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Abstrucf -In this paper  we carry out a  detailed  analysis  of  the  multiple 
time  scale  behavior of singularly  perturbed  linear systems of  the  form 

. k c (  t )  = A( 6 )  If( t )  

where A ( < )  is analytic  in  the small parameter e .  Our basic  result is a 
uniform  asymptotic  approximation to exp A (  e ) r  that  we  obtain  under  a 
certain  multiple  semistability  condition. This asymptotic  approximation 
gives a  complete  multiple  time scale decomposition  of  the  above  system and 
specifies a set of reduced  order  models  valid  at  each  time  scale. 

Our contribution is threefold. 
1) We do  not  require that the state variables be chosen so as to display 

the  time scale structure of the  system. 
2) Our formulation  can  handle systems with multiple ( > 2) time scales 

and  we obtain uniform asymptotic  expansions  for  their  behavior on [0,00]. 
3) We give an aggregation  method to produce  increasingly  simplified 

models valid at  progressively  slower  time  scales. 

I. INTRODUCTION 

N OTIONS of time-scale separation are commonly used in 
heuristic model reduction techniques. It is well known that 

these notions can be formalized using techniques of singular 
perturbation theory, e.g., 111. In this paper we carry out a detailed 
analysis of the multiple time scale behavior of singularly per- 
turbed (defined in Section III) linear systems of the form 

i f ( t ) = A ( € ) x ‘ ( r ) ,  x‘(O)=x, (1.1) 

where A ( € )  is analytic in the small parameter e E 10, e,,]. Our 
analysis gives a complete picture of the relationship between 
weak couplings, singular perturbations, multiple time scale behav- 
ior,  and reduced order modeling’ for these  systems. Specifically, 
we  give necessary and sufficient conditions under which (1.1) 
exhibits well-defined nontrivial behavior at several fundamental 
time scales.  We determine these  time  scales and we associate a 
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gated models” interchangeably. In many  references (such  as in  the eco- 
‘In this paper  we  use  the  terms “reduced-order  models” and “aggre- 

nomics literature)  in  which  the  latter expression is used, what  is typically 
meant  by i t  is  a  special type of reduced-order model resulting  from a 

original  system. In [4] the  results we develop here are taken as a starting 
procedure  which explicitly  combines (e.g., adds)  groups of variables of the 

point for constructing  such an explicit aggregation  procedure  for singu- 
larly  perturbed finite  state Markov processes. 

reduced order model of (1.1) with each of its fundamental time 
scales. We then show that these reduced order models can be 
combined to produce an asymptotic approximation to xf(t) 
uniformly valid on 10, 1x1. 

In previous work it has generally been assumed that the system 
under consideration has “fast”  and “slow” dynamics, and  that by 
a combination of experience and physical insight a choice of state 
variables is available which displays the two time scale structure 
of the system. Thus, typically, the starting  point  for research has 
been a system of the form 

While this system is not explicitly of the form (l.l),  it can be 
converted into one of the form of (1.1) by rescaling time T = t / c  
The rescaling is inconsequential in our development since we 
recover all the time  scales associated with (1.1). We  use the form 
(1.1) throughout our development with the understanding that 
time has been scaled so that the fastest time scale associated with 
the system is the order 1 time scale. 

Further, in almost all the available literature, the behavior of 
the system is studied as z L O  on intervals of the form [0, T/c ] .  The 
existence of nontrivial behavior for times of order l / c k  or, more 
generally, on the infinite time interval [0, co] is either excluded by 
assumptions imposed on the matrices A l j ,  or not considered at 
all. An example of the former is [2] where in the context of (1.2) it 
is proved that if A,, and AI ,  - AlzA;’A,, are stable then (1.2) 
exhibits only two time scales. Two time scale systems are the only 
ones studied so far in the context of control and estimation 
problems (see [3] for a bibliography). 

Our main contribution, we feel, is threefold. 
1) We  relax the requirement that  state variables be chosen so 

as to display the time  scale structure of the system. 
2) Our formulation can handle systems with multiple ( > 2) 

time scales and we obtain uniform asymptotic expansions for 
their behavior on 10, m]. 

3) We  give a method of aggregation to produce increasingly 
simplified models valid at progressively slower time scales.  (We 
have applied this method to hierarchically aggregate finite state 
Markov processes with rare events. A brief description of this 
application of our methods is given in Section V; the details 
appear elsewhere 141.) 

Systems with more than two time  scales  have been studied by 
other  authors  in different settings. In [5] the authors considered 
the asymptotic behavior of the quasi-linear system 

on the time interval [0, TI and found that the asymptotic expan- 
sion of x ‘ ( t )  requires three series: in t ,  t / c ,  and t / r 2 ,  respec- 
tively.  They did not, however, study the behavior of (1.3) on 
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[0, co] and so left open the possibility of additional time scales. 
More recently, and with a formulation similar to ours. Campbell 
and Rose [6]-[8], [23] have studied the asymptotic behavior of 

i f ( t ) =  € ' X A ,  X ' ( t ) .  
(??'l 1 (1.4) 

For the case N = 1, they  showed that a necessary and sufficient 
condition for 

l imx' (   t /E)  
€ 10 

to exist pointwise (i.e., for fixed t-not uniformly on t )  is the 
semistability of A,. For the more general case N > 1, they  give 
necessary and sufficient conditions so that 

limx'( [ / e M )  
10 

exists pointwise, and they also give an expression for the limit. 
They do not address, however, the question of uniform asymp- 
totic approximations to x ' ( t )  or, equivalently, the question of 
how to determine the number and the time  scales exhibited by 
(1.4) and how to combine the different pointwise limits to con- 
struct a uniform approximation (if possible). Furthermore, it does 
not seem to be widely appreciated that the system (1.3) may have 
nontrivial behavior at time  scales t / r 2 ,  t/r3. . . . . In the context 
of Markov processes with rare events, several authors [9]-[12] 
have used aggregated models to describe the evolution of these 
processes. As in the work mentioned before, however. the connec- 
tion between a hierarchy of increasingly consolidated models and 
uniform approximation is absent. In this paper we address the 
foregoing questions -within a framework that unifies the partial 
results cited above. For a more detailed account, the reader is 
referred to  [4] and [20]. 

Finally, in a setting similar to ours, Hoppensteadt [21] studies 
uniform asymptotic approximations for the dynamics of a system 
of the form of  (1.1). However  he assumes that A ( € )  has been 
decomposed in a form which explicitly displays the time scale 
structure. Specifically, he assumes that A ( < )  is  given in the form 

i = l  

and then shows that the dynamics of (1.1) can be uniformly 
approximated under certain stability conditions by the dynamics 
given by the A , ( € )  at time  scales of order t/crl, i =1;. . , M .  As 
we show in this paper, the transition from (1.1) to (1.4) is neither 
obvious nor always  possible. In fact, from this perspective a 
major contribution of this paper is in providing an explicit 
algorithm for determining if a general A (  E)  can be put in this 
form and if a uniform asymptotic approximation exists. This 
algorithm is constructive, and thus, if the answers it provides are 
in the affirmative, it will produce the uniform asymptotic ap- 
proximation and,  in effect. a transformation which explicitly 
displays the time scale structure as in (1.4). 

