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Abstract: 'Pae multiple time scale decomposition of discrete 
time, finite state Markov chains is addressed. In [1, 2], the 
behavior of a continuous time Markov chain is approximated 
using a fast time scale, e-independent, continuous time process, 
and a reduced order perturbed process. The procedure can 
then be iterated to obtain a complete multiple time scale 
decomposition. In the discrete time case presented in this 
paper, the basic approximation has a 'hybrid' form. In this 
form, the fast time scale behavior is approximated using an 
e-independent, discrete time Markov chain, and the slow be- 
havior is captured by a perturbed, continuous time process. 
Further time scale decomposition then involves the continuous 
time procedure in [1, 2]. This extension to discrete time chains 
bridges previous multiple time scale decomposition results, 
which have dealt exclusively with either continuous time or 
discrete time processes, and provides a uniform framework for 
the analysis of both types of systems. 

Keywords: Markov process, Discrete time, Aggregation, Per- 
turbation theory, Multiple time scales. 

1. Introduction 

Consider the state probabilities, x[t], of a dis- 
crete time Markov chain which satisfy the dif- 
ference equation 

x [ t + l ] = O t ° ) ( e ) x [ t ] ,  t E N o ,  (1) 

(0) E where ~ ( ) is the one-step transition probability 

* This research was conducted under the support of the Air 
Force Office of Scientific Research under grant AFOSR-0258 
and AFOSR-88-0032 and the Army Research Office under 
grant DAAG-29-84-K(~05. 

from state i to state j. Assumed that ¢t°~(e) is an 
analytic function of a small parameter e. Note 
that all the entries of O(°)(e) are nonnegative and 
that 1 ITO(°)(e)= 1 T. The solution of this dif- 
ference equation has the form 

x[t] = O'°)(e)ix[0]. (2) 

In this paper we construct a multiple time scale 
decomposition of (2) that is uniformly valid for 
t ~ [0, oo). The key step is the construction of the 
first stage of the approximation which has the 
form 

= O(0~(0)' + U ~o) e~A".),v(O) 

- U(°)V (°) + 0 ( ~ )  (3) 

where A°)(e) is the generator of a continuous 
time, aggregated Markov process and O(e) is a 
function of e and t which converges to zero 
uniformly over the interval t ~ [0, oo) as e ~ 0 and 
U (°) and V (°) are matrices whose probabilistic 
significance will be made clear. As we will see, this 
approximation is very similar to the continuous 
time approximation developed in [1], the sole dif- 
ference being the form of the first term in (3). The 
consequence of this observation is that by subse- 
quent recursive application of the procedure in [1] 
we can obtain a complete time scale decomposi- 
tion of (2) in which the fast dynamics are captured 
by a discrete time model generated by O(°)(0) and 
all subsequent slower dynamics (i.e. with time 
scale constants of order e, ~2, etc.) are: captured by 
continuous time models at the corresponding time 
scales. 

Wh~le the use of differential equations to de- 
scribe the slow behavior of difference equations is 
not a new idea (see [3] for example), the explicit 
construction and, more important, the demonstra- 
tion of the uniform validity of such multiple time 
scale approximations for Markov chains has not 

I Here 1 T= [1 ..... 1]. 
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been pursued previously. Indeed, although per- 
turbed discrete time chains have been studied by 
many other authors, (see [4, 5] for example), there 
has been little connection with approaches to de- 
composition of continuous time processes. In par- 
titular, the notion of considering a scaled time 
variable has not been stressed. 

It is interesting to note that there is one restric- 
tion that arises in the discrete time ease but not in 
continuous time. Discrete time Markov chains can 
have periodic components, while this cannot occur 
in continuous time. However, for a time scale 
decomposition of O¢°)(~) to exist, we must assume 
that O¢°)(0) is aperiodic, i.e. that all of its ei- 
genva!ues of unit modulus are at the point A = 1. 
If this were not the ease then lira, _.oo0¢°)(0)'~ and 
thus a multiple time scale decomposition, would 
not exist. With this restriction our result is com- 
pletely general. 

The remainder of this paper is organized as 
follows. First, the continuous time result of [1] is 
summarized and the key discrete time result is 
stated, as is the resulting complete multiple time 
scale decomposition. The proof of this result is 
ther provided in Section 3, followed by a simple 
example in Section 4. 

