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Combining and Updating of Local 
Estimates  and  Regional  Maps Along Sets 

of One-Dimensional Tracks 

Abstract -In this paper  we  consider the problem of combining  and 
updating estimates that  may  have  been  generated  in  a  distributed  fashion  or 
may  represent  estimates,  generated  at  different times, of the same  process 
sample  path. The first of these cases has  applications in decentralized 
estimation, while the  second has applications  in updating maps of spatially- 
distributed  random  quantities  given  measurements  along  several tracks. 
The method of solution  for  the  second  problem uses the  result  of  the first, 
and  the  similarity  in  the formulation and solution of these problems 
emphasizes  the  conceptual similarity between many  problems  in  decentral- 
ized control  and in the  analysis of random fields. 

I. INTRODUCTION 

S UPPOSE THAT, as illustrated in Fig. 1, we are inter- 
ested in the estimation of a two-dimensional  field 

given data obtained along parallel measurement tracks. 
Problems of this type arise in the mapping of gravitational 
anomalies given data along tracks over the ocean [2], [ 141 
and the mapping of meteorological  variables  from data 
gathered by satellites [l]. Typically, in such problems the 
data are collected at several  times,  i.e., a number of distinct 
surveys are performed. In some  cases  all data  are used to 
produce a single  map 9f the desired  region, and as new 
data are collected, one is confronted with the map updating 
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Fig. 1. Parallel data tracks across a two-dimensional random field. 

problem: update  an existing map with a new set of survey 
data.  In other situations, different sets of data are used to 
produce separate maps,  perhaps of the  same region of the 
field, perhaps of overlapping regions, or perhaps of com- 
pletely separate regions. The map  combiningproblem is that 
of combining  these maps to produce a single map of some 
overall  region. In this paper we provide solutions to certain 
formulations of these  two problems, and, in the process, 
will solve a problem in decentralized estimation. In the 
remainder of the introduction we provide a discussion of 
our formulation that should  make  clear the focus and the 
contributions of this paper. 

Let f ( t ,  s) denote the two-dimensional random field, 
which we assume to be Gaussian  and, for simplicity,  zero- 
mean. In order to formulate the two mapping  problems 
mathematically, we assume for simplicity that there are 
only two  surveys to be  considered (the extension to N 
surveys  is immediate). As indicated in Fig. 2, t is the 
direction in which the tracks are taken. In particular, 
suppose  that the first  survey  measures f along the lines 
{ ( t , s j l ) J O ~ t ~ T } , j = l , ~ ~ ~ , M l  andthatthesecondsurvey 
measures the field along { ( t , s , z ) l O ~ t ~ T } , j = l  ;.., Mz.  
Assume further that we would  like our overall map to 
provide estimates of f along a grid of parallel lines that 
includes both of these  survey sets. For the map  combining 
problem, we assume further that there are two separate 
maps, each  based on  one of the surveys and covering  some 
set of lines including those for the corresponding survey. 

In our treatment we will view any collection of parallel 
lines of the random field  (i.e., f(t, s,), j = 1 , .  . , M )  as a 
vector function of t and further will  assume that this 
resulting  vector  process has a finite dimensional  shaping 
filter representation. In particular, we assume that the 
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values of the field along the grid of lines used for the 
overall map can be viewed as the output of the model 

x ( r ) = A ( t ) x ( t ) + w ( t )  (1.1) 

E [  w( s ) w (  T)’] = Q( t ) 8 (  t - T) (1-2) 

where w(r )  is independent of x(0 )  which  is taken to be a 
zero-mean Gaussian random variable with covariance Z(0). 
The set of field lines for each  survey can also be obtained 
as a set of linear combinations of the components of x ( t ) ,  
and consequently we can model the set of noise-corrupted 
measurements from the ith survey  by an equation of the 
form 

y, ( t )=C,( t>x( t )+u, ( t ) ,  i=1 ,2  (1.3) 

where u1  and u2 are independent of each other and of w 
and x(O), with 

E [ ~ , ( t ) u , ( 7 ) ]  = R , ( t ) a ( t - ~ ) ,  i=1,2.  (1.4) 

Here C,( t )x (  t )  equals the vector of values of the field along 
thelinesoftheithsurvey,i.e .,[f( t , s , , ) , f ( t , s , , ) , . . . ] ’  . 

For the map combining problem we assume that the 
processing algorithms for each  survey are based on differ- 
ent models: 

x , ( t ) = A , ( t ) x , ( t ) + w , ( t ) ,  i = 1 . 2  (1.5) 

E [ w , ( ~ ) w , ( T ) ’ ]  = Q j ( t ) 8 ( t - T ) ,  i=1,2 (1.6) 

y , ( t ) = ~ , ( t ) x , ( t ) + u , ( t ) ,  Z=1,2 (1.7) 

where x,(O) is taken to  be zero-mean with covariance C,(O). 
It is important to emphasize at this point one key feature 
of our work.  Specifically, the model for x(t), y l ( t ) ,  and 
y 2 ( t )  in  (1.1)-( 1.4) should be thought of as providing an 
exact representation of the field along the specified  grid of 
lines. On the other hand (1 S - (  1.7) should be thought of as 
providing a model-perhaps  exact, perhaps only ap- 
proximate-for the grid of lines used in the individual 
mapping procedure for  each  survey. For example, it is 
possible that x , ( t )  = x ( t )  so that xi (  t )  exactly represents 
the field along the same set of lines as in the overall map. 
Alternatively, x,([) might exactly represent the field along 
some subset of the lines used in the overall  map. In this 
case x , ( r )  = B , x ( t )  for  some matrix B,. On the other hand, 
it may be true that x , ( t )  + B,x(t) for any matrix B,. In this 
case either x,([) exactly represents the field along a set of 
tracks including some not in the set used in the overall map 
or x i ( t )  is only an approximate model for the  field along a 
set of lines obtained, for  example, by using a reduced-order 
model that neglects  some correlation in the field. In the 
following sections we  will begin  by assuming no relation- 
s h p  between the model (1.5)-( 1.7) (which we  will term the 
local model) and the model  (1.1)-(  1.4)  (which  will be called 
the global model),  except  for the assumption that the D, in 
(1.7) are the same as in (1.4)  (i.e., that we have  modeled the 
measurement noise correctly in the local  model). As we 

need to impose some relationship between local and global 
models, we  will do so. 

Given the models just described, we can now formulate 
our mapping problems precisely. In particular, let 
denote the smoothed estimate of x , ( t )  based on y i ( t )  and 
on the corresponding local model. That is, 

i , ( t ) = E , [ x , ( t ) ~ y ; ( T ) , O < T G T ]  (1 -8) 

where “E, ” is used to denote expectations based on  the 
model  (1.5)-(  1.7).  We also let 2,(r) denote the smoothed 
estimate of x ( t )  based on both y l ( t )  and y2( t ) :  

i , ( t ) = E [ x ( t ) l y , ( ~ ) , y ~ ( ~ ) , O ~ ~ ~ T l  (1.9) 

(“E” is  used  for expectations with  respect to the global 
model). The  map combining problem is then the problem 
of determining if it is possible to compute i , ( t ) ,  0 < r < T 
in terms of i , , ( t )  and i , ,(t), 0 G t < T and constructing an 
efficient algorithm if it is. The map updating problem is 
one of computing i , ( t ) ,  0 < t G T in terms of 2,,(t)  and 
y2(r), 0 G G T. 

In the following sections of this paper we provide effi- 
cient procedures for updating and combining smoothed 
estimates. Our method of solution for these problems is 
based on the two-filter form for optimum smoothers pre- 
sented in  [4], and a key step in our procedure is the 
solution of the problem of combining and updatin, = caus- 
al@  filtered estimates. That is, let 

i , ( t ) = E [ x ( I ) ~ y , ( s ) , y 2 ( S ) , 0 ~ S d t ]  (1.10) 

i , , ( t ) = E , [ x , ( t ) ~ y , ( s ) , O ~ s ~ t ] .  (1.11) 

Then the problem of combining local estimates is that of 
causally computing 2, from the 2, .  Note that this problem 
is  of independent interest, as it can be interpreted as a 
decentralized estimation problem;  where x(  I )  is the state of 
a large, distributed system, y l ( t )  and y z ( t )  are measure- 
ments made at different points in the system, and xl(t) and 
x 2 ( t )  are exact or approximate descriptions of the portions 
of the dynamics of interest to the ith local processor. A 
problem of this type was considered by Speyer [3] in the 
context of decentralized control and also by Chong [7], and 
our work in Section I1 represents an extension of their 
results. We  will comment on the potential utility of these 
decentraked estimation results in the following section. 

