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After a review of the development of the Mayne-Fraser two-filter smoother, a first principle 
argument is used to rederive this smoother. Reversed-time Markov models play a key role in 
forming a state estimate from future observations. The built-in asymmetry of the Mayne- 
Fraser smoother is pointed out, and it is shown how this asymmetry may be removed. 
Additionally, a covariance analysis of the two-filter smoother is provided, and reduced-order 
smoothers are analyzed. 

I. INTRODUCTION 

The fixed-interval (FI) smoothing problem is of particular interest in post- 
experimental data analysis and has been the subject of much attention [I], 
[2]. Smoothing refers to estimating a state vector at a time point 
intermediate to a span of measurements. Consequently, there is an 
essential element of noncausality in smoothing since some of the 

?This work was partially supported by the Department of Energy under Contract ERDA- 
E-(49-18)-2087. 
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2 J. E. WALL, Jr.. A. S. WILLSKY AND N. R. SANDELL, Jr 

measurements occur in the future. Fixed-interval smoothing involves 
measurements over a given, fixed time interval. Estimates of the state are 
desired throughout this time interval. 

Problem formulation 

Consider the continuous-time linear dynamic system 

with observations 

where x(0) = x, and 

Also it is assumed that all the random variables x,, w ( t ) ,  v ( t )  are 
Gaussian. The FI smoothing problem is to compute, for all t E [0, TI,  the 
conditional expectation of x ( t )  given the observations over [0, TI, i.e., the 
smoothed estimate is 

and the corresponding smoothed error covariance is 

As is well-known, the estimate i , ( t )  is a linear functional of the obser- 
vations and is also the maximum a posteriori estimate and the linear 
least-squares estimate. 

Motivation 

In order to gain some insight into the smoothing problem and to motivate 
the development of this paper, consider the time-invariant version of the 
smoothing problem with observations over the interval (- x, + m). In the 
sequel, this will be referred to as the time-invariant infinite-lag smoothing 
problem. Also, it is assumed here that x and y are scalar random 
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FIXED-INTERVAL SMOOTHING 3 

processes and 
y( t )=x( t )+v( t ) .  (1.5) 

The Wiener filter will be used to examine the relationship between past 
and future observations in estimating x( t ) .  

The Wiener filter provides an estimate of x ( t )  given y(z),  z s t ,  in terms 
of a convolution integral as 

where the filter inpulse response obeys the Wiener-Hopf Equation, 

with Rx,(t) = E[x( t )y  (0)]  and R y ( t )  = E[y(t)y(O)].  A similar anti-causal 
expression can be obtained to provide an estimate .?,(tit) of x ( t )  from 
future observations, 

where the reserved-time filter obeys the Wiener-Hopf equation 

Since the cross-correlation function between x ( t )  and y ( t )  is an even 
function of time, the filter impulse responses h ( t )  and h,(t) are easily 
related, 

cc 

= { h,( t -z)Ry(z-s)dz ,  from (1.9) 
f 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
M
a
s
s
a
c
h
u
s
e
t
t
s
 
I
n
s
t
i
t
u
t
e
 
o
f
 
T
e
c
h
n
o
l
o
g
y
,
 
M
I
T
 
L
i
b
r
a
r
i
e
s
]
 
A
t
:
 
1
5
:
3
4
 
5
 
J
a
n
u
a
r
y
 
2
0
1
1



4 J. E. WALL. Jr., A. S. WILLSKY AND N. R.  SANDELL, Jr. 

Equation (1.11) says that the weight h(-z) given to y(z) in forming i(010) 
is the same as the weight hr(z) given to y(-z) in forming i,(010). In this 
sense, the same linear filter is used to estimate x(t) from either the past or 
the future observations. The only place that the assumption x(t) and y(t) 
are scalar processes is used is for the relation R,,(t)= R,,(- t). Whenever 
R,(t)=R:(t), it follows that R,(t) and R,,(t) are even functions of time, 
and so the same proof will work for vector processes in this case. The 
vector case is addressed more completely in Section IV. As far as their 
relative performance, it is straightforward to show that both estimates 
2(tl t )  and x^,(tlt) have the same mean-square error. Therefore the past and 
future contain equal amounts of information about x(t),  and one would 
expect equal weightings on both when forming the smoothed estimate. 

That this is exactly the case can be seen from the Wiener smoother. The 
smoothed estimate is 

where 

and the operator F (  . J is the Fourier transform. Since R,,(t) and R,(t) are 
even functions of t, their transforms will be purely real. Thus the 
transform of h,(t) will also be real, and so h,(t) must be even. This proves 
that the past and future contribute equally to the smoothed estimate of 
x ( t ) .  

One popular solution to the FI smoothing problem is the Mayne- 
Fraser two-filter smoother [3], [4]. Section I1 provides an historical 
review of the two-filter smoother discussing the work of Mayne, Fraser 
and Mehra. The two-filter smoother gives the smoothed estimate as a 
combination of a forward and a backward estimate. Both estimates come 
from Kalman filters. A surprising fact, however, is that in the infinite-lag 
case when the state dimension equals one, the steady-state covariance of 
the backward is always larger than the covariance of the forward filter. 
(See (2.22) for the backwards covariance.) This is surprising in view of the 
previous development where the past and future observations were seen to 
be equally valuable in estimating x(t). 

The reason for this apparent contradiction is that the Mayne-Fraser 
two-filter smoother has a built-in asymmetry that is absent from the 
original problem. In Section 111, it is shown that this asymmetry is due to 
the way in which the a priori information enters into the estimate of x(t). 
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FIXED-INTERVAL SMOOTHING 5 

New forms of the two-filter smoother will be presented which are 
symmetric with respect to forward- and reversed-time. These smoothers 
are obtained from simple, first principles arguments using reversed-time 
realizations of the state process. Badawi et al. [5] have very recently 
derived similar smoothing formulas based on stochastic realizations. It is 
to be hoped that the analysis and discussion in Sections I11 and IV will 
enable the reader to obtain a clear understanding of how future obser- 
vations are incorporated in the FI smoothing problem. 

Section IV examines the symmetry between forward- and reversed-time 
in detail. It will be shown that this symmetry breaks down for the 
problem of change of initial conditions. In Section V, one of the forms of 
the two:filter smoother will be used to analyze reduced-order smoothers 
and to perform a sensitivity analysis. 

Preliminaries 

This introductory section closes with two well-known results from pro- 
bability theory. The first deals with combining estimates that have 
independent errors. 

PROPOSITION 1. Let x ,  y,  and y, be zero-mean Gaussian random 
variables, and let 2 ,  and 2 ,  be the Bayesian (maximum likelihood) 
estimates of x given y ,  and y,, respectively, with associated error co- 
variances P ,  and P,. If the errors x - 2 ,  and x - 2 ,  are independent, then 
the Bayesian (maximum likelihood) estimate of x given both j3, and y2 is 

where the error covariance P is given by 

ProoJ: See Schweppe [6]. 

By abuse of terminology, the estimates 2 ,  and 2 ,  are often referred to 
as independent estimates. The second result is simply the formula for the 
conditional expectation of a Gaussian random variable. 

PROPOSITION 2. Let x be a Gaussian random variable bvith mean m and 
covariance C, and let y be an observation of x ,  

where v is a zero-mean Gaussian random variable (with covariance R )  that 
is independent of x and the rank of H equals the dimension of x.  The 
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6 J. E. WALL. Jr., A. S. WILLSKY AND N. R. SANDELL. J I  

Btryesitln estirnute of x  gicen y is 

vt>here the error cot.uriunce P sutisfies 

Proof. See Schweppe [6] 

It is noted that Proposition 2 can be interpreted as meaning that the 
Bayesian estimate of x given y equals the maximum likelihood estimate of 
x  given both y and the u priori mean rn and covariance C. This 
interpretation is obtained by forming two independent maximum like- 
lihood estimates of x ,  one based on y and one based on m and C. 
Combining these two maximum likelihood estimates by Proposition 1 
yields (1.16) and (1.17). This idea of forming a Bayesian estimate as the 
combination of two maximum likelihood estimates, one based on obser- 
vations and one based on a priori data, is one the keys to the solution of 
the smoothing problem in Section 111. 

