
Srorhasrrcs. 1983. Vol. 8. pp. 259-289 
0090-2?34:83/0804-0259 518 5010 
r Gordon and Breach Science Publishers Inc.. 1983 
Printed in Great Br~rain 

Hierarchical Aggregation of 
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Technology, Cambridge, MA 02139, U.S.A. 

In this paper we study the asymptotic behavior of Finite State Markov Processes with rare 
transitions. We show how to construct a sequence of increasingly simplified models of a 
singularly perturbed FSMP and how to combine these aggregated models to produce an 
asymptotic approximation of the original process uniformly valid over [O. m). 

1. INTRODUCTION AND MOTIVATING EXAMPLE 

1 .I. Introduction 

In this paper we study the asymptotic behavior of continuous time Finite 
State Markov Processes (FSMP's) with rare transitions. Let qE((t) be a 
FSMP with transition probability matrix .PC(t)=exp {A0(&)t), where 

is the matrix of transition rates, and E E [ O , E ~ ]  is a small parameter 
modelling rare transitions in qz(tj. We estabiish that, if the perturbation in 
(1.1) is singular (in the sense that the number of ergodic classes of yC(t) 
changes at E=O),  then 

tResearch supported in part by the DOE under grant ET-76-C-01-2295 and in part by 
AFOSR under grant AFOSR 82-0258. The first author also acknowledges thankfully the 
support of the Fundacion ITP. Madrid, Spain. Dr. D. A. Castanon is presently at Alphatech, 
Inc.. 3 New England Executive Park. Burlington. MA 01803. 
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i) the limits 

M. CODERCH ET A L .  

lim 3'((t/~~) A Yk(t) k = 1. 2, . . . ,112 

8 1 0  

are well defined and determine a finite sequence of (in general 
stochastically discontinuous) FSMP's qk(t): k = 1. 2, . . . : m, with transition 
probability matrix d , ( t ) ;  

ii) the limit processes n,(t) can be aggregated to produce a hierarchy of 
simplified, approximate models of rf ( t )  each of which is a FSMP valid at a 
certain time scale t/ek describing changes in qe(t) at a distinct level of detail; 
and 

iii) the collection of aggregated models rjk(t), k = 1,2. . . . . m. can then be 
combined to construct an asymptotic approximation to qyt) uniformly 
valid for t 1 0 .  

The idea of flsing aggrrga!rd models to describe gross features of the 
evolution of Markov processes with rare transitions (i.e.. with time scale 
separation) has bccn cxp!orc?, by seqV,e;ai authors (see ,'!I [IO]). With t k  
exception of [7]-[lo], on which we will comment later, the works referred 
to above deal with the nearly-decomposable case, i.e., the matrix A(&) is 
assumed to be decomposed into A(&)=A,+eB with A. block-diagonal. 
For this simple case it was proven in [2] that the rare transitions among 
weakly interacting groups of states (which take place for times of order 
tie) can be modeled by a Markov process with one state for each block in 
A,. In [7] the authors allow the chain A, to have transient states (i.e. A,  
not block-diagonal) but because only the time scale t/e was considered, the 
presence of such states did not modify the basic result in [i]. In 181 the 
case where transitions between weakly interacting groups do not take 
place until times of order t/ek for some k 1 O  was also included and the 
same ideas were shown to be applicable to more general Markov 
processes but, as in previous work, only one aggregated model of a given 
process was considered. The notion of a hierarchy of aggregated models of 
a process, each associated with a certain time scale t / c k ,  was discussed in 
[9] and subsequently in [lo]. This latter paper, however, differs in 
substantial ways from the results and approach taken here. In particular, 
in [lo] the focus is essentially entirely in the frequency domain, i.e. on the 
resolvent of ,4(~). While a set of aggregated models is developed in this 
way (using a set of recursive calculations somewhat different than ours), 
reference [lo] does not make a rigorous connection between the 
aggregated models and the construction of an asymptotic approximation 
to the original process which is valid on the semi-infinite interval 10, mm). 
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AGGREGATION OF MARKOV CHAINS 265 

If T is the matrix of transition rates of a FSMP then the rows of P, are 
the differeni ergodic probabiliij: brzc:Gi; of t!:e prncess, and 

2.2 Matrix perturbiiiivii theow 

Suppose now that T(c), ~ € 1 0 ,  to] is a malrix vaiued function with an 
absolutely convergent series of the form: 

An important problem is ;he naturc of the ::-dependence of the - 
eigenvalnes. eigenprcjcc~ions and eigenniipoieiiis of Tie) as E 10. P o: L: 

dctailrd ;rccn~:nt !he reader is refrrred to r121. here we briefly state severai 
;esu!ts !hat we use !ater on. 