The outline of the paper is as follows. In Section I1  we present 
the basic mathematical machinery for our approach:  perturbation 
theory for linear operators. The fundamental results on perturba- 
tion of the resolvent, the eigenvalues, and the eigenprojections are 
stated without proof and are  due to Kat0 [13]. In Section I11  we 
define regular and singular perturbations, and indicate the diffi- 
culties associated with uniform asymptotic approximations. In 
Section IV we apply the theory of Section I1 to obtain, under a 
certain multiple semistability condition, a uniform asymptotic 
approximation to exp{ A ( c ) t }  that gives a complete multiple 
time scale decomposition of the system (l.l), and specifies a set 
of reduced order models valid at each time  scale.  We then show 
that our results are tight, in that when the multiple semistability 

condition is not satisfied, the system does not have well-defined 
behavior at some time  scale. A partial time  scale decomposition is 
sometimes possible in this instance. and it is canied out in 
Section IV-E. In Section V we summarize our results and explain 
briefly how they  may  be applied to the hierarchical aggregation 
of finite state Markov processes with rare transitions. 

11. MATHEMATICAL PRELIMINARIES-PERTURATION 
THEORY FOR LINEAR OPERATORS 

We  survey here the notation and some results on the perturba- 
tion of the eigenvalues, resolvent and eigenprojections of a linear 
operator T C" + @ "  (for details see  [13],  [22]). These are the 
major mathematical tools for our development. 

A. The  Resoluent 

The set of all eigenvalues of T ,  denoted u ( T ) ,  is called the 
spectrum of T .  The function R ( < ?  T ) :  C -  u ( T )  4 C"x" defined 
by 

R ( < , T ) : = ( T - < I ) - '  (2.1) 

is called the resolcent of T .  The resolvent of T is an analytic 
function with singularities at X, E cr(T), k = O,l;..,s. The 
Laurent series of R (<, T )  at x, has the form 

m A  - 1  

R ( < , T ) = - ( < - X , ) - ' P , -  (<-Ak)-'-'DL 
i = l  

+ (.$ - hk)'SI;+l (2.2) 
m 

i = O  

where 

(-with r, a positively oriented contour enclosing X, but no other 
eigenvalue of T )  is a projection (i.e., P: = P k )  called the eigenpre 
jection of the eigenvalue X,; and 

m,:=dim%'(P,) (2.4) 

is the algebraic muhipliciv of h I. 

is the eigennilpotent (i.e., O r k  = 0) for the eigenvalue x,; and 

The following relations between P A ,  Sh . and D, hold: 

P,S, = s, PA = 0 (2.7) 

P, D, = D, P, = D,  (2.8) 

P, T = TP, (2.9) 

( T - X , I ) S , = I - P ,  (2.10) 

( T - h h I ) P , = D h  (2.11) 

' h  '/ = 6 h / p h  (2.12) 
5 

P , = I .  (2.13) 
X = 1  
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From (2.12) and (2.13), it follows that 

C n = a ( P l ) $  ... @ R ( P s ) .  

The a( P, )  is the algebraic  eigenspace (or generalized eigenspace) 
for the eigenvalue X,. From (2.8) and (2.11), it follows that 

TP, = P , T =  P,TP, =X,P, + D,. 
This, together with  (2.13), yields the spectral  representation of T :  

An eigenvalue X, is said to be semisimple if the associated 
eigennilpotent D, is zero and simple if, in addition, m ,  =l. 

Using the resolvent R ( [ ,  T )  and a contour enclosing all the 
eigenvalues of T i n  its interior we may define 

B. Semisimple and Semistable  Operators 

An operator T i s  said to have semisimple null structure (SSNS) 
if zero is a semisimple eigenvalue of T .  The following lemma 
establishes some properties of operators with SSNS. 

Lemma 2.1: The following statements are equivalent: 
1) T has SSNS, 
2) Q: '' = 9( T ) +  N (  T ) ,  
3) R ( T )  = a ( T 2 ) ,  
4) rank T = rank T 2 ,  
5) N (  T )  = N (  T 2 ) ,  
Proof: See  [14]. 

Comment: When T has SSNS, Po, the eigenprojection for the 
zero eigenvalue, is the projection onto N (  T )  along a( T ) .  Fur- 
ther, it follows  [13] that if T has SSNS, T + Po is nonsingular. 
Now, if T" is defined to be ( T  + Po)-' - Po, then it may be 
verified that 

T" is thus the group generalized inverse of T (see [14J). Further, 
if T has SSNS, then Po and T* determine the Laurent expansion 
of R( X ,  T )  at zero. 

Lemma 2.2: If T has SSNS, then for {X:  1x1 < IT*l-'} 

R ( A , T )  = - - + x A k ( T S ) , + ' .  (2.16) PO 00 

X k = O  

Proof: Using (2.14) and (2.15) 

X W 

=(Z- Po)  1 X k ( T F ) , +   P o -  1 X'(T"),  

= z, 
k = O  k =1 

Similarly 

Also of interest  in the sequel are semistable operators: T i s  said 
to be semistable if T has SSNS and all the eigenvalues of T 
except the zero eigenvalue lie in C - (the open left half plane). 

C. Perturbation of Eigenvalues 

Before we discuss perturbation of the resolvent of an operator 
T ,  we discuss perturbation of its eigenvalues, when T is of the 
form 

T(  e )  = T + E ~ T ( ~ )  E [O, €01. (2.17) 
00 

n = 1  

Here (2.17) is assumed to be an absolutely convergent power 
series expansion. The eigenvalues of T ( r )  satisfy 

det ( T (  6 ) -  5 1 )  = 0. (2.18) 

This is an algebraic equation in 5 whose coefficients are €-ana- 
lytic. From elementary analytic function theory, e.g.,  [15], the 
roots of  (2.18) are branches of analytic functions of E with only 
algebraic singularities. Hence, the number of (distinct) eigen- 
values of T ( e )  is a constant s, independent of E ,  except at some 
isolated values of e. Without loss of generality, let E = 0 be such 
an exceptional point and further let it be the only such point  in 
[0, e o ] .  In a neighborhood of the exceptional point, the eigen- 
values of T ( c )  can be expressed by s distinct, analytic functions 
X,(€); ..,As(€). These may be grouped as 

so that each group has a Puiseux series of the form (written below 
for  the first group) 

where X is an eigenvalue of the unperturbed operator T and 
o = exp { i27r /p} .  Each group is called a cycle and the number of 
elements its period. X is called the center of the cycle and the 
group of eigenvalues having X as center is called the X-group 
splitting at E = 0 (the exceptional point), 

D. Perturbation of the  Resolvent 

The resolvent of T (  6) is defined on p( T )  = C - a( T (  E ) )  

R ( t , T ( c ) ) =   ( T ( + U - ' .  

where 

the sum being taken over all integers p and vl,. . . , vp 2 1 satisfy- 
ing v l  + . . . + vp = n .  

The series  (2.20) is uniformly convergent on compact subsets of 

Proof: See  [13]. 0 
P ( T ) .  

E. Perturbation of the  Eigenprojections 
We require first a preliminary lemma. 
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Lemma 2.4  (Taken  Verbatim  from  [13, p .  341): Let P ( t )  be  a 
projection matrix depending continuously on a parameter t v a q -  
ing in  a connected subset of C. Then the ranges 9( P (   t ) )  for 
different t are isomorphic, i.e., the dimension of 9( P ( r ) )  is 
constant. 0 

Let h be an eigenvalue of T = T(0) with (algebraic) multiplicity 
m. Let r be  a closed contour (positively oriented) in p ( T )  
enclosing r but  no other eigenvalues of T .  From Lemma 2.3. it 
follows that for E small enough, R ( 5 ,  T ( E ) )  exists for 5 E r. and 
hence, there are no eigenvalues of T ( E )  on r. Further, the matrix 

P(  €)  = - (2.22) 

is a projection which is equal to the sum of the eigenprojections 
for all  the eigenvalues of T ( r )  lying inside I?. Using (2.21) and 
integrating term by term (recall uniform convergence from Lemma 
2.3)  we  have 

m 

P(€) = P + E'lP('i) E E [O. €03 (2.23) 
n =I 

where 

and 

(2.24) 

(2.25) 

Note that P is the eigenprojection for the eigenvalue X. Further, 
note that P ( c )  is continuous in E E [0, eo]. By Lemma 2.4. 

dim%'(P(r))=dim&?(P)=m  (say). (2.26) 

From (2.26), it follows that the eigenvalues of T( c )  lying inside 
r form the X group. Hence, P(  E )  is called the total  projection and 
&?( P ( r ) )  the total eigenspace for the X-group. The following is a 
central proposition. 