Note that V(°)(0) is the membership matrix of 
A(°)(0) (e.g. v(°)(0)= 1 if j ~ E i, v(t°)(O)=O if j 
Er for K 4: I).  Note also that 

tTv (°) = i f ,  (6) 

ITV (°) = 1 T, (7) 

Let #(°)(e) be any perturbation of V(°)(e) that 
satisfies 

ff~7(o)(~) = f f  (8) 

and where the leading order term of each element 
of I~(°)(O and V(°)(O are equal: 

~(°)(~) = o(,~'(~)(1 + o ( 0 )  (9) Ij 

With this notation we can now state the following 
which is a direct consequence of the analysis in 
[a]: 

Theorem 1. Given the generator A(°)(e) of a con- 
tinuous time Markov process, define the reduced-di- 
mension N × N generator 

A(') ( , )  = 1 #~o) ( , )a (o) (~)e (o) .  (a0) 
£ 

Then 

2. The basic result 

Let AC°)(e) be the generator of a continuous 
time, n-state Markov chain ~(°)(e, t). Let 
E~,..., EN be the ergodic classes of A(°)(0) and let 
T denote the transient states. Define the n × N 
matrix U (°) of ergodic probabilities where the 
(i, I )  element of this matrix is given by 

u(O)= lim Pr(~(°)(t, 0)=i1~(°)(0, 0 ) ~ E I ) ,  (4) i l  
t---~ ~ 

i.e. this is the ergodic probability, based on A(°)(0) 
of state i given that the process begins in 12 I (so 
for example ~,a"(°) = 0 if i ~ E/). Define also the 
N x n 'membership' matrix V(°)(E) where 

cA,°,.), = eA,O,(o), + ( V (°~ e~'".).v(o)_ U(O)v(o) ) 

+O(e) .  (11) 

By recursive application of this result we can 
generate a finite set of generators A(°)(0), 
A(l)(0),...,A(t~J(0) of decreasing dimension that 
together provide a complete uniformly accurate 
multiple time scale approximation of the original 
process. 

The basic result that is proved in the next 
section is the following: 

Theorem 2. Let Ot°)(e) be the one-step transition 
probability matrix of a discrete time Markov pro- 
cess. Define the continuous time generator 

A{°)(e) = O(°)(e) - I. (12) 

Then 

t* = inf ( t [ ~ ( ° ) ( e , t )  ~ T)). 
t>~0 

(5) 

,I,,o,(,)' = ~(O)(o)' 

+ ( v  '°' e~"'"'~'V '°' - U'°'V '°') + 0(~)  

(13) 
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where u c°), IT"~°)(e) and AO)(e) are derived from 
A{°)( e) as described above. 

Again by recursive application of Theorem 1, 
we obtain the following algorithm. 

Algorithm 1. 
1. Given O¢°)(e), compute 

(14) 

Set k ,-- 0. 
2. Given A(k)(E) compute A (k) and a suitable 

IT"¢k)(e) as described for k ffi0. From these com- 
pute 

A,k+,,(e ) = 1 l?¢k)(r)A,k,(e)U,k). (15) 
e 

3. Stop when there are no more time scales (for 
example if A¢°)(e) has m ergodic classes for • > 0, 
stop when A¢k)(o) also has m ergodic classes). 
Otherwise, set k *- k + 1. Go to 2. 

4. Then 

_ o(o)' + ( U  (0) eAmrtV  ~o) _ u(O)v(O)) 

q- (U(°)U (1) cA~2~2tV(I)V (0) 

_ U¢O)uO)vO)v{O)) 

+ ( U ( 0 ) . . .  U (k- l )  e A ° ° d ' t v ( k - l ) . . ,  v(o) 

_ u(O) . . .  u¢k- ~)v(k- ~) . . .  v(O)) 

06) 

where O(s) is a function of e and t which con- 
verges uniformly to zero over t > 0. 

Note that in step 1, A~°)(e) is a generator of a 
continuous time Markov process. Though the fast 
behavior of the continuous time process generated 
by A¢°)(e) is very different from that of the dis- 
crete time process generated by O(°)(e), we will 
prove that their slow time scale behaviors are 
approximately equal. This fact forms the basis of 
the argument for using Am(e) to approximate the 
slow behavior of the original discrete time process. 

3. Proof of Theorem 2 

The proof is composed of three distinct subsec- 
tions. First, the 'fast' and 'slow' components of 
O¢°)(e) t are identified. The following two subsec- 
tions address approximation of these components 
separately. The superscript co) is omitted in the 
derivation to simplify the notation. 

3.1. Separation of "fast" and "slow' components 

The behavior of O(e) t can be separated into 
'fast' and 'slow" components. The slow compo- 
nent is associated with eigenvalues which converge 
to 1 as e ~ 0 while the fast component is associated 
with those eigenvalue which converge to points 
within the urdt circle. The approach taken here is 
based on Kato's perturbation results for linear 
operators [7] and parallels Coderch's approach to 
separation of time scales in the continuous time, 
general linear system case [8]. 

The generator O(e) can be expressed as the 
spectral sum 

• ffi E ? , , ( e ) P , ( e )  + D~(e) (17) 
i 

where P~(e) is the eigenprojection and D~(v) is the 
eigennilpotent associated with the eigenvalue 
;~(e). Note that in general, these projections and 
nilpotents are not analytic functions of e even if 
O(e) is. 