The number of distinct eigenvalues of T(c) is constant except a t  some 
isoiated vaiucs "f a,. Wiihou: loss & gensrziity ici !;=G he ;he iiiily 
exceptional point in [O,c,]. The eigenvalues of T(e) are continuous 
functions of e and at E = O  several of them may collapse into a single 
eigenvalue of T(0). Suppose that rank T(c)>rank T(0) and let To be a 
posltiveiy oriented contour e i ichi i ig  zero but no other eigenw!ue nf T(nl \-/. 

For t; small enough, all eigenvalues of T(e) that collapse into the origin as 
6-6 ji-eferri-i: tci as !he zern-grcup nf eigenvalues); are inside T,. The 
matrix 

is therefore equal to the sum of the eigenprojections for eigenvalues of the 
zero group and it is called the total prqjection,fix the zero group of Tit:). In 
the subsequent sections we will need the following result. 

PROPOSITION 2.2 Let T(c) he us in (2.1) and assume that To = T(0) h u ~  
SSNS then. 
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where 

M. CODERCH ET AL. 

where 9') = - P,(O) A - P, and Slk' = (To#)k. 

Proof See [ 1 31. 

2.3 Asymptotic approximation of exp { A , ( E ) ~ }  

Let A,(&) be an n x n matrix having an (absolutely convergent) expansion 
of the form: 

Construct a sequence of matrices Ak(6), k =  0, 1,. . . ,171, as follows.' Let P,(c) 
denote the totai proje~tion h i  tile zerv grtxip df eigenvalucs of ,Ao(&) and 
define: 

If A,, has SSNS then A,(&) has a series expansion of the form 

If A , ,  also has SSNS then 

also has a series expansion 

where PI(&) is the total projection for the zero group of eigenvalues of 
A1(&). This recursion can continue if A,, also has SSNS. The sequence 
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AGGRFGATION OF MARKOV CHAINS 

As h 1 0  the left-hand side converges to . S ( t ) -  l7 and therefore 

./P(h)-JI 3 
lim . = A  

exists. Taking limits as h i 0 in (3.i2) we gei 

establishing (3.8). Definition (3.13) together with (3.6) and (3.7) give (3.10) 
and (3.1 1 )  follows immediately from (3.8) and the fact that n . 1 = 1. The 
positivity of 9 ( r ) ,  i.e., 

1 I I h; f . . ~ ( h ) = ~ n e x ~ { ~ t ) = ~ n + A + - 2 0  for 
h h h h - 

implies that for h small enough A + n / h Z O  establishing (3.12). T o  prove 
the converse suppose now that lJ and A satisfy (3.9133.12). Then, 9 ( t )  
= ll exp j At) clearly satisfies (3.3) and (3.4) and the positivity condition 
follows from (3.12) as indicated below: 

We shall refer to the projection ll= lim,, , 9 ( t )  as the ergodic pi.~jj't?iiioii 
at zero and to the matrix 

9 ( h )  - II 
A = lim 

h J 0  h 

as the infinitesimal generator of Y(t). 

Remarks 1)  It follows from (3.9) that II is the matrix of ergodic 
probabilities of a Markov chain and as such it determines a partition of E 

STOCH B 
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272 M. CODERCH ET 4L  

in terms of ergodic classes. E,O, i =  I , .  . . , s, and transient states. E:. 

that we will refer to as the er,qodic. purrition ut :pro. As we will see later. 
:his p2r::t:o:: c=::esponds ~o a c!assific..-!io~ nf s!ates in!<> clikren! !vncu 

>t--. 

