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Modelling electrocardiograms using interacting Markov chains

PETER C. DOERSCHUKY, ROBERT R. TENNEY? and
ALAN S. WILLSKY+t

A methodology is developed for the statistical modelling of cardiac behaviour and
electrocardiograms (ECGs) that emphasizes (a) the physiological cvent/detailed
waveform hierarchy; and (b) the importance of control and timing in describing the
interactions among the several anatomical sub-units of the heart. This methodology
has been motivated by a desire to develop improved algorithms for statistical
rhythm analysis. Specifically, to develop algorithms that capture cardiac behaviour
in a more fundamental way but that stop short of complele accuracy in order 1o
highlight decompositions that can be exploited to simplify statistical inference based
on these models. Our medels consist of interacting finite-state processes, where a
very few of the transition probabilities for each process can take on a small number
of different values depending upon the states of neighbouring processes. Each finite-
state process ts constructed from a very small set of elementary structural elemenis.
We illustrate our methodology by describing models for three cardiac rhythms and
include simulation results for one of these, namely the rhythm known as
Wenckebach.

1. Introduction

In this paper we describe a methodology for the statistical modelling of cardiac
activity and electrocardiograms (ECGs). Our primary purpose in developing this
methodology is to provide a basis for the design of wutomatic, statistical algorithms
for rhythm analysis of ECGs, that is, the analysis of the scquenttal behaviour of both
atrial and ventricular events as observed in the ECG (Doerschuk et al. 1990).

Modelling of ECGs is certainly not a ncw endeavour (scc Thomas er al. 1979,
Feldman and Hubelbank 1977, Oliver et al. 1977, Leblanc and Roberge 1973, Cox
et al. 1972) nor is the development of statistical ECG models for the express purpose
ol designing signal analysis algorithms. However, the modeliing methodology we
describe here differs in a number ol important ways [rom any earlier work. Roughly
speaking, we have tried, on the one hand, to overcome the limitations of existing signal
processing modeis by capturing cardiac physiology in a lar more lundamental way.
On the other hand, we have stopped far short of the detail found in physiologically-
accurate models and rather have aimed both to keep only enough detail to allow
suceessful signal processing and to highlight scveral critical leatures found in
physiological models that allow the development of computationally feasible
algorithms.

In particular, as we briefly describe in the next section, the behaviour of the heart is
characterized by the occurrence of a small number of events corresponding to
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contraction or relaxation of different major parts of the heart, and each of these events
leads to the appearance of a particular waveform in the ECG. While very accurate
descriptions of the ECG require breaking the ECG down lurther to account for the
behaviour of very small units of heart muscle, one can generally think of describing the
ECG in hierarchical [ashion—an upper level describing discrete cardiac events and a
lower level describing the impact these events have on the ECG. As we discuss in § 2,
previously developed rhythm analysis methods typically make use of this decompo-
sition implicitly—i.e. only the event level description is modelled, and it is assumed
that a wave detection preprocessor has been applied to the ECG to provide event-
level inputs to the signal processing algorithms. Qur approach differs [rom these in
two important ways. In the first place, we explicitly model the two-level hierarchy,
thereby allowing an integrated approach to wave detection and rhythm tracking. This
provides a fundamental way to feed rhythm information back to the wave detection
process. Secondly, and more importantly, our event-level descriptions of cardiac
behaviour are far more detailed and accurate than those used previously. In
particular, the heart consists ol several distinct sub-units which interact relatively
inflrequently but strongly. Furthermore, the coordinated action of the heart (or any
particutar anomaly) can be explained in terms of control and timing. Specifically, the
contraction of one part of the heart initiates the contraction of a neighbouring portion
(and thereby controls its behaviour) il that portion of the heart is ready to contraet
(i.e. if the timing is right). As we describe, these observations plus a detailed
examination of the mechanisms that characterize different cardiac rhythms have led
us to develop a methodology for constructing spatially distributed models of cardiac
behaviour, emphasizing control and timing, and using a very small number of
building blocks.

This paper is organized as follows: in the next section we provide a briel
intreduction to cardiac anatomy and physiology, review previous cardiac modelling
investigations, and present an introduction to our modelling methodology. Sections 3
and 4 describe the general mathematical structure of the upper and lower levels,
respectively, of our models, and in § 5 we describe in detail the building blocks used to
construct our uppcr level models. In § 6 we present three examples of rhythm models
using our methodology, including the complete details and some simulations for one
of thesc, namcly the rhythm known as Wenckebach (§ 6.3).

2. Cardiac anatomy, physiology, and modelling

In this section we summarize the physiological basis ol our models, review some of
the literature on ECG modelling, and present an overview of our model. The heart
pumps blood by coordinated muscular contraction. The coordination is achieved by
waves of depolarization that propagate in the cell membranes ol a conduction system
embedded in the muscular and structural elements of the heart and in the muscle celis
themselves. The voltage fluctuations measured at the surlace of the chest due to these
depolarization waves are the ECG. After a depolarization wave passes through a
patch of membrane, the patch must be repolarized before it is able to support a second
wave. The period of time during which it is unable to support a depolarization wave is
called the refractory period. Many parts of the heart depoiarize periodically without
external stimulation and are called autorhythmic.

A normal heart beat is initiated by an autorhythmic depoiarization of the sino-
atrial (SA) node. The depolarization propagates into the atria, causing the P-wave in
the ECG (see Fig. 1) and causing the atria to contract and pump their contents into
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Figure 1. Waveform definitions for one beat of an ideatized normal ECG.

the ventricles. The depolarization wave then propagates through the atrio-ventricular
{AV) node which is the only electrical connection in the normal heart between the
atria and ventricles and which delays the wave by 70—-80 ms thereby allowing the
blood pumped out of the atria to fill the ventricles before the ventricles contraet.
Finally, the depolarization wave propagates through the specialized ventricular
conduction system and ventrieular muscle causing the major R- and minor Q- and
S-waves in the ECG and causing the ventricles to pump their contents into the lungs
and systemic body. Because the ventricles have a greater mass of muscle than the atria,
the R-wave is greater in amplitude than the P-wave. Finally, the ventricular muscle
repolarizes causing the T-wave in the ECG. (The ECG wave caused by the
repolarization of the atria is masked by thc much larger R-wave.))

