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Fig. 4. Same example as Fig. 2 with the linear filter, but measurement corrupted with
noise. (1) is estimate, (2) is true value.

discrete state-space system model. Both versions are treated using a linear
discrete measurement equation. These algorithms were investigated with
reference to the theory of linear RPE methods and the theory of nonlinear
filtering. The innovations model formulation was found to be attractive,
and the algorithms were implemented and tested against computer
simulations showing excellent convergence and bias properties that by
far exceed those of a linear continuous/discrete filter.
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Failure Detection and Identification

MOHAMMAD-ALI MASSOUMNIA, GEORGE C. VERGHESE,
AND ALAN S. WILLSKY

Abstract—Using the geometric concept of an unobservability subspace,
a solution is given to the problem of detecting and identifying control
system component failures in linear, time-invariant systems. Conditions
are developed for the existence of a causal, linear, time-invariant
processor that can detect and uniquely identify a component failure, first
for the case where components can fail simultaneously, and second for
the case where they fail only one at a time. Explicit design algorithms are
provided when these conditions are satisfied. In addition to time domain
solvability conditions, frequency domain interpretations of the results are
given, and connections are drawn with results already available in the

literature.
1. INTRODUCTION

Failure detection and identification (FDI) is currently the subject of
extensive research, and is being used in the design of highly reliable
control systems. An FDI process essentially comprises two stages:
residual generation and decision making. In this note we concentrate on
residual generation, and refer the reader to the extensive literature on the
decision-making phase of FDI (see [21], [10], and [19] for comprehensive
surveys). All our discussion will be for finite-dimensional, linear, time-
invariant (LTI) systems.

The output of a residual generator is, by definition, a function of time
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that is nominally zero or close to zero when no failure is present, and that
is distinguishably different from zero when a component of the system
fails. Residuals are obtained by exploiting the dynamic relationships
among the sensor outputs and actuator inputs [6]-[8]. There are two
residual generation approaches that are not only applicable to both sensor
and actuator FDI but that also avoid assumptions about how the failed
component behaves. These are the methods of generalized parity
relations, first studied by Chow {4], [5], and later extended by Lou et al.
[12], [13] and Massoumnia and Vander Velde [16], and the failure
detection filter introduced by Beard [2], then amplified by Jones [11] and
recently revisited by Massoumnia [14] and White and Speyer [23].

Each of these two approaches involves the design of a linear processor
with a particular restricted structure. For generalized parity checks,
residuals are generated from linear combinations of sensor outputs and
applied inputs, taken over a finite window. The combinations are chosen
to yield residuals that are zero when the components are functioning
perfectly, but that have a subset deviating from zero when a particular
system component fails. The class of linear processors considered in this
design procedure is evidently restricted and does not, for example, allow
much freedom to optimize noise rejection.

In Beard’s failure detection filter, the linear processor is a full-order
observer, with the residuals taken to be the innovations of the observer.
The design procedure consists of choosing the observer gain so that
failures of different system components affect the residuals in linearly
independent directions, thus greatly simplifying the subsequent decision-
making process. The restriction to full-order observers is, as we shall see,
a rather severe constraint. It not only limits significantly the classes of
problems that have solutions—because the set of possible failure modes
must satisfy a strong mutual detectability condition [14]—but it also
makes the FDI problem and the design process appear more complicated
than necessary.

In this note we remove the structural constraints imposed in these
previous studies. We only require that our residual generation mecha-
nisms be finite-dimensional, causal, LTI systems, and that they produce
residuals with the same desirable properties as in previous studies, i.e.,
residuals that are sensitive only to particular failure modes. As we shall
see, it is possible to construct such processors to detect and uniquely
identify failures under less restrictive conditions than those previously
reported. This is reflected in the fact that we now obtain necessary and
sufficient conditions for solution of each of the FDI problems posed in this
note, whereas [14] was largely limited to obtaining sufficient conditions
for solvability of a more restricted class of problems.

