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5) Establishing criteria for stability. 
6 )  Application of estimation theory. 

Finally, of a more general nature, the techniques and 
concepts of optimal control could be extended to  the 
spatial model. 
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Estimation for Rotational Processes with 
One Degree sf Freedom- Part I: 

Introduction and Contimuous-Time  Processes 

Abstmet-A class of bilinear estimation problems involving single- 
degree-of-freedom rotation is formulated and resolved. Continuous-time 
problems are considered here, and discrete-time analogs wiU be studied in 
a second paper. Error criteria, probabi i  densities, and  optimal estimates 
on the circle are studied. An effective synthesis procedore  for amtinuous- 
time estimation is provided,  and  a generalization to estimation on arbitrary 
Abelian Lie groups is included.  Applications  of these results to a number 
of practical problems including frequency  demodulation will be considered 
in a third paper. 
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I. INTRODUCTION 

I N THE past, most optimal estimation problems have 
been studied in a vector space setting. While  these 

results lend  themselves to simple solutions in linear sys- 
tems [ l]? [ 2 ]  and in nonlinear systems  with finite dimen- 
sional sensor orbits [3], no effective synthesis procedures 
for optimal estimation have been determined for large 
classes of nonlinear systems. 

It is the purpose of this paper to introduce an alterna- 
tive  to the vector space approach in analyzing the proper- 
ties of nonlinear stochastic processes.  We will study ran- 
dom processes on a different type of space, namely, a 
differentiable manifold, which  is  the natural domain for 
certain nonlinear problems of practical importance. This 
approach will  be  shown to be  useful both in analyzing the 
properties of certain stochastic processes and in deriving 
recursive optimal estimation equations that are easily  im- 
plemented. 

More  specifically, we  will concern ourselves  with the 
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study of random processes on the circle S ’ and its  ex- 
tensions to higher dimensions. Topics such as FM de- 
modulation, frequency stability, and single-degree-of- I-D BROWNIAN 

freedom gyroscoptic analysis are well-known examples in 
MOTION 

this framework. 
As an example of the type of problem that is of interest 

here, consider the following: suppose a random complex 
waveform 

s ( + J p W  (1) 

is transmitted, where x is the (continuous) process to be 
recovered. As is often the case in optical communication 
problems [24], the waveform  is corrupted by a multiplica- 
tive log normal noise--e.g., the received  signal might be of 
the form 

where 2) is a Brownian motion process  with 

E[  dc( t ) ’ ]  = q(t)dt .  

Since the set of unit modulus complex numbers can be 
identified with the unit circle in R2, we see that the 
estimation problem suggested by (1)-(3) has S1 as its 
natural domain. As we shall see, our results provide the 
method needed for solving  this and a number of related 
problems (see Part I11  of this  series of papers for more on 
this specific problem). 

It is appropriate to remark that in the paper we  will  use 
several representations of the circle interchangeably. A ,  
point .on the unit circle can be represented either by the 
angle 8 E[ - T , V )  it makes with a fixed reference point or 
by the 2 x 2  orthogonal matrix 

Note  that  addition of 8 ,  and 8, modulo 2m corresponds to 
the multiplication of the two matrices representing the 
points. Finally, as mentioned above, the set of unit modu- 
lus complex numbers { eie18 E [ - T,T)}  is a representation 
of S ’, and its relationship to the others is obvious. 

The definition of Brownian motion on S ’ [21] provides 
the basis for our analysis of one-dimensional rotational 
processes. Consider the situation depicted in Fig. 1. We 
have a unit circle in R 2  with a straight line of infinite 
length tangent to it. We  allow the line to perform a 
one-dimensional Brownian motion, fix the center of the 
circle, and require that there be no slipping at the point of 
tangency. The line induces a rotation of the circle, and if 
the line moves a distance x ,  the circle rotates x rad,  and is 
thus in a position which is x mod 2m = 8 rad away from its 
initial position. 

I 

Fig. 1. Brownian motion on S I .  

The probability density function for 8 satisfies the clas- 
sical heat (diffusion, Fokker-Planck) equation on the 
circle: 

with the periodicity condition 

P&,f )=Pe( t+2W)  ( 5 )  

and initial condition 

ps([,O) = a([- v), a Dirac delta function ( 6 )  

where the initial orientation of the circle  is 17 rad from 
some reference position. The solution of (4)-(6) is  widely 
known, and-is given by the two equivalent expressions 

The density in (7) and (8) will be called the folded normal 
density since, as (7) indicates, it is obtained by “folding” a 
normal density about  the circle.  Levy [4] and Perrin [ 5 ]  
have done extensive  work  with  this density. 

In this paper we deal solely  with continuous-time prob- 
lems.  We  utilize  this concept of “folding” a random pro- 
cess around  the circle to define a large class of nonlinear 
signal and observation processes, and derive easily im- 
plemented optimal estimation equations for a class of 
bilinear problems. In  Part I1  we  will consider some dis- 
crete-time problems, and will also use Fourier series 
analysis as an aid in designing discrete-time estimation 
systems. The discrete-time problem is quite interesting, 
since it is  much more difficult than its continuous-time 
counterpart, and the difficulty can be explained in a 
physically appealing manner. In  Part I11  we  will discuss 
some of the possible applications of the techniques to 
those designed using the optimal methods that we have 
developed. For more on these subjects, the reader is 
referred to [25] and [26]. 

