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Abstmct-Researchers  in digital signal processing  have  examined at 
length  the  effects of finite  wordlength in the design of digital  filters. 
The issues that have  been  considered  apply to any  digital system. In 
particular, the design of  digital  control  systems  must  consider  these 
issues. In this  paper  we will use, adapt,  and  extend  the  ideas  developed 
in  digital signal processing to  the issue of roundoff  noise  in digital linear- 
quadratic-Gaussian (LQG) compensators. We will then  examine  the 
roundoff  noise  effects for a  particular LQG example  and several differ- 
ent  implementation  structures. 

I. INTRODUCTION 

I N  the design of digital filters,  it  has been amply  demonstrated 
that  one  must consider the  effects  of  the  finite precision 

inherent in the digital implementation. This  finite  precision 
leads to degradation  due to  quantization noise,  coefficient 
inaccuracy,  and limit cycle oscillations.  These effects have 
been the subject of a great  deal of research in digital signal 
processing [ l ]  - [ 3 ] .  

It is also important  to investigate these issues in the applica- 
tion  of digital processing to  other fields-specifically, to discrete- 
time  control systems. In the  past,  complex  controller designs 
have usually  been implemented  on large,  expensive,  floating- 
point  computer systems.  However, the  number of applications 
that could  effectively use small-scale hardware  control systems 
that  work in real time  has greatly increased, especially with  the 
advent of the inexpensive  microprocessor. When implementing 
such  compensators, we must consider the  problems  that arise 
in dealing with  the  fixed-point  arithmetic  and finite wordlengths 
of small-scale digital systems. As these  problems  are not 
addressed at all in the idealized mathematical design procedures 
that have been developed to  date  for  control,  a  methodology 
must be established for  treating  the digital implementation of 
a  compensator design. 

For  this  methodology, we have turned  to  the results devel- 
oped  for implementing digital filters. On one level, a single- 
input  single-output digital compensator is simply a digital 
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filter. However, as  we will show,  the existence of  a  feedback 
loop  around  the digital compensator will frequently  require us 
to  adapt  and  extend  the ideas developed for filter implementa- 
tions. These adaptations of digital signal processing ideas will 
serve as the basis for  techniques dealing with  roundoff noise, 
scaling, coefficient rounding,  and limit cycles in digital feed- 
back compensators. 

Some  work  has  already  been  done  concerning controller 
implementation [5] -[14]. However,  these have been  some- 
what  limited in scope,  typically  treating  only  a few points, or 
only  one  structure. Our intention is quite different-a system- 
atic  extension  and  adaptation  of digital signal processing ideas 
to controller  implementation. More simply,  our  intention is to 
raise the issues commonly dealt with by researchers in digital 
signal processing, but in the  context of feedback  controller 
implementation. We have reported results  concerning the 
coefficient quantization issue in [ 151 and [ 161 . In this  paper, 
we  will examine the issues of scaling and roundoff  quantiza- 
tion in fixed-point  controller  implementations. 

The basic idea behind  the  examination  of  roundoff noise is 
the same for digital filters  and digital compensators.  Approxi- 
mating  the results of intermediate  computations,  or  node 
signal values, with  a  finite  number of bits will cause a degrada- 
tion in the system’s performance as compared to  the ideal. 
Assuming that  a given quantitive performance  measure is 
provided, we can measure the  tradeoff in the  number  of  bits 
versus the degradation. Then, assuming that we specify an 
acceptable amount of degradation, we can determine  the 
minimum  number of node variable bits needed to meet  this 
goal. In  fixed-point digital systems,  this can be done by 
bounding  the  effects of quantization [ 8 ]  -[11] , [I71 ;however, 
such bounds would also include limit cycle effects,  and  thus be 
very loose as regards quantization noise. More commonly, we 
assume that  the  roundoff  operation can be modeled as additive 
white  noise, thus allowing the use of linear  system analysis 
techniques [ 3 ] .  We will adopt  the  latter  approach in our 
investigation. 

In  order  to bring out specific issues concerning control 
system implementations, we will consider a specific class of 
control problems-linear-quadratic-Gaussian (LQG) problems. 
The  compensator resulting from the LQG framework is 
optimal, in the sense that it minimizes a  quadratic  functional 
of the  state  and  control  fluctuations. This compensator will 
be described in detail in Section 11. It is also very convenient 
to  treat this quadratic  functional as the  index  of  performance 

0096-351S/S3/1200-1464$01.00 0 1983 IEEE 



MORONEY et al.: ROUNDOFF NOISE AND SCALING IN IMPLEMENTATION O F  CONTROL  COMPENSATORS 1465 

by  which we measure the relative merit  of  different digital 
implementations 0‘3 a controller design. Thus,  any given imple- 
mentation will produce a performance  index greater than  the 
“optimal” ideal (infinite-precision) value. This  increase will 
reflect the degradation due to some finite  wordlength  effect, 
such as roundoff  quantization noise. The  fact  that  we use this 
performance  metric,  somewhat  different  from  but  more  appro- 
priate than  the Z2-norm (variance) of  the  output noise  used in 
digital filtering  analysis, is another reason our results  differ 
from  those  reported in the digital signal processing literature. 
If the  problem  under  consideration  had been  a  Kalman or 
Weiner filter,  then a  suitable  performance  measure would have 
been the  trace  of  the  error covariance matrix. Our  results 
extend in  a straightforward  manner to this  case, and also to 
the  output noise power  measure. In  any case, for  the  control 
problem, it is the presence of a feedback  loop  through  some 
controlled system  which  makes our results and  techniques 
novel. Specifically, as we will see, the  concept  of a structure 
for a digital compensator,  the  notation developed by Chan 
[18]  for describing the  operations in  a digital filter structure 
(including  precedence), approaches to scaling, roundoff noise 
analysis techniques,  and  the  minimum  roundoff noise struc- 
tures of Mullis and  Roberts  [19],  [20]  and Hwang [21] all 
need to be adapted  for  the  control  problem.  In  this paper we 
shall deal only  with single-input single-output  control systems, 
although  our results  can  be extended  to  multiple-input  multiple- 
output systems [ 161 . 

The  organization  of  this paper will be as follows. In Section 
I1 we will describe the LQG control  problem  and  the resulting 
ideal optimal compensator-it is this ideal compensator  that 
must be implemented  with as little degradation  as  possible, 
due to finite precision effects.  The  notion  of a compensator 
structure, somewhat  different  from a  conventional  filter struc- 
ture,  and  an  adaptation  of  the Chan notation  for describing 
such  structures will be presented in Section 111. In  Section IV 
we will review the digital signal processing techniques  for 
scaling structures  to satisfy the  dynamic range constraints of 
fixed-point digital filters,  and we will show  how  these  ideas 
must be modified  for digital control systems. The scaling issue, 
of course, is central to  any meaningful measurement of round- 
off  quantization noise effects. In  Section V we will review the 
techniques  for  roundoff noise analysis in digital filtering, and 
extend these to digital controllers. The  minimum  roundoff 
noise structures of Mullis and  Roberts [19],  [20]  and Hwang 
[21] will be adapted  for  controllers in Section  VI, along with 
a treatment of the  more general optimization  techniques  intro- 
duced by Chan, also as adapted  for  controller  implementation. 
Finally, using the  techniques we have developed we will com- 
pare the  roundoff  quantization noise performance  of several 
scaled structures  for  implementing a  specific LQG controller 
example. We will also show that a “default”  compensator 
structure,  quite  natural  for  the  control designer to  implement, 
is, in  fact, not a very desirable structure to select. 