We begin in Section II by formulating the FDI filter problem, and show
how sensor failures and changes in the system parameters can be modeled
as pseudoactuator failures. In Section III, the fundamental problem of
residual generation (FPRG) is defined. In this problem, it is assumed that
there are only two possible failure modes, and that we desire a residual
that is affected by the first failure mode but not by the second. Section IV
considers the extension of the fundamental problem of residual generation
(EFPRG) to the case of multiple failures occurring simultaneously. The
solvability condition for this problem is that the failure events satisfy a
certain strongly identifiability condition. In Section V, the most general
form of the FDI problem (within the framework of Section II) is solved.
The requisite condition is now that the failure events be identifiable, in a
sense defined in that section.

This note relies heavily on a few geometric concepts. Most of these are
dual to ones already developed in the control literature. The notation and
terminology here are those of [1], [22], and [14], and are now quite
standard. We recall a few items. The range of L is £. “W(£) denotes the
set of all (C, A)-invariant subspaces containing the subspace £, and $(£)
denotes the set of all (C, A)-unobservability subspaces (u.0.s.) containing
£. Given a (C, A)-invariant subspace W, D(W) denotes the set of all D
such that (A + DC)YW < “W. For an A-invariant subspace 8§, we denote
by A:X/$ the map induced by A on the factor space /8. The symbol
d(X) denotes the dimension of the vector space X; o(A) is the spectrum
of A; k denotes the finite set {1, 2, ---, k}; and m(s) is the Laplace
transform of the function m(f)—a common abuse of notation, but unlikely
to cause confusion if the use of s as an argument is reserved for Laplace
transforms.
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We emphasize that even though many of the geometric concepts used in
this note are familiar in control theory, or are the duals of familiar
concepts, the problems posed and solved are not simply obtained from
familiar control problems. For instance, a reader acquainted with the
disturbance decoupled estimation problem (DDEP) {20], [3], will readily
recognize a relationship to FPRG. These two problems, however, have
subtle but important differences that completely distinguish them from
each other. In DDEP, the state to be estimated is given as part of the
problem statement, while in FPRG we have to find that part of the state
space that can be estimated even in the presence of an unknown input.

Similarly, a reader who knows of the control decoupling problem, [9],
[22], will recognize a dual relationship between that problem and
EFPRG. Despite this duality, the structure of the residual generator
proposed in Theorem 4 is quite different from that of the extended
decoupling controllers given in [22], since there is no compatibility (cf.
[22]) issue in EFPRG. As a final illustration, note that the filter suggested
in the proof of Theorem 8, when multiplied by the plant transfer matrix,
results in a transfer matrix with zeros on the diagonal and nonzero
elements everywhere else—a structure that is complementary (and
certainly not identical or dual) to the structure considered in the familiar
decoupling problem of control theory.

II. FAILURE REPRESENTATION AND PROBLEM FORMULATION

Assume our nominal LTI system is described by the state-space model

k
2(1y=Ax(t)+Bu(t)+ Y, Lim(1) (1a)

i=1

q
YO =Cx(D)+ Y Jini(1). (1b)

i=1

Here x(f) € X, u(¥) € U, and y(¢) € Y, with the dimensions of X, U,
and Y being n, m, and /, respectively. The nominal input «(¢) and the
output y(f) are assumed to be known and will be referred to as the
observables of the system. The functions m,(t) € M; (with d(M;) = k;)
and n,(t) € N, (with d(N;) = g,) are arbitrary and unknown functions of
time. We refer to the function m(¢) as the ith actuator failure mode and
to n,(¢) as the ith sensor failure mode. When no failure is present, the
m(t) and n,(¢) are all equal to zero, by definition. They become nonzero
precisely when the corresponding failure mode occurs. From now on we
shall refer to the maps L;:0; — & and J;:9; = Y as actuator failure
signatures and sensor failure signatures, respectively.

