
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Massachusetts Institute of Technology, MIT Libraries]
On: 6 January 2011
Access details: Access Details: [subscription number 922844579]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Journal of Systems Science
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713697751

Modelling electrocardiograms using interacting Markov chains
Peter C. Doerschuka; Robert R. Tenneyb; Alan S. Willskya

a Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Cambridge, MA, U.S.A. b Alphatech, Inc., 2 Burlington Executive Center, Burlington, MA, U.S.A.

To cite this Article Doerschuk, Peter C. , Tenney, Robert R. and Willsky, Alan S.(1990) 'Modelling electrocardiograms
using interacting Markov chains', International Journal of Systems Science, 21: 2, 257 — 283
To link to this Article: DOI: 10.1080/00207729008910361
URL: http://dx.doi.org/10.1080/00207729008910361

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713697751
http://dx.doi.org/10.1080/00207729008910361
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Modelling electrocardiograms using interacting Markov chains 

PETER C. DOERSCHUKt .  ROBERT R. TENNEYf.  and 
ALAN S. WILLSKY7 

A methodology is developed for the statistical modelling of cardiac behaviour and 
electrocardiograms (ECGs) that emphasizes (o) the physiological event/detailed 
waveform hierarchy; and ( b )  the importance orcontrol and timing i n  describing the 
interactions among the several anatomical sub-units ofthc heart. This methodology 
has been motivated by a desire to develop improved algorithms for statistical 
rhythm analysis. Specifically, to develop algorithms that capture cardiac behaviour 
in a more fundamental way but that stop short of complete accuracy in order to 
highlight decompositions that can be exploited to simplify statistical inlerencc based 
on these models. Our models consist of interacting linite-state processes, where a 
very few olthe transition probabilities for each process can take on a small number 
oldikrent values depending upon the states ofneighbouring processes. Each finite- 
state process is constructed from a very small set of elementary structural elements. 
We illustrate our methodology by describing models for three cardiac rhythms and 
include simulation results for one or these, namely the rhythm known as 
Wenckebach. 

1. Introduction 
In this paper we describe a methodology lor the statistical modelling of cardiac 

activity and electrocardiograms (ECGs). O u r  primary purpose in developing this 
methodology is to provide a basis for the design of automatic, statistical algorithms 
for rhythm analysis of ECGs, that is, the analysis of the sequential behaviour of both 
atrial and ventricular events as  observed in the ECG (Doerschuk er al. 1990). 

Modelling of ECGs is certainly not a new endeavour (see Thomas er (11 .  1979, 
Feldman and Hubelbank 1977, Oliver er a/ .  1977, Leblanc and Roberge 1973, Cox 
er ul. 1972) nor is the development of statislical ECG models for the express purpose 
of designing signal analysis algorithms. However, the modelling methodology we 
describe here differs in a number of important ways from any earlier work. Roughly 
speaking, we have tried, on the one hand, to overcome the limitations ofexisting signal 
processing models by capturing cardiac physiology in a far more fundamenlal way. 
O n  the other hand, we have stopped far short of the detail found in physiologically- 
accurate models and rather have aimed both to keep only enough detail to allow 
successful signal processing and to highlight several critical features found in 
physiological models that allow the development of computationally feasible 
algorithms. 

In particular, as we briefly describe in  the next section, the behaviour of the heart is 
characterized by the occurrence of a small number of events corresponding to 
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contraction or relaxation of different major parts of the heart, and each of these events 
leads to the appearance of a particular waveform in the ECG. While very accurate 
descriptions of the ECG require breaking the ECG down further to account for the 
behaviour of very small units of heart muscle, one can generally think of describing the 
ECG in hierarchical fashion-an upper level describing discrete cardiac events and a 
lower level describing the impact these events have on the ECG. As we discuss in 5 2, 
previously developed rhythm analysis methods typically make use of this decompo- 
sition implicitly-i.e. only the event level description is modelled, and i t  i s  assumed 
that a wave detection preprocessor has been applied to the ECG to provide event- 
level inputs to the signal processing algorithms. Our approach differs from these in 
two important ways. I n  the first place, we explicitly model the two-level hierarchy, 
thereby allowing an integrated approach to wave detection and rhythm tracking. This 
provides a fundamental way to feed rhythm information back to the wave detection 
process. Secondly, and more importantly, our event-level descriptions of cardiac 
behaviour are far more detailed and accurate than those used previously. I n  
particular, the heart consists of several distinct sub-units which interact relatively 
infrequently but strongly. Furthermore, the coordinated action of the heart (or any 
particular anomaly) can be explained in terms of control and timing. Specifically, the 
contraction of one part of the heart initiates the contraction of a neighbouring portion 
(and thereby controls i t s  behaviour) i f  that portion of the heart i s  ready lo  contract 
(i.c. i f  the timing i s  right). As we describe, these observations plus a detailed 
examination of the mechanisms that characterize different cardiac rhythms have led 
us to develop a methodology for constructing spatially distributed models of cardiac 
behaviour, emphasizing control and timing, and using a very small number of 
building blocks. 

This paper i s  organized as follows: in the next section we provide a brief 
introduction to cardiac anatomy and physiology, review previous cardiac modelling 
investigations, and present an introduction to our modelling methodology. Sections 3 
and 4 describe the general mathematical structure of the upper and lower levels, 
respectively, ofour models, and in 3 5 we describe in detail the building blocks used to 
construct our upper level models. In 9 6 we present three examples of rhythm models 
using our methodology, including the complete details and some simulations for one 
of these, namely the rhythm known as Wenckebach (5 6.3). 

2. Cardiac anatomy, physiology, and modelling 
I n  this section we summarize the physiological basis of our models, review some of 

the literature on ECG modelling, and present an overview of our model. The heart 
pumps blood by coordinated muscular contraction. The coordination i s  achieved by 
waves ofdepolarization that propagate in the cell membranes of a conduction system 
embedded in the muscular and structural elements of the heart and in the muscle cells 
themselves. The voltage fluctuations measured at the surface of the chest due to these 
depolarization waves are the ECG. After a depolarization wave passes through a 
patch of membrane, the patch must be repolarized before i t  i s  able to support a second 
wave. The period of time during which i t  i s  unable to support a depolarization wave i s  
called the refractory period. Many parts of the heart depolarize periodically without 
external stimulation and are called autorhythmic. 