These eigenprojecti.ms and nilpotents have the 
properties that 

{Pj(e) if i ffij, (18) 
P~(e)Pj(e) = 0 if i ~ j ,  

= [Dj(e) if i f  j ,  (19) 
( 0 if i4. j .  

The total projection of the 1-group can be formed 
as 

p(e)=_ y" pi(e). (20) 
i: lt~(e) ~ 1 

Although as stated ab~:,ve the individual projec- 
tions and nilpotents are not necessarily analytic 
functions of e, Kato [7] shows that any total 
projection of an eigengroup of a perturbed matrix 
is analytic. An eigengroup is a set of eigenvalues 
which converge to a common point. Therefore 
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since O(e) is an analytic function of e, P(e) is 
analytic at e = 0. 

The generator O(e) can therefore be de,:,_,:_~,'~ 
posed into the sum of two parts 

O(e) = P(e)~b(e) + a(e)O(e)  (2!) 

where 

Q ( e ) - I - P ( ~ ) .  (22) 

Recall that by assumption, O(0) is aperiodic. 
Therefore, all the eigenvalues on the unit circle are 
in fact concentrated at h = 1. The eigenvalues of 
Q(e)O(e) therefore converge to points strictly 
within the unit circle. 

Using this decomposition of O(e) and the 
properties of the eigenprojections stated above, 
the following decomposition is possible 

*(e)  t=  (P(e)O(F.) + Q(e)O(e)) t (23) 

- + 

(24) 

In order to prove that the approximation (3) is 
valid, the two terms in the sum (24) will be treated 
separately. 

The validity of (25) can be argued from the fact 
that the eigenvalues of Q(0)O(0) are all strictly 
inside the unit circle. From Kato [7], the Z-trans- 
form, given by 

T(e, z) - ( I -  z- 'Q(~.)O(e))- '  (31) 

converges uniformly away from the singularities of 
T(0, z). 2 The difference in (25) can be written as 

A(e, t) -- (Q(e)O(e)) t -  (Q(O)O(O)) t (32) 

1 ~r z t - ' (T(e '  z ) -  r(O, z ) ) d z  
2~i 

(33) 

where F is a positively oriented contour of length 
I FI contained inside the unit circle. Since on the 
contour I ztl _< 1 for t > O, 

Ila(e, t ) l l  -<  -41rl z (T (e ,  z ) -  T(O, z)) 
g~/"l l  

= O(e)  (34) 

and therefore (25)-(29) follow. 

3. 3. Approximation of the slow behavior 

3.2. Approximation of the fast behavior 

Using the decomposition (24), the fast behav- 
ior, which is determined by Q(e)O(e), can be 
easily approximated since the e-dependence is a 
regular perturbation of Q(0)O(0). The goal is to 
show that 

( Q ( e ) O ( e ) )  t -  (Q(O)O(O)) t 

from which follows that 

=o(, )  (25) 

Q(e)(Q(e)O(e)) '= Q(O)(Q(O)O(O)) t + O(e) 
(26) 

= Q(O)O(O) t + O(e) (27) 

= , ( 0 ) ' -  v(0) + (28) 
= O(O)t + V Z  + O(e).  (29) 

The last equality follows from basic properties of 
Markov chains, i.e. 

v(0)-  v v  (30) 
[---~ =o 

where U is the ergodic probability matrix ,and V is 
the corresponding membership matrix. 

The approximation of the slow behavior de- 
termined by P(e)O(r) is based on its further 
separation into components that evolve at various 
time scales. Within each time scale, we employ the 
matrix equivalent of the scalar approximation 

(1 + ex)t = e ~xt + O(e) (35) 

whenever R e ( h ) < 0 , e ~ [ 0 ,  e0), a fact that can 
easily be verified by series expansion of the terms. 
Note also that (35) is obviously true for ~ = 0. The 
result sought in this section is 

P(e)( P ( e ) O ( e ) ) ' -  P(e)  ee(° (*(° - ' "  = O(e). 

(36) 

Before continuing with the general develop- 
ment, we should note that the proof of the validity 
of the approximation (36) is particularly simple in 
the special situation when the eigenvalues of 
P(e)q~(e) are semi-simple over an interval e ~  
[0, %). Specifically, since the eigenvalues are 

2 Kato states these results in terms of the resolvent R(~, A(r)) 
-(A(O-~I)  -1. The Z-transform is more commonly used 
in the context of Markov chains. 
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semi-simple, there are no eigennilpotents and 
therefore 

e(0¢(0 = Ex,(0e,(0, (37) 
i 

(P(e) tb(e) )  t= ~,A,(e)tP~(e),  (38) 
i 

ee( 'xe( ')- ' ) '  = E exA°-I)tP~(e) • (39) 
i 

By matching the termg in these sums and applying 
the scalar result (35), the approximation (36) fol- 
lows directly. 