In the remaining sections of this paper we  will take as 
our starting points the one-dimensional models  given in 
(1.1)-( 1.7). Before analyzing the problems we have  posed 
in  this context, it is clearly appropriate to address the 
questions of the restrictiveness of the assumption of the 
existence of a finite-dimensional model  as in (1.1)-(  1.4) 
and of the specific measurement geometry of Fig. 1. To 
begn  ths discussion, define the two-dimensional correla- 
tion function 

R ( ~ , T ; s ~ u ) = E [ ~ ( ~ , ~ ) ~ ( T , u ) ] .  (1.12) 

Then one important case in whch we can find a model of 
the desired  form is  when R is separable: 
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R ( t ,  7; S, 0) = R l ( t ,   T ) R ~ ( s ,  0 )  (1.13) 

with R and R ,  square 

R , ( t , T ) = R ; ( T , t ) ,   R , ( s , a ) = R ; ( a , s )  (1.14) 

and R ,  itself separable 

R , ( ~ , T ) = H ( ~ ) G ( T ) ,  t 2 r .  (1.15) 

The conditions (1.13)-(  1.15) are a slight generalization of 
classes of processes  considered  by others. For example, if 
we had further assumed separability for R ,  as in (1.15) and 
made the field stationary (so that (1.15)  becomes R ' ( T )  = 
HeFTG, T 3 0), we would  have the continuous-space version 
of the model  considered  by Attasi [8]. The derivation of a 
model of the form of  (1.1)-(1.14) for a field  satisfying the 
above conditions is a straightforward exercise  (see, for 
example, [ 161, [ 171). 

It is important  to point out that if the random field 
under consideration is not separable, then the resulting 
model for a set of parallel tracks  is infinite dimensional. 
While our results do  not apply to such problems,  they do 
shed  significant light on the structure that map  updating 
and combining algorithms must  have in this  case. In partic- 
ular,  any nonseparable covariance can be approximated 
arbitrarily closely by a separable one [8], and thus we can 
obtain  suboptimal  procedures  that are arbitrarily close to 
the optimal one. Furthermore, initial results in [ 161 indicate 
that the discrete-space  version of the results  derived  here 
are applicable to the nonseparable case. Thus, while there 
are interesting problems that  are still outstanding for con- 
tinuous-space nonseparable fields,  much of the conceptual 
nature of the  problem  and solution can  be 'ascertained 
from the simpler problem considered  here.  Also,  the same 
can be  said for the case of nonparallel measurement 
geometries. In particular, an example in [ 161 indicates that 
discrete-space  versions of problems of this type can  be 
formulated  in  terms of finite-dimensional linear  models 
and consequently  can be  solved  using the discrete-time 
counterparts of the results derived in this paper. Also, one 
will be able to use our results to construct suboptimal 
finite-dimensional estimators which are arbitrarily close to 
the optimum for continuous-space problems. 

For these reasons we feel that the results presented in 
this paper represent an  important step in the development 
of efficient  high-performance mapping algorithms.  Since 
we  will focus in this paper on  the  one-dimensional  formu- 
lation in (1. I)-( 1.7),  we have  chosen to present our results 
in the continuous-parameter case,  where the algebra is less 
cumbersome,  in order to highhght their nature more clearly. 
In a subsequent  paper we  will use the ideas and results 
developed here in order to address the two-dimensional 
aspects of the problem and will  use both the continuous 
and discrete formulations. 

In the next section we present and discuss the solution to 
the problem of combining decentralized filtered estimates, 
while  Section I11 contains the solution of the problems of 
combining  and  updating  smoothed estimates. In Section IV 
we  apply  these results to the problem of real-time smooth- 

ing, that is, of estimation given a previous smoothed esti- 
mate  and new  real-time data. The  paper concludes  with a 
discussion in Section V. 

11. COMBINING  DECENTRALIZED FILTERED 
%TIMATES 

A.  The General Case 

Consider the global  model of  (1.1)-(1.4) and local mod- 
els of  (1.5)-(1.7). In this section we examine the causal 
computation of Z f ( t )  from zl f ( t )  and 2,,(t)  [see (l.lO), 
(1.1 l)]. As  we have said, this is a necessary first step in the 
derivation of our  smoothing results. In the context of 
decentralized estimation, the implications of this problem 
are several.  Specifically, if  we can recover 2 J t )  from the 
local estimates, then much of the raw data processing can 
be  done locally, without  any loss of global performance. In 
addition, if local  filtering is performed  on  the  data, we  may 
reduce the required bandwidth for transmission of infor- 
mation to a centralized  processor. Furthermore, allowing 
the local  models to differ from the global models leads to 
several potential advantages. For example, presumably the 
local models are lower dimensional  than (1.1). In this case 
the local  processor  can be  made far less  complex than the 
global processor. We  will comment further on these  issues 
as we proceed and also in Section V. 

To begin our derivation, note that ( t )  and 2,,(t) are 
computed by Kalman filters based on the local models': 

~ j , ( t ) = [ A j - P , f H ~ R ; ' H j ] Z , ( t ) + P j , H ~ R ; ' y j ( t ) .  

(2.1) 

The covariance PI, can  be  precomputed from either of the 
following equations: 

P j f  = AiPif  + PjrA{ + Q j  - PjfH;Ri'HIPlf  (2.2) 

Z('l7 1- - - P ~ l A . - A ! P . - ' - P ~ ' Q j P ~ i + H ~ R ~ i H j  lf I I I f  I f  If 

(2.3) 

with the initial condition P j f ( 0 )  = Z,(O). 
As will become  clear shortly, a necessary and sufficient 

condition for our being able to recover 2f from  and 2,, 
is that there exist  (possibly  time-varying) matrices MI and 
M ,  such that 

C j = H j M l ,  i=1,2.  (2.4) 

This condition is equivalent to the statement that if any set 
of components of Hjx,  are linearly interrelated, then the 
same set of components of Cjx  must  have  exactly  the same 
interrelationship. That is, if the local  models (1.5)-(1.9) 
assume any  redundancy among the sensed  quantities-i.e., 
the components of y, -then that redundancy must actually 

'From this point on,  the explicit time dependence of matrices will be 
suppressed. If a particular matrix is constant.  we will explicitly state this 
in order to avoid confusion. 
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exist  in the global  model. Note that valid  choices for MI In order to simplify notation, define the following quanti- 
and M2 are ties: 

MI = HjC,, i=1 ,2  (2.5) F/= A -   P f C ; R I ' C l  - PfC;R;'C2 (2.10) 

(where ''t" denotes pseudoinverse) and the choice  is unique <./ = A ,  - P,rH,'R, 'H, i = 1,2 (2.1 1) 
only if N ( H , )  = ( 0 ) .  

Thus, the dynamics (lS), (1.6) can  be  totally arbitrary, 
as long  as  (2.4)  is  satisfied. For example,  one implication of 
this condition is that the dimension of x i  must be at least 
as large as the number of linearly independent  components 
of the measurement  vector y,. However,  the condition (2.4) 
is  sufficiently weak so that, if  n7e desire, we can always 
choose a local  model of this  minimal  dimension that satis- 
fies the condition. Therefore, the condition does not re- 
quire that there be any  physical relationship between the 
local states, x ,  and x2, and the global state x. On the other 
hand, (2.4)  suggests an interpretation of x i  as being a part 
of the global state, specifically M,x. If t h s  is the case,  then 
(1.5)  implies that this part of the state is  decoupled  from 
the remaining part of x in the sense that M,x is  itself a 
Markov  process. This is, of course, not usually true in 
practice, where approximations are made in assuming that 
the couplings  between the local states can  be neglected  or 
can  be replaced  by additional white  noise  sources. If, 
however,  it  is the case that x = M,x,  we obtain some 
simplifications in the equations that define our algorithm, 
and we  will discuss  these at the end of this section. 

