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Analytical  Redundancy and the Design of 
Robust Failure  Detection Systems 

Abstract-The  failure detection and identification (FDI) process is 
viewed as consisting of two stages residual  generation and decision mak- 
ing. It is argued  that  a  robust FDI system can be  achieved  by designing  a 
robust  residual  generation  process.  Analytical  redundancy,  the basis  for 
residual  generation, is characterized  in  terms of a  pm’ty  space. Using the 
concept of parity relations,  residuals  can be generated  in  a  number of ways 
and the  design of a  robust  residual  generation  process  can be formulated as 
a minimax optimization  problem. An example is included to illustrate this 
design methodology. 

I. INTRODUCTION 

P HYSICAL systems are  often subjected to unexpected 
changes, such as component failures and variations in oper- 

ating  condition,  that tend to degrade overall system performance. 
We  will refer to such changes as “failures,” although they  may 
not represent the failing of physical components. In order to 
maintain a high level of performance, it is important  that failures 
be promptly detected and identified so that appropriate remedies 
can be applied. Over the past decade numerous approaches to the 
problem of failure detection and identification (FDI) in dynami- 
cal systems have been developed [l]; detection filters [2], [3], the 
generalized likelihood ratio (GLR) method [4], [5] ,  and the multi- 
ple model method [SI, [6] are some examples. All of these analyti- 
cal methods require that a dynamic model of some sort  be given. 
The goal of this paper is to investigate the issue of designing FDI 
systems  which  are robust to uncertainties in the models on which 
they are based. 

The FDI process essentially consists of two stages: residual 
generation and decision making. For a particular set of hypothe- 
sized failures, an FDI system has the structure shown in Fig. 1. 
Outputs from sensors are initially processed to enhance the effect 
of a failure (if present) so that it can be recognized. The processed 
measurements are called the residuals, and the enhanced failure 
effect on the residuals is called the signature of the failure. 
Intuitively, the residuals represent the difference between various 
functions of the observed sensor outputs  and the expected values 
of these functions in the normal (no-fail) mode. In the absence of 
a failure residuals should be unbiased, showing agreement be- 
tween observed and expected normal behavior of the system; a 
failure signature typically takes the form of residual biases that 
are characteristic of the failure. Thus, residual generation is based 
on knowledge of the normal behavior of the system. The  actual 
process of residual generation can vary in complexity. For exam- 
ple, in voting systems [7], [X] the residuals are simply the dif- 
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ferences of the outputs of the various like sensors, whereas in a 
GLR system, the residuals are the innovations generated by the 
Kalman filter. 

In the second stage of an FDI algorithm, the decision process, 
the residuals are e x e n e d  for the presence of failure signatures. 
Decision functions or statistics are calculated using the residuals, 
and a decision rule is then applied to the decision statistics to 
determine if any failure has occurred. A decision process may 
consist of a simple threshold test on the instantaneous values or 
moving averages of the residuals, or  it may be based directly on 
methods of statistical decision theory, e.g., the sequential proba- 
bility ratio test [9]. 

The first concern in the design of an FDI system is detection 
performance, i.e., the ability to detect and identify failures 
promptly  and correctly with minimal delays and false alarms. In 
the literature, this issue has typically been dealt with using a 
given model of the normal system behavior. An equally im- 
portant design issue that is necessarily examined in practice but 
has received little theoretical attention is robustness: minimizing 
the sensitivity of detection performance to model errors and 
uncertainties. An ideal simplistic approach to designing a robust 
FDI system is to include all uncertainties in the overall problem 
specification; then a robust design  is obtained by optimizing (in 
some sense) the performance of the entire system with the uncer- 
tainties present. However, this generally leads to a complex 
mathematical problem that is too difficult to solve in practice. On 
the other  hand, a simple approach is to ignore all model uncer- 
tainties in the performance optimization process. The  resulting 
design is then evaluated in the presence of modeling errors. If the 
degradation  in performance is tolerable, the design is accepted. 
Otherwise, it is modified and reevaluated. Although this method 
often yields acceptable designs, it has several drawbacks. For 
example, it may be unclear what parts of the design should be 
modified and what form the modification should take. Further- 
more, each iteration may be very expensive to carry out since 
extensive Monte  Carlo simulations are often required for perfor- 
mance evaluations. 

In this paper we develop a systematic approach  that considers 
uncertainties directly. Our work is motivated by the practical 
design effort of Deckert et af .  for an aircraft sensor FDI system 
[lo]. The basic idea used in this work  was to identify the 
analytical redundancy relations of the system that were known 
well and those that contained substantial uncertainties. An FDI 
system (i.e., its residual generation process)  was then designed 
based primarily on the well-known relationships (and only sec- 
ondarily on the less  well-known relations) of the system behavior. 
As model error directly affects residual generation, this approach 
suggests that robustness can be effectively achieved by designing 
a robust residual generation process. In our work, we have 
extracted and extended the practical idea underlying t h i s  applica- 
tion and developed a general approach to the design of robust 
FDI algorithm. In addition to its use in specifying residual 
generation procedure, our approach is also useful as it can 
provide a quantitative measure of the attainable level of robust- 
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Fig. 1. Two-stage structure of the FDI process. 

ness in the early states of a design. This can allow the designer to 
assess what he can expect in terms of overall performance. 

In order to develop residual generation procedures, it is im- 
portant to identify the redundancy relations of a system and  to 
characterize them according to how  they are affected by model 
errors and uncertainties. In this paper, we further develop the 
concept of analpcal redundancy that is used in [lo], [ l l ] ,  and we 
use this as a basis for determining redundancy relations to be 
used for residual generation which are least sensitive to model 
errors. 
In Section I1 we describe the concept of analytical redundancy 

and present a mathematical characterization of redundancy in 
linear dynamical systems that extends ideas developed previously. 
We also provide for the first time a clear, general interpretation 
of a redundancy relation as a reduced-order auto-regressive-mov- 
ing-average (ARMA) model and use this in Section 111 to de- 
scribe the various ways that analytical redundancy can be used 
for residual generation and FDI. In Section IV a method of 
determining redundancy relations that are least sensitive to model 
error and noise effects is described. A numerical example il- 
lustrating some of the developed concepts is presented in Section 
V. Conclusions and discussions are included in Section VI. 

11. ANALYTICAL REDUNDANCY-PARITY RELATIONS 

The basis for residual generation is analyt~cal redundancy, 
which essentially takes two forms: 1) direct redundancy-the 
relationship among instantaneous  outputs of sensors; and 2) 
temporal redundancy-the relationship among the histories of 
sensor outputs  and  actuator  inputs. It is based on these relation- 
ships that outputs of (dissimilar) sensors (at different times) can 
be compared. The residuals resulting from these comparisons are 
then measures of the discrepancy between the behavior of ob- 
served sensor outputs and the behavior that should result under 
normal conditions. Examples where direct redundancy was ex- 
ploited include [7], [8], [ll], [12]. [13]; explicit use of temporal 
redundancy was made in [lo],  [20]. 

In order to develop a clear picture of redundancy, consider the 
following deterministic model: 

4 
x ( k + l ) = A x ( k ) +  b,u,(k) (la) 

j = l  

s ; , ( k ) = c , x ( k ) ,  j = l ; . .  3 fk? ( 1 b )  

where x is the N-dimensional state vector, A is a constant 
N X N matrix, b, is a constant column N-vector, and c, is a 
constant row N-vector. The scalar u, is the known input to the 
j t h  actuator,  and  the scalar yj is the output of the j t h  sensor. 

