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In this paper we study the asymptotic behavior of Finite State Markov Processes with rare
transitions. We show how to construct a sequence of increasingly simplified models of a
singularly perturbed FSMP and how to combine these aggregated models to produce an
asymptotic approximation of the original process uniformly valid over [0, c©).

1. INTRODUCTION AND MOTIVATING EXAMPLE

1.1. Introduction

nit

¢ behavior of continuous time |

[g]

In this paper we s 1
State Markov Processes (FSMP’s) with rare transitions. Let 5%(t) be a
FSMP with transition probability matrix 2(t)=exp {A(e)t}, where

Age)=Y "4, (1.1)
p=0

is the matrix of transition rates, and &¢€[0,¢&,] is a small parameter
modelling rare transitions in #%(). We establish that, if the perturbation n
(1.1) is singular (in the sense that the number of ergodic classes of #(r)
changes at ¢=0), then
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i) the limits

lim 241/e") 2 2(1)  k=L12,....m

t] 0

are well defined and determine a finite sequence of (in general
stochastically discontinuous) FSMP’s n,(1), k=1,2,....m, with transition
probability matrix 2,(t);

ii) the limit processes #,(t) can be aggregated to produce a hierarchy of
simplified, approximate models of #%(t) each of which is a FSMP valid at a
certain time scale t/e* describing changes in #%(t) at a distinct level of detail;
and

iii) the collection of aggregated models #{r), k=1,2,....m, can then be
combined to construct an asymptotic approximation to x*(t) uniformly
valid for t = 0.

The idea of using aggregated models to describe gross features of the
cvolution of Markov processes with rare transitions {i.e., with time scale
scparation) has been explored by several authors {(see [1] [10]). With the
exception of [7]-[10], on which we will comment later, the works referred
to above deal with the nearly-decomposable case, i.e., the matrix A(e) is
assumed to be decomposed into A(g)=A,+¢eB with A, block-diagonal.
For this simple case it was proven in [2] that the rare transitions among
weakly interacting groups of states (which take place for times of order
t/e) can be modeled by a Markov process with one state for each block in
Ao. In [7] the authors allow the chain A4, to have transient states (i.e. A,
not block-diagonal) but because only the time scale t/e was considered, the
presence of such states did not modify the basic result in [2]. In [8] the
case where transitions between weakly interacting groups do not take
place until times of order t/¢* for some k=0 was also included and the
same ideas were shown to be applicable to more general Markov
process was considered. The notion of a hierarchy of aggregated models of
a process, each associated with a certain time scale t/¢*, was discussed in
[9] and subsequently in [10]. This latter paper, however, differs in
substantial ways from the results and approach taken here. In particular,
in [10] the focus is essentially entirely in the frequency domain, i.e. on the
resolvent of A(s). While a set of aggregated models is developed in this
way (using a set of recursive calculations somewhat different than ours),
reference [10] does not make a rigorous connection between the
aggregated models and the construction of an asymptotic approximation
to the original process which is valid on the semi-infinite interval [0, o).
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If T is the matrix of transition rates of a FSMP then the rows of P, are
the different ergodic probability vectors of the process, and

—T*=(T+Py) '—P, j (exp{Tt}—Py)dt

0

erred to as the potenrial matrix.

2.2 Matrix perturbation theoiy
Suppose now that T(e), e€{0,6,] is a matrix valued function with an
absolutely convergent series of the form:

O

T(e)= Z T, (2.1)

-dependence of the

‘
¢

A TieY ae o0} B .
1 1i&) as cl‘u‘. btor a

An important problem is the naturc of the
mgenvaluee eigenprojections and eigenniipoten
detailed account the reader is referred to [12], here we briefly state several
results that we use later on.