11. ERROR CRITERIA AND OFTIMAL ESTIMATES 

Since the question of optimal estimation will be of 
central importance in the following sections, it is  nec- 
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essary  to study how one uses the knowledge of the prob- 
ability distribution of the quantity to be estimated to 
choose an estimate that gives the “best” performance, as 
measured by  some predetermined figure of merit. In this 
section we present several  results on the optimal estima- 
tion of random variables on  the circle. For  the sake of 
brevity, we state  the results of this section without proof. 
Proofs can be found in [35]. We  assume that we are given 
a random variable 8 takmg  values in [ - 77.77) with prob- 
ability densityp(8) which  is periodic with period 277. Also, 
we assume that we  have an error function 9. also periodic 
with peri:d 27i, and we  wish to choose 8 to minimize 
E [+(e - e)]. We  wish to provide simple  methods forAcom- 
puting the minimum of the cost and the value of 8 that 
achieves  this  minimum. To this end, we present a useful 
result, analogous to that of Sherman  [lo], [ 111. 

We define the standard distance function (Riemannian 
metric) on the circle-i.e., the distance p between  two 
points on the circle to be the arc length of the shortest 
path (geodesic  line) joining them. If  we restrict 8, and O2 
to take values in  the range [ - T,T) ,  we  have 

A 

p(81 ,82)=min(~81-82( ,2~ -~81-82~) .  (9) 

The class of error criteria we  wish to consider is the 
class of symmetric, nondecreasing cost  functions-i.e., 
functions + : S ‘+R which  satisfy 

o ~ + ( e ) = + ( - q ,  o ~ P ( e l , o ) ~ P ( ~ , , o ) ~ ( 6 ( 8 , ) ~ 9 ( 8 , ) .  

(10) 

Some  examples of cost  criteria  satisfying (10) are 
p ( 8 )  p(8,0), ( 1  - cos@, p(8)’ ,  ( 1  - cos  We note  that 
+= 1 -cos8 was  used  in  [34] to design a phase-tracking 
system.  We also wish to consider the special  class of 
unimodal, mode-symmetric probability density functions 
-i.e., density functions that have unique maxima and  are 
symmetric about their  maxima. As the following theorem 
demonstrates, under these conditions the mode of the 
density is the optimal estimate. 

Theorem I :  Given an error function + that satisfies 
(10) and a unimodal, mode-symmetric probability density 
function p ,  then 

where p has its maximum at q. 
Note  that  the symmetry requirements of Theorem 1 are 

necessary. For instance, if + is not symmetric, the mode of 
the density need not  be  the optimal estimate even if all the 
other assumptions of Theorem 1 do hold (see  [35]). In 
addition,  Theorem 1 still holds if a probability density 
does not exist, but the probability measure  is unimodal at 
and symmetric about some point q (see [IO], [25],  [26]). 
Note also that  the class of criteria 4 that satisfies  (10)  is 
quite large, but the class of unimodal, mode-symmetric 
densities  is  somewhat  special.  However, in the continuous- 

time problems discussed  in the subsequent sections, the 
folded normal density plays a central role, and as  the next 
result  indicates,  Theorem 1 is applicable in  this  case. 

Theorem 2: The folded normal density 

is unimodal with  mode at 8 = q and is symmetric about q. 
For the case  in  which p ( 8 )  = F(8;  q, y) ,  we can say a 

great deal more about an even larger class of error criteria 
than those satisfying (IO). We  remove the symmetry  re- 
quirement  but still require that (6 be nondecreasing on 
[O.T] and nonincreasing on [ - 77,0] (a physically reason- 
able assumption). For such a +, the mode q need not  be 
the optimal estimate; however, for this  discussion, we  will 
take it as our estimate. The following theorem reveals an 
important property of the error E(@(@-?) ) .  

Theorem 3: For + satisfying the above requirement, 
and p ( 8 ) =  F ( 8 ;  q ,y )?  E(+(8-  q)) is an increasing function 
of the variance y-that  is, 

The proof of this  result  relies on the following  lemma, 
which  yields  more information about  the  shape of the 
folded normal density. 

Lemma I :  For  an  arbitrary  but fixed  value of y>O, 
there exists 8, E[O, 771 such that 

that is, F has a unique inflection point (at 8,) on [0,7r]. 
Note  that by  symmetry we have that F has a unique 

inflection point at - 8, on the interval [ - .r,O]. Theorem 3 
tells  us that the intuitive notion that we “have more 
accurate information” for smaller  values of y can  be made 
precise. Also, this theorem is the S analog of a result 
obtained by  Brown  [14]. 

111. SIGNAL PROCESSES AND OBSERVATION 
PROCESSES 

We  now  use the projection procedure introduced in 
Section I to formulate the mathematical models of signal 
and observation processes  to be used in this paper. In 
doing this, we will find it convenient to use the 2 x 2  
orthogonal matrix representation of S ’ .  Any  element of 
this group has the direction cosine form displayed in 
Section I, and for small 8, we have  the first-order 
approximation 
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where the matrix 

is called the infinitesimal  rotation matrix. 
For those familiar with the theory of Lie groups, S is a 

one-dimensional Abelian Lie group, with the 2 X 2 ortho- 
gonal matrices a representation of the group [sometimes 
called SO(2)l. The infinitesimal rotation R forms a basis 
for the Lie algebra L(SO(2))  of SO(2), and the matrix 
exponential maps L(SO(2))  onto SO(2). 