Direct redundancy exists among sensors whose outputs are 
algebraically related, ie., the sensor outputs  are related in such a 
way that the variable one sensor measures can be determined by 
the instantaneous  outputs of the other sensors. For the system 
(l), this corresponds to the situation where a number of the c, ’s 

are linearly dependent. In this case, the value of one of the 
observations can be written as a linear combination of the other 
outputs. For example, we might have 

M 

l‘ l(k) = c %Y,(k) (2) 
1 = 2  

where the a,’s are constants. This  indicates that under normal 
conditions the ideal output of sensor 1 can be calculated from 
those of the remaining sensors. In the absence of a failure in  the 
sensors, the residual y,(k)-C:’ ,a ,y , (k)  should be zero. A devi- 
ation from this  behavior provides the indication that one of the 
sensors has failed. This is the underlying principle used in strap- 
down inertial reference unit (SIRU) FDI [7], [SI. Note that while 
direct redundancy is useful for sensor failure detection. it  is not 
useful for detecting actuator failures (as modeled by a change in 
the b,. for instance). 

Because temporal redundancy relates sensor output and actua- 
tor inputs, it can potentially be used for both sensor and  actuator 
FDI. For example, consider the relationship between  velocity ( u )  
and acceleration ( a ) :  

v ( k + l ) = o ( k ) + T a ( k )  (3) 

where 7 is the sampling interval. Equation (3) prescribes a way 
of comparing velocity measurements and accelerometer outputs 
(by checking to see if the residual L ) (  k t- 1) -  P( k ) -  Tu( k )  is 
zero) that may be used in a mixed velocity-acceleration sensor 
voting system for the detection of both types of sensor failures. 
Temporal redundancy facilitates the comparison of sensors among 
which direct redundancy does not exist. Hence, it can lead to a 
reduction of hardware redundancy for sensor FDI. Viewed in a 
different light, the use of analytical redundancy implies that 
additional sensor failures can in principle be detected with the 
same level  of hardware redundancy. 

To see how temporal redundancy can be exploited for de- 
tecting actuator failures. let us consider a simplified first-order 
model of a vehicle in motion: 

u ( k + l ) = a c ( k ) + T u ( k )  ( 4 )  

where u denotes the vehicle’s velocity, a is a scalar constant 
between zero and one reflecting the effect of friction and drag, T 
is the sampling interval, and u is the commanded engine force 
(actuator  input) divided by the vehicle’s  mass.  Now the veIocity 
measurements can be compared to the actuator inputs by means 
of (4), i.e., through examining the residual P( k +l)- ao(k ) -  
T u ( k ) .  An actuator failure can be inferred, if the sensor is 
functioning normally, but the residual is nonzero. 

While the  additional information supplied by dissimilar sensors 
and actuators  at different times through temporal redundancy 
facilitates the detection of a greater variety of failures and  re- 
duces hardware redundancy, exploitation of this additional  infor- 
mation often results in increased computational complexity, since 
the dynamics of the system are used in the residual generation 
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process. However, the major issue in the use  of analytical re- 
dundancy is the inevitable uncertainty in our knowledge of the 
system dynamics [e.g., of a in (4)] and  the consequences of this 
uncertainty on the robustness of the resulting FDI algorithm. 
From the above discussion one approach to the design of robust 
residual generation in any given application is evident: first, the 
various redundancies that are relevant to the failures under 
consideration are to be determined; then residual generation is 
based on those relations that are least sensitive to parameter 
uncertainties. This is the approach we have adopted. In the 
remainder of this section we will present a characterization of 
analytical redundancy and  in a subsequent section we will quan- 

the effect of uncertainties on a redundancy relation. 

The Generalized Parity Space 

Let us defiie 

n e  well-known Cayley-Hamilton theorem [141 implies that  there 
is an n j ,  1 < n, d N ,  such that 

rank q ( k )  = 

{'J'' k k < n J  2 n j .  

The null space of the matrix 5 ( n j  - 1) is known as the unob- 
servable subspace of the j th sensor. The rows of C ( nj  - 1) span 
a subspace of R" that is the orthogonal compdment of the 
unobservable subspace. Such a subspace will be referred to as the 
obseruable subspace of the j t h  sensor, and it has dimension n,. 

Let w be a row vector of dimension n = C z  ( n ,  + 1) such that 
0 = [J,. . . , a''], where m i ,  j =1;. ., M ,  is a ( n j  + 1)- 
dimensional row vector. Consider a nonzero w satisfymg 

[ w l ; - - , w J V ] [  Cl(.l) { ] x ( k ) = O ,  .r(k)ER".  (7) 

CIM(n&f) 

Note  that  in the above equation q ( n , )  has n j  + 1 rows  while it  is 
only of rank n j .  The reason for this d become clear when we 
discuss the temporal redundancy for a single sensor. Assuming 
that the system (1) is observable, there are only n - N linearly 
independent w's satisfymg (7 ) .  We let 0 be an ( n  - N ) x  N 
matrix with a set of such independent w's as its rows. (The 
matrix is not unique.) Assuming all the inputs  are zero for the 
moment, we have 

where 

Note that (8) is independent of the state x (  k) .  The ( n  - N)-vector 
P ( k )  is called the parity vector. In the absence of noise and 
failures, P( k )  = 0. In the noisy no-fail  case, P( k) is a zero-mean 
random vector. Under noise and failures, P ( k )  will become 

biased. Moreover, different failures will produce different (biases 
in the) P(k) 's .  Thus, the parity vector may be used as the 
signature-carrying residual for FDI. We  will further discuss resid- 
ual generation based on parity equations in Section 111. 

The matrix P may be generated by making direct use of (7). 
Let 

From (7, we  see that the rows of P span the orthogonal 
complement of the range space of T.  This suggests that D can be 
generated by subtracting the orthogonal projection onto T from 
the identity operator.  That is, P can be chosen to consist of the 
( n  - N )  independent rows of I - T(T'T)-'T'. Alternatively, by 
viewing parity checks as finite impulse response (FIR) filters, [17] 
gives a method for constructing P in terms of null spaces of 
polynomial matrices. 

When the actuator inputs  are  not zero, (8) must be modified to 
take into account this effect. In this case 

where 

0 
0 

. .  . . .  . o  

. . . . . . . 

I .  . . . . . . . 

B =  [ b l ; . . ,  b,] 

4 k ) =  [ u,(k),.-.,u,(k)]' 
no=max(nl , - . . ,n , )  

U ( k , n o ) =  [ u ' ( k ) ; . - , u ' ( k + n o ) ] '  

B - ( n j )  is an ( n j  +l)x noq matrix ( q  is the number of actuators). 
do te  that (9) only involves the measurable inputs  and  outputs of 
the system, and it does not depend on the state x ( k )  which is not 
directly measured. 

The quantity P( k )  is know as the generalized parig) oector, 
which  is nonzero (or nonzero mean if noise is present) only if a 
failure is present. The ( n  - N )  dimensional space of all such 
vectors is called the generalized parity space. Under the no-fail 
situation ( P ( k ) =  0), (9) characterizes all the analytical re- 
dundancies  for the system (1) because it specifies all the possible 
relationships among the actuator  inputs  and sensor outputs. Any 
linear combination of the rows of (9) is called a pari9 equation 
or a purify relation; any linear combination of the right-hand side 
(RHS) of (9) is called a parityfunction. Equation (6) implies that 
we do not need to consider a higher dimensional parity space 
than is defined by (9) with n, replaced by I, > n j ,  j = 1,. . . , M ,  
although it  is possible to  do so. We note  that the generalized 
parity space we have just defined here is an extension of the 
parity space considered by  Potter  and Suman [ l l ]  to include 
sensor outputs  and  actuator  inputs at different times. h [Ill, 
Potter and Suman studied exclusively (9) with n,  = n2 = . . . = 0. 