Though the preceding description of cardiac functioning is simplified, we believe
that not much additional complexity is required in order to model a wide variety of
cardiiac rhythms. Specifically, there are a small number of general mechanisms present
in a physiologically normal heart which, when combined with three broad categories
of physiological abnormalities, lcad to a wide variety of arrhythmias,

The first normal mechanism concerns autorhythmicity. The frequency of auto-
rhythmic depolanzation varies with anatomic location and is greater in more
proximal structures. {Structure A is proximal to structure B if it occurs before
structure B in the normal depolarization sequence. The reverse of proximal is distal.)
This association between location and frequency is called the gradient of autorhyth-
micity. When an autorhythmic structure is depolarized by an external source, the
biological clock counting down to the next spontaneously generated depolarization is
reinitialized, The time interval between the reinitialization and the next spontaneous
depolarization may simply be the usual autorhythmic period, in which casc the
proccss is called resetting, or it may be somewhat longer, in which case the process is
called stunning. In light of the gradient of autorhythmicity and the reset/stun
phenomena, the SA node is generally abie to win the competition with more distal
autorhythmic centres for control of the normal heart.

What we have just described is the unidirectional propagation of the depolariza-
tion wave through the heart in the normal direction, called the antegrade direction.
Another normal mechanism in the cardiac conduction system is that it is also capable
of propagation in the reverse, or retrograde, direction. This is obviously important
when depolarizations are initiated in distal structures.

Let us now turn to the three categories of physiological abnormalities:

(@) decreased conduction capabilities
(b} incrcased or decreased rates of autorythmicity
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(¢) abnormal electrical pathways connecting various portions of the heart (typi-
cally in the atrioventricular conduction pathway).

Decreased conduction can occur in scveral forms, for example, total block of all
depolarization waves, block of all depolarization waves coming [rom a particular
direction, decreased propagation velocity, or increased refractory time. Increased
{decrcased) autorhythmicity refers to an increased (decreased) rate of autorhythmic
depolarizations. Abnormal electrical pathways include several different structures
that bypass all or part of the AV node and therefore have marked cffects on cardiac
timing. This smail number of abnormalities, and the normal mechanisms described
previously, are commonly used to explain nearly all classes of cardiac rhythms.

As we indicated in § 1, modelling of ECGs is nol a new topic. Numerous
rescarchers have developed cxtremely detailed eleciromagnetic models of the heart,
cither without particular attention paid to the time evolution of the sources of the
electromagnetic activity ({Gesclowitz 1979, McFee and Baule 1972, Plonsey 1979,
Tripp 1979, Wikswo Jr er al. 1979) or with time evolulion as an important
consideration (Miller and Geselowtiz 1978, Vinke er al. 1977, Moe and Mendez 1966,
Cohn et af, 1982, Smith 1982, Roscnberg er al. 1972, Zloofl ¢t al. 1973, Thiry and
Rosenberg 1974, Thiry er al. 1975). These modelling efforts had developing detailed
and physiologically aceurate models ol cardiac electrical activity as their objective,
not developing modcls that could provide a useful basis for ECG signal processing. In
particular, these models gencrally are deterministic in nature or are only slightly
removed from determinism (c.g. by allowing an imtial, stochastic choice of para-
meters). Furthermore, the level of detail included is not only greater than is nceded for
signal processing purposes but also involves more degrees of [reedom than onec eould
hope to identify using the very small number of measurement traces taken in a typical
ECG. On the other hand, there arc features in some of these cflorts that we also
inciude in our methodology. In particular, some of these models employ hierarchieai
descriptions of cardiac timing and the actual clectromagnetic effects, and they all
generally treat the heart as an interconnection of (typically very large numbers of)
sub-models that interact infrequently but strongly.

Models that have been developed lor signal processing purposes can be divided
into two broad categories depending upon whether they model the sample-by-sample
behaviour of the ECG or just the sequential arrivals of the waves appearing in the
ECG. Many authors (Uijen er al. 1979, Sornmo et al. 1981, Murthy er al. 1979) have
used sample-by-sample models of individual ECG beats, while others (Borjesson et al.
1982, Haywood er al. 1970, Richardson et al. 1971) have considered sample-by-sample
modecls of complete rhythms. However, none of these models describe the cardiac
rhythms in the detail with which this paper is concerned.

Now let us briefly turn to event-based models. It is important to realize that the
sequential index for such models is very different from that for sample-by-sample
modecls. In a sample-by-sample model, a data point y(k) represents an ECG
measurcment at the £th time instant. In an event-based model, a data point represents
the time interval between the kth occurrence of onc type of wave and the next
occurrence of that or another specified type of wave. In most of these models only the
intervals between suceessive R-waves (corresponding to ventricular contractions) are
considered. In one sct of models, these R—R intervals are quantized into several
classes. In most cases only three classes—short, regular, or long—arc considered, and
various rthythms are described either by use of Markov chains (Gersch et al. 1970 and
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1975, Tsui and Wong 1975, Shah er af. 1977, White 1976) or deterministic finite
automata (Hristov 1971) to modei the evolution of R—R interval pattcrns. In another
set of papers (Gustafson er al. 1978, 1981) interval lengths are not quantized, and an
extensive set of vector Markov models are developed 1o describe the evolution of
event interval patterns {see Ciocloda 1983 for an independent, though less compre-
hensive, development). In the first part of this work (Gustafson er al. 1978) only R—-R
intervals are constdered, while P—R intervals are also considered in the later paper.