A normal heart beat is initiated by an autorhythmic depolarization of the sino- 
atrial (SA) node. The depolarization propagates into the atria, causing the P-wave in  
the ECG (see Fig. I) and causing the atria to contract and pump their contents into 
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Figure I .  Waveform definitions for one beat of an idealized normal ECG. 

the ventricles. The depolarization wave thcn propagates through the atrio-ventricular 
(AV) node which is the only electrical connection in the normal heart between the 
atria and ventricles and which delays the wave by 70-80 ms thereby allowing the 
blood pumped out of the atria to fill the ventricles before the ventricles contract. 
Findly, the depolarization wave propagates through the specialized ventricular 
conduction system and ventricular muscle causing the major R- and minor Q- and 
S-waves in the ECG and causing the ventricles to pump their contents into the lungs 
and systemic body. Because the ventricles have a greater mass of muscle than the atria, 
the R-wave is greater in amplitude than the P-wave. Finally. the ventricular muscle 
rcpolarizes causing the T-wave in the ECG. (The ECG wave caused by the 
repolarization of the atria is masked by the much larger R-wave.) 

Though the preceding description of cardiac functioning is simplified, we believe 
that not much additional complexity is required in order to model a wide variety of 
cardiac rhythms. Specifically, there are a small number of general mechanisms present 
in a physiologically normal heart which, when combined with three broad categories 
of physiological abnormalitics, lead to a wide variety of  arrhythmias. 

The first normal mechanism concerns autorhythmicity. The frequency of auto- 
rhythmic depolarization varies with anatomic location and is greater in more 
proximal structures. (Structure A is proximal to structure B if it occurs before 
structure B in the normal depolarization scquence. The reverse of proximal is distal.) 
This association between loc;~tion and frequency is called the gradient of  autorhyth- 
micity. When an autorhythmic structure is depolarized by an external source, the 
biological clock counting down to the next spontaneously generated depolarization is 
reinitialized. The time interval between the reinitialization and the next spontaneous 
depolarization may simply be the usual autorhythmic period, in which case the 
process is called resetting, o r  it may be somewhat longer, in which case the process is 
called stunning. In light of the gradient of autorhythmicity and the reset/stun 
phenomena, the SA node is generally able to win the competition with more distal 
autorhythmic centres for control of the normal heart. 

What we have just described is the unidirectional propagation of the depolariza- 
tion wave through the heart in the normal direction, called the antegrade direction. 
Another normal mechanism in the cardiac conduction system is that i t  is also capable 
of propagation in the reverse, or  retrograde, direction. This is obviously important 
when depolarizations are initiated in distal structures. 

Let us now turn to the three categories of physiological abnormalities: 

(o) decreased conduction capabilities 

( h )  increased or  decreased rates of autorythmicity 
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260 P. C. Doerschuk et al. 

(c) abnormal electrical pathways connecting various portions of the heart (typi- 
cally in the atrioventricular conduction pathway). 

Decreased conduction can occur in several forms, for example, total block of a l l  
depolarization waves, block of all depolarization waves coming from a particular 
direction, decreased propagation velocity, or increased refractory time. Increased 
(decreased) autorhythmicity refers to an increased (decreased) rate of autorhythmic 
depolarizations. Abnormal electrical pathways include several different structures 
that bypass all or part of the AV node and therefore have marked effects on cardiac 
timing. This small number of abnormalities. and the normal mechanisms described 
previously, are commonly used to explain nearly all classes of cardiac rhythms. 

As we indicated in 5 1, modelling of ECGs is  not a new topic. Numerous 
researchers have developed extremely detailed electromagnetic models of the heart. 
either without particular attention paid to the time evolution of the sources of [he 
electromagnetic activity ((Geselowitz 1979. McFee and Baulc 1972, Plonsey 1979. 
Tripp 1979, Wikswo Jr er ul. 1979) or with time evolution as an important 
consideration (Miller and Geselowtiz 1978. Vinke er id. 1977, Moe and Mendez 1966. 
Cohn er ul. 1982, Smith 1982, Rosenberg er ul. 1972, Zloof er ul. 1973, Thiry and 
Rosenberg 1974, Thiry er a/. 1975). These modelling elTorts had developing detailed 
and physiologically accurate models of cardiac electrical activity as their objective, 
not developing models that could provide a useful basis for ECG signal processing. In 
particular, these models generally are deterministic in nature or are only slightly 
removed from determinism (e.g. by allowing an initial, stochastic choice of para- 
meters). Furthermore, the level ofdetail included i s  not only greater than is needed for 
signal processing purposes but also involves more degrees offreedom than one could 
hope to identify using the very small number of measurement traces takcn in a typical 
ECG. On the other hand, there arc features in some of these efforts that we also 
include in our methodology. In particular, some of these models employ hierarchical 
descriptions of cardiac timing and the actual electromagnetic effects, and they al l  
generally treat the heart as an interconnection of (typically very large numbers of) 
sub-models that interact infrequently but strongly. 

Models that have been developed for signal processing purposes can be divided 
into two broad categories depending upon whether they model the sample-by-sample 
behaviour of the ECG or just the sequential arrivals of the waves appearing in the 
ECG. Many authors (Uijen era / .  1979, Sornmo er nl. 1981, Murthy er (11. 1979) have 
used sample-by-sample models of individual ECG beats, while others (Borjesson et a/. 
1982. Haywood rr (11. 1970, Richardson el 01. 1971) have considered sample-by-sample 
modcls of complete rhythms. However, none of these models describe the cardiac 
rhythms in the detail with which this paper i s  concerned. 