As a first step in  deriving our algorithm.  consider the 
Kalman filter for  the calculation of the global estimate if: 

i/(t) ' [ A  - P/C;R,'C, - P / C ; R ; 1 c 2 ] q l )  

+ PfC;R, 'y , ( t )+PfC;R'Iy~(t)  (2.6) 

where Pf can  be  calculated  from 

Pi = AP, + P/A'+ Q - PfC;RFIC,Pf - PfCiRr'C2P, 

(2.7) 

with P/(O) = 2(0). The solution to the problem we have 
posed can be obtained as follows. Rearranging (2.1) we 
have2 

H,'R;'yi = c7'(itr - [ A ,  - Pi IH, !R; 'H , ] t I f ) .  (2.8) 

Examining  (2.6), we see that the quantities needed  in the 
calculation of if are C; R ,  ' y ,  and C;RT 'y,. These  can  be 
obtained from (2.8) if and only if matrices MI and M2 exist 
that satisfy  (2.4).  Assuming that this  is  the  case, we can 
combine (2.4), (2.6), and (2.8) to obtain 

i f  = [ A -  P~c;R;'c, - P / C ; R ; ' C , ] ~ ~  

+ P f M i P G ' { i l f  - [ A l  - Pl fH;R , 'H , ]P l / }  

+ PfA4;PG-'{ i2f-[A2-   P2,H;R; 'H2]iz i} .  

(2.9) 

(2.12) 

Then it can  be  checked by straightforward algebra that 12, 
can  be  calculated  from the following equations: 

(2.13) 
(2.14) 

where' 

Kif = q G I r  - G I ,  - 

= [ PIM:P,f'Q,Pij' - QM;PG'] 

+ [ P ~ M , , ! A ~ P f f ' - P P f A ' M ~ P ~ ' - P P l ~ , ! P ; i 1 ~ ,  

i=1,2.  (2.15) 

If all of the models,  local and global, are time-invariant 
and if  we consider the steady-state case, then the above 
solution still applies (with n;r, = 0) and is  also  time-in- 
variant). 

This  is the general solution to the problem of combining 
filtered estimates. In addition, this solution can  be directly 
adapted to the  problem of computing 2, from ilf and y,. 
This is  of interest in situations in which one local  processor 
transmits information to a global  processor that  has mea- 
surements of its own. We can  solve  this problem by return- 
ing to (2.6),  and instead of replacing both C;R,'y, and 
C;RY1y2 by expressions in terms of zjf and 8,,, we make 
this substitution only for C;R;'y,. The remaining analysis 
is  analogous  to that carried out previously, and the result  is 

?/ = P/ + G,/ f , /  (2.16) 

where 

pf = 5 p f  + K,21 f  + PfC;RY'y2. (2.17) 

Here 5, Kif, and GI, are the same as  given  previously. 
In the  next two subsections we present two  special cases 

whch result in some simplifications and  consequently al- 
low  us to interpret our result in more detail. 

3, The Special Case of Identical  Local and Global Models 

In ths  section we consider the case  examined  by  Speyer 
in [3]. Specifically. we assume that the models  used  by the 
local  processors are identical to the global  model. That is, 

A l = A 2 = A ,  Q,=Q,=Q, 
C ,  = Hi, C, = H , ,  MI = M2 = I .  (2.18) 

'Note that in (2.15) we  have  implicitly  assumed that MI and A42 are 

local models.  in that in (2.8) we are  assuming that P,r is  invertible.  This  example.  in  the  time-invariant case i t  is certainly true since M ,  and M2 
'Note  that we have  implicitly  made one  other  assumption  about the differentiable. Ag.ain. t h i s  is not  a  particularly restrictive condition. For 

will  be  guaranteed as long as 2,(0) is  invertible. can  be taken to  be  constants. 
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In this case the expressions for K,, and K,, simplify to 

K ~ ,  = P,P;IQP;I - Q P ; ~  = ( P,P;~ - I)QP;I 

(2.19) 

and 

2, = 6, + Pi( P , l l i , /  + PGIR2/) .  (2.20) 

Note  that the second term  in the expression for 2, is the 
usual expression for combining  independent estimates [4], 
[5 ] .  However, t,, and R,, are not  independent  in general, 
and 6, represents a correction for this correlation. 

The reason that i,, and i2, are not independent esti- 
mates is that they are based not only on measurements 
with independent noises, but also on a priori information. 
Specifically, both of the local estimates incorporate statisti- 
cal descriptions of x(0) and w(t) ,  and thus the errors  in 
both estimates are correlated with  these  processes. It is the 
correlation with the process w ( t )  that leads to the need for 
a dynamical correction (6,) to account for the correlation 
in the processes t,, and X,,. If Q = 0 (i.e.,  if w(t) is not 
present), then K,, = 0 and hence (, = 0, and 2, is a mem- 
oryless function of and 22,. In this case it is straightfor- 
ward to show that 

R f W  = P , ( ' > [ P G ' ( ' ) ~ l f ( ' ) +  4 7 W 2 , ( ~ ) ]  (2.21) 

P ~ I ( t ) = P y l ( t ) + P ~ ' ( t ) - X - ' ( t )  (2.22) 

and 

where X( t )  is the unconditional covariance of x( t ) .  
Note  that even in this case R,, and R,, are not indepen- 

dent estimates because of the correlation of the estimation 
errors with x(0). Following the work  of Wall [4], we can 
interpret (2.21) and (2.22) as follows.  We  have three sources 
of information on which to base  our estimate of x(t), the 
measurement processes y, and y2 and  the a priori informa- 
tion about x ( t ) ,  provided by the unconditional propaga- 
tion of the mean and variance  from the specified statistics 
of x(0). The estimate ti, uses yi and the a priori informa- 
tion, which, therefore is used  twice. Equation (2.22) cor- 
rects for the fact that  both PV' and PG' reflect the uses of 
this information. Also, (2.22) is the correct expression 
under the assumption  that x(0) is  zero  mean. If this is not 
the case, that is, if its mean m(0) # 0, then (2.21) is 
replaced  by 

R,( t )=  P , ( ' ) [ P ~ ' R l r ( ' ) + P ~ l R z , ( t ) - - Z - ' ( t ) m ( t ) ]  
(2.23) 

where m ( t )  is the unconditional mean of x ( t ) .  Again, we 
see the "subtracting out" of the effect of a priori informa- 
tion, so that the duplication of this information is removed. 

Finally, note  that Kif = 0 also if P = Pi,. However, this 
is only the case if the other set of measurements contains 
no information. In general, if the system is observable from 
each  set of measurements (P,P; - I) will  be  invertible. 

obvious generalizations. For example, if part of the state is 
uncontrollable from the noise, then the corresponding part 
of 2, is a memoryless function of tl, and R2,. Also, if one 
set of measurements, say  set 1, contains no  information 
about a part of x ,  then the corresponding  parts of P, and 
P,, are identical. 