While the process is in absorbing state (i.e. in an ergodic class E P  with a 
single e!ement). the process behaves as a s!ochastically continuous FSMP. 
lnstantaneous transitions occur between states belonging to the same 
ergodic class at zero, and transient states are visited only during 
transitions between ergodic classes, with no time spent in them. 

2) For stochastically continuous processes ff = I  and conditions (iHiv) 
only require that the rows of A add up to zero and that all its off-diagonal 
entries be nun-negative. In the general case some off-diagonal entries of A 
can be negative provided the corresponding entry in Fl i >  iion-LC~U (scr 
Example 3.2 below:. The kte:p:etati~r, nf : I , !  as the rate of 
transitions from statc i io j is thus rio iongei- i-ahd in ?he stochastica!l;- 

. . . - .  
ciiscoiirinuous case. Tu ~ l l i r ~ p c i  i i i ~ b c  c l i i i ~ a  1 ;  :3 i i 1 3 1  i i i ~ ~ . - ~ i l : y  IU 

perform an aggregation as discussed in Section 3.3. 

Example 3.2 The following is a stochdstically discontinuous transition 
probability matrix: 

with initial projection and infinitesimai generaior giveii by: 

For p ,  = p 2 = i . =  112 this is the stochastically discontinuous limit process 
q l ( t )  dewibed In Section 1.2. 

3.2 Implications of stochastic discontinuity 

If we consider a separable version of a stochastically continuous F S h l P  
then its sample functions are easily visualized as piecewise continuous 
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AGGREGATION OF MARKOV CHAINS 2 73 

functions taking values in E [19]. The evolution of the process can be 
thought of as a succession of stays in different states of E. each being of 
random duration and exponentially distributed. The sequence of states 
visited follows a Markov chain law with one-step transition probabilities 
determined by the entries of the generatur 4 .  On the contrary. the sample 
function5 uf a doihdstically djscontjnuous process ;~rc much more 
irregular. As we wiii now prove. these processs-s haw  instantancoua state:;. 
i.e., states in which the process spends no time with probability one. 
Furthermore. in general, a stochasticaiiy discontinuous process qenclh ii 

nun-zero amount of time switching among instantaneous states. The 
sample functions are therefore nowhere continuous on certain time 
intervals. 

Consider a separable version of a FSMP ~ ( r )  with initial projection ff 
and generator A. and let A be a separating set. For t > O and n =0,  I . .  . ., 
take 

increase monotonically and u A,, = A n i0, rj. 'I hen we have: 

Pr j q ( z )  = i, V z  E [0, t ]  / q(0) = i )  

where pi,(;) are thc diagonal elements of .Y(t)-  n exp jilt). Equation ( 3  1 5 )  
facilitates a classification of the states of ~ ( t )  according to the diagonal 
entries, nii, of n. If  n,,=O thzn pi,(h)-+O as h a 0  and therefore (3.15) gives: 
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274 M. CODERCH ET AL.  

If. on the other hand, O < rii 5 I use (3.14) to write: 

N 
log p , , ( h )  = log n,, +' h +o(h) 

nji  

and ~t follows from (3.15) that 

I" if n i i<  l 
Pr ( Y I ( ~ ) = i . v ~ ~ ! O ,  r J l q ( O ) = i ) =  . (3.16) 

(exp juiiti i i  nti = I 

DEFINITION 3.3 A state i  will be called instuntuneous if ni i< 1 and regular 
if xi, = 1 .  An instantaneous state j will be called c,runesccnl if njj=O. 

Rrmurks: 
t ,  +.r-.:-- 
I 1 IYO I IUC ihat this classification is based oii ilic ci-godk paiiiiiorl at 

zero. 
? \  , t i .  I ...- r ....- *I . .* 'I-. ' 

. . ,, yyt. ::2:.t. ht.t.:: 5.jjetii-:-; 1:; ::ls~a:l~afie~~L -I-ic:, I:, 

zero w.p.1. 

3)  .Also, the sojourn time in regular states is expor?entia!!y distribu!ed. 
All states of a stochastically continuous process are regular. 

4) In Example 3.2, states { 1,2)  are instantaneous, non-evanescent states 
while 3 is regular. 