Now let us briefly turn to event-based models. I t  i s  important to realize that the 
scqucntial index for such modcls i s  very different from that for sample-by-sample 
models. In a sample-by-sample model, a data point y(k) represents an ECG 
measurement at the kth time instant. I n  an event-based model, a data point represents 
the time intcrvnl between the kth occurrence of one type of wave and the next 
occurrence ofthat or another specified type of wave. I n  most of these models only the 
interv:ds between successive R-waves (corresponding to ventricular contractions) are 
considered. In one set of models, these R-R intervals are quantized into several 
classes. In most cases only three classes-short, regular, or long-are considered, and 
various rhythms are described either by use of Markov chains (Gersch er al. 1970 and 
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1975, Tsui and Wong 1975, Shah rr 01.  1977, White 1976) or deterministic finite 
automata (Hristov 1971) to model the evolution of R-R interval patterns. I n  another 
set of papers (Gustafson er al. 1978, 1981) interval lengths are not quantized, and an 
extensive set of vector Markov models are developed to describe the evolution of 
event interval patterns (see Ciocloda 1983 for an independent, though less compre- 
hensive, development). In the first part of this work (Gustafson er al. 1978) only R-R 
intervals are considered, while P-R intervals are also considered in the later paper. 

From the perspective of the approach in this paper, these event-oriented models 
do highlight the timing information, which i s  of primary importance in tracking or 
identifying cardiac rhythms. Howwer, the use of purely event-based models has some 
fundamental limitations. In 5 1 we mentioned one of these, namely the implicit 
:issumption that wave detection has already been performed in a prc-processor. As we 
indicated, one might expect superior performance in an integrated algorithm in which 
rhythm tracking information assists wave detection. Only in Gustafson er al. (1981) 
docs one not find an ( d  koc) use of feedback from tracker to wave detector. While the 
absence ol;i fundamental way in which to effect this feedback i s  a limitation, i t  i s  not 
the most serious one. A more basic problem with event-based models i s  the limited 
way in which one must model pre-processor errors. Specifically, this framework allows 
onc to model the error in measuring the interval between two events, but it cannot 
:iccommodate the possibility that one of these events i s  missed altogether by the pre- 
processor. While this i s  not a serious problem for the large-amplitude QRS complex, i t  
i s  a problem lor the much smaller P-wave. The difficulty here i s  with the sequential 
event-related index. which also creates another even more serious problem. In 
p:irticular, in many cardiac rhythms, such as those involving some type of AV node 
abnormality that on occasion causes a ventricular contraction to be dropped, there 
i s  a ooriuhle number of P-waves between successive R-waves. For rhythms such as 
these, the use of an event-oriented time index breaks down. or at best leads to models 
with a tenuous connection to actual cardiac behaviour. 

From the preceding discussion, the hierarchical nature of the ECG is apparent- 
an upper level describing events and a lower level describing the waveforms resulting 
from events. Also apparent i s  the spatially-distributed nature of the ECG and the role 
of control and timing in the interactions between the spatially-distributed compo- 
nents. Here, by control, we mean one portion of the heart triggering activity in 
another portion and, by timing, we mean the fact that the effect of this triggering may 
depend upon the state of the receiving portion. Finally. though we have not 
emphasized i t  in the previous discussion, there i s  a temporal decomposition. 
Specifically. the spatial decomposition of the heart into sub-units which interact 
strongly but at infrequent intervals compared to the time scale at which each subunit 
evolves. 

I n  our approach to cardiac modelling. we highlight the occurrence of cardiac 
events. as has been done in  previous signal processing models. However we hwe. at 
the same time, avoided the difficulties described previously by basing our models Far 
more closely on cardiac physiology and anatomy. The key to accomplishing this in an 
eRective way is to rely heavily upon and to highlight the spatial, temporal, and 
hierarchical aspects of cardiac phenomenology that we have just described. 

Figure 2 presents a three-sub-model example of the type of model we consider. The 
square boxes at the upper level  of the hierarchy comprise the discrete-state 
physiological model, which captures the sequential evolurion of high level events in the 
heart. The mathematical structure of these models i s  described in Q: 3. Each sub-model 
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i 
I 
I 

ECG 

Figure 2. Spatial and hierarchical decompositions. 

represents a functional anatomic structure (e.g. the atria, the ventricles, etc.). The 
directed solid lines indicate the initiator and rec~pient of control inputs, which we call 
intcr:wxions. For example, the transmission ofa depolarization wave from atria to AV 
node might be modelled via an interaction in which the present state of a sub-model 
representing the atria causes a transition in the AV-nodal sub-model, representing the 
initiation of the AV-nodal depolarization. 

The triangular objects in Fig. 2 are parts of the electromagnetic model which 
models the actual observed weveforms. Each sub-model corresponds to the gen- 
erxtion of the ECG contribution from a particular anatomic structure of the heart 
(e.g. P-waves from the atria). The dashed lines indicate the control of the electro- 
magnetic level by the physiological level o f a  single sub-model. These inputs are used 
to initiate the gcneration of waveforms in the observed ECG. For example, the 
occurrence of a particular trmsition in the physiological portion of an atrial sub- 
model might initiate the gcncration ofa P-wave in the corresponding electromagnetic 
sub-model. The mathematical structure ofthe electromagnetic level i s  described in 5 4. 
Note that the electromagnetic level does not affect the physiological level and that 
there arc no interactions among electromagnetic sub-models. 

Finally it is very important to notc that often it i s  the interactions between the 
normal and abnormal parts of the heart that are of critical importance. That is, many 
of the changes in an arrhythmic ECG are due to how an abnormal sub-structure 
aRects a normal part of the heart, rather than to a direct change in the ECG caused by 
the depolarization of the abnormal sub-structure. For example, the existence of a 
faster clcctrical connection bclween atria and ventricles leads to marked changes in 
the timing ofthe P- and QRS-waves and possibly to abnormal QRS complexes, even 
though the atria and ventricles are perfectly normal. 
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Modelling elecrrocardiograms using interacring Markov chains 263 

In our models of arrythmias, we take the same approach. That is, we begin with a 
normal rhythm model which is transformed into an arrythmia model by altering the 
appropriate sub-model. The contribution of the altered sub-model and its interactions 
with the unaltered sub-models create the arrythmic ECG. In order for the interactions 
to occur, we often must generalize the normal sub-models. The alterations are to 
include properties which were left out initially because, in the normal rhythm, they 
represented unnecessary detail. 