Proposition 2.5: Let h be an eigenvalue of T = T(0) of (alge- 
braic) multiplicity m and P ( E )  be the total projection for the 
X-group of T. Then, 

(2.26) 

where r is a closed positive contour enclosing X and no other 
eigenvalues of T ,  D is the eigennilpotent for X ,  and ?'I) is given 
by 

11 + 1 

P I ' ) =  - c c S ( A I ) T ( Y I y k 2 1 . .  . 
p = l  Y l i  . . .  + v p = t l + l  

X I +  . - .  + k , , l = p - l  
v ,  3 l k ,  3 - n1+ 1 

, y ( k p ) ~ ( t * p ) s ( k p + ~ )  (2.27) 

with S o ) =  - P ,  S I h ' =  D - h  fork c 0, and 

Although this result is in [13], the prcjof given there assumes 
X E p ( T ( c ) ) ,  a condition \iolated  in some of our applications. A 
modification of this proof  which does not require the condition is 
given in [20]. 

Of major interest in later sections is the following special case 
of Proposition 2.5. 

Corolla? 2.6: Let A = 0 be  a semisimple eigenvalue of T 
(SSNS). Equation (2.26) then simplifies to 

with 

with s(0) = - P and stk) = ( T * ) k ,  k > 0. 
Proof: The corollary is a straightforward application of Pro- 

position 2.6 with h set to zero and D = 0 (by SSNS). Lemma 2.2 
is used to obtain the expression for T" in terms of T * .  0 

111. REGULAR AND SINGULAR PERTURBATIONS 

We consider linear time invariant systems of the form 

Y ( t ) = A ( € ) x ' ( t ) ,   x ( ( O ) = x ,  (3.1) 

with x - ' ( [ )  E R "  and c E [OIr,]. The matrix A ( € )  is assumed to be 
semistable for each E E [0, c03 and is assumed to have a conver- 
gent power  series expansion in c ,  i.e., 

oc 
A ( € ) =  €PA, 

p = o  

The positive number co > 0 is taken small enough so that A ( € )  
has constant rankd for E ]O,rO].' We  will refer to d as the 
normal rank of A (  E )  and we  will denote it by nrank. 

Our objective is to analyze the behavior of x < (  t )  as c 10 for 
t E [O.cc]. First, it is straightforward to verify that on any time 
interval of the form [O. TI, the system (3.1) can be approximated 
by 

i"( t )  = AoxO( t ) ,  xO(0) = xo. (3.3) 

Precisely, 

lim sup llexp{A(c)t)-exp{A,r}II=O V T < c o .  
f E [ O . T ]  

However, as simple counterexamples will  show. (3.3) is not,  in 
general, a good approximation of  (3.1) on the infinite time 
interval. i.e.. (3.4)  below  is not true in general. 

lim supIlexp{A(c)t}-exp{A,t}ll=O. (3.4) 
' J O f 2 0  

If, on the other  hand, A ( € )  is such that (3.4)  is satisfied, we say 
that (3.1) is a regularl1: perturbed version of (3.3). Otherwise, we 
call  (3.1) Q singular/r perturbed system. In the literature. systems 

fork > 0. 0 
asymptotic series. provided ths  rank condition is satisfied. 

'The results of our work go through nluraris muturdis when (3.2) is an 
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of the form (3.1) are said to be singularly perturbed if A(€) has a 
Laurent series about c = 0, 

00 

A ( € ) =  e p A ,  
p = - r  

with r > 0, and regularly perturbed if r = 0. We find this char- 
acterization deficient on two counts. 

1) Using this definition, a system is regularly or singularly 
perturbed  depending on the time scale used to write its dynamics. 

2) The  Laurent series formulation singles out from the very 
start a certain time scale of interest neglecting the system's 
evolution at slower and faster time  scales. 

With a simple normalization of the time variable, a system of 
the form (3.5) can  be rewritten as having a system matrix with a 
convergent power series as in (3.1). By studying the evolution of 
the system on the infinite time interval [O,co] as in (3.4),  we can 
characterize the perturbation as regular or singular in a more 
fundamental way which will depend now on the structure of the 
system matrix. Further, such a study will give equal importance 
to all time scales present in the system. 

In what follows, we focus on the singularly perturbed case, 
since failure of  (3.4) is symptomatic of distinct behavior at several 
time  scales. Formally, the following holds. 

Definition 3.1 (Time  ScaIe Behavior): Consider (3.1) and let 
a (€ )  be an order function (a: [0, E,] 4 R +; a(0) = 0, and a ( . )  
continuous and monotone increasing), x'(t)  is said to have 
well-defined  behavior at time scale r/a( e )  if there exists a continu- 
ous matrix Y( t )  such that,  for any 6 > 0, T < m,  

lim sup I l e x p { A ( r ) t / a ( e ) } - Y ( t ) l l = O .  
~ J O ~ E [ B . T ]  

The following proposition shows that regularly perturbed (unlike 
singularly perturbed) systems have extremely simple time scale 
behavior. 

Proposition 3.2: Let (3.1) be a regularly perturbed version of 
(3.3). Then, for  any  order function a( E), 6 > 0, T < co 

lim sup I l e x p ( A ( e ) t / a ( c ) } - P , l l = O  (3.6) 
10 r E [a, 7-1 

where Po is the eigenprojection for the zero eigenvalue of A, .  
Proo) 

By the definition of regular perturbation, the first term of the 
RHS of  (3.7) converges to 0 as c JO uniformly in t. For the 
second term, we write 

exp { A,t} = Po - 

where r, is a contour enclosing all nonzero eigenvalues of A,. By 
the assumption of semistability of A , ,  we may choose r, to be 111 
the left half plane bounded away from thejw-axis,  say by the line 
{ A :  Re A = - 8 ) .  Using (3.8), we then have 

I l exp{A , t /a (E) } -Po l ldKe-BS'a ( f )  for tE[6 ,co] .  

(3.9) 

Taking limits on both sides of (3.7) using (3.9) proves (3.6). 
To complete our discussion of the distinction between regular 

and singularly perturbed systems, we  give a necessary and suffi- 

cient condition for (3.1) to be a singularly perturbed version of 
(3.3). 

Proposition 3.3: The system (3.1) is singularly perturbed if and 
only if rank A, nrankA(c). 

Prooj Necessity is established by  contradiction.  Let 
n rank A (E) = rank A,. Since  the set of eigenvalues of A(  E) is a 
continuous function of z ,  the zero eigenvalue of A(  E) does not 
split. Hence, for E small, a contour yo enclosing the origin can  be 
found such that it only encloses the zero eigenvalue of A (  e ) .  
Since A ( E) is assumed to be semistable, the only singularity of the 
resolvent R( A,  A ( € ) )  within yo is a pole at A = 0 with residue 
PO(€), and we obtain 

-- 
2ai Lo exrR(A,A(c))dA=Po(r).  (3.10) 

From Section 11, we have that Po( E) 4 Po as E J 0, where Po is the 
eigenprojection for the zero eigenvalue of A , ,  

Po = - (3.11) 

where r,, is a positive contour enclosing all nonzero eigenvalues 
of A,( E) for E small. Since R ( A ,  A,(  E)) converges uniformly to 
R (X, A,) on r, and r, can be chosen to lie in C - bounded away 
from the jo-axis (by semistability of A,), we have 

l i m s u p ~ ~ x p { A ( e ) t } - e x p { A o t } ~ ~ = O  (3.12) 
€10 r > O  

which establishes the contradiction. 

regularly perturbed version of (3.3), then 
Sufficiency is also established by contradiction. If  (3.1) is a 

But P(c), Po are the eigenprojections for the zero eigenvalue of 
A(€), A,,,  respectively; and, by Proposition 2.6, rank P ( e )  = 
rank Po, thus establishing a contradiction because rank P(E)  = 
nullA(r)andrankP,=nullA,. 