11. LQG CONTROLLER DESIGN 
In this  section we will introduce  the single-input  single-output 

LQG control  problem  and  the  optimal  compensator  that 
results.  This procedure will, of  course,  only specify an ideal 

design-one that  would  only be possible with infinite-precision 
arithmetic.  From  this ideal we wish to select a  finite-precision 
implementation which  results  in as little  degradation (in the 
performance  index) as possible. This is directly analogous to 
designing a digital filter using a  bilinear transformation, impulse 
invariance, or whatever technique,  and  then  implementing  the 
“ideal” design in  finite-precision. 

Let us assume that we wish to design a digital discrete-time 
compensator  for a continuous-time system (a “plant”),  and 
that  the  control signal will be piecewise constant. We will 
also assume that  the  output of the  plant is sampled at  the  rate 
1/T. The  term linear-quadratic-Gaussian  refers to the following 
design problem: given a  linear  discrete-time model  of a contin- 
uous-time system  subject to  disturbances  that can  be modeled 
as white Gaussian noises, design a linear compensator  that 
minimizes  a quadratic performance  index. 

Consider the following  discrete-time model  of a continuous- 
time time-invariant plant: 

x(k t 1) = cpx(k) t ru(k) t w1 ( k )  

where x is the  state  n-vector, u and y are the  control  and  out- 
Rut variables, @ is an n X n state  transition  matrix, r is an 
n X 1 input gain matrix,  and L is a 1 X n output gain matrix. 
The  quantities w1 and w2 are the discrete  Gaussian noises 
referred to above.  These noises are zero  mean,  with covariance 
matrices O1 (n  X n )  and O2 (1 X l) ,  respectively. For  the 
steady-state LQG problem,  the  performance  index can  be 
written as follows: 

Thus, we see that J reflects the weighted  squared  deviations 
of the  states  and  of  the  control.  The weighting parameters Q, 
M ,  and R can  be  specified by  the designer. The  infinite  time 
horizons reflect the  steady-state  nature  of  the  optimization, 
both  for  the  optimal  state  estimation  and  the  optimal regulation 

The  determination of a  linear compensator  that minimizes J 
involves the  solution  of  two Riccati equations involving the 
plant  and weighting parameters.  However, the resulting con- 
trol u(k)  typically will depend  on past values of  the  plant 
output  up  to  and including y (k )  [22].  Unfortunately,  the 
resulting compensator is not directly  feasible for  implementa- 
tion, since a certain  amount  of  time  must be allowed to  compute 
u(kj from y(k) ,  y(k - I), etc. Yet u(k) and y (k )  refer to  the 
control  and  plant  output at identical times.  Some delay must 
be accounted  for,  and  thus  the design, as described so far,  is 
infeasible. 

Fortunately, Kwakernaak and Sivan [23] have presented a 
design procedure  that  does  account  for  this  delay.  The resulting 
compensator is optimal in the sense that  it  produces  the u(k)  
that minimizes J ,  but based only  on a  linear function  of 
y(k - l), y(k  - 2), * * , and not on y(k). Such a compensator 
can be implemented, essentially allowing one  full sample 

~ 2 1 ,  ~ 3 1 .  
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period for  the  computation  of u(k)  after  the y(k  - 1) sample is 
generated. If, however, the  computation  time is much  shorter 
than  the sample  interval, this implies some inefficiency;  the 
output u(k)  will be available long before  it is used as a  control. 
Thus, Kwakernaak and Sivan also include amethod  for skewing 
the sample time of the  plant  output  with respect to  the rest 
of the  compensator.  The  compensator  output u(k)  will still 
depend on inputs  up  to  and including y(k  - I), but now 
y ( k  - 1) is produced  only  one  computation  time before u(k)  is 
needed.  This  eliminates any inefficiency [ 161 , [23] . We will 
return  to  the  implications  of  this necessary calculation time in 
Section 111. The sample skew method involves a change to (1) 
to describe the new sample y ,  and  results  in a new term  propor- 
tional to u(k)  in  this equation  [16]. This added  complexity 
was not pursued  in the remainder of  this  paper,  although  it 
can be done  with no problem.  Thus,  for simplicity, we assume 
no skewing. 

The  optimal  compensator described above is of the following 
form (assuming no sample  skew): 

x^(k -t 1) = @x^@) f Fu(k) + K ( y ( k )  - Lx^(k)) 

~ ( k  + 1) = -Gx^(k + 1)  (3) 

where x^ is the  estimated  state vector and  the n X 1 Kalman 
filter matrix K and  1 X n regulator matrix G result from  the 
solution of two discrete-time algebraic Riccati equations  [23]. 
Note  that in (3),  the  next  control u(k t 1)  depends  only on 
inputs y(k) ,  y ( k  - l) ,  ’ * - . Thus,  the  computational delay (one 
full  sample  period)  has  been  allowed for in this  formulation. 

Now, if we treat this compensator as a discrete  linear  system 
and  examine  its  transfer  function, we have’ 

In a  more conventional form,  this can be written 

U(z)  - alzw1 +a2z-2 + * * * -t a,z+ 
Y ( z )  1 + biz-' -t b2z-’ +- * * - t b,z-n ‘ 

- -  

Note  the lack of  a  term a. in the  numerator.  The presence of 
such  a  term would  reflect a  dependence of the present output 
on the present input. Since (5) represents a  compensator  that 
can be implemented,  the a. term  must be zero. 

This  delay has an important  implication in the way we look 
at  structures  for  implementing digital compensators, as we will 
show  in Section 111. 

111. ALGORITHMS AND STRUCTURES FOR DIGITAL 
COMPENSATORS 

In the  nomenclature of digital signal processing [ l ]  , the 
term structure refers to  the specific combination of (finite- 
precision) arithmetic  operations  by which a filter output 
sample is generated  from  intermediate values and  the  input. 
Typically, a  structure can be represented by  a signal-flow 
graph. Let us examine a simple filter structure to see whether 
it will be appropriate  for representing the Compensator of (5). 

’ Note  that we  have  taken u to  be  the  output of the digital network 
and y to  be  the  input.  This  may  be  contrary  to  the  expectations of 
many  readers. 