3. Upper hierarchical level 
In this section we discuss the upper hierarchical level, which we call the 

physiological model. This level is concerned with discrete events, and we have chosen 
to use Markov chains to describe their evolution. Because of the importance of spatial 
decompositions, we have also chosen a highly structured class of chains described in 
the following. 

The state space of our Markov chains is the cross product of a set of spaces 
corresponding to the 'states* of sub-processes which comprise the overall chain. Each 
sub-process corresponds to one of the anatomic sub-units of the heart. Furthermore, 
there is a direct correspondence between each state of a sub-process and a physical 
state of the corresponding anatomic sub-unit. We call each sub-process a sub-model. 

Let a, be the state of the overall Markov chain which consists of a set of N sub- 
processes denoted xL, i=O, ..., N -  I. A key feature of our models is that the 
transition density, p(x.+, I.\..), has a great deal of structure. Specifically: 

(n) Given x,, the transitions of each of the component sub-processes are 
independent. That is, 

(b)  For each sub-process there are far fewer values of 

than there are values of {x i ,  j # i} 
That is, we assume that 

where 

denotes the net interaction of all other sub-processes with the ith sub-process. 
Typically the number of possible values of I(, is quite small. In fact, in our 

examples 11: takes on at most two or  three values and only one or two 
transition probabilities of the ith chain are affected by the value of hb. Thus, the 
sub-processes are 'almost' independent, but, as we will see, these interactions 
can have an extremely important effect on the evolution of the sub-processes. 

We now consider a very simple model for normal rhythm in order to fix these ideas 
about interacting sub-processes. This model has two sub-models (Fig. 3(a)), corre- 
sponding to a division of the heart into two anatomic sub-structures: the SA-atrial 
(SA/A) sub-structure, composed of the SA node and atria, and the AV-ventricular 
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sub-model 

AV-ventricles 
sub-model 
(sub-model 1) 

Electromagnetic 
sub-model: 
P wove 

I f  the s l o l e  o f  the SA-at r ia l  sub-model e (1. 2. 3.4):  

I f  the stale ol lha SA-atr ial  sub-model a {I]: 

rub-model 
ORS complel and 

I T  wave I 

Figure 3. Simple model lor normal rhythm. ( a )  Sub-model block diagram. (h )  SA-atrial sub- 
model. ( c )  AV-ventricular sub-model. 

(AV/V)  sub-structure, composed of the A V  junction and ventricles. As in the normal 
heart, the SA/A sub-model originates interactions with the AV/V sub-model, 
corresponding to a super-ventricular depolarization originating in the SA node and 
propagating through the AV junction in  the antegrade direction. For simplicity, the 
rcverse (retrograde) conduclion i s  not modelled. 

In the S/A sub-model (Fig. 3(b)), the state transition from 0 to I represents the 
firing of the SA node and the atrial depolarization. The time required for the state to 
travel from state 1 to state 0 models the random time between successive depolariza- 
lions of the autorhythmic SA node. Finally, by assuming that the atrial conduction 
velocity is infinite (an oversimplification for the purpose of illustration only), state I 
also represents the excitation of the AV node by the atrial depolarization. 

That state 1 (in the SA/A sub-model) represents the excitation of the AV node is  
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Modelling electrocardiogroms using interacting Markou chains 265 

reflected in the differing probabilities assigned in the AV/V sub-model (Fig. 3(c)) 
depending on whether the SA/A sub-model state is or is not in state I. AV/V sub- 
model state 0 represents the fully repolarized state of the AV node and ventricles. l i the  
AV/V sub-model is in that state and the SA/A sub-model moves into state I ,  then the 
AV/V-sub-model state transitions into state 1 with probability 1. This transition models 
the excitation of the AV node by the atrial depolarization. If the AV/V sub-structure is 
not receptive to a depolarization (i.e. is refractory), then the sub-model state will not 
be in state 0 and the change in the probabilities due to the SA/A-sub-model state 
occupying state I will have n o  effect on the evolution of the AV/V sub-process. The 
time required in the AV/V sub-model for the state to travel through states I and 2 
represents the (deterministic) AV-junctional delay time. The transition from state ? to 
state 3 represents the initiation of ventricular depolarization. Finally, the time 
required for the state to travel through states 3,4 and 5 represents the (random) AV- 
junctional and ventricular repolarization time. After repolarization the state traps in 
state 0 awaiting another excitation from the SA/A sub-model. 

4. Lower hierarchical level 
We now discuss the lower level in our  hierarchy, which we call the electromagnetic 

model. The spatial decomposition that was imposed on the upper hierarchical level is 
also imposed on the lower hierarchical level since each individual waveform in the 
ECG that is modelled by the electromagnetic level is due to a single anatomic sub- 
unit. 

Certain transitions between states in each physiological sub-model correspond to 
the initiation of waves, so these transitions are used to drive the corresponding 
electromagnetic sub-model. The output ofeach of the electromagnetic sub-models is a 
linear superposition of signals with shifted origins. The unshifted signals are called 
signatures. The origin is the time a t  which the initiating transition in the correspond- 
ing physiological sub-model occurs. Each signature is a shift-invariant finite- 
durational deterministic function with additive while zero-mean Gaussian noise 
(signature noise), where the additive noise is independent from one occurrence of the 
signature to the next and represents beat-to-beat variations. Finally. the outputs of the 
individual electromagnetic sub-models are linearly superposed and the result is 
observed in additional exogenous, white observation noise. 

