx, so that with probability 112, x, is 
reset to state 25 when s, = 13, and with probability 112, x, proceeds in  a 
normal fashion. I n  the x, sub-model the only transition probability afected by 
the value o l  .so i s  p h ,  I n  particular, .sl = 0 represents the resting state o f  the 
ventricles, which is a trapping state (ph, = 0) unt i l  the ventricles are excited 
(ph, = I for one time step) by an atrial contraction (x, = 0). 

(c) The ECG measurements are available at a rate four times the clock rate or the 
x,, .r, processes. I n  order to allow signatures to start at any observation 
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Event-bused estimation of interacting Markou chains 289 

sample, each signature appears four times with 0, 1,2, or  3 leading zeros in the 
mean and covariance sequences. (The subscripts on the wave labels indicate 
the number of leading zeros). 

(d) The initiation of re-entrant PVCs is modelled by transitions out of states 12 
and 21 in sub-model CI. Occupancy of state 12 corresponds to the completion 
of a normal R, T-wave pair, and from this state there is a probability of 0.9 of 
returning to the resting state and a probability of 0.1 of entering state 13 
corresponding to the initiation o f a  re-entrant PVC. Note that there is a much 
higher probability (0.4) of initiating subsequent, consecutive re-entrant PVCs 
(the 21-10-13 transition) which results in occasional occurrencs of bursts of 
aberrant PVCs as are seen in episodes of ventricular tachycardia. 

(e) The remaining states and transition probabilities model cardiac timing- 
propagation delays, recovery time following contraction, etc. The model does 
allow for some uncertainty in this timing behaviour and therefore some 
variability in the heart rate (which with a Markov chain cycle time of 0.04s is, 
on the average. 75 beats per minute). I t  is certainly possible to add even more 
variability, but for simplicity we have not done that here. 

Figure 2 shows a plot of several typical segments of a realization of this model. 
(Recall the discussion of 54 in our companion paper (Doerschuk er al. 1990) 
concerning the verisimilitude of the simulated ECG, especially the contrast between 
modelling for physiological accuracy and modelling for signal processing utility). 
Below the ECG tracing are several sets of annotations. The top row of annotations 
indicates the true times and types ofwaves that are present in the data (corresponding 
to the times at which transitions are made out ofstate 0 in sub-model CO(P-wave) and 
states 4 (R-wave), 7 (T-wave), and 13 (V-wave) of sub-model CI). The remaining 
rows represent various annotations constructed during the estimation process, with 
the bottom row representing our final set of estimates. 

A compact pictorial notation for interacting Markov chains is illustrated in Fig. 3. 
Here the label CO denotes the SA-atrial sub-model and C1 the AV-ventricular sub- 
model shown in Fig. 1. The arrows between CO and C1 indicate that the state of each 
sub-process influences the transition behaviour of the other. Also, the arrows labelled 
P, R ,  T. and V indicate the waveforms initiated by each sub-process. In addition, the 
variables ha,  (n) denote the sequence of interactions initiated by CO and impinging on 
CI. That is h,,(n) completely captures the influence CO has on the transition 
probabilities of CI for the transition .x,(ri) -..;,(n+ I). Referring to Fig. I ,  we see that 
we can define li,,(~r) so that i t  takes on only two values 

I 0 if  s,(n) = 0  
110,(11) = 

1 otherwise 
(1) 

The only transition probability of CI that is influenced by CO is 

Similarly we can define the interactions h,,(n) from C1 impinging on CO as 

I 0 i f . ~ , ( n )  # 13 
hlo(n) = 

I otherwise 
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290 1'. C.  Doerscl~uk el  al. 

so  that if h,,,(n) = 0 the transition probabilities are as  indicated in the figure, and if 
h,,(n) = I thcy arc the avcragc of these values and a probability I reset to state 25 
from any other state. Note that there are far fewer values for these interaction 
variables than for the corresponding states. This Pact is used in an  essential way in 
constructing scvcral aggregate models used in our  estimation methodology. 

O u r  ;~pproach to state estimation for such a process involves the design of a set of 
interacting estimators, each of which focuses on estimation for a particular sub- 

P R  T P R  T P R T V  V V ? P  R T  P  

R T R T R T Y Y  Y V R 1 

P  P  P P P P 

ll T R T R T V V  V V e T 

rn T P R T  P R T  V W Y V P R T  P 
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Evenr-bused esrirnarion of inrerocring Mnrkov cliaiiis 29 1 

Figure?. Several segments of ;I simulated ECG obtained using the model in Fig. I. 
Annotations below the traces refer to estimates produced at several points in the 
estimation algorithm (see text). 

process. Also, the cristcncc o f t h c  interactions among  sub-proccsscs may require some 
itcrn[ ion. Fo r  the prcscn( cxarnple o u r  estimator can be viewed ;IS consisting o f  three 
passes 3s f o l l o ~ s .  