Because we do not constrain m(t) and n,(f) to any special function
class, a wide variety of actuator and sensor failures fits this representa-
tion. To model the failure of the jth sensor, for instance, simply set J;
equal to the jth column of the / X [/ identity matrix. If the sensor fails
completely, i.e., gives a zero output, then n(f) = - c;x(¢), where c; is
the jth row of the output matrix C. Note that we can also model a change
in the dynamics of the plant, i.e., a change in A, by choosing L;
appropriately.

The fact that we do not assume any prior mode of component failure,
i.e., that m,(¢) and n(¢) in (1) can be arbitrary, is a major distinction
between our approach to failure modeling and the majority of approaches
in the literature. Note that the same approach to failure modeling is used
in [2], [11], [14], and [23]. Since the m;(¢) and n,(¢) are arbitrary, there is
no loss of generality in assuming, as we shall from now on, that the failure
signatures are one-to-one (monic).

We shall also find it more convenient to represent sensor failures by
pseudoactuator failures. For this, consider the unknown function n;(¢) to
be the output of some invertible, finite-dimensional LTI system driven by
an appropriate input. The only restriction that we impose on the LTI
system is that it be strictly causal, i.e., have no direct feedthrough term. If
the dynamics of the systems generating the sensor failure modes are now
added to the dynamics of the system (1), the sensor failures can be
represented as actuator failures. Hence, all the analysis that follows uses
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the model

X(0)=Ax(1)+ Bu(t)+ Y, Limi(t)

i=1

(2a)

y(0)=Cx(t) (2b)

where it is assumed that A, B, L;, and C have already been appropriately
modified so that the sensor failures are properly represented as pseudoac-
tuator failures.

Considering the system in (2) now, the FDI filter problem (FDIFP) is
to design an LTI dynamic residual generator that takes the observables
u(t) and y(¢) as inputs and generates a set of residual vectors r«(f), i € p,
with the following properties.

1) When no failure is present, all the residuals r,(f) decay asymptoti-
cally to zero. Hence, the net transmission from u(f) to the residuals is
zero, and the modes observable from the residuals are asymptotically
stable.

2) In the jth failure mode (i.e., when m;(f) # 0), the residuals 7,(¢) for
i € Q; are nonzero, and the other residuals r,(¢) for « € p — Q; decay
asymptotically to zero. Here the prespecified family of coding sets Q; <
P,J € k, is chosen such that, by knowing which of the r;(¢) are (or decay
to) zero and which are not, we can uniquely identify the failure.

Note that in the general problem there is no constraint on the number p
of residual vectors. We shall say more about the coding sets ©; below and
also in Section V. If a set of residuals with the above properties can be
generated, then the identification task is trivial. We need only to
determine the residual patterns and identify the failure by referring to the
table of coding sets.

One important design consideration is how to choose the coding sets &;.
The simplest code is just to take p = kand @; = {i}, i.e., to let precisely
one of the residuals be nonzero for any one failure. This coding scheme
enables us to correctly identify simultaneous failures. At the other
extreme, if we know that simultaneous failures do not occur, then the
smallest possible number of residuals is obtained via a so-called binary
coding [15] in which case p equals the smallest integer above log, (k +
1). The practical danger with picking the smallest allowable number is
that, if one of the residuals does not cross the threshold, then a completely
erroneous identification of the error may be made. Section V pursues the
question of coding sets further. It is shown there, in the course of
obtaining the solvability condition for FDIFP, that FDIFP will not have a
solution for certain families of failure events, no matter what coding sets
are used.

In the next section, we solve a restricted version of FDIFP. The
solution to this restricted problem will then be used to tackle more general
problems in the sections that follow.

III. THE FUNDAMENTAL PROBLEM OF RESIDUAL GENERATION
(FPRG)

In this section, we assume that only two failure events are present, and
examine when a residual generator can be designed to be sensitive to the
first failure but insensitive to the second. This restricted version of FDIFP
will be called the fundamental problem in residual generation (FPRG).