II. HISTORICAL REVIEW OF THE TWO-FILTER SMOOTHER 

The first solution of the FI smoothmg problem as a combination of two 
estimates was presented by Mayne [3] in 1966. Fraser [4] pursued this 
idea and in 1967 showed how both of these estimates could be obtained 
from separate Kalman filters. Mehra [7]  then attempted to derive the 
two-filter smoother from basic principles. The work of Mayne, Fraser, and 
Mehra is reviewed in this section and a critical analysis of this work will 
provide motivation for the development in the sequel. 

The system considered by Mayne is a discrete-time analog of (1.1) and 
(1.21, 

where x ( 0 )  = x ,  and 

E x ,  =E\v(k)=Ev(k)=O, Exox;  = X, 

E w ( i ) w l ( k )  = Q(k)d,,, ,  Ec ( i )u l ( k )=  R(k)d , ,k  

E x 0 w 1 ( k )  = Ex,v l (k )  = Ew(i )v l (k )=O.  
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FIXED-INTERVAL SMOOTHING 7 

His starting point was the conditional probability density of the states 
given the observations, 

Because of the independence of the observation noise process { ~ ( k ) ) ,  the 
likelihood function p(y(O), . . ., y ( ~ ) l x ( O ) ,  . . ., x ( T ) )  may be written as 

Also, since the sequence { x ( k ) }  is a Markov process, 

Therefore, substituting into (2.3) and realizing that p(y(O), . . ., y ( T ) )  is just 
a normalization constant yields 

where K , ,  K,, and K ,  are constants. The optimal smoothed estimates 
{x^(kl T ) )  maximize the conditional density given in (2.6). 

Consider now the negative of the exponent in the right-hand-side of 
(2 .Q 

T 

J (x (O) ,  . . . , ~ ( ~ ) ) = 3 l l x ( O ) l l : ; l  4-3 l l ~ ( k ) -  C(k)x(k) l l ; - l (k )  
k = 0  
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8 J. E. WALL. Jr.. A. S. WILLSKY A N D  N.  R. SANDELL, JI  

The smoothed estimates can be obtained from the minimization of the 
functional J. Mayne's approach to this minimization was to consider some 
fixed integer r between 0 and T and to define 

J , (x (r ) )= min J(x(O), . . ., x ( T ) )  
( x ( h )  1 h f r )  

(2.8 

J , (x ( r ) )  will be a quadratic form in x(r) .  and therefore given J , (x (r ) )  it is 
an easy matter to compute i ( r  1 T )  and P(r  1 T ) .  Hence the problem of 
interest is the determination of an expression for J,(x(r)) .  

Mayne decomposes the minimization over {x(k ) l  k j r )  into two se- 
parate minimization-one over (x(O), . . ., x(r  - 1 )} and the other over 
:x(r + I ) ,  . . ., x ( T ) ] .  Thus 

J,.(x(r.))= J, . ,(x(r))+ J,,.(x(r)) 

where 

and 

Both J,, ,(x(r)) and J,, ,(x(r)) are quadratic forms in x(r ) ,  (say) 

Therefore, 

and so the smoothed estimate and covariance are simply 
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FIXED-INTERVAL SMOOTHING 9 

What remains is to determine recursive expressions for J0, , (x(r))  and 
Jr, r (x(r))  

First consider J,,,(x(r)) defined by (2.10). Note that this is just the cost 
functional one would minimize to obtain the maximum a posteriori 
estimate i ( r l  r - 1 ), i.e. 

Therefore, 

and h,,, is of no real interest. Moreover, the Kalman filter provides a 
recursive computation of i ( r  1 r - 1 ) and ~ ( r  1 r - 1 ). Thus recursive ex- 
pressions for F,,, and go,, are available. 

Second, consider J,, ,(x(r)). Clearly, 

subject to the constraint x(k+ 1 )=@(k+  1, k)x(k)+ w ( k ) ,  k = r , .  . ., T- 1. 
But (2.20) is just a linear-quadratic optimal control problem and can be 
solved using dynamic programming from T backwards to r. The well- 
known solution to this problem yields a recursion for F,, , and g,, , (h,, . is 
of no interest) in terms of F,,,,,, g,,,,,, and y(r). Thus there exist 
recursive relations for J,,,(x(r)) and J,, ,(x(r)), and so 2(rl T )  and ~ ( r  1 T )  
can be found from (2.15) and (2.16). 

This approach to thi fixed-interval smoothing problem is easily ex- 
tended to the continuous-time case. The details may be found in Reference 3. 

Mayne interprets this solution of the smoothing problem as a com- 
bination of two estimates. One estimate is based on past observations and 
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10 J. E. WALL, Jr.. A. S. WILLSKY AND N. R. SANDELL, Jr. 

is obtained from Kalman filtering; optimal control theory is used to 
obtain a second estimate from future observations. From (2.10), the 
estimate based on past observations is a Bayesian estimate, but Mayne 
does not say what kind of estimate is the one based on future obser- 
vations. In Section 111, this second estimate will be shown to be a 
maximum likelihood estimate. The idea of expressing the smoothed 
estimate as a linear combination of the two estimates was pursued in 1967 
by Donald Fraser [4] for both continuous-time and discrete-time. 

One of Fraser's two estimates is based on past observations. This 
estimate and the corresponding covariance are just the outputs of a 
standard Kalman filter working forward over the data. Fraser's second 
estimate is obtained from a backwards Kalman filter, i.e., a filter operating 
on future observations from T to the present time t. The idea is to then 
combine these two estimates using the formulas (1.13) and (1.14) for the 
optimal combination of independent estimates. 

The appropriate continuous-time backward filter is [4] 

where P; ' ( T )  = 0 and lim,, , [P; ' (t)P,(t)] = 0. The interpretation given 
by Fraser and Potter [8] is that i , ( t )  is, ". . . the best estimate of the state 
at time t  based upon all the measurements from time t  to the end of the 
data interval." The terminal condition of an infinite covariance matrix is 
intended to reflect complete uncertainty about the state estimate at time T 
because of the complete lack of information about x(T). Thus no terminal 
estimate can be made; only the limit of P; ' ( t )g , ( t )  can be specified. 
Because of these initial conditions, the filter must be implemented in the 
so-called "information filter" form [8].  

The smoothed estimate is formed by combining the "independent" past 
and future estimates according to (1.13) and (1.14), viz. 

This is the same formula as Mayne's (2.15) and (2.16) in continuous-time 
if P; ' ( t )  = F, , ,  and P; ' ( t )F,( t )= - g,, ,. Rather than showing these two 
equalities, Fraser's method of proof consists of re-deriving the smoothing 
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FIXED-INTERVAL SMOOTHING 11 

formulas of Rauch, Tung, Striebel from (2.21)-(2.24) and the usual 
Kalman filter equations. This is certainly a valid method of proof, and it 
does show that the smoothed estimate is given by (2.23) and (2.24). What 
is not clear, however, is why the estimate i ( t l t )  and i b ( t )  can be combined 
by (2.23) and (2.24) or why the estimate x^,(t) should be given by the 
backward Kalman filter (2.21) and (2.22). It would be desirable to answer 
these questions starting from basic principles. 

Mehra [7] attempts to clarify these points in his doctoral thesis. First 
consider the backward filtering equations (2.21) and (2.22). By multiplying 
the state equation (1.1) times - 1, Mehra obtains 

He then applies the usual Kalman filter equations to this backwards 
system by letting z= T - t  and thereby obtains (2.21) and (2.22). This same 
argument was later adopted by Kailath and Frost [ l o ] .  It is incorrect, 
however, because "future" (with respect to z )  values of the driving noise w 
are correlated with the present state (see Ljung and Kailath [ l l ]  where 
this observation was first made). That is, (2.25) is not a usual Markovian 
realization. Therefore, it is not possible to blindly apply the Kalman filter 
to (2.25) and obtain the backward filter (2.21) and (2.22). 

