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The construction suggested by Lemma 1 enables transformation 
of a prof?lem of maximization of E, to a problem of maximiza- 
tion of E , ;  hence randomness can be introduced. To summarize, 
given a quadratic function of the form E, or E,, it is possible to 
construct a neural network which will perform a random local 
search for the maximum. 

A rich class of optimization problems can be represented by 
quadratic functions [4]. A problem which not only is repre- 
sentable by a quadratic function but actually is equivalent to it is 
that of finding a minimum cut (MC) in a graph [4], 171. In what 
follows, we present the equivalence between the MC problem and 
neural networks (Theorem 4 and 5) and also show how neural 
networks relate to the directed min cut (DMC) problem (Theo- 
rem 6). To make the foregoing statements clear, let us start by 
defining the term cut in a graph. 

Definition: Let G = ( V ,  E )  be a weighted and undirected graph, 
with W being an n x n symmetric matrix of weights of the edges 
of G. Let Vi be a subset of V,  and let V - ,  = V -  Vl. The set of 
edges each of which is incident at one node in Vl and at one node 
in V _  is called a cut of the graph G. A minimum cut in a graph 
is a cut for which the sum of the corresponding edge weights is 
minimal over all Vl. 

Theorem 4 (41, [7]: Let G = ( V ,  E )  be a weighted and undi- 
rected graph, with W the matrix of its edge weights. Then the 
MC problem in G is equivalent to maxQ<;( X ) ,  where X E 
{ - l,l}”, and 

def I’ 

Q , ( X ) =  C C Y . , K X ,  
I = I  

The foregoing theorem can be generalized to neural networks 

Theorem 5: Let N = ( W ,  T )  be a neural network with W be- 
ing an n X n zero diagonal matrix. Let G be a weighted graph 
with ( n  + 1) nodes with its weight matrix W,; being 

The problem of finding a state V in N for which E,  is a global 
maximum is equivalent to the MC problem in the corresponding 
graph G. 

Proof: Note that the graph G is built out of N by adding 
one node to N and connecting it to the other n nodes with the 
edge connected to node i having a weight 7; (the corresponding 
threshold). Clearly, if the state of the added node is constrained 
to -1, then for all X E  { -l , l}n,  

Q c ( X 7 - 1 )  = E , ( X ) .  
Hence the equivalence follows from Theorem 4. Note that the 
state of node ( n  + 1) need not be constrained to - 1. There is a 
symmetry in the cut; that is, e,( X )  =e,(- X )  for all X E 
{ -l,l}“+’. Thus if a minimum cut is achieved with the state of 
node ( n  + 1) being 1, then a minimum is also achieved by the cut 
obtained by interchanging 6 and V -  I (resulting in X,,+ = - 1). 

What about directed graphs? Is it possible to design a neural 
network which will perform a local search for a minimum cut in a 
directed graph? 

Definition: Let G = ( V ,  E )  be a weighted and directed graph. 
Each edge has a direction and a weight. The weights of the 
directed edges (arcs) can be represented by an n x n matrix W in 
which w,, is the weight of the arc from i to j .  Let VI be a subset 
of V,  and let V -  = V -  VI. The set of arcs each of which has its 
tail at a node in Vl and its head at a node in V - ,  is called a 
directed cut of G. 

Theorem 6 [ I ] :  Let G = ( V ,  E )  be a weighted directed graph 
with W the matrix of its edge weights ( W  is not necessarily 

symmetric). The network N = (I?, T )  performs a local search for 
a DMC of G where , 

1 n  

‘ 1 = 1  

The MC problem as defined in the paper is NP-hard [2]. The 
importance of the relation between the MC problem and neural 
networks lies in the fact that the MC problem can be viewed as a 
generic graph problem which can be mapped to the model. Thus 
theoretically one can transform every NP-hard problem to the 
MC problem and use the corresponding neural network to per- 
form a local search algorithm. The problem with this approach is 
that only the problem is mapped while the algorithm for solving 
the problem is imposed by the way the model is operating. 
Theorem 6 is an example of programming the network to per- 
form a specific local search algorithm for solving the DMC 
problem. It was relatively easy to find such a mapping, probably 
because the algorithm we chose is the one performed by the 
network for the MC problem. 

An open problem is the following: there are many known local 
search algorithms for solving hard problems that have good 
performance; find a known local search algorithm which can be 
mapped to the neural network model. 
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wavenumber plane. z ( 7 )  can be reconstructed in the mean-square sense 
from its observation on the countable number of circles of radii r, = i.lr/B, 
i E N ,  or of radii = a , , " / B ,  I E N, where a,,n denotes the ith zero of 
the nth-order Bessel function Jn(x) ,  and n is arbitrary. 