5) Even though the duration of siays in a given insmntaneous state is 
zero w.p.l., there is, in general, a non-zero probability of finding the 

bbJJ iii an '-"','-','---"" "'"+" "+.'. ".,,"" t.-̂ -,-,,r.L.c.c. ;IIJLLIIIIUIIb\IUD .,LLLLb a: Ullr  5;VbII AIL (as in states 

( 1.2) of Example 3.2). 

6) The probability of finding the process in an evanescent state at any 
given time is zero. This follows from the fact that n,,=O implies rji 
=0. j=  1 . n (i.e. evanescent states are transient states of the chain 
n) and because: 

we have 

Thc evanescent states can thus be neglected in the sense that there exists a 
version of the process i f ( ; )  with thc same finitc dimensional distrihutioiis 
which does not take values in the set of evanescent states. 
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AGGREGATION OF M A R K O V  CHAINS 279 

Proof' Follows from (3.30) and the fact that (3.33) always exists for 
stochastically continuous processes [ I  91. 

In the sequel we shall refer to n ' as the rvgodic. pr-ojcction c u  r 
For future reference i t  is important to notice [hat because 

Eq. i 3 X j  iiiiplies that gcnen:tors of FSMP's are scmistablc matrices. 

4. SINGULARLY PERTURBED FINITE STATE MARKOV 
PROCESSES 

4.7 Regular and singular perturbations 

Considcr now a stochastically continuous FSMP r l"(r)  that takes values in 
E,,= .; P,,,; wi!h infinitesimal generator of the form: 

The small parameter t models rare transitions in qr(t)  and wc $hall refer lo 
~ ' ( t )  for c>O as a perturbed version of the process qo(t). Let . P ( t )  and .4"(r) 
denote the transition probability matrices of f ( t )  and r l " ( r )  respectively. 
Our objective is to analyze the behavior of qF(r)  (or equivalently, that of 
-'Pr(t) as r.10 on the time interval [O, sc). 

First, it is straightforward to verify that on any interval of the form 
[0, TI, ~ ' ( 1 )  can be approximated by qo(t). Precisely. 

is., the finite dimensional distributions of ql:(t) converge to thosc of vloitj 
uniformly on [0, TI. However, as the example in Section 1.2 illustrates, 
the behavior of f ( t )  on the infinite time interval [O, oci) may differ 
markedly from that of r l O ( f ) .  We shall say that r l l ' ( / )  is rc:qlrlarly perrurhed if 

otherwise, we will say that the perturbation is singular-. In what follows we 
focus on the singularly perturbed case, since failure of (4.3) is symptomatic 
of the existence of distinct behavior at different time scales. 
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280 M. CODERCH ET A l . .  

DEFINITION 4.1 We will say that qE(t) has well defined behavior at time 
scale tiek, k>O, if there exists a continuous, time-dependent matrix &(t) 
such that for any 6>O, T <  r r j ,  

Remarks: 

1) It is readily verified that the limit matrix &(t) in (4.4) must be the 
transition probability matrix of some FSMP r lk( t )  taking values in 
E,. Thus (4.4) is equivalent to saying that q&( ( t /~~)  converges to some 
FSMP r],(t) as E 1 0  in the sense of finite dimensional distributions. 

2) As we will see in Section 4.3, lime, ,.Pe(t/a(&)) exists for any order 
function a(&) (a: [0, so] +R+, a(0) = O  and a( . )  continuous and 
monotone increasing). It turns out, however, that only the limits &(t) 
for a finite number of positive integers li =O. 1.. . . . in  are required to 
construct an asymptotic approximation to YYt) uniformly valid for 
t 20. We shall call t, t;'i:, . . . , f/i;" ikt' jmimmenial or natural tirw . m .  

acuica ui iiic. pi-u~iaa i j i ( i ) .  

3) Regularly perturbed processes have trivial time scale behavior. For 
any order function a(&) 

where n," is the ergodic projection at rn of thc unpcrturbcd process 
v o w .  

