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The Stochastic Analysis of Dynamic 
Systems Moving Through Random Fields 

Absfract-In this paper  we consider  dynamic  systems  that  move  along 
specified  trajectories  across  random  fields,  where  the  field  acts as a driving 
force  to the  dynamic  system.  For  a  specific class of random fields we 
develop  equations  for  the  evolution of the  covariance  of  the  state of the 
dynamic system, and  in the  special case in which the trajectov is a  straight 
line path  followed by a 180” turn (i.e., an  “over-and-back”  trajectory) we 
develop  a Markovian  model  that  involves  a  change in the  dimension of the 
state  after  the turn. For this case we also briefly discuss the  estimation 
problem using recently  developed  results on “real-time  smoothing.” 

I.  INTRODUCTION 

T HE PROBLEM we consider in this paper is depicted 
in Fig. 1. We  have a vehicle that traverses a specified 

trajectory ( q l ( t ) ,  q2( t ) )  on a planar surface. Aboard this 
object is a dynamic system  which  is  affected  by a random 
field f (q l ,  q2). We  would  like to determine the statistical 
characteristics of the state x ( t )  of the system  from the 
specified trajectory and the statistical description of the 
random field.  Problems of ths  type  arise  in the analysis of 
terrestrial inertial navigation  systems [l], [2],  [6],  [7] wheref 
represents the errors in our knowledge of the variations in 
gravity and x consists of navigation errors. Since the iner- 
tial  system’s  accelerometers  measure actual acceleration 
plus gravity, an estimate of gravity,  from a gravity  map of 
some sort, must  be subtracted from  the  accelerometer 
outputs so that the vehicle’s  position  and  velocity  can  be 
determined. Thus map errors drive the dynamics of the 
navigation  system. In this application a problem of great 
practical importance is the determination of accuracy  re- 
quirements in mapping the gravity  field  in order to achieve 
specified error requirements for the navigation  system. To 
assess the effect of errors in a map one specifies  typical 
trajectories over portions of the surface of the earth and a 
statistical model of the errors in a given  map and then 
evaluates the second-order statistics of the  navigation er- 
rors. Ths is precisely the type of problem  addressed in this 
paper. 
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Fig. 1. 

Because of the presence of turns in a given trajectory, 
existing  methods for performing  these  second moment 
calculations involve  nonrecursive calculations, i.e., numeri- 
cal evaluation of integrals. In this paper we present a 
recursive approach to evaluating these  second-order statis- 
tics in a f a r  more  efficient manner. Specifically, in the next 
section we develop  sets of trajectory-dependent differential 
equations for the evolution of the covariance of x ( t )  for a 
particular class of random fields. For the special  case of a 
straight line trajectory that reverses  on  itself, we develop in 
Section I11 a novel  Markovian representation for the pro- 
cess x(t) and discuss the use of this representation, to- 
gether  with  recent  results  on the real-time updating of 
smoothed estimates, to solve an estimation problem. 

11.  COVARIANCE ANALYSIS FOR MOTION  THROUGH 
A TWO-DIMENSIONAL RANDOM FIELD 

Let f(q, ,  q i )  be a two-dimensional  (2-D) stationary ran- 
dom field  which, for simplicity, we assume to be zero 
mean. The correlation matrix  for  this  field  is 

It is  easily  seen from (2.1) that 

Let ( q l ( t ) ,  q2( t ) )  be a specified trajectory through the 
plane and  consider a dynamic system driven by the field 
along the trajectory 

where w(t) is a zero-mean  white  process with 

E [  w( t)w’( T)] = @S( r - T). 

We assume that the initial condition x(0) is  zero  mean and 

00lS-9286/S2/0S00-0S30$00.75 c1982  IEEE 



WnLSKY AND W E L L :  STOCRASTIC ANALYSIS OF DYNAMIC SYSTEMS 83 1 

that x(O), w, and f are  mutually independent. We would 
like to determine the evolution of 

P( t )  = E [ X (  t)x'( t ) ] .  (2.5) q2pT; 7*b;q7 so(') ___--_ 

We will put further restrictions on the field f that, as we 
will see, lead to P ( t )  being  specified  by a finite set of 
matrix differential equations.  Specifically, we  will assume (a) 
that the covariance R is separable: 

(b) 
Fig. 2. Two simple trajectory types. (a) Case 1. (b) Case 2. 