Remarks: 
1) If A,, is asymptotically stable, then any  perturbation is 

regular. 
2) There is a heuristic connection between the time scale 

evolution of (3.1) and the eigenvalues of A(€). In particular, 
eigenvalues of order c k  are symptomatic of system behavior at 
time scale t/ch.  However, there are several detailed assumptions 
and delicate analysis to be performed to validate this heuristic 
reasoning. This is the focus of our attention in the following 
sections. 

N. COhlPLETE mhaS SCALE DECOMPOSITION 

A .  Spatial and Temporal  Decomposition of exp { A( e ) t } -  The 
Multiple  Semisimple Null Structure Condition 

To facilitate the notation in the development that follows, we 
choose for the perturbed system (3.1) the notation 

i ' ( t ) = A o ( € ) X f ( t ) ,  x'(O)=x, (4.1) 
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with 
m 

A , ( € ) =  cPAo,. ( 4 . 2 )  
p = o  

Of obvious  interest  here  is when (4.1) is singularly 
perturbed-time scale behavior is trivial when the  perturbation is 
regular as shown by Proposition 3.2. We thus restrict our atten- 
tion to the case rank A, < nrank A,( E). For  our development we 
need to construct a sequence of matrices A k (  c), k =l;  . . , m  
obtained recursively from A , ( € )  as indicated below. 

Recall the notation of Section 11. Let Po(€)  denote the total 
projection for the zero group of eigenvalues of A , ( € ) .  From 
Corollary 2.8, it follows that if A ,  has semisimple null structure 
(SSNS), then the matrix 

has a series expansion of the form 
m 

A 1 ( c )  = cpAlp. 
p = o  

If the first term in the series (4.3), namely A,,, has S S N S ,  it 
follows that 

where PI(€) is the total projection for  the zero group of eigen- 
values of A ,  ( E), has series expansion 

00 

A , ( € ) =  €PA,,. 
p = o  

(4 .4 )  

The recursion ends  at step m ,  i.e., at 

if the matrix A,,,, does not have SSNS. The following proposition 
establishes several properties of the matrices A , ( € ) ,  P,(r).  Define 
Q,  ( e )  = I - PA (E); note  that Qk ( E )  is also a projection [onto the 
eigenspaces of the nonzero groups of eigenvalues of A, ( E ) ] .  

Proposition 4.1: For c small enough, including zero, and k = 
1; . - , m  

1) P , ( z ) P , ( ~ ) = P , ( E ) P , ( ~ )  i , j = O , I ; . . , m  

2 )  Q , ( c ) Q j ( c ) = 0  i #  j ,  i , j = O , l : . . , m  

3) C ' i = 9 ( Q o ( c ) ) @  ... @ ~ ( Q , ( E ) )  

@ 9 ( P o ( c ) . . . P , ( E ) )  
4 )  r a n k Q , ( r )  = rankA,, 

and  for E small enough but  not zero, 

5 )  Q , ( E ) A , ( ~ )  = C ~ Q , ( E ) A , ( E )  = E ~ A , ( ~ Q , ( E )  

= A O ( ~ ) Q A ( € ) .  0 

The proof of this result is a modification of results in [l]. See 

The following proposition establishes that the sequence A ,  ( E )  
[20] for details. 

always terminates at some finite m .  

Proposition 4.2: Let A,(  e), k = 0 , l ;  . . , be the sequence of 
matrices defined recursively by (4.5). At least one of the following 
two conditions (possibly both) are satisfied at some m 03 

1 )  A,,, does not have SSNS 

2 )  = 0 or, equivalently, 

2') rankA,,=d. 
m 

k = O  

Proof: It only needs to be shown that 2) occurs for m < 03 if 
( 1 )  does not. From Proposition 4.1, for allj > 0 

Since rankQ,(c) = rank A,,, only a finite number of A,,'s can 
be nonzero. Let m be such that A,,,, # 0 and A, ,  = 0 for k > m .  
If A , ,  = 0, P k ( c )  = I .  Hence, A , ,  = 0 for k > m implies that 
A,,,*1(c) = 0. 

To show the equivalence of 2) and 2'). note  that 

Hence, A , , , & , ( € )  = 0 implies that 9 ( P , ( c )  . . .  P, , (E) )  c 
. N ( A 0 ( c ) ) .  On the other  hand, if x E . N ( A ~ ( E ) ) .  then x E 
. N ( A , ( r ) )  and therefore P k ( c ) x  = x .  Thus, . N ( A , ( E ) )  = 
9( P o ( € ) .  . . P,,(c)). Using this in (4.6) yields that 2) - 2'). The 
proof of the converse is similar. 0 

Definition 4.3: An ana lpc  matrix function A , ( < )  of c satisfies 
the multiple  semisimple null structure (MSSNS) condition if the 
sequence of matrices A ,  ( E )  can be constructed until the stopping 
condition 2') of Proposition 4.2 has been met with all the 
matrices 

, m  

having semisimple null structure (SSNS). 

for some c1 > 0 
Proposition 4.4: If A , ( € )  satisfies the MSSNS condition, then 

1) A,(~)hasSSNSforcE[O,r~] ,  k = O ; . - , m .  
2) For E E IO, e l ]  

9 ( A , ( c ) ) = 9 ( Q , ( ~ ) ) @  . - *  @B'(Q,(c)) k = O , - . . , m  

(4 .7 )  

X ( A ! , ( O ) = ~ ( Q O ( E ) ) @  . - *  @ ~ ( Q L - I ( ~ ) > @ J ~ ~ ( A o ( ~ ) )  

. N ( A o ( c ) )  = R ( P o ( c ) .  . . P n z ( c ) ) .   ( 4 . 9 )  

k = l , - . . , m   ( 4 . 8 )  

3 )  If A(€) is an eigenvalue of A,(  E )  not belonging to its  zero 
group, then E " ( € )  is an eigenvalue of A , ( € )  in 9 ( Q x ( c ) ) .  
Conversely, if p ( c )  is an eigenvalue of A , ( € )  in 9 ( Q , ( c ) ) ,  then 
c ~ ' p (  E )  is an eigenvalue of A ,  ( E )  not belonging to its zero group. 

Pro08 Equation (4.9) has been established in the proof of 
Proposition 4.2. Further, if y E 9 ( A O ( c ) )  then y = A O ( c ) x  for 
some x. Now, using 3) of Proposition 4.1, and (4.9) above, 

m m 

Y =  C Ao(€)Q,  ( O X =  C Q , ( ~ ) A o ( c ) x  
k = O  .k = 0 

so that9(AO(c))C9(QO(c))@ ... @ 9 ( Q n 2 ( ~ ) ) .  Equality of the 
subspaces follows from counting dimensions. Check that this 
finishes the proof of 1) -3 )  for k = 0. 