Mehra also addresses the question of independence of the estimates 
i ( t l t )  and i b ( t ) .  His approach is to write the differential equations for the 
forward error Z(tl t )  and the backward error Zb( t ) ,  

Equation (2.26) is integrated from 0 to t while (2.27) is integrated from T 
to t .  Thus Mehra points out that ? ( t i t )  depends on { w ( z ) , v ( z ) / O < z ~ t )  
and Z,(t) depends on { w ( z ) ,  v ( t  ) (  t < z 5 T)-two independent sets of 
noises. Is this sufficient for the conclusion that Z ( t l t )  and l b ( t )  are 
independent? Obviously not, x"(tl t )  and I b ( t )  may be dependent because of 
their initial values. For example, the random variable x ( 0 )  is correlated 
with (in fact, equal to) Z(010) and therefore with ~ ( t l t ) .  Is Z b ( T )  also 
correlated with x(O)? Mehra can't say because at this point in his 
development he has not specified any initial values for Z b ( T )  or P,(T) .  It 
should be clear that without such a specification, the independence of 
Z ( t l t )  and Z,(t) is indeterminate. Nevertheless, Mehra prematurely de- 
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12 J.  E. WALL, Jr.. A. S. WILLSKY AND N. R.  SANDELL, J r  

clares that they are independent because they are functions of independent 
sets of noises. The independence of these two estimates will be examined 
further in Section 111. 

The behavior of the two-filter smoother when there are errors in the 
various model parameters (such as the system matrix or initial covariance) 
was also considered by Mehra [7]. Following the work of Nishimura [I21 
and Fitzgerald [13], Mehra performs a covariance analysis to obtain an 
expression for the covariance of the forward and backward Kalman filters 
when the true system and the model on which the filters are based differ. 

In order to obtain the smoothed error covariance, he combines these 
two covariances assuming the forward and backward errors of the 
mismatched filters are uncorrelated. This is not the case, and in Section V 
an expression for the smoothed error covariance is found which includes 
the correlation between the forward and backward errors. 

In summary. this section has presented the two-filter smoother as 
developed by Mayne [3] and Fraser [4]. This solution of the FI 
smoothing problem is unique compared to the Rauch, Tung, Striebel [9] 
smoother, and others [2], in that it is not given as a correction to the 
Kalman filter estimate at the same point. Rather, it takes the form of a 
combination of two optimal linear filter estimates. The work of Mehra [7] 
was primarily directed toward deriving this smoother from basic prin- 
ciples. The problem with Mehra's derivation is the use of an incorrect 
reversed-time model. In Section 111, reversed-time Markov models are 
employed in an attempt at obtaining the two-filter smoother from basic 
principles by carefully considering the use of future observations for 
estimating the present state. 

Ill. A NEW SOLUTION TO THE FIXED-INTERVAL SMOOTHING 
PROBLEM 

Motivation 

When forming the smoothed Bayesian estimate of x(t), there are three 
separate sets of information. 

i )  a priori data, Ex(t)=O and Ex(t)xf(t)=C(t),  

i i )  past observations, {),(T) 10 5 .r 5 t ) ,  

i i i )  future observations, {y(z)l t < T 5 TI .  

Intuitively, the smoothed estimate should incorporate each of these sets 
exactly once. In this section, it will be shown how this incorporation takes 
place for the two-filter smoother. The main contributions here are: 
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FIXED-INTERVAL SMOOTHING 13 

a )  use of a backwards filter that has finite covariance at all times; 
b) derivation of the two-filter smoother from first principles. 

Section I11 contains the derivation; discussion is deferred to Section IV. 
Also, it is noted that the assumption of a zero-mean process is not at all 
essential and will be relaxed later. 

The filtered estimate i ( t  1 t )  is based on the a priori data and the past 
observations. This is easily obtained via the Kalman filter. Also, it is a 
simple matter to form an estimate of x ( t )  from just the a priori data, i.e., 
the estimate is zero and the covariance is C( t ) .  What is less well-known, 
however, is how to use future observations in forming an estimate of x ( t ) .  
To this end, reversed-time Markov models will be introduced in the next 
subsection. When combined with the Kalman filter, these reversed-time 
models yield the expression for a Bayesian estimate of s ( t )  bused orz a 
priori data and future observations. 

Only the continuous-time problem is considered in Section 111. The 
analogous results for the discrete-time version are presented in Appendix 
A. Note that with respect to the continuous-time problem, the present 
observation y ( t )  is a linear measurement of x ( t )  corrupted by additive 
noise having an infinite covariance. Thus the isolated observation y ( t )  
contains no information about the process x ( t ) .  This remark is purely 
formal, of course, as is the entire development of this section. These 
arguments can be made rigorous, but for ease of presentation and 
understanding, a formal development is deemed preferable. The future 
observations, therefore, can be defined as i y  (z) 1 t 5 z 5 T), where now y(t ) 
is included in the future observations, without altering the analysis. This 
definition effectively symmetrizes the smoothing problem with respect to 
forward- and reversed-time. This situation is in contrast to the discrete- 
time case where the present observation contains non-zero information 
and which is basically asymmetric. It is the present observation which is 
the major cause of any differences between the equations of Section I11 
.and those of Appendix A. 

~ Reversed-time Markov models 
I 

Essentially simultaneously in the summer of 1976, several authors in- 
troduced reversed-time Markov models [ I l l ,  [14], [15]. These reversed- 
time models generated processes that had the same second-order statistics 
as the corresponding forward-time processes. More recently, these results 
have been strengthened by Verghese and Kailath [16] and Lindquist and 
Picci [I71 to provide backwards Markov models with sample path equival- 
ence to the forward-time processes. 
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14 J .  E. WALL, Jr., A. S. WILLSKY AND N. R. SANDELL, J r  

Corresponding to the forward system of (1.1), consider the reversed-time 
model 

where 

Equation (3.1) is meant to denote that the reversed-time process x, ( t )  
propagates backwards from T to 0. 

THEOREM 1. The stochastic process x ( t )  of (1.1) and the stochastic 
process x , ( t )  of (3.1) are sample path equivalent 

Proof See Reference 16. 

As pointed out by Verghese and Kailath, the process ( ( t )  is a white 
process with the same variance as w ( t )  and is uncorrelated with x ( t ) .  It 
differs from w( t ) ,  however, by the conditional expectation of the noise 
given the state. It is exactly this conditioned expectation which is missing 
from Mehra's backwards system (2.25). 

Since x ( t )  and x,(t)  are completely indistinguishable, (1.1) and (3.1) are 
simply two representations of the same stochastic, process. One impli- 
cation of this equivalence is that the observations yr(t) ,  

are sample path equivalent to the observations y ( t )  on x ( t ) .  Another 
implication is that any least-squares linear estimator of x ( t )  is also a least- 
squares linear estimator for x,(t) ,  and vice versa. That is, given any set of 
observations, the estimate of x ( t )  is the same functional on these obser- 
vations as is the estimate of x,(t). This is a key point in the development 
of the sequel. 

Recall the time-varying Lyapunov equation describing the state co- 
variance C( t  ), 
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FIXED-INTERVAL SMOOTHING 15 

Using this equation, the reversed-time system matrix - A( t )  - Q(t)C- ' ( t )  
may be written as 

The stability of the reversed-time system can now be examined from (3.4). 
Consider first the case of a time-invariant system in the steady-state. Then 
the reversed-time system matrix is simply CA'C- ' .  But A must be a 
stability matrix and has the same eigenvalues as A'. Moreover, CA'C-'  is 
just a similarity transformation of A' and therefore has the same eigen- 
values. The conclusion then is that the reversed-time system matrix 
CA'C-'  is also a stability matrix and has the same eigenvalues as the 
forward system matrix A.  Therefore the forward-time process x ( t )  and the 
reversed-time process x , ( t )  both have stable realizations. 

In the time-varying case, it is necessary to consider the adjoint system 
of (1.1) 

This system propagating backwards in time has the same stability 
properties as the original forward system. Let z ( t ) = C ( t ) p ( t ) .  Then 

The resulting reversed-time system matrix is, according to (3.4), the same 
as the system matrix for the reversed-time process x,. The system (3.1) will 
have the same stability properties as (3.5) and hence as (1.1), if z ( t )  
= C ( t ) p ( t )  is a Lyapunov transformation [18].  For this transformation to 
be a Lyapunov transformation, the following conditions must hold [18]: 

i) C has a continuous derivative; 

ii) C and (d/dt)C are bounded; 

iii) there exists a constant m such that 0 < m 5 /det C(t ) l ,  V t .  