Specifically,  let us examine a  fourth-order (n = 4) direct 
form 11 [ I ]  filter structure (see Fig. 1). Note  the presence of 
the a. term.  Such  a  structure cannot exactly represent an 
implementation, since computational delay  has not been 
accounted for.  However,  such a signal-flow graph is taken  to 
represent a  structure in digital signal processing;  basically, the 
extra series delay  needed for  computations is assumed to be 
present,  and is ignored. In most digital filter applications, 
series delay is of no consequence.  However, in any  control 
system, all delays that exist must be adequately represented 
in the  structure  notation. If series delay  exists  in the  compen- 
sator,  and  has not been accounted  for,  the  entire  control 
system may be  unstable. Control system performance always 
deteriorates  when  extra delay is added to  the  loop.  Thus,  any 
treatment of compensator  structures must  include specifica- 
tion  of a12 calculation  delays.  This  consideration basically led 
to  the  form  of (5). 

Now, let us take Fig. 1 and set a. to  zero, as in (5) (see Fig. 
2). The signal-flow graph of Fig. 2 is still not an accurate 
representation  of  an  implementation  of (5). The only time 
available for  computation is between sample  times (ignore 
sample-skewing for now). Yet, Fig. 2 shows u(k) depending 
on compensator  state nodes  (defined to be the  outputs  of 
delay  elements), also at  the same time k. Time must be 
allowed for  the  multiplications a l  - a 4 .  Thus, u(k)  cannot be 
in  existence until after the  state  node values are  calculated. 

A structure  appropriate  for representing the  compensator 
of (5) is depicted  in Fig. 3. This can be derived from Fig. 2 
by  elementary signal-flow graph manipulation.  For  controller 
implementations,  this will be defined as the “direct form 11” 
structure. One clear result emerges: a unit  delay must precede 
the u(k)  node.  Thus,  the u(k)  node is always a  compensator 
state  node.  Note  that  this organization of the  computations 
was only possible due  to  the zero value of ao.  Thus,  our 
design procedure, allowing u(k) to depend  only on past y 
values, results in a, controller which can be implemented if 
we are careful to include all the  actual delays inherent in the 
structure.  From this point on, all compensator  structure 
signal-flow graphs discussed will accurately represent the 
computation delays that exist. (Note  that sample skew would 
not  alter  the above signal-flow graph,  but  only  our  interpreta- 
tion  of  the  time  index k for y (k )  [ 161 ). 

Another difference between filter and  controller  structures 
should be mentioned.  The  structure  of Fig. 3 has five unit 
delays,  while that  of Fig. 1 has  only four. This  carries over to 
all types  of filter and  compensator  structures [ 161 . In  fact, 
for an nth-order  transfer  function,  a delay-canonic  filter 
structure  has n unit  delays, while a delay-canonic compensator 
structure  has n t 1.  This fact has an interesting consequence 
when we look  at  certain filter structures. One example is the 
structure  composed of cascaded direct form I second-order 
sections (see Fig. 4). For  a  fourth-order  transfer  function, such 
a filter structure  has six unit delays and is not  canonic (a ca- 
nonic  structure would have four delays). However, such a  com- 
pensator  structure  for  a  fourth-order system (n  = 4) would have 
only five delays,  which is canonic  for  compensators [ 161 (see 
Fig. 5). This again brings out some of  the differences between 
the  filter and compensator cases. 



MORONEY et aZ.: ROUNDOFF  NOISE AND SCALING IN IMPLEMENTATION O F  CONTROL  COMPENSATORS 1467 

Fig. 1. Direct  form I1 filter  structure. 

44-1 i 

Fig. 2. Direct  form I1 filter  structure (a0 = 0). 

Fig. 3. Direct  form I1 compensator  structure. 

u (k) 
-1 

-1 

Fig. 4. Direct  form I filter  structure. 

Fig. 5. Direct  form I compensator  structure. 

In  addition to representing compensator  structures  with  the 
signal-flow graph, we need  a mathematical  notation  for describ- 
ing a structure. In order to accomplish this, we will adapt  the 
filter notation developed by Chan [ 181 to  the case of  compen- 
sator  structures. Chan's notation  accounts  for  the specific 
multiplier  coefficients  in the  structure,  and  for  the  exact 
sequence, or  precedence, to  the  computations  and  quantiza- 
tions involved. Using y and u to represent a filter  output  and 
input, respectively, and u the filter states (delay-element out- 
puts),  the  Chan  notation can be written as  follows: 

Each (finite precision)  coefficient in  the filter structure  occurs 
once  and  only  once as an  entry  in  one  of  the \ k i  matrices.  The 
remainder of the  matrix  entries  are  ones  and zeros. The prece- 
dence to  the  operations is shown  by  the ordering of the  matrices. 
The  operations involved in  computing  the  intermediate  (non- 
state) nodes 

are completed  first,  then uz(k) = \k2 u1 ( k )  next,  and so forth. 
The  parameter 4 specifies the  number  of  such precedence 
levels. 

For representing compensator  structures as discussed above, 
several changes are necessary. First, u and y are reversed in 
definition: u is now  the  compensator  output,  and y the  input. 
But more  importantly,  the u(k) node is now a state of  the 
compensator. Inclusion of these  changes produces  the following 
modified state space notation: 

Examples of the  modified  state space representation can be 
found in Section VI1 and  in [ 161 . 

Notationally,  it is also useful to define \km to be the  infinite 
precision product  of \k,, , * * , \ k l ,  and to partition it as 
follows: 

\k, = [\kll i \ k l 2 ]  ( 8 )  

where \k l l  is (n t 1) X (n t 1) and \k12 is (n t 1) X 1. 
We can  summarize the  main  point  presented in this  section 

as follows. An nth-order filter transfer  function can  be  imple- 
mented  with n unit delays  (states).  However, the  nth-order 
transfer  function  of a compensator (for an  nth-order system 
model) requires  a compensator  structure  representation  with 
n + 1 unit delays. Thls altered  form  of a structure reflects the 
exact  consideration  of  the  computation delays that  must exist 
in any digital implementation. 

IV. DYNAMIC RANGE CONSTRAINTS AND SCALING 
Researchers  in digital signal processing have treated at length 

the need for scaling to reduce the  dynamic range of  the  node 
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signals within  a digital structure employing fixed-point  arith- 
metic  operations [ l ] ,  [3], [18]-[21],  [24].  The  tradeoff 
between overflow and  roundoff  quantization noise must be 
resolved before we can measure and  compare  the  roundoff 
noise performance  of  different  structures. 

Several methods  of scaling digital filters exist. One seems 
particularly appropriate  for use with  stochastic systems.  This 
stochastic ( 1 2 )  scaling procedure  [19] -[21] deals with  the 
probability  of overflow at  each  node within the  structure. 
Specifically, assuming uniform  internal  wordlength, if the 
filter input is zero-mean white Gaussian noise with a given 
variance, then scalers are  selected such  that  the  probability  of 
overflow at each node is identical to  the  probability  of over- 
flow at  the  input. This is accomplished by equalizing the 
variance at  each node. Chan [I81 has applied Z2 scaling to 
digital filters, using his state space notation. 