Consider X (  A ,  (E)). By definition of A ,  (E)  we have, for E 

small enough but nonzero, 
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i.e., x2  E N (  A,,( E)), thereby yielding a contradiction. This estab- 
lishes (4.8). To prove (4.9, note  that  by definition of A k ( E )  

= P o ( ~ ) e x ~ { A o ( ~ ) t } + Q ~ ( ~ ) e x ~ { A o ( ~ ) t }  

=exP{(Al(~)Et}-Qo(e)+Qo(~)eXP{Ao(E)t}. 
a(Ak(E))cg(PO(E).'.Pk-l('))na(AO(')) Repeating this manipulation for exp{A,(c)et}, we have 

and  it follows from Proposition 4.1 and the SSNS of A , ( € )  that e ~ p { ~ o ( ~ ) ~ } = e x ~ { ~ ~ ( ~ ) ~ 2 ~ } + Q l ( ~ ) e x ~ { ~ ~ ( ~ ) ~ t }  

a ( p O ( ~ ) . " p k - l ( E > ) n a ( A O ( ' ) )  +Q,(E)~~P{A,(~)~}-Q,(~)-Q~(E). 
= g ( Q k ( c > ) @  ... @a(Qrn(E)). Repeating this procedure m times  yields 

Equality (4.7) follows  now from counting dimensions. To prove 
3),noti~ethatifA~(~)~=h(~)~andX(~)doesnotbelongtothe e x p { A O ( E ) f } = e x p { A ~ + l ( E ) E " ' + l t } -  Q k ( e )  
zero group of eigenvalues of Ak(e) then Qk(c) u = u and, there- 
fore, it follows from 5) of Proposition 4.1 that 

m 

k = O  
m 

Qk(f)exP { Ak(E)Ekt} .  (4.14) 
A , ( E ) ~ = A , ( E ) Q ~ ( E ) U = ~ ~ A ~ ( E ) ~ = E ~ ~ ( E ) U .  

k = O  

But A , , + l ( ~ ) = O  and Z-~~=oQk(~)=P,(c)~~~Prn(c) so that 
Conversely, let A,(e)u = p ( c ) u  with u E W(Qk(c)).  Then (4.14) yields (4.11). Use the identity 

€ - k ~ ( € ) u = E - k ~ , ( E ) Q , ( € ) ~ = ~ ~ ( € ) U .  Qx(€)exP{ A k ( c ) E k f }  =exP{  Qk(e)Ak(E)Ckt}--I+Qk(E) 

Proposition 4.4 establishes that if A , ( € )  has MSSNS, then it 
may be decomposed as 

m 

E k A k ( e ) Q k ( E )  (4.10) 
k = O  

and that the eigenvalues of A,( E)  may be divided into  (m + 1) 
groups corresponding to eigenvalues of order E', j = 0,. . . , m, in 
the invariant subspaces %'(Q,(E)). Further, the eigenvalues of 
order ex  coincide with c k  times the order one eigenvalues of 
Ak(  E ) .  The ranges and nullspaces of A k (  E )  are shown in Fig. 1; in 
addition to H ( A , ( e ) ) ,  .N( Ak(e)) includes the eigenspaces of 
A,( e) corresponding to eigenvalues of order 1, E , .  . - , e k - ' ;  
%'(Ak(€)) ,  on the other  hand, includes the eigenspaces of A , ( < )  
corresponding to all eigenvalues  of order E '. 

The following theorem (one of two central results) illustrates 
the consequences of MSSNS for the time scale behavior of 

Theorem 4.5: If A,(€) satisfies the MSSNS condition, then 
exP{Ao(E>t}. 

m 

exP{Ao(f ) t}=  &k(e)exP{Ak(~)~k~}+Po(e).'.P,,(E) 

(4.11) 
k = O  

in (4.16) to obtain (4.17). Equation (4.18) follows directly from 
(4.10), the property 5 )  of Proposition 4.1, and the fact that 

Qx(f)Ak(C)'Q,(E)A,(e)=o J # k .  0 

Remark: Under the MSSNS condition, (4.11) of Theorem 4.5 
gives a spatial  and temporal decomposition of exp { A ,( c)t}, e.g., 
Q, ( r )exp{A,(c)~~t}  does not change significantly in time until 
t is of order 1 / c h .  This decomposition is of crucial importance  in 
studying multiple time scale behavior, uniform asymptotic ap- 
proximations, and reduced order models for the system (4.1). 

B. Uniform  Asymptotic Approximation of exp { A ,  ( E )  t } : 
The  Multiple  Semistability  Assumption 

As stated in the previous section, exp { A,(O)t } is a uniform 
approximation to exp{A,(E)t} on any compact time interval 
[0, TI. To capture all the multiple time scale behavior, however, it 
is necessary to have a uniform asymptotic approximation on 
[O,cc] .  For this we need the following condition. 

Definition 4.6: A,( e) satisfies the multiple  semistability (MSST) 
condition if 

1) A,(€)  satisfies the MSSNS condition, and 
2) the matrices 
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The direct sum decomposition (4.19) follows  now from the fact 
that, by construction, Q, is the projection on 9 ( A h O )  along 

A ,  n). 0 

for k = 0, , . . . , m are semistable. In n&e next section we  use the result of Theorem 4.7 to 
The following is a central in approximation. determine the complete multiple time scale behavior for (4.1) and 
Theorem 4.7: Let A , ( € )  satisfy the MSST condition. Then, Obtain a set Of reduced Order 

where +( i ,  c)  is any of the following expressions: 
nt 

+( t ,  c )  = C QkexpAkockt + P , . .  . P,, 
k = O  

m 

= exp { ~ , , c ' t } -  r n ~  
k = O  
m 

= n exp { A A O c k r }  

= exp( A , , c k t }  

... 

k = O  

m 

k = O  

(4.15) C. Multiple  Time Scale Behavior  and  Reduced  Order Models 

Multiple time scale behavior is explicated by the following 

Corollary 4.8: Let A , ( € )  satisfy the MSST condition. Then, 
corollary to Theorem 4.7. 

(4.16) 1) 

lim sup llexp { A,(c)r/ck} - @,(t)ll = 0 
(4.17) ' L O S < t < T  

V6>0, T < m ;  k=O, l ; . . , rn - l .  (4.20) 

where A,, = l im,LoAk(c) ,  Pk = l i m E L o P , ( c ) ,  and Q ,  = 
lirn,, ,Q,(E). Furthermore, 

Proof: We first establish (4.15) with Q ( t ,  c )  as in (4.16). 
Using (4.11) from Theorem 4.5 for exp{ A O ( c ) r }  

exP{Ao(r)t}-+(t ,c) 

=(P,(E)...P",(r)-Po-..P,,) 
m 

+ C ( Q , ~ ~ ~ ~ ~ P { ~ , ~ ~ ~ ~ ~ ~ } - Q ~ ~ ~ P ( ~ , ~ ~ ~ ~ } ) .  
k = O  

The first term in the above equation tends to zero as c J.0 
independently of 1. For the second term, write 

# , ( t , ~ ) ~ Q e , ( ~ ) e x ~ { A , ( ~ ) ~ ~ t } - Q k e x ~ { A , o ~ / ' ~ }  

where r, is a contour enclosing all nonzero eigenvalues of A L o .  
By semistability of A, , ,  r, can be chosen to lie in the left half 
plane bounded away from the jo-axis.  Hence. we have for some 
a < O  

l l # , ~ ~ ~ ~ ~ l l ~ ~ ~ a ~ ~ ~ ~ l l ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ , o ~ l l ~ ~  1 k 

d ~ ~ , l l R ( X , A , ( r ) ) - R ( h l A i o ) l l d x .  1 

Since R( X, A ,  (e)) converges uniformly to R ( A ,  A,,) on compact 
subsets of 43 (by Lemma 2.5), we have that ll#,(t.  tends to 
zero as E J.0 (uniformly in t ) .  Equality between the different 
expressions of +( t ,  c)  is established as in Theorem 4.5. 