Assuming these conditions are met, the forward- and reversed-time 
realizations (1.1) and (3.1) possess identical stability properties. 

An estimate based on future observations plus a priori 
information 

The conditional expectation of x , ( t )  (or x ( t ) )  given the future observations 
is denoted i , ( t  1 t ) ,  

i , ( t I t ) = ~ { x , ( t ) /  y ( z ) , t s z s  T ) .  (3.7) 
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16 J .  E. WALL. Jr., A. S. WILLSKY AND N. R. SANDELL, J r  

The process x,(t)  is a Gauss-Markov process in reversed-time as given by 
(3.1). Therefore, this Bayesian estimate can be computed from the Kalman 
filter for the reversed-t~me system model. Explic~tly, 

~ , ( t ) = ~ , ( t  t ) c ' ( t ) ~ '  ( t )  (3.10) 

where .?,(TI T)=O and P , ( T ) = X ( T ) .  Note that the conditions at time T 
for this filter are finite, in contrast with the initial conditions of Fraser's 
backward filter (2.21) and (2.22). 

The Bayesian estimate 2,(t l t)  of x ( t )  is a combination of a prior i  
information and the future observations. The possibility of forming two 
estimates of x ( t )  from these two separate data will now be addressed. The 
estimate of x ( t )  from only the a priori  data is just 

because it IS being assumed that x ( t )  is a zero-mean process. An estimate 
of x ( t )  based only on the future observations is considered next. 

View the future observations, { j ( z ) l  t  5 s  5 TI ,  as one aggregate linear 
observation of x ( t )  corrupted by the noises {w(z), t . ( s ) / t  575 T } .  If x ( t )  is 
treated as an unknown parameter instead of as a random variable with a 
known probability distribution, one can speak of the maximum likelihood 
estimate of x ( t ) .  Let 2fu,ure(t)  denote the maximum likelihood of x ( t )  
based only on the future observations, i.e., a priori  data about x ( t )  is not 
used. Denoted by PfUture( t )  the corresponding error covariance. If x ( t )  is 
observable over the interval [ t ,  T I ,  then x^futu,e(t) and PfUture(t)  are well 
defined, and the estimate may be written as 

where the error p ( t )  is solely due to the driving noise and observation 
noise, i.e., E x ( t ) p l ( t )  = 0, and E p ( t ) p f ( t )  =P,,,,,,(t). (See Appendix A for an 
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FIXED-INTERVAL SMOOTHING 17 

elaboration of this discussion in the discrete-time case.) Because the 
estimates i f U t u r e ( t )  and $,,,,(t) have independent errors, Propositions 1 and 
2 may be used formally to write the Bayesian estimate of x ( t )  given the 
future observations as the combination of $futur,(t)  and x^,,,.(t), viz 

An interesting feature of (3.14) and (3.15) is that they are invertible in that 
it is possible to solve for I fu tur , ( t )  and PfUtur,(t)  in terms of the other 
quantities. This yields 

Differentiating (3.16) and (3.17) with respect to - t  yields differential 
equations for the maximum likelihood estimate x^,u,ur,(t) and PfUtur,(t)  
propagating backwards from 7: The result is Fraser's backwards filter. 

THEOREM 2. The maximum likelihood estimate i f U t u r e ( t )  and cooariance 
Pfutur,(t) are identically equal to Fraser's i b ( t )  and Pb(t) .  That is 

ib(t)=~b(t)~r-l(tlt)ir(tlt) (3.18) 

~ ~ ( t ) = [ ~ ~ ? ( t l t ) - ~ - l ( t ) ] - ~ .  (3.19) 

Proof (Appendix C).  

This result says that the a priori information can be "subtracted out" 
from the conditional expectation of x ( t )  to form the backward estimate. 
Moreover, this backward estimate is the maximum likelihood estimate of 
x ( t ) .  The conditional expectation comes from a reversed-time Kalman 
filter. This reversed-time Kalman filter has a finite initial covariance. 
Using this Kalman filter together with the Lyapunov equation for the 
state covariance has yielded a differential equation for the maximum 
likelihood estimate of x ( t )  based on future observations. 

The solution 

THEOREM 3 The smoothed Bayesian estimate and cooariance satisfi, 
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18 J .  E. WALL, Jr., A. S. WILLSKY A N D  N.  R.  SANDELL, Jr.  

Proof Two representations of the process x ( t )  have been given, a 
forward-time realization (1.1) and a reversed-time realization (3.1). In the 
proof of this theorem, a third representation-a "combined realization- 
is introduced which combines (1.1) and (3.1) to propagate the state 
process both forward and backward from time t.  Consider a fixed time t 
and let the process x c ( t )  be generated by 

where 

These differential equations are meant to denote that x C ( z )  may be written 
as 

The process x,(r)  is easily shown to be sample path equivalent to x ( t )  and 
x,(T).  Let 2,,,,(t) and P,,,,(t) be the maximum likelihood estimate of x ( t )  
and the error covariance given the past observations only, i.e., without the 
u priori information. By applying the same argument that was used in 
Section I11 for .?,,,,,,(t) and P,,,,,,(t) to 2,,,,(t) and P,,,,(t) one obtains 

Consider now the third realization, i.e., the process xc ( z ) .  The errors in 
the maximum likelihood estimates 2,,,,(t) and 2,,,,,,(t) are caused by 
( ( ( T ) ,  c ( t ) lOS  t < t )  and ( w ( z ) ,  c ( t ) l  t <r 5 T )  respectively. Therefore these 
estimates are independent estimates, and Proposition 1 can be used to 
obtain the maximum likelihood estimate of x c ( t )  (or x ( t ) )  given all the 
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FIXED-INTERVAL SMOOTHING 

observations, 

Since x ( t )  is zero-mean, the smoothed Bayesian estimate is found from 
Proposition 2, 

gs( t)=Ps(t)P&! ( t ) i M ~ ( t )  

= ps(t)Cp,:t(t)x^,a,,(t) + P,tlur, ( t )%(t l  t ) l  

=P,(t)[~-'(tlt)i(tlt)+~~-'(tjt)i,(tlt)] 

P,( t )=[P&t)+C- ' ( t ) ] - '  

=Cp,:,(t)+p,:ur,(t)+C- l ( t ) l - '  

= [ P - ' ( t l t ) + ~ ; ' ( t l t ) - C - ' ( t ) l P 1 .  Q.E.D. 

A s i d e  An alternative proof of Theorem 3 is to note that substitution of 
(3.18) into (2.23) yields (3.20) and substitution of (3.19) into (2.24) yields 
(3.21). 

IV. DISCUSSION AND EXTENSIONS 

Theorem 3 expresses the smoothed estimate as a combination of two 
filtered estimates: 

a) one estimate from a forward Kalman filter for the forward system 
model; 

b) one estimate from a reversed-time Kalman filter for the reversed-time 
model. 
These estimates are not independent, however, because they both 
include the a priori  information. In essence, the effects of the a priori  must 
be subtracted out once when obtaining the smoothed estimate. The two 
sets (past and future) of observations may be said to be independent 
observations of x ( t )  by considering the "combined" representation and 
noting that the two sets of noises, { ( ( z ) ,  v ( z ) lOZ  z  < t )  and { w ( z ) ,  u(z) l  t  < z  
5 T ) ,  are independent. 

In order for the maximum likelihood estimates R,,,, ( t )  and R,,,,, ( t )  to be 
well-defined, it is necessary that x ( t )  be observable over [O,t] and [t ,  T I ,  
respectively. In case x ( t )  is not observable, it is still possible to form a 
maximum likelihood estimate of the observable part of x ( t ) .  Then P;it(t) 
and/or P&,(t) must be replaced with pseudo-inverses in the proof of 
Theorem 3. Thus, the symmetric form of the smoothing Eqs. (3.20) 
and (3.21) holds without any observability conditions on x ( t ) .  
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20 J. E. WALL. Jr., A. S. WILLSKY AND N. R.  SANDELL, Jr. 