Certainly,  one obvious approach to  the scaling of digital 
compensators  would be to follow the  method developed by 
Chan,  but  with  alterations  to  include  the modified state space 
notation  introduced in Section 111. In  fact, we have shown 
this  in  detail  in [16] . However, there is one  important  problem 
that arises. Any  treatment  of a compensator as a stand-alone 
filter  ignores the remainder of  the  feedback  loop  through  the 
plant. This can have serious  implications. The scaling technique 
is based on a  white noise (compensator)  input  and seeks to 
equalize probability  of overflow at each node; however, the 
compensator  input  (the system output  with additive noise) is 
not  white,  due  to  the global feedback  loop.  Thus,  the  prob- 
abilities of overflow will not be  equalized by such an open-loop 
scaling procedure.  For  example,  it is possible to have an open- 
loop unstable compensator in  a  stable LQG system.  In  this 
case, the scaling equations may  have no  solution (blow up) 
depending on  the pole locations. 

Therefore, since the variance of each compensator  node will 
depend  on  the closed loop,  the closed-loop performance of the 
compensator  must be accounted  for.  Thus, we have adapted 
the Z2 scaling procedure  for digital compensators as follows. 
Recall the  plant  and  compensator  equations (1) and (7). To 
compute  the system's closed-loop performance, we must 
combine the  state  and  compensator  equations  into a single 
augmented  state space for  the overall closed-loop system: 

where (9) 

and 0, represents  an all-zero n X n matrix  and q l l ,  \k12 

represent  the unscaled compensator as partitioned in (8). 
Given this  complete  form (9),  let us now  follow  in  general 

the basic Z2 scaling procedure as applied by Chan [ 181 . Seal- 
ing will correspond to diagonal transformations  of  the *i 

matrices, analogous to  the similarity transformation in linear 
system theory.  Let  the scaled compensator have the  modified 

N - 
state space parameters qq, . . . , q1. Then 

where 

so=[". 0 1  

and all Si are diagonal. We now describe  a modification of 
Chan's procedure  for  determining  the  elements  of  the Si. 

The (unscaled) state covariance matrix Z for  (9) can be 
written (similar to  [19]  -[21]) as the  solution  of a steady-state 
Lyapunov  equation 

z =AZA' t c (1 1) 

where 2 is the (2n + 1) X (2n -t 1) covariance matrix 

and 

.=E' 0 '1. 
*l2@2*12 

At this  point, we must break from  the usual l2 scaling pro- 
cedure, since the  plant  states,  of  course,  cannot be scaled (nor 
do we wish to scale them).  The usefulness of (1 1) is that  it 
gives  us an expression for  the  compensator  node variances. Let 
us partition Z as follows: 

where Zll is n X n. Since we wish to equalize the  node vari- 
ances with  the variance o f y ,  let us compute u;. Since y = L x ,  

U; = L Z ~ ~ L ' .  (13) 

From (7), we see that  the  node covariances will depend  on 
the covariances of u,  u ,  and y. Combining (1) and (12), we 
produce 

Using (7) and (14), the covariance matrix  of  the nodes rl  
can  be written as 

In general, for  the  ith  intermediate  nodes, 
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With this  information, we can again apply  the  methods used by 
Chan [18]  and  others  to  compute a set  of  matrices Ki, * , 
K ,  [note  the  normalization  by u;] . 

The  diagonal  elements of the Ki matrices  represent  the  gains 
from  the  variance  of y to  the specific intermediate  node vari- 
ance. By this  definition, K ,  must  then  represent  the  gains 
from  the y variance to  the variances of the  compensator  state 
nodes u and u,  and  thus  should  equal ZZz/u;. This can be 
shown to be true [ 161 , [ 181 . As in [ 181 , the scaling matrices 
Si shown  in  (10)  are  computed as 

[Si] ii = ( [Ki] ii)-1/2 i = 1, - * , q for all j .  (18) 

Thus,  the  scaled  system Z?i matrices will have unit  diagonals; 
all node  variances will be  equal to each  other  and  to  the  variance 
of y. This  ensures  the  desired  equal  overflow  probabilities. 

Two  other  points  of  difference  between filter  and  compen- 
sator scaling arise. First,  the issue of  A/D  and  D/A scaling 
must  be  addressed.  Note  that  the  above scaling procedure 
actually  scales  the  output  node u. In  order  to  keep  the closed 
loop  system  transfer  function  unchanged  due  to  this scaling, a 
gain  factor  of p must be  included in the D/A conversion  of u .  
From (lo), 

p = [S41;:l,n+l. (19) 

But  beyond  this  point,  how  do we set the  A/D  and  D/A scale 
factors  in  general?  The scaling procedure  equalized  the  node 
probability  of  overflow.  However,  the  actual value of  that 
probability will be determined  by  the  way  we  employ  the AID 
converter,  in  other  words,  how we set its scale factor.  This 
must  be  decided  by  the  expected level of  transients  in  the 
system  (due to  any  external  inputs)  and by -the  closed-loop 
rms  fluctuations  (variance)  of y.  This issue will be less com- 
plex  for  digital  filters,  where  there is no  external closed loop. 
Again, to  keep  our ideal  closed-loop  response  unchanged,  the 
D/A scale factor  must  counteract  any  A/D gain.  The  D/A 
scale factor  could be written 

kda = P/kad* (20) 

Whatever is selected  for kad,  the  compensator scaling param- 
eter  matrices Si do  not  change;  the  compensator  and  converter 
scalings are  independent.  Remember  that in comparing  differ- 
ent  compensator  structures  for  a given ideal compensator 
design, only  the scaling of  the  compensator itself will be 
important. 

The final point  of  difference  between  filter  and  compensator 
scaling concerns  the  nature  of  the  control  system. Most  of the 
LQG configurations, as described  in  Section 11, will have set 
points-in  other  words,  reference  inputs  for  the  regulator  por- 
tion  of  the  control  system.  Thus,  the  control  action will try  to 
drive the  system to some  nonzero  output,  and also to  minimize 
fluctuations  around  that value. Such  set-point  regulators  [23] 

will have the same parameter values as  described  in  Section 11, 
independent of the set point.  However,  any  dc  offset  in  the 
plant output y (the  compensator  input)  certainly will affect 
the  probability  of  overflow  at  the  compensator  input  and  at 
all internal  compensator  nodes,  and  thus  affect  the scaling. 
The l2 scaling procedure  assumed  a  Gaussian  zero-mean  input 
to  the  compensator.  This  procedure  would,  unfortunately, 
not  be valid with  dc  inputs. 

Fig. 6  presents  the  set-point LQG system  described in 
Kwakernaak  and Sivan [23], where u, is the  reference  input. 
If we wish to drive the  output y to y,, then u, must be  set to 
Hi1 (l)y,., where yc(z) is the  closed-loop  transfer  function 
from u, t o y  : 

H,(z) = L(z1- CP -t I'G)-' I'. (21) 

Unfortunately,  this  compensator  has  a  dc  input, since the 
steady-state value of y is nonzero.  Thus, as we said, Z2 scaling 
is not possible. 