A useful notion in describing analytical redundancy is the 
order of a redundancy relation. Consider a parity relation (under 
the no-fail condition) defined by 
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M 
C w ' [ ~ , ( k , n ~ ) - ~ , ( n , ) ~ ( k , n ~ ) ]  = o .  (10) 

We can define the order p of such a relation as follows.  Since 
some of the elements of w may be zero, there is a largest index R 
such that the Ath element of w' for some i is nonzero but the 
( h  + 1)st through the ( n  +l)st  elements of each w' are zero. 
Then p is defined to  de R - 1. The  order p describes the 
"memoq span" of the redundancy relation. For example.  when 
p = 0, instantaneous  outputs of sensors are involved. When p > 0, 
a time window of size p + 1 of sensor outputs and actuator  inputs 
are considered in the parity equation. For example, (3) is a 
first-order parity relation. 

To provide more insights into the nature of parity relations, it 
is useful to examine several  examples. 

I )  Direct Redundancy: Suppose there are wJ 's  of the form 

j = 1  

w '=  [ w & o , . ' . , o ]  

where at least two of the wg's are nonzero, and they satisfy (7). 
Then we have the following direct redundancy relation: 

v , ( k )  

Y ,  ( k )  

[ w ;  ;.e, -..I[ ; I=.. 
Note that the above expression represents a zeroth order parity 
equation. 

2 )  A Single Sensor: Equation (6) implies that  it is always 
possible to find a nonzero w J  such that 

w ' [ ~ , ( k , n , ) - ~ , ( n , ) l l ( k , n , ) ]  = o .  (11) 

Note that equation (11)  is of order n,: and it is a special case of 
(10). (That is why  we have  used n ,  instead of n, - 1 in (7) in 
order  to include this type of temporal redundancy.) Since this 
redundancy relation involves  only one sensor the parity function 
defined by the left-hand side of (11)  may be used as the residual 
for a self-test for sensor j ,  if B,(  nl )  0 or if the actuators can be 
verified (by other means) to be functioning properly. Similarly, it 
can  be used to detect actuator failures i f  sensor j can be  verified 
to be normal. Equation (4) (in which u (  k )  is directly measured) 
represents an example of this type. 

Alternatively, (11) can  be rewitten as 

"I ' I /  

. & ( k I = - ( w $ l [  r = l  c @ ; , - f Y , ( k - +  r - 1  c 4 : , - r u ( k - d  I 
iw 

where 

[ u ~ , - - . , ~ ~ l ~ ~ , o , - - - , o ]  =w'B,(n , )  

u,J, t = 0; . ., nj.- 1, is a q-dimensional row vector, and w,'. 
t = 0 ; .  ., n, -1 1s the (t +l)st component of w J .  Equation (12) 
represents a reduced-order ARMA model for the j t h  sensor 
alone. That is to say. the output of sensor j can be predicted 
from its past  outputs and past  actuator  inputs accordmg to (12). 
Based on the ARMA model several methods of residual genera- 
tion are possible.  We  will discuss this further  in Section 111. 

3) Temporal  Redundanfy Bemeen Two Sensors: A temporal 
redundancy exists between sensor i and sensor j if there are 

w i =  [ w ~ , . - - , w ; z , - i , o ]  

& J j =  [ w d  ;.., w/,-l,o] 

satisfying the redundancy relation 

Equation (13) is a special case of the general form of parity 
equation (10) in the no-fail situation with ws = 0 for s # i. s # j .  
The relation (13)  is of order p < max( n,.  n,). Clearly, (13) holds 
if and only if 

[ w b . . . . , w ~ ~ l - l ] ~ i ( n , - l ) =  [ w d , . - . . w / l - l ] q ( n , - l )  

and, this implies that a redundancy relation exists between two 
sensors if their observable subspaces overlap. Furthermore, when 
the overlap subspace is of dimension fi, there are 2 linearly 
independent vectors of the form [a'. w J ]  that will satisfy (13). 
Note that (3) (with both ~ ! ( k )  and ~ ( k )  measured) represents an 
example of this type. 

Because the order of (13) is p.  either w; or w; must be nonzero. 
Assuming w,' + 0, we can rewrite (13) in an ARMA representa- 
tion for sensor j as in (12) 

y , ( k ) = - ( w ; ) - l [  i w,J - , j ) ( k - r )+  i w ; - J , ( k - t )  

f = o  1 
t = l  1 = 0  

P 

- ( q - [  i u ; - , ) u ( k -  t )  . (14) 

That is, the parity relation (13) specifies an ARMA model for the 
j th sensor, aith the original system input 14 and the ith sensor 
output acting as inputs to this reduced-order model. This clearly 
has a close relationship to the nature of the input-output  struc- 
ture of the original state space model. In [17] this connection is 
examined more explicitly in terms of representing parity relations 
as dynamic systems which.  when cascaded with  (1): produce 
exactly zero output under normal operation. In general, any 
parity relation specifies an ARMA model for some sensor driven 
by u and by possibly all of the other sensor outputs. 

111. RESIDUAL GENERATION FOR FDI 

In the first part of this section we discuss alternative residual 
generation procedures, and in the  latter half of the section we 
discuss how such residuals, once generated, can be used for 
failure detection. To avoid obscuring the simple ideas we wish to 
explain, we carry out our development in this section for a 
second-order system ( N  = 2) in the form of (1) aith the following 
parameters: 

c1= [l 01 

c2= [O 11. (15) 

In this case n ,  = 2, n 2  =1, and n - N = 3. Therefore. there are 
only three linearly independent parity equations which may be 
written as 
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Residual Generation Based on Parity Relations 

For a zeroth order  parity relation (i.e., a direct redundancy 
relation) the residual is the corresponding parity function. For a 
higher- order  parity relation (temporal redundancy), there are 
three possible methods for the residual generation. We will il- 
lustrate these using the second parity equation of (16). 

I) Parity Function as Residuals: Just as with direct redundancy 
relations, the parity function itself can be taken as a residual. For 
our specific example, this would be 

Such a residual is a moving average process, i.e., it is a function 
of a sliding window of the most recent sensor output and 
(possibly) actuator input values. It is useful to note the effect of 
noise and failures on the residual. Specifically, if the sensor 
outputs are  corrupted  by white noise, the parity function values 
will be correlated over the length of the window. In our example, 
r, ( k )  is correlated with rl( k - 1) and rl( k + 1) but  not with any 
of its values removed by more than  one time step. 

The effect of a failure on a parity function depends, of course, 
on the nature of the failure. To illustrate what typically occurs, 
consider the case in which one sensor develops a bias. Since the 
parity function is a moving  average process it also develops a 
bias, taking at most p steps to reach the steady-state value. In  our 
example, if y2( k )  develops a bias of size p at time 8 ,  rl( k )  will 
have a bias of size - aI2#l from time 0 + 1 on. 

For a more general case, e.g., (14), r , ( k )  is simply the dif- 
ference between the two sides of the equation. The form of a 
failure signature will depend on the precise nature of the RHS of 
(14), but  it can be analyzed for each individual case. Note that 
extension to cases where the RHS of (14) contains more than two 
components of y is straightforward. 