R ( t ,  4 = R , ( t ) R , ( s )  (2.6) 

where we assume that R ,  and R ,  are square, that Differentiating B,( t ) ,  we obtain 

R , ( t ) = R ; ( - r ) ,   R , ( s ) = R ' , ( - s ) ,  (2.7) B , ( r )  = 7 j l ( t ) F l B l ( t ) +  BlA'+G,H2G2 

and  that + 7j2(t)Jfefl(S'(r)-Sll(a)) 
0 

Ri(t)=HieFi'Gi ,  t 2 0 ,  i=1,2.  (2.8) 

From (2.1),  (2.6), and (2.7)  we can also deduce  that R ,  and 
R ,  commute for any values of their arguments. This model 
is a continuous-time analog of the model  examined  by 
Attasi [3]. In particular, the 2-dimensional spectrum off is 
separable and rational. 

As a first step in,obtaining the desired equations for 
P( t ) ,  define 

Q ( t , s ) = R ( q l ( t ) - - I l ( s ) , 7 1 2 ( f ) - q a ( s ) ) .  (2-9) 

Then, writing 

x(  t )  = eAfx(0)  + IreA('- . ) [  f( q,( r ) ,  q2( T ) )  + w( r ) ]  dr 
0 

.G H F e f 2 ( S 2 ( f ) - S 2 ( u ) ) G z ~ A ' ( r )  do. (2.15) 
1 2 2  

Note that the last term in (2.15) is similar to B , ( t ) ,  except 
for the F2 factor in the middle of the expression. This leads 
to the following idea. Define 

B,(t) = J f e ~ l ( n l ( r ) - n I ( ~ ) ) ~  1 2 2  H Fj-leF2(v2(f)-v2(a)) 
0 

-G2eA'( f -u)da .  (2.16) 

We  know that there is an integer r and coefficients 
po,  - - e ,  p,- , such that 

(2.17) 

(2.10) 
Then, by repeated differentiation we obtain the equations 

(2.18) 
we can  obtain  an expression for P ( r )  from (2.5). By 
differentiating this expression we obtain the basic equa- U t )  = H , B , ( t )  
tions j ; ( t >  = 4 l ( ~ ) F I q o +  B,(t)A'+ 4 2 ( 0 q + , ( d  

I ' ( t ) = A P ( t ) + P ( t ) A ' + L ( t ) + L ' ( t ) + Q  (2.11) +G,H,F!-~G, 1 ~ j ~ r - i  (2.19) 

L ( t )  = J f Q ( t ,  r)eA'('-')dr. (2.12) 
0 

The  problem then becomes one of determining a set of 
differential equations for L(t) .  This calculation depends 
upon the nature of the trajectory. We  will examine  two 
types of trajectories in this section. For simplicity, we  will 
assume throughout  that ql(0) = q,(O) = 0. 

Case 1: This is the simplest  case in which we do not 
change the quadrant toward  which we are heading. That is, 
if  we choose  the northeast as the direction of motion, we 
have the situation depicted in Fig.  2(a)  where 

r 

Br ( t )=4 , ( t )F iBr ( t )+  ~ r ( t ) ~ ' +  q Z ( 1 )  2 ~ , - l ~ ; ( t )  
j = l  

+ G I  H2 F;-'G2 (2.20) 

Bj(o)=o,  j = 1 ,  ..., r .  (2.21) 

Note that we can obtain alternative analogous equations 
with the roles of F, and F2 reversed if we use the commuta- 
tivity of R,( t )  and R 2 ( t ) .  In either case we obtain a finite 
set of linear matrix differential equations for L and there- 
fore for P .  Note that if the trajectory is a straight line (i.e., 
7jl(l) = a, 7j2(t )  = /3), as is often  assumed in the literature 
because of an inability to handle the more general  case, 
then these equations are time-invariant and are equivalent 
to a single  classical  covariance equation. This equation is 
associated  with an augmented state equation consisting of 
the dynamics for x ,  together  with a shaping filter for 

Case 2: In this  case, illustrated in  Fig.  2(b) we have a 
change of quadrants  from northeast to southeast. Clearly 
the following  analysis  also holds for any turn  from  one 

f(Tl(t) ,02(t)) .  
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quadrant  into  an adjacent one. Mathematically, if s and t 
are two instants of time  with s G t ,  then 

ql(t)--gl(s)aO Vs< t  (2.22a) 

if t < t l  orsGso( t )  
if t a t ,  and s a s o ( t )  

(2.22b) Fig. 3. 

where so(t) is  defined in the figure. Here we assume that 8 
d 2 ( t )  z 0, except for isolated points in time, so that so(t )  is 
well-defined. If q2( t )  0 for  an interval of time, a segment 
of the target's trajectory is a straight line, due east. This I j z ( so ( t ) )  
case requires  special but straightforward treatment. In Fig. 
2(b) t ,  is the time at which our turn takes us into another 