Consider the model given in (2), with k = 2:

X(1)=Ax(t)+Bu(t)+Lim (1) + Lymy(t) (3a)

y(£)=Cx(1). (3b)
The dimensions of the matrices in (3) are the same as in (1). It is desired
that a nonzero m,(¢) should show up in the output r(f) of the residual
generator, while a nonzero my(¢) should not affect r(z). As usual, our
observables are the known actuation signal #(f) and the output y(¢).
The most general form for a realizable LTI processor that takes the
observables y(f) and u(¢) as inputs and generates a residual r(¢) is

Ww(t)=Fw(t)— Ey(t)+ Gu(t) (4a)

r(y=Mw(t)— Hy(t)+ Ku(t) (4b)
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where w(f) € W. Combining (3) and (4), we get

xXy\_( A4 0 x(1)
"\ w(@) )\ -EC F )\ w)

B L u(t) L,
+<G Oz><m2(t)>+< 0 > m(t) (5a)
e x(t) u(t)
r(t)=(-HC M) (w(')>+(1{ 0 (mz(t)> .

Define the extended spaces ¢ = € @ W and U = U & NM,. With
xe(f) € X¢and ué(t) € U°, (5) can be rewritten as

(3b)

xe(t)=A°xe(t)+Beu(ty+Lem\(t) (6a)

r(t)=Hexe(t)+ Keus(t) (6b)
where the definitions of the matrices in (6) are evident from (5).

Now we can explore different criteria for deciding whether the first
failure mode will show up in the residual, i.e., whether a nonzero m(¢)
will affect r(#). The most natural approach is to require that the transfer
matrix 7(s) from m,(s) to r(s) be left invertible, so that any nonzero
m;(f) results in a nonzero r(¢). Another approach is to only ask that the
system relating m,(f) to r(¢) be input observable. Recall that a system
(C, A, B) is input observable if B is monic and the image of B does not
intersect the unobservable subspace of (C, A). In terms of transfer
matrices, left invertibility is equivalent to the columns of C(s/ — A)~'B
being linearly independent over the field of rationals in s, while input
observability is equivalent to independence over the field of real numbers.

Even if the system relating /m,(¢) to r(¢) is only input observable and not
left invertible, almost any nonzero m(¢) will produce a nonzero residual
r(#). This is because it is extremely unlikely that an arbitrary nonzero
m;(f) will hide itself for all ¢ in the nullspace of the mapping from m;,(¢) to
(). It may therefore be argued that the requirement of left invertibility is
too stringent for FDI purposes. In any case, the transfer matrix 7(s) is
often (or even usually) a column vector, and in this case input
observability is equivalent to left invertibility.

Based on these arguments, we define FPRG as the problem of finding
all the matrices in (4) such that the following maps satisfy the indicated
constraints:

ut — r=0 (@)
m, ~— ris input observable. (8)

In addition, we shall require that the observable modes of the pair (H¢,
A¢®) be asymptotically stable, so that the contribution to r(f) of initial
conditions in (5) dies out asymptoticaily.

We need a few preliminaries in order to derive the solvability condition
for FPRG. First, with x € X, define the embedding map Q: X — X¢ by

Ox:= (3’) ©)

Note that if V < %, then
(10)

Q0 'V={x:x € X and (’5) € V).

Using this definition, it is relatively simple to relate the unobservability
subspaces of the systems in (6) and (3). The following fundamental result,
which exactly accomplishes this task, is crucial to the solvability condition
of FPRG.

Proposition 1: Let 8¢ be the unobservable subspace of (H¢, 4¢). Then
O~ '8¢is a (C, A)-unobservability subspace; see [20], [18], and [17]. @@

With this result at our disposal, the solvability condition can be
obtained.

Theorem 2: FPRG has a solution if and only if

8* N £,=0 (11
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where 8* = inf 8(£,). Also, if (11) holds, then the dynamics of the
residual generator can’be assigned arbitrarily.
Proof:
(Only If): Consider the system given in (5) and (6). For (7) to hold, we
should have K¢ = 0, and
(A|®¢) < 8¢ := (ker H¢|A°). (12)
Equation (12) implies ®¢ < 8¢, hence Q" '®°¢ < § := Q'8¢ Using
Proposition 1, 8 is a (C, A)-u.0.s. Also Q" '®¢ 2 £,. Therefore

S € §(L,). (13)

For (8) to hold, we should have L¢ monic and £¢ N 8¢ = 0. Thus, we
should have L; monic (which we have assumed) and

Q*l(£? N S")=Q“£e N Qflse

=£, N §=0. (14)
Obviously, (13) and (14) hold only if (11) is true.