However, we will show  that we can  describe  the  set-point 
system  of  Fig. 6 in another  way.  Let us define t ,  Q, and y to 
be the  deviations  of  the  states,  input,  and  output away from 
their  steady-state  dc values x. , uo , and yo.  Thus, = x - x. , 
Q = u - uo and y = y - yo.  Using (l), the  following relation- 
ship  must  hold  between  these  steady-state values: 

x0 = @x0 -t r u o  

yo = L x o .  (22) 

Now, we can design an LQG compensator  for  the  system 
deviations, using a  model  for  the  deviations: 

t ( k  -t 1) = Q X k )  -t I'Q(k) -t w1 ( k )  

r(k> = L t W  -t wz(k). (23) 

This  will,  of  course, produce  the  same  parameters as the 
LQG design with (1). Now, if we  take  the  resulting  system, 
and  substitute  for Q and y, we produce  Fig. 7. 

Thus,  it is possible to  use an  alternate LQG set-point  config- 
uration  where  the  compensator  input y has  an average value of 
zero,  thereby allowing us to apply  stochastic  (1 2)  scaling. The 
disadvantage to  this  alternate  configuration is the  necessity  of 
having two  reference  inputs  which  maintain  the  precise rela- 
tionship  (22),  typically in the  presence  of  plant  parameter 
uncertainty.  This  disadvantage will vanish whenever  the  plant 
has  a series integration  (at least one  pole  at  the origin),  which 
is a very common  occurrence  in  control  systems.  Frequently, 
in fact,  an  integrator is added  before  an  actuator  (part  of  the 
plant) to  provide  desensitivity to  constant  disturbances.  To 
see the  effect  of  an  integrator  pole  on  the  configuration  of 
Fig. 7, let us write uo as @ ( I -  a)-' l?)-'y0.  However, since 
the  dc gain L(I - @)-'I' is infinite if there  are  any  open-loop 
integrator  poles  in  the  plant  (poles  at  z = l), uo is forced  to 
zero.  In  other  words, if the  plant  has  any series integration, 
the LQG  configuration  of  Fig. 7 need ,have only  one  reference 
input, yo = y,, and  not  two.  Note  that  the  configuration  of 
Fig. 6  does not change  when  the  plant  has  integrator  poles; 
both  compensator  inputs,u  and y will still  have  dc components, 
and  the  system as a  whole  still  requires  the  reference  input u,. 
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Fig. 7. Alternate LQG set-point  configuration. 

From  this  point  on,  the Fig. 7 configuration is assumed, so most digital filtering  applications, we will assume  a uniform 
that Z2 scaling can  be  applied. wordlength of the  internal registers of  the  compensator. We 

will also not consider the effect of  the  input A/D converter 
V. ROUNDOFF NOISE ANALYSIS quantization  on system performance, since this will be inde- 

In  this  section, we will develop  a method  for evaluating the pendent of the  structure chosen.  Typically,  far  fewer bits 
effects of roundoff  quantization  noise  in digital compensators. are  required for  the converters than  for  the  internal registers. 
As stated in the  Introduction,  we will adapt a method used in In most filtering applications,  the filter output variance due 
evaluating digital filter roundoff  effects [IS] -[21] . As in to roundoff  quantization is taken to be the measure of perfor- 
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mance for  the  structure [3 ] ,  [18]  -[21],  [25].  The analysis 
of  roundoff  effects is based on  the following assumption. We 
can represent each  roundoff  operation  on some value x as x 
plus  additive white noise, uniformly  distributed  between 
*A/2  where  A is the  quantization  step size. Furthermore, in 
a structure  with  many  roundoff  operations, all such additive 
noises are  assumed to be independent  [3] . Given this statistical 
description  of  quantization  effects,  one can easily apply linear 
system analysis techniques to  compute  the  output  node vari- 
ance due to  roundoff. 

In examining the  effects  of  roundoff  on digital compensators, 
we can make  the same assumptions  concerning  the  quantizer 
model. However, as with scaling, we cannot blindly  follow the 
procedures used for filters. Again, due  to  the  feedback,  the 
performance  of  the  compensator will depend  on  the  entire 
closed-loop system,  and  not  on  the  compensator  alone  [16] . 
Furthermore,  the variance of  the  compensator  output  node is 
not  the best  measure of  performance  for  the  control  system. 
Instead,  it is much  more reasonable to use the original metric 
which  figured  in the ideal compensator design-the quantity 
J shown in (2). 

Some  work has  been done previously along related lines. 
Curry [7]  has considered the second moment  of  the system 
output  error  due  to rounding for a specific sampled-data con- 
trol system with a  direct form I1 compensator  structure. 
Knowles and Edwards [6] have also used the additive white 
noise model  for generating  a bound  on  the  quantization noise 
effects  of direct form 11, cascade, and parallel compensator 
structures. Sripad [ 121 has considered the increase  in the 
performance  index J due to  roundoff, using the additive white 
noise model,  but  has  not addressed either  the scaling issue or 
the general concepts of compensator  structures  and  representa- 
tions. The results we present in this  section will be more 
general, since we can  consider any  type of compensator 
structure, using the  modified  state space notation,  and since 
we have accounted  for  the necessary scaling operation. 

The following roundoff analysis procedure results if we con- 
sider J t o  be the  performance  measure,  and if we consider the 
closed-loop nature  of  the  control  system.  Let us model  the 
roundoff  errors  after each compensator  multiplication as 
additive  noise. (The  structure-independent  A/D  contribution 
will be  ignored.) The scaled, augmented system of plant and 
compensator, including all the  internal  roundoff sources,  can 
be written [see (9) and (lo)] 

r 1 

where 

The  tilde will refer to scaled quantities, ei(k) will represent the 
noise vector due to  the  product  quantizations associated with 
the precedence level matrix Gi, and 4 will be the  number of 
precedence levels. Since  this is a  linear system,  superposition 
can be applied.  The noises w1 ( k )  and w2(k)  are present even 
in the idealized infinite precision  system-they  are the  uncer- 
tainties  that  produce  the ideal design value of J .  Thus, if we 
treat  the ei(k) noises alone,  our analysis will yield the increase 
in J due  to  internal  roundoff  quantization.  Thus,  our system 
model  for  roundoff analysis is 

Given this  model,  the resulting (scaled) state covariance matrix 
can be computed as in Section IV, by solving a Lyapunov 
equation: 

T = A Z A ' t  --- E :I 
where 

t$q 

The matrices Ai are diagonal matrices whose ( j ,  j )  th  entry 
equals the  number of noninteger  coefficients  in the  j th  row of 
Si, that is, the  number  of  roundoff  error sources  associated 
with  the j t h  component of ri. This  expression assumes that 
roundoff  occurs  after every nontrivial product. It would also 
be possible to produce double-precision products  and  do 
double-precision addition. A single roundoff  quantization 
would then be  needed to generate  the new node value, in 
which case all the  nonzero  entries of Ai would  be  ones. This 
method requires more  hardware,  but results  in  a reduced 
roundoff noise effect. 