2) Open-Loop Residuals: As discussed in the preceding sec- 
tion, any temporal redundancy relation specifies an ARMA 
model. In our example we have the model 

L ' l (k )=a l ly l (k -1 )+a l* r* (~ -1 ) .  (18) 

This equation leads naturally to a second residual generation 
procedure: solve  (18)  recursively using as initial condition the 
actual initial value of the first sensor output and then using the 
actual value of the second sensor in the recursion; compare the 
result at each instant of time to the actual output of sensor 1. 
That is, we compute 

with 

31 (0)  = Y l ( 0 )  

and the resulting residual is 

r 2 ( k ) = y 1 ( k ) - . h ( k ) .  

The behavior of this residual is decidedly different from that of 
rl( k) .  In particular, r2( k )  is not a moving average of previous 
values as it involves the integration of y2(  k ) .  Thus, if yl(  k )  and 
y2(  k )  are corrupted by white noise, r 2 ( k )  will in general be 
correlated with all of its preceding and  future values. For exam- 
ple, if all =1, r z ( k )  is nothing but a random walk. 

The effect of failure is also different in r2( k ) .  For example, if 
y 2 ( k )  develops a bias, this bias will be integrated in (19). In 
particular, if a,, =1, r , ( k )  will develop a ramp of slope - al# 
at time B + 1 if sensor 2 develops a bias of size P at time 8.  

This method of residual generation can be used  with a more 
general parity relation. For example, (14) may be integrated using 
previous actual values of yJ as initial conditions and the actual 
input u and the measured values of y, as inputs. Then this 

resulting open-loop prediction of yj is subtracted from the actual 
value of yJ to produce the residual. Again, the effect of particular 
failures on the residual can be computed in a straightforward 
manner. 

3) Closed - Loop Residuals: A third method of residual genera- 
tion is also based on the ARMA model (18), but explicitly taking 
noise into account. Specifically, we write each output as its 
noise-free value plus noise: 

y , ( k )  = ~ ; o ( k ) +  v i ( k ) .  (20) 

Then, from (18) we obtain the equation 

~ l ~ ~ ~ ~ = ~ l l ~ l o ~ k - ~ ~ + ~ l 2 ~ ~ ~ ~ - ~ ~ - ~ 1 2 ~ 2 ~ ~ - ~ ~ .  (21) 

Note  that the known driving term here is the actual sensor 
output, and thus the noise on this output becomes a driving noise 
for the model (21). Given this model and the noisy measurement 
yl(  k )  of ylo( k )  we can design a K h a n  filter 

P l o ~ ~ ~ = ~ , l E l o ~ ~ - ~ ~ + ~ l * n ~ ~ - ~ ~ + ~ ~ ~ ~ ~ ~  

where H is the  Kalman gain and the residual is the innovations 

r , (k)=y,(k)-al lElo(k- l ) -a lzK(k-l) .  
As in the preceding cases, this residual generation method gener- 
alizes to cases such as (14) in an obvious way. 

In this case, r,(k) is an uncorrelated sequence. AIso, if y 2 ( k )  
develops a bias  at time 8,  the trend in r3( k )  will be time-varying. 
Specifically, it will begin at time 8 + 1 .  as a ramp, but will  level 
off to a steady-state bias due to the closed-loop nature of the 
residual generation process. 

All three of these residual generation procedures have been 
used in practice. For example, parity functions have found many 
applications, ranging from gyro failure detection [7], [SI to the 
validation of signals in nuclear plants [13]. The open-loop method 
was used in detecting sensor failures on the F-8 aircraft [lo], as 
was the closed-loop method, which has also been used in such 
applications as electrocardiogram analysis [6] and maneuver de- 
tection [15]. Our  contribution here is to expose the fundamental 
relationships among these in general. 

At first glance, it might seem that the closed-loop method is 
the logical method to use in that, if the sensor noise is white, it 
produces an uncorrelated sequence of residuals rather than a 
correlated one that would have to  be whitened in  an "optimal" 
detection system. In fact, going one step  further, it would seem 
decidedly suboptimal to use only one or several redundancy 
relations rather  than all of them. That is, the "optimal" approach 
would seem to be designing a K h a n  filter based on the  entire 
model (1). This, however, is true only in the most ideal of worlds 
in which our knowledge of the system dynamics is perfect. When 
model uncertainties are taken into account it is not at all clear 
that this is what one should do.  Rather, it would seem reasonable 
to iden@ only the most robust redundancy relations and  then to 
structure  failure detection systems based on these. This leads to 
two obvious questions: 

1) How does one  define  and determine robust redundancy 
relations? 

2) Given a set of such relations, how does one use them in 
concert in designing a failure detection system? 

In the second part of this section we discuss the second of 
these questions, while the f i s t  is addressed in the next section. 

In the remainder of this paper we will focus on using the parity 
function method of residual generation as this is the simplest 
analytically. It should be noted that residuals generated this way 
are correlated. This is because the residuals are based on a sliding 
window of system inputs  and outputs. If one used the closed-loop 
method, one would obtain whitened residuals. Due to the infinite 
memory associated with the closed-loop and open-loop methods, 
the effect of model uncertainties tends to be propagated in these 
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procedures. Hence, the nature of the robustness problem of these 
residual generation processes is likely to be different from the 
parity function method. Despite this difference, the study of the 
parity function method allows  us to gain considerable insight and 
develop some useful techmques for robust failure detection. 

Use of Parity  Functions in a Failure  Detection System 

Nonr we discuss how the residuals generated using parity 
functions can be used for failure detection. In this discussion we 
will not be concerned with the detailed decision process, which 
would involve specific statistical tests, but we will focus on the 
geometT of the failure detection problem. First we  will examine 
(sensor) FDI using direct redundancy. This is the case that has 
been examined in most detail in the literature, for example, in the 
work of Evans and Wilcox [7], Gilmore and McKern [8]. Potter 
and Suman [ll], Daley et al. [12], and Desai and Ray [13]. We 
include this brief discussion of concepts developed by others  in 
order  to provide for a basis for our discussion of their extention 
to include temporal redundancy relations. 

Consider a set of M sensors with output vector y (  k )  = 
[ y l ( k ) ; .  .,yn,(k)]‘and a parity vector 

P ( k ) = Q y ( k )   ( 2 2 )  

where 0 is a matrix with M columns and a number of rows (the 
specification of which  will be discussed later). From Section 11, 
we see that D is not unique, and for any choice of P such that 
(22) is a parity vector, we know that P ( k )  will be zero in the 
absence of a failure (and no noise). However. the nature of failure 
signatures contained in the parity vector depends heavily on the 
choice of Q. Clearly D should be chosen so that failure signatures 
are easily recognizable. In the following we  will describe two 
approaches for achieving this purpose. 

One way of using the parity vector for FDI is via what we term 
a voting scheme. To implement the voting scheme, we need a set 
of parity relations such that each component (i.e., sensor or 
actuator) of interest is included in at least one parity relation and 
each component is excluded from at least one parity relation. 
When a component fails, all the  parity relati& involving it will 
be violated,’ while those excluding it will still hold. This means 
that the components involved in parity relations that hold can be 
immediately declared as unfailed, while the component that is 
common to all violated parity relations is readily identified as 
failed. This is the basic idea of voting that is used in [7], [8]. In 
fact, for the detection  and identification of a single failure amon 
M components at least M -1 parity relations are required. 9 
Therefore, the number of rows in D should be  at least M - 1, and 
the rows of D should be chosen to satisfy the above criterion on 
the set of parity relations. Furthermore, we note that at least 
three components are needed for voting and that it may not be 
possible to determine a required Q in many applications, in 
which case the use of temporal redundancy is absolutely neces- 
sary. 