( r , )  Deri\*e :I prclin1in:try estimate o r  ventricular act ivi ty (sub-model C I ) .  
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P. C. Doerschuk et al. 

p g  v T 

17igure 3. High-level block diagram representation of the model of Fig. I. 

(h) Based on the observed ECG n~td  the estimates from pass I, compute an 
estimate of atrial activity (sub-model CO). 

( c )  Refine the ventricular estimate b~sed on the observed ECG and the estimates 
of atrial ;tclivity from pass 2. 

The results from (h) and ( r )  form the final estimate. This approach parallels the 
heuristic :tppro:tch hum;lns take in first identifying high signal-to-noise ratio (SNR) 
events (R- and V-w;~vcs). then using these estimates to assist in locating low SNR 
events ( 1'-wavcs). and fin;tlly making adjustments to ensure accuracy and consistency. 
While we describe these three steps as separate passes through the data. it i s  
str;~ightforw:trd to construct a pipelined structure in which the three steps proceed at 
the s:tme time. 

We now turn to a detailed examination of each of these three passes. Bccausc the 
first pass focuses on sub-modcl CI. it i s  natural to include an exact copy of this sub- 
model in the estimator's model. However, it i s  also necessary to model the interactions 
impinging on the C1 sub-model. it. /I,, (11). Possibilities rangc from the exact model of 
CO depictcd in Fig. I to no modcl. We use the simplest possible aggregate model for 
sub-model CO with which we can s t i l l  capture the full rangc of interactions with CI, 
specificnlly we use :I two-state model. corresponding to the two possible values of 
11,,,(11). In addition, we allow sub-modcl CI  to reset the state of our two-state 
aggregate model. again reflecting behaviour seen in the full model. In the full 
discussion of our approach to estimation, this type of aggregate model i s  referred to as 
;in 'SO-sub-model'. Details for this rumple  are given in Fig. 4. 

There are sc\,er:~l further points to make about this first pass. First. because the 
P-wiivc h;~s :I small ;~mplitude in comparision to the R- and V-waves, which are the 
w:tves of primary concern for this pass. it i s  unlikely to be confused with an R- or 
V-wwe. Therefore. though i t  i s  straightforward to define a SO sub-process that initiates 
1'-waves, we have not done so. Second. one can imagine several methods for choosing 
p in  sub-model SO-matching some statistic ofthe exact sub-model COor viewingp as 
a design paratnctcr to be chosen to optimize cstimalor performance. I n  Doerschuk 
(1985). several general statistical methods (which can be easily automated) are 
described for choosing parameters to match p:~rticularly useful statistics. I n  $ 3 we 
describe the statistic:tl method used to obtain the value for p indicated in the figure. 
Finally. with this par:tmetcr specified, we have u complete model. and the first step 
estimator i s  designed to produce a minimum probability-of-error state trajectory 
estimate for this modcl (is. cstini;~tes ofthe states of SO and C I  as functions of time) 
based on the observed ECG. This computation and those in all of our estimators are 
performed using the Viterbi algorithm (Forney 1973) which efficiently and recursively 
computes the optimal smoothed state trajectory, i.e. the best state cstim:tte at each 
time i s  based on information before and after that time. 
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Figure 4. Model lor the first pass of the estimation algorithm: (a) overall hlock diagram; ( h )  
detail of the SO model-state 0 corresponds to h,,,(n) = 0. slate I to 11,,,(1t) = I. 

The Vitcrbi algorithm requires the process to bc markovian, whilc signatures(as i n  
this example) that last more than one Markov chain cycle make the process non- 
markovian. However, i t  is straighforward to markovianize the process by state 
augmentation and bccause thcrc are few transitions that initiate signatures, the 
required augmentation does not radically increase the size o f  the state space. Though 
straightforward, the details o f  this augmentation process are rather tedious and are 
omitted. 

The results o f  this first pass estimator are illustrated i n  the second row of 
annotations i n  Fig. 2, where we have indicated the estimated times ofoccurrence o f  R-, 
T-, and V-waves. For the most part these estimates are quite accurate, thanks to the 
high SNR o f  these waves, although there are infrequent false alarms i n  the estimates 
caused by extra-long P-P intervals i n  which case the estimator attempted to match 
a T-wave with an actual P-wave. 

The second step in  our overall estimation structure is to cstimatc the state in  the 
SA-atrial sub-model. Therefore, it i s  natural to include an exact copy of the SA-atrial 
sub-model in the estimator's model. The only direct information from the ECG for 
this step i s  the low SNR P-wave. Howcver. there is also a great deal o f  indirect 
information available through the causal relationship between P- and R- waves, and 
V- and P-waves. 