Let (a, @ , P) be a probability space and s a positive  real 
number. Define Cs to be the space of real-valued con- 
tinuous functions a on [O,s] such that a(0) = 0, and let Ci 
denote the set of SO(2)-valued functions A on [O,s]  such 
that A (O)= I .  Finally, let 91; and 3; denote the Borel 
a-fields of Ci and C,S, respectively. We will  use  lowercase 
letters to denote elements in Cs and uppercase letters to 
denote elements in C,S. 

Let J : Cs+ Ci be defined by 

r 1 

Ja(t)=exp(a(t)R)= I I cosa(t) sina(t) 

-sina(t) cosa(t) 

cess y : S2-K; such that 

We  now  wish to specify our signal process pair ( x , X )  
and observation pair (z,Z) where x and z are real valued 
and X and Z are obtained from them via  (22). For the 
time being, let ( x , X )  be any Cs, C,S pair related by (22). 
We  will consider special cases and nonzero initial condi- 
tions later. Depending on the particular problem, we  will 
regard either x or X as the signal process.  We remark that 
the probability distributions of x ( t )  and X ( t )  are related 
by  “folding” the distribution for x(t) around  the circle. 
Letting e,(t) be the representation of X ( t )  as an element 
of [ - a,a), and choosing any Borel subset A of [ - a, a), 
we have 

+ W  \ 

= 2 P ( X E A  +2n77). (23) 
+ W  

n =  --oo 

We define a random process z : Q-+Cs satisfying the It8 
differential equation 

d ~ ( t ) = h ( x ( t ) , t ) d t + r ” ~ ( t ) d w ( t ) ,  z(O)=O (24) 

where w : a+ Cs is a standard R ’ Brownian motion pro- 
cess independent of x, h : R ’ X R ‘-+R ’ is  Borel measur- 
able, and r : R ‘-+R ’ is  positive and Borel measurable. Let 
Z :  Q+Ci be defined by Z =  J ( z ) .  Applying the It8 
differential rule, we obtain  the following matrix It8 
differential equation (Z(0)  = I ) :  

t E [O,s]. (19) 

It is clear that J is  %:-measurable. It is claimed that J is 
also bijective. To show  this, we first note  that J is the 
same as the map - d z ( t )  - -dt 

where we identify SO(2) with [ - n-,~).  The processes of = (- $Id+ Rdz(t) Z ( t )  
breaking up a to form 0, and of piecing 8, together to 
form a continuous (R ‘-valued) function can easily be seen  where the diagonal terms - r(t)dt/2 are the second-order 
to be inverses of one another (see 1351). Intuitively, what correction terms given by It8 stochastic calculus. These 
this  says  is the following: if we continuously watch a terms are precisely what is needed to insure that Z ( r )  
rotating object, we know not only its present orientation, remains an orthogonal matrix (i.e., that it stays on the 
but also the number of rotations it has performed. Here circle).  We note  that Z ( t )  can be written in the form 
a(t)  is the total angle swept and O,(t), also represented by 

1 (25) 

Ja(t)ESO(2), is the present orientation. The inverse of J Z(t)=exp  rl/2(s)dw(s) 
can be  seen to be equal to I‘ 

(21) =exp(RL‘r’/’(s)dw(s) 
. (26) 

In the second line of (26),  we see the inherently multi- 
Therefore, given a probability space (Q, @,P) and any plicative nature of the observation noise. This will  be 
continuous  @-measurable  random process Y : O+Ci, referred to in Part I11 in relation to  log normal noise in 
there corresponds a unique @ -measurable random pro- optical communications. 



14 IEEE TRANSACXIONS ON AUTOMATIC CONTROL, FEBRUARY 1975 

We assume that our sensor observes either Z ( t )  or 
dZ(r) .  In this  case,  (25)  is the It6 differential equation that 
represents the sensor dynamics. This model  deserves  some 
further comment. We first note that we shall find that the 
differential equations for estimation4ither the Kushner- 
type partial differential equations (41) and  (49,  or the 
optimal estimation equations in Section V-explicitly in- 
volve d Z .  Thus, if  we observe Z ,  we  will have to 
differentiate it to obtain dZ.  Also, in (24) and (25) we 
have assumed that z(0) = 0 and Z(0) = I .  However, if dZ is 
taken as the observation (as it is in devices  like integrating 
gyros,  which provide incremental angular change informa- 
tion), the initial condition is unimportant. The reader is 
referred to Part 111, in which we discuss a scheme that 
avoids differentiating Z but retains the property of being 
independent of the initial condition. In this case we can 
drop the assumption that z(0) = 0 and Z(0) = I .  

We note that  the input to the sensor is not X ( t )  but 
x ( t ) ,  and if  we interpret X as the orientation of some 
object, then x is the total angle swept. Thus, taking x as 
the input to the sensor reflects the bijectivity of  J-i.e., in 
observing a  rotational process X ( t ) ,  our observation yields 
information concerning the total rotation x ( t ) .  Referring 
to (24), if  we assume that h(x , s )  = x and r = 1,  we have 

If, as with an integrating gyro or some other angle- 
detecting sensor, z and 2 are measures of angular orienta- 
tion, then x should be an angular velocity, as opposed to 
an angle. Thus, it would  be  physically appealing to con- 
sider a problem of the following  type: let x ,  = total angle 
swept and x2  = angular velocity; in this case the dynamical 
rotation state is X, = J ( x , ) .  If  we take noisy measurements 
of the total angle swept, our measurement process can be 
written as 

z ( t ) = x , ( t ) + w ( t ) = ( ' x , ( s ) h + w ( r ) .  0 (28) 

As  we shall see, the solution of the scalar estimation 
problem with sensor dynamics given by (24) and (25) will 
lead directly to  the solution of multidimensional problems, 
including the one  just described. Also, the scalar results 
are directly applicable to some practical problems such as 
frequency demodulation (see Part 111). For the multidi- 
mensional results, the reader is referred to the part of 
Section V on the general Abelian Lie group problem and 
to the examples  (in particular, see  Example 1). 