The number of distinct eigenvalues of T{(¢) 1s constant except at some
isolated valucs of ¢ Without loss of generality el t=0 be the only
exceptional point in [0,8,]. The eigenvalues of T(g) are continuous
functions of ¢ and at ¢=0 several of them may collapse into a single
eigenvalue of T(0). Suppose that rank T(a)>rank T(0) and let I’y be a
positively oriented contour enclosing zero but no other eigenvalue of T(0).
For ¢ small enough, all eigenvalues of T{e) that collapse into the origin as
¢—0 (referred to as the zere-group of eigenvalues), are inside [, The

mdtrlX
Pofe) = —=— j R(E T(5)d

is therefore equal to the sum of the eigenprojections for eigenvalues of the
zero group and it is called the total projection for the zero group of T(e). In
the subsequent sections we will need the following result.

ProrositioN 2.2 Let T(c) be as in (2.1) and assume that T,=T(0) has
SSNS then,

T()Pole) _Po(d)T (¢) _ i o7 (2.2)
n=0

& &
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where
n+1

T - Z Z S(k’)'l—;;ls(kz). . S(k")Tva(k”" 1) (2.3)

n
p=1 v +...+v =ntl

kl+"'+k +l=p—1
ri;l.kjgo

where S = —P,(0) 2 —P, and S¥=(T[ )

Proof See [13].

2.3 Asymptotic approximation of exp {A,(¢)t}

Let Ay(¢) be an nxn matrix having an (absolutely convergent) expansion
of the form:

Aole)=Y &P Ao, (2.4)

p=0
Construct a sequence of matrices A, c), k=0, 1,...,m, as follows. Let Py(c)
denote the total projection for the zero group of eigenvalucs of Ay{e) and
define:

4 Po(6)4o(e) _ Ao(e)Po(2) _ Po(e)Ao(e)Po(2)
& & &

Ay(e)

If Ay, has SSNS then A,(¢) has a series expansion of the form

O
A (x_ N p
A= 2 ¢
p=0

A
Alp'

If A4, also has SSNS then

A A Pl(g)sAl(g):P1(£)P(;(8)AO(8)

also has a series expansion

a0

Axe)= ) &’A,,

p=0

where P,(¢) is the total projection for the zero group of eigenvalues of
A,(e). This recursion can continue if A,, also has SSNS. The sequence
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h

ll+ lh
— | Plr)dr——[ Plr)de
t hy

(Al =TI | A1) dr.

D,

1
T
As h | 0 the left-hand side converges to 2(1)—IT and therefore

2lh)—T1
lim th) 2

R1O h

A (3.13)

a1
( >

exists. Taking hmits as 7] 0 in (3.12) we get

t
/7(1‘)=l’1+Ajﬂ#(r)dr V>0
)

establishing (3.8). Definition (3.13) together with (3.6) and (3.7) give (3.10),
and (3.11) follows immediately from (3.8) and the fact that [1-1=1. The
positivity of 2(r}, i.e.,

ol

Ph)y=-Tlexp{At}=—T1+A4+ h=0

“h

}J.—_
:.~r»-

implies that for h small enough A4 +T1/A=0 establishing (3.12). To prove
the converse suppose now that [1 and A satisfy (3.9)3.12). Then, £(1)
=ITexp {At} clearly satisfies (3.3) and (3.4) and the positivity condition
follows from (3.12) as indicated below:

Mexp{At}=Te “exp{(4+cit}

41'I+(I'IV‘

—ct i go

We shall refer to the projection IT=lim, | , 2(t) as the ergodic projection
at zero and to the matrix

A:]imM

3.14
ST (3.14)

as the infinitesimal generator of 2(t)

Remarks 1) It follows from (3.9) that IT is the matrix of ergodic
probabilities of a Markov chain and as such it determines a partition of E

STOCH B
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in terms of ergodic classes. EY, i=1.....s, and transient states. E9.

Ez(o E?)UE[}

i—1

that we will refer to as the ergodic partition at zero. As we will see later.
onds to a classification of states into different types.

pond

this partition
While the process is in absorbing state (i.e. in an ergodic class E? with a
single element), the process behaves as a stochastically continuous FSMP.
Instantaneous transitions occur between states belonging to the same
ergodic class at zero, and transient states are visited only during

transitions between ergodic classes, with no time spent in them.