First consider interactions initiated by CO. That is, consider the causality between 
P- and R-waves the latter of which only occur when the SA-atrial sub-model 
successfully excites the AV-ventricular sub-model. The goal i s  to exploit the auxiliary 
information concerning R-wave occurrences determined in  the first estimation pass. 
At the very least, one could imagine using the state cstimatcs for SO from the first pass 
which are estimates of interactions impinging on the AV-ventricular sub-model. Since 
the 0-state in  this sub-model corresponds to the 0-state i n  the original sub-model CO 
(and thus to attempts to excite sub-modcl CI ) ,  the estimates o f  times at which SO is i n  
state 0 would be likely estimates of times at which /I,, (11) = 0. However, because of the 
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highly aggregated nature o i  SO, some of these estimates may be somewhat suspect. 
However, when such an estimate i s  coupled together with a closely following 
estimated occurrence of an R-wave (corresponding to the estimate of the C1 sub- 
process occupying state 4) ,  the SO estimate i s  much more likely to correspond to a true 
occurrence of an attempt at ventricular excitation. Consequently the information we 
provide to pass 2 from pass I, which we will refer to as estimated augmented 
inrerucrions, consists of the sequence of estimates of the states of SO and CI produced 
in pass I. 

In order to use the estimated augmented interactions we must model the errors 
they contain. Note, however, that the errors of importance here are not only 
memoryless errors (which could be modelled by static misclassification probabilities) 
but also errors in riming (e.g. the estimated time of occurrence ofan R-wave may be in 
error by one or two samples). Consequently, we need a dgnurnic model for the way in 
which estimatcd augmented interactions provide information about CO. This is 
accomplished, as illustrated in Fig. 5, by modelling the estimated interactions, denoted 
by i,, as the observed outputs of an additional sub-model of a class we refer to as SI 
seh-r~lodels. This additional sub-model receives interactions from CO, whose state we 
wish to estimate. I n  order to model the fact that the estimates i n  z l ( n )  may contain 
timc shifts relative to the actual values of the interactions h,,  (n), we take as the state o i  
the SI sub-model a vector of the most recent interaction values. To minimize the size 
of the SI state space, one clearly wishes to minimize the dimension of this vector. For 
this study we found a dimension of 2 to be adequate, so that the slate of S1 at time 11 i s  
( / I ( -  1 / I , , ( I I - 2 ) ) .  By examining CO, we see that i t  i s  impossible for hol  to equal 

S I  Model i f  x o ( n ) = O  

SI Model if xo(n I .O 

5 2  Model l p =  0.007841 
D 

Figure 5. Model lor the second pass. (The sub-model CO is  reset, i.e. i t s  transition rilles are as 
given in Fig. I with s, = 13, only if the S2 process is  in state 2.1 
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Ewu-hused esrintorion ufinrerucring Murkou chains 295 

0 at consecutivc times. Thus, there are only three possible SI states which we have 
coded as follows in Fig. 5: 

O = ( O  I ) ,  I = ( l  O), 2 = ( I  I )  

Since h,, is a deterministic function of the state of CO it is straightforward to  derive the 
way in which u,(n) aflects the transition behaviour of SI (Fig. 5). 

As in all o f  our models, the observation z,(n) is associated with transirions in the 
SI sub-process which correspond to  triplets (It,,(n - 1) h,,(n - 2) h,,(n - 3)) of 
internclions. O u r  measurement model is then the set of conditional probabilities 

P r ( z , ( ~ i ) ~ h ~ ~ ( ~ t - l )  ltO,(il-2) ho1(n-3))  (4) 

Since the Viterbi algorithm provides us with non-causal estimates, we are free to  build 
some non-causality into this model. Consequently, we have chosen to  take z,  (n) as the 
pass I estimate at time n - 2, which therefore provides an estimate of h,, (18 - 2). Thus 
the model allows us to  capture time shifts o f  r?- I .  The specification of (4) can be 
obtained by analysis of the performance of the first step estimator. We have estimated 
these quantities via simulation. 

We now must consider the interactions It,,(it) initiated by C I  and impinging on 
CO, i.e. the eflect of V-wave occurrences o n  CO. There is a similarity here with the 
modelling of SO in the first pass but in the present context we also have the estimates 
from pass I which tell us something about these interactions. Specifically, since we 
used the exact C1 sub-model in pass I.  we can deduce estimates of h,, (see (3)). We 
take these estimates as our  observation z, for pass 2 (without any augmentation a s  
was done for z ,  since the first step estimator used an exact model for CI and 
consequently should produce comparatively accurate estimates). Also, as with the SI 
sub-model, wc need to model possible estimation timing errors, so  again we take the 
state ofS2 to  be a set of the most recent interactions, in this case (h,,(n) h,,(n - I)). 
(Note that there is some asymmetry in comparison with the SI sub-model where the 
slate was lagged one step. This is a result of the h c t  that in the SI sub-model, h,,(n) is a 
deterministic function of s,(n). Thus for the state .x,(rr) to  correctly 'influence' the next 
rronsirion in S l ,  we needed to introduce the time delay in defining the SI state. This is 
not needed in S2, since there is no  such deterministic coupling.) In this example it is 
impossible for I!,, to equal one at two consecutive times, and thus we can code the 
feasible S2 states a s  