Let Sj, be the signature from the ith electromagnetic sub-model when the ith 
physiological sub-model makes a transition from j lo k. Let u be the white gaussian 
observation noise. The observation j8 is then 

= 1 ,+,(r - 4 + ~ ( r )  
i n 

(This equation represents an  abuse of notation. Specifically, each occurrence of a 
particular signature includes noise independent of the noise in other occurrences. 
Thus the various occurrences of S:, are not identical-although the determinstic 
mean is the same.) 

Consider again the example of the previous section. The state transition from 0 
to 1 in the S/A sub-model represents the firing of the SA node and the atrial 
depolarization. Thus. as indicated in the diagram, the electromagnetic-model re- 
sponse to this transition is the P-wave of the ECG. The electromagnetic-model 
response to the other state transitions, e.g. from 2 to 3, is identically zero and hence is 
not indicated. 
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I n  the AV/V sub-model, the state transition from 2 to 3 represents the initiation of 
the ventricular depolarization. Hence the electromagnetic-model response to the 
corresponding transition i s  the QRS complex and the T-wave. Here, we are modelling 
the QRS complex and T-wave as deterministically coupled waveforms-the ST 
interval duration i s  not random. Note that a more complex model of the same type 
could allow a random coupling. The electromagnetic-model response to the other 
state transitions i s  identically zero. 

Several aspects of the electromagnetic model merit comment. 

( n )  Note that some anatomic sub-units do not cause waves in  the ECG (e.g. the AV 
node) and therefore the corresponding electromagnetic sub-model does not 
exist. Similarly, most transitions model the timing between wave and inter- 
action initiations and therefore have no effect on the corresponding 
electromagnetic sub-model. Thus very few transitions actually contribute to 
the ECG. 

(h) The use of a gaussian white noise to model both beat-to-beat morphology 
vari:ltions and observation noise i s  an obvious oversimplification. Incorpor- 
ating more complex and realistic models i s  straightforward. For example, one 
could easily use a time series model for each waveform or, by adding states and 
transitions to a sub-process model, one could introduce additional signature- 
initating transitions to model dramatically variant morphologies for any 
particular wave. The observation noise serves the role of modelling all non- 
non-cardiac contributions to the observed signal, including motion artifact, 
electromyogram signals, and 60 Hz interference. Again i t  i s  straightforward to 
replace the white noise model by a more accurate correlated noise model. As 
all of these modifications add detail rather than new structure to our models, 
we have not included them here in order to present the essential elements of 
our modelling methodology. I t  i s  worth pointing out, however, that the level of 
realism needed in such models depends upon the use to which the models are 
to be put. I f  they are used as the basis for signal processing algorithms, model 
fidelity i s  only of indirect importance, as one generally seeks to find the 
simplest model that leads to a successful algorithm. For example, a white noise 
model was successfully used in  the work of Gustafson et al. (1978. 1981). 

( c )  The Markov chain cycle interval need not equal the signature sampling 
interval. Typically, the Markov chain cycle interval can be taken to be 
substantially larger than the signature sampling interval, reflecting the dif- 
ference in time scale between interaction events (which determine the Markov 
chain cycle interval) and events internal to the anatomic sub-models (which set 
the signature sampling interval). Because signatures can only be initiated at 

Markov chain cycles, unequal intervals appear to imply that signatures cannot 
be initiated at arbitrary signature samples. However, by using an augmenta- 
tion technique as in (b), this problem can be overcome. For an example, see the 
Wenckebach model of $ 6 .  

( d )  Given the sampling interval used, the transition probabilities of the sub- 
models determine not only the sequencing of events but the overall rate at 
which events occur. Setting these parameters for a specific ECG i s  essentially a 
problen~ in parameter estimation for Markov chains, and a standard algorithm 
to perform this task would be needed in a complete signal processing system. 
Moreover, given that ECG behaviour and in particular heart rate may be non- 
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stationary, one may wish to view these transition probabilities as time-varying, 
or  equivalently to incorporate an  adaptive parameter estimation algorithm 
into the signal processing system. Such a system would, of course, also bc 
needed t o  detect changes in rhythm such :IS the onset of tachycardia, much as  
in the work of Gustafson et al. (1978, 1981). 

5. Microscopic model-structural elements 
In this section we describe the small number ofclemcntary structural elements that 

are used in constructing our  physiological models. Each of these elements is a piece of 
a Markov chain. There are two fundamental structural elements, which are essentially 
elapsed time clocks, out  of which three other structural elements are constructed. 

The first structural element is the delay line (DL)  which is a part of a complete 
chain. When the state of a chain enters the first state of such an  element, denoted i ,  i t  
undergoes a random time delay (transit time) and then arrives a t  the final state o. The 
probability mass function (p.m.f.) on the transit time is specified and unaffected by 
events in the other chains. In block diagrams we use the symbol shown in Fig. 4 for a 
DL. Here the arrows at either end of the DL indicate transitions into the initial state i 
from other states in the overall sub-model (possibly including o) and from the final 
state o to other states (possibly including i). No transitions exist to or  from external 
states to states internal to the DL. The D L  is used t o  model simple timing behaviour 
in the coordinated operation of  the heart. Two examples of DLs are displayed in 
Fig. 5. In the first of these [here are no feedback transitions so  that the transit time is 
bounded by the length of the DL. In the second example the presence of feedback 
transitions implies that there is, in principle, no  upper bound on the transit time. In 
both examples the transit time p.m.f. can be adjusted by varying the several transition 
probabilities. 

Figure 4. Delay line symbol. i = initial state and o = final state. 

( b )  
Figure 5. Examples of delay lines. ( a )  Without feedback transitions. ( h )  With feedback 

transitions. 
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268 P. C. Doerschtrk et al. 

The second structural element i s  the resettable delay line (RDL). This element i s  
used to model both timing and the resct and stunning phenomena that can occur 
when a depolarization wave reaches an autorhythmic site. We often use the term delay 
line as a generic name for both DLs and RDLs. The differences between the RDL and 
the D L  are that there are two different mechanisms for the state to exit an RDL, and 
an RDL has transition probabilities that are controlled, in a very simple and specific 
way, by interactions initiated by another sub-process in the overall Markov chain. 
The possible interactions impinging on a chain containing an RDL are divided into 
two classes denoted normal and abnormal. Within each class the transition prob- 
abilities in the RDL are constant. As long as the interaction i s  i n  the normal class, the 
RDL behaves as a DL, transiting from the initial state i toward the final state o. 
However, when the interaction i s  in the abnormal class, a second set of transition 
probabilities is used for the next transition. The second set of transition probabilities 
forces the state to leave the RDL and enter a state, external to the RDL, called the 
resct state and denoted by r. 