2) For stochastically continuous processes IT=1/7 and tonditions (i}{iv)
only require that the rows of 4 add up to zero and that all its off-diagonal
entries be non-negative. In the general case some off-diagonal entries of A4
can be negative provided the corresponding entry in Il is non-zero (sce
Fxample 3.2 below). The usual interpretation of «,, as the rate of
transitions from state i to j is thus no longer valid in the stochastically
discontinuous case. To wicrpict these witiites i i fi
perform an aggregation as discussed in Section 3.3.

]

e

sl Decessaly e

o

Example 3.2 The following is a stochastically discontinuous transition
probability matrix:

pre t pe ¥ 1")71[_]
At)=| pre ™ pye ™ 1—e M|, pi+py=1 >0
N 0 1
[ - )

with initial projection and infinitesimal generator given by:

’—7)1 P2 0—’ —DiA —pah A
O=|p, p, O} A=| —pi —pi 4|
0 0 1 0 0 0
For p,=p,=+=1/2 this is the stochastically discontinuous limit process
1,(r) described in Section 1.2.

3.2 Implications of stochastic discontinuity

If we consider a separable version of a stochastically continuous FSMP
then its sample functions are easily visualized as piecewise continuous
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functions taking values in E [19]. The evolution of the process can be
thought of as a succession of stays in different states of E, each being of
random duration and exponentially distributed. The sequence of states
visited follows a Markov chain law with one-step transition probabilities
determined by the entries of the generator A. On the contrary. the sample
functions of a stochastically discontinuous process are much more
irregular. As we will now prove, these processes have instantancous states,
1e., states in which the process spends no time with probability one.
Furthermore, in general, a stochastically discontinuous process spends a
non-zero amount of time switching among instantaneous states. The
sample functions are therefore nowhere continuous on certain time
intervals.

Consider a separable version of a FSMP #(r) with initial projection Tl
and generator A, and let A be a separating set. For 1>0 and n=0,1,..,
take

O=14,<t;,<...<lp,=t
in such a wav that the sets

/\“:{[‘u‘m Lins oo [nn}

increase monotonically and UA,=AN{0,1]. Then we have:
Pr {n(z)=i,Vte[0, I]M(O):i}

=Print)=i.V7e[0.1]nAln(0)=i}

n o

n—1
— him n.ir —
11 1 Fil\tk+1,n k.nt
- x k=0
n—1
=exp{ lim ) 10gptis .\t (3.15)
n—x k=0

where p;(t) are the diagonal clements of .2(1)=ITexp {At}. Equation (3.15)
facilitates a classification of the states of g(t) according to the diagonal
entries, my, of T If n;;=0 then p;{h}-+0 as h—0 and therefore (3.15) gives:

Prigt)=iVre[0.][n0)=i}=0 V>0
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If. on the other hand, O<n; <1 use (3.14) to write:

0. h) "
PRy g
T, ;i

1

or
log p,(hy=log r;; +up +o(h)
7

i

and it follows from (3.15) that
J‘O if ;<1

C 3.16
lexpiagty o m;=1 ( )

Prigt)=i.Vtel0.t]n0)=i}=

DeriNiTION 3.3 A state i will be called instantaneous if n; <1 and regular
if m;;= 1. An instantaneous state j will be called cvanescent if 7;;=0.

4) In Example 3.2, states {1, 2} are instantancous, non-evanescent states
while 3 is regular.

5) Even though the duration of stays in a given insiantaneous state is
Zero wpl there is, in general, a non-zero probablhty of ﬁndmg the

Pavar e an " tm I ot

—
:
o
(¢

—
fon)
7]
-
1%
-
a
=
o
1771

1,2} of Example 3. )
6) The probability of finding the process in an evanescent state at any
given time is zero. This follows from the fact that n,;=0 implics ,LJ
=0, j=1,....n (ie. evanescent states are transient states of the chain

M) and be(,duse.

pro
f
t

Aty=Ilexp [At} =Mexp [A(}N V>0 (3.17)

we have
pi(1)=0, ¥i>0. j=1.....n (3.18)
The cvanescent states can thus be neglected in the sense that there exists a

version of the process #(t) with thc same finitc dimensional distributions
which does not take values in the sct of cvanescent states.