(If): Let Dy € D(8*), let P:3C — IX/8* be the canonical projection,
and let Ay = A + DyC:X/$*. Also let H denote a solution of ker HC =
8* + ker C, and let M be the unique solution of MP = HC. By
construction, the pair (M, A,) is observable, so there exists a D, such that
o(F) = A, where F = Ay + D\M and A is an arbitrary self-conjugate
set. With P~"denoting a right inverse of P, let D = Dy + P"D\H, E =
PD, G = PBand K = 0. Define e(t) = w(t) — Px(¢); this fixes the
order of the residual generator at n — d(8*). Then it follows quite simply
that

é(ty=Fe(t)~PLym\ (1)

r(t)y=Mw(t)—Hy(t)=Me(t).

Thus, r(s) = T(s)m(s) with T(s) = -M(sI - F) 'PL,. The
requirement in (7) is clearly satisfied. Now, since $* N £, = Oand L, is
monic, it follows that PL, is monic. Moreover, the pair (M, F) is
observable. Hence, from the definition of input observability, it follows
that the system relating m,(¢) to r(f) is input observable and (8) is
satisfied. (1]

The major step in the design of the filter is to place the image of the
second failure signature in the unobservable subspace of the residual r(¢),
and then to factor out the observable subspace so that the order of the filter
is reduced. It was noted that the order of the residual generator given in
Theorem 2 is n — d(8*), and this order is in general conservative. The
reason is that there may be a u.o.s § O 8§* satisfying 8 N £, = 0.
Clearly, using this 8 further reduces the order of the residual generator.
Unfortunately, no systematic way is known for constructing such
noninfimal unobservability subspaces.

The reader who is familiar with the disturbance decoupled estimation
problem (DDEP) [20], [3], will readily recognize a relationship between
DDEP and FPRG. These two problems have subtle differences, however,
that completely distinguish them from each other. In DDEP, the state to
be estimated is given as part of the problem statement. In FPRG, we have
to find that part of the state space that can be estimated even in the
presence of the unknown input m,(¢).

We now give an interesting interpretation of the solution to FPRG.
Referring to Theorem 2, the residual generator can be rewritten as
follows:

w(t)=Aow(t)— PDyy(t)+ Gu(t)+ D, r(t) (15a)

F(£)=Mw(t)— Hy(t). (15b)
By choosing D, and H appropriately, we change the observability
properties of (HC, A + D,C) in such a way that failure of the second
actuator becomes unobservable from the residual. Next, by injecting the
residual () back into the filter, the spectrum of the residual generator is
modified as desired. The residual generator given in (15) can be thought
of as an observer for the hypothetical system

2(1)=Aoz(t) +up(1) (16a)
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Yu(8)=Mz(t) (16b)
where u,(t) : = P[Bu(t) — D,y(#)] is the hypothetical input, and y,(?)
1= Hy(t) is the hypothetical measurement. This interpretation of the
residual generator can be used to compute the gain D, as the solution of an
optimal estimation problem [15].

The generic solvability of FPRG is summarized in the following result.

Proposition 3: Let us assume that A, C, L,, and L, are arbitrary
matrices with respective dimensions n X n,/ X n,n X k;,and n X k.
Then FPRG generically has a solution if and only if

ki+k,<n (17)

and
k<. (18)
Proof: The simple proof is given in [15]. o0

IV. EXTENSION OF FPRG TO MULTIPLE FAILURE EVENTS (EFPRG)

In this section we extend FPRG to the case of multiple failures. Let us
assume that k failure events are present. Suppose we want to design a
processor that generates & residuals, r(¢), i € k, such that the ith failure
mode m,(t) affects the ith residual and only this residual. More precisely,
what we require is that the transfer matrix relating m(s) to ri(s) for each i
€ k should be input observable, and the transfer matrix from m;(s) to all
other r/(s), j # i, should be zero. The earlier stability requirement for the
observable modes is also maintained.