Another method which uses more information about how 
failures affect the residuals has been examined by Potter  and 
Suman [ll] ,  and Delay et QI. [12]. This method exploits the 
following phenomenon. A faulty sensor, say the j th one. contains 

compares the residual value to a threshold determined bv some means 
“‘Violation” can be defined in a variety of ways. Typically, one 

(e.g.. one may  use a statistical criterion to set the threshoid to acheve a 

use the average of the residual over a sliding window to improve the 
specified false alarm-correct detection tradeoff). Alternatively, one may 

tradeoff. 
’The logic  used here has to be modified slightly. If each of the M-1 

component is involved in all parity relations, then -violation of all parity 
components is excluded from a different parity relation and the remaining 

other  components can be identified using the above logic. In practice. 
relations lndlcates the flulure of this last component. and failures in the 

more than M - 1 relations are preferred for better performance in  noise. 

an error signal v ( k )  in its output 

& ( k ) = c , x ( k ) + v ( k ) .   ( 2 3 )  

The effect of this failure on the parity vector defined by (22) is 

P ( k ) = Q , v ( k )  

where S t J  is the j t h  column of 0. That is, no matter what u(  k )  is, 
the effect of a sensor j failure on the residual always Lies in the 
direction PJ. Thus, a sensor j failure can be identified by 
recognizing a residual bias in the Q, direction. We refer to Q, as 
the failure direction in parity space (FDPS) corresponding to 
sensor j .  (In [ l l ]  PJ is referred to as the j t h  measurement axis in 
parity space.) 

It is  now clear that D should be chosen to have distinct 
columns, so that a sensor failure can be inferred from the 
presence of a residual bias in its cmresponding  FDPS.  (Note  that 
an P suitable for the voting scheme has M distinct columns.) In 
principle, an Q with as few as two  rows but M distinct columns 
is sufficient for detecting and identifying a failure among the M 
sensors. In practice, however, increasing the row dimension of D 
can help to separate the various FDPS’s and increase the dis- 
tinguishability of the different failures under noisy conditions. 

The two FDI methods discussed above can also be used  with 
temporal redundancy. In a voting scheme, one can see that the 
saine logic applies. (In fact, additional self-tests may be per- 
formed for the sensors providing corroboratory information which 
is of great value when noise is present.) Consider next the 
extention of the second failure detection method to tcmporal 
redundancy relations. In this case, it is  generally not possible to 
find an P to confine the effect of each component failure to a 
fixed direction in parity space. To see this, consider the parity 
relations (16). We can write the parity vector as 

P( k )  = 

+ [ 8 -;”I[ 4 k  -1) 
~ ( k - 2 )  

When sensor 2 fails [with output model (23)], the residual vector 
develops a bias of the form 

Unless v ( k )  is a constant, the effect (signature) of a sensor 2 
failure is only confined to a two-dimensional subspace of the 
parity space. In fact, generally  when temporal redundancy is used 
in the parity function method for residual generation. failure 
signatures are generally constrained to multidimensional sub- 
space in the parity space. These subspaces may in general overlap 
with one  another, or some may be contained in others. If no such 
subspace is contained in  another, identification of the failure is 
still possible by determining which subspace the residual bias lies 
in. We note that the detection filters of Beard [2] and Jones [3] 
effectively acts, in a closed-loop fashion, to confine the signature 
of an actuator failure to a single direction and  that of a sensor 
failure to a two-dimensional subspace in the residual space. 

As we indicated previously, the second approach to using 
parity functions for FDI uses some information about the nature 
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of the failure signatures. Specifically, it uses information concern- 
ing the subspaces in which the signatures evolve. In this approach 
no attempt is made to use any information concerning the 
temporal  structure of this evolution. (For example, no assump- 
tion was made  about the evolution of v ( k )  in (24).) In some 
problems (e.g., in [6], [lo]) one may be able to model the 
evolution of failures as a function of time. In this case, the 
temporal signature of the failure (in addition to the subspace 
information discussed above) can be determined. (If, for instance, 
v( k )  in (23) is modeled in a particular way, then one immediately 
obtains a model of the evolution of P(  k )  in (24).)  Such informa- 
tion can be of further help in distinguishing the various failures, 
especially in the case where temporal redundancy is used. Detec- 
tion systems such as GLR [4]-[6] heavily exploit such informa- 
tion contained in the residual. 

Iv. PARITY RELATIONS FOR ROBUST RESIDUAL 
GENERATION 

In this section we discuss the issue of robust failure detection 
in terms of the notions introduced in the previous section. The 
need for this development comes from the obvious fact that in 
any application a deterministic model such as (1) is quite idealis- 
tic. In particular, the true system will be subjected to noise and 
parameter uncertainty. If noise alone were present one could take 
this into account, as we have indicated, through the design of a 
statistical test based on the generated residuals (see, for example, 
[4], [IO]). The problem of parameter uncertainty can be handled 
in two ways: 1) estimate the effect of such uncertainty and 
compensate the FDI system for it [5], [18], [19]; or 2)  minimize 
the sensitivity of the FDI system to such uncertainty [lo], [16], 
[17], [20]. The  latter  approach is the one we have adopted. 

The starting  point of our development is a model that has  the 
same form as (1) but includes noise disturbance and parameter 
uncertainty: 

4 

x ( k + l ) = A ( ~ ) x ( k ) +  C b j ( y ) u , ( k ) + t ( k )  (25a) 

f i ( k >  = c,x(k)+qJk) (25b) 

J 

where y i s  the vector of uncertain parameters taking values in a 
specified subset r of R"'. This form allows the modeling of 
elements in the system matrices as uncertain quantities that may 
be functions of a common quantity. The vectors 6 and q = 

[ q l  , . . . ~ ow] ' are  independent, zero-mean, white Gaussian noise 
vectors with constant covariance matrices Q( 2 0) and R( > 0), 
respectively. In this section we consider the problem of de- 
termining useful parity relations that can be used for FDI for the 
system described by (25). 

The Structure and Coefficients of a Parity Function 

Before we continue with the discussion, it is  useful to define 
the srrucfure and the coefficients of a parity function. Recall that 
a parity  function is essentially a weighted combination of a (time) 
window of sensor outputs and actuator inputs. The structure of a 
parity function defines which input and output elements are 
included in this window, and the coefficients are the (nonzero) 
weights corresponding to these elements. A scalar parity  function 
p (  k )  can be written as 

P ( k )  = a Y ( k ) + P U ( k )  (26) 

where Y( k )  and U( k )  denote the vectors containing the output 
and input elements in the parity  function, respectively. Together, 
Y(  k )  and U( k )  specify the parity structure, and the row vectors 
(Y an p contain the parity coefficients. Consider, for example, the 
first  parity function of (16). Its corresponding Y ( k ) ,  U ( k ) ,  a ,  

and p are 

Y ( k ) =  [y,(k-2),y,(k-l),1.,(k)I '  
U ( k )  = u ( k  -2) 

~ = [ a l l a 2 2 , - ( a l , + ~ * , ) , l l  
p = -  

0 1 2 .  

Under model (25), Y( k )  has the form 

Y ( k ) = C ( y ) x ( k - p ) + ~ ( Y ) g ( k ) + B ( Y ) U ( k ) + . i l ( k )  

(27) 

where p is the order of the parity  function, and 

& k ) =  [ ~ ' ( k - p ) ; . . , ~ ' ( k - l ) ] ' .  

The components of ij( k )  and U( k ) ,  and the rows of C( y), @ ( y ), 
and B are determined from (25) and the structure of Y ( k ) .  If, 
specifically, the ith component of Y ( k )  is y,(k - IT), then the 
i th component of ij( k )  is 

i j , (k)  = % ( k  - 0 ) .  