C. The Case in which the Local Model is a Subsystem 
of the Global Model 

In some  cases the dynamics of one of the local models 
may, in fact, be the exact  dynamics of a subsystem of the 
global model.  Specifically, if this  is true of local model 1 ,  
then 

x l w  = M , ( t ) x ( t ) .  (2.24) 

Equation (2.24) has several important implications. Since 
x, satisfies (lS), (1.6) and x satisfies (l.l), (1.2), (2.24) 
states that the Markov  process x ( t )  has a subprocess, 
namely x,( t ) ,  that is Markov  by itself. Some  simple algebra 
allows  us to conclude that (2.24) implies the following 
relations: 

A I M ,  = 4 2 ,  + M I A  (2.25) 

w ,  = M,w (2.26) 

Q,= MIQW (2.27) 
X ,  = MIEM;. (2.28) 

Note that from (2.28) it is clear that Z1 is invertible only if 
M I  is onto  (assuming  that 2 is invertible).  We will assume 
that this  is the case,  since  from (2.24) we see that any other 
choice  for M I  leads to an x ,  with  fewer  degrees of freedom 
than it has components. In addition, under these condi- 
tions, the expression for K,, simplifies  as  follows: 

K,, = P,M; PGIM,QM; PG1 - QM; PG' 

= [ PfM;PG'Ml - I ]  QM; PV'. (2.29) 

This equation bears some  resemblance to the form of the 
gain when the local  model  is the same as the global  model. 
In order to gain further insight, let us consider a particu- 
larly convenient  form for the global  model. This is done  by 
choosing a basis for the global state space so that the 
components of x ,  are the first components of x .  Assuming 
without loss of generality that the global model  is in this 
form, then 

x =  (;) (2.30) 

M , = ( I  i 0) (2.31) 

(2.33) 

y , = ( H 1  i 0,(",1+.I (2.34) Of  course,  all of the previous statements have certain $ 8 ,  
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tions ( P,)ll = PI,, which  merely state  that local  processor 
no. 1 produces the best  filtered estimate of x ,  given yI. 
From (2.36)  we see that this observation is consistent with 

y2 the fact that the first part of K, ,  is zero. Also, the second 
piece of K , ,  becomes 

- 
Fig. 2. 

(2.35) 

T h s  form is illustrated in  Fig. 2. Note from the figure that 
it is  clear that  the global  system is  not observable from J ,  

alone. Using (2.30)-(2.35),  (2.29)  becomes 

where 

From this and  the previous equations  and from the figure 
we can get a clearer picture of the structure of our solution 
in this case.4  Since K, ,  is partitioned, let  us consider each 
part individually. The first piece, [(P,),,P,/' - I ]QIP, i ' ,  is 
exactly of the form of the  gain that we  saw in the preceding 
subsection  when the local and global  models  were  identical 
[see  (2.19)]. T h s  is not surprising, as the  first  piece of the 
global state x is nothing more than xl. for  which  the  local 
and global  models  agree.  Therefore. the incorporation of 
,?,/ into a global estimate of this piece of x, given and y2, 
is  the  same as the problem we considered  in 11-B. 

The second  piece [(P,);zPGIQl - Q;2]P,7' essentially 
tells us how to use  the estimate of x ,  to  obtain an estimate 
of the  remaining part of the state. Consider for the moment 
the case  in  which there is no second  set of measurements, 
that is,  when C2, = C,, = 0. In this case we have a cascade 
interconnection of  two  systems and measurements  from 
only  the  first of these. It is  clear that  under these condi- 

and using  (2.10)-(2.14) and (2.36), the optimal estimator 
for y becomes 

Y , = s / + ( ~ , ) ; 2 ( ~ , ) , 1 f l ,  (2.38) 

These equations describe  how the optimal estimate of the 
unobservable part of a system can be constructed from the 
optimal estimate of the observable part.  It  is worth noting 
that this particular special  case  is of practical importance, 
for  example,  in navigation systems  in whch accelerations 
are sensed and in  which  velocities and positions are  to be 
estimated. Our result states that the acceleration  measure- 
ments can be processed first (locally) to produce optimal 
acceleration  estimates, and these estimates can then be 
used (perhaps in a centralized  processor) to compute  the 
optimal estimates of velocity and position. In   ths  case the 
complexity of each of the two  processors (for fl ,  and for 
f,) is  less than the complexity of a global,  centralized 
estimator for x .  Such a procedure may also be of value 
even if yz is present; for  example, if  we do have velocity or 
position sensors. In th s  case, from (2.17) we see that our 
results tell  us  how to reconstruct the optimal estimate of 
acceleration,  velocity, and position in  terms of velocity and 
sensor measurements and the estimate of acceleration ob- 
tained by  processing the accelerometers alone. Again, there 
may  be implementation advantages in breaking the overall 
optimal estimator into smaller  pieces. 

Note also from (2.29) that KIc = 0 if Q = 0. In fact, from 
(2.31) and (2.33)  (together  with the fact that Q12 must be 
zero if Q, is), we see that K, ,  = 0 if Q, = 0. In this case, 
whether y2 is present or  not, i i depends on in a 
memoryless fashion. This is  best understood by noting that 
with Q ,  = 0, x ,  is a time-varying  bias' 

x@) = Q , ( t , O ) x , ( O )  (2.40) 

and i t  also produces a time-varying  bias  in y: 

Y ( r ) = @ ~ 2 ( , . O ) Y ( O ) + ~ ' ~ 2 2 ( ~ , ~ ) A 2 1 ( 7 ) 5 1 ( ~ ) ~ ~  0 

41n  the  follolving  discussion  we  use the  notation developed  previously. f [@z2( t ,  7)[0 11 W( T )  dT. (2.41) 
Thus ,fl, refers to  the local estimate of s 1  given ( P I  is its  locallycom- 
puted  covariance)  and .i. refers to  the global estimate o f  I given and x2 
(global covariance P ) fn  the particular case being examined  here, X,= The measurements y ,  provide information about the 
(.Y; y ' )  and  therejore there is some chance of confusion.  We  have second term in (2.41).  which can be rew,fitten as 
attempted to reduce  this chance by using . f I ,  and i only in  the sense 
described  above. Also. we have denoted the upper lefthand block of f, bl; 
( P i ) ,  , [see (2.37)] to distinguish it from f,[. Here ( P i )  is  the estimaiion 
error  covanance of x ,  given J', nnd x2 .  whlle fli is  the error covariance 'Here Q I ,  is the  state  transition matrix associated  with A , .  Similarly. cPz2 
based only on xI.  is the  state  transition matrix for A z z .  
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[p22(r, 7)A21(7)@(7,  f >  d7 x , ( r ) .  (2.42) 1 
Thus the best estimate of y given the measurements y ,  is 
simply a memoryless function of f For example, if we do 
not have a second  set of measurements (C,, = C,, = 0), 
then from  (2.14),  (2.31), and (2.36)  we find that 

ff = (Pf);2Pl7'f l f '  (2.43) 

111. THE COMBINING AND UPDATING OF SMOOTHED 
ESTIMATES 

In this section we consider the problems of combining 
and updating smoothed estimates which  were introduced in 
Section I [see,  in particular, (1.8) and (1.9)]. As we  will see, 
the  updating problem  always has a solution, while the 
combining  problem can be solved  only  when  some further 
mild restriction, beyond the existence of M I  and M2,  is 
placed on the local models. In the next subsection we 
develop the basic ideas behind our approach, while in the 
subsequent two  subsections we address the two  special 
cases  considered in Sections 11-B and 11-C,  which are the 
most important for problems of random field  mapping. 

A .  The General Case 

The starting point for our analysis is the two-filter form 
for the optimal smoother. In particular, we will  follow the 
approach described in [4] and in [15]. In this approach the 
smoothed estimate is a weighted combination of a forward 
estimate, produced by the usual Kalman filter, and a 
reversed estimate, produced  by a Kalman filter based on a 
reversed-time  Markov  model. This approach has the ad- 
vantage of not involving infinite initial error covariances. 
For all of this we assume that x(0) is zero-mean  and that 
the local  processor filters (forward and reverse) are initial- 
ized at zero. Nonzero initial conditions can easily be 
accommodated. 