To establish (4.19) we have from 3) of Proposition 4.1 that 

c"=g(Qo(O)@ ... ~ a ( Q n , ( € ) ) B a ( P o ( r ) . . - P , , ( ~ ) )  

and  by continuity of the projections Qk(  e), P, (e), 

C " = 9 ( Q o ) @ * . .  ~ a ( Q , , ) ~ ~ ( P o . . . P , , , )  . 

(4.18) 2) 

where @ , ( r )  is  given  by 

Prooj From Theorem 4.7 we have that 

m 

+ Q,exp { A,,tc'-' } + Po. . . P,,, -I- o(1) 
... 

/ = k + l  

(4.24) 

uniformly for t E [O,m]. Now, by the semistability of A,,  

Q , e x p ( A , , r } = - - ~ e ~ r R ( X , A , , ) d h  . 1  
2 ~ 1  rr 

for some r, in Q:_  bounded away from the jw-axis. By the 
boundedness of R ( X ,  A , , )  on I?, 

This yields 

k - 1  

lim sup Q,exp { A , o t / c k - / }  = 0. (4.25) 
c 1 0 8 < r < m  / = o  

On the other hand, it is clear that 

Using (4.25) and (4.26) in (4.24) yields (4.20) and (4.21) with 
m 

@,!(t)=Q,exp{A,,t}+ Q,+Po. . .P, ,  . (4.27) 
l = k + l  

Equality of expressions (4.22) and (4.23) follows from (4.27). 
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Remarks: 
1) From (4.22) of Corollary 4.8 and (4.16) of Theorem 4.7 it 

follows that 

m m - 1  

exp{AO(E)t}=  PO'.'Pk+o(l) 
k = O  k = O  

(4.28) 

uniformly for t > 0. Thus, only the behavior at time  scales ? / e k ,  
k = 0,. . . , m  is needed to capture the evolution of exp {A,( c )  t } 
on [0,03]. From the proof of Corollary 4.8, it is clear that 

~ e x P { A o ( + / a ( ~ ) }  ' L O  
exists for any  order function a(€). Indeed if a , ( € )  = o ( c k )  and 
c k + l  = o ( a , ( c ) )  then 

limexp{A,(r)t/a,(c)} = P , . . . P k  (4.29) 
10 

and for a( c )  = o( c"') 

limexp{A,(c)t/a(c)} = P o . . . P ,  . (4.30) 

Thus, the system has well-defined behavior at all time scales,  even 
though only a finite number of them ( t / c k ,  k =  0,1;-.,m), 
called the fundamental or natural time scales, are required to 
capture the system evolution (strictly speaking only those for 
which A f 0). 

2) The behavior of the system as given by (4.23) is canonic in 
the following sense: at a  given time scale, say t / e k ,  all faster time 
scales t / d  for I <  k have come to their equilibria (respectively, 
P,); and all slower time scales t /c '  for I > k have yet to evolve. 0 

To interpret the matrices A,, as reduced order models of (4.1), 
notice that the uniform asymptotic approximation 

10 

rn 

eXp{Ao(E)t}= 1 Q k e X p { A , , € k f } + ~ o . . - P , , + O ( l )  
k = O  

together with (4.19) imply that the subspacesg( Q,), k = 0; . . ,m, 
are almost invariant subspaces (or c-invariant subspaces, as de- 
fined in [16]) of (4.1). The parts of x ' ( t )  that evolve in different 
subspaces do so at different time scales. 

Corollaly 4.9: Consider the linear systems 

j k  =A,,)',, )'k(o)=QkXo, k=O, l ; - . ,m.  (4.31) 

Then 

1025 

m 

dimB(Q,)=nrankA,(c). 
k = O  

2) In particular, choosing a basis adapted to the direct sum 
decomposition (4.19), it is possible to asymptotically decouple 
(4.1) into a set of lower dimensional systems, each evolving at a 
different time scale as follows. Let V be  the  (€-independent) 
change of basis mentioned above; then Theorem 4.7 can  be 
written as 

rn 

exp { ~ , ( r ) t }  = V-' exp VAkOV-'ckt V +  o(1) ( k = O  } 
p d i a g (  eAor,e4c',. . . ,eLcmt, 4 V +  o(1) 

where the matrices 2, are full rank square matrices with dimen- 
sion equal to rank A,,  corresponding to the nonzero part of A,,  
in the new basis. 0 

In the next section we show that such a complete decomposi- 
tion and simplification as has been elaborated  here is possible 
only if A,( c) satisfies the MSST condition. 

D. Necessity of the Multiple  Semistability  Condition 

We  have shown in Sections IV-B and IV-C the existence of 
well-defined behavior at several time scales under the MSST 
condition. If MSST is not satisfied then, at least for some order 
function a( E), the limit 

1imexP{Ao(+/a(4} 
10 

does  not exist. To illustrate this, consider the following examples. 
Example 4.9 (A,, not SSNS): Consider the matrix 

0 -2c 
A , ( € ) =  [: c Iic] 

1 1  

semistable for c E [0,1] with  eigenvalues X, = 0, X, = -2+ o(1) 
and X,  = - c 2  + o(r2). This matrix does not satisfy the MSSNS 
condition, as may be verified (for a systematic procedure to  do 
this calculation see Section IV-E) that 

Ala=[! -h 
is nilpotent. Also, by direct computation, it is found that 

-1/2 0 

~ ~____ 

Q,xf ( t )=yk( rk t )+o( l ) ,   k=O, l ; - - ,m  with the following time scale behavior: 

and 0 
rn 

x'(t}= J ~ , ( ( Z ~ ~ ) + P O . . . P ~ , X ~ + O ( ~ )  . (4.32) 'LO 
Ern exp { A , (  c)t } = exp { A,t} = 

k = O  

Proofi A straightforward modification of Corollary 4.8. 0 and 
Remarks: 
1) The  linear systems (4.31), although written as equations on 

R ", are really reduced order models since each evolves in a( Q,), limexp{A,(c)t/c}  =P,exp{A,,t} = 
k = 0,l;.  -,m and E 10 
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To see that the limit Define 

lim exp { A,(c)t/c'} 
10 

does not exist, consider the (1,2) entry of exp{ A o ( c ) t / c 2 } :  

Since A' = - r 2  + o(c'), the first term in (4.33) is of order l / r  as 
c LO. Thus, the system does not have well-defined behavior at 
time scale t /c2 even though it has a negative real eigenvalue of 
order c'. 

Example 4.10 (AAo not MSST): Consider the matrix 

-2 0 0 
A , ( € )  = 

This matrix is semistable for E >, 0 and it has the three eigenvalues 
h 0 -  - -2, A, = - E' + ic, and X' = - c 2  - ic. Also 

-2 0 0 

0 0 0  
A m = [  0 0 0 1  

and 

Ala= [! : :I. 
-1 0 

MSST is violated since A , ,  has purely imaginary eigenvalues. 
Calculation yields 

The next step is to prove that (J( Fo(r)) remains bounded as E J.O. 
Take 0 # A ( € )  E a ( P , ( c ) A , ( c ) )  and let +(E)  be a corresponding 
eigenvector with I I+(c)ll  =l. Then 

e " P { P o ( ~ ) A o ( h ) t / f ~ } + ( ~ )  
=exp{Reh(r)t/c~}-exp{iImX(r)t/c~}+(c). 