In the notation of Section II, the problem we have just formulated is the
same as the FDIFP with the coding sets Q; = {i}, { € k. This particular
version of the FDIFP will be called the extension of the fundamental
problem in residual generation (EFPRG). If EFPRG has a solution, then it
is evidently possible to detect and identify even simultaneous failures.
Note that for identifying simultaneous failures, we need at least as many
residuals as there are failure events. In this sense, the coding set ; = {i}
(or any permutation of it) is minimal.

In a recent paper, Massoumnia [14] defined the similar problem of
designing a residuai generator of the form

W(t)=(A + DC)w(t)— Dy(t)+ Bu(t) (192)

ri{t)=H,[w(1)-y(1)] (19b)

such that a nonzero m,(t) only shows up in the residual r,(f). This problem
is a slight generalization of Beard’s failure detection filter problem, and
was referred to as the restricted diagonal detection filter problem
(RDDFP) in [14]. Obviously, RDDFP is a special case of the EFPRG that
we have formulated here, since in EFPRG the matrix F'is not restricted to
be of the form A + DC for some appropriate gain matrix D, nor is w
required to be of the same dimension as x.

The solvability condition for EFPRG follows immediately from that of
FPRG.

Theorem 4: EFPRG has a solution if and only if

$*N £=0, i€k 20)
where 8% : = inf 8(Z;4,L).
Proof:

(Only If): The necessity of (20) follows immediately from the proof of
Theorem 2, by replacing £, and £, in Theorem 2 with £; and Z;.;£;,
respectively.

(If): For sufficiency, the procedure given in Theorem 2 can be used to
design k different residual generators, one generator for each of the
residuals ri(f). This collection of residual generators, taken together,
constitutes a solution to EFPRG. (1 J

A family of failure signatures satisfying the conditions in (20) will be
called a strongly identifiable family. Theorem 4 thus shows that it is
possible to design an LTI residual generator that identifies simultaneous
failures within a family of failure events if and only if the family is
strongly identifiable.

The order of the residual generator given in Theorem 4, i.e., the sum of
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the orders of the k different residual generators, can be quite large.
Nevertheless, the residuals in this filter are generated by k completely
decoupled filters, and there is a great deal of freedom in choosing the
matrices F; that govern the dynamics of these individual residual
generators. This freedom can be used to simplify the decision-making
phase of FDI by enhancing the effect of the failure or suppressing the
effect of noise on the residual.

The generic solvability conditions for EFPRG are easily stated.

Proposition 5: With A, C and the L, being arbitrary matrices of

dimensions n X n,/ X n,and n x k;, respectively, let v := T¥_ k.
Then EFPRG generically has a solution if and only if
v<n 21
and
v—min {k;, | € k}<I. (22)
Proof: The simple proof is given in [15]. (1]

We now interpret the solvability condition for EFPRG in the frequency
domain for the special case where the failure signatures are simply
column vectors. By taking Laplace transforms in (2), we obtain

Y(8)=Gu(5)u(s) + Gn(s)m(s) (23a)

where
Gu(s) := C(sI-A)"'B, Gn(s) := C(sI-A)~'(L; -+ L;) (23b)

and m(s) = (my(s) -+ ms))’. EFPRG involves generating a k-
dimensional residual vector r(s) by passing the observables through a
causal LTI system

r($)=(H,(s) H,(s)) < y ‘”) = H(s)2(s) @4

u(s)
where the definitions of z(s) and H(s) are evident from (24). The
requirement in EFPRG is that the net transmission from the input u(s) to
the residual vector r(s) be zero, and that the failure mode m(s) only affect
the ith component of 7(s). In other words, the objective is to find a proper
post-compensator H(s) such that

H(s)G(s)=(T(s) 0)