From the perspective of the approach in this paper, thesc event-oriented models
do highlight the timing information, which is of primary importance in tracking or
identifying cardiac rhythms. However, the use of purely event-based models has some
fundamental limitations. In §1 we mentioned one of these, namely the implicit
assumption that wave detection has already been performed in a pre-processor. As we
indicated, one might expect superior performance in an integrated algorithm in which
rhythm tracking information assists wave detection. Only in Gustafson er al. (1981)
doces one not find an (ad hoc) use of feedback from tracker to wave detector, While the
absence of a fundamental way in which to effect this feedback is a iimitation, it is not
the most serious one. A more basic problem with event-based modelis is the limited
way in which one must model pre-processor errors. Specificaily, this framework ailows
onc 1o modcl the error in measuring the interval between two events, but it cannot
accommodale the possibility that one of these events is missed altogether by the pre-
processor. While this is not a serious problem for the large-amplitude QRS complex, it
is a problem for the much smaller P-wave. The difficulty here is with the sequential
event-related index, which aiso creates another even more serious problem. In
particular, in many cardiac rhythms, such as thosc involving some type of AV node
abnormality that on occasion causes a ventricular contraction to be dropped, there
is a pariable number of P-waves between successive R-waves, For rhythms such as
these, the use of an event-oriented time index breaks down, or at best leads to models
with a tenuous connection to actual cardiac behaviour,

From the preceding discussion, the hierarchical nature of the ECG is apparent—
an upper level describing events and a lower level describing the waveforms resulting
from ¢vents. Also apparent is the spatially-distributed nature of the ECG and the role
of control and timing in the interactions between the spatially-distributed compo-
ncnts. Here, by control, we mean one portion of the heart triggering activity in
another portion and, by timing, we mean the fact that the cflect of this triggering may
depend upon the state of the receiving portion. Finally, though we have not
emphasized it in the previous discussion, there is a tcmporal decomposition.
Specifically, the spatial decomposition of the heart into sub-units which interaci
strongly but at infrequent intervails compared to the time scale al which each subunit
evolves.

In our approach to cardiac modelling. we highlight the occurrence of cardiac
events, as has been donc in previous signal processing modcels. However we have, at
the same time, avoided the difficulties described previously by basing our models far
more closely on cardiac physiology and anatomy. The key to accomplishing this in an
effective way is to rely heavily upon and to highlight the spatial, temporal, and
hierarchical aspects of cardiac phenomenology that we have just described.

Figure 2 presents a three-sub-model example of the type of model we consider. The
square boxes at the upper level of the hierarchy comprise the discrete-state
physiological model, which captures the sequential evolution of high level events in the
heart. The mathematical structure of these modecls is described in § 3. Each sub-mode)
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Figure 2. Spatial and hierarchical decompositions.

represents a functional anatomic structure (e.g. the atria, the ventricles, ete). The
dirceted solid lines indicale the initiator and recipient of control inputs, which we call
interactions. For example, the transmission of a depolarization wave from atria to AV
nodc might be modelled via an interaction in which the present state of a sub-model
representing the atria causcs a transition in the AV-nodal sub-modcl, representing the
initiation of the AV-nodal dcpolarization.

The trianguiar objects in Fig. 2 are parts of the electromagnetic model which
modcls the actual observed waveforms. Each sub-model corrcsponds to the gen-
eration of the ECG contribution from a particular anatomic structure of the heart
(c.g. P-waves from the atria). The dashed lines indicale the control of the electro-
magnetic level by the physiological level of a single sub-model. These inputs are used
to initiate the gencration of waveforms in the observed ECG. For example, the
occurrence of a particular transition in the physiological portion of an atrial sub-
model might initiatc the generation of a P-wave in the corresponding electromagnetic
sub-model. The mathematical structure of the electromagnetic level is described in § 4.
Notc that the electromagnetic level does not affect the physiological level and that
there are no interactions among electromagnetic sub-models.

Finally it is very important to note that often it is the interactions between the
normal and abnormal parts of the heart that are of critical importance. That is, many
of the changes in an arrhythmic ECG are due 10 how an abnormal sub-structure
affects a normal part of the heart, rather than to a direct change in the ECG caused by
the depolarization of the abnormal sub-structure. For example, the existcnce of a
faster eicctrical connection between atria and ventricles leads to marked changes in
the timing of the P- and QRS-waves and possibly to abnormal QRS complexes, even
though the atria and ventricles are perfectly normal.
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In our models of arrythmias, we take the same approach. That ts, we begin with a
normal rhythm model which is transformed into an arrythmia model by altering the
appropriate sub-model. The contribution of the altered sub-model and its interactions
with the unaltered sub-models create the arrythmic ECG. In order for the interactions
to occur, we often must generalize the normal sub-models. The alterations are to
include properties which were left out initially because, in the normal rhythm, they
represented unnecessary detail.

3. Upper hierarchical level

In this section we discuss the upper hierarchical level, which we call the
physiological model. This level is concerned with discrete events, and we have chosen
to use Markov chains to describe their evolution. Because of the importance of spatial
decompositions, we have also choscn a highly structured class of chains described in
the following.

The state space of our Markov chains is the cross product of a set of spaces
corresponding to the ‘statcs’ of sub-processes which comprise the overall chain. Each
sub-process corresponds to one of the anatomic sub-units of the heart. Furthermore,
there is a direct correspondence between each state of a sub-process and a physical
state of the corresponding anatomic sub-unit. We call each sub-process a sub-model.

