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Eigenstructure Approach for Array Processing with 
Unknown Intensity Coefficients 

Abstract-The eigenstructure approach for array processing is ex- 
amined for the general case in which it is required to estimate several 
parameters related to the directional patterns of the sources and the 
sensors as well as parameters related to the location of the sources. 
The assumption of the MUSIC algorithm that any given source is ob- 
served by all the sensors with the same intensity is removed, and hence, 
the proposed technique is useful for localizing emitters in the near field 
of the array and for using sensors with known phase but unknown gain 
pattern. The resulting method is illustrated by simple examples, which 
are also used to show that the standard MUSIC algorithm does not 
work when the assumption of equal intensities is violated. 

I. INTRODUCTION 
N this paper we are concerned with the problem of lo- I calizing several radiating sources by observation of their 

signals at spatially separated sensors. This is a problem 
of considerable importance, occurring in a variety of fields 
ranging from radar, sonar, and oceanography to seismol- 
ogy and radio-astronomy. In recent years, there has been 
a growing interest in eigenstructure based methods, per- 
haps due to the introduction of the MUSIC method by 
Schmidt [ 11, which is a technique that can be applied to 
general array configurations and which is relatively sim- 
ple and efficient. A comprehensive discussion of the MU- 
SIC method may be found in [ I ] ,  while [3] contains a 
literature survey of most of the recently published results. 

An assumption common to all previously published 
contributions in this area is that any given source is ob- 
served by all the sensors with the same intensity. This 
assumption is reasonable only if the sources are in the far 
field of the array and the sensors have identical radiation 
patterns. In this paper we illustrate a potential problem 
with the basic MUSIC method when this assumption is 
violated. To remedy this problem, we remove the as- 
sumption of equal intensity and thus extend the applica- 
bility of the MUSIC technique, or any other eigenstruc- 
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ture approach, to the case of near field sources and/or 
sensors with unknown gain patterns. The proposed ap- 
proach does not extend to the case of sensor phase uncer- 
tainty. See [5] for a different approach that is capable of 
direction finding with sensor gain and phase uncertainty. 
However, the algorithm in [5]  is limited to sources in the 
far field or sources in the near field with omnidirectional 
gain pattern. 

The paper is organized as follows. The problem for- 
mulation and proposed solution are described in Section 
11, which also contains a condition for unique solution. In 
Section I11 we illustrate through examples that the MU- 
SIC method breaks down when the signals are observed 
with unequal intensities, while the proposed technique 
performs well. However, since in our approach there are 
more degrees of freedom, spurious estimates may be gen- 
erated. We indicate how postprocessing can eliminate the 
phantom results. Section IV contains some conclusions. 

11. PROBLEM FORMULATION AND SOLUTION 
Consider N radiating sources with an arbitrary radiation 

pattern observed by an array of M sensors. The signal at 
the output of the rnth sensor can be described by 

N 

X m ( t )  = C a m n S n ( t  - T m n )  + urn(t); 

-T/2 I t I T/2 

n =  I 

m = 1 , 2 ,  - a -  , M ;  

(1) 

where { sn ( t )  }:= are the radiated signals, { u,( t )  }:= 
are additive noise processes, and T i s  the observation in- 
terval. The intensities amn (which are assumed to be real) 
and the delays T,, are parameters related to the directional 
patterns and relative location of the nth source and the rnth 
sensor. 

A convenient separation of the parameters to be esti- 
mated is obtained by using Fourier coefficients defined by 

T / 2  
X m ( 4  = ~ j x,( t )e-Ju"dt ,  f i  - T / 2  

where wI = (27r/T) ( Z 1  + l ) ,  Z = 1, 2,  * * , L; and Z1 
is a constant. In principle, the number of coefficients re- 
quired to capture all the signal information is infinite. 
However, if we consider signals with energy concentrated 
in a finite spectral band, we can use only L < 03 coeffi- 
cients. 
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Taking the Fourier coefficients of ( l ) ,  we obtain 

x,(q) = C ~ ~ , , e - ~ ~ ~ ~ m 1 3  s n ( w l )  + ~ , ( w / ) ;  
N 

n =  1 

l = l , 2 ; - . , L ;  (2 )  
where S, ( wI ) and V, ( wI ) are the Fourier coefficients of 
s , ( t )  and z f , ( t ) ,  respectively. Equation (2) may be ex- 
pressed using vector notation as follows: 

X ( 4  = A b / )  S ( 4  + V ( 4 ;  