)= (Gmo(s) @;s)) _

The 0 in (25) is a k X m matrix, and T(s)isa k X k diagonal matrix
with nonzero diagonal elements Ti(s). A further condition needs to be
imposed so that, when no failure is present, the residuals due to initial
conditions in the system and in the post-compensator die away. This
translates to the requirement

25)

where

(26)

H,(s)C(sI-A)~! and H(s) both stable. 27
It is shown in [15] (also see [16]) that the above problem has a solution
if and only if the transfer matrix G,,(s) is left invertible. In other words,
when the failure signatures are column vectors, the condition of strong
identifiability given in (20) is equivalent to the left invertibility of
C(sI-A) " (L, -+ Ly). (28)

The reader who is familiar with the control decoupling problem [9],
[22] should readily recognize the dual relationship between the EFPRG
and the decoupling problem. Despite the duality; the structure of the
residual generator proposed in Theorem 4 is quite different from that of
the extended decoupling controllers given in [22], since there is no
compatibility issue (cf. [22]) in EFPRG.

An interesting question now is how to reduce the order of the processor
proposed in Theorem 4. This task can be accomplished by either
restricting the structure of the residual generator, as was done in [14] by
formulating the RDDFP, or by relaxing the requirement that the filter

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 3, MARCH 1989

should be capable of detecting and identifying simultaneous failures. We
shall follow the latter path in the remainder of this note, by considering
more complicated coding schemes than the one dealt with in this section.

V. FAILURE DETECTION AND IDENTIFICATION FILTER PROBLEM
(FDIFP)

Our objective in this section is to obtain necessary and sufficient
conditions for the existence of a residual generator that can uniquely
detect and identify a failure within a family of k possible failure events,
assuming that only one failure is present at a time. This will lead to the
concept of an identifiable family of failure signatures.

Assume that p residuals are to be used, and that a corresponding
collection of coding sets Q; < p, j € k, is picked (see Section II). Define
the finite set I'; as the collection of all those j € k for which the transfer
function from the jth failure mode to the ith residual is required to be 0.
The transfer matrices from all other failure modes to this residual are
required to be input observable. The sets T;, i € p, evidently contain all
the information required for specifying the structure of the transfer matrix
relating the vector of failure modes to the vector of residuals. The earlier
stability requirements are also maintained. With this definition, we can
state the solvability condition for FDIFP.

Theorem 6: For a given family of coding sets, and with the assumption
that there is only one failure present at a time, FDIFP has a solution if and
only if

8, N £,=0, j€Ek-T,, i€p 29
where
8,~,:=inf§(2 43,), i €p. (30)
JET;

Proof: Using the assumption that there is only one failure present at
a time, we can think of FDIFP as p separate FPRG (see Section III) that
need to be solved simultaneously. The proof therefore follows from
Theorem 2. [ 1]
Our next objective is to show that FDIFP will not have a solution for
certain families of failure events, no matter what coding scheme is used.
For this, assume that the failure signatures are column vectors in the
rest of this section.
The following result is crucial to our derivation.
Lemma 7: Let (C, A) be observable, d(£,) = d(£,;) = 1, and £, €
3%, where 3% := inf S(£;). Then 3* = 3%, where 3* : = inf S(£,).
Proof: Since £, € 3% and 3¥ is a u.o.s., 3} € §(£,). Thus, the
infimality of 3} implies that 3} S 3%, and hence that C3* < C3¥.
From the observability of (C, 4) and results in [14], we know that Cc3¢
and C3} are both one-dimensional. Thus, C3¥ = C3%, or equivalently

(€2))

Also 3} and 3} are compatible since 3% + 33 = 3} is (C, A)-invariant
(see [14], [15]). Let D € N; D(S,’.“). Using (31) and the dual of
Proposition 5.3 in [22], we have

J¥+ker C=3%+kerC:= V

3;"=(’V|A+DC)=3;".
(1]