Let x, be the state of the overall Markov chain which consists of a set of N sub-
processcs denoted xi, i=0,..,N—1. A key feature of our models is that the
transition density, p{x,,,|x,), has a great deal of structure. Specifically:

(a)} Given x,, the transitions of each of the component sub-processes are
independent. That is,

N-1
P(xrr+ 1 Ixn) =p(x:u+ 1s i= 0’ rery N-—1 lxrr) = ‘UO p(x:!+ I 1xn)
(b) For each sub-process there are far fewer values of

p(xli!+l|xn) =P(X:—|+ 1 Ixi!j=0» “ere N — 1)

than there are values of {x},j+#i}.
That is, we assume that

P(xfw LX) = P(v‘fn-ﬁ- 1 |xj|- hln)

where
Ho= hi(x), j # )

denotes the net intcraction of all other sub-processes with the ith sub-process,

Typically the number of possible values of & is quite small. In fact, in our
examples 4 takes on at most two or three values and only one or two
transition probabilities of the ith chain are affected by the value of k.. Thus, the
sub-processes are ‘almost’ independent, but, as we will see, these interactions
can have an extremely important effect on the evolution of the sub-processes.

We now consider a very simple model for normal rhythm in order to fix these ideas
about interacting sub-processes. This model has two sub-models (Fig. 3(a)), corre-
sponding to a division of the heart into two analomic sub-structures: the SA-atrial
(SA/A) sub-structure, composed of the SA node and atria, and the AV-ventricular
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Figure 3. Simple model for normal rhythm. (@) Sub-model block diagram. (b) SA-atrial sub-
model. (¢) AV-ventricular sub-model,

(AV/V) sub-structure, composed of the AV junction and ventricles. As in the normal
heart, the SA/A sub-model originates interactions with the AV/V sub-model,
corresponding to a super-ventricular depolarization originating in the SA node and
propagating through the AV junction in the antegrade direction. For simplicity, the
reverse (retrograde) conduction is not modelled.

In the S/A sub-model (Fig. 3(b)), the state transition from 0 to 1 represents the
firing of the SA node and the atrial depolarization. The tnme required for the state to
travel from state 1 to state 0 models the random time between successive depolariza-
tions of the autorhythmic SA node. Finally, by assuming that the atrnial eonduction
vcloeity is infinite (an oversimplification for the purpose of illustration only), state |
also represents the excitatton of the AV node by the atrial depolarization.

That state 1 (in the SA/A sub-modcl) represents the excitation of the AV node is
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reflected in the differing probabilities assigned in the AV/V sub-mode! (Fig. 3(c))
depending on whether the SA/A sub-model state is or is not in state 1. AV/V sub-
model state O represents the fully repolarized state of the AV node and ventinicles. If the
AV/V sub-model is in that state and the SA/A sub-model moves into state 1, then the
AV/V-sub-model state transitions into state 1 with probability 1. This transition models
the excitation of the AV node by the atrial depolarization. Il the AV/V sub-structure is
not receptive to a depolarization (i.¢. is refractory), then the sub-model state will not
be in state 0 and the change in the probabilities due to the SA/A-sub-model state
occupying state 1 will have no effect on the evolution of the AV/V sub-process. The
time required in the AV/V sub-model for the state to travel through states | and 2
represents the (deterministic) AV-junctional delay time, The transition from state 2 to
state 3 represents the initiation of ventricular depolarization. Finalily, the time
required for the state to travel through states 3, 4 and 5 represents the (random) AV-
junctional and ventricular repolarization time. After repolanzation the state traps in
state O awaiting another excitation [rom the SA/A sub-model.

4. Lower hierarchical level

We now discuss the lower level in our hierarchy, which we call the electromagnetic
model. The spatial decomposition that was imposed on the upper hierarchical leve] is
also imposed on the lower hierarchical level since each individual wavelorm in the
ECG that is modelled by the electromagnetic level is due 10 a single anatomic sub-
unit.

Certain transitions between slates in each physiological sub-model correspond to
the initiation of waves, so these transitions are used to drive the corresponding
electromagnetic sub-model. The output of each of the electromagnetic sub-models is a
linear superposition of signals with shifted origins. The unshifted signals are called
signatures. The origin is the time at which the initiating transition in the correspond-
ing physiological sub-model occurs. Each signature is a shift-invariant finite-
durational deterministic function with additive white zero-mean Gaussian noise
(signature noise), where the additive noise is independent from one occurrence of the
signature to the next and represents beat-lo-beat variations. Finally, the outputs ol the
individual electromagnetic sub-models are linearly superposed and the result is
observed in additional exogenous, while observation noise.

Let §/ be the signature from the ith electromagnetic sub-model when thc th
physiological sub-model makes a transition [rom j to k. Let v be the white gaussian
observation noise. The observation y is then

MO =3 % St =n) +0(D)

(This equation represents an abuse of notation. Specifically, each occurrence of a
particular signature includes noise independent of the noise in other occurrences.
Thus the various occurrences of Sj,‘ are not identical—aithough the determinstic
mean is the same.)

Consider again the example of the previous section. The state transition from 0
to 1 in the §/A sub-model represents the firing of the SA node and the atrial
depolarization. Thus, as indicated in the diagram, the electromagnetic-model re-
sponse to this transition is the P-wave of the ECG. The elecctromagnetic-model
response to the other state transitions, e.g. from 2 to 3, is identically zero and hence is
not indicated.
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In the AV/V sub-model, the state transition from 2 to 3 represents the initiation of
the ventricular depolarization. Hence the electromagnetic-model response to the
corresponding transition is the QRS complex and the T-wave. Here, we are modeliing
the QRS complex and T-wave as deterministically coupled waveforms—the ST
interval duration is not random. Note that a more complex model of the same type
could allow a random coupling. The electromagnetic-model response to the other
statc transitions is identically zero.

Sevcral aspects of the electromagnetic model merit comment.