( t )  = 4 1 ( t ) ~ l ~ j ( t ) +  B ~ ( ~ ) A ~ +  7 j 2 ( t ) ~ J + l ( t )  

+ Ij2(') eF~[s~(t)-s~(so(r))lG H Fj-IG2eA'(t-So(r)) 1 2 2  

j = l ; - - , r - l  (2.28) 

quadrant in direction, and t2  is the time at which so(t )  = 0. r 

For c < r ,  , the analysis of this case is identical to that for ' r ( t ) = q l ( t ) F l B r ( t ) +  B r ( t ) A ' +  4 2 ( t )  2 Pj-IBj(t) 

or 

?i2( t 1 
42(so(t)) . 

so( t )  = (2.26) . G ~ G ; ( F ; ) J - ~ H , ~ A ' ( ~ - S ~ ( ~ ) )  (2.32) 

C r ( t > = l i I ( t ) F l C r ( t ) + ~ , ( t ) A '  
Note that if 7j(so( t ) )  = 0 at an isolated  time instant, as it  is r 

in Fig. 3, we  will  have to evaluate  higher  derivatives. Ths  - l i 2 0 )  E P j - I c , ( d +  G,G;(F;)'-'H; 
causes  no conceptual difficulty, but it complicates the j = 1  

development. Therefore we  will assume  for  simplicity that 
there are no inflection points in the trajectory over the - 4 2 ( t )  eFl(sl(t)-vl(~o(~))) 

interval [0, r l ) .  7i2(so(t)) 
Let .GIG;(F;)r-1H2eA'(r-S~('))  (2.33) 

BJ(t )  = / S ~ ( ' ) ~ ~ , ( r l , ( r ) - l l l ( s ) ) G  1 2 2  H FJ-le~~(tl2(t)-s2(S)) C , ( t , ) = O ,  j = 1 ; .  * rr. (2.34) 
0 

. G ~ ~ A ' ( ' - - s ) ~ s  j = l ; . . , r .  (2.27) Then 

Note that if we define so( t )  = t for f < t I ,  and BJ is precisely L ( t ) = H , [ B , ( t ) + C , ( t ) ]  t , d t G f , .  (2.35) 
the quantity in (2.16) and thus the initial condition at time 
r ,  for Bj in (2.27) is Bj ( t l )  calculated  from (2.19)-(2.21). If  Note  that in the case of a piecewise  linear trajectory, 
we  now differentiate (2.27) and use (2.17) we find that such as 
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(2.36) 

(2.37) 

then we have 

so( t ) = - P 2  

P I  
(2.38) 

which  is  negative here since PI > 0, f i 2  < 0. 

In this case 
We now need only  piece  together the situation for t 2 t2. 

(2.39) 

Thus in this region 

L ( t )  = H , C , ( t )  t at2 (2.40) 

where C,(t,) is obtained from  (2.32)-(2.34), and for t > t2  

+ G I G i ( F ; ) r - ’ H ; .  (2.42) 

Thus in Case 2,  over the time interval [0, t l ]  we have one 
set of equations to calculate L; over the interval [ t , ,  f2], 
while the q, coordinate of the trajectory retraces its path 
over [0, f,], we have  two sets of equations; and for t > t ,  we 
are back to a single equation which  is  essentially the 
equation obtained in  Case  1,  except that here we have a 
southeasterly trajectory as opposed to the northeasterly 
trajectory of Fig.  2(a). It should be clear that we can do 
this for arbitrary trajectories.  Only during the  “transient” 
of a turn do we pick  up additional equations. In the 
Appendix we briefly  describe one somewhat  more  complex 
case in which both q 1  and q2 coordinates simultaneously 
retrace previous  values (this does not mean a trajectory that 
retraces itself-see the Appendix, Fig. 5.). In that case, 
there are two additional sets of equations. From the cases 
considered in this  section and in the Appendix it is not 
difficult to see that at any time we must include m addi- 
tional sets of equations, where rn is the total number of 
previous  times in the trajectory that either the q I  or q2 
coordinate of the trajectory equals the corresponding coor- 
dinate at the present time. If A is a stable matrix, then the 
effect on L ( t )  [and hence P ( t ) ]  of a trajectory turn far in 
the past  becomes  insignificant. This can  be  seen  in  (2.28) 
where the driving term goes to zero  exponentially as 
t - so( t )  + (x) (the matrices FI and F, are stable since f is a 

stationary process  with finite covariance). Thus in practice 
we need only  keep track of turns within a certain number 
of time constants of A and correlation distances of the field 
(inverses of the magnitudes of the eigenvalues of FI and 