In block diagrams we use the symbol shown in Fig. 6 for an RDL. Here the dashed 
arrow and symbol c denote the effect of interactions from other sub-models. The 
variable c takes on two values: R (for 'reset') i f  the current impinging interaction is in 
the abnormal class and R(for 'not reset') otherwise. An example of an RDL is  given in 
Fig. 7. 

The third structural element i s  the autorhythmic element which i s  capable of 
sustained cyclic behaviour without external excitation. This element i s  constructed 
from DL(s) and/or RDL(s). The basic idea is to attach the input and output of a D L  
together, as in Fig. 8. I f  a D L  is  used, this specifies the entire chain. I f  an RDL is  used, 

Figure 6. Resettable delay line symbol. i = input, o = normal output, r = reset output, and 
c = control input. 

Figure 7. Example of a resettable delay line and i t s  reset state r 
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Figure 8. Basic autorhythmic element 

it is also nccessnry to specify the identity of the reset state (see 5 6.2). The choice of D L  
vcrsus RDL dcpends on the physiological process being modelled. Typically one or 
morc transitions in thc autorhythmic clement will initiate ECG signaturcs (corre- 
sponding. for example, to the P-wave resulting from the autorhythmic operation of 
the SA nodc). 

Thc fourth clemcnt is the passive transmission line (PTL),  constructed from a D L  
o r  an  RDL. Wc illustrate the DL case in  Fig. 9. A PTL is a connection of a single state, 
c;dled the resting statc, to the initial state of a DL. The only transition out of the 
resting state is into thc DL. The probability for this transition. denoted p, depends on 
the value of the current interaction impinging on the sub-model containing the PTL. 
The possible v:tlues of this interaction are partitioned into two disjoint sets called the 
autonomous and non-autonomous sets. When the interaction is in the autonomous 
set. p=O.  That is. the rcsting state is n trapped statc. In the other case (non- 
autonomous), p z 0. The PTL can be used to model a part of the heart, such as  the AV 
node. that begins dcpolarization only when an external dcpolarization wave excites it. 
One or more transitions in the PTL may generate signaturcs in the ECG. 

The fifth element is the bi-directional refractory transmission line (BDRTL), 
shown in Fig. 10, which is a complete sub-model and is used to model structures 
cnpable of supporting conduction in either the antegrade or retrograde direction. All 
unlabelled transition probabilities in Fig. 10 take on the value 1. The state 0 
corresponds to the repolarized resting state of the anatomic substructure. The RDL 
labelled A ( R )  corresponds to antcgrade (retrograde) conduction. In accordance with 
these designations. the BDRTL attempts to excite the sub-model(s) corresponding to 
the adjacent distal (proximal) anatomic sub-structure(s) whenever the BDRTL state 
occupies state o, (o,), the final state of the antegrade (retrograde) conduction RDL. 

r = resting state 

Figure 9. Passive transmission line. 

Figure 10. Bidirectional refractory transmission line. 
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RDLs are used here in order to model the possible collision of two depolarization 
waves, one in the antegrade and one in  the retrograde direction. The relationship 
between the resting state 0 and the RDLs A and R i s  a simple generalization of the 
PTL structural element. The third delay line (F), a DL, corresponds to the refractory 
period. A non-resettable delay line i s  used because, at the level of physiological detail 
that we are modelling, the duration of the refractory period i s  independent of all 
external events. 

The state transition probabilities. p,,,,po,,, and pa., and the RDL state transition 
probabilities (controlled exclusively through c, and c,)  are the only probabilities that 
depend on the states of other sub-models, that is, on the interactions impinging on the 
BDRTL. In the absence of external excitations 

- 
po.A = po., = P , , ~  = 0 and c ,  = c,  = R 

That is, under these conditions, i f  the process was in the resting state, i t  remains there 
until an excitation initiates depolarization. I f  the process was in the middle of a 
depolarization, the depolarization continues in a normal fashion. 

l i the BDRTL is  excited from the antegrade direction, but not simultaneously from 
the retrograde direction, then 

- 
po.* = I, po,, = p,,, = 0, c, = R and c. = R 

In this case, i f  the process was in the resting state, i t  immediately exits and begins an 
antegrade depolarization. I f  the process i s  in the middle of a retrograde depolariza- 
tion, the depolarization i s  stopped by resetting the RDL. This models the collision of 
the two depolarization waves. After this point in time the process proceeds through 
the D L  modelling the refractory period. 

For the reverse case (i.e. excited from the retrograde direction but not from the 
antegrade direction), the values are 

- 
po., = I. pO.., = pO.F = 0, C, = R and c, = R 

Finally, i f  the BDRTL i s  simultaneously excited from both the antegrade and 
retrograde directions, then 

PO.F = 1, PO." = PO., = 0. C A  = C R  = R 

Depending on what anatomic sub-structure the BDRTL models, i t  may or may 
not contain transitions which generate a non-zero response in the electromagnetic 
model. I f  the BDRTL does contain such transitions, then there are three basic 
situations which we illustrate assuming that the BDRTL models the atria which can 
be excited by the SA node or by retrograde conduction from the AV node. The three 
situ:~tions in which signatures are generated correspond to the following. 

( ( 1 )  Antegrade conduction without a reset (e.g. a normally conducted P-wave from 
the SA node through the atria). 

( h )  Retrograde conduction without a reset (e.g. a retrograde P-wave from the AV 
node through the atria). 