Let us summarize the smoother equations for each of the 
two  local  processors. The  forward estimator for processor i 
( i  = 1,2) is specified by  (2.1)-(2.3). The reverse  time esti- 
mator involves the unconditional covariance for the local 
model  assumed by the processor,  which  can be calculated 
from 

2, = A i &  +ZiA; + Qi (3.1) 

or 
d 
dt 
-zl-'= - ~ l ~ ~ i - A ~ 2 1 ~ ' - Z l - i Q l Z ~ ~ ' .  (3.2) 

The reverse-time estimator operates backward in time from 
t = T and  is  given  by 

- Ri, = [ - Ai  - Qi2Y' - Pj,H,'R,'Hi]fi, + P,,H;R,'J: 

which  is a backward K h a n  filter, with  covariance also 
calculated backward  in  time [with initial condition P J T )  
= Z,(T)] from either of the following equations: 

- Pi, = - [Ai + QiZ,  '1 Pi, - Pi,[ Ai + Q j 2 ,  '1 ' 
+ Qi - P, ,H~R~ 'HiP l ,  (3.4) 

- - ( P ; ' ) = P ; ' [ A i + Q , Z ~ ' ] + [ A i + Q i L 1 ~ ' ] ' P ; '  d 
dr 

- PG'QiP;' + H,'R,'H,. (3.5) 

The smoothed estimate fi, is  then  given  by 

fjs = Pi,[  P; I f i f  + P; ' f i r ]  (3 4 

pi;' = pi;' + p;' -z{:'. (3.7) 

where 

The overall  smoothed estimate satisfies a similar set of 
equations 

2, = P, [ P; 5, + P,- ' 4  (3.8) 

f , x-' (3.9) 
p, - '=p-I+p- ' -  

where Z is given  by either of the equations 

~ = A Z + Z A ' + Q  (3.10) 

- 
dt 

Z-1 = -2 -Q-A'Z-I  -z-'Qz-l. (3.1 1) 

Also, Pf is  given by (2.7) or equivalently  by 

-(p;')= d -p;IA-A!pT'-p- '   p- '  
dt f Q f  

+ C;R,'C, + C;R,'C2 (3.12) 

and P, satisfies both of the following: 

- P ; r = - [ A + Q z - ' ] P , - P , [ A + Q z - ' ] ' + Q  

- PrC;R,lCIPr - PrC;R,'C2P, (3.13) 

- - ( P L 1 ) = P , - ' [ A + Q 2 - ' ] + [ A + Q Z - 1 ] ' P p '  d 

- Pr-'QPr-' + C;R,'C, + CiRT'C,. 

dt 

(3.14) 

Using the results of the previous  section, we can calcu- 
late 2, in terms of f,, and f2f as in (2.13), (2.14): and by 
looking at the  problem in reverse  time, we can  use the same 
results to compute 2, in terms of f l r  and f2,. The resulting 
equations are 

fr = 5, + GIrflr + G2rfZr (3.15) 

- i r = ~ r ~ , + K , r f , r + K , r f , r  (3.16) 
F, = - A - ~ 2 - l  - P,c;R;'c, - P,C;R,~C, 

(3.3)  (3.17) 
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Gi, = P,Ml1P;' (3.18) 

K,,=[P,M:P,T'QiPi;'-QM:P,T1] 
+ { ~ , M : [ - A : - Z ~ ' Q i ] P , T 1  

- Pr[ - A'-Z-'Q] M : P i l }  

+ PrM;P,; I .  (3.19) 

From (2.13),  (2.14), (3.Q (3.15), and (3.16), we  now  have 
an algorithm for calculating 2, from iIr ,  and .2?,. 
What we  would like is to  compute 2, in  terms of and 
i2,. To see  when and how  this can  be done, we note first 
that straightforward algebra  [using  (2.12).  (2.14),  (3.6). 
(3.Q (3.15), and (3.18)]  yields 

2, = P,[ Pyy , ,  + P ; y r  + M ; P ; I i l s  + M;P,;112,]. 

(3.20) 

The last  two terms on the right-hand side represent the 
type of combination of estimates one would  expect if the 
two sets of measurements had independent sources of 
error. However, as we have mentioned, they are correlated. 
and  thus we have correction terms to account for t h s  
correlation. 

We  have  now  reduced the algorithm for calculating 1, to 
equations (2.13),  (3.16), and (3.20).  We  have eliminated i f f  

and if,, and replaced  them  with ii, in  (3.20), but (2.13) and 
(3.16)  still  involve  the forward and reverse  estimates. Con- 
sequently, we are faced  with something that resembles an 
inverse system problem: we want to express  the  term 
involving 2, in (2.13) and the term involving if, in  (3.16) 
by terms  involving ii,. As we  will see  in the next  two 
subsections, this cannot always be done, but there are some 
very important cases  in  which it can be done.  The most 
basic of these  is considered in the following subsection. 

B. The Special Case of Identical Local  and  Global Models 

As in Section 11-B, consider the case  when  (2.18)  holds, 
i.e.,  when x I  = x? = x .  For this case we obtain considerable 
simplification. Also, in this context we can readily examine 
and solve the updating problem introduced in Section I in 
adhtion to the estimate combining problem. 

Specializing  (3.20) to the case when the local and global 
models are the same we obtain 

Zi/  = P,f 'i,,, 

21, = P,; 12,, 

z,, = P,; 1ilS = Zl/ + z,,. (3.24) 

Differentiating z,,, and z,,, using  (2.1),  (2.3),  (3.3), and 
(3.10). and performing some algebra, we obtain 

i,,, = - ( A ' +  PGIQ)z i f  + C;R;'yi (3.25) 

i lr= -(A'+Z-lQ-P,T'Q)~,,-C:R, 'y, .  (3.26) 

If we add these  last  two equations and use  (3.24)  we obtain 
the following  expressions: 

Qz,,, = PI,[ - if, - (A '+E- 'Q - P,T'Q)z,,] (3.27) 

Qzir = Pi, [ i,, + ( A ' +  P,? 'Q)zl,] . (3.28) 

From (2.13),  (3.16), and (3.22)-(3.24),  we see that we can 
use  (3.27) and (3.28)  in  these equations to replace if,, gir  
with iiS. Thus, in t h s  case, we can obtain  an algorithm of 
the desired  form. Note  that we haven't  shown that we can 
recover .?,,,. 2,, from if,, or equivalently z,,,, z,, from z , ~ ,  
but we have  seen that we can recover Qz,, and Qz,,. and 
this is  all that we need for our problem. Note, however, 
that the  expressions  (3.27) and (3.28) for these quantities 
involve  derivatives of z l s .  In order to avoid  these, we must 
use a feedforward formulation. First of all. substituting 
(3.22) and (3.27) into (2.13) we obtain 

r = I  

~ P , , [ i , , + ( A ' + ~ - l Q - P , ~ ' Q ) z i ~ ] .  (3.29) 

From (3.24) we know that 

PlS i iS  = 21, - PI, PI; 121,. (3.30) 

Now define 

Differentiating this,  using  (3.31) we obtain 

Kif  = [ P,,P; - I ]  QP,f I (3.22) (3.32) 

K,,=[P,Pi;'-I]QP,T'. (3.23) We  have all of the equations needed to simplify this 
equation except for an expression  for pis. From (3.7) 

We  now  see that  the quantities we actually  need in (2.13) 
and (3.16) are QP,f'ii,, and QP,T1ilr. In order to proceed, - ( P , ; ~ ) = z ( P , ~ ~ ) + z ( P , ; ~ ) - ~ ( 2 - ~ - )  d d d (3.33) 
it is  useful to define dt dt 
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and using expressions for the terms on the right-hand side 
[(2.3),  (3.5), and (3.11),  together  with  (2.18)], we obtain 

A great deal of algebra then yields 

q f  = F f g f  - P f C ; R , ’ ~ x 1 ,  - PfC;R,’CIx,,.  (3.35) 

Note that “2”-subscripted matrices multiply 8,, and “1”- 
subscripted matrices multiply 2,,. 

We can  follow  exactly the same ideas for the reverse 
filter. Let 

L 

q,=&+ 2 [ P r P ; ’ - l ] R j s .  (3.36) 
i = l  

Then 

- 4,= 59, - PrC~R,’C2x1, - PrC;R,’C1R2,. (3.37) 

Substituting (3.31) and (3.36) into (3.21),  we obtain 

1 , 
L L 

- 2 [ P ~ 1 - P ~ L ] 8 i s +  2 P j i 1 i Z i s  
i = l  i = l  

Using  (3.7) and (3.9),  we obtain the following algorithm 
for combining smoothed  estimates: 

2, = P,{ PT1q/ + p,-‘q,} + R l ,  + R2s (3.39) 
q f  = 3qf - P/CiR , ‘C2 i I ,  

- PfC;R, lC1 i2 ,  (3.40) 
- 4,= 49,  - PrCiR,‘C2R,, 

- PrC;RF1C1R2,. (3.41) 

If  we think of optimal estimates as orthogonal projec- 
tions in  spaces of random variables, then R l s  is the projec- 
tion of x onto OdI, the subspace  spanned by the first pass 
measurements.  Similarly, R,, is the projection onto %2, and 
x ,  is the  projection onto + q2. If and ?I2 were 
orthogonal, i.e., independent, then is would  equal R I s  + z2,. 
However,  they are not; and thus the other terms in (3.39) 
account for this. 