16: 05

[ Massachusetts Institute of Technology, MT Libraries] At:

Downl oaded By:

AGGREGATION OF MARKOV CHAINS 279

Proof  Follows from (3.30) and the fact that (3.33) always exists for

stochastically continuous processes [19]. (]

In the sequel we shall refer to TT" as the ergodic projection at r.
For future reference it is important to notice that because

Ai)=Mcxp A1) —exp A, —1+1

Eq. (3.33) implies that generators of FSMP's are scmistable matrices.

4. SINGULARLY PERTURBED FINITE STATE MARKOV
PROCESSES

4.1 Regular and singular perturbations

Consider now a stochastically continuous FSMP #(t) that takes values in
m

E,=le,. ..e, ) with infinitesit 1al generator of the form:
) — ol 3 .
Age)= Y w4y, eel0.80]. (4.1
p=0

The small parameter & models rare transitions in #°(t) and we shall refer to
y'(1) for £>0 as a perturbed version of the process n°(1). Let #'(1) and 20)
denote the transition probability matrices of n'(r) and n'(1) respectively.
Our objective is to analyze the behavior of (1) (or equivalently, that of
#4(t) as £/ 0 on the time interval [0, ).

First. it is straightforward to verify that on any interval of the form
[0. T1]. #'(1) can be approximated by n°(t). Precisely,

lim sup [2()—20|=0 VT<x (4.2)

el00<IST

ic.. the finite dimensional distributions of (1) converge to thosc of n°()
uniformly on [0, T]. However, as the example in Section 1.2 illustrates,
the behavior of ni(f) on the infinite time interval [0, o) may differ
markedly from that of n°(1). We shall say that (1) is regularly perturbed if

lim sup ||2%(1) — 2°(1)]| =0 (4.3)

210120

otherwise, we will say that the perturbation is singular. In what follows we
focus on the singularly perturbed case, since failure of (4.3) is symptomatic
of the existence of distinct behavior at different time scales.

STOCH C
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DeriNiTioN 4.1 We will say that y%t) has well defined behavior at time
scale t/e*, k>0, if there exists a continuous, time-dependent matrix Y,()
such that for any 0>0, T < w0,

lim sup [[2%t/e")— Yi(1)]| =0. (4.4)

PO

Remarks:

1) It is readily verified that the limit matrix Y,(t) in (4.4) must be the
transition probability matrix of some FSMP y,(t) taking values in
E,. Thus (4.4) is equivalent to saying that n%(t/¢") converges to some
FSMP p,(t) as ¢ | 0 in the sense of finite dimensional distributions.

2) As we will see in Section 4.3, lim, , #%t/a(c)) exists for any order
function afe) (2:[0,e0]>R™, «(0)=0 and a«-) continuous and
monotone increasing). It turns out, however, that only the limits Y(r)
for a finite number of positive integers k=0.1.....m are required to

construct an asvmptotic approximation to .2%t) uniformlv valid for
nstruct an asymp approximation to .°(f) uniiormly valid tor

t=0. We shall call ¢, t/e,....t/e™ the fundamental or natural time
scdles of thie prucess #{i).
3) Regularly perturbed processes have trivial time scale behavior. For

any order function o(¢)

lim sup ||2(t/a(e)) — 15| =0 4.5)
el 0t>0

where T1Y is the ergodic projection at oo of the unperturbed process
0
n-(t).

ProrosiTioN 4.2 The process y(t) is singularly perturbed if and only if the
number of ergodic clusses at oo of the perturbed process y'(t) is different
from that of n°t) or, equivalently, if rank A(g) £ rank Ao for £>0.