And if E,,? LO is a sequence for which +(e,,,) converges, then 

exp{ReA(r~,)t/e~,}~exp{iImA(c,,)t/~~,} (4.35) 

must also converge as m 4 co. Now, since the trace of A , ( € )  has 
a series expansion in integer powers of e and the eigenvalues in 
the  zero group of  A,( c), p( E), have nonpositive real parts, 

Rep( € ) / e k  + p as c JO 

for some integer k 21 and some constant p. We thus conclude 
that  Re A(cnz)/c!, must converge as m --.* M. Further, by the 
convergence of (4.35), Imh(c,,,)/c!! must also converge as c LO. 
Because u( &,( e)) remains bounded as cnz LO we can choose t ,  
such that 

I P 4 F O ( ~ ) t l ) l < . n  

for c small enough. Hence, if In denotes the pMcipal branch of 
the logarithmic function, we obtain 

lnexp { F , ( c ) t , }  = F , ( r ) t ,  = - + Go(c)t, (4.36) DO 
€9 

I e - 2 r  0 0 

exp { A o ( c ) t }  = o e-c2'cosct - e-'"sinct 
0 e - c 2 r S , , c t  e - c 2 r  cos Qt 

The system has well-defined behavior at time scales t and t / r  but 
exp{Ao(E)r/c2} does not have a limit as €10 because of the 
presence of terms of the form e-'sin t/c. (The attenuation is 
slower than the frequency of oscillation.) 

In fact, the MSST condition is a necessary and sufficient 
condition for the existence of multiple time  scale behavior. 

Theorem 4.11: Let A , ( € )  be semistable for c E [0, cO]  and let 
A , , ,  k 2 0 be the sequence of matrices constructed in Section 
IV-A. If A , , A I o ;  . . , A , _ , , O  are semistable but A,, is not,  then 
the limit as c LO of 

exP { A o ( c ) t / c ' I }  (4.34) 

does not exist for any I q ,< 1 + 1. Further, if A, ,  has a pole on 
the imaginary axis (including zero) which is not semisimple, then 

Proof:  We construct the proof for I = 0 by contradiction. 
Assume that the l imit  

limexp{A,(c)t/cq} 
€ L O  

where  the last equality follows from Proposition 2.7 with Do 
being the eigennilpotent for the zero eigenvalue of A ,  and Go( c)  
a continuous function of e.  The limit 

limIn{expF,(c)t,} B ( r , )  
c L O  

is well defined by the boundedness of a(F,(c)) and therefore, by 
(4.36), Do = 0, i.e., if the limit of (4.34) exists, then A ,  must be 
SSNS. 

Suppose now that A ,  has some purely imaginary eigenvalue p. 
Then there exists at least one eigenvalue p(  c )  of A,(  c)  such that 
p(c)  4 ,u as c LO. Let +(c)  be a corresponding eigenvector with 
Il+(c)\l=l and E,,? A0 a sequence for which + ( e e > )  converges. 
Then, if (4.34) has a limit so does 

+(c,,)'exp { A o ( c n l ) t / c ~ l } + ( c n , )  = e F ( c m ' r / c z  

which is a contradiction. We have thus shown that if A ,  is not 
semistable, (4.34) cannot have a limit as c J.O. 

To prove the theorem for an arbitrary I, notice that using the 
same algebraic manipulation as in the proof of Theorem 4.5, we 
can write 

1-1 

~ X P  { A o ( € ) t / ~ ' }  = ~ X P  { A/(c)i/cq-'}- C Q A ( ~ )  
k = O  

1-1 
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Thus, assuming that 

exp { AO(E) t /@} 

has a limit as E LO, so does 

exp{A,(c) t /F '}  I < q < I + l  

implying, as proved previously for I = 0, that A,, is semistable, a 
contradiction. 

To prove the second part of the theorem, suppose that A , ,  has 
an eigenvalue on the imaginary axis which is not semisimple. 
Then V M  < 00 there exists a T < co such that 

llexp { A,oT 1 II ' M 
and because exp { A , (  e ) T }  converges to exp { A , , T }  as E 0, we 
conclude that 

The desired result follows now from (4.37). 0 
The above theorem can be interpreted as saying that if a 

system has well-defined behavior at all time scales then its system 
matrix must be MSST. As we will discuss in Section V, there are 
systems for which this condition is always satisfied. In general, 
however, the sequence of matrices A,,  will have to be computed 
to check for semistability. 

E. Computation of the Multiple Time Scale Behanior 

Theorem 4.7 reveals that the matrices A , ,  play a fundamental 
role in the asymptotic analysis of singularly perturbed systems. 
These are  the leading terms in  the series expansions of the 
matrices 

for k = 0 , l ; .  .,m. The matrices in the series expansion of A, (€ )  
are shown in Fig. 2. The ( i  + 1)th row of Fig. 2 is computed from 
the ith row using Corollary 2.8, i.e., 

i + l  

p = l  

where 

The formula (4.38) enables the array of matrices A, ,  to be 
computed triangularly, so that computation of A,, requires only 
the  computation of Ai j  for i = O ; . . , k - l  and j = O ; - - , k - i .  
Thus, the algorithm contained in (4.38) may be implemented 
recursively. In the following proposition, we illustrate the com- 
plexity of the expressions for  the A,, in terms of the given data 
A,, A,,, ... [i.e., A,(€)].  We note also from (4.34) that the 
computation of the AkO's, and hence the asymptotic limit of 
exp{A,(r)t}, involves only AOO,.-- ,Aonl [only finitely many 
matrices in the asymptotic expansion of A,(€)]. 

A,(€) A,, . . . . . . . .  
Fig. 2. Triangular  array of matrices A,, .  

Proposition 4.12: The matrices A,, for k = 0, 1, 2, and 3 are 
given by 

A ,  

A10 = PoAo1Po 

A20 = PlPO(A02 - ~olA=,Aol)PoPl 

= p 2 p I p 0 (  - A01A%A02 - A02A%AOl 

Proof: By somewhat laborious calculation. 
Remarks: 
1) If A ( € )  is of the form A + E B ,  then we have 

A,=A 

A,, = PoBPo 

Azo  - Pl Po BA"BPo  Pl 

0 

A,,  = P2PlP,( BA*BA*B - BArB(  PoBPo)*BA"B)  PoPlP2. 

Thus, a system of the form 

j c ' ( t ) = ( A + c B ) x ' ( t )  

may exhibit time scale behavior at time scales of order 
l / e , l / ~ ~ , - -  . , l/c"',  a fact  that is not widely appreciated in the 
literature. As examination of the characteristic polynomial of 
A + E B will show, no eigenvalue of A + E B can be of o( e") so that 
at most m = n .  Similar reasoning leads us to the conclusion that 
for 

P 
A , ( € ) =  EkAk 

k = O  

m can at most be np. 

malized to the form (l.l), we have 
2) For the classical two time scale formulation of (I.& nor- 

and 

B = A,, = [A;' A;2]. 

If Alz  is stable, then A,  is semistable with 
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so that 

From this, we see that the model at the fast time scale is 

i 2  A ~ ~ x Z  + A z l ~ l  

X1=0 

and the reduced order model for the slower dynamics is 

X1 = ( A l l  - AI2A221A21)Xl 

X, = - A,'A,,x,. 

If, as is usually assumed, A,, - A,2A;;A21 is also stable, then 
rank A,, +rank(Al, - A,,A;;A,,)= rank(A + EB), so that the 
system (1.2) has only two time scales. 

3) If A,(€) is a rational function of E ,   ~ 4 t h  Taylor series about 
E = 0 given by 

3c 

A , ( € ) =   c h A O r .  
.. 

k = O  

Proof: Follows readily from the proof of Theorem 4.7. 0 
Remarks: 
1) Equation (4.39) does not hold for k > I .  For these values of 

k, however, we  have 

Note  that  in (4.41) the projection matrix PI(  E) annihilates behav- 
ior  at time scale ?/E' involving unstable or oscillatory modes. In 
general, however, PI(€) in (4.41) cannot  be replaced by P,(O), so 
that (4.41) is of limited use in obtaining a uniform asymptoac 
series for exp{A,(r)t}. 