We can  actually  see t h s  point more  clearly if  we look at 
the smoothing  update  problem, that is, the problem of 
computing f, in terms of the time history of the  old 
smoothed estimate ils and the new data 05,. The solution 
to this problem is readily obtained in a manner  analogous 
to that used in deriving  (2.16) and (2.17). That is:  if  we 
perform all of the analyses we have just done, leaving y, 

alone and only  replacing yl by iI,, ilr, and eventually  by 
gIs, linearity guarantees that the input-output relation 
from R,, to 2, is the same  as that obtained already. Thus, 
all the work we need to  do is already done, and we can 
simply  write  down the solution to the updating  problem as 
follows: 

2, = P,[ PYIrj + P;Irr] + iIs (3.42) 
kf = qrj + Pf C;Ry1y2 

- PfC;R,‘C2R1, (3 -43 1 
- kr = F,rr + PrC; RY1y2 

- Prc;R,lR,,. (3.44) 

Here, if we let 9 denote the orthogonal complement of (2.J I 
in + q2 -i.e., the part of q2 that is independent of (2.Jl, 

then + %2 = ’%,@F, and f,, is the projection of x onto 
@dl, while the remaining  terms in (3.42) are the projection 
onto 9. 

Note also that (3.43) and (3.44)  can be rewritten in  the 
following form: 

tf ?rr + Pf C;R,’[  y2 - C28, , ]  (3.45) 

- k r = F , r r + P r C ~ R ~ ’ [ y 2 - C , 2 1 , , ] .  (3.46) 

Thus these correction terms,  which provide the projection 
onto the new information in y, are driven by the difference 
between what we observe and what we expect to observe 
based  on  our first  map. Another interpretation is that these 
correction terms are the projection of the estimation error 
( x  - i,,) onto 9,. What we have done with a great deal of 
algebra is to obtain realizations of these projections in 
terms of finite-dimensional forward and reverse filters. 
Alternate forms for these realizations are given in [ 161 and 
[ 1 81. 

C. Conditions for Existence of a Solution to the General 
Case and an Important Special Case 

In the preceding  subsection we  saw that the smoothed 
estimate updating  problem could be solved  when the local 
and global  models are identical. In this  section we look at 
the problem  when  this is not the case.  Recall that the 
general algorithm had been  reduced to (2.13),  (3.16), and 
(3.20), together with  (2.12) and (3.18)  which define the 
gains  needed in the algorithm. Also, we have differential 
equations for z i f ,  zI,, and zis as  defined in (3.24), but with 
slight modifications due to the fact that we have  local 
models.  Specifically, we have 

iif = - ( A i  + P t l 1 Q , ) z i f  + H,‘R,’y, (3.47) 

i ir= - ( A ; + z ; ~ Q ~ -  P ~ ; I Q ~ ) Z ~ ~ -  H;R;]Y, (3.48) 

whch lead to the equations 

Q j z i f  = PI,[ - i ,  - ( A {  + Z T I Q ,  - P i ~ l Q i ) z i S ]  (3.49) 
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QiZzr  Pis[ 2;s + ( A :  + P,/'Q,)zls] . (3 S O )  

In order to proceed  as we did  in  the  preceding  subsection. 
we wish to be able to find  some  matrices L l f .  Lir so that 

K , / i , /  = L , / Q , z , ~  L , , Q I P ~ ' - ~ , f  (3.51) 

Kt,?,, = L,rQ;z,r L,rQ,P,T " l r .  (3.52) 

This will be possible if and only if 

N ( Q I P ; / ) - ' C N ( K , / )  (3.53) 

N ( Q , P i ' )  c N K ; , ) .  (3.54) 

Note that if (3.53) and (3.54) hold, then L,, and Li, can be 
chosen  to be 

4, = K,/p;/Q! (3.55) 

L , r  KirPzrQt. (3.56) 

In this  case, we can replace Kif.?,/ and K,r.2,r in  (2.13) and 
(3.16) by expressions  involving Qzl/ and Qz,,, whch can, in 
turn, be  replaced  by the right-hand  sides of (3.49) and 
(3.50).  Finally, we  use a set of steps  similar to those  used  in 
Section 111-B to  remove the z,,-term. The result of these 

(3.57) 

(3.58) 

(3.59) 
(3.60) 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

The analysis in this  case is clearly  more  complex,  since  the 

equations involve Mi and Qi, and if these are time-varying, 
we  will also  have to consider  their  time  derivatives. 

Note that one obvious  case in which  (3.53) and (3.54) 
hold  is  when Qi is  invertible. In this  case, the smoother is 
essentially  invertible.  as we can recover zi f  and z,, and 
consequently  the H,'R;'yi. In the remainder of this  section 
we  wish to consider one other important special  case from 
which we can gain  more  insight into the nature of our 
solution. 

Specifically, we  wish to consider  the  case in which xi is 
an actual part of the global state. As was  discussed in 
Section 11-C.  in this  case  (assuming that MI  is  onto) we can 
choose a basis for the state space so that (2.30)-(2.37)  hold. 
Consider the form for Q given in (2.33). It is  relatively  easy 
to check that since Q is a covariance  matrix,  there must be 
a matrix TI so that 

Q L  TlQ1 (3.65) 
(write w'= ( w ; .  w;) and let ij, = TIJtll be the best  linear 
estimate of y given w I ;  since w, = G2 +(w2 - G2) with 
w, - C2 uncorrelated  with w l ,  the result  follows).  If we 
substitute (3.65) into (2.36), we find that 

Therefore 

(3.67) 

We can perform a similar  analysis in reverse  time, but 
the situation is a bit  more  complex. We will comment on 
the reasons  for  this  complication  shortly, but first we  will 
present the solution. For the  special  case  described  by 
(2.30)-(3.34).  (3.19)  reduces  to 

where MI = [ I  ; 01. Q is given by (2.33), and Z and 2, are 
related by 

(3 -69) 

Also, using a basic  formula for matrix  inverses of block 
matrices  (see, for example [5 ,  p. 4951) 

(3.70) 
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(3.72) 

Comparing (3.71) and (3.72)  with  (3.66) and (3.67),  we 
see that the first terms  on the right-hand sides of (3.71) and 
(3.72) are analogous to the right-hand sides of (3.66) and 
(3.67),  respectively. The additional terms in (3.71) and 
(3.72) represent the complication that arises in constructing 
reverse  models for xi  by  itself (as used in the calculation of 
iIr  and a,,) and a reverse  model  for x = (xi, y'), which  is 
used in computing 2, and gS. Since both x, and x are 
Markov, we can,  .in fact, obtain reverse-time diffusion 
models for each of these.  Following  [6], 

- i i ( r ) =  - ( A , + Q , ~ ~ ~ ) X , ( ~ ) - ~ ~ ( ~ )  (3.73) 

(3.74) 

where  these  models  can  be interpreted as generating the 
same sample paths as the forward model. Here G,(t)  is a 
white noise  process  with strength e,, and it represents that 
part of w l ( t )  that is independent of the future of x i ,  i.e., 
x I ( s ) ,  s>t .  Similarly, 8(t) is a whte noise  process  with 
strength Q,  representing the part of w ( f )  that is indepen- 
dent of x,(s), s > t and y(s),  s >t. Because of this dif- 
ference in  the two  models 

8,(t)#+ijl( t) .  (3.75) 

An equivalent  way of looking at this is to view  (3.73) as 
defining (with 9 ,  = 0) an equation for the best "predictor," 
going in reverse  time of x, given the future of x,. Similarly, 
(3.74)  gives the best predictor of x,  and y given the future 
of x, and y. Now although going forward in time the future 
of x, is  decoupled  from the past of y,  the future of y does 

depend on the past of x, [see  (2.32): A , ,  = 0: but A,, need 
not be zero]. Therefore, if  we want to predict the past of x], 
the future of y does provide us with information (for 
example, the future history of position does help us deduce 
something  about the past behavior of velocity). For t h s  
reason, although the (1,2) block of the forward-time dy- 
namics matrix in (2.32)  is  zero, the (1,2) block of the 
reverse-time  dynamics  matrix in (3.74)  is not zero. What 
this implies  is that in reverse  time, x, does not represent the 
state of a subsystem of the global state, and the extra terms 
in (3.71) and (3.72)  reflect  this fact. In fact, it is straightfor- 
ward to check that (assuming the invertibility of P,, X,, and 
2) these extra terms will be zero if  and only if 

(E;22,' - T i ) Q l  = 0 (3.76) 

or, equivalently, 

2;22,]QI -Q12=0 (3.77) 

which is exactly the condition required for x i  to  be the 
state of a subsystem both in forward and reverse  time. It is 
relatively  easy to see that this is the case if A, ,  = QI2 = 0, 
since in that case xi  and y are independent. Other essen- 
tially  equally  trivial  cases  can be found in which  (3.77) is 
satisfied, but the condition is quite restrictive. 