We note that even though this development assumed the random 
process x ( t )  was zero-mean, the case of a nonzero-mean process is easily 
handled. Letting z ( t )  equal x ( t )  minus the mean value of x ( t )  yields a 
zero-mean process obeying the same state Eq. (1.1). Then taking as 
observations of z ( t )  the observations ~ ( t )  minus the mean value of y ( t )  
produces a smoothing problem of the form studied here. The smoothed 
estimate of x ( t )  is simply the smoothed estimate of z ( t )  plus the mean of 
x(t). 

An important characteristic of this smoother is that both the forward 
and backward models used in forming the two Kalman filters are stable 
(assuming the original forward realization is stable). This feature will allow 
a covariance analysis in Section V that requires the integration of only 
stuble differential equations. This is different than earlier studies. 

One striking characteristic of the smoother in Theorem 3 is the 
complete symmetry with respect to forward-time vs. reversed-time. 
Equations (3.20) and (3.21) are called symmetric because the estimates 
- ; ( t i t )  and &(t i t )  are conditional expectations of x ( t )  given the past and 
the future observations, respectively. This is certainly in contrast with the 
usual two-filter smoother of Mayne and Fraser. This symmetry between 
forward- and reversed-time will be developed and discussed in the 
remainder of this section. 

For the special case of smoothing over the interval (-m, + m )  with a 
time-invariant system, it is possible to investigate the symmetry between 
forward- and reversed-time in detail. If the system matrix A is a scalar, 
then the reversed-time realization is identical to the forward-time re- 
alization. Thus the two Kalman filters are identical and so the two steady- 
state error covariances P and Pr are equal. From (3.20), it is clear that this 
implies the two estimates .?( t ( t )  and .?(tit) are weighted equally in forming 
the smoothed estimate. This confirms the intuitive expectation of Section I 
that the future and past should be equivalent. 

The reversed-time system (3.1) equals the forward-time system (1.1) in 
the time-invariant infinite-lag case if and only if the autocorrelation 
function of x is symmetric, i.e., Z A ' X -  ' = A  if and only if R,(t)= R:(t-). Of 
course R,(t) = R:(t) is equivalent to R,(t) = R,( - t ) ,  the condition needed 
in Section I to show that the same Wiener filter can be used to estimate 
x ( t )  from either the future or the past. Therefore, whenever the autocor- 
relation function is even, the future and past observations are equally 
weighted in forming an estimate of the present. 

Having considered the LTI infinite-lag smoothing problem, we now 
return to the general case. Two key ingredients of the two-filter smoother 
are the maximum likelihood estimates I,,,,(t) and 2,,,,,,(t). Theorem 2 
showed that x ,̂,,,,,(t) equals Fraser's backward estimate i , ( t ) .  There is 
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FIXED-INTERVAL SMOOTHING 2 1 

also a backwards estimate &,( t )  of the reversed-time process xr ( t ) .  The 
estimate i r b ( t )  is based on the observations ( y ( z ) j O ~ z ~ t )  and may be 
shown (by repeating the proof of Theorem 2 )  to equal i,,,,(t). The 
differential equations for i r b ( t )  and P ( t )  are just Fraser's (2.21) and (2.22) 

' P  
with the reversed-time system matrix in place of the forward system 
matrix, 

where 

and 

lim [Pri ' ( t ) i , , ( t ) ]  =O. 
t + O  

This filter must be implemented as an information filter because of the 
initial conditions. 

Using the estimate grb, it is possible to obtain another version of the 
two-filter smoother 

This is essentially Fraser's smoother (2.23) and (2.24) applied to the 
reversed-time realization instead of the usual forward realization. The a 
priori information is combined with the future observations to form one 
estimate; the second estimate is formed from the past observations alone. 
All of the smoothing algorithms presented by Sidhu and Desai [I41 are in 
this same spirit-they are obtained by applying a standard smoothing 
algorithm to the reversed-time model. 

Ljung and Kailath [19] have addressed the problem of converting 
linear least-squares filtered and smoothed estimates derived for one set of 
initial conditions to estimates valid for some other set. They showed how 
these estimates are altered because of changes in the assumed values for 
the mean and variance of the initial value x (0 ) .  The motivation for their 
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22 J. E. WALL, Jr.. A. S. WILLSKY AND N. R. SANDELL, J r  

work was, ". . .the possibility of deliberately using an incorrect initial value 
in order to use the fast Chandrasekhar-type equations.. ." 

One could consider using some of the formulas derived here to solve the 
change of initial conditions problem. For example, propagate i r b ( t )  and 
then later incorporate the covariance C using (1.16) and (1.17) to 
construct the filtered estimate i ( t1 t ) .  Indeed, applying the smoothing 
formula (4.3) and (4.4) at time IT; the filtered estimate equals the smoothed 
estimate and can be written as 

Certainly (4.5) and (4.6) seem to accomplish what was just proposed. 
This scheme, however, does not quite work because of the equation for 

grb(t) .  From (4.1), the computation of this estimate involves the reversed- 
time system matrix - ~ ( t ) - Q ( t ) C - ' ( t ) .  That is to say, i r b ( t )  depends on 
the covariance C, and if the covariance were unknown, then it would be 
impossible to compute irb. The point here is that i r b ( t )  is a maximum 
likelihood estimate of x r ( t )  based on its "future" observations (future with 
respect to -t ,  i.e., { y ( z ) l t ~ z ~ O ) .  When the covariance of x ( t )  is C(t )  as 
used in the reversed-time realization, the two processes x ( t )  and x r ( t )  are 
sample path equivalent. But if C(0) is unknown, then one does not know 
which reversed-time model to use in the computation of i r b ( t ) .  

One conclusion from the above analysis is that the smoothing formulas 
developed here do not yield a simple change of initial conditions result for 
the forward filtered estimate. It will now be shown that such a result can 
be obtained for the reversed-time estimate i , ( t l t ) .  

The problem of interest is to compute i r ( t l t ) ,  the filtered estimate of the 
reversed-time realization given the observations from T to t ,  by first 
processing the observations assuming the state covariance is n and then 
correcting this result for the actual value, C, of the covariance. The 
backward Kalman filter is designed for the reversed-time system 

where Ex,"(T)x:(T)' = n ( T )  and 

instead of the reversed-time system (3.1), i.e., C, the true state covariance, 
is replaced with n, a quantity which also obeys the Lyapunov equation. 
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FIXED-INTERVAL SMOOTHING 2 3 

The output of this reversed-time Kalman filter, initialized at time T with 
covariance ~ ( t ) ,  is denoted i : ( t  It). From (3.14), (3.15) and Theorem 2, the 
estimate ?:(tit) and covariance ~ ~ ( t l t )  are related to Fraser's i b ( t )  and 
Pb ( t )  

Solving (4.9) and (4.10) for i , ( t )  and P i l ( t )  and using (3.14) and (3.15) 
again yields 

The very natural interpretation of this result is that the incorrect 
covariance x is removed from the estimate and then the correct covariance 
E is added. 

Thus in contrast to the forward-time case, very simple change of initial 
conditions formulas are obtained for the reversed-time estimate and 
covariance. The explanation for this is that i , ( t ) ,  the maximum likelihood 
estimate of x ( t )  given the future observations, does not depend on the 
state covariance-the system matrix used in the filter for i b ( t )  is just 
- A ( t ) .  Using (4.11) and (4.12), it is possible to generalize (3.20) and (3.21) 
of Theorem 3 in that the covariance C can be replaced by an arbitrary 
function n satisfying (4.8). 

These expressions are similar to ones obtained by Ljung and Kailath [ I ]  
using the relationship between linear least-squares estimation and scatter- 
ing theory. 