The equations derived in this  section and  in the Appen- 
dix appear much  more  complex than the standard 
Lyapunov equation. However, in important special  cases 
they  simplify  considerably. For example, in the case of an 
exponentially correlated random field, 

F2 >*  

~ ( t ,  s) = u,?e-lf-sl, (2.43) 

and a Case 1 trajectory, only a single  vector equation is 
needed in addition to (2.1 l),  and such an equation would 
be needed  even in the straight-line case. In any event, 
covariance propagation is a widely  accepted technique for 
navigation  system  analysis, and the equations we have 
obtained permit analysis of more realistic situations than 
simple straight-line trajectories. 

Finally, we note that since L ( t )  is a linear functional of 
Q ( t ,  s), it  is  clear that our results extend in an  obvious 
fashion to R(t,  s) of the form 

P 

2 R l k ( t ) R 2 k ( s )  
k = l  

where for each k, R l k  and R,, satisfy  (2.7) and (2.8). Note 
that  any field  with a separable spectrum has such a covari- 
ance, and  such spectra can  be used to approximate arbi- 
trary nonseparable spectra to any  desired  degree of accu- 
racy. Furthermore, we clearly  can also consider random 
fields  with nonstationary but separable correlation func- 
tions for which  (2.8)  is  replaced  by an equivalent time-vary- 
ing realizability condition, which  essentially guarantees 
that L ( t )  can be  calculated  from a finite set of differential 
equations. 

111. MARKOV-TYPE MODELS FOR OVER-AND-BACK 
TRAJECTORIES 

In the preceding  section and in the Appendix we per- 
formed  some  lengthy but relatively straightforward calcula- 
tions to obtain sets of differential equations for the propa- 
gation of the covariance of the state of a dynamic system 
moving through a random field. The  primary contribution 
of that analysis  is to provide an  understanding of how the 
geometry of the trajectory affects the state covariance 
propagation. While this is quite useful, there  is still a great 
deal  left to understand  about the fundamental way in 
which the uncertainty in the field affects the statistics of 
the process x( t ) .  In this section we  will  develop a Markov- 
like description for the special  case of over-and-back 
trajectories. This not only  provides us with further insight 
into the evolution of x ( t )  but, together  with the recent 
results on  smoothing reported in [ 5 ] ,  it provides us with the 
key to deriving  efficient estimation algorithms for processes 
of this  type. 
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The case that we  will examine in this  section  involves a 
trajectory  consisting of a straight line path followed  by a 
reversal of direction and a return trajectory  over the same 
path. We also  will  assume a constant velocity  (normalized 
to 1) over both segments of the path,  but t h s  assumption is 
made only  for  clarity  in our exposition  as  is  our  assump- 
tion that the dynamic  system  is  time  invariant. It should be 
clear  from our analysis  how our results can be modified to 
account for nonuniform velocity and time-varying  systems. 
Finally. to make our discussion  precise  mathematically, we 
will  use  stochastic  differential equations to describe the 
evolution of the processes of interest. 

Consider the model 

d x ( t ) = [ A x ( t ) + u ( t ) ] d t + d w I ( t ) .  O G t G 2 T  

(3.1) 

As we  saw in Case 1, we needed another set of equations in 
addition to the standard Lyapunov equation in order to 
calculate the covariance of x(t). Here we  see that  the set of 
equations essentially  comes about by augmenting the state 
x(t) with a shaping filter  model for the  field in order to 
obtain a process that is  Markovian. Once that is done, as in 
(3.8), we can use standard results to write down the covari- 
ance equation (3.9). 

The interesting part of this  analysis  occurs  over the time 
interval T 4  t 4 2T, since  here we are reversing  over the 
same  sample path of 5. Again our goal  is  to  augment x ( t )  
with  something in order to  obtain a Markov  model  over 
t h s  time  interval. In order to  do t h s  we clearly must 
consider a model for .$ that runs in  reverse.  Using the 
results  in [4] and [9] we can  write a reverse  time  model for 
the augmented  process x2( t )  as follows: 

where wI is a Brownian motion process  with - dx2( t )  

E[dw,(r)dw;(t)] = S , d  

and where 

u( t )  = 
O 4 t 4 T  

(3.3) 
0 G t 4 T (backward). (3.10) 

The notation “backward” is  used to emphasize the fact { ;::T- t )  T G  t G 2T’ 

Here f is a one-dimensional  process  (representing the field 
along the track), and we assume that f can be modeled as 
the output of a finite-dimensional shaping filter 

that (3.10) is a model for the process xi(t) that evolves 
backward in time  from T to t .  Here ( ~ C i ( t ) ,  Gt;(r)) is a 
Brownian  motion  process  whose increments backward in 
time are independent of the future values of x2(t), much  as 

d . $ ( t ) = F ~ ( t ) d t + d w , ( t )   O 4 t 4 T  (3.4) 

f(t> = HEW (3.5) 

where w 2  is  Brownian  motion  with 

E [ d w 2 ( t ) d w i ( t ) ]  =S2dt. (3.6) 

We  assume that all of the processes  above are zero  mean 
and Gaussian and that x(O), w,, E(O), and w2 are mutually 
independent. 