(a) Notc that some anatomic sub-units do not cause waves in the ECG (e.g. the AV
node) and therefore the corresponding electromagnetic sub-model does not
exist. Similarly, most transitions model the timing between wave and inter-
action initiations and therefore have no effect on the corresponding
electromagnetic sub-model. Thus very few transitions actually contribute to
the ECG.

(b The use of a gaussian white noise to model both beat-to-beat morphology
variations and observation noise is an obvious oversimplification. Incorpor-
ating more complex and realistic models is straightforward. For example, one
could easily use a time series model for cach waveform or, by adding states and
transitions 1o a sub-process model, one could introduce additional signature-
initating transitions 10 model dramatically variant morphologies for any
particular wave. The observation noise serves the role of modelling all non-
non-cardiac contributions to the observed signal, including motion artifact,
clectromyogram signals, and 60 Hz interference. Again it is siraightforward to
rcplace the white noisc model by a more accurate correlated noise model. As
ali of these modifications add detail rather than new structure to our models,
we have not included them here in order to present the essential elements of
our modeiling methodology. It is worth pointing out, however, that the level of
rcalism nceded in such models depends upon the use to which the models are
to be put. If they are used as the basis for signal processing algorithms, model
fidelity is only of indircct importance, as one generally seeks to find the
simplest model that leads to a successful algorithm. For example, a white noise
model was successfully used in the work of Gustafson er al. (1978. 1981).

(¢) The Markov chain cycle interval need not equal the signature sampling
interval. Typically, the Markov chain cycle interval can be taken to be
substantially larger than the signature sampling interval, reflecting the dif-
ference in time scale between interaction events (which determine the Markov
chain cycle interval) and events internat to the anatomic sub-models (which set
the signature sampling interval). Because signatures can only be initiated at
Markov chain cycles, unequal intervals appear to imply that signatures cannot
be initiated at arbitrary signature samples. However, by using an augmenta-
tion technique as in (b}, this problem can be overcome, For an exampte, see the
Wenckebach model of § 6.

{d) Given the sampling interval used, the transition probabilities of the sub-
models determine not only the sequencing of events but the overall rate at
which events occur. Setting these parameters for a specific ECG is essentially a
problem in parameter estimation for Markov chains, and a standard algorithm
to perform this task would be needed in a complete signal processing system.
Moreover, given that ECG behaviour and in particutar heart rate may be non-
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stationary, one may wish Lo view these transition probabilities as time-varying,
or equivalently to incorporale an adaptive parameter estimation algorithm
into the signal processing system. Such a system would, of course, also be
needed to detect changes in thythm such as the onset of tachycardia, much as
in the work of Gustafson et al. (1978, 1981).

5. Micrescopic model—structural elements

In this section we describe the small number of clementary structural elements that
are used in constructing our physiological models. Each of these elements is a piece of
a Markov chain. Therc are two fundamental structural elements, which are essentially
elapsed time clocks, out of which three other structural elements are constructed.

The first structural element is the delay line (DL) which is a part of a complete
chain. When the state of a chain enters the first state of such an element, denoted i, it
undergoes a random time delay (transit time) and then arrives at the final state o. The
probability mass function (p.m.f.) on the transit time is specified and unaffected by
events in the other chains. In block diagrams we use the symbol shown in Fig. 4 for a
DL. Here the arcows at either end of the DL indicate transitions into the initial state |
from other states in the overall sub-model (possibly including o) and from the final
state o to other states (possibly including i). No transitions exist to or from external
states o stales internal to the DL. The DL is used to model simple timing behaviour
in the coordinated operation of the heart. Two examples of DLs are displayed in
Fig. 5. In the first of these there are no feedback transitions so that the transit time is
bounded by the length of the DL. In the second example the presence of feedback
transitions implies that there is, in principle, no upper bound on the transit time. In
both examples the transit time p.m.[. can be adjusted by varying the several transition
probabilities.

A

- Do

Figure 4. Delay line symbol. i = initial state and o = final state.

1

P, | P I
OO CanOanCagOgO

p!'
(a}
! 1-p ___1 | { |
G D)@
p
(b}

Figure 5. Examples of delay lines. (¢) Without feedback transitions. (h) With feedback
transitions.
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The second structural element is the resettable delay line (RDL). This element is
used to model both liming and the resct and stunning phenomena that can occur
when a depolarization wave reaches an autorhythmic site. We often use the term delay
linc as a generic name for both DLs and RDLs. The differences between the RDL and
thc DL are that there are 1wo different mechanisms for the state to exit an RDL, and
an RDL has transition probabilities that are controlled, in a very simple and specific
way, by interactions initiated by another sub-process in the overall Markov chain.
The possible interactions impinging on a chain containing an RDL are divided into
two classes denoted normal and abnormal. Within each class the transition prob-
abilities in the RDL are constant. As long as the interaction is in the normal class, the
RDL behaves as a DL, transiting [rom the initial state i toward the final state o.
However, when the interaction is in the abnormal class, a second set of Iransition
probabilitics is used for the next transition. The second set of transition probabilities
forces the state to leave the RDL and enter a state, external to the RDL, called the
resct state and denoted by r.

In block diagrams we usc the symbol shown in Fig. 6 for an RDL. Here the dashed
arrow and symbol ¢ denote the effect of interactions from other sub-models. The
variable ¢ takes on two values: R (for ‘reset’) if the current impinging interaction is in
the abnormal class and R (for ‘not reset’) otherwise. An example of an RDL is given in
Fig. 7.