Consider the implementation implications of this last observation. 
Basically any legitimate covariance function can be used in the reversed- 
time system matrix and Kalman filter. This added flexibility may be quite 
useful, especially when the forward system is time-invariant. In this case, 
one could use the steady-state covariance and thereby attain a time- 
invariant reversed-time model. This eliminates some of the problems 
involved with directly implementing the reversed-time filter. 
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V. COVARIANCE ANALYSIS FOR MISMATCH BETWEEN 
SYSTEM AND SMOOTHER 

Covariance analysis is concerned with the increase in the smoothed 
error caused by using incorrect model parameters. For example, if a 
smoother is implemented with the system matrix A*(t) in place of the 
correct matrix A(t), what is the resulting error covariance? Another 
example would be a reduced order smoother that uses a model of lower 
dimension than the actual system. The issue addressed by covariance 
analysis is of considerable practical importance. Griffin and Sage [20] 
have treated the sensitivity aspects of covariance analysis for discrete-time 
processes by considering the Rauch, Tung, Striebel [9] smoother. The 
analysis given here is thought to be the first correct treatment of the two- 
filter smoother and is performed for both continuous- and discrete-time 
(see Appendix A for the discrete-time results). Throughout this section, 
explicit time dependence will often be suppressed for ease of presentation. 

The model used by the smoother for the dynamics and observations is 

where IY* and v* are independent white noise processes with covariances 
Q* and R*, respectively and Ex*(O)x*'(O) = C*(O). The superscript asterisk 
will be used consistently to denote model parameters as distinguished 
from the true system parameters. It is assumed that there is an output z of 
the actual system defined by 

which is approximated by the output z* of the model, 

The only restrictions imposed on the model are that y* and z* have the 
same dimensions as J and z ,  respectively. 

A smoothed estimate of the output is obtained as z*:=H*i,*, and the 
question is, "What is the covariance of z-i:?'In order to determine an 
expression for this covariance, first the forward-time system and filter are 
jointly analyzed, and then a similar analysis is performed for the reversed- 
time system and filter. Next, the correlation between the forward- and 
reversed-time estimates are obtained. All these results are finally combined 
to yield the output error covariance. 
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FIXED-INTERVAL SMOOTHING 2 5 

Forward-time system und filter The model (5.1) and (5.2) can be used to 
design a reduced order Kalman filter, 

where x**(O)=O and P L ( 0 ) = C * ( O ) .  Notice that the input to this filter is 
the actual observations y,  of course. By combining the estimate i *  with 
the actual state x, one obtains an augmented state vector having dynamics 

The covariance of this augmented state is defined as 

and must obey the Lyapunov equation 

Reversed-time system m d  filter The reduced order reversed-time system 
corresponding to the model (5.1) is 

where 4* is a white noise process with covariance Q*, E x : ( T ) x F 1 ( T )  
=C*(T) ,  and Z* is given by 

d 
- C* = A*C* + C*A*' + Q*. (5.12) 
dt 

By analogy with the forward-time case, there exists a reduced-order 
reversed-time Kalman filter having gain KT and producing the estimate 
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2:. The reversed-time augmented system is 

(5.13) 

Let the covariance be 

since x and x, are stochastically indistinguishable. Then 

Cross-correlatiorz of 2* and 2f The preceding analysis has shown how 
solving the two time-varying Lyapunov Eqs. (5.10) and (5.15) yields 
the covariances of i *  and i,* and their cross-correlations with x. Before 
one can obtain an expression for the smoothed error covariance, it is also 
necessary to know the cross-correlation of i *  and 2:. 

E2*( t )$: ' ( t )=a*( t )C( t )p*( t )  (5.16) 

where 

with initial conditions r*(O) = O  and p*(T)=O. 

Proof This lemma is proved in Appendix B. 
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FIXED-INTERVAL SMOOTHING 2 7 

The cross-correlation between i * ( t )  and i f  ( t )  is given by the relatively 
simple expression (5.16) of Lemma 1 where sc* and fi* obey differential 
equations of the Lyapunov type. The coefficients of a* and p* in these 
equations are: 

a) A* -K*C* : forward-time filter matrix; 
b) - A  - QC-' : reversed-time system matrix; 
c) A': forward-time system matrix transposed; 
d) [ -A* - Q*C*- ' - K f C * I 1 :  reversed-time filter matrix transposed. 
Notice the striking symmetry. In the linear time-invariant infinite-lag 

case, all four of these matrices are stability matrices. The steady-state 
algebraic version of (5.17) and (5.18) will, therefore, always have unique 
solutions. 

Everything necessary for the evaluation of the smoothed output error 
covariance is now available. The next theorem puts it all together. 

THEOREM 4 The error cortrritrnce of' the smoothed output estirntite is 
given by 

cov [ z ( t ) - i , * ( t ) ]  = H C H 1 -  H*C:[P*-'M' 

where C, M ,  N come from (5.9); M ,  and N ,  come from (5.14); and a* and 
/I* come from (5.1 7 )  and (5.18). 

Proof (Appendix C) .  

This theorem is the main result of this section. While tedious, the proof 
is basically straightforward; it consists of finding the various cross- 
covariances. In fact, the only difficult part of the derivation was finding an 
expression for E2*2T1. 

As an aside, it is noted that the cross-correlations between the estimates, 
i *  and i f ,  and the state x could have been evaluated in an analogous 
fashion to the way E i * ( t ) i f ( t )  was obtained. This is done in Appendix B 
where it is shown that 

But E i *  (t )x' ( t  ) = M 1 ( t )  from (5.9). Therefore 
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Similarly, 

Since the Lyapunov equations (5.10) and (5.15) have to be solved and 
yield M and M,, (5.21) and (5.22) allow the evaluation of the output 
covariance without the solution of the additional Eqs. (5.17) and 
(5.18) for u* and P*.  

In the case where the dimension of the model (5.1) equals the dimension 
of the actual system (1.1), Theorem 4 can be used to obtain an expression 
for the covariance of x( t ) - id( t ) .  This results from simply setting H and 
H* equal to the identity. Alternatively, the expression for the smoothed 
error covariance could be obtained by expressing the smoothed error as a 
linear combination of three errors-forward error, reversed-time error, and 
a priori error, 

The covariances of these errors and their cross-correlations can be 
found from (5.101, (5.15), and (5.16). By making these substitutions and 
performing some tedious algebraic manipulations, one is able to arrive at 
an expression for the smoothed error covariance from (5.23). The details 
are omitted. 

In summary, this section has addressed the problem of fixed-interval 
smoothing using an incorrect model. The actual smoothed output error 
covariance is given in Theorem 4. A special case of this result is a 
sensitivity analysis expression for the smoother error covariance. In either 
case, it is necessary to solve the forward- and reversed-time Lyapunov 
Eqs. (5.10) and (5.15). The quantities a* and P* also obey Lyapunov 
equations, but can be computed (perhaps more conveniently) from (5.21) 
and (5.22). 

VI. CONCLUSIONS 

The two-filter smoother expresses the smoothed state estimate as a linear 
combination of two optimal estimates. One of the main contributions of 
this paper has been to obtain this smoother from first principles. Other 
derivations of the two-filter smoother have proceeded by showing equival- 
ence with some other smoothing algorithms. Because of these derivations, 
it has never been clear exactly what type of estimate is the backwards 
estimate i ,(t) .  Therefore, perhaps more important than the derivation of a 
new two-filter smoother in this paper is the insight gained from this 
approach. The backwards estimate is simply the maximum likelihood 
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FIXED-INTERVAL SMOOTHING 29 

estimate. The backwards filter comes from removing the a priori  infor- 
mation from a reversed-time Kalman filter. This reversed-time Kalman 
filter, a key element throughout the paper, is designed from a reversed- 
time realization of the state process. Other authors [I41 have used the 
reversed-time model to obtain smoothing formulas, but these results 
essentially just applied standard smoothing formulas to the reversed-time 
model. Section I11 used the reversed-time filter in conjunction with the 
forward filter to obtain the resulting expression for the smoothed estimate. 
It should be noted that some of the equations in Section I11 are quite 
similar to ones obtained by Ljung and Kailath [ I ]  by using the 
relationship between linear least-squares estimation and scattering theory. 
The approach taken here seems to be a natural one for addressing the 
smoothing problem and yields the very simple change of initial conditions 
formula (4.13) and (4.14) for i,(O). 