The vectors and ij are  independent zero-mean Gaussian  ran- 
dom sequences with constant covariances Q and R ,  respectively. 
The matrix Q is block diagonal with Q on the diagonal; R, ,  = 

R ,,So,, where R ,  is the (i,  j) th element of R ,  So, is the Kronecker 
delta function, R,, is the (s, t)th element of R ,  and the ith 
element of Y ( k )  is ~ ; ( k  - (I), while the j t h  element is ~ ( ( k  - 7). 
The  ith row of C(y), i.e., C(i, y) is 

C( i ,  y)  = c,AP-'. 

The  ith row, @ ( i , y )  of @(y)  (which has p N  columns) is 

@ ( i , y ) =  [ ~ , A P - O - ~ , ~ , A ~ - ~ - ~ ; . . , ~ ~ , O ; . . , O ]  . 

Note that x( k - p )  is a random vector that is uncorrelated with 
and ij, and 

E { x ( k  - P > >  = xo(k - P )  

cov{x(k -P) )=Z(Y)  

where Z( y) is the (steady-state) covariance of x( k - p )  and it is 
dependent on y through A(y) and B(y). 

The matrix B and the vectpr U( k )  are determined as follows. 
First, collect into a matrix B dl the rows in B,(k, y) [see (9)] 
corrpponding  to C( i ,  y). Then, collect all the nonzero columns 
of B into B and the corresponding components of u in the 
window into U( k ) .  

In the preceding section, we defined parity functions as linear 
combinations of inputs  and  outputs that would be identically 
zero in the absence of noise. When parameter uncertainties are 
included, however, it is not possible in general to find any parity 
functions in this narrow sense. In particular, with reference to the 
function p ( k )  defined by (26) and (27) this condition would 
require that aC(y)  = 0 for all y E r. Consequently, we must 
modify our notion of a useful parity relation. Intuitively, any 
given parity  structure will be useful for failure detection if  we can 
find a set of parity coefficients that will make the resulting 
function p (  k )  in (26)  close to zero for all values of y E r when 
no faiIure has occurred. When considering the use  of such a 
function  for the detection of a particular failure one would also 
want to guarantee that p (  k )  deviates significantly from zero for 
all y E r when this failure occurs. Such a parity structure-coeffi- 
cient combination approximates the true parity function defined 
in Section 11. Our approach to the robustness issue is founded on 
this perspective of the FDI design problem, and we nil1 choose 
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parity  structures  and coefficients that display these properties. 
From this vantage point, it is not necessary to base a parity 
structure on a C with linearly dependent rows.  Of course, the 
closer the rows of C are to being dependent the less the value of 
the state x ( k  - p )  will affect the value of the approximate parity 
function, i.e., the closer the approximate parity function is to 
beihg a true parity function. 

Determination of Parity Structure and Coefficients 

Clearly, there are many candidate  parity structures for a given 
system. For a voting system, the requirements on i2 as described 
in Section IlI help to limit the  number of such candidates  that 
must be considered. In addition special features of the system 
under consideration t y p i d y  provide additional insights into the 
choice of candidate  parity structures. Given the set of candidate 
structures  one is faced with the problem of finding the best 
coefficients for each and then  with comparing the resulting 
candidat&. In this paper we will not address the problem of 
defining the set of candidate structures (as this is very much a 
system-specific question) but will assurde that we have such a set 
of  structure^,^ and we will proceed to consider the problem of 
determining the coefficients for these structures and their com- 
parison. In the following we will describe a method for choosing 
robust parity functions. Although this approach represents only 
one method of solving the problem, it serves well to illustrate the 
basic ideas of a useful design methodology. 

The parity function design problem is approached in two steps: 
1) coefficients that will make the  candidate parity functions close 
to zero under the no-fail situation are determined; 2) the resulting 
parity functions that provide the most prominent failure signa- 
tures for a specified failure will be chosen. We will consider the 
coefficient design problem first. 

We are concerned with the choice of the coefficients, a and /3 
for the parity  function 

p ( k )  = a [ C ( y ) x ( k  - P ) + Q i ( Y ) W  

+B(Y)u(k)+9(k) l -Bu(k) .  

Note that  the dependence of p ( k )  on a ,  /3, y ,  x ( k  - p ) ,  and 
U( k ) .  As p (  k )  is a random variable, a convenient measure of the 
magnitude (squared) of p (  k )  is its variance, E {  p2( k ) } ,  where 
the expectation is ta&en  with respect to the joint probability 
density of x ( k  - p ) ,  t (  k ) ,  and q ( k )  with the mean x , ( k  - p)  
and the value of U( k )  assumed known. As we will discuss 
shortly, h s  can be thought of as specifying a particular operating 
condition for the system. Note also that the statistics of x( k - p )  
depend on y. Define 

e ( a , 8 )  = ~ X E {  p 2 ( k ) } .  (28) 

The quantity e( a, 8) represents the worst case effect of noise and 
model uncertainty on the  parity function p (  k )  and is called the 
parity error for p ( k )  with the coefficients a and /3. We can 
attempt  to achieve a conservative choice of the  parity coefficients 
by solving 

& e ( a , B ) .  
a.B 

Since it has a trivial solution ( a  = 0, j3 = 0) this optimization 
problem has to be modified in order to give a meaningful 
solution. Recall that a parity  equation primarily relates the sensor 
outputs, Le., a parity equation always includes output terms but 
not necessarily input terms. Therefore, a must be nonzero. 

3This set could  be all structures up to a specified order. which is a 
finite set. 

Without loss of generality, we can restrict a to have unit magni- 
tude. The actuator input terms in a parity relation may be 
regarded as serving to make the parity function zero so that /3 is 
nominally free. In fact, /3 has only a single  degree of freedom. 
Any /3 can be written as /3 = XU‘( k ) +  z‘, where z is a (column) 
vector orthogonal to U ( k ) .  The component z’ in /3 will not 
produce any effect on p ( k ) .  This implies for each U ( k )  we only 
have to consider /3 of the form p = hU‘( k ) ,  and we have the 
following minimax problem: 

s . t .aa’=l  

where 

E { p ? ( k ) }  = [o,AlS[a,Xl’ 
and S is the symmetric positive-definite matrix 

S2? = [ V‘( k ) U (  k ) ] ’ .  

Let a* and A* denote  the values of a and X that solve (29), 
with /3* = A*U’(k). Let e* be the minimax parity error of (29), 
i.e., e* = e(a*.j3*). Then e* is the parity error corresponding to 
the parity  function p*(  k )  = u*Y( k ) +  P * U (  k ) .  The quantity e* 
measures the usefulness of p*(  k )  as a parity function around the 
operating  point specified by xo( k - p )  and U( k ) .  

Although the objective function of (29) is quadratic in a and 
X ,  (29) is generally very difficult to solve, because S may depend 
on y arbitrarily. (See [16] and the next section for a discussion of 
the solution to some special cases.) The dependence on y can be 
simplified somewhat by the following approximation. Recall that 
the role of a parity equation is to relate the outputs  and  inputs at 
different  points in time. The matrices C, @ , and B ,  which  specify 
the dynamics of the system. thus have the dominant effect on the 
choice of a parity equation. From this vantage point the primary 
effect of the uncertainty in y is typically manifested through the 
direct influence of these matrices on the matrix S ,  rather than 
through the itldirect effect they have on Z( y). Said another way, 
the variation in S as a function of y is dominated by the terms 
involving C,  Q ,  and B, and  in this case one introduces only a 
minor approximation by replacing Z( y) by a constant Z. This is 
equivalent to assuming the likely variations in the state do not 
change as a function of y. With this approximation the S matrix 
shown above can be simplified, and we will use this approxima- 
tion throughout the remainder of the paper. 