Finally, we note  that an observation equivalent to Z ( t )  
is y(t)=(cosz(t), sinz(t))-i.e., we do not need the full 
2 x 2  matrix. In fact, we will use this measurement pair 
formulation in the examples of Section VII. However,  in 
the mathematical development of Sections IV-VI,  we  will 
continue to write the SO(2) equations. 

IV. CONDITIONAL PROBABILITY 
DISTRIBUTIONS 

The problem considered in  this  section  is to determine 
the conditional probability measures P(x(A) E AIZ(?), 
TE[O,~]) and P(X(X)EBIZ(7) ,  7E[O,t]) where A is a 
Borel subset of R ' and B is a Borel subset of SO(2). We 
remark that the physical motivation for determining the 
distribution for x @ )  comes from such problems as the 
frequency demodulation problem [28]-[3  11. The physical 
motivation for finding the distribution for X(h) is related 
to the problems of orientation estimation and phase 
synchronization and tracking. 

In the rest of this section we  will  use z' to denote 
{z(T),TE[O,~]}  and Z' for { Z ( T ) , T E [ O , ~ ] } .  In addition, 
we  will sometimes  write x ( t )  as x, and X ( t )  as X,. Let El 
be the o-algebra of Borel subsets of R and h the Borel 
subsets of SO(2). The various processes induce probabil- 
ity measures on either (R I ,  e,) or (S0(2), Q. For in- 
stance, 

VJA)   P(xz- l (A)) ,  A E e, (29) 

Since J is  bijective, the information contained in  z' is 
the same as that in Z'. Mathematically, this means that 
the o-subfield of @ generated by z' is the same as that 
generated by Z',  and it  will be denoted by @:. The 
o-subalgebra of @ generated by xA will be denoted by 
@,.., and denotes that generated by X,. 

For the present, we assume that the times X and t are 
fixed, and for simplicity, we drop them as subscripts and 
superscripts (we  simply note that X <  t corresponds to a 
smoothing problem, X =  t is the filtering problem, and 
h > t is the prediction problem). Let P, be the conltional 
probability measure on (a, @x)  given 8z : 

P, (A ,w)=P(AI@Jw) ,  A E @ x , w E Q .  (31) 

This measure induces a measure on (R ', e,): 

We  define P,, on (a, a,) and vxz on (SO(2) ,  f-& 
analogously. We also note that since v, and v,, are 
@:-measurable,  they can be thought of as explicit 3; 
measurable functions of Z'.  

The problem is to determine equations for vxz(A,Z') 
and vxz(B,Z' ) .  Because of the equivalence of z'  and Z', 
the equations can be obtained from standard vector space 
results (see details in [25],  [20], [ 161,  [15]). The measure vu 
can be  shown [ 151, [ 161, [25] to  be absolutely continuous 
with respect to vx, (vxz<< vx), and the Radon-Nikodym 
derivative is  given  by 

dv,  &(O'IXA= x )  - ( x ,   Z ' )  = 
dVX 6 (0') 

(33) 
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where period 257 [i.e., if and only if it depends only on X ( t ) ] .  
Following [19],  [20], and [6],  we can derive the stochastic 
partial  differential  equations  for p , ( x , A I Z ' )  and 
pe(B,AIZ'), assuming that the densities are sufficiently 
smooth: 

+ f 4 7 )  
h ( X ( 7 ) 7 7 )  [z ' (7)dz(T)1,2)  (34) 

dp,(x,tlZ')=(A*p,)(x,tlZ')dt 

( h ( x , t ) - & )  

r ( t >  
+ ([z'(t)dz(r)l,2-~'~~)P,(x,tlZ') (41) 

where f denotes an  It8 stochastic integral. Here dz(7) 
= [ Z ' ( T ) ~ Z ( T ) ] , ~  and the expectation is  over x' with Z' where 
fixed. 

R '. In this  case, it is clear that vu is also absolutely 
continuous with  respect to p ,  and denoting this density by 
p,(x,AIZ'), we have + m  

Suppose that v,<p where p is  Lebesgue measure on a(ag)  1 a2(bg)  A * ( g ) =  - - +-- (42) ax 2 a x 2  

&= &(h(x , t ) lZ ' )= /   h (x , t )p , (x , t lZ ' )dx   (43 )  
&(OqXA=X) --DO 

Px(x,AIZ')= P, (x7 A). (35) &(e? +-m 
& e ( e , t l Z ' ) =   & x ( ~ + 2 ~ 5 7 , ~ l z ' ) *  (4) 

is the representation Of X On [-  57y  Then, from (23) In general, we cannot simplify (44) any  further. However, 
Instead of v,,, we now consider the measure vez where 8 n= --m 

suppose a,   b ,  and h are periodic in x with period 257. Then +oo 
.#,(A) = x v,(A + 2n57). (36) we have the equation 

n= -oo 
dp,(8,tlZ')=(B*pe)(B,tlZ')dt 

Then, if (35) holds, we have the following  result. 