I. INTRODUCTION 
Spatially distributed random processes arise in various fields 

including image processing, meteorology, geophysical signal pro- 
cessing, oceanography, and optical processing. Since it is not 
possible to obtain observations at every point in space, one is led 
in practice to deal with sampled versions of these processes. 
Petersen and Middleton [l] extended the one-dimensional (1D) 
Shannon sampling theorem to m-dimensional Euclidean spaces. 
In particular, they developed efficient point sampling and recon- 
struction techniques for wavenumber-limited homogeneous ran- 
dom fields which minimize the number of sample points required 
per unit area to reconstruct a given field in the sense of a 
vanishing mean-square error. 

Here, by contrast, we present a new reconstruction procedure 
for two-dimensional (2D) wavenumber-limited isotropic random 
fields sampled along circles in the Euclidean plane, where the 
reconstruction is to be understood in a mean-square sense. 
Isotropic fields are characterized by the fact that their mean 
value is a constant independent of position and their autocovari- 
ance function is invariant under all rigid body motions, i.e., 
translations and rotations. We show in Section I1 that the invari- 
ance of isotropic covariance functions under all rigid body mo- 
tions implies that the power spectra of such fields are circularly 
symmetric in the wavenumber plane; some authors have used this 
latter fact to define the notion of isotropy (e.g., [l]). In some 
sense, isotropy is the natural extension of the notion of stationar- 
ity in one dimension. Furthermore, isotropic random fields arise 
in a number of practical problems such as the black body 
radiation problem [2], the study of underwater ambient noise in 
horizontal planes parallel to the surface of the ocean [3], and the 
investigation of temperature and pressure distributions at con- 
stant altitude in the atmosphere [4]. The importance of the 
sampling techniques that we develop stems from the fact that in 
some applications such as the mapping of the gravitational fields 
of planets using orbiting satellites [5], sampling along circles is 
more natural than sampling at discrete points on a fixed lattice. 
Furthermore, these new sampling schemes have been found use- 
ful in developing high-resolution spectral estimation techniques 
for isotropic random fields [6]. Finally, as will be explained later, 
our sampling techniques can be implemented in practice with a 
small mean-square error by sampling the isotropic fields at a 
discrete set of points along circles rather than continuously along 
each circle. 

An important property of isotropic fields is that, when they are 
expanded in a Fourier series in terms of the polar coordinate 
angle 8, the Fourier coefficient processes of different orders are 
uncorrelated [7]. We consider here a wavenumber-limited isotropic 
random field z(3),' whose spectral density function is zero 
outside a disk of radius B centered at the origin of the wavenum- 
ber plane. By developing sampling and reconstruction techniques 
for the Fourier coefficient processes zk (r) associated with z( F), 
we prove that the process z(3) can be reconstructed in a mean- 
square sense from its observation on the countable set of circles 
of radii r, = ir/B, i E N, or of radii r, = a , , , / B ,  i E N, where 
a,, , is the i th zero of the nth-order Bessel function J , ( x )  and the 
index n of J, (x) can be selected arbitrarily. 

Section I1 contains some standard properties of the Fourier 
expansions of isotropic random fields. The main results of this 
correspondence are described in Section I11 where two proce- 
dures for sampling wavenumber-limited isotropic random fields 
are developed. Finally, Section IV contains conclusions. 

'Throughout this paper we use 7 to denote a point in 2D Cartesian space. 
The polar coordinates of this point are denoted by r and 0. 

11. FOURIER SERIES FOR ISOTROPIC FIELDS 
The covariance function 

K (  F) = E [  z( C) z( C + 3)] (2.1) 
of any zero-mean isotropic random field z(3) is a function of r 
only, so that, by abuse of notation, we can write 

K ( 3 )  = K ( r ) .  (2.2) 
Such a field can be expanded into a Fourier series of the form 
171, t81 

m 

z ( i )  = z,(r)eJflB (2.3) 
n=- -03  

where the Fourier coefficient processes of different orders are 
uncorrelated, i.e., 