Note that the dependence of e ( a , P )  on x , ( k  - p )  and U ( k )  
indicates  that the coefficients in principle should be computed at 
each time step if x o ( k  - p )  and U ( k )  are changing with  time. 
This is clearly an undesirable requirement. Tqpically, a set of 
coefficients will work well for a range of values of x,( k - p )  and 
U ( k ) .  Therefore, a practical approach is to schedule the coeffi- 
cients according to the operating condition. Each operating con- 
dition may be treated as a set-point, which is characterized by 
some nominal state x, and  input U ,  that are independent of 
time. Parity coefficients can be precomputed [by solving (29) with 
x, and U, in place of x o ( k  - p) and U ( k ) ]  and stored. Then  the 
appropriate coefficients can be retrieved for use at the corre- 
sponding set-point. When the state  and the input are varying 
slowly, this scheme of scheduling coefficients is  likely to deliver 
performance close to the optimum. 
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If a more accurate approximation is desired, the coefficients 
scheduling scheme described above can be modified to account 
for variations in the input  due, for example, to regulation of the 
system at the set point xo. In particular, one  can consider 
modeling U(  k )  = U, + 6U(k ) ,  where 6 U ( k )  is a (stationary) 
zero-mean random process that models the deviation of the input 
from the nominal U,. With this modification, the expectation of 
p 2 ( k )  has to b_e taken with respect to the joint probability density 
of x ( k  - p ) ,  [ ( k ) ,  q ( k ) ,  and 6 U ( k )  with x, and U, fixed. This 
will lead to a more complex S matrix. Furthermore, the vector p 
will no longer be constrained but completely free. However, the 
general form of the optimization problem remains unchanged. 

One approach to circumvent the requirement of solving the 
coefficient design problem for many values of x. and Uo is to 
modify (29) to be 

min mLx E {  P 2 ( k ) }  (30) 
s .  r .  aa‘= 1 x , ( k  - p )  E X 

a. A 

U ( k )  E 

where X and r denote the ranges of values that x,(k) and U ( k )  
may take, respectively. This formulation yields approximations 
with simpler solution procedures than (29). Moreover, it leads to 
a single parity function over all operating conditions. We  will not 
explore this approach here, but refer to the reader to [17]. 
Whether this alternative approach or our coefficient-scheduling 
method is more  appropriate depends on the problem. If the state 
and control are likely to vary significantly and if e ( a , p )  is not 
that strong a function of x ,  and U,, the alternative approach 
would be appropriate.  If, however, the state  and control are likely 
to be near specific set points for periods of time, then (30) would 
give an overly conservative design. In this case, scheduling the 
parity coefficients (function) according to the operating point 
would yield superior performance. 

With the coefficients and the associated parity errors de- 
termined for the  candidate  parity  structures we can proceed to 
choose the parity functions for residual generation using the 
parity function method. As the squared magnitude of the coeffi- 
cients [ a ,  ,B] scales the parity error, the parity errors of different 
parity  functions can be compared if they are normalized. We 
define the normalizedpariv error ?*, the norrnalizedparity coeffi- 
cients, and the normalized parip function p*(  k ) ,  as follows: 

where 

The parity functions with the smallest normalized parity errors 
are preferred as they are closer to being true parity functions 
under noise and model uncertainty, i.e., they are least sensitive to 
these adverse effects. 

An additional consideration required for choosing parity func- 
tions for residual generation is that the chosen parity functions 
should pro\lde the largest failure signatures in the residuals 
relative to the inherent parity errors resulting from noise and 
parameter uncertainty. A useful index for comparing parity func- 
tions for this purpose is the signature-to-pariq error ratio R ,  

which is the ratio between the magnitudes of the failure signature 
and the parity error. Using g to denote the effect of a failure on 
the parity function, R can be defined as 

R = /g[/z* 

For the detection and identification of a particular failure, the 
parity  function  that produces the largest R should be used for 
residual generation. We  give an example of this procedure in the 
next section. 

Discussions 

Since a large signature-to-parity error ratio is desirable, a 
logical alternative approach to the choice of parity  structure  and 
coefficients is  to consider the signature-to-parity error  ratio as the 
objective function in the minimax design. Although this is a more 
direct way to achieve the design goal, it requires solving a more 
difficult optimization problem than (29). The method described 
above and  the example in the next section take advantage of the 
comparatively simple optimization problem to illustrate the es- 
sential idea of how to determine redundancy relations that  are 
least vulnerable to noise and model errors. For different residual 
generation methods the measures of usefulness of parity func- 
tions, such as e and n in the above, may be different, but the 
basic design concept illustrated here still applies. 

The minimax problem (29) can be replaced by a maximization 
if a probability density for the parameter y can be postulated. 
That is, the design problem now takes the form 

s . r .an’= l  

where the expectation of p 2 (  k )  is taken with respect to the joint 
density of x ,  E ,  ?, and y. This formulation will  give a much 
simpler optimization to be solved practically than the minimax 
problem (29). By treating y as a random variable, (30), also 
simplified as the maximization over y ,  is eliminated. 

V. A NUMERICAL E x A h i p ~ ~  

In this section we consider the problem of choosing parity 
functions and  parity coefficients for a four-dimensional system 
operating  at a set-point with two actuators  and three sensors. The 
system matrices are shown in Table I. Except for two elements in 
the A matrix all parameters are known exactly. These two ele- 
ments are assumed to be independent parameters denoted by y1 

Suppose we want to design a voting system for detecting a 
and 7 2 .  

sensor failure. Three candidate  parity structures are 

where the ai’s are row vectors (of parity coefficients) of ap- 
propriate dimensions. The corresponding @ and C matrices are 
shown in Table 11. Note  that each C and Q matrix depends 
linearly on either yI or yz and  that the rows of C2 are not 
linearly dependent for any value of y2. The parity  structures 
under consideration do not contain any actuator terms due to the 
fact that c,B,  czB ,  c 2 A B ,  and c3 B are all zero. This will simplify 
the solution of the minimax problem without severely restricting 
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TABLE I TABLE I11 
SYSTEM PA&M€TERS TEST CONDITIOXS 

.5 -.7 . 7  0 
0 .8 y I  0 

I TEST COND PARAMETERS I 

j 
x,, = l o  0 0 01' 

A =  -1 0 0 .1 ! d  

0 0 y 2  .4 
Q I  D l A G R =  I I  I I ]  

l b  X,, = 1-4 16 7.03  4.06 -I 01 I' 

Q l  D l A G R = [ l  I I 1  , 

0 0  

B =  jb pj 
0 0  

C I  = [O 0 1 01' 
c* = [O 1 0 01' 
c3 = IO 0 0 11' 

I x,, = 14.06 2 90 5.80 -1.451' 

I 
; c  

Q l  D l A G R = l I  I 1 1  

X,,  = 14.06  2.90 5.80 - 1.45 I '  

Q I  DIAG R = [ I  2 21 

x<, = 1406 2 90 5 80 - I  451' 