Theorem 8: Given an LTI system (C, A, B) with a family of failure
signatures {L;, i € k] and arbitrary failure modes, and assuming’ that
there is only one failure present at a time, it is possible to design a coding
set and a residual generator to detect and identify any failure within this
family if and only if

£ N 3¥=0,i,j €k, i#j (32)
where 3}“ = inf 8(£)).
Proof: i

(Only If): Suppose that we have designed a residual generator with an
appropriate family of coding sets. It follows that for any two distinct
integers i, j € k, there should exist an o such that either

i € T, but j&T, (33)
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or

Jj € T, but i€T,. (€D)]

If (33) holds, then obviously 3* € 8p,. Similarly, if (34) holds, then 3 ¥
< 8r,. Now using the necessary condition given in (29), it follows that

either £, N 3*=0o0r £ N J*=0. 3%)
Using (35) and Lemma 7, we then conclude that (32) necessarily should
hold.

(If): We need to show that if a family of failure signatures satisfies the
condition given in (32), then there exists a family of coding sets for which
the FDIFP has a solution, with the assumption that only one failure is
present at a time. For this, just use the coding sets

Q={1, .-, i—1,i+1, ---, k}, i€k (36)
to design k different residual generators such that the unobservable
subspace of the ith residual is 3}, so that the ith failure mode will not
show up in this residual. [ 1]

A family of scalar failure signatures {L;, i € k} satisfying the
condition given in (32) will be called an identifiable family of failure
signatures. Note that if a family of failure signatures is not identifiable,
then there does not exist any processor that can detect and identify the
failures in the sense of Section II.

It is also possible to state the frequency domain counterpart of the
failure identifiability condition given in (32). From (28), we know that the
condition

£ N3}=0and £, N I*=0

is equivalent to the statement that the transfer matrix C(s/ — A)~'(L;,
L;] is left invertible. Hence, the condition in (32) is equivalent to the
statement that the rational vector subspaces spanned by the C(s/ —
A)~'L; are nonintersecting. The necessity of this condition is obvious,
since if the image of C(s] — A)~'L; over the field of rational functions
intersects the image of C(sI — A)~'L;, then there exist proper rational
functions m;(s) and m;(s) such that

C(sI—A) "1 Limi(s) = C(sI- A)~' Lymy(s).

This means that the ith and jth failure modes can result in the same output,
so it will be impossible to distinguish between these two failures by
observing the output of the system.

VI. CONCLUSION

In this note we have solved the problem of residual generation for FDI
by processing the inputs and outputs of an LTI system. We have also
developed simple design procedures for generating the residuals when the
solvability conditions are satisfied.

Replacing the left-hand side of (2a) by x(¢ + 1) to obtain a discrete-time
model does not change the solvability conditions for any of the problems
we have formulated here. In residual generators for discrete-time
systems, we can assign the spectrum of the filter to the origin of the
complex plane and hence obtain deadbeat behavior. It can be shown that
the residuals thus obtained are the same as those produced by generalized
parity relations, [4], [5], [12], [13], and [16]. We refer the reader to [16]
and [15] for a more complete discussion of the relationship between the
generalized parity relations and the residual generators discussed in this
note.

A challenging problem for future work is to generate residuals that are
robust to modeling errors. The above references on parity relations
contain some preliminary results in this direction. The issue in robust
residual generation is not simply the stability of the perturbed system—
which is what much of the literature on robust control emphasizes—but
also the preservation, in some sense, of the coding structure of the transfer
matrices.
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On the Properties of Reduced-Order Kalman Filters

BERNARD FRIEDLAND

Abstract—Several known results are unified by considering properties
of reduced-order Kalman filters. For the case in which the number of
noise sources equals the number of observations, it is shown that the
reduced-order Kalman filter achieves zero steady-state variance of the
estimation error if and only if the plant has no transmission zeros in the
right-half plane, since these would be among the poles of the Kalman
filter. The reduced-order Kalman filter cannot achieve zero variance of
the estimation error if the number of independent noise sources exceeds
the number of observations. It is also shown that the reduced-order
Kalman filter achieves the generalized Doyle-Stein condition for robust-
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