O=(O 0). I = ( O  I), 2 = ( 1  0) 

In this example, the CO sub-model transition probabilities are shown in Fig. I for 
xS,(n) = 0 or  I and incorporate the 0.5 probability reset to  state 25 when x,,(n) = 2. 
The S2 model is illustrated in Fig. 5. Note that as with S I ,  there is a parameter p lo be 
chosen to specify the S2 transition probabilities. This parameter was also chosen to  
match statistics of the true h,, process using a general method described in the next 
section. Finally, the observation z,(n), which is the pass 1 estimate of k,,(n - I), is 
modelled as resulting from S2-transitions. Thus again we must specify a distribution, 
namely 

Pr(z2(n) lho(n)  J I , o ( ~ -  1) h lo(n  - 2)) 

which we have again done by simulation. 
This completes the specification of the second pass model. Note the complete 

absence of R-. T-, and V-waves. For the pass I estimtion algorithm we argued that it 
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296 P. C. Doersclruk et al 

was reasonable to consider omitting P-waves from the model since 

(a) we were focusing most attention on sub-model CI  

(h) the P-waves were of low amplitude. 

In pass 2, the first argument holds (here we are focusing on CO), but the latter does 
not. In the general procedure described in the next section, we allow for the possibility 
of taking such waves into account through so-called suhrrucror sub-models. However, 
as  the results in this section and in Doerschuk (1985) indicate, for ECG-type models, 
such as the one considered here, that is unnecessary. Intuitively such waves can be 
ignored in the pass 2 estimation algorithm because through z,(n) and z,(n) we are 
providing indications of the  times at which these waves occur. Given then the coupling 
between these waves and the likely times of P-waves, captured in the original CO-CI 
model and in our  simplified pass 2 CO-SI-S2 model, the pass 2 estimator will fro/ try 
to account for R-, T-, and V-waves by placing P-waves in their locations. 

A second issue we have ignored is that of allowing the CO sub-model to influence 
the S2 sub-rnodel motivated by the fact that the CO sub-model does influence the CI 
sub-model. However, it is precisely this influence that is focused upon in the SI  sub- 
model, while the S2 sub-model focuses on that part of the  CI  sub-model, dealing with 
V-waves, which is unanected by the CO sub-model. Consequently, while our  general 
modelling methodology allows CO to influence S2. it is not necessary to include this bit 
of complexity in the present context. 

Note that in our model we consider z,  and z, to be independent measurements, 
which is clearly erroneous since they are both determined by the pass I estimation 
process. One can certainly construct a more complex model involving a joint 
distribution o f z , ,  2, given the combined information in the most recent transitions of 
SI and S2, but this was not found to be necessary (since again i, and z z  focus on 
dilTcrcnt portions of the overall model). 

In summary, the second pass of our  procedure consists of the minimum 
probability-of-error estimation of the state trajectory of the modcl given in Fig. 5 
given the ECG measurement and the derived measurements z, and r ,  from the first 
pass. The results for this example are given in the third row of annotations in Fig. 2 
showing the times at which P-waves wcre estimated to have occurred. Comparing this 
to the lop row of annotations we see that performance is quite good. Note that the 
crroneous R,T-wave pairs from pass I near 136.6 and 138.3s did not lead to any 
crroneous P-waves in pass 2, thanks to our  modelling of z,  which incorporated the 
possibility of such false alarms. Note also the occurrence of P-wave timing errors (as 
illustrated near 80.2 and 99.9s) all of which underestimate the P-R interval. Finally, 
note that i t  is possible in our model (and in the heart) for P- and V-waves to occur 
nearly simultaneously or for V-waves to pre-empt an already occurring P-wave from 
initialing a normal R-wave. Having knowledge of this, the pass 2 estimator will 
attempt to insert P-waves when the timing seems likely, even though the prcsence of 
V-waves may obscure the P-wavc. An example ofcorrect estimates ofthis type can be 
found near 99s. A false alarm can be seen near 82.6s, and a missed detection near 
83.3 s. While the value ofsuch estimates is suspect (and not of particular consequence) 
they do  provide rather graphic examples of the way our  estimator uses the timing and 
control information embedded in our models. 

The third pass of the estimation process, whose purpose is lo provide improved 
and consistent estimates of  ventricular activity, is based on a model, illustrated in 
Fig. 6, with structure analogous to that of pass 2 (with the roles of sub-models CO 
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Euertr-bused rsrinrurio~t o/inrerucfing Markou chains 

Figure 6. Block diagram of the model for the third pass 

and C I  interchanged). We omit the details of the construction, as they are exactly anal- 
ogous to those in pass 2. The estimator i s  again a minimum probability-of-error 
estimator using the ECG and the derived measurements z,, z,. 