The smoothing formulas presented here are symmetric with respect to 
forward-time vs. reversed-time. This is not meant to imply that the two 
filter error covariances P ( t )  and P,(t) are equal, but rather the form of the 
smoother is the same for both the past and the future. For example, the 
two estimates i ( t 1 t )  and i r ( t l t )  that are combined to produce the 
smoothed estimate are both conditional expectations of x ( t ) .  As discussed 
in Section I, intuitively there is an equivalence between past and future 
observations. Where the difference between forward- and reversed-time 
became apparent was in Section IV when the question of uncertain initial 
covariance was considered. The reversed-time system matrix - A ( t )  
- Q ( t ) X - ' ( t )  obviously depends on the state covariance; the forward 
system matrix A ( t )  is independent of C. Therefore, when considering 
change of initial covariance problems, the fact that the original system 
model is given in forward-time introduces a distinction between forward- 
and reversed-time. One can form a maximum likelihood estimate of x r ( t )  
(given the observations from t  to T) which can be combined with the u 
priori  data to provide a simple change of initial conditions formula. There 
does not exist an analogous formula for the forward estimate i ( t1 t ) .  This 
formula for $,(tit) can be used to provide a change of initial conditions 
formula for i , ( O )  since at time 0, all the observations are used in 
estimating x,(O). 

In order to implement the two-filter smoother given in Theorem 3, it is 
very convenient to use the information filter form of the forward- and 
reversed-time Kalman filters. This means one should compute P - ' ( t i t ) ,  
P; ' ( t ( t ) ,  P - ' ( t ( t ) i ( t l t ) ,  and P ; ' ( t l t ) i , ( t ( t )  instead of the usual Kalman 
filter estimate and covariance. If these quantities are available, then only 
one matrix inversion is needed in the computation of the smoothed 
estimate-the inverse of P -  ' (tl t )  t P,-' (ti t )  - C- ( t )  is all that is required. 
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The final contribution of this paper is the analysis of reduced-order 
smoothers and the sensitivity of two-filter smoothers. The approach taken 
here is similar to that of Mehra [7] except that Mehra erroneously 
assumed the forward and backward filtered errors were uncorrelated. 
Hence the main contribution of Section V is Lemma 1 which gives the 
cross-correlation between i * ( t )  and i : ( t ) ,  the forward- and reversed-time 
estimates. Another important aspect of the analysis in Section V is that 
both Lyapunov equations (5.10) and (5.15) can correspond to table 
systems. In particular, for the time-invariant infinite-lag problem, the 
forward- and reversed-time augmented systems are both stable and, 
therefore, algebraic equations can be solved to yield the covariances. 
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Appendix A. 

DISCRETE-TIME SMOOTHING FORMULAS 

Consider the discrete-time linear system 

where x(O), w ( k ) ,  and v ( k )  are all independent, zero-mean, Gaussian 
random variables and 

The discrete-time FI smoothing problem is to compute the conditional 
expectation of x ( k )  given the observations { y ( i ) l 0 5  i j T ) .  The estimate is 
denoted 2 , ( k )  and the error covariance is P,(k) .  The system covariance 
E x ( k ) x l ( k )  at time k  is denoted by C ( k ) .  

The reversed-time system corresponding to ( A . l )  is 

I 

where the covariance of the reversed-time white noise driving process 1s 
I 

I 

Q r ( k +  l ) = E [ , ( k +  l ) & ( k + l )  

= C ( k ) - Z ( k ) 4 ' ( k +  1, k ) Z - ' ( k +  l ) 4 ( k +  1, k ) Z ( k )  (A .4 )  
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If the state transition matrix d ( k + l ,  k )  is invertible, this covariance may 
be written as 

Q , ( k + l ) = Z ( k ) q Y ( k + l ,  k ) C - ' ( k + l ) Q ( k ) ( L - ' ( k + 1 ,  k) '  

The random variables x , ( T )  and r ( k )  are independent, zero-mean, 
Gaussian and E x , ( T ) x ; ( T ) = Z ( T ) .  Under these conditions, the processes 
.u (k)  of ( A . l )  and .x,(k) of (A .3)  have the same covariance function and, 
therefore, the same joint probability density functions. It should be noted 
thgt Friedlander, Kailath, Ljung [21] and Sidhu, Desai [ I41  have 
previously given incorrect reversed-time realizations of the discrete-time 
process x ( k ) .  

For the smoothing problem, there are four disjoint sets of information 
about x ( k ) ,  

1 )  past observations: ( y ( i ) lO  5 i  < kj  

2 )  future observations: { j>( i ) l  k  < i $  T )  

3 )  present observation: { j . ( k ) )  

4 )  a priori data: mean 0 and covariance C ( k ) .  

By grouping these sets of information in various ways, one arrives at 
the variety of estimated quantities below: 

Kalman filter estimate f ( k  k ) = 1 ) + 3 ) + 4 )  

Kalman filter one-step predictor f ( k1  k -  1 ) = 1 ) + 4 )  

reversed-time Kalman filter estimate i , ( k l  k ) = 2 ) + 3 ) + 4 )  

reversed-time Kalman filter 
one-step predictor f , ( k l k + l ) = 2 ) + 4 )  

backwards estimate f b ( k l  k ) = 2 ) + 3 )  

present conditional expectation x^p , , ,p , (k lk )=3)+4)  

a priori estimate f a , p .  ( k )  = 4 )  

and others. The reversed-time Kalman filter estimate and one-step pre- 
dicted estimate are obtained from applying the Kalman filter equations to 
the reversed-time realization (A.3). The estimate x^,,,,,,(k) is just 
~ [ x ( k ) l  ) . (k)] .  The backwards estimate 2,(kl k )  is used in the discrete-time 
M,ayne'Fraser smoother. 

In 'Section 111, the idea of forming an estimate from the future 
observations without including a priori information was discussed for the 
continuous-time case. We now digress in this paragraph in order to 
elaborate and expand on that discussion for the discrete-time case. The 
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future observations, { y ( i ) l i <  k <  T), can be expressed as one aggregate 
observation, y, of x ( k ) ,  

where 4(l, m )  denotes n;:: 4 G  + 1, j ) .  This aggregate observation is 
simply a linear observation of x ( k )  corrupted by additive noise-the 
additive noise being a function of { w ( i -  l ) , v ( i ) l  k < i  j T ) .  To estimate 
x ( k )  from y  without using a priori data, view x ( k )  not as a random 
variable, but rather as an unknown parameter. As an unknown parameter, 
one can speak of the maximum likelihood estimate of x ( k )  given the 
future observations. This estimate is well-defined only if x ( k )  is observable 
over ( k +  1, T ) ,  i.e., if H in ( A . 6 )  is full rank. In this case, the well-known 
result is 

with error covariance 

where R = E d .  This estimate corresponds to Fraser's x^,(kl k  + 1 ) .  When H 
is not of full rank, the pseudo-inverse of R-'I2H can be used to estimate 
the observable part of x ( k ) .  It is easily seen from ( A . 6 )  and ( A . 7 )  that the 
error in i f u , u r , ( k )  is due solely to the additive noise in ( A . 6 ) ,  i.e., the error 
is independent of the random variable x ( k ) .  Hence, in either the full rank 
or non-full rank case, the maximum likelihood estimate x^fut,,,(k) can be 
combined with the a priori data using (1 .13)  and (1 .14)  to yield the 
Bayesian conditional expectation of x ( k )  given { y ( i ) l  k <  i s  T ) .  

The smoothed estimate, of course, must incorporate all four sets of 
information exactly once. There obviously exists a plethora of ways to 

JS-B 
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combine these various estimates to obtain i,(k), 

The proof of these results is analogous to the proof of Theorem 3 and is 
omitted. Equation (A.9) is just the Mayne-Fraser two-filter smoother. 
Equation (A.10) expresses the smoothed estimate as a combination of two 
Kalman filter estimates. The other two formulas, (A.ll)  and (A.12), are 
included to show that the smoothed estimate can be written in terms of an 
expression that is symmetric with respect to forward- and reversed-time. 
There are, of course, many other possibilities besides (A.9t(A.12) for 
giving the smoothed estimate. 