For 0 4 t G T we have the same situation as in Case 1 
considered  in the preceding  section.  Over  this  time  interval, 
while we are going  forward, the joint process 

(3.7) 

the forward  increments of (w;( t ) ,  w ; ( t ) )  in (3.8) are inde- 
pendent of past values of x2(t). Note also that the incre- 
ments of the )Cj processes  have the same covariances as 
those of the increments of the )vi. Finally, it is worth 
pointing out one interesting  aspect of the model (3.10). 
Specifically, note that the forward  time  model (3.8) has a 
block-triangular structure, which  is a direct  result of the 
fact that the &process  drives the x-process, but not vice 
versa.  However, the reverse-time  model (3.10) does not 
have  this  block-triangular structure, since 2,’ is not block 
diagonal. Again, this has a simple explanation: since E 
drives  the x dynamics  forward  in  time, the present  value of 
6 is  certainly  not independent of the  future of x. 

If  we  now let 

x 3 ( t ) = x 2 ( 2 T - r ) ,   q j ( t ) = G j ( 2 T - r )  (3.11) 

is  Markovian,  with the following state equation: we obtain a model forward in time  over the time interval 
T 4  r G 2T as  follows: 

dx3(t) = -{  [ F O  A ]  + [ 02 S o  S l ] ~ ~ ~ ( t ) } x 3 ( 1 )  
OGtGT(forward). (3.8) 

The meaning of the notation (forward)  in (3.8) will become 
clear  shortly. Thus the covariance & ( t )  of x?( t )  can be 
obtained from the differential equation 

+ [ T G t  G 2T (forward). (3.12) 

F O  The initial condition for  this  process  is  x3( T )  = x2( T ) ,  with 

Consider now the following  augmented  process  over the 
(3.9) time  interval T G  t 4 2T: 
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Then, using  (3.1),  (3.3), (3.9,  and (3.1 1) we obtain a 
Markovian representation for the behavior of this aug- 
mented  state 2 4 ( T )  = @ 2 ( T N 2  P 2 ( 7 % 2 2  P 2 ( 0 2 2  i . I @2(T))lI  (22(T))12 P 2 m 2  

where 

=[ dt. (3.15) 

Basically  (3.14)  describes a method, starting at t = T,  for 
simultaneously generating the future ( t  > T )  of x ( t )  and  its 
past ( t  < T ) .  In this  fashion we can take into account  the 
fact that the trajectory has reversed its direction. 

We can use  (3.14)  as the basis for  determining the 
covariance for x(t). Specifically,  define N ( t )  as 

Then, letting Z 4 ( t )  denote the covariance of X 4 ( t ) ,  we 
obtain 

z4(f) = N ( t ) Z , ( t ) + Z , ( t ) N ' ( t )  

s2 0 0 

+[; ;]I. (3.17) 

To obtain the initial condition for this equation, note that 

(3.18) 

\ (22(T)k2   (22(T))22  ( 2 2 ( 0 ) 2 2  I 
(3.20) 

Thus we see that, as in Case 2, a reversal of motion leads to 
an additional equation. Also, we can  regard the over-and- 
back  example as a degenerate form of the case  examined in 
the Appendix (referring to the notation in the Appendix,  in 
the over-and-back  case s l ( f )  = s 2 ( t )  for all t and t ,  = r,,). 
Thus the straightforward analysis of the Appendix will  lead 
to equivalent equations in this case. 