(r) Reset-antegrade or retrograde conduction, corresponding to collisions of two 
depolarization waves. Such an occurrence generates a so-called fusion de- 
polarization (e.g. a fusion P-wave due to joint SA-nodal and retrograde-AV- 
junction depolarizations). 
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Though it is not the only possibility, we have used the transition from the resting 
state to  i, or  i ,  to  generate the non-reset antegrade and retrograde electromagnetic 
model responses. For simplicity we have assumed that a fusion depolarization is 
identical to the response from the earlier of the two depolarization waves. Modifica- 
tions allowing for a diRerent signature for fusion waves can be easily accommodated. 

6. Examples of ECG models 
The small number of building blocks described in the preceding section can be 

used to  construct models for any cardiac rhythm. In Doerschuk (1985), we have 
shown how one can write down models for cardiac arrhythmias involving re-entrant 
pathways (in which depolarization waves can, in fact, cycle through parts of the heart 
several times), abnormal atrial-ventricular conduction pathways (such as the so-called 
WolR-Parkinson-White syndrome), and the presence of ectopic foci (see 5 6.2). In 
this section we illustrate our  methodology by presenting models for three different 
cardiac conditions: normal rhythm, normal rhythm with ectopic focus premature ven- 
tricular contractions, and a type of second degree AV block called Wenckebach. The 
first two models are specified at the level of the structural elements of the previous 
section, while the third is described in complete detail. 

A simple, graphical notation is helpful in describing the models. Figure 11 
illustrates a model made up of four sub-models, denoted by the boxes labelled 
CO. ..., C3. The directed lines between boxes indicate the existence of an  interaction in 
the indicated direction. Thus, for example, sub-model CO initiates an interaction with 
sub-model CI .  The number of values which the interaction can take on is not 
specified. The wavy lines terminating in SO, ..., S3 indicate that the sub-model of the 
originating box contains one or  more transitions which initiate a signature whose 
name is the label at the end of the arrow. 

52 
s3 $JsO C 2  5' 

Figure I I .  Illustration of [he block diagram description o f a  class of models 

6. I .  Norn~ol rhgrh~n 
A block diagram of a model for a prototypical normally conducted rhythm and a 

listing of the intersub-model interactions is given in Fig. 12. The heart is divided into 
four anatomic sub-structures-SA node, atria. AV junction, and ventricles-each of 
which is modelled by a separate sub-model. Qualitatively, the model behaves in the 
following manner. The SA-nodal sub-model initiates a depolarization wave. This is 
the only way in which a depolarization can be initiated in this model. The 
depolarization then propagates antegrade through the atrial sub-model, producing 
the P-wave; the AV-junctional sub-model, which makeszerocontribution to  the ECC: 
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and finally the ventricular submodel, producing a QRS-T complex. Because only 
antegrade conduction is included in the model, sub-model0 is not resettable and sub- 
models 1 and 2, which would be BDRTLs if retrograde conduction were included, 
consist instead of DLs. 

Sub-model I :  Atrial Sub-rtmcturc 

Sub-model 2:  AV-junctional Sub-rtmcturc 

Electromagnetic Model: 
0RS.T complex 

(4 
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Modelling elrctrocardiograms using inreracting Markou chains 273 

Sut-model 0: Sub-modcl for the SA-nodal Suk tme tu re  

lhir sub-model ir autonomous. 

Sub-model I :  Submodel  for the Atrial Sub-structum 

Sub-modcl 2: Submodcl  for the AV-junctional S u k t r u c l u r r  

Sut-model 3: Sub-modcl for the Vrntricular Sub-structure 

(4 
Figure 12. Model for normal rhythm. ( a )  Sub-model structure. ( b )  Block diagram. 

(c) Intersub-model interactions. 

6.2. Normal rhythm with ectopic Jocus PVCs 

There are numerous autorhythmic sites in the heart, and occasionally, even in a 
normal heart, one of these sites may successfully initiate a depolarization wave. Such a 
site is referred to as an ectopic focus or pacemaker. If this focus is located in the 
ventricles, then the ventricles can contract a short time before the next normal de- 
polarization would have occurred. Such a beat is called a premature ventricular con- 
traction (PVC). PVCs can also arise through a re-entrant pathway mechanism (in this 
case there is typically a more regular relationship between the timing of the PVC and 
the previous, normal, QRS complex). I t  is certainly possible to model this mechanism 
using our methodology, but we do not do  so here. Because of the anomalous location 
at which this depolarization starts, the resulting QRS waveform is generally quite 

SA nods El 

AV junction & 
R 

Venl r i~ le~  PVC 

Ectopic 

Pacarnoher 
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Sub-model 3: Ventricular Substructure 
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Sub-model I :  Sub-modd for the Atrial Subi t ruc ture  

11 if x0 e lo0) and r2 E (o:] 

' 10 olhcrwix 

Fizure 13. Model lor normal rhvthm with PVCs @enereled bv an eclo~iclocus. la1 Sub-model - - 
slruclure (hl Hlucl. dlagram. ( 1 . 1  Inlmub-model inleracllon\. These inleraclions arc 
slmllar to those ollhu nurmal rhblhm model Jcscrthcd in Fly I? Thcrcbre. only !he 
interactions lor sub-model I are given. 

different from a normal beat. Typically the PVC is a more spread-out waverorm as  the 
initiation of the contraction of one ventricle precedes that of the other by a noticeably 
larger time interval. Furthermore, when a PVC occurs, it is possible for the resulting 
depolarization wave lo propagate in a retrograde direction, colliding with the normal 
SA-node-initiated wave o r  arriving a t  and resetting the SA node. 

In order to  develop the model for this arrhythmia, described in Fig. 13, we have 
modified the normal-rhythm model in two ways. First, we have modified the part of 
the normal-rhythm model which corresponds to  the part of the heart which exhibits 
the abnormal physiology. Therefore we have replaced the ventricular sub-model by a 
new ventricular sub-model and an ectopic ventricular pacemaker sub-model. In the 
ventricular model the QRS and the PVC signatures both include their corresponding 
T-waves. That is, the signature includes the entire depolarization-repolarization cycle. 
Therefore the inverled T-wave typical of PVCs is directly included here. Second, we 
have modified, as required, the remaining parts of the normal-rhythm model so that 
they can interact with [he part modified in the first step. The primary purpose of these 
modifications is to  allow retrograde conduction and resetting of the SA node. 