2) Sometimes in applications, AO(e)  satisfies a uniform stabil- 
ity condition, viz., 

Although (4.42) guarantees that A,(€) satisfies the MSSNS con- 
dition and that  any purely imaginary eigenvalue of the matrices 
A,, is  semisimple, it is not enough to guarantee MSST. A 
uniformly stable system may not have well-defined behavior at 
some time scales because of the presence of slightly attenuated 
oscillations that when  seen at slower time scales represent infinite 
frequency. For uniformly stable systems, however, Proposition 
4.13 can be strengthened. 

Proposition 4.14: Let the matrix A,(€) satisfy (4.42) and let 
the matrices A,,, k = 0,l;.  .,m be semistable for k f 1. Then 
VS>O, T < w  

then it is well known (e.g.,  [17]-[19]) that rn is the order of the lim sup llexp{A,(c)t/Ek}-@k(t)II=O k = l ; . . , l  
Smith-MacMillan zero of A n ( € )  at e = 0. It mav also be estab- € l O S < t Q T  
lished that the matrices A,,"dekned above are ;elated to block lim sup I I p,exp { A, ( E } - Q, ( t )  11 = 0 
Toeplitz matrices of the form '1064f<T 

0 1  

A,, . * .  where Q L ( t )  is as in (4.40) and T can be taken equal to cc for . k = m .  
Proof: Follows readily from Theorem 4.7 and the properties 

of uniformly stable systems mentioned above. 0 A- . . . A,.. A,.. 

The details of this connection will be presented elsewhere,  since it 
is not  in the mainstream of our development here. 

F. Partial Time Scale Decomposition 

We discuss here the multiple time scale behavior of systems 
that  do not satisfy the MSST condition of Section IV-B. Such 
systems have well-defined behavior at some but not all time 
scales, and it may be useful to be able to isolate the time  scales at 
which  they have well-defined beha\lor. Consider, for example, 
the case when  time { A,,}?=,  have  SST, but A , ,  for some I 4 m 
violates the semistability condition, i.e., has at least one nonzero 
eigenvalue X ,  nith Re h 0. Then, we have the following. 

Proposition 4.13: Let the matrix A,(€) satisfy the MSSNS 
condition and let the matrices A,,, k = 0,l;. . , m  for k + I be 
semistable. Then, VrS z 0, T < cc 

v. CONCLUSIONS  AND  APPLICATION OF OUR RESULTS TO 
THE HIERARCHICAL AGGREGATION OF FINITE STATE 

MARKOV PROCESSES 

We  have studied the asymptotic behavior of exp {A,(r)t 1 over 
the time interval [O ,cc ) .  We have formalized the notions of 
multiple time  scales and reduced order models valid at different 
time  scales. The most important conclusion is that a certain 
multiple stability condition referred to as the MSST condition is 
necessary and sufficient for exp { A , (  e )  t } to have well-defined 
multiple time  scale behavior. We feel that our results will have 
important computational consequences for the simulation of 
large-scale linear systems with  weak couplings, but this has yet to 
be explored. 

An application of particular interest to us is the hierarchical 
aggregation of finite state Markov processes (FSMP) with some 
rare events. The presence of rare events in an FSMP is modeled 
by a small parameter E in  its matrix of transition rates, e.g., 
A,(€) = A ,  + EB. The matrix of transition probabilities for the 
FSMP, qc(  t ) ,  is then given by 

where P'(r)=exp(A,(E)t}.  (5.1) 

It is shown  by us in [4] that when A,(€) is a matrix of transition 
=Qkexp{A,,t}+Po..-Ph. (4.40) rates then A,(€) satisfies the MSST condition so that E " ( ? )  

Q,(t)=P,~~.P,_,exp{A,,t} 
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always has well-defined multiple time scale behavior. The re- 
duced order models that describe the evolution of p‘( t )  at each 
of its fundamental time scales are then interpreted as increasingly 
simplified aggregated models of $(?) obtained by collapsing 
several states of $ ( t )  into single states of the reduced order 
model. The aggregation is hierarchical so that the model at a time 
scale, say t / d ,  can be  obtained by coalescing some states of the 
(already simplified) model  valid at time scale ? / e ’ - ’ .  

This problem has also been studied in detail in [12]  where a 
sequence of aggregation models is also obtained. However, the 
question of a uniform asymptotic approximation to (5.1) was not  
studied in [12]. In [4], we develop the hierarchy of approxima- 
tions as a uniform asymptotic expansion to (5.1) and relate our 
results to those of  [12]. 
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Multivariable Feedback, Sensitivity, and 
Decentralized Control 

Absstruct -In this paper the problem of sensitivity reduction by feedback 
is studied and related to a problem of decentralized control. 

A plant will be represented by an N X N matrix of frequency responses, 
which may be unstable or irrational. The object will be to find conditions 
on P ( s )  under mhich a diagonal feedback F ( s )  can make the sensitivity 
I/( I + P( s ) F (  s)) - ‘11 arbitrarily small over some specified frequency inter- 
val [ - j w o ,  jw,,], without violating a global sensitivity bound /I( I + 
f ( s ) F ( s ) } - ’ I l < M ,  ( M >  some eonst. =-l) for Re(s)>O. It will be 
shown that such a diagonal feedback of the ‘‘high gain” type can be 
constructed whenever P-’(s) is analytic in Re(s)> 0, P ( 5 )  satisfies an 
attenuation condition near s = co, and f (s) approaches diagonal domi- 
nance at high frequencies. It will also be shown that these conditions on  the 
plant can be interpreted as conditions for the existence of a decentralized 
wide-band control scheme. 

I.  INTRODUCTION 

I N this paper it will be shown that feedback can reduce sensitiv- 
ity in a system characterized by a matrix of frequency re- 

sponses. The result will be applied to deduce conditions under 
which a  scheme of decentralized control is possible. 
In an earlier paper [2], it was shown that feedback can reduce 

certain weighted measures of sensitivity whenever the plant P ( s )  
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has  an “approximate inverse,” and feedback can make weighted 
sensitivity arbitrarily small whenever P-*( s) is analytic in Re(s) 
2 0 and P( s) approaches zero slowly enough as s + 00. The 
approach in [2] involves an a  priori parametrization of feedbacks 
that maintain closed-loop stability. Here an alternative approach 
will be developed, not  dependent on a priori parametrization, and 
specialized to diagonal feedbacks. 

Diagonal feedbacks are interesting because of their simplicity 
and their relevance to the problem of decentralized control (see 
Section I-A). In comparison to [2], we shall achieve diagonal 
feedback at the cost of the restriction that P ( s )  approach diago- 
nal dominance a s s  + 00. 

Diagonal dominance and weak-coupling conditions were intro- 
duced into feedback theory during the 1960’s by Zames (see,  e.g., 
13]-[5]) in conjunction with the (incremental) small-gain and 
conic-sector theories for stability (sensitivity to perturbations). 
Rosenbrock has used Ostrowski’s theorem to derive stability 
conditions for matrices of frequency responses that are diago- 
nally dominant at all frequencies. 

The requirement of diagonal dominance at all frequencies is 
quite restrictive, and satisfied by few multivariable systems in 
practice. On the other  hand, many physical systems have high- 
frequency attenuation rates that increase with distance. Conse- 
quently, at high frequencies the magnitudes of their off-diagonal 
transmissions decrease with frequency more quickly than the 
diagonal ones. Such systems become diagonally dominant at high 
frequencies where, indeed, they approach diagonal. 

A .  Sensitiviry  Reduction  and  Decentralized  Control 

An example might illustrate the class of problems that interest 
us. Imagine a house with many rooms, in each of which a man 
tries to control room temperature by watching a thermometer 
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