Note  that based  on the understanding gained in this and 
in the preceding section, we can see  what  will happen for 
more general  over-and-back  trajectories. For example, as 
illustrated in Fig.  4(a),  consider the case in which we 
continue the process for t 2 2T without any further change 
in course. It is not difficult to show that for t 3 2T we can 
once again obtain a Markovian representation for the joint 
process 

where the initial covariance Z2(2T)  for this process at time 
2T is obtained €rom the solution to (3.17) 

In this  case the time period [ T,2T]  represents a transient 
due to the turn, whose  effect will become  negligible if A is 
stable. In fact, assuming that there are  no further turns, x 
will  achieve the same steady-state covariance in this  case as 
it would from a trajectory that moves to the left for t > 0 
without any turns. Similarly, if  we consider a second course 
reversal as in Fig. 4@), we must obtain a reverse  time 
model  for x 4 ,  reverse  time once again to  obtain an equa- 
tion for xg(t) = x4(4T - t )  and  augment  this  with x(t) to 
obtain a Markovian model  over the time period 2TG t < 3T. 
Thus in this  case we obtain an additional equation for  the 
covariance  evolution. 

Finally, let us comment briefly on the problem of esti- 
mating the process  described  by  (3.1)-(3.6)  given  measure- 
ments.  Specifically, suppose we assume that the random 
field has been mapped  by a previous  survey 

y , ( t ) = C , ~ ( t ) + u , ( t ) ,  O s t = z T  (3.22) 

where E [ t 1 ~ ( t ) u ; ( ~ ) ] = R ~ 8 ( t -  T ) ,  so that we have the 
smoothed estimates 

i , ( t ) = E [ t ( t ) l y l ( ~ ) , 0 G 7 s T ] .  (3.23) Thus, if  we write 
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t=2T 

t=O 
c ,t =T c 

(a) 

t-2Tc , t=T * 
t=O 

(b) 

Fig. 4. Two over-and-back trajectories. 

Consider now a set of real-time  measurements 

~ ( r ) = C ~ x ( f ) + t ? ~ ( r ) .  0 ~ t ~ 2 T  (3.24) 

where E[o,(r)c;(r)]  = R26(t  - T )  and cI and c2 are inde- 
pendent. We  wish to use  the  previously  mapped informa- 
tion (3.23), together  with  the  new data (3.24). to estimate 
X({). 

This estimation problem can  be solved  completely  using 
the results  in [5] .  Specifically, among the problems con- 
sidered in [5]  are the following:  let x ' ( r )  = [ x ; ( r ) ,  x;(r)] be 
a Markov  process  described  by a linear stochastic system, 
and assume that x l ( t )  is a Markov  process  by  itself. 
Suppose that we obtain linear observations y1 of xl( r )  over 
the time interval [0, TI and process  these to  compute the 
smoothed estimate history 2 , , ( t )  over this time  interval. 
Furthermore. suppose that we obtain a second  set of linear 
measurements y, of x( t ) .  The real-time smoothiug problem 
is that of combining the estimate hstory *CIS( 7) .  0 d T < T 
and the observations y2( T ) ,  0 G T d r to compute the opti- 
mal estimate of x ( t )  given  the  full  first  set of observations. 
y1(7), 0 < T Q T and the  causally obtained second pass 
observations up to time r ,  y2( 7).  0 G T G t .  The snzoothing 
update problem is that of combining .C,J 7) .  0 < T < T and 
y2( 7) .  0 G T G T to compute  the optimal estimate of s ( t )  

given both full sets of observations, y l (  7). J . ~ (  T ) ,  0 < T G T. 
Efficient algorithms for  solving both of these problems are 
presented in [5]. 

To see that our present  problem can be  solved  in  terms 
of the solutions to the problems just described. it is  useful 
to consider  the  two  intervals [O. TI and [ T,  2 T ]  separately. 
Thus. let 

y 2 ( 4  = z ( t ) .  r €  [O. 7 - 1 ,  
y 3 ( t )  = z ( t ) ,  tE  [T ,2T] .   (3 .25)  

Over the interval [0, TI we  wish to compute 

~ ~ 2 ( r ~ T . f ) = E [ x 2 ( t ) ~ y , ( ~ ) , 0 G ~ G T , y 2 ( ~ ) . 0 G ~ G t ] .  

(3.26) 

Noting from (3.7) and (3.8) that E is a subprocess of x,. lve 
see that the  calculation of (3.26) in  terms of and J ! ~  is a 
real-time smoothing problem. 

Similarly. consider the estimation problem over the in- 
terval [T .2T] .  In this  case,  the quantity we  wish to calcu- 
late is 

2 4 ( t I T , T , t ) = E [ x , ( t ) l y , ( T ) , o G T G T , y 2 ( T ) ,  

X O G T G T , J J ~ ( T ) ,   T G T G ~ ]  

= E [ x 4 ( f ) I y l ( ~ ) . 0 G ' i G T , z ( ~ ) , 0 G ~ G t ] .  