The third structural clement is the autorhythmic element which is capable of
sustained cyclic behaviour without externai excitation. This element is constructed
from DL(s) and/or RDL(s). The basic idea is to attach the input and output of a DL
together, as in Fig. 8. [f a DL is used, this specifies the entire chain. If an RDL is used,

1
Ay
c
— i D O
r
!
Figure 6. Resettable delay line symbol. i = input, o = normal output, r = resel output, and

¢ =control input.

if ceR @—.—

ifc=R

@ ® ©

Figure 7. Example of a resettable delay line and its reset state r.
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Figure 8. Basic autorhythmic element.

it is also necessary to specify the identity of the reset state (see § 6.2). The choice of DL
versus RDL depends on the physiological process being modelled. Typically one or
more transitions in the autorhythmic clement will initiate ECG signatures (corre-
sponding, for cxample, to the P-wave resulting from the autorhythmic operation of
the SA node).

The fourth element is the passive transmission line ( PTL), constructed from a DL
oran RDL. We illustrate the DL case in Fig. 9. A PTL is a connection of a single state,
called the resting state, to the initial state of a DL, The only transition out of the
resting state is tnto the DL. The probability for this transition, denoted p, depends on
the value of the current interaction impinging on the sub-model containing the PTL.
The possible values of this interaction are partitioned into two disjoint sets called the
autonomous and nen-autonomous sels. When the interaction is in the autonomous
set. p=10. That is, the resting state 1s a trapped state. In the other case (non-
autonomous), p > 0. The PTL can be used to model a part of the heart, such as the AV
node, that begins depolarization only when an cxternal depolarization wave excites it.
Onc or more transitions in the PTL may generate signatures in the ECG.

The fifth elcment is the bi-directional refractory transmission line {BDRTL),
shown in Fig. 10, which is a complete sub-model and 1s used to model structures
capuble of supporting conduetion in either the antegrade or retrograde direction. All
unlabelled transition probabilitics in Fig. 10 take on the value 1. The staie 0
corresponds to the repolarized resting state of the anatomic substructure. The RDL
labelled A (R) corresponds to antcgrade (retrograde) conduction. In aceordance with
these designations, the BDRTL attempts to excite the sub-model(s) corresponding to
the adjacent distal (proximal) anatomic sub-structure(s) whencver the BDRTL state
occupies state o, (0g), the final state of the antegrade (retrograde) conduction RDL.

"pr,l

F'r,l
r = rasting state

Figure 9. Passive transmission line.

1"Psa” Po.r ~of

povA ° poiR
P
A F o.F R
Ta Qo IR
Cp—=— ¢ [P D r D Cle - —cp
O i Op

Figure 10. Bidireetional refractory transmission line.
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RDLs are used here in order to model the possible collision of 1w depolarization
waves, one in the antegrade and one in the retrograde direction. The relationship
between the resting state 0 and the RDLs A and R 15 a simple generalization of the
PTL structural element. The third delay line {F), a DL, corresponds to the reflractory
period. A non-rescttable delay line is used because, at the level of physiological detail
that we are modelling, the duration of the refractory period is independent of all
cxlernal events.

The state transition probabilities. py 4, pog, and py  and the RDL state transition
probabilities {controlled exclusively through ¢, and ¢, ) are the only probabilities that
depend on the states of other sub-models, that is, on the interactions impinging on the
BDRTL. In the absence of external excitations

Po.a=Por=Por=0 and c,=cp= R

That is, under these conditions, il the process was in the resting state, it remains there
until an excitation initiates depolarization. If the process was in the middle of a
depotarization, the depolarization continues in a normal fashion.

[fthe BDRTL is excited [rom the antegrade direction, but not simultaneously from
the retrograde direction, then

Poa=1l, Por=Por=0, c,=R and cp=R

In this case, il the process was in the resting state, it immediately exits and begins an
antegrade depolarization. If the process is in the middle of a retrograde depolariza-
tion, the depolarization is stopped by resetting the RDL. This modcls the collision of
the two depolarization waves. After this point in time the process proceeds through
the DL modelling the refractory period.

For the reverse case (i.e. excited from the retrograde direction but not from the
antegrade direction), the values are

Pox=1Ll Poa=ror=0, CR=R- and c,=R

Finally, if the BDRTL is simultancously excited from both the antegrade and
retrograde directions, then

Por=1, Poa=Por=0 c,=cg=R

Depending on what anatomic sub-structure the BDRTL models, it may or may
not contain transitions which generate a non-zero response in the electromagnetic
model. Il the BDRTL does contain such transitions, then there are three basic
situations which we illustratc assuming that the BDRTL models the atria which can
be excited by the SA node or by retrograde conduction from the AV nodc. The three
situations in which signatures are generated correspond to the following.

{a) Antegrade conduction without a reset (e.g. a normally conducted P-wave [rom
the SA node through the atria),

(h) Rctrograde conduction without a reset (e.g. a retrograde P-wave from the AV
node through the atria).

(¢) Reset-antegrade or retrograde conduetion, corresponding to collisions of two
depolarization waves. Such an occurrcnce gencrates a so-called fusion de-
polarization (e.g. a fusion P-wave due to joint SA-nodai and retrograde-AV-
junction depolarizations),
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Though it is not the only possibility, we have used the transition from the resting
stale to i, or ig 10 generale the non-reset antegrade and retrograde electromagnetic
model responses. For simplicily we have assumed that a fusion depolarization is
identical to the response from the earlier of the two depolarization waves. Modifica-
tions allowing for a different signature for fusion waves can be easily accommodated.