These observations notwithstanding, (3.67) and (3.72) 
allow us to replace 2if and gI, in (2.13) and (3.16) by 
expressions  involving ils through the use of  (3.59)-(3.64). 
A similar  analysis can  be performed for local  processor  no. 
2 if x2 is the state of a subsystem of the global  system  (of 
course, the change of basis  needed  on the global state space 
to put the system into a form analogous to (2.32)  will, in 
general, be different). 

As a final comment, we note that we can also consider 
the case of map updating in which we  wish to compute 2, 
from ils and y2 .  These results follow in much the same 
manner as those  derived  in  Section Ill-B: 

2, = Ps[ P;lyr + P; 'r, + D,2, , ]  (3.78) 

yr = q r f  + N , , i , ,  + PfC2R,'y2 (3.79) 

- tr = F,rr + N,,5, ,  + PrCiR,  'y2 (3 30)  

where Dl, N,,, and N , ,  are defined in (3.62)-(3.64).  These 
equations hold whenever L I f  and L, ,  exist. For example, if 
x, is the state of a subsystem  (forward in time), then 
(assuming that a basis has been  chosen as in  (2.30),  (3.62)- 
(3.64) are computed using 1M, = [ I  i 01 and L,/ and L, ,  
defined in  (3.67) and (3.72). In this case,  some algebra 
yields 

P A  = ('7,) (3.81) 

(3.82) 
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(3.83) 

IV.  REAL-TIME SMOOTHING 

A variance of the problem addressed in the preceding 
section  is the real-time smoothing problem. In this  case, 
from some  previous  survey we have  observed yl( t )  over the 
interval [0, T ]  and have produced i l s ( r ) .  We  now observe 
y2 up to time t ,  and we  wish to compute the real-time 
smoothed estimate of the global state, i.e., 

n , , ( t ) = E [ x ( t ) l Y 1 ( T ) , O ~ T ~ T , y , ( a ) , O ~ a ~ f ]  

(4.1) 

in terms of iIS and y2 .  This formulation is  motivated by 
problems in which a second  traversing of a track across a 
random field  is taken in real  time and we  wish to incorpo- 
rate the new data as we get it. If x I  = x, then the tracks are 
identical. If x f  is the state of a subsystem of the global 
system,  i.e., x'= (xi, y ' ) ,  then there are two  possible  moti- 
vations. The first is that in which x represents several 
tracks across the field and y2 may  be data  from  one of the 
other tracks not covered in yl. Alternatively, y may repre- 
sent the state of a dynamic system  which is affected by the 
field, modeled  by xI ,  during the second  pass. For example, 
x1  might represent anomalies in the earth's gravitational 
field and y could represent errors induced in an inertial 
navigation  system aboard a ship [2],  [9]. In th s  case we 
want the (real-time) estimates of y. Clearly, we can also 
model in this same way the case in which y contains two 
pieces, one of which  models additional tracks and the other 
models the state of a dynamic system affected by the 
random field along the second track. 

The solution to this  problem  can be obtained directly 
from the results in the preceding  section.  Specifically, at 
any time t we can view  (4.1)  as  performing  two full passes 
over [0, TI, but at any time t we assume that 

C , ( s ) = H , ( s ) = O  t < s < T .  (4.2) 

Also,  since we are attempting to compute i directly  using 
y,, we have  essentially a smoothmg  update  problem. Based 
on these observations, (2.13),  (3.16), and (3.20)  can  be 
adapted to the present situation: 

irs = Prs[ PT'Cf + P r l [ b  + M;P;'PI,] (4.3) 

if = F , C f  + K,ff,f + PfC;R;ly* (4.4) 

- i b  = FbEb + Klbii.,b (4.5) 

where P f ,   P I S ,  F , ,  and K , ,  are as before, and Pb is the 
reverse error covariance for x based on y ,  alone: 

- j b  = - [ A  + QZ-'] Pb - Pb[ A + QZ-'1' 

+ Q - PbC;RFICIPb. (4.6) 

Assuming that we can  write 

then, as before,  (4.3)-(4.5)  become 

where 

Again, there are several  special  cases worth mentioning. 
Suppose first that xl  =x,  i.e., that the local and global 
models are the same.  The,  using the fact that 

A = A , ,   Q = Q , ,  C l = H l ,  M , = I ,  Z1=Z 
(4.18) 

and  comparing (3.4) and  (4.6),  we see that 

Pb = P I ? .  (4.19) 

This not surprising, since Pb is the error covariance for the 
estimate of x based  on the future of yl ,  P I ,  is  the  covari- 
ance of the estimation error for x1 based on the future of 
yl ,  and in  this  case x =x1.  What (4.18) and (4.19) also 
imply  is that 

K , ,  = 0 (4.20) 

which  in turn implies that qb = 0. Thus there is no back- 
ward  processing in this case.  Again, this is not surprising, 
since the future data  at time t is just { yI( s), s < t } ,  as y2( s), 
s < r has not yet  been  collected, and since x I  = x, the future 
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of y ,  has already been  processed optimally in producing 
B Is. Also, for this  case 

(4.21) 

and the real-time smoothing solution is  recursive and is 
given by 

irs = P,, P; 'qf + Bls (4.22) 

qf==F/qf+-fC;R,'[y,-C,P,,]. (4.23) 

The other important case of interest is that in which x, is 
the state of a subsystem of the global system.  Specifically, 
assume that (2.30)-(2.34) hold. In this case (3.78)-(3.83) 
can be adapted to yield 

0 
+ ( - T, +A,, + A,,T, - T,A,  i 

(4.24) 

(4.25) 

(4.26) 

Equations (4.12)-(4.14) and (4.24)-(4.26) define the al- 
gorithm for real-time smoothing. Note that the new data 
(y,) is processed  only forward in time,  while the reverse 
processing  could  be precomputed, since  it  only  involves 
Bls.  The interpretation of this  reverse  processing  deserves 
some  comment. Of course, it is  zero if x, = x. What  it  does 
represent essentially is a reconstruction of the reverse 
filtered estimate of x based  only  on y, ,  given  the  reverse 
filtered estimate 2,, of x, based  on y , .  This is  very  much 
like what  was  discussed in Section 11-C  when one wishes  to 
estimate the  unobservable feedforward part of x from the 
filtered estimate of the observable part xi .  However, there 
is a difference  because, as mentioned in Section 111-C, x ,  is 
not a substate of x in  reverse  time. If it were,  then  given 
P l r ,  the top block of N , ,  would  have  to  be  zero,  since the 
best estimate of x,  based on  the future of y ,  would  have to 
be ilr. However, the first part of N , ,  is not zero, reflecting 
the fact that the reverse  dynamics for x, alone are different 
from those  when x, is viewed as a subvector of x. In the 
latter case, x, is not a Markov  process  in  reverse  time. 