PROPOSITION 4.2 The process qE(t) is singularly perturbed if and only if the 
number of ergodic classes at c;o oj- the perturbed process qi(t) is dlfirent 
from that of qO(t) or, equiz;alenrly, if rank A,(&)#rank A,, for ~ > 0 .  

Proof See [13] for a proof of the proposition in terms of the rank 
condition. The statement in terms of the number of ergodic classes at co 
follows from the fact that this number equals nu1 AO(&). 0 

4.2 Multiple time scale behavior and aggregation 

In Section 2.3 we indicated that if a matrix AO(e) satisfies the MSST 
property then exp { Ao(s)t] has an asymptotic approximation that clearly 
displays its multiple time scale behavior [Eqs. (2.9H2.1 I)]. We now prove 
that generators of FSMP's always satisfy the MSST condition and we 
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AGGREGATION OF MARKOV CHAINS 285 

the number of states of the successive aggregated models and they can be 
implemented in a recursive fashion. We illustrate this procedure with an 
example in the next section. 

2) In [ l o ]  Delebecque gives a recursive algorithm to compute the 
aggregated models k, by constructing an array analogous to Table I but 
using a somewhat simplified version of formula (2.3) (essentially 
eiiminaiing izrrrlb illat alz i a l l ~ z l l ~ d  ai ~ubseyuciii stages of iiie recursioli). 

5. AN EXAMPLE 

Consider the process f ( t )  in Figure 5. A quick look at the unperturbed 
version in Figure 6 will convince the reader of the singular nature of the 
perturbation. The ergodic projection at x of rlo(t) determines four ergodic 
classes E, = (1,2),i E ,  = {3), E ,  = {4,5) and E,= (7 )  and a transient state 
E ,  = (6). The aggregated model dl(!) valid at time scale f/c is portrayed in 
Figure 7 and it has the following infinitesimal generator: 

Notice that the aggregation operation in addition to collapsing { I ,  2 )  and 
(4.51 into two states also prunes the evanescent state 16,'. At the next 

E 
.+.+a--e-e~+. 

el w e 2  e3 e 4 W e 5  
1 1 

FIGURE 5 The perturbed process qe(t). 

+Notice that if a transient state communicates with only one ergodic class, as states 2 and 
4 do in this example. it can be included in that ergodic class for aggregation purposes. 
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M. CODERCH ET . 4 L  

FIGURE 6 The uriperturbed p U C W  q O ( t )  

FIGURE 7 Aggregated model valid at time scale r : ~ .  

stage we get 

which leads to the following aggregation partition: 

EI , - (1 ,2) ,  - E1,=(4,5), E;={7). and E : , . = { 3 , 6 / .  

The corresponding aggregated model valid at time scale r/cZ, 4,(1) has 
generator: 

A^, = - U,BAo# BV, = rc i ( i 2  ;I 
and i t  is represented in Figure 8. Finally. 
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AGGREGATION OF MARKOV CHAINS 

t +  aJ 

leads to the next aggregation partition: E; = 11, 2, 3, 4, 5, 61, E; = 17). The 
aggregated model valid at t / ~ ~  has rates 

and it is portra'yed in Figure 9. The hierarchy of models ends here because 

rank A, +rank 2, + rank A^, +rank 2, = rank A,(&) = 6 E > 0. 

FIGURE 8 Aggregated model valid at time scale t / ~ ~ .  

FIGURE 9 Aggregated model valid at time scale t / ~ ~  

This example illustrates how a comparatively complex singularly 
perturbed FSMP can be asymptotically approximated by a collection of 

- __YXL~~*FSMP~ --_-- - -- - - - - __ - - -- - -  - - _ _  _ . - - - - 

6. CONCLUSIONS 

We have presented a methodology for isolating different events in a 
singularly perturbed FSMP according to their level of rareness. This 
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methodology leads to a hierarchy of reduced-order models for such 
processes, each describing the evolution of the process with a different 
degree of detail and being adequate at a certain time scale. The complete 
(finite) collection of models obtained in this way can then be combined to 
produce an approximation valid on the infinite time interval [0, a). We 

- refer the reader to [21] for the more general case of singularly perturbed 
linear dynamical systems and for some filtering applications based on the 
hierarchical description of FSMP's. 
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