To relate the  state covariance matrix  to  the  performance 
index J in (2), we must rewrite J as described in  [26]. This 
yields the following  expression in terms  of  the unscaled 
quantities: 

J = trace < Q Z )  t 2  trace (MZ) t trace (R Z) 
= trace TZ 

where 

and Z is defined  in (1 1). 
Now let  us  apply  this to the increase d J  in J due to roundoff 

noise, and  then  relate d J  to  the scaled covariance 2. Note  that 



1472 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-31, NO. 6, DECEMBER 1983 

x ( k )  is not scaled and v"(k) does not figure into  dJdirectly.  The 
only scaled quantity  that does enter  into  the  computation is 
u". However, u = kdaii, or u = pkia u". Thus,  substituting  into 
(27)  and considering dJ  

d~ = trace TZ (28) 

where 

Lda"  

Thus,  our analysis procedure  for  the increase d J  due to  round- 
off involves solving (26)  for z, and evaluating (28). 

VI. MINIMUM ROUNDOFF NOISE STRUCTURES 
Mullis and  Roberts  [19],  [20]  and Hwang [ a l l  have devel- 

oped  techniques  for creating structures  with  minimum  round- 
off noise effects. The  most practical of these structures is the 
block  optimal form. In this  filter structure,  one assumes the 
overall structure  to be composed  of  a parallel or series combi- 
nation  of  one-precedence level (' = 1) second-order  sections, 
each  of which is optimized  for  minimum  roundoff noise. The 
resulting structure will have about 4n coefficients,  where IZ is 
the filter order, which is about twice the  number  for a direct 
form I1 cascade or parallel structure. 

Certainly we could treat  a  compensator as a  stand-alone filter 
and follow the above-mentioned procedure to generate a 
minimum  roundoff noise structure. However, as expla.ined in 
Sections IV and  V, in order  to  obtain  an  accurate  picture  of 
roundoff  effects, we must consider the closed-loop system. 
Thus,  certain changes will be required  in  the  procedure. 

For  filters,  the  procedure involves the  computation  of  a 
block transformation  matrix,  which,  when applied to  the 
original unscaled filter structure, generates a new structure 
with  minimum  roundoff noise. The  keys to this  transforma- 
tion are the matrices K1 and W1. K1 is related to  the filter 
scaling procedure discussed in Section  IV,  and W1 is a "noise 
gain" matrix.  It reflects the gain (in variance) from each noise 
source to  the  output  node. Recall that K 1  reflects the gain 
from  the  input  node  to each internal  node.  Thus, we can apply 
the Mullis-Roberts and Hwang techniques  to digital compen- 
sator  roundoff noise minimization if we can compute K1 and 
W 1  matrices  that  account  for  the closed-loop control  system. 
We have already  specified the  technique  for finding K1 in the 
section on scaling [see (17)] . In  this  section, we will develop 
an expression for W1. 

Since W1 represents the gain from  roundoff noise sources to 
output variance (for filters), we need a  matrix  which reflects 
the gain from these  sources to  the  performance  index increase 
dJ.  The following will be adapted  from Mullis and  Roberts 
and  from Hwang.  Let us rewrite  (26) in terms  of  the unscaled 
compensator  parameters qll and q12 (as in [17] , thisassumes 
q = 1). 

z"= T A T - ~ ~ " T - ~ A ' T +  - 

where T includes the scaling matrix S1, 

I ,  is the n X n identity  matrix,  and 

as before.  (we have assumed kud to be 1; kud would,  at  any  rate, 
not  affect  the  optimal  structure.) By manipulating (10) and 
using the  definition  of 2 and T,  we can recognize that  the 
matrix 2 just equals T-'?T-'. Substituting in (29), we have 

Z = A Z A ' + C  [" O 1.  
12 0 A1ST2 

The expression for  the increase in performance  index  due to 
roundoff noise for  the scaled system  can also be written in 
terms of the unscaled covariance matrix Z [see (27)]. 

d~ = trace {TZ) = trace {TT-~zT- '  1 
= trace { T-' T T - ~ Z ]  
= trace { TZ}. (3 1) 

Using an adjoint  Lyapunov  equation (see the  Appendix), 
(30) and (31) can be replaced by 

d J = -  A2 12  trace1[" O ] 
0 

where 

W=A'WA +T. (33) 

The  trace expression in  (32) can  be simplified if we define 
W1 to be the lower  right-hand (n + 1) X (n + 1) portion  of 
W :  

A2 
12 

d J  = - trace { A1ST2 W1 }. (34) 

W1 is the  matrix needed to  apply  the Mullis-Roberts and 
Hwang techniques  for generating the  optimal  transformation 
matrix. Using K1 and W 1 ,  as presented above and in Section 
IV, we can follow the remainder of  their  technique to  generate 
a one-level minimum  roundoff noise compensator  structure.  It 
may, of course, be quite  different  from  that resulting from  a 
treatment  of  the  compensator as a  stand-alone filter. 

Conceptually,  the  technique described above could be 
extended to multiple levels. However, the iterative structure 
optimization  procedure developed by Chan [IS] for filters is 
far more useful for minimizing roundoff noise for general 
structures.  In Chan's method,  an initial structure is subjected 
to  continuous  transformations,  each  of  which reduces  some 
overall objective function, given constraints  on  certain coeffi- 
cient values. For filters, an  equation similar to (34) (but  with- 
out  the closed-loop) is used as the objective function. Almost 
any  of  the  coefficients of the initial structure can  be  held 
fixed  during the  optimization process. Thus, we can use this 
method  to  trade  off  an increase  in the  number  of coefficients 
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versus performance. The  extension  of  this very useful procedure 
to low-noise compensator design is presented  in [ 161 . ~ 

VII.  AN LQG EXAMPLE 
A  specific sixth-order LQG example was chosen so that  we 

could examine  the  roundoff noise performance  of several 
structures using the  techniques developed above [16]. This 
example was adapted  from  the  longitudinal  control system 
design done  for  the  F8 digital fly-by-wire  fighter [27].  The 
continuous-time  plant  parameters  and  performance'  index 
parameters  are given below. 

A 
Continuous  Time System Parameters: 

r 0 . 6 6 9 6  5.7 X -9.01 0 -15.77 0 1  

-0.01357  -14.11  -32.2  -0.433 

1  -1.2 X loT4 -1.214 0 -0.1394 0 

1 0 0 0 0 0 

0 0 0 0 -12  12 

- - 

LO 0 0 0 
B = [ O  0 0 0 0 11 

digital filtering-based  direct form I1 structure  for  compensators 
(see Section III), several cascade structures consisting of direct 
form I1 or direct form I second-order  sections, several parallel 
structures  composed  of direct form I1 sections, a block-optimal 
minimum  roundoff noise structure,  and a  "default" compen- 
sator  structure  which we will call the simple structure. In all 
five cases, we will indicate  the initial design coefficient  locations 
before implementing  the Z2 scaling procedure  of  Section IV. 
This will generally alter  the initial values, and will frequently 
create  a few extra scaling coefficients.  In  any case, where a unity 
entry in the unscaled structure  has  become a multiplier coeffi- 
cient (nonunity,  nonpower-of-two)  wheh scaled, we have 
indicated  this  with  an asterisk. 