The result of applying this estimator i s  illustrated in the fourth row of annotations 
in Fig. 2. The final, overall estimate (row 5) consists of the CO-state estimate of pass 2 
(row 3) and the CI-state estimate of pass 3 (row 4). Comparing the top and bottom 
rows we see that the estimator has performed quite well. Disregarding the initial 
heartbeat (which was missed in pass 3 because of the specific way in which we 
implemented the initialization of the latter passes of our algorithm) all R-. T-, and 
V-waves were detected and located with no false alarms. Note that while there had been 
several false R, T-wave estimates in pass I, these have been completely eliminated in 
pass 3, in which we have the benefit of using estimates of CO-behaviour in order to 
enforce consistent overall estimation. 

The estimation of P-wave occurrences i s  also quite good. Quantifying this 
performance. however, is an interesting question itself, since one i s  clearly not just 
interested in estimation errors at points in time but also in timing errors at points in 
the estimated event cycle-i.e. an estimation error of one time sample in locating a 
P-wave should not be thought of as a missed detection but rather as a timing error. 
Much more on the issue of performance measures for event-oriented estimation 
problems can be found in Doerschuk (1985). This example does, however, indicate the 
main ideas. In examining the results of the full simulation we find that there are only 
two isolated false positive P-wave indications and one isolated false negative 
(neglecting the initial heartbeat). where by 'isolated' we mean that there i s  no nearby 
P-wave in the true or estimated state trajectories. Given that there are 230 heartbeats 
in this simulation, these correspond to a false positive rate 010.009 and a false negative 
rate of 0.004. There are also 23 other paired false positives and negatives. where we 
have used the criterion of associating estimated and actual P-wave locations only i f  
the wa\*efornis at these locations overlap. This corresponds to a paired error rate of 
0.10. Note that in our model. every R-wave ~ttvsr be preceded by a P-wave, and thus 
this pairing i s  to be expected. I t  is worth noting that in each of these paired errors. the 
estimated P-wave location was closer to the R-wave than the true R-wave, indicating 
a bias that may be removable (and i s  most likely due to the pass 2 estimator 
correlating the P-wave with the initial portion of the R-wave). 

I n  Doerschuk (1985) we consider a variety of other models. For example, we have 
examined models with transient AVblock. i.e. models in which not every attempt at 
ventricular excitation leads to an R-wave. even i f  the ventricles are apparently in the 
resting state. Because of the additional freedom in the model. one would expect some 
drop in performance. However thc drop i s  extremely small for estimators based on the 
principles outlined in this section and formalized in the next. 
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3. General design methodology 
The example of $ 2  illustrates the major elements of a general estimator design 

methodology for distributed Markov chains which i s  described in this section. 
Specifically, consider the estimation of an interconnection of sub-processes, dcnoted 
C,, C,, .. ., C,", with states .yo, x,, .. ., x ,~ ,  given measurements of signals containing 
signatures corresponding to particular stale transitions in these sub-processes. Let 
/I,,(") denote the interaction initiated by Cj and impinging on Cj at time n. This 
interaclion i s  a deterministic function of ri,(n), and the transition probabilities of C, 
:Ire deterministic functions of{kjj(n) l i  # j ] .  The assumption i s  that the set of possible 
transition probabilities for each C, (and thus the set of possible values of {h , , (n )  Ji # j } )  
i s  quite small. 

Our overall cstimator consists of an interconnection oflocul csrimurors (LEs), each 
of which focuses on the estimation of one of the sub-processes. Because of the 
existence of interactions with, and events in, the observed data due to other sub- 
processes, each LE not only must take thcse c k t s  into account in i t s  model but also 
must communicate with the other LEs. 

During the initial pass through the data the LEs have no previous information to 
communicate and thc LE for a specific submodel Cj will in general need the following. 

([I) A complete model of the sub-process C, on which i t  i s  focused. 

(h) A model of the interactions impinging on C,. 

(c) A model of the waveforms generated by the other sub-models. 

The model referred to in (h) i s  called an SO sub-model, and a major objective i s  to 
make i t  as simple as possible in order lo keep the L E  as simple as possible. (There are 
two distinct ways in which one can perform this modelling step and several that follow. 
I n  particular, i n  this section we describe the construction of a single SO sub-model 
capturing the interactions impinging on C, from all other sub-processes. I n  Doerschuk 
(1985),an analogousapproach i s  described for constructingseparate SOsub-modelsfor 
the interactions initiated by each of the other sub-processes.) 