I =  1 , 2 ,  . ' .  , L ;  ( 3 )  
where 

X ( W / >  = [ X l ( d ,  X 2 ( W / ) ,  * * * 3 X M ( 4 I T 7  

V ( W l )  = [VI ( 0 1  ) 9  V 2 ( W /  1, * - * 2 V d w ,  ) I  T >  

s ( w / )  = S 2 ( 0 / ) ,  * . ' 2 S N ( w / ) ] ' ,  

A ( w / )  = a / ( e 2 ) ?  * . . 7 a / ( e N ) ] ,  

a l (e , )  = [ C Y l n e - ~ ~ i 7 1 n ,  C Y 2 n e - ~ ~ m n ,  . . . , C Y M n e - j w 7 ~ ~ t ~  T ,  

We use 8, to represent all the parameters of interest as- 
sociated with the nth signal, namely, {  CY,,}^=^ and 
{ r m n } f =  Our main goal is to estimate the set {e,}:, I .  

Note that if the spectrum of the signals is concentrated 
around wl, with a bandwidth that is small compared to 
27r/T, then ( 3 )  reduces to a single relation between the 
observation vector X ( w , )  and the parameters, i.e., L = 
1. In this case, it is customary to use many short obser- 
vation intervals or simply time samples, and the model 
becomes 

X ( j )  = A S ( j )  + V ( j ) ;  j = 1, 2, * - , J ;  (4)  

where the dependence on the single frequency wI is sup- 
pressed, and j denotes the index of the different samples. 
Note that the main difference between the narrow-band 
case and the wide-band case is that A is the same in all 
the J equations specified by (4), while A ( wI ) is different 
in each of the L equations given by (3). However, the 
estimation procedure discussed here is equally applicable 
to both cases. In this paper we concentrate on the narrow- 
band case. The modification for the wide-band case, 
using, for example, [2] or [4], is straightforward. 

Note that since neither A nor S (  j ) are known in ad- 
vance, they cannot be uniquely determined. One can left 
multiply S (  j ) by an N X N complex (diagonal or any 
nonsingular) matrix, and right multiply A by the inverse 
of this nonsingular matrix, without changing the received 
signals X ( j ) .  Hence, without loss of generality, we se- 
lect the norm of every column of A to be one. 

The following assumptions are made: 

a) the signals and noises are stationary over the ob- 

b) the number of sources is known; 
c) the columns of A are linearly independent; 
d) the signals are not perfectly correlated; and 

servation interval; 

e) the noise covariance matrix is known except for a 

The correlation matrices of the signal, noise, and ob- 

multiplicative constant u2.  

servation vectors are given, respectively, by 

R, = E { S S H ) ,  

u 2 c o  = E {  V H } ,  

R, = E{XXH} = AR,AH + u2&, (5) 

where ( * ) H  represents the Hermitian transpose operation. 
The following theorem forms the basis for the eigenstruc- 
ture approach. 

. . , M be the ei- 
genvalues and corresponding eigenvectors of the matrix 
pencil (R, ,  E o )  (Le., the solutions of R,u = hEou),  
where the hi's are listed in descending order. Then, 

Theorem: Let X i  and ui, i = 1, 2, 

1) A N + ]  = h N + 2  = * * . = AM = u2;  and 
2 )  each of the columns of A is orthogonal to the matrix 

u = [ U N + I ,  u N + 2 9  * 3 %I. 

Proofi See [2]. 
This theorem suggests that reasonable estimates of the 

parameters [e, }:= may be obtained by first generating 
an estimate U of U and then searching over all possible 
values of 8, for vectors a( e,) that are nearly orthogonal 
to U .  This may be written as 

6, = arg min 11 irH a(e,)Il2, (6)  
0. 

where 11 - 11 denotes the Euclidean norm. As already men- 
tioned, since there is an extra degree of freedom, there is 
no loss of generality in assuming that 11 a (  e,) 11 = I .  This 
also eliminates the trivial solution of (6). Note that (6) 
requires a multidimensional search over the parameters 
{ CY,,} and { T,,}, in contrast with the basic MUSIC 
method which assumes that all the parameters { CY,,, } are 
equal to one, or alternatively that they are known and 
stored in large calibration tables. The multidimensional 
search can be considerably simplified by decomposing 
a (e,,) as follows: 

a(en) = r ( t n )  . an, 
where 

a, = ( a l n ,  a 2 n ,  * * * 7 (YMnMn) T ,  

f >, r(r,) = diag ( e - j w i r i n ,  e - j w ~ 7 2 n  . . . e - j w i r ~ n  

and 

r n  = (?In, 7 2 n 9  * 7 T .  