E[z,(r)z,(s)I = o  (2.5) 
for n f m. If we assume that K ( r )  has a Hankel transform 
[9], Le., if K ( r )  E Ll(rdr),  and that K(17- s'l) is the kernel 
of a self-adjoint nonnegative definite operator defined over 
L,(rdrdO), then it can be shown that the covariance function 
k , ( r , s )  of the nth-order Fourier coefficient z , ( r )  is given by 
PI,  I81 

k , ( r , s )  = E[z,(r)z,(s)l 

= ~ - 0 3 J f l ( X r ) J f l ( A s ) S ( A ) A d A .  (2.6) 

In (2.6) J,( .) is the Bessel function of order n and S( A )  is the 
power spectrum associated with z( F), i.e., 

= 277('~( r )  J,(  A r )  rdr 

= S( A )  (2.7) 
where A = $ 1  is the magnitude of the wave vector X, and we have 
taken advantage of the circular symmetry of K(7) .  Note that 
(2.6) implies that S(A) can be recovered from k , ( r ,  s) for an 
arbitrary value of n by taking the nth-order Hankel transform [9] 
of k , ( r , s )  with respect to the variable r and dividing by 
J,(As)/27r. This fact will be useful in explaining the results 
presented in the next section. 

. 

111. SAMPLING THEOREMS 
We shall develop two different procedures for sampling and 

reconstructing the Fourier coefficient processes associated with a 
given isotropic random field. Using the sampling theorems for 
the Fourier processes, we show that a wavenumber-limited 
isotropic random field can be reconstructed from its observations 
on a countably infinite number of concentric circles with a 
vanishing mean-square error. 

A. Sampling the Covariance Functions of the Fourier Processes 
Let us begin by presenting two different sampling procedures 

for the covariance function of the nth-order Fourier coefficient 
process. 

Theorem 1: The nth-order Fourier coefficient process covari- 
ance function k , ( r , s )  of an isotropic random field z(3), whose 
spectral density function S( A )  is wavenumber-limited to the 
region A < B, can be reconstructed exactly from the sample 
values of the rn th-order Fourier coefficient process covariance 
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function k , , ( r ,  s) taken over a lattice of points { ( u , , ~ , / B ,  
a,, nl / B ) ;  i, j E N }, where a,, is the ith zero of the m th-order 
Bessel function Jm(x).  Here m may equal n.  

Proof: Over the interval 0 < X < B,  J , ( X r )  can be expanded 
into a Fourier-Bessel series of the form [lo] 

Substituting (3.1) for J, , (Xr)  and J , , ( A s )  into (2.6) yields the 
desired result 

Note that, according to Theorem 1, it is possible to reconstruct 
the covariance functions of the Fourier coefficient processes of 
all orders given sampled values of the covariance function of a 
single Fourier coefficient process of any order. This should not 
come as a surprise: if one can reconstruct k,,,(r, s) exactly from 
its sample values on the grid { ( U , . ~ / B ,  U , . ~ , / B ) ;  i, j E N } ,  
then, as mentioned earlier, one can easily compute S(X). Given 
S(X), one can then evaluate Iqz(r, s )  for all n via (2.6). We now 
state and prove a second sampling theorem for the covariance 
function k,,( r ,  s) of the n th-order Fourier coefficient process. In 
this case we use samples of k , , ( r , s ) ,  rather than of k m ( r ,  s). 

Theorem 2: The n th-order Fourier coefficient process covari- 
ance function k,?( r ,  s) of an isotropic random field z( J ) ,  whose 
spectral density function S( A )  is wavenumber-limited to the 
region A < B,  can be reconstructed exactly from its own sample 
values taken over a lattice of points { in/B,  j n / B ) ;  i, j E N } ,  or 
over a lattice of points { ( U , , ~ ! / B ,  U ~ , ~ ~ / B ) ;  i, j E N } ,  where 
u,, ,~, is the i th zero of the m th-order Bessel function qm( x). 

Proof: Consider the identity (see the Appendix) 

(3.5) 
and where 8". ,, denotes the Kronecker delta function, Le., a,,, = 1 
if n = 0 and cY0, ,, = 0 otherwise. Substituting (3.4) into (2.6) yields 

Similarly, by substituting the identity (see the Appendix) 

where 

into (2.6) we obtain 

Observe that Theorem 2 asserts that the same sampling grid 
can be used for all of the Fourier coefficient process covari- 
ance functions. The sampling grid can be selected to be 
{ ( i r / B ,  j n / B ) }  or {(al,m/B,a,,n,/B)} where m is fixed but 
arbitrary. This fact will prove useful in deriving sampling theo- 
rems for isotropic random fields. 

B. Sampling Isotropic Fields 

Theorem 2 can now be used to prove the following important 
result. 