We have taken the states ofthe SO sub-model lo be in one-to-one correspondence 
with the possible values of the N-tuple {h,(n) 1 1  = j } .  I n  order to set the transition 
probabilities for the SO sub-model, our primary approach has been to match these one- 
step transition probabilities to the actual steady-state versions within the original 
process. That is, to 

lim Pr({hrj(n)l i#j} l{hj j(n - l ) l i  # j } ,  {hj;(n- I )  = hj i l i# j } )  
m - r n  I 

(5) 

I Unlike {H,(,I) I i # j }  conditioned on {h,,(n) l i  #j], thq highly aggregated {h,,(n) I i # j} 
conditioned on {h,,(n) l i  # j )  i s  typically not a Markov chain and therefore the limit in 
(5) i s  not a trivial computation, though i t  i s  s$aightforward once the ergodic 
probabilities for {x,(n) 1 i # j }  have been computed. Typically for models with 
infrequent changes in interactions, most of the transition probabilities specified in (5) 
are 0 or 1, and there are only a few parameters (such as p in Fig. 4) for which this 
computation i s  necessary. (Indeed for all of the cases considered in Doerschuk (1985) 
the model was exactly as in Fig. 4-with different values of p-since in all of our cases 
there have been only two interaction values, one of which could not occur at 
consecutive times.) 

Note that we have included conditioning on {hj,(n - 1) l i  # j } ,  which reflects the 
influence C, hason theother sub-processes.This results in the transition probabilitiesof 
SO being influenced by the state of C,. Again we typically expect this influence to 
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Euenf-based estin~arion o/i~~rerocring Markou chains 299 

manifest itself as a small number of possible values for a small subset of the transition 
probabilities (e.g. in our case study only the parameter p in Fig. 4 i s  influenced, and i t  
only takes on two values). 

Finally, note that there are cases in which the matching of the steady-state statistic 
(5) may be inappropriatesince i t  assumes,in essence, that the transition probabilities of 
{.r,(n:Ili # j }  do not change very frequently (so that steady state i s  actually achieved). 
That is, (5) assumes that the interactions hj,(n) are constant so that the time variations 
observed in  the actual xj(n) process must not lead to frequent changes in  the 
interactions h,,(n). We refer the reader to Doerschuk (1985) for examples violating this 
assumption and in  which we must set the SO transition probabilities in a diKerent 
manner. Note that this assumption is in fact violated in our case study. I n  particular, 
while i t  i s  certainly true that h,, = 0 for long periods of time, h,, = 1 cannot possibly 
occur at any two consecutive times. I n  this case, since h,, = 1 corresponds to a reset of 
CO to state 25, and since all states in  CO other than 0 correspond to h,, = I, it is 
reasonable to reset the state of SO to 1 whenever x, = 13. This i s  what i s  specified in 
Fig. I and what we would calculate from (5). Thus (5) i s  often useful even i f  the 
assumption on which i t  i s  based i s  violated. 

The model referred to in (c), denoted S3, i s  one of the subrrucror sub-models, 
referred to in the previous section. I t  i s  incorporated in  order to keep the LE from 
interpreting waveforms generated by other sub-models as coming from Cj. Our desire 
i s  to present the LE with observations containing only those signatures generated by 
Cj. Since this i s  not possible, we equip the LE with a mechanism for estimating when 
other signatures have occurred so that i t  can in  efTect subtract out their effects. I n  
general, one can construct a separate S3 sub-model for each signature not initiated by 
C,. While i t  i s  possible to couple these sub-processes with the Cj and SO sub-models, 
we have obtained good results with the simpler structure shown in Fig. 7, in which 
each S3 sub-model is a completely autonomous, aggregated process that produces 
interarrival statistics for the wave of interest identical to those produced by the exact 
model. Let r,,(n) denote the time between the nth and (n + I)th occurrence of the 
signature S in the original process. Then we choose the two parameters p and q to 
match the probability that signatures occur at successive times and the mean time 
between successive signatures. That i s  

p = I - lim Pr [r,,(n) = I]  
n-m 

(6) 

Again the statistics in (6 ) ,  (7) can be calculated from the ergodic probabilities of the 
full model. I n  most cases Pr[r,,(n) = I ]  = 0, so that 

q 
Figure 7. S3 chain. Here the 0-0 and 0-1 transitions initiate the signature denoted by S. 
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Therefore. in our general methodology we construct each initial L E  model using 
Cj. SO, and S3 components ;IS illustrated in Fig. 8 and compute the initial pass 
minimum probability-of-error cstimatcs for each LE. We are then in  a position to 
consider a reJiiieiiierir po.s.s. in which each LE reprocesses the data, together with 
inlorm;ition providcd from the initial passes of the LEs. 

The L I  for sub-process Cj will in general need the following elements in i t s  model 
for :I relincn~cnt pxs. 

(i) A complete model of Cj. 