Using this notation, (6) becomes 

6, = arg min aTrH(r,) U U H ~ ( r , ) a , .  (7) 

The minimum must be found under the following con- 
straint: 1) a, is a real vector; 2) 11 a, 1 )  = 1; and 3) t, is 

an, ' I~ 
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in the space induced by all possible source locations. 
Hence, 

Q, = arg min amin { c(r , )} ,  (8.a) 

8, = W"'", (8.b) 

Tn 

where 6 
trix C(r,) given by 

{ C( 2,) } is the smallest eigenvalue of the ma- 

c(t,) = Re { rH(t,) OOHr(Tn)  ), (9) 
and Wmin is the associated normalized eigenvector. Equa- 
tion (8) requires a search over the space of vectors t,, 
induced by all possible individual source locations. In the 
basic MUSIC method, (8) is simply 

m 

where the vector a( 2,) is only a function of the delays t, 
and not of the intensities. That means that for every pos- 
sible t,, the intensities are assumed to be equal to one, or 
a corresponding vector a, is known (stored in memory) 
and is used to construct u (r,).  

The proposed algorithm may be summarized as fol- 
lows. 

a) Estimate the observation covariance matrix 

l J  
Rx = - c X ( j ) X ( j ) "  

J j = I  

b) Find the M - N eigenvectors, { 2, } , correseonding 
to the smallest M - N eigenvalues of the pencil (R,,  E, ), 
and construct the matrix 

0 = [ h N + 1 ,  h N + 2 r  * * ' 9 k M ] .  
c) Evaluate, for all possible source locations, the "spa- 

tial spectrum" given by 

where C ( r ) is defined by (9). 
d) Select the N highest peaks of P ( T ). The correspond- 

ing values o f t  describe the source locations, and the cor- 
responding eigenvectors describe the intensity vectors 

This conceptually simple algorithm requires, in step c), 
more computational effort than the basic MUSIC method. 
However, the results, illustrated in the next section, jus- 
tify this effort. 

Also note that the computational requirements, associ- 
ated with the proposed approach, are typically less than 
the requirements associated with the iterative maximum 
likelihood solution described in [ 6 ] .  

Before turning to some examples, it is appropriate to 
discuss the question of uniqueness. While sufficient con- 
ditions for uniqueness are still an open research problem, 
it is easy to derive a necessary condition following [ 1 ,  p. 
841. Referring to the basic relation ( 5 ) ,  we observe that 
R, can be perfectly described by 2MN - N 2  + 1 param- 

Can}. 

eters. These parameters are the N + 1 different (real) ei- 
genvalues and 2NM - N 2  - N parameters that define the 
N complex eigenvectors, associated with the signal sub- 
space, that satisfy N ( N  + 1 ) / 2  complex orthogonality 
constraints. On the other hand, we have MN unknown 
{ a,, }, N constraints on { am, } , r N unknown location 
parameters ( r  = 1 for azimuth only system, r = 2 for 
azimuth and elevation system, etc.), N 2  unknown param- 
eters that define the Hermitian matrix R,, and a single un- 
known parameter u2.  Thus, the problem is not strictly well 
posed unless 

2 M N - N 2 + 1  L M N - N + r - N + N 2 + l ,  
or 

N I ( M  + 1 - r ) / 2 .  (10) 
However, even if this inequality is satisfied, one may 

obtain spurious results in addition to the desired solu- 
tions, as shown in the following section. It is then nec- 
essary to use postprocessing criteria to eliminate the un- 
desired solutions. 

111. EXAMPLES 
To illustrate the behavior of the algorithms, let us con- 

sider two examples. 
Example I: Consider a uniform linear array of five sen- 

sors separated by one-half a wavelength of the actual nar- 
row-band source signals. The sources are two narrow- 
band emitters located in the far-field of the array. In this 
case, if y n  denotes the bearing of the nth source, ( n  = 1 ,  
2 )  relative to the perpendicular to the array baseline, the 
differential delay is given by w1 T,, = ( m  - 1 )  .rr sin 
( y,). The intensity coefficients { a,,,, } were chosen ac- 
cording to 

a,, = 1 + f i  0 2  * p,,, ( 1 1 )  
where the &,'s are independent, identically distributed 
random numbers whose distribution is uniform over the 
interval [-0.5, 0.51, and where u2 is the standard devia- 
tion of a,,. The signals, S ( j ) ,  and the noise, V ( j ) ,  are 
random complex Gaussian vectors with covariance matri- 
ces u,' Zand uf I ,  respectively. 