Q I  D l A G R = [ 2  I I 1  i i 
x,, = 14.06 2 90 5.80 -1.451' 

i r  Q! Dl.?& R = I I I I I 

nominal y I = . l  
\ .25 0 0 0 . 2 5  0 4 2 5  0 

y 2  E k . 2 ,  - .I1 nominal y 2  = -.I5 0 0 0  0 
QI = 0. = 

0 . 5 0 0  

0 0 0  0 

0 0 0 .25 0 0 0  25 TABLE I1 
- 325 0 625 0 

THE c A N D  @ MATRICES 

0 1 0 0  0 0 0 0  TABLE IV 
NOMINAL 

c l= 0 I 0 0 I @ , =  0 .8 y '  0 I .5580 ,0342 -.I508 -.OS52 
0 0  I O  0 0 0 0 1  

,0342  ,0102  -.0129  -.0097 
I, = 

-.1508 -.0129 S772 ,0117 

C,= 

I o  O I  l o o o o o o o o l  0 

0 0  I 0 ;  ' 0 0 0 0 0 0 0 0  

- 1  0 0 1 1  / 0 0 1 0 0 0 0 0  
a:= i 

1 - 1  0 0 . I  0 0 I 0 1  

1 0  0 0 1 
I 

c>= 0 n y :  .4 l o o  I O  

: o  0 0 0 

a x =  i o  0 0 I 

l o o 0 0  

the discussion. Assuming a single sensor may fail, only p 3  plus p1 
or p 2  need to be used for residual generation (because both p 1  
and p 2  include sensors 1 and 2).  Therefore, in  addition to the 
coefficient design problem, we have to rank the two parity 
structures p 1  and p z  in  order to determine which  will  give more 
robust residuals. 

The minimax design problem has been solved for a set of six 
test conditions consisting of different set-points and different 
plant  and sensor noise intensities. These test conditions are 
described in Table 111. (The two set-points are obtained by 
applying u1 =1 or u,  =10 to the nominal system model.) The 
nominal state covariances 2, and 8, due to the two different 
plant noise intensities Q1 and Q,  are listed in Table IV. Due to 
the simple dependence of the parity functions on the y ' s  an 

1 -.OS52 -.0097  .0117  ,3113 I 

1.9580  -.8434  -1.1140 -.lo49 

-.8434  1.8030  ,7691 -.I996 
I, = 

-1.1140  ,7691  2.6080 -.lo81 

-.lo40 -.1996 -.IO81 ,3829 

efficient solution procedure is possible [16]. The resulting parity 
coefficients and the corresponding (normalized) parity errors are 
summarized in  Table V. 

It is elldent that the parity coefficients in this example are 
strongly dependent on the test condition (Le., the values of xo, 
Q, and R).  Although this dependence is very complex, some 
insights may be obtained from the numerical results. Consider, 
for instance, p1 under conditions b and c.  For condition b the 
parity function is 

~ ~ ~ ( k ) = 0 . 6 4 1 1 ~ ~ ( k - 1 ) - 0 . 7 6 6 6 ~ ~ ( k ) + 0 . 0 3 7 8 ~ ~ ( k - l )  

and for condition c it is 

p l , . (k)=0 .8947~~~(k-1) -0 .3667~~(k) -0 .2551y, (k- l ) .  

The only difference between these conditions lies in the value of 
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TABLE V 
MIh’IhfAX PARlTY  COEFFICIEhTS A N D  PARITY ERRORS 

TIST 
COND. 

PAR. 
FUNC. a* a* 

I 

,6833 -.7m -. I167 I. lI8 3 

,9983 .OD3 .a i83 0219 I W8 2 a 

7282  -.6808  .379l I.W2 

I .MI1 -.7666  .0378  1.082 

b 2 

89J7 - 3667  -.2551 I .J% I 

7027  -.7115 -.DM0 1.210 3 

.4462 .SO79  -.4356  ,5942 1.101 

c 2  1.055 ,9599 - . I 4 8 4  1992  . I i 9 6  

3 1.230  7592 -.6504 0249 

1 

.7%1 -.Ma7 .m 2 228 3 

.7345  -.5931 .m 4.559 I 123 2 d 

7865  .3023 4385 I 908 

I 

7441  .6678  1692  1.230 3 

.9669 . 1 2 w  . I242  .I875 1.122 -I e 

3 0 5 8  . 5832  -.I025 I .  I24 

I 

6385  -.7687  0375  1.254 3 

5146 , 4 4 0 4  4312 ,6570 1.311 2 f 

7327  -.6803 - 0166 1.427 

xo. Since the first and  fourth columns of Cl are zero, only the 
second and third elements of x. (-xo2 and xo3) will play a role in 
the coefficient optimization problem. The parity function p1 can 
be written in the form 

~ 1 ~ ~ l l x 0 2 ~ a 1 2 ~ X 0 2 ~ ~ l X 0 3 ~ f a 1 3 X 0 3 ~ ~ ~ ~ 1 ~ ~ 1 ~  

where al i ,  i = 1,2,3 denote the elements of dl corresponding to 
y2(k  - 1), p (  k ) ,  and y l ( k  - l), respectively; S denotes the re- 
maining noise terms. It is clear that x03 and a12 modulate the 
effect of yl on p l .  Qualitatively, as Ixo3) becomes large relative to 
Ixo21 (with all noise covariances the same), the optimal a12 will 
reduce in size (relative to all and ~ ~ 1 3 )  in  order to keep the effect 
of y1 small. As Ixo31 increases, the signal-to-noise ratio of y l ( k )  
also increases. Therefore, we expect Ialg( to become large to take 
advantage of the information provided by y l ( k ) .  Under  condi- 
tion b, xoz > xOj, and under condition c the reverse is true. An 
inspection of p 1  under these conditions as listed above shows 
that this reasoning holds. Therefore, built into the minimax 
problem is a systematic way  of handling the tradeoff between 
uncertainty effects due to noise and  error in system parameters. 

Note  that both p1 and p 2  relate the first sensor to the second 
one,  and p z  is a higher order parity function than p l .  Further- 
more, the rows of C2 are  not linearly dependent for any value of 
y2. However, the parity error associated with p 2  is smaller than 
that of p1 in all conditions except conditions a and b. This 
shows that a higher order  parity relation (which is more likely to 
contain higher order effects of y) is not necessarily more vulner- 
able to model errors and noise. In addition, a parity function 
based on a C matrix with  rows that are linearly dependent for all 
values of y does not necessarily produce a smaller parity error 
than a parity function that is based on a C with independent 
rows. 

In Table VI we have tabulated the signature-to-parity error 
ratio associated with the three parity functions for sensor failures 
that are modeled by a constant bias of size vl  in the output  for 
test conditions c and d .  Here, vi denotes the signature-to-parity 
error  ratio  for a bias failure in sensor i, and it is calculated by 

TABLE VI 
T VALUES FOR SELECTED TEST CONDITIONS 

substituting v, for y1 in the parity function (26) with the minimax 
coefficients. Such a table is helpful for determining the relative 
merits of p1 and p z .  For instance, under condition d and 
assuming v 1  = v2, p 2  is preferred to p 1  because it has a larger 
value of nl than p 2 ,  while its nz value is comparable to that of 
P2. 

VI. CONCLUSIONS 

In this paper we have characterized the notion of analytical 
redundancy in terms of a generalized parity space. We have 
described three methods for using parity relations to generate 
residuals for FDI. The problem of determining robust parity 
relations for residual generation using the parity function method 
was studied. This design task was formulated as an optimization 
problem, and an example was presented to illustrate the design 
methodology. A number of problem areas await further research. 
They include: a method for selecting useful parity  structures  for 
the  parity coefficient problem studied in Section IV; solution 
procedures for the (minimax) optimization problem; and a method 
for determining robust  parity relations for other methods of 
residual generation (i.e., the open-loop and the closed-loop meth- 
ods). 
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