6. Examples of ECG models

The small number of building blocks described in the preceding section can be
used 1o construct models for any cardiac rhythm. In Doerschuk (1985), we have
shown how one can write down models for cardiac arrhythmias involving re-entrant
pathways (in which depolarization waves can, in fact, cycle through parts of the heart
several times), abnormal atrial-ventricular conduction pathways (such as the so-called
Wolff— Parkinson—While syndrome), and the presence of ectopic foci (see §6.2). In
this section we illustrate our methodology by presenting models for three different
cardiac conditions: normal rhythm, normal rhythm with ectopic focus premature ven-
tricular contractions, and a type of second degree AV block cailed Wenckebach, The
first two models are specified at the level of the structural elements of the previous
section, while the third is described in complete detail,

A simple, graphical notation is helpful in describing the models. Figure 11
llustrates a model made up of four sub-models, denoted by the boxes labelled
CO0, ..., C3. The directed lines between boxes indicate the existence of an interaction in
the indicated direction. Thus, for exampie, sub-model CO initiates an interaction with
sub-model C1. The number of values which the interaction can take on is not
specified. The wavy lines terminating in S0, ..., §3 indicate that the sub-model of the
originating box contains one or more transitions which initiate a signature whose
name is the label at the end of the arrow,

Figure 11. [Mustration of the block diagrum description of a class of models.

6.1. Normal rhythm

A block diagram of a model for a prototypical normally conducted rhythm and a
listing of the intersub-mode! interactions is given in Fig. 12. The heart is divided into
four anatomic sub-structures—SA node, atria. AV junction, and ventricles—each of
which is modelled by a separate sub-model. Qualitatively, the model behaves in the
following manner. The SA-nodal sub-model initiates a depolarization wave. This is
the only way in which a depolarization can be initiated in this model. The
depolarization then propagates antegrade through the atrial sub-model, producing
the P-wave; the AV-junctional sub-model, which makes zero contribution to the ECG;
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and finally the ventricular submodel, producing a QRS-T complex. Because only
antegrade conduction is included in the model, sub-model 0 is not resettable and sub-
models 1 and 2, which would be BDRTLs if retrograde conduction were included,
consist instead of DLs.

54 node n
Atrig n P
AV junciion E
Veantricles R

(a)

Sub-model I: Atrial Sub-structure

1
Ve Pen 1 |
Electromagnetic Model:

P wuve

Sub~model 2: AV=-junctional Sub=structure

Sub=-model 3: Ventricular Sub-structure

Electromagnetic Model:
QRS-T complex

(b)
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Sub-riodet 0: Sub-model for the SA-nodal Sub—structure

This sub-model is autonomous.

Sub-model 1: Sub-model for the Atrial Sub-structure

i ,l itx"e lo°]

Pl A=
" 10 otherwise

Sub-model 2;: Sub-mode! for the AV—unctional Sub—structure

Lif ' e [o})
2
Pra = .

0 otherwise

Sub-model 3: Sub-model for the Ventricular Sub-structure
e 2 7
, l lifx“e loA:
\0 otherwise

(c)

Figure 12. Model for normal rhythm. (a) Sub-model structure. (b) Block diagram.
{c} Intersub-model interactions.

6.2. Normal rhythm with ectopic focus PV Cs

There are numerous autorhythmic sites in the heart, and occasionally, even in a
normal heart, one of these sites may successfully initiate a depolarization wave. Such a
site is referred to as an ectopic focus or pacemaker. If this focus is located in the
ventricles, then the ventricles can contract a short time before the next normal de-
polarization would have occurred. Such a beat is called a premature ventricular con-
traction (PVC). PVCs can also arise through a re-entrant pathway mechanism (in this
case there is typically a more regular relationship between the timing of the PVC and
the previous, normal, QRS complex). It is certainly possible to model this mechanism
using our methodology, but we do not do so here. Because of the anomalous location
at which this depolarization starts, the resulting QRS waveform is generally quite

SA node
P
Atrig retrograde P
AV junction
R
Ventricles PVC
Ectopic
Ventricular

Pacamoker
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Sub-model 0: SA-nodal Sub-structure

Sub-model 1: Atrial Sub-structure
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Sub-model I: Sub-model for the Atrial Sub—structure

lifx%e looi and x’ e loé}
1

A = )
0 otherwise
e 0 0 2 21
ll if x Q[OIandx EIDR'
p" \0 otherwise

R

- ]1 if e {ool and xle ‘oi]

F ~
\0 otherwise

T if o2 1
| ‘R ifx* e (onl
Cp =

}R otherwise

(c)
Figure 13. Model for normal rhythm with PVCs_generated by an ectonic focus. (a} Sub-mode]
structure. (b1 Blush diagram. (op Jpigrsph-medel inferaciions. These interustions ure
SIRIIAF 18 tRO3E BF the AGFMa! FRYIRM model deseribed i Fig 1’z Thaidkore. onl¥ The

interactions for sub-model 1 are given.

different from a normal beat. Typically the PVC is a more spread-out waveform as the
initiation of the contraction of one ventricle precedes that of the other by a noticeably
larger time interval. Furthermore, when a PVC occurs, it is possible for the resulting
depolarization wave Lo propagate in a retrograde direction, colliding with the normal
SA-node-initiated wave or arriving at and resetting the SA node.

In order to develop the model for this arrhythmia, described in Fig. 13, we have
modified the normal-rhythm model in two ways. First, we have modified the part of
the normal-rhythm model which corresponds to the part of the heart which exhibits
the abnormal physiology. Therefore we have replaced the ventricular sub-model by a
new ventricular sub-model and an ectopic ventricular pacemaker sub-model. In the
ventricular model the QRS and the PVC signatures both include their corresponding
T-waves. That is, the signature includes the entire depolarization-repolarization cycle.
Therefore the inverted T-wave typical of PVCs is directly included here. Second, we
have modified, as required, the remaining parts of the normal-rhythm model so that
they can interact with the part modified in the first step. The primary purpose of these
modifications is to allow retrograde conduction and resetting of the SA node.