(ii) A niodcl of the inrormation providcd by the previous pass concerning 
inkxictions ir~iriured hy Cj. 

(iii) A lnodcl of the information providcd by the previous pass concerning 
in1er:lctions ii i ipi~igii~g 011 Cj. 

(iv) A model of the information provided by the previous pass concerning times of 
occurrence of w:~veforms generated by the other sub-processes. 

Elements (ii) and liii) together correspond to (h) in the initial pass. They are split here 
bcca use: 

( I )  i t  simplifies modelling the information 

(2) the information referred to in (ii) and (iii) typically comes from diFferent 
sources or i s  of very dimerent accuracy or structure, since each LE has an 
:~ccur:lte model of i ts own sub-process but only highly aggregated models of 
the others. 

As discussed in the previous section, the models referred to in (ii) and (iii), denoted 
SI and S2 sub-models. respectively, must capture the timing and estimation 
unccrtaintics from the previous pass. Each accomplishes this by taking as i t s  state 
space a moving window of the most rccent interactions. I n  particular. the state olthe 
SI sub-model consists of a window of the most recent values of the N-tuple {h,,li # j} 
while the state of the S2 sub-model i s  a window of the most recent values of the N 
tuple {lijil i # j } .  (Recall from the previous section that there i s  some asymmetry in the 
windows here, with the window for SI stopping at time 11- I, and the window for S2 
stopping at time 11.) An objective in designing these models i s  to keep the window 
lenglhs, K ,  and K,,  small in order to minimize state space size. This desire i s  balanced 
by the need to model estimation timing errors (since the maximum such symmetric 
error that can be modelled corresponds to hall the window length). I n  our work we 
have always taken this window length equal to two. 

The SI dynamics are essentially a shift register memory, since each bj,(n) i s  a 
deterministic function of sj(ri) and since the full Cj model i s  used by the LE. 

waveforms initiated by C, 

woveforms 

other sub - models 

Figure 8. Structure of a general LE model for an initial pass 
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Specifically, given .Y,(IT), the transition 

xsl(n)={liji(~>t)li#j, m=n-K,, ..., 11- I} 
I 
& 

~ ~ , ( ~ + I ) = { l ~ , , ( m ) ~ i # j , n ~ = n - K ~ + I  ,..., IT} 

i s  deterministic, that is, for each present state there i s  one next state (whose identity 
depends on x,(n)) that SI will occupy with probability 1. 

The dynamics of the S2 sub-model are not deterministic. As in the SO sub-model, 
we choose the S2 transition probabilities to match those in the original process. In 
particular, we choose these to equal 

l im P r ( { I ~ , ~ ( m ) l i # j , n ~ = 1 1 - K , + 2  ,..._IT+ l }1  
n - m  

h j ) j  I = I -  K + I .  I } ,  { h j i ( )  j (9) 

By including the conditioning on {kj,(n)l i f j }  we can capture the interactions 
initiated by Cj and impinging on the other sub-processes (and therefore, in the LE 
model, on S2). However, as discussed in the previous section, the effects of these 
interactions are the primary concern ofthe SI sub-model, and thus i t  i s  worth seeking 
and typically possible to find a far simpler model. In fact throughout our work we 
have been able to completely eliminate the influence of C, on S2 (which then operates 
autonomously, generating the interactions that impinge on C,). This can be done by 
using (9) with {kji(n)li #j} set equal to the values that represent the most usual 
interaction or by computing the average of191 over the possible values of {1lji(~l)li # j  j 
using their ergodic probabilities. We have used the latter of these two methods. (In our 
ECG examples, the first method corresponds to no attempt at interprocess 
excitation, as such electrical excitations occur over relatively short time periods- 
usually a single time sample.) 

Consider next the modelling of the 'measurements' provided by the previous data 
pass. With respect to Sl, we have. in general, the following sources of information 
concerning the interactions initiated by C,. 

(o) The previous state estimate of Cj from i t s  associated LE. From this we can 
directly compute an estimate of {hjj(n) 1 i # j } .  

( h )  The augmented interactions from each of the other LEs. These consist of the 
estimate of the interaction impinging on the C, sub-model associated with each 
LE  (obtained from the aggregated SO sub-model used by the LE and the 
corresponding Cj-state estimate. 

Together this information forms a measurement, which we dcnote z,(i1), and we 
model the information contained in ..,(I]) by 

P r ( z , ( ~ ~ ) l { l ~ ~ , ( ~ i ~ ) l i ~ j . ~ n = ~ ~ - K , -  I ..... 11- I} (10) 

As discussed in the previous section, we have the flexibility of introducing some non- 
causality in order to model positive and negative timing errors. That is, we take z,(n) 
to be previous pass estimates indicated in (0) and (b) evaluated at time n - I - KJ2. 
Finally. while i t  i s  possible to devise analytical methods to obtain approximations for 
( lo), we have found i t  easier to evaluate these distributions by simulation. 