(3.27) 

A procedure for  calculating  this quantity is as follows: we 
first calculate the  smoothed estimate of x , ( T )  given y l (  T), 
y2(7) 0 G T d T. Doing this in  terms of t,, and y2 is a 
smoothing update problem. Then, since x 3 ( t )  = x2(2T-  t )  
and since x 3 ( t )  is a subprocess of x4( t ) ?  we  have the 
real-time smoothing problem of calculating (3.27) in terms 
of the smoothed estimate history  for x 3  given yl( T ) ,  y2(  T ) ,  

0 d T G T and the  real-time data y3( T ) ,  T < T G r. We refer 
the reader to [8] for the  detailed application of the results 
of [5]  along  the  lines  outlined  above. 

IV. CONCLUSIONS 

In this paper we  have  examined the effect of a random 
field on a linear dynamic  system  moving through the field. 
We  have  developed a methodology for calculating the 
covariance of the state of the dynamic  system along any 
trajectory. The evolution of this  covariance  is  clearly  de- 
pendent upon the nature of the trajectory, and our results 
indicate explicitly  how  this dependence is  reflected  in the 
differential equations that must be solved to determine the 
covariance. 

In the case of one-dimensional motion we  have gone 
several steps further in our understanding and analysis of 
over-and-back  trajectories.  Specifically.  with the use  of the 
technique  for constructing backward  Markovian  models we 
have  developed  Markov  models  over  each separate uni- 
directional segment of the trajectory. The dimension of 
these  models  decreases  when the trajectory  goes  beyond the 
region  covered  in  previous  segments and increases  when 
there is a turn. Using  this  model and results on real-time 
smoothing we then were able to describe  the solution to  an 
over-and-back estimation problem based on results  in [5].  

Several directions for further work  suggest  themselves. 
The first  is  the  extension of the analysis of Section I1 to 
dynamic  systems  moving through three-dimensional ran- 
dom fields. For  stationary random  fields, a generalization 
of the  analysis  developed  in this paper should be straight- 
forward. However,  the interesting case,  motivated  by mis- 
sile-borne. rather than terrestrial navigation  systems.  is to 
nonstationary random  fields and to spherical coordinates 
-the  earth's grality field is not invariant with  respect to 
altitude! Present  covariance  analysis programs handle this 
problem in approximate and not completely satisfactory 
ways. 

A second  research direction is the detailed investigation 
of the estimation problem  discussed at the end of Section 
111. While  we  have  described the solution to this problem 
we have not exploited its structure as fully as is  possible, 
either in  terms of obtaining efficient on-line solutions or of 
gaining  insight. For example, it is  clear that the measure- 

~ 
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12 t 

Fig. 5. A trajectory involving a sharp turn. 

ments of the state x of the dynamic system provide 
information about the field 5. How  is  this information 
incorporated into the solution of the real-time smoothing 
problem? This is potentially important in problems in 
which we  wish to use the dynamic system to estimate the 
random field. Gravity  mapping using inertial instruments 
is a potential application. 

A more  difficult  extension of our work  is the develop- 
ment of Markov-type models and the corresponding esti- 
mation algorithms for more  general 2-D trajectories. This 
will  involve a significant  extension of the notion of a 
backward  Markov  process. 

Finally, an  important generalization of the problems 
considered in this paper are to systems  moving along 
trajectories which are random themselves.  Specifically,  re- 
femng to our general  model, suppose that (ql(t),  q2(t)) are 
in fact components of x. This is in fact an important model 
in some applications. W l l e  our results do not address this 
problem, they  may be of value in the case in which the 
trajectory is  only  slightly disturbed from  some  nominal. In 
that situation our analysis  might  form the basis for a 
perturbation analysis of the random trajectory problem. 

APPENDIX 

We consider one final  case of the problem of Section 11. 
In contrast to Case 2 in which the turn takes us into a 
neighboring quadrant, we  now consider a trajectory, il- 
lustrated in Fig. 5, that has a sharp angle and takes us into 
the opposite quadrant-i.e., northeast (NE) to southwest 
(SW). This example,  together  with  those  in the text, should 
make  clear the approach that can  be  used in analyzing 
general  trajectories. Additional examples of this  type of 
calculation are given  in [SI. In the figure t ,  is the time  when 
the direction of the trajectory changes  from NE to SE, and 
t, is the time we change  from SE to SW. Also t ,  denotes 
the time at which the trajectory crosses  the q, axis in the 
southwesterly direction. This corresponds to the time at 
which the q 1  coordinate of the trajectory has evolved  from 
0 to its maximum  value ql(t3) and has  decreased  back to 
zero.  The  time t ,  is defined  in an analogous fashion. Also t ,  
denotes the time at  whch the trajectory crosses  over  itself. 
Finally, wehave indicated the definitions of s l ( t )  and s2 ( t )  
for two  values of t, one less than t, and  one greater than t,. 