6.3. Wenckebach

Wenckebach is characterized by a multibeat cycle, typically three or four beats
long, in which the P-waves are repeated at constant intervals but the P-R interval
grows until, in the final beat of the cycle, the R-wave is dropped. Then the cycle begins
again with the P-R interval reset to its initial small value. The increase in the P-R
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interval from beat to beat is usually greatest at the beginning of the cycle.
Physiologically, the cause of Wenckebach is a defective AV node. Specifically the
AV nodc is such that it has a long rclative refractory period. At the beginning of the
multibeat Wenckebach cycle, the AV node is at rest. The first excitation occurs and is
transmitted to the ventricies and the AV node enters its refractory period. Because the
refractory period is prolonged, the sccond excitation from the atria reaches the AV
nodc during its relative refractory period. The impulse is still able to excite the AV
nodc (although propagation is at a reduced speed) and through it the ventricles, since
the cilective refractory period is past. However, the carly excitation of the AV node has
two cflects: the following P—R interval and the following refractory period are both
prolonged. Thus the third excitation occurs cven earlicr in the relative refractory
period. This Icngthening of the P-R interval and refractory period continues until
finally a depolarization wave attempts to excite the AV node during its effective
refractory period and 1s not conducted at ail. This leads to the dropped R wave and
gives the AV node time to complete its refractory peried before the next excitation.
We now describe the behaviour of the AV-nodal sub-model during a Wenckebach
cycle (see Figs 14 and 15). Initially the AV node is at rest: x' = 0. When the AV sub-
modcl is excited, the state transitions into the AV, DL. The transit time for this DL is
the AV-junctional delay. A transit time from the AV, DL is biased toward shorter
valucs than a transit time from any of the other AV, DLs. Therefore, as desired, this is
the shortest possible AV-junctional delay. After the AV-junctional dclay, the AV sub-
model attempts 1o excite the ¥ sub-model: x! = 1. Then the AV sub-model enters the
cflective refractory period. Note that the effective refractory period contains a transit-
time contribution only from the ER, DL and therefore the effective refractory period
is short. Foliowing the eflective refractory period is the relative refractory period
consisting of the total time spent in the RR,, RR,,and RR;DLs. If the next excitation
of the AV sub-model is sufficiently delayed, the AV sub-model’s state will pass through
the three RDLs labelled RR;, RR,, and RR, and re-enter the resting state (state )
Howevcr, that is not what usually occurs. Rather, the refractory period duration is
such that the next excitation of the AV sub-model generally occurs during the relative
refractory period. More specifically, because this first beat of the cycle had a short AV-
junctional delay (using dclay line AV,) and a short effective refractory period
(avoiding delay lines ER,, ER,, and ER,). the next excitation of the AV sub-modcl
generally occurs while the AV sub-modecl's state 15 in RR,, the final RDL of the
relative refractory period. Therefore, the excitation of the AV sub-model forces the AV
sub-model’s state to transition into the AV, DL, leading to a somewhat longer AV-

P
Sa-Atria S
AV
Kaadil
V. o ls=7

Figure 14. Model for Wenckebach. Sub-model structure.
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SA-Atrig: x°
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QO otharwise

Figure 15. Model for Wenckebach. Block diagram.

junctional delay than in the previous beat and subsequently to a somewhat longer
effective refractory period (ER, and ER; DLs).

At this stage of the cycle the state is typically in the RR, DL when the lollowing
excitation occurs. Therefore, the state is reset into the AV, DL. This leads to a still
longer AV-junctional delay (AV,; DL} lollowed by a longer effective refractory period
(ER,, ER,, and ER, DLs). This continues uniil the AV slate is still in one of the
effective-refractory-period DLs when the following excitation occurs. This excitation
has no eflect on the AV sub-model and consequently is not conducted to the ventricles
and a beat is dropped. The state of the AV sub-model conlinues through the effective-
refractory-period DLs, the relative-refractory-period RDLs, and finally traps in the
resting state (state 0) where it remains until the next excitation occurs, at which point
the Wenckebach cycle 1s restarted.
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The actual Markov chains and signatures are shown in Fig. 16. They were chosen
based on a nominal heart rate of 60 beats per minute with a Markov chain cycle
period of #% s and a signature sampling period of ti7 5. Note the multiple copies of the
P-wave signature with one, two, or three leading zeros. These were introduced so that
P-waves couid begin at any signature sample rather than at only every fourth
signature sample (i.c. at a Markov chain transition). Similar remarks apply to the V-
and T-waves in the V sub-model. Since we are most interested here in illustrating
cvent timing, we have not included beat-to-beat morphology variations (i.e. the
signature noise variances have been set to zero).

S4-Atrigl: x©

@eeowom@@o%’of’“oo
) oY BN P
“‘%@@@@@@@@@@@m

= g 1§ 1-0 - 1§ 1 1

{1;1; -lo}

Ventricular: x2 O othurmine

y, J23 :z{v! 34}
P " 10 otherwise

(a)
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()

Figure 16. Model for Wenckebach. (a) Markov chains. (h) Signatures.
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The Tabile gives a summary of a few successive Wenckebach periods and Fig. 17
displays the corresponding simulated ECG. Note the lengthening P-R intervals
followed by a dropped beat, Note also that the model is not deterministic. For
example, sometimes the Wenckebach cycle is four beats long and sometimes it is five.

Time since
Time P-R interval last P wave
P wave number (s} {s) (s)
0 000 013
1 G99 021 099
2 207 027 1-08
3 303 dropped 096
4 394 012 091
5 4-89 023 095
6 596 0-24 1-07
7 7-01 033 1-05
8 805 dropped 1-04
9 899 016 094
10 999 022 1-00
I 10-99 023 1-00
12 11-91 dropped 092
13 12-89 018 098
14 13-94 022 1-05
15 14-98 024 1-04
16 1602 028 1-04
17 1696 dropped 0-94
18 17-95 009 099
19 1893 026 098
20 19-96 03 1-03

Model for Wenckebach: simulated P-P and P-R intervals. The simulated ECG from which

this interval data were computed is shown in Fig. 1 7.
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Figure 17. Model for Wenckebach: simulated ECG. The interval data are tabulated in the
Table.
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