For the reduced-order smoother analysis, the formula (A.lO) will be 
used. Notice that this expression is asymmetric with respect to forward- 
and reversed-time, and so it is to be anticipated that the resulting reduced- 
order covariance expressions will also have some asymmetry. It is 
assumed that the model used in reduced-order smoothing is 

z*(k) = H*(k)x*(k). (A. 15) 

The actual process x(k) and observations y(k)  are generated by (A.l) and 
(A.2), and the actual output z(k) is given by 

The approach and assumptions are the same as in Section 4.4. Also, 
explicit dependence on time will be suppressed. 
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FIXED-INTERVAL SMOOTHING 35 

Forward time system and filter A  reduced-order Kalman filter is designed 
on the basis of the model (A .13)  and (A .14) .  Let K *  be the gain of this 
filter. Then consider the augmented state vector consisting of x  and i * ,  

Let 

( A .  18)  

This augmented state covariance is given by the discrete-time Lyapunov 
equation. 

Reversed-time system and filter Let KT be the filter gain of the reduced- 
order, reversed-time Kalman filter. Then 

Let the corresponding system covariance be 

Cross-correlation of x*(kl k )  and x:(kl k +  1) Using the discrete-time 
versions of the arguments given in Section IV for continuous time yields 

E [ i * ( k l  k)x:(kl k  + 1 ) ]  = n * ( k ) C ( k ) p * ( k )  (A .21)  

where cc* and p* are recursively computed from 

u * ( k ) = K * ( k ) C ( k )  + { [ I  - K * ( k ) C * ( k ) ] 4 * ( k ,  k -  1)) 

x a * ( k - l ) { C ( k - l ) d 1 ( k ,  k - 1 ) C - ' ( k ) )  (A .22)  
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3 6 J. E. WALL, Jr., A. S. WILLSKY AND N. R. SANDELL. Jr. 

with initial conditions a*( -  1) =/3*(T) =O. 
The smoothed output error co\al-iance is therefore 

cov [ ~ ( k )  - ~ * ( k ) ]  = [H - H * l E { [ 2 k ) ]  [x ' ( k )  x:'(k)]][:,] 
xs ( k )  

Using (A.lO) for the smoothed estimate, 

and 

Substituting (A.25) and (A.26) into (A.24) yields 

The sensitivity analysis problem is solved by taking H and H* equal to 
the identity matrix. 
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Appendix B. 

CROSS-CORRELATION BETWEEN ii*(t) AND ii:(t) 

The estimate i* can be written in integral form from the variation of 
constants formula as 

where @A,_K.,, is the state transition matrix of the forward Kalman filter, 

with the identity initial condition a,,- ,,,,(0,0) = I .  Similarly, the reversed- 
time estimate can be written 

** : 
x, ( t ) =  J $ -A.-Q*r.-~ z ) K , * ( ~ ) y ( z ) d ~  

T 
(B.3) 

where 

and $ A Q - K c (  T ) = I .  Combining the integral expression ( B . l )  
and (B.3) and taking the expectation yields 

x E [ y ( o ) y ' ( ~ ) ] l < ~ ' ( ~ ) $ ' ~ * - ~ * ~ * ' - ~ ; ; ~ * ( t , ~ ) d ~ d ~ .  (B.5) 

The autocorrelation function of y is evaluated in the following lemma: 

LEMMA B.l For ass, 
E Y ( c ) Y ' ( ~ ) = ~ ( ~ ) $ - A - Q ~ -  1(a,t)C(t)@k(z,t)Cf(z)+R(o)6(a-z) (B.6) 

where t E [o ,  z]  and 
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3 8 J E. WALL, Jr., A. S. WILLSKY AND N. R. SANDELL, Jr. 

i.e., cD, and $ - A - Q z - ~  are the state trunsition matrices of the forward- and 
reaersed-time systems, respectively. 

Proof 

Equation (B.6) can now be substituted into (B.5). Note that the term 
involving the delta function drops out because of the limits on the double 
integral. Thus 

This result is now expressed as 

LEMMA B.2 

~ . i * ( t ) i : ' ( t ) = a * ( t ) ~ ( t ) ~ * ( t )  (B.lO) 

where 

Proof Lemma B.2 is an immediate consequence of (B.9). 

The integral expressions for a* and p* may be replaced by differential 
equations. 

LEMMA B.3 

with initial conditions a* (0) = 0 and p* (T) = 0. 
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FIXED-INTERVAL SMOOTHING 39 

Proof Differentiating (B.11) with respect to t yields 

Equntiotl (B.13) is obtained in  a completcl! analopou~ fahion. Q.E.D. 

Combining Lemmas B.2 and B.3 yields Lemma 1 of Section V. 
Finally, notice that from (B.l) 

= a*(t)C(t). (B. 15) 

Similarly, 

Appendix C. 

PROOFS OF THEOREMS 2 AND 4 

Proof of Theorem 2 

Explicit dependence on t is suppressed throughout this proof 
(covariance). It is shown that P i '  equals P;' -C-'. At time IT; P;' (TI T) 
-C- ' (T)=~=P; ' (T) ,  so it suffices to show that the derivatives are 
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equal. 

- -P; ' A +  A'P; ' -P; 'QP; ' + C ' R - ' C  from (2.22) 

= ( P ~ - ~ - c - ~ ) A + A ' ( P ; '  - c - ' ) - (P; ' -c -~)  
x Q(Pr-' -X-')+ C'R- 'C  by hypothesis 

= P ~ - ' ( A + Q C - ~ ) + ( A + Q C - ~ ) ' P ; ~  - P ; ~ Q P ; ~  

+ C ' R - ' C - C - ' A - A ' C - ' - C - ~ Q C - '  rearranging 

d d 
= --P;' +-C- ' from (3.3) and (3.9) 

dt dt 

(estimate). The proof is completed by showing P; ' 2 ,  equals Pr- ' i , .  Once 
again, it suffices to demonstrate the equality of the derivatives since the 
quantities are equal at time T 

= ( P ; ~ A + A ' P ; ' - P ; ~ Q P ; ~  + c ' R - l ) i b  

+ P ; l ( - ~ i b + P b C ' R - l [ ~ - C i b ] )  

from (2.21) and (2.22) 

= ( A ' - P ; l ~ ) ~ ; l i b + C ' ~ - l y  

combining terms 

=(A'-[P; '  - C - ~ I Q ) P ; ~ ~ , + C ~ R - ~ ~  

by hypothesis 

= ( [ A + Q Z - ' ] ' - P ; ' Q ) P ~ - ' ~ , + C ' R - ' ~  

rearranging terms 

= ( P ; ~ [ A + Q C - ~ I + [ A + Q C - ~ ] ~ P ; ~  

-P,- 'QP~-~ +cr~-lc).<, 
+ P ~ ' ( [ - A - Q C - ~ ] ~ ~ + P ~ C ' R - ' [ ~ - C ~ ~ ] )  
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FIXED-INTERVAL SMOOTHING 

adding and substracting Pr- ' [ A  + QC- '12, + C'R-  ' C i ,  

d 
= -- [Pr-'x*,]. Q.E.D. 

dt 

Prbof of Theorem 4 

cov [ ~ ( t  ) - 2: ( t ) ]  = cov [ H x  - H*x*:] 

= H E { x x ' ) H ' - H * E { ~ : x ' ) H '  

- H E { x ~ : ' ) H * '  + H * E { ~ : ~ , * ' ) H * /  

( I . )  E { x x l }  = C 

(11.) E { i g x ' }  = C:E{[P*-' i* + P,*-'x^,*]x) 

= C : [ P * - l M ' + ~ , * - l ~ i ]  

from (5.9) and (5.14). 

(111.) E{i,*x^,*) =C,*E{[P*-'i* +P);- '~^,*][P*-'$* +P,*-'~,*]')c: 

=C,*[p*- lNp*-  1 +p,*-lb*'&*'p*-' 

+P*-la*CP*P:-' +P,*-'N,P:-']c,* 

from (5.9), (5.14) and (5.16). 

:.COV [z-2:] =HEHI-H*c ,*[P*- 'M '+  P,*-'M;]H' 

-HEMP*- '  + M,P,*-~]C:H*' 

+ H * C ~  [p* - l ~ p *  - 1 +p: - l b * ~ ~ p p *  - 1 

+ P*- ~ U * C ~ * P , * - ~  + P,*-'N,P,*-'IC,*H*~. Q.E.D. 
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