V. DISCUSSION 

In this paper we have  considered the problems of com- 
bining estimates obtained from several separate data 
sources which  have been processed  individually and of 
updating an estimate as another source of information 
becomes  available. We are motivated in this  investigation 
by the problems of map updating  and combining  described 
in Section I. As a first step in solving  these problems, we 

examined their causal versions in Section  I1 and  obtained 
solutions under very  general conditions. Basically, the only 
restriction on the local  processing is that the model on 
which it is based must have  as  many  degrees of freedom as 
there are in the observations that are to be  processed 
locally. As we indicated, the results in Section  I1 are of 
independent interest, as they represent the solution to a 
decentralized estimation problem.  We  briefly  discussed the 
potential utility of these results for distributed implementa- 
tion of K h a n  filters and for efficient  transmission of 
information from local  processors  to a central processing 
facility. 

Several directions for further work are suggested by the 
results of Section 11. The first is in decentralized estima- 
tion. Consider the situation in which the local  models xi  
and x2  represent different pieces of the state x. In general, 
these  pieces  will be coupled, although the local processors 
assume that there is no coupling. Given  that the global 
processor  does take this coupling into account, is there an 
efficient distributed fashion in which  each  local estimate 
can be  corrected  using the estimate produced by the other 
local  processor? If the coupling  between x, and x, is  weak, 
is there some asymptotic description of this correction? 
What if there are different time  scales? For example, 
suppose the local  processors estimate fast and slow states, 
but all that is  wanted  globally  is an estimate of the slow 
global state. The results in [lo]-[ 121 on multiple time scale 
estimation, combined  with our framework, should  provide 
the basis for a solution to such a problem. 

A second problem suggested  by  Section  I1  is that of 
efficient distributed implementation of Kalman filters. Two 
types of issues enter here: 1) the  amount of computation 
that is done by each  local processor; and 2) the efficient 
transmission of information to the central processor. If, in 
fact, the only  issue were the second one, then the answer 
would be  that each  processor should whiten the observed 
data y, and transmit the result. In other words,  each local 
processor  should build a global Kalman filter and transmit 
the resulting innovations. Remember that the local Kalman 
filter innovations will not be white  because of discrepancies 
between local and global  models. Given  that there are 
constraints on the amount of computation  that  can  be 
performed locally and  on the rate  at which information is 
transmitted, the question of what  to transmit is a complex 
one.  Specifically,  given communication capacity and local 
computation constraints, the problem  becomes one of which 
local  processing and  subsequent  data transmission  scheme 
is  best in the sense of degrading the global estimate as little 
as possible. Our results  may  provide one perspective from 
which we can  make inroads into this very difficult prob- 
lem. 

In Sections I11 and IV  we considered noncausal versions 
of the combining and  update problems.  These results are of 
potential use in some mapping problems. In addition, they 
raise as many question as they  answer.  Specifically, the 
noncausal estimate combining  problem  does not always 
have a solution. The reason  for  this is that the noncausal 
local processing  may  lose  some information that is  needed 
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for the global  processing. We presented several important stochastic systems by a multiple time scales method.” IEEE Trans. 

cases  where this does not happen, but the i.%ue remains of [ 121 C. E. Hutchinson and N. A. Achaqa. “Singularly perturbed estima- 
characterizing precisely  what information from the raw tion using the method of multiple time scales.”  in Proc. I979  J.4CC. 

data y,(T), 0 7 T is  preserved in the local  smoothed [ 131  L. Ljung, T. Kailth. and B. Friedlander, “Scattering theory and 
estimate history xis( T), 0 G T G T. linear least squares estimation-Part I: Continuous-time problems,” 

Beyond this there remains the issue of  interpreting the 114) R. F. Brammer. “Estimation of the ocean geoid near the Blake 
results of Sections 111 and IV. The very  simple  form of the escarpment using GEOS-3 satellite altimetry data.” J .  Geoph.ys. 

solution in Some cases,  such in (3*45) and (3.46)$  sug- [I51 G. S. Sidhu and U. B. Desai. “Reversed-time lumped models, 
gests that there must  be a simpler derivation and interpre- smoothing algorithms and Fredholm resolvents.” in Proc. Johtzs 

tation of our results than the one we have given. For [I61 M.  Bello, “Centralized and decentralized map updating  and  terrain 
example, the framework of scattering theory  [13]  may masking analysis.” Ph.D. dissertation. Dep. Elec.  Eng. Comput. 

provide the machinery  necessary to our analysis [ 171 S. R.  Powell and L. M. Silverman, “Modeling of two-dimensional 
and  add to our insight. Also,  as  suggested in the text, one covariance functions aith application to image restoration.” IEEE 
interpretation of our map updating results  is that the [I81 A. S. Willsky.  M.  Bello, D. A. Castanon, B. C. Levy, and G. 
second pass data are used to estimate the map errors from Verghese, “Combining  and  updating of local estimates and regional 
the first pass. The fact that we have  been able to determine maps along sets of one-dimensional tracks,” M.I.T. Lab.  Inform. 

Decision Syst., Cambridge. MA, Rep. LIDS-P-955. Nov. 1979. 
how this  can  be done using  two  recursive  systems (one 
causal and one anticausal) suggests that this  second pass 
processing  is based  on a recursive  model for the map 
errors. The development of substance for this  idea  may 
provide the basic  insight  needed to understand  our results Alan S .  Willsky (S’70-M’73) was born in New- 
from first  principles. ark, NJ, on March 16.  1948. He received the S.B. 

i degree in aeronautics and astronautics and the 

paper can be of great value  in the development of efficient 
Ph.D. degree in instrumentation and control. both 
from the Massachusetts Institute of Technology. 

algorithms for the mapping of spatially-distributed random Cambridge, MA, in 1969  and  1973. respectively. 
process, but a significant amount of work remains to be From 1969 through 1973 he  held a Fannie and 

done in examining the implications of our  methods for 
John Hertz Foundation Fellowship. He joined 
the faculty of the M.I.T. Department of Electri- 

problems  involving  more  general random field  models and cal Engineering and Computer Science in 1973 

measurement  geometries than those discussed in Section I. trical Engineering, From 1974 through 1981 he was Assistant Director of 
and is presently an Associate Professor of Elec- 

In a subsequent  paper we  will use the techniques  developed the M.I.T. Laboratory for Information and Decision Systems. From 
here to make Some initial inroads into problems of this February through June of 1977  he was Science Research Council Senior 

type and consequently to provide support for our belief. Visiting Fellow at Imperial College, London, England. and from Septem- 
ber 1980 through January 1981  he was a Professeur Associe at the 

Automat.  Contr., vol. AC-22, no. 4, 1977. 

Denver, CO. pp. 629-633. 

Proc. IEEE,  vol. 64, pp. 131-139. Jan. 1976. 

Res. submitted for publication. 

Hopkins Conf. Inform.  Sci. Syst.. 1976, pp. 168-173. 

Sci., M.I.T., Cambridge, MA, Aug.  1981. 

Trans.  Automat.  Contr.. vol. AC-19. pp. 8-13.  1974. 

Finally, it is our belief that the results presented in this - 
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Square Root Covariance  Ladder 
Algorithms 

Abstract -Square  root normalized ladder algorithms provide an efficient 
recursive  solution to  the problem of multichannel autoregressive model 
fitting. A simplified  derivation of the general update formulas  for such 
ladder forms  is presented, and  is used to develop the growing memory  and 
sliding memory covariance ladder  algorithms. New ladder form realizations 
for  the identified  models are  presented,  leading  to  convenient  methods for 
computing the model parameters from estimated  reflection  coefficients. A 
complete solution to  the problem of possible singularity in the  ladder 
update  equations is also presented. 
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I. INTRODUCTION 

F I?TING AN autoregressive (AR) model to  an ob- 
served data sequence  is a ubiquitous problem  in the 

areas of estimation, system identification, and signal 
processing. Applications of AR modeling include speech 
processing [ 11, spectral estimation [2],  time  series analysis 
[3], and adaptive filtering [4]. The  problem is  typically 
formulated as follows.  Let  us assume  that the observed 
sequence of p-vectors ( y ( t ) }  is generated by a multichan- 
nel AR model of the type 

N 

y(  t )  + 2 AjY( t - i )  = u( t )  (1.1) 
i = I  
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