To determine the structure of the required  covariance 
equations, let us break the trajectory into its natural com- 
ponent pieces,  namely 0 G t < t,,  t, G t t,, t, G t G t,, t ,  G 
t G t,, t, G t < r,,, and t, < t. Over the first two  segments we 
have a situation identical to Case 2 considered in the text. 
That is, for OGt S t , :  L(t) = H,B,(t) [see (2.18)-(2.21)], 
while  for t, < t G t,, L(t) = H,[B,(t)+ C,(t)] [(2.28)- 
(2.35)]. While  the situation is  somewhat  more  complex  over 
the next  few  time intervals, the procedure we  use is  essen- 
tially the same: break  the integral expression for L( t )  in 
(2.12) into pieces,  each of which  can  be  calculated  by sets 
of differential equations. 

To proceed, note that from the graphical definitions of 
sl(t)  and s,(t) in  Fig. 5 we have that for t ,  G t G I ,  

ql( t ) -ql(s)>O forO<s<s,( t )  

q l ( t ) - q l ( s ) d O  fo r s , ( t )GsGt  (A.l)  

and 

q2( t ) - - , ( s )>0  forOGsGs,(t) 

q2(t) -q2(s)G0  fors , ( t )GsGr.  (A.2) 

Furthermore, for t, G t d t,, s2(t) G sl( t ) ,  while for t ,  G t G 
t,,  s,(t) G sz(t). From these observations and the proper- 
ties of the two-dimensional correlation function, it is 
straightforward to show that for t ,  G t G t, 

L ( 4  
= JS2(‘’HleF~(?~(‘)-‘I,(’))G I H2eF2(?22(’)-1)2(S))G2eA’(‘-’) ds 

0 

+ ~l(r)HleFl(n,(r)-nl(S))G 1 G’ 2e F ; ( ~ ~ ( s ) - I J ~ ( ~ ) ) ~  2e w - s )  

+ ~ : ( f ~ ~ e F ( s l ( l l - ~ l ( f ) ) ~ ~ ’  1 ,e E ( ? 2 ( s ) - ? 2 ( r ) ) ~ e A ’ ( r - s ) d s :  - 2 

2 ( 1 )  

(A.3) 
w l l e  for t, G t G t,, 

L ( t )  

= 
H,~F I (~~ (~ ) -R , ‘s ) )G  1 H2eF2(12(2)-?2Z(S))G2eA’(I-S)ds 

+ ~:’G;~F~(?I(S)-?I(~))H‘H I 2e F2(?2(r)-?,(s))G 2 e A ’ ( r - ~ )  & 

+ G;eF~(””)-?~I“))H’G’ F ~ l i ( ? 2 ( S ) - ? 2 ( t ) ) H : e ~ ’ ( f - S )  

J 2 ( l )  1 2e 
ds. 

(A.4) 

Continuing over the next interval t ,  G t < t,,, we see that 
ql(t)-  q l ( s ) ~ o  for all ~ < t .  Consequently, ‘ 
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for all s f t ,  and thus 

L( t )  = JrG;eF;(.,(5)-tl,(f))~G~ F;(~~Z(S)-.~(~))H:~A’(I-S) ds 
0 

I 2e 

(-4.6) 

From these equations it is a straightforward exercise to 
derive a set of differential equations for each of the terms 
in each  expression for L ( t )  much  as we did in Case 2 (see 
[8] for  details). Thus, as pointed out in the text, we add  one 
set of equations at time t ,  and  a second  at  time t , .  There is 
a change in these equations at t , ,  but no  change  in their 
number. However, one set of equations is dropped at t ,  
and the other is  deleted at t v .  Piecing  these equations 
together from interval to interval is  also no problem. In 

. particular, for the example we have just described 

where the letters ( B ,  C, D,  E )  are consistently identified in 
an obvious fashion with corresponding terms  in the in- 
tegral  expression for L ( t )  over the specified interval. From 
an  examination of the integral expressions (2.14). (2.23). 
(A.3), (A.4), (A.5), and (A.6) it  is not difficult  to see that 
these  matrices are continuous, so that we simply  piece 
together the differential equations for  each  set of matrices 
over  consecutive  intervals. Furthermore. terms are removed 
from the representation of L ( t )  only  when  they are pre- 
cisely  equal to zero  (e.g., an  examination of the integral 
equations verifies that B,( t,) = C,( t c )  = E,( t ,  ) = 0)  and are 
initiated with zero initial conditions. 
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