When the eigenvalues of P(e)t~(e) are not 
semi-simple on e e [0, e0), the approximation (36) 
can still be shown to be valid but the proof is not 
as straightforward. The basic results which will be 
employed is the matrix form of the scalar ap- 
proximation (35) above. 

Lemma 3. Consider a matrix A with semi-simple 
zero eigenvalue ann such that all the nonzero eigen- 
val,,es have negatfve real parts. Then 

( I + c A ) '  - e EA' = O ( e ) .  (40) 

Proof. The case where the eigenvahes are semi- 
simple has been discussed in the text above. A 
general proof is available in [2]. [] 

The key to application of this lemma lies in 
isolating the various time scales and applying the 
result to each separately. Define the continuous 
time Markov generator 

At°)(e) - ~)(°)(e) - I. (41) 

P(e)A(°)(e) can be decomposed into terms 

K 

P(e)A(°)(e) = ~ dB(° (e )  (42) 
i - - 1  

where 

eiB(i)(e) = R(i)(e)A(°)(e) (43) 

and 

R(O(e) - E Pi(e) • (44) 
i: ~ ( ~ )  - 1 ----- O ( d )  

All the eigenprojections R")(~) exist and are ana- 
lytic at e = 0. This fact follows since A(°)(e) is the 
generator of a continuous time Markov process 
and therefore satisfies the 'Multiple Senti-Simple 

Null Structure' condition which in turn guarantees 
that all these eigenprojections exist at e = 0 [8]. 
Essentially, dBo)(e) captures all the eigenvalues 
of O(°)(e) - I which are strictly O(d). 

Since the eigenvalues of B(°(e) are all identi- 
cally zero or have strictly negative O(1) real parts, 
the e-dependence is a real perturbation 

- ' " , - , ,  e~,,,(o), ÷ 0 ( 0 ,  e Q, k ~.. ~. 

( z + es(') ( , ) ) '  

(45) 

= (I  + es")(o)) '  + o ( 0 .  (46) 

Therefore applying Lemma 3 to the right hand 
sides of the above equations gives 

(z + ~'s~')(O)'= e ''''''~''' + o(~,). (47) 

By decomposing the terms in (36), 

k 

P(e)(P(e)I~(°)(E)) t=- E R°)(e) ( [ -Jr. eiB(i)(e)) t, 
i=I 

(48) 

k 

P(e) e etO(¢'°'(O-t~' = ~ R(')(e) e ~'B'''t°', (49) 
i = 1  

and matching the finite number of terms in these 
sums proves that the approximation (36) is indeed 
valid. 

Finally, the term 

e(e )e  e"~'*'°'"~ ")' --- e (e )e  "'')A'°'")' (50) 

is identically the term for the slow behavior of the 
continuous time process generated by A(°)(e)= 
~t°)(e)- L Using the results of [1], this can be 
written as 

P(e)  e m*)A'°'(°t = U ~°) e~a")(*)tV(°).i-O(s) (51) 

where A(1)(e) is a reduced order Markov generator 
and U (°) and V (°) are the ergodic probability and 
memberhip matrices determined from A(°)(0). 

4. Example 

In this section, a simple two time scale, discrete 
time Markov chain is decomposed. Consider the 
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I / 9  1 /2  - e 1 - e 

1 / 2  e 

Fig. 1. Discrete time perturbed Markov process. 

1 1 2  e 

1 / 2  e 

Fig. 2. Associated continuous time process. 

process with the transi t ion probabil i ty  graph il- 
lustrated in Figure 1 and with generator  

] -~ ~ 0 
1 l (52) ~(o~(~)= .~ ~-~  ~ . 
0 e ! - e  

The transi t ion rates of the cont inuous  time pro-  
cess generated by A t ° ) ( e ) = ~ t ° ) ( e )  - I are shown 
in Figure 2. The slow time scale process obta ined  
using the Markov algori thm is shown in Figure  3 
and has a generator  

[, - ~  1 + 0(~). (53) -4(1~(t) = .~ - 1 

1 / 2  

1 

Fig. 30(1 /e )  time scale continuous time process. 

The  combined  approx imat ion  is therefore 

¢(o)(~), 

= ~(o)(0) '  + U (°) e~A"'(O),v(O) 

- U(°)V (°) + O ( t )  

½ k o]' 
= ' .  ½ o 

o o a 

+ ½ 0 exp l 

0 1 

½ ½ ° 1 
- ½  ½ o +o(~) 

0 0 1 

(54) 

(55) 

1 0] 
0 1 

(56) 
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