For S2, we have the following sources of information concerning interactions 
impinging on C,. 
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302 P. C. Doerschuk et al. 

(i) The augmented estimated interaction provided by the previous pass ofthe LE 
for Cj. 

(ii) The estimated state of each Ci provided by the associated LE. From these we 
can directly compute estimates of each /rjj(n). 

This information lorms the measurement z,(n), which i s  modelled via 

Pr (z2(n) 1 {/~,~(nt)l i +j, m = n - K 2 ,  ..., 4) (11) 

Again we introduce some non-causality by taking :,(n) to be the previous pass 
inlormation evaluated at 11- KJ2,  and we determine (1 1) by simulation. 

Finally, consider modelling the information available from the previous pass 
concerning waveforms generated by other sub-models. Each such waveform i s  
modelled by a second type o l  subtractor model denoted S4 which i s  similar in 
structure and principle to S2 sub-models. Consider an S4 sub-model corresponding to 
a particular waveform generated by sub-model Ci. The measurement z,(n) provided 
by the previous pass LE lor Cj i s  a sequence o l  hinary annoralion-0 i f  the LE 
estimates that the particular Cj waveform was not initiated at that time sample and I i f  
the estimate i s  that the wavelorm was generated. The state of the S4 sub-model i s  a 
window of the most rcccnt true values of these binary annotations. As with S2, the 
transition rates o l  this model are chosen to match the corresponding transition rates 
of sequences of binary annotations in the full model. I f  the counterpart to (9) i s  used, 
the S4 model will, in general, be influenced by C,. Again, as in the case of S2, we have 
typically simplified this model so that S4 i s  autonomous, by averaging out the C,- 
dependence using the ergodic distribution for .x~(II). 

The output of the S4  chain i s  a sequence of occurrences of the waveform being 
modelled. Such outputs occur at all S4 transitions to states with a I as the most recent 
annotation. The auxiliary observation z,(~i) i s  again modelled via a probability 
distribution conditioned on the most rcccnt S4  transition. We have determined 
distributions olthis type via simulation. 

The structure ofthc models on which each LE refinement pass i s  based i s  depicted 
in Fig. 9. In principle one can envision making several refinement passes, with the final 
estimate consisting of the collection of Cj-state estimates from the final passes ofthe 
corresponding LEs. The primary purpose of the refinement passes is to improve the 
accuracy and consistency of this set olestimates. In particular. i l  one implemented a 
single. optimal estimator lor the full process, one would know lor certain that all 
transitions prescnt in the final state estimate would be consistent (i.e. have non-zero 
probability in thc lull process). When one uses a collection ofdistributed, simpler LEs, 
there is no such guarantee. but the co-ordination made possible by refinernent passes 
makes the cocurrencc of inconsistent estimates extrememely unlikely. 

In the example of 2, the first refinement pass (pass 2 )  i s  crucial because i t  i s  the 
first pass to locus on sub-model CO. The second refinement pass (pass 3) i s  less & 
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initiated by 
other sub-models 

Figure 9. Structure ola general LE model lor a refinernent pass 
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synthetic data. The results presented indicate the potential of  this design method. Two 
major issues remain t o  be considered, however, before a complete ECG rhythm 
analysis system can be constructed. In particular, while our  distributed design yields 
estimators with far more modest computational demands than the corresponding 
optimal estimator, several steps can be taken to simplify these computations even 
more. First, as  mentioned previously, it is possible t o  construct pipelined versions of 
our multi-pass estimators in which all passes are performed a t  the same time rather 
than in sequence. This achieves a several-fold increase in processing throughput. Also, 
the nature of the models arising in ECG analysis olfer another possibility for 
simplification. Specifically, these finite-state processes typically display multiple time 
scale behaviour (as  actual signature-initiating events occur a t  a far lower rate than the 
sampling rate needed to capture interprocess timing). Consequently, it may be 
possible to use results on hierarchical aggregation of processes with several time scales 
(Coderch et al. 1983) to construct more efficient estimators that not only display the 
spatial but also the temporal decomposition of these processes. 

Finally, it is important to realize that the problem of rhythm tracking addressed 
here is only a first step in a rhythm diagnosis system. Specifically in such a system one 
wishes to identify the underlying distributed process model from a set of such models 
representing dilferent cardiac rhythms. As in standard system identification problems, 
the computation of the likelihoods for a set of models can be performed efficiently 
using the estimates produced by estimators based o n  each of the models (e.g. see 
Gustafson et ul. (1978) for an  application of this idea to ECG rhythm analysis based 
on R-wave location data only). In Doerschuk (1985) we describe an  approach to 
constructing such likelihoods based o n  the outputs of a set of estimators of the type 
described in this paper, but work remains to be performed to test this method and to 
develop efficient implementations. 
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