( x , X )  related by (22) and a measurement process defined + 
by (24) and (25). If the unconditional density for xA, 
p, (x ,  A) exists, then the conditional densities p,(x,AI Z'),  where 
Pe(8,AIZ') for xh and e,, respectively,  exist and are given 

Theorem 4: Consider a continuous signal  process pair ( h ( e , t ) - i J  

r ( t>  
(45) 

by ( B * g )  = - - 1 a 2 ( b d  ae 2 a82 
+--. (46) 

&(@'IxA=x) 

(@*I Px(x ,A(Z ' )=  P x  (x7 A) (37) For A > 1, we have the prediction problem. Assume x is 
a Markov process and let p,(x,Aly,t) be the transition 

+m G ( C Y I ~ ~ = ~ + ~ ~ ~ )  density for xA given xz = y. Then  one has (see [ 171) 
Pex(e,hlz')= x 

(0') 
P,(@+2kT7A) 

k= --m 

(38) 
p , ( x ~ ~ I Z ' ) = / + m p , ( x , ~ l ~ , t ) P X ( ~ , ~ I Z ' ) Q .  --m (47) 

where 0' is defined by (34). 

which we shall  mostly concern ourselves  is A =  t-the terms Of the 

the  It8 equation the conditional densities in terms of filtering (see [ 171, [ 181, 

we can now consider various values of A. ne one with Thus, the prediction result can  be expressed  explicitly  in 

filtering problem. If we assume  that x is the solution of For the smoothing problem A < t ,  we can express 

~ 5 1 ) :  

P x ( x , ~ I Z z ) = P , ( x , A I Z X )  
d x ( t ) = a ( x ( t ) , t ) d t +   b 1 / 2 ( x ( t ) , t ) d u ( t )   ( 3 9 )  

where u is a standard Brownian motion process, then X 
satisfies 

dX(t)=[ - 4 b ( ~ ( ; ) , t ) l d t +   R d x ( t ) ] X ( t ) .   ( 4 0 )  

We remark  that  although x is a Markov process, X need where 
not be. In fact, we can show that X is a  Markov process if 
and only if the right-hand side of (40) is periodic in x with as= &(h(x( s ) , s ) lZ" ,x ,=x) -   &(h(x ( s ) , s ) IZS)   (49 )  



16 IEEE TRANSACTIONS ON AUTOMATIC C O ~ O L ,  FEBRUARY 1975 

dy(~)=[z'(~)~z(~)l l2-  & ( h ( x ( s ) , s ) l Z " ) .  (50) 
For both the smoothing and filtering problems, we have 

+m 

p e ( ~ , h l ~ t ) =  2 p x ( e + 2 n 7 i , h l ~ t ) .  ( 5  1) 
n =  -m  

Thus, we have obtained differential equations for the 
conditional densities of the R process x and the S' 
process 6'. 

V. OFTIMAL SEQUENTIAL BILINEAR 
ESTIMATION 

In this section we  will consider a subclass of the class of 
systems described in the previous section, and will  use the 
tools of linear estimation theory to  solve an optimal 
nonlinear estimation problem. Specifically, we consider 
the signal process pair ( x , X )  given  by (22), (39), and (40) 
with the restriction that (39) be a linear It6 equation: 

dx( t )=a( t )x ( t )dr+b ' /2(r )du( t ) ,  x(O)=O. (52) 

We assume that b( t )  > OVt E[O, TI. In this case, we can 
write the bilinear It6 equation satisfied by X in  two  ways: 

(53) d X ( t ) = [ - ~ b ( t ) I d t + R d x ( t ) ] X ( t )  
or 

dX( t )=  - fb ( t )X( t )d t  

The observation process to be  used  is 

Z(t)dt+r'/2(t)RZ(t)dw(t) 1 
with Z(O)=I  and where r( t )>O VtE[O,  TI. As shown in 
Section 111, z = J - ' (z)  satisfies 

dz( t )=c( t )x( t )d t+r ' /Z( t )dw( t ) ,  z(O)=O. (57) 

Note  that like (53), (56) is bilinear. 
The problem now  is to determine equations for the 

optimal filtering estimates of x ( t )  and X ( t )  given 2' (the 
smoothing and  prelction results are a straightforward 
extension [351). Our choice of criteria will be the follow- 

ing: let +' : S'+R ' be any error function satisfying ( lo) ,  
and let +, : R l+R ' be symmetric about 0 and nonde- 
creasing on, the positive  half-line. Our optimal estimates 
E( t ! t )  and X ( t l t )  are taken to be,  respectively, the 3:- and 
%;-measurable functions of Z' such that 

for all  @:-measurable random 2 X2  orthogonal matrices 
M and all  @:-measurable real random variables p where 

@ ' ( ~ , , ~ ~ ) = @ ' ( ~ , , ~ ' ) = @ ' I ( ~ ~ ~ ~ ' ~ ~ ) = ~ 1 ~ 6 ' ~ .  (60) 