Theorem 3: The n th-order Fourier coefficient process z,, ( r )  
corresponding to an isotropic random field z ( F )  with a 
wavenumber-limited spectrum S( X )  that vanishes identically for 
all X > B can be reconstructed with zero mean-square error from 
its samples { Z,~(U,, n l / B ) ;  i E N } ,  where is the ith zero of 
the mth-order Bessel function Jnl(x) as 

m 

z n ( r )  = c c:,,(.,.,( 91, (3 .lo) 
1 = 1  

and from its samples { z,(in/B); i E N }  as 

(3.11) 

where the series in (3.10) and (3.11) converge in the mean-square 
sense, and d : ( r )  and c: tm(r)  are defined by (3.5) and (3.Q 
respectively. 

Proof: To show that the series on the right side of (3.10) 
converges in mean to z,,(r), let us denote by 2 : / ( r )  its partial 
sum 

From (3.1) and (2.6), it can be shown that 

(3.12) 

Using the above two equations, we obtain 

lim E [ z,, ( r 1 ( Z,! ( r )  - z:, / ( 4 )  I 
I - C C  

I + m  

(3.15) 

= 0. (3.16) 

Combining (3.15) with (3.16), it follows that 

(3.17) 
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By using a similar approach it can be shown that the right side of 
(3.11) converges in mean to z n ( r ) .  

Note that Theorem 3 shows that the nomtationaly 1D process 
z , ( r )  can be reconstructed from its sample values at the points 
{ u!,~]/B: i E N  } or { h/B: i EN}. Observe also that the 
weighting functions c&,,(r) and d:(r)  used in the reconstruction 
of z n ( r )  from its sample values (see (3.10), (3.11)) are orthogonal 
in the sense of [l], i.e., 

which guarantees the linear independence of the sample values of 
z,(r). As pointed out in [l], the weighting functions need not be 
orthogonal to achieve zero mean-square error. However, it seems 
that the convergence of the series is more rapid near the sampling 
points when orthogonal weights are used [l]. 

Comment: In practice, one is likely to use only a finite number 
of circles and approximate (3.10) and (3.11) by the partial sums 

(3.18) 

(3.19) 

The mean-square error in such approximations can be bounded 
by noting that 

Hence using the fact that 

we obtain 

where 

Sm,= max S(X). (3.23) 
O S X S B  

A similar bound can be obtained for the mean-square error that 
results from approximating zn( r) by z[ I (  r). 

Now recall that knowledge of z(7) on a circle of radius r’ is 
sufficient to compute all of the Fourier coefficient processes 
z, ,(r)  at the location r = r‘. Hence we have the following impor- 
tant result. 

Theorem 4: Any isotropic random field z( F )  with a wavenum- 
ber-limited spectrum S(X) that vanishes identically for all X > B 
can be reconstructed with zero mean-square error from its sam- 
ples on the countable set of circles of radii r, = a,,,,/B, i E N ,  
where aI*,, is the ith zero of the mth-order Bessel function 
Jni(x), as 

(3.24) 

and from its samples on the countable number of circles of radii 

q = ir/B, i E N ,  as 

(3.25) 

where the series in (3.24) and (3.25) converge in the mean-square 
sense. 

Theorem 4 follows directly from Theorem 3 and (2.1) and (2.2) 
and is a generalization of a result in [6]. A natural question to be 
asked here, is which of the above two sampling schemes, i.e. the 
Bessef sampling scheme involving sampling on circles of radii 
r, = al, /B or the uniform sampling scheme using circles of radii 
r, = i.n/B, is more efficient in terms of minimizing the number of 
sampling circles per unit radial length. This leads us to examine 
the distribution of the zeros a,,m of the mth-order Bessel func- 
tion Jm(x) ,  along the positive real axis. For large i and a fixed 
value m, the approximate zeros of the mth-order Bessel function 
are given by the McMahon expansion [ l l ]  

(4m2 - 1) 
e . . ,  (3.26) 

 IT i + - m - -  I 2 4 1  
which shows that the separation AI, , ,  between two successive 
large zeros al+l.m and q m  of Jm(x), with i >> m, is approxi- 
mately equal to 

(4m2 - 1) 
A1.m = a r + 1 , m  - a1.m = I T +  8i2 +0( iC3) .  (3.27) 

In particular, two successive large zeros of Jo( x) are separated by 
a distance slightly less than IT, whereas two successive large zeros 
of J,(x) for m + 0, are separated by a distance slightly larger 
than IT. As the order i of the zeros al, of J,(x) tends to infinity 
the separation AI, between successive zeros is asymptotically 
equal to IT, for all m. Furthermore, examination of the small 
zeros of the mth-order Bessel function reveals that even for i = 2, 
A,,,, is approximately equal to a. Hence the Bessel sampling 
scheme is slightly more efficient than the uniform sampling 
scheme if the zeros of a large order Bessel function are used to 
generate the nonuniform circular sampling grid. However, the 
Bessel sampling scheme is primarily of theoretical interest, while 
the uniform sampling scheme is of more practical value since it 
does not require the knowledge of a large number of zeros of one 
of the Bessel functions. 