In the first experiment, we placed one source at -5" 
and the other at l o " ,  to demonstrate the "superresolu- 
tion" performance of the algorithm (the Rayleigh reso- 
lution criterion for this array is 28.6 ' ) .  We then collected 
J = 4 0  snapshots with SNR g 2 0  log ( u , / B , )  = 30 (dB). 
The standard deviation of the intensity coefficients was set 
at 0.5. (Note that the intensity coefficients were selected 
only once and they are the same for all the snapshots.) 
The "spatial spectrum" 

PI -10 log {6"'ln(r)} (dB), 

of the proposed algorithm and the spatial spectrum of the 
MUSIC algorithm defined by 

P M  6 -2Ol0g { ~ ~ ~ H u ( r ) ~ ~ ]  (dB); 

is plotted in Fig. 1. We observe that the standard MUSIC 
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EQUAL INTENSITY COEFFICIENTS - LINEAR ARRAY 

AZIMUTH [DEGREES] AZIMUTH [DEGREES] 

Fig. 1. Spatial spectrum of two far-field sources, with random intensity 
coefficients (linear array). 

Fig. 2 .  Spatial spectrum of two far-field sohrces with equal intensity coef- 
ficients (linear array). 

EQUAL INTENSITY COEFFICIENTS - CIRCULAR ARRAY 

approach fails to resolve the sources. On the other hand, 
the proposed method clearly resolves the sources, esti- 
mates the direction accurately, and above all obtains an 
accurate estimate of { a,,,, } with maximum error of 2 per- 
cent (i.e., 11 &, - a, 11 / I [  a, 11 I 0.02). Notice that the 
spatial spectrum associated with the new method has ad- 
ditional low peaks at -28” and 32”. These phantom so- 
lutions can be easily removed using a “validity criterion” 
that requires all intensity coefficients to have the same 
sign. Hence, all solutions with associated & containing 
nonphysical coefficients are immediately eliminated. In 
Fig. 1, the validity criterion is high for acceptable solu- 
tions and low for nonphysical intensity coefficients. 

Example 2: Consider exactly the same setting as in Ex- 
ample 1 ,  except that now all the intensity coefficients are 
selected to be one, so that the intensities match the stan- 
dard MUSIC assumptions. The results of applying both 
algorithms are shown in Fig. 2. As expected, the MUSIC 
algorithm performs well, but there is a potential problem 
with the proposed approach. In addition to the desired so- 
lutions at - 5 ”  and lo”, we obtain a phantom solution at 
exactly 2.5”, which is not eliminated by the validity cri- 
terion. A simple analysis shows that the phantom solu- 
tions are expected to appear at (yl  + y2)/2 when the 
array is linear, a, = a2, and two sources are close to- 
gether. In general, ambiguous solutions occur whenever 
the surface spanned by a( 0 )  (“array manifold”) inter- 
sects, or is very close to, the signal subspace (the space 
spanned by the columns of A )  in the more than N points 
i l l .  

Experiment 2 was repeated using a circular array of 6 
sensors with equal spacing of one-half a wavelength. 
Again all intensity coefficients were equal to one. Fig. 3 
shows the results. It is clear that now the ambiguous so- 
lution is detected by the validity criterion. 

IV. CONCLUSIONS 
In this paper, the eigenstructure approach has been used 

to obtain estimates of source locations as well as estimates 
of the intensity vectors { a, } simultaneously. We have 

‘7 70, I ’ ’ ’ 

-20 -I 
-30L -50 

’ \...-“““““j 
MUSIC 

71 VALIDITY CRITERIO 

I 
-40 -30 -20 -10 o I O  20 30 40 50 

AZlMUTH [DEGREES] 

Fig. 3 .  Spatial spectrum of two far-field sources with equal intensity coef- 
ficients (circular array). 

shown that the basic MUSIC method does not perform 
well when the vectors { a ,  ] are not known a priori. The 
estimates of { a, }  may be useful in their own right, but 
their estimation is essential, even if one is only interested 
in the source locations, in cases where it is not appropriate 
to assume omnidirectionality . For example, whenever a 
source is in the near field of the array, its radiation pattern 
can rarely be assumed omnidirectional. This is also im- 
portant in applications in which it is unrealistic to assume 
that the radiation pattern of each sensor is accurately 
known (this usually requires frequent recalibration and 
a large memory). 

We observed that in some cases, postprocessing is re- 
quired to eliminate spurious solutions and also ambiguous 
solutions. The elimination of spurious solutions which are 
associated with nonphysical intensity vectors is relatively 
easy. On the other hand, elimination of ambiguous solu- 
tions that have acceptable intensity vectors is much more 
complicated, and requires a close examination of all re- 
sults, as well as taking into account any available a priori 
knowledge. The appearance of ambiguous peaks in cer- 
tain cases and their elimination is still an open subject of 
research. 
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