Here B is the [ - T,T) representation of X ,  'X,. 
We first solve a well-known problem. Since E' and Z' 

generate the same a-algebra @:, & ( x ( t ) l @ : )  is both a 
%;-measurable function f, of z ' and a %;-measurable 
function f, of Z ' ,  and f2=fl 0 J - l .  . In  terms of z', the 
solution of (59) for x ( t )  and z ( t )  given by (52) and (57) is 
well known El], [2], [6].  The conditional density px(x , t l z ' )  
is a normal density 

where  Kalman-Bucy linear filtering theory yields the 
equations 

d E t l r = a ( t ) ~ . r l f d t + P ( t ) c ( t ) r - ' ( t ) ( d z ( t ) - c ( t ) E , l t d r )  (62) 

Then by the R version of Theorem 1, since the normal 
density is unimodal and symmetric, 

for  all  @:-measurable p. Thus, the optimal estimate in 
terms of z' is 2,1t=jl(z'), so the optimal estimate as a 
function of Z' is just 2(t l t )=f1(J- ' (Z')) ,  and we have 
proven the following. 

Theorem 5: Let x, the signal process, be given by (52) 
and let (56) be the observation process. Then the optimal 
filtering equations are 

+ P(t)~(t)r-'(r)([Z'(t)dZ(t)],~b-c(r)Z((tlt)dt) (66) 

E (010) = 0 (67) 

where P is defined by (64). 
We  now turn to the problem of estimating X ( t )  using 
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the criterion (58). An alternative representation for X ( t )  is 
@,(t)=x(t)mod2~,  and using (61) and (38), we have that 
the conditional densityp,(@,tlZ') for B,(t) given 2' is the 
folded  normal  density F(O;; ( t l t ) ,P ( t ) ) .  Then, from 
Theorems 1 and 2,  we h p e  that the estimate @,(?It) that 
minimizes & (+l(@x(t)-  @,(tlt))lZ') (over the class of all 62: -measurable functions) is 

$,(tlt)=2(tlt)rnod2~ (68) 

and the estimate i ( t l t )  that is optimal with respect to (58) 
is 

i ( t l t )=exp[;( t l t )~l .  (69) 
Note  that 

& ( e x p [ x ( t ) ~ ] I ~ ' ) = e - ~ ( ' ) / ~  eXPP (tlt)R 1 (70) 

so the optimal estimate in the sense of  (58) is not the 
conditional expectation unless P 2 ( t )  = &i.e., unless we 
know exactly where we are on the circle and the line. 

We can write a stochastic differential equation for 
J?(tlt), and we include this in the following theorem which 
has just been proven. 

Theorem 6: Let X, the signal process, be given by (54), 
and let (56)  be the measurement process. Then, with 
respect to (58), the optimal filtering equations are 

d i ( t ( t ) =  - 3 P 2 ( t ) c 2 ( t ) r - I ( t ) i ( t l t ) d t  

a ( t ) - p ( t ) c 2 ( t ) r - I ( t )  

. P ( s ) c ( s ) ~ - ' ( s ) [ Z ' ( S ) ~ Z ( ~ > ~ ~ ~  dt 1 
J 

+P(t)c(t)r-'(t)[Z'(t)dZ(t)],, R?(tl t)  (71) I 
i (010) = I .  (72) 

The expected- error & (@.,(X(t),J?(tlt))lZ') of the op- 
timal estimate X ( t l t )  can be obtained by straightforward 
computation. For example, if +I(@)= 1 -cos@, we have 

G ( @ , ( X ( t ) , i ( t l t ) ) =  l-exp(-$~(r)) .  (73) 

See  [35] for other examples. 
The filter equation (71)  is quite complex; however, 

using its relationship with 2(tlt), we have the easily  im- 
plemented optimal filter depicted in the block diagram of 
Fig. 2. 

The measurement process dZ is  processed by a non- 
linear transformer that yields dz = [Z'dZ] , ,  as its output. 
This process then goes through a Kalman-Bucy filter that 
computes ;(tit), which  is then injected into SI via the 

Fig. 2. Block diagram for optimal filtering. 

of preprocessing and postprocessing a signal  with a linear 
filter in the middle has also been discussed by Oppenheim 
et ai. [32]. Also, as mentioned in the previous section, the 
differential nature of the observation means that  the re- 
sults are unchanged if Z(0)  # I .  This is  of importance, for 
instance, in the frequency demodulation problem where 
we observe only sinz( t )  and must construct cosz( t )  from 
it. This will be discussed in detail in Part 111. In addition, 
in  Part I11  we  will discuss an alternative nonlinear prepro- 
cessor that avoids differentiating Z ( t ) .  

The smoothing and prediction problems can be solved 
in a manner analogous to the solution of the filtering 
problem-i.e.,  we can sandwich the solution to the linear 
smoothing or prediction problem between the nonlinear 
pre- and postprocessors of Fig.  2. For details, see  [35]. 

Before closing this section, we make some comments 
concerning random initial conditions for x and X. If  we 
do  not specify initial conditions, the map J defined in (29) 
is not invertible. In fact, one can show that J(a)=  J (b )  if 
and only if 

b(t)-a(t)=b(O)-a(O)=2n57, Vt. (74) 

Thus, we cannot uniquely recover x from X if  we allow 
nonzero initial conditions. However, as long as we assume 
that we are given a, the process J(a)  is uniquely defined. 
For instance, in the results of this section, we can assume 
that x(0) has  the density N(x;2(010),P(O)), and i,t  is clear 
that  the initial conditions  for ;(tit), P ( t ) ,  X ( t l t )  in 
Theorems 5 and 6 can be replaced with 2(OlO), P(O), 
exp[fi(OIO)]. If  we are given X instead of x ,  we may be 
able to make an assumption sbout x(0)  so that we can 
apply the results of this section. 