The first structure we will examine is the  direct  form I1 
compensator  structure. Fig. 3  presents a signal-flow graph 
for  the  fourth-order case (n = 4).  Note  the presence of  the 
delay  preceding the  output  node.  For  the  sixth-order case, the 
12  coefficients  of  the direct form I1 structure  come  directly 
from  the  unfactored  transfer  function  (35).  Its  modified 
state space representation  (two precedence levels) is shown  in 
(36). 

H(z) = 
alz-' + a2z-' t a3z-3 t a4za4 t t a6z-6 

1 + biz-' + bzz-2 t b 3 ~ - 3  t b4z4 t b5z-' + bsZ+ 
C =  [ l  0.003091  31.28  1  3.592 01. (35) 

Continuous-Time  Performance Index Parameters: 

0 0 0 0 

0 2.6554 X lo-' 2.686 X loW3 0 3.085 X 

0 2.686 X 27.174 0 

0 0 0 27.174 0 0 3-121 O I I 0 3.085 X 3.121 0 0.3585 0 I 
L O  0 0 0 0 OJ 

Z? = 5.252. 

Continuous-Time  Noise Covariances: 

X1 = diag [0 0 0 0 

X 2  = 0.00 1844 1. 

This continuous-time system was discretized at a  sample rate 
of 10 Hz and  the  optimal regulator and Kalman  filter designed. 
The double-precision.parameters a, I?, L ,  Q , M ,  R, 01, 02, G ,  
and K can be found in [ 161 . 

Before discussing the  different  structures  tested,  it will be 
helpful to  mention  the A/D noise contribution  for  this  example 
(independent  of  structure). If we allow a 5 percent increase 
in J due to this single noise source,  then a procedure similar to 
that  outlined in Section V  requires  a 4.98 bit A/D  wordlength. 
Including  a sign bit,  and selecting the  next largest integer  value, 
our  actual  wordlength would be 6 bits. As will be shown,  this 
bears out  the need for  shorter  A/D  wordlengths as compared 
to  internal wordlengths. 

Five types  of  structures  for  implementing  the ideal compen- 
sator  transfer  function  (4) were examined. These were.the 
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When this structure is l2 scaled, the  unity value marked 
with an asterisk will become a  13th  nonunity  coefficient. 

The second type  of  structure,  the cascade, derives its coeffi- 
cients  from  a multiplicative factorization  into  three series 
second-order sections. The  factored transfer function, assuming 
direct form I1 sections, is 

(3  7) 

Such  a  structure will have 12  coefficients,  four precedence 
levels, and will require three  additional scaling multipliers 
when l2  -scaled [see (38)] . 

(38)  

Details  are available in [16]. Note  that several cascade struc- 
tures can be formed simply  by  grouping the poles  and  zeros 
differently,  or by  ordering the sections differently,  or even by 
implementing each  section differently [ 161 . Unlike digital 
filters, the typical  presence of  more  than  one real pole in a 
digital compensator  further complicates the choices. In each 
second-order section, we will also have to pair different real 
poles together.  Two cascade structures will be  considered, 
both using direct form I1 sections, but  with  a different pairing 
and ordering. In addition,  a direct form  I  structure will be 
tested. (See Fig. 5 for  a  fourth-order example.) Its modified 
state space is given in [ 161 . 

The  third  type  of  structure,  the parallel form,  corresponds 
to  a  partial-fraction  expansion  of ( 3 9 ,  which allows the use 
of parallel first-  and/or  second-order sections. For  the case of 
five parallel direct form I1 sections,  four first-order and  one 
second order,  the  expanded transfer function (also having 12 
coefficients before scaling) is shown in (39), and  its modified 
state space is given in (40). 

H(z)  = 
elz-'  + e2z-2  e3 z-' + e4z-l 

1 t c1z-l + c2z-2 1 tg3z- l  1 fg4z-l  
t 

e5z-l  eg2-l 
t + 

1 +gSz-' 1 t g6Z-l ' 
(39) 

(40) 

To scale this structure, five additional scalers (one per section) 
are required. Of course, there are many  other parallel forms, 
depending on  how  one groups the poles and zeros, and how 
one  implements each  section [16] . We will also examine two 
parallel structures having only second-order direct form I1 
sections. The  two  structures differ only  in  the pairing of  the 
four real poles of  the  compensator. 

The  fourth  type  of  structure  tested is a parallel block  optimal 
minimum  roundoff noise structure, as described in Section VI. 
This structure will have 25 coefficients, many  more  than  the 
previous three  types.  Its modified state space is  given in (41), 

- 
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and shows three  second-order sections and  only  one  precedence 
level [ 161 . 

= 

- 
fl f 2  0 0 

f4 f s  0 0 

0 0 f 7  f a  

0 0 f10 fll 

0 0 0 0  

0 0 0 0  

f l 9  f 2 0  f 2 l  f 2 2  - 
The last structure  we will consider  has no analog in  the 

filtering literature. This structure would  result if we tried to 
directly  implement  the  compensator  equations  shown  in (3). 
It is important to analyze this  type  of “simple” structure, 
because a naive implementation might employ it more  or less 
by  default, as it is the  natural’result  of  the ideal design. Taking 
the  equations  shown  in (3), we must first  rewrite them  in  an 
implementable  form.  (Note  that u(k t 1) cannot be computed 
from x^(k t l) ,  since some computation delay must  be allowed 
for  the  multiplication by G.) Substituting  for x^(k t l) ,  we 
get 

x^(k -I- 1) = @x^@) + h ( k )  -t K(y(k)  - Lx^(k)) 

u(k -I- 1) = -G@x^(k) - G h ( k )  - GK(y(k) - Lx^(k)). (42) 

These equations  do represent  a  feasible compensator  struc- 
ture.  Its  modified  state space representation  would have three 
precedence levels: 

(43) 

The  important disadvantage of  this  type  of  structure can  be 
easily seen from (43). For a sixth-order  example,  there will 
be up  to  60 coefficients. 

The  actual scaled coefficient values for these  nine structures 
are presented  in [ 161 . Table I summarizes the  roundoff noise 
results for these structures. As mentioned previously, the  A/D 
noise contribution is the same for all structures  and is not 
included. 

The “levels” column lists the  number  of precedence levels, 
and  the “N” column lists the  number  of coefficients  including 
scalers in  the  structure.  The  roundoff noise  results  are presented 
in terms  of  the  number  of signal bits  (wordlength)  that are 
required  to  hold  the increase  in J due  to  product  roundoff 
noise to 5 percent  of  the ideal value. Again, these numbers do 
not  include  the sign bit.  Two  wordlengths are presented  for 
each  structure.  The  left-hand  column (larger) corresponds to 
the case of  roundoff  after every  nontrivial multiplication  and 
then  the use of single-precision adders, while the right-hand 
column  corresponds to  the case of double-precision adders  and 
quantization after addition. 