6.3. U'enckebach 

Wenckebach is characterized by a multibeat cycle, typically three or  four beats 
long, in which the P-waves are repeated a t  constant intervals but the P-R interval 
grows until, in the final beat of the cycle, the R-wave is dropped. Then the cycle begins 
again with the P-R interval reset to its initial small value. The increase in the P-R 
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interval from brat to beat is usually greatest at the beginning o f  the cycle. 
Physiologically, the cause o f  Wenckebach is a defective AV node. Specifically the 

AV node is such that i t  has a long relative refractory period. A t  the beginning o f  the 
multibeat Wenckebach cycle, the AV node i s  at rest. The first excitation occurs and is 
transmitted to the ventricles and the AV node enters its refractory period. Because the 
refractory period is prolonged, the second excitation from the atria reaches the AV 
node during its relative refractory period. The impulse is s t i l l  able to excite the AV 
node (although propagation is at a reduced spced) and through i t  the ventricles, since 
thecflective refractory period i s  past. However, theearly excitation ofthe AV node has 
two effects: the following P-R interval and the following refractory period are both 
prolonged. Thus the third excitation occurs even earlier in the relative refractory 
period. This lengthening o f  the P-R interval and refractory period continues unt i l  
finally a depolarization wave attempts to excite the AV node during its eKective 
refractory period and is nor conducted at all. This leads to the dropped R wave and 
gives the AV node time to complete its refractory period before the next excitation. 

We now describe the behaviour of the AV-nodal sub-model during a Wenckebach 
cycle (see Figs 14 and 15). Init ial ly the AV node is at rest: x '  = 0. When the AV sub- 
niodel is excited. the state transitions into the AV, DL. The transit time for this DL is 
the AV-junctional delay. A transit time from the AV, DL is biased toward shorter 
valucs than a transit time from any o f  the other AV, DLs. Therefore, as desired, this i s  
the shortest possible AV-junctional delay. After the AV-junctional delay, the AV sub- 
model attempts to excite the V sub-model: .rl = I. Then the AV sub-model enters the 
effective refractory period. Note that the effective refractory period contains a transit- 
time contribution only from the ER, DL and therefore the effective refractory period 
is short. Following the effective refractory period is the relative refractory period 
consisting of the tolal time spent in  the RR,, RR,, and RR,DLs. I f  the next excitation 
o f  thc AV sub-model is sufliciently dclayed. the AV sub-model's state wil l  pass through 
the three RDLs labelled RR,, RR,, and RR, and re-enter the resting state (state 0). 

However, that is not what usually occurs. Rather, the refractory period duration is 
such that the next excitation ofthe AV sub-model generally occurs during the relative 
refractory period. More specifically, because this first beat of thc cycle had a short AV- 
junctional delay (using delay line AV,) and a short effective refractory period 
(avoiding delay lines ER,. ER,. and ER,). the next excitation o f  the AV sub-model 
generally occurs while the AV sub-model's state is in  RR,, the final R D L  o f  the 
relative refractory period. Therefore. the excitation ofthe AV sub-model forces the AV 
sub-model's state to transition into the AV, DL, leading to a somewhat longer AV- 

Figure 14. Model for Wenckebach. Sub-model structure. 
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AV: I' 

I i t  .O.O 

ow' (0 0fh.rwi.. 

R i l  xO.O 
Cw. {R oth.r.i,. 

Figure 15. Model for Wenckebach. Block diagram. 

junctional delay than i n  the previous beat and subsequently to a somewhat longer 
effective refractory period (ER, and ER, DLs). 

At this stage o f  the cycle the state i s  typically i n  the RR, DL when the following 
excitation occurs. Thererore, the state is reset into the AV, DL. This leads to a still 
longer AV-junctional delay (AV, DL )  followed by a longer effective relractory period 
(ER,. ER,, and ER, DLs). This continues unt i l  the AV state is still in  one of the 
effective-refractory-period D L s  when the following excitation occurs. This excitation 
has no effect on the AV sub-model and consequently i s  not conducted to the ventricles 
and a beat is dropped. The state of the AV sub-model continues through the effective- 
refractory-period DLs, the relative-refractory-period RDLs, and finally traps in  the 
resting state (state 0) where i t  remains unt i l  the next excitation occurs, at which point 
the Wenckebach cycle i s  restarted. 
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The actual Markov chains and signatures are shown in Fig. 16. They were chosen 
based on a nominal heart rate of 60 beats per minute with a Markov chain cycle 
period of A s  and a signature sampling period of& s. Note the multiple copies of the 
P-wave signature with one, two, or  three leading zeros. These were introduced so that 
P-waves could begin at any signature sample rather than at only every fourth 
signature sample ( i s  at a Markov chain transition). Similar remarks apply to the V- 
and T-waves in the V sub-model. Since we are most interested here in illustrating 
event timing, we have not included beat-to-beat morphology variations (i.e. the 
signature noise variances have been set to zero). 
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( h )  

Figure 16. Model for Wenckebach. ( a )  Markov chains. ( h )  Signatures 

The Table gives a summary of  a few successive Wenckebach periods and Fig. 17 
displays the corresponding simulated ECG. Note the lengthening P-R intervals 
followed by a dropped beat. Note also that the model is not deterministic. For 
example, sometimes the Wenckebach cycle is four beats long and sometimes it is five. 

Time 
Time since 

P-R interval last P wave 

dropped 
012 
0.23 
0.24 
0.33 

dropped 
0.16 

dropped 
018 

dropped 
009 

Model for Wenckebach: simulated P-P and P-R intervals. The simulated ECG from which 
this interval data were computed is shown in Fig. 17. 
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Figure 17. Model lor  Wenckebach: simulated ECG. The interval data are tabulated i n  the 
Table. 
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