An alternative to this approach is the following.  Let Y 
denote the dynamical state with random initial condition 
Yo, independent of all other random processes.  We ob- 
serve that the input to the observation process (56) at time 
t is the angle that the rotational process represented by 
the signal has swept over the time interval [O,t]. Taking 
this viewpoint, our present problem can be solved  with 
some modification to the previous results. 

Let y ( t )  denote the angle that the signal Y has swept 
over  [O,t]. It is  easily  seen that 

y ( f ) =  /tr Yf(s)dY(s)112. (75) 
0 

Let X ( t )  = Y; 'Y( t ) .  Then X(O)= I and,  as before, we may 
define 

x ( t ) = ( J - l ( X ) ) ( t ) =  / ' [ X ' ( S ) ~ X ( S ) ] , ~  (76) 
_,-, map J to produce the desired estimate i( tl t). The concept - u  
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We note that x ( t ) = y ( t ) .  In other words, the angles  swept 
by X and by Y over [ O , t ]  are the same. Hence, (56) can 
also be  used as the observation process for our present 
problem. The conditional distribution of X(A)  given ob- 
servation Z' of the form  given  in  (56)  can be determined 
by the application of the previous  results. 

We note that Yo and X(A) are conditionally indepen- 
dent given Z' .  If the distribution of Yo and the condi- 
tional distribution of X(h) given Z' are  both folded 
normal, then the following  lemma  casily leads to the 
conclusion that th_e 2ptimal estima_te Y(Alt) of Y(A) given 
Z' is equal to Y,,Y(xlta where Yo is the mode of the 
distribution of Yo and X(hJt)  is the mode of the condi- 
tional distribution of X(A) given Z'. 

Lemma 2: Let A and B be  two independent 2 x 2  
orthogonal random matrices which  have folded normal 
distributions with  modes A and B,  respectively. Then A B  
is a 2 x 2  orthogonal random matrix wh@ has a folded 

, normal distribution with  mode equal to A B .  
Proof: See  [35]. 

VI. MULTICHANNEL BTIMATION 

The results of the previous subsections can be extended 
to a large class of problems-those  involving  processes 
evolving on Abelian Lie groups. It is  well known [23] that 
a given Abelian Lie group G is isomorphic to the direct 
product of a number of copies of the circle and  a number 
of copies of the real line,  i.e., G x  R R  X ( S  I)" where ( S  I)" 

is  usually called a "torus." The diffusion processes  on  this 
type of space have been used to model  some interesting 
satellite and pendulum systems  in [33]. Analogous to (19), 
a bijective mapping J,, : (Cs)n+,+(Cs)n X (Cam is de- 
fined by 

( J m a ) ( t ) = [ a l ( t ) , .  . . Tan(l)y(Jan+1)(t),* . . ,(Jan+m>(t)l 

(77) 

for a E (Cy+ , ,  ai being the ith component of a. Then a 
continuous & -measurable random process X : Q+(C? X 
(C,T>- on G corresponds to a unique continuous &- 
measurable random process x : P+(C,T)"+m on R " + ,  via 
the identification X =  Jm(x) .  Let x = ( x , ; ~ -  ,xn+,)' be a 
normally distributed (n + m)-dimensional random variable 
with  density N,+,(x;q,P) where v =  & (x) and P 
= & [(x - q)(x - q)']. Then the density F,,(y; q , P )  for y ,  
which  is defined by 

y =(x,; . ,xn,xn+  ,mod2~; . ,xn+,mod2a)', (78) 

is called the (n,m)-folded normal density. Note  that n of 
the marginal densities (those for x1 through x,) are normal 
and the other m are folded normal. 

We can now consider the vector analog of the processes 
described by (22) and (39).  We can model our observation 
process analogously. Let z be the (/+ k)-dimensional solu- 
tion of the vector It6 equation 

dz(r )=h(x( t ) , t )d t+Q1/2( t )du( t ) ,  z(O)=O (79) 
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and define our observation process Z E ( CT)'X(C;)~ by 
Z = Jlk(z).  We can write stochastic differential equations 
for X and Z analogous to (40) and (25) by means of the 
It6 differential rule. The calculation is straightforward 
and will not be displayed. By the objectiveness of J,,, it  is 
clear that the preceding analysis extends directly to the 
multidimensional case. Furthermore, if the It6 equations 
for x and z are linear, the block diagram of Fig. 2 is 
conceptually correct. The nonlinear preprocessor becomes 

the postprocessor is J,,, and we use the vector 
version of the Kalman-Bucy filter. 

Thus, we have shown that the domain of the Kalman- 
Bucy filter includes estimation on Abelian Lie groups. 
Also,  since R"+" can be identified with the Lie algebra of 
R X ( S  l) , ,  we  see that the filtering technique involves the 
processing of the observations so that the actual filtering 
is done in the Lie  algebra-a vector space. 

Note  that the isomorphism between G and R" X ( S  I)" 

may be such that the actual noise processes are quite 
interesting. For  example, the Lie group of positive real 
numbers under multiplication is isomorphic to R 1  under 
addition by the map a+ea.  Thus, multiplicative ampli- 
tude changes can be looked at  as additive noises. We will 
have more to say about this type of problem in Part 111. 