Finally, observe that in practice one does not need to sample 
the field z(7) continuously as a function of B along any of the 
circles r,. Note that along any of these circles z( r , ,B)  is a 
“stationary” process with covariance function 

f q r , ; O , O )  = E [ z ( r , , B ) z ( r , , O ) l  
m 

= .kfl(r,,r,)eJ“(e-q). (3.28) 
n - - m  

Examination of a plot of J,(x)  [ l l ]  reveals that 

J , ( x )  “ 0 ,  f o r x B 1 ,  n > x .  (3.29) 

Hence, by using (2.6) and the Lebesgue dominated convergence 
theorem to interchange the operations of limit and integration, 
we obtain 

k , ] ( r , , r , ) = O ,  forBr,*l ,n>Br, .  (3.30) 

Equation (3.30) implies that along any circle of radius r,, z( r , ,B)  
can be approximated with a small mean-square error by the finite 
sum 

. ( . , ,e)  = z,(q)e/ne (3.31) 
N 

n = - N  
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where N 2 Br,. In particular, (3.24) and (3.25) can be approxi- By using the identity [9, pp. 43, 991 

otherwise where 
i n  ( A 4  

r = -  
f B A , T ~ ( ~ )  = d i “ ( r )  >>in (3.33) where 7;,(x) is a Chebyshev polynomial of order n ,  it can be 

shown that the Fourier transform of J , , (Xr )p , (X)  with respect to 
r is band-limited to B radians per unit distance. Hence a,,,, 

J , , (Xr )p , (X)  = d ; ( r ) q 8 (  :A), O < X <  B (A.3) 

or 

L , , l ( r )  = c,’:.,(~) N, >> a,,,,,. (3.34) J, , (Xr)p , (X)  can be written as [lo] 
W 

‘ B  
The coefficients ~ , ~ ( r , ) ,  - N, I n I N,, can be determined by 

Comment: If a finite number I of circles is used in (3.32), then 
the mean-square error in approximating z ( 7 )  by the partial sum 

sampling z(r , ,  0 )  at 24 + 1 points. r = O  

where d : ( r )  is given in (3.5). 

I N ,  

r = l n = - N ,  
43 = c c J . , , ( : ~ ) z , , ( r ) e ’ “ B  (3.35) Proof of (3.7) 

Consider the identity [ll, p. 721, 

can be shown to be bounded by 

where 

By repeatedly differentiating both sides of (AS) with respect to A 
and using the identity 

\ for the case where n < I and the identity 

(3.36) 

where S,,,, is defined in (3.23). 

IV. CONCLUSION 
We have shown that a wavenumber-limited isotropic random 

field, with a power spectrum that is zero outside a disk of radius 
B centered at the origin of the wavenumber plane, can be 
reconstructed in a mean-square sense from its observation on the 
countable set of circles of radii r, = A,,,,/B, i E A’, where is 
the ith zero of the mth-order Bessel function Jn , (x ) ,  or of radii 
r, = i n / B ,  i E N .  This result is a direct consequence of the 
sampling theorems derived for the Fourier coefficient processes 
associated with the given isotropic random field. 

The sampling schemes developed in this correspondence can be 
extended easily to isotropic random fields in higher dimensions, 
provided they are expanded in spherical harmonics instead of 
Fourier series. Finally, observe the parallel between our sampling 
procedures and the corresponding one-dimensional results. In 
one dimension, a stationary process can be reconstructed in the 
mean-square sense from its observation on a countable number 
of spheres in a space of dimension one, Le., at a countably 
infinite number of points. In the general m-dimensional case, an 
isotropic random field can be reconstructed in the mean-square 
sense from its observation on a countably infinite number of 
spheres in the m-dimensional space. 

APPENDIX 
Proof of (3.4) 

Let p R ( X )  be the function 

for the case where n > I ,  we obtain 

where 

111 

[31 

[41 
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