From Table I, we can see that  the  different  pole pairings 
associated with parallel structures c) and  d)  produced results 

TABLE I 
ROUNDOFF NOISE RESULTS 

Wordlength 
Structure Levels N spa  dpa 

a) direct  form I1 2 13 19.65 18.25 
b) parallel direct  form I1 2 17 8.05 7.45 
c)  parallel direct  form I1 2 15 10.18 9.39 
d) parallel direct  form I1 2 15 14.74 13.94 
e)  block  optimal parallel 1 25 7.88 7.06 
f )  cascade direct  form I1 4  15 15.69 14.68 
g) cascade direct  form I1 4  15 10.51 9.47 
h)  cascade direct  form  I 3 14 15.52 14.36 
i) simple, default  structure 3 50 9.01 7.54 

that differed by  4.5 bits. Placing the  near-unit  magnitude real 
poles of  the  compensator in different sections was significantly 
superior.  Of the  two similar cascades f )  and g), the  one  with 
these  same two poles in  different sections required  5.2 fewer 
bits. As with  filters,  the pairing/ordering issue is clearly not 
a trivial question. Also, note  that  the cascade of  direct  form I 
sections  h), which used the same pairing/ordering as g), has 
nearly  identical performance,  but  one less precedence level and 
one less coefficient. Unlike digital filter applications, it is worth 
considering for  feedback  compensator  implementation. 

Structure b), the  combination  of  first-  and  second-order 
parallel sections,  with  its  17  coefficients,  outperformed every 
other  structure  except  the  block  optimal. Even so, the  extra 
eight coefficients of  the  block  optimal  structure  with  second- 
order sections only gained 0.2 bits  of  performance over this 
structure.  Thus,  when evaluating different  structures,  it is 
important to know  the  block  optimal result (for various 
pairings) so that we can judge  whether a suboptimal  structure 
like b) is effective enough.  In  this case, it clearly is. 

As expected.frorn  the  literature  on digital filters,  the direct 
form I1 has very poor noise performance.  It is also very impor- 
tant to note  that even though  the simple structure  i)  performed 
fairly well [but still one  bit worse than  the  structure b)] , it has 
(comparatively) far too  many  multiplier coefficients. Were 
such a structure  to be built,  this surfeit of  coefficients would 
require either a slower sampling rate  or a more expensive com- 
pensator  than  b) or e), either  of which would outperform it. 

The second wordlength  column in  Table I shows the gain possi- 
ble when using double precision adders  and fewer quantizers. 
Depending on  the  structure  tested, a savings of  from  0.6  to 
1.47 bits was realized. Whether this small savings is enough to 
justify  the higher-precision adders will depend  on  the  particular 
application. 

Calculation time can  be derived from Table  I in a general 
way. If multiplications are done  in  software, serially, then  the 
calculation time will be  roughly proportional to the  number  of 
multiplies. If as many parallel multiply  modules are available 
as could be  used, then  the  calculation  time will be proportional 
to  the  number  of  precedence levels, since all multiplies in each 
precedence level could be done in parallel. A more detailed 
discussion of  this issue can  be found  in [ 161 . 

VIII. SUMMARY 
We have shown  that  the  implementation of digital compen- 

sators can benefit greatly from  the  concepts developed for 
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dealing with  different  computational  structures  and  finite 
wordlength  effects  in digital filters.  However, due to  the  nature 
of  the  control  problem, new issues arise that  must be  considered. 
Thus, we have had  to  adapt  and  extend these digital signal 
processing concepts  and  techniques. 

First,  the  importance  of  unaccounted delay in a control 
system required  that we rethink  the  notion of a compensator 
structure. Any computational delay that will be  present must 
be included  in our  model, so that  the closed-loop  system 
can perform as close to  the ideal design as possible. When deal- 
ing with  the LQG control  problem,  this led to a specific ideal 
design procedure.  Any  structure  for  implementing  the resulting 
compensator can be shown  to have its  output  node as a state, 
that is, the  output  of a unit deiay element.  Thus,  the  structures 
used commonly  for filters must be modified  when applied to 
compensators. 

The  concept of scaling for  fixed-point digital compensators 
also had  to be  reconsidered.  Since the  entire closed-loop  system 
will affect  the  internal  compensator  node variance, any scaling 
technique  must  take  into  account  the overall closed-loop 
response. That is, it is inappropriate to  treat  the  compensator 
as a stand-alone filter.  Thus, the l2 scaling technique was 
adapted  for LQG compensators.  In  addition,  the  form of a 
set-point regulator control system was shown  to be important 
in  determining the  type  of scaling that would  be  effective. An 
alternate  set-point  configuration  that  would allow the use of 
l2 scaling was proposed. 

Once scaling has been accomplished, we can begin to analyze 
the  effects of quantization noise on  control system perfor- 
mance. As with scaling, the  compensator  cannot be treated as 
a  stand-alone filter.  Thus, we adapted  the filter analysis tech- 
niques to include the  plant  and  feedback  loop,  and to  use the 
natural LQG performance index as our figure of  merit  rather 
than  output noise variance due  to  roundoff. Minimum round- 
off noise structures,  such as those developed for  filters  by 
Mullis and  Roberts, Hwang, and  Chan, were treated  next. These 
structural design techniques also needed modification to 
include the  effects  of  the closed-loop on system performance. 

Finally, several example structures  for a single LQG compen- 
sator were scaled and  their  roundoff performances compared. 
The pairing and ordering issues involved with parallel and 
cascade type  structures were shown  to be even more  complex 
for  compensators, due to  the  number  of real poles that are 
common in control system compensators. It was also shown 
that  the  default  type  of  structure  for LQG controllers is a poor 
choice of  structure  for  the LQG compensator.  Its  extremely 
large number  of multiplier coefficients would  impose  unneces- 
sary  speed limitations  or  complexity  on  the  compensator  and 
the  control system  in  which it is embedded.  In  fact,  this result 
points  out  the need for considering the issues we have dealt 
with in this  paper.  The specific results we have presented  (for 
the  F8 example)  are not  intended  to be representative of all 
such controller results. The main intention is to show the 
importance  of a consideration  of  the issues arising from  the 
digital implementation  of  such  controllers. 

APPENDIX 
If we take  the  trace of the  product  of  two matrices to be an 

inner  product  on  the space of  matrices,  and T to be  a matrix 
operator,  then 

trace (~(x) U )  = trace (Xq-*(U)) (‘41) 

where T* is the  adjoint  operator  of T. For .(X> = X - AXA’, 
the  operator T* can be derived from  (Al): 

trace ( (X  - AXA’)U j = trace ( X U )  - trace (AXA’U) 
= trace ( X U )  - trace (XA’UA) 
= trace (X(U - A’uA)). (-42) 

Thus, T*(U)  = U - A’UA. 
As used in  Section VI, the  Lyapunov  equation  (30)  and  the 

trace  (31) were  replaced by  the equivalent equations (32) and 
(33). Relating this  to  the derivation  above, 

x=z 
u= w 

n*(U j = T. 
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