Proof See [13] for a proof of the proposition in terms of the rank
condition. The statement in terms of the number of ergodic classes at oo
follows from the fact that this number equals nul Ag(e). ]

4.2 Multiple time scale behavior and aggregation

In Section 2.3 we indicated that if a matrix Ay(e) satisfies the MSST
property then exp{Ao(e)t} has an asymptotic approximation that clearly
displays its multiple time scale behavior [Egs. (2.9)(2.11)]. We now prove
that generators of FSMP’s always satisfy the MSST condition and we
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the number of states of the successive aggregated models and they can be
implemented in a recursive fashion. We illustrate this procedure with an
example in the next section.

2) In [10] Delebecque gives a recursive algorithm to compute the
aggregated models A4, by constructing an array analogous to Table 1 but
using a somewhat simplified version of formula (2.3) (essentially
eliminaiing ierms that are cancelled at subsequent stages of the recursion).

5. AN EXAMPLE

Consider the process #°(t) in Figure 5. A quick look at the unperturbed
version in Figure 6 will convince the reader of the singular nature of the
perturbation. The ergodic projection at oc of n%¢) determines four ergodic
classes E,={1,2},t E,={3}, E3=1{4,5} and E,={7] and a transient state
E,=1{6}. The aggregated model #,(1) valid at time scale (/¢ is portrayed in
Figure 7 and it has the following infinitesimal generator:

. - ~

iU 0 G 0
. 12 -1 1/2 0
A, =U,BV,= { / ‘

o 0 0 0]

Notice that the aggregation operation in addition to collapsing {1, 2} and
{4,5] into two states also prunes the evanescent state [6}. At the next

0 €7
+e
‘ee
o\
e b S
e\ 2 ©€3 €\, /s
1 1

FIGURE 5 The perturbed process n(t).

+Notice that if a transient state communicates with only one ergodic class, as states 2 and
4 do in this example, it can be included in that ergodic class for aggregation purposes.
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Y 0’ ® \0 ®
e\ &3 G\ /%5
1 1

IFIGURE 6 The unperturbed process 7'(1).

7 A

* 7,(1)
N >
<{1 ’2' : 172 . 1/ {{45}\/
— S ~—r

FIGURE 7 Aggregated model valid at time scale 1/z.

stage we get

1 0 0 0

B fimein_ | V2 0 120

L, 0 0 1 0
0 0 0 1_[

The corresponding aggregated model valid at time scale /e, #,(1) has

generator:
—-12 12 0
A,=—U,BA{BV,=| 12 —1/2 0
0 0 0

and 1t 1s represented in Figure 8. Finally,
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M2 12 0
P,=lime*=| 12 12 0
o 0 0 1
leads to the next aggregation partition: E{={1, 2, 3, 4, 5, 6}, E5={7}. The

aggregated model valid at t/¢* has rates

R . —12 12
A3=—U3BA3"BV1A{°‘UIBA§BV3=[ 0/ (/)]

and it is portrdyed in Figure 9. The hierarchy of models ends here because

rank A,+rank A, +rank A, +rank 45 =rank A(e)=6 e>0.

7 A

* (1)
1/2 772
/2

FIGURE 8 Aggregated model valid at time scale t/e?.

7

+1/2 7’7\3(”

61,2,3,4,5,6D.

FIGURE 9 Aggregated model valid at time scale t/e>.

This example illustrates how a comparatively complex singularly

perturbed FSMP can be asymptotically approx1mated by a collection of
very simple FSMP’s

6. CONCLUSIONS

We have presented a methodology for isolating different events in a
singularly perturbed FSMP according to their level of rareness. This
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methodology leads to a hierarchy of reduced-order models for such
processes, each describing the evolution of the process with a different
degree of detail and being adequate at a certain time scale. The complete
(finite) collection of models obtained in this way can then be combined to
produce an approximation valid on the infinite time interval [0, c0). We
refer the reader to [21] for the more general case of singularly perturbed
linear dynamical systems and for some filtering applications based on the
hierarchical description of FSMP’s.
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