VII. EXAMPLES 

Example I :  Consider a cylindrical shaft of unit radius 
being spun  about its longitudinal axis by an electric mo- 
tor. We assume that the total rotation of the shaft x1 is 
related to the driving force u by the differential equation 

X 1 + i 1 + x 1 = u  (80) 

with both x,(O) and il(0) equal to zero. The driving force 
consists of a known force and a disturbance. The known 
force adds neither difficulty to the analysis nor complexity 
to the solution. Thus, for simplicity, we assume that the 
known force is zero and  that the disturbance is white 
Gaussian noise i, with & ( i , ( t ) t j ( ~ ) ) = t j ( t - ~ ) .  Setting x2 
= i,, we obtain  the vector differential equation 

dr(t)=Ax(t)dt+Bdu(t), x(O)=O (81) 
where 

x = [  A = [  -1  -1 '1, B = [  y ] .  (82) 

Suppose we  wish to determine the orientation of the 
shaft-i.e., X , ( t ) =  (Jx , ) ( t ) .  Then  our  estimation  state 
space is R X S' with 

The orientation is determined by 
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[X,(t)]12=sinxl(t)=~in~'x2(~)d~. ( 8 5 )  

Suppose we measure these quantities,  but  that noise cor- 
rupts  our observations, so we actually observe 

~ ~ ( t ) = c o s ( ~ ~ ( t ) + w ( t ) ) , ~ , ( t ) = s i n ( x , ( t ) + w ( t ) )  (86) 

where w is a Brownian motion of unit  strength  indepen- 
dent of u. Note  that z1 and z2 are the (1,l) and (1,2) 
components of 

Z(t)=expR[ L x 2 ( 7 ) d ~ + w ( t ) ]  (87) 

and satisfy the  equations 

d z , ( t ) =  -~z , ( t )d t -x2( t ) z2( t )d t - z2( t )dw( t ) ,  

Z'(0) = 1 (88) 

dz2( t )=  - $ ~ ~ ( t ) d t + ~ ~ ( t ) ~ ~ ( t ) d t + ~ , ( t ) d ~ ( t ) ,  

z2(0) = 0. (89) 

Using the results of Section VI, we have the following 
optimal filter equations: 

d2(tlt)=A?(tlt)dt 

+P(f)c'[~~(t)d~~(t)-~~(t)dz~(t)-c2(tlt)dt] (90) 

where c=  [0, 11, 2(OlO)= 0, and P is the  solution of the 
Riccati  equation (P(0)  = 0). 

P ( t ) = A P ( t ) + P ( t ) A ' - P ( f ) c ' c P ( t ) + B B ' .  (91) 

The  optimal estimate of the orientation is 

~l(t l t>=exp(21(tl t)R).  (92) 

Note  that, as  in the  standard linear  case, we can  compute 
an optimal  steady-state filter by replacing P ( t )  in (90) 
with the positive definite solution of the algebraic Riccati 
equation. 

Example 2: In this  example, we will take  a set of 
nonlinear signal and observation equations  and show that 
by interpreting them  as  signals  on S X R and S X R 
respectively, we can use the results of Sections V and VI 
to solve the optimal filtering problem. The signal  process 
is  specified by the following equations: 

& I =  - - x2x4dt - x2du, ~ ~ ( 0 )  = 1 (93) 

dx2= - +x,dt + x,x,dt + xldu, ~ ~ ( 0 )  = O  (94) 

dx, = x4dt + du, x3(0) = 0 (95) 

i 4 =  - x3, X4(O) =o (96) 

i5 = x4 + x,, X5(O) = 0 (97) 
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where u is a  unit  strength Brownian motion process. The 
measurement equations  are 

+ ~ ' x 2 ( s ) d x l ( s ) ) z l d t  + zldw, (99) 

d ~ 3 = ( ~ x 1 ( s ) d x 2 ( s ) - ~ r x 2 ( s ) d x I ( s )  0 

z (0 )  = 1 zz(0) = z3(0) = 0 (101) 

where w 1  and w2 are  standard Brownian motions, inde- 
pendent of each other  and of o. The problem is to find the 
least squares estimates 2l and 22 for x1 and x2 under the 
constraint Sf + 2; = I. 

It is easy to show that xI  =cosx3,x2=sinx3, and there- 
fore, our  optimal filter need  only estimate x3, x4, and x5 to 
get estimates of x1 and x2. Also, (98) and (99) yield 

+[ -:: zl] 2 R[(2x,+x4-x3)dt+dw,] .   (102)  

Note  that  the system  is not observable with just the S' 
observation  pair { z1,z2} or with just the R observation 
z3, but the system is observable with both observations. 

Followingthe  approach developed  in Sections V-VI,  we 
have the optimal filter equations 

d2, [ :: = A  



IEEE TFLANSACTIONS ON AIJTOMA~C C O ~ O L ,  FEBRUARY 1975 20 

where The reader is referred to Part I1 of this  series of papers 
for a discussion of discrete-time S I  estimation problems 

P=AP+ PA’- PC‘Cp+ BB‘ p(O)=o (104) and to Part I11 for a discussion of some applications and 
some numerical results. In addition, [27] contains some 
optimal stochastic control schemes for SI processes, and 
[36] and [37] contain some likelihood formulas for pro- 

0 1 0  
A =  [ -1 0 0 l ] j  +]> c=[ -; ; ;]. cesses on more general Lie groups. 
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