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determined. For instance, if only ¢ and bx have been found in Step 6,

then from (4) one obtains
M = erbemr + ebr + Caokyabaloiz - Qnoi. 9)

Formulate a set of ¢ X p equations using entries in unknown by
and ¢ as variables and the entries in unknown ¢,z b zya- - ~Auy
are moved to the other side of the equations to be combined with the
numerical entries in 1. Upon Gauss—Jordan reduction the con-
sistency of the system of equations will give constraints for the
solution of the unknown ¢a_r.e and b, and the unknown a’s. Once
again, the solutions are not unique, and additional constraints may
be considered. Substituting the values into (9) one ean find ¢; and
br1. It will be seen from the example that eomputation iz simple and
computers may be used.

III. ExameLe

The example used in [6],[9] is considered here for illustration.

st—s241 1 —s% 5t — 2
Gs)=11.3s+1 s+ 1 —1.88s — 2 /84,
§8—0s2—5s4+1 —s241 s2—s5—2

1) The least common denominator of all minors of G(s) is s5.
Degree {G(s)} = n = 8.
2} TUpon partial-fraction expansion one obtains

i
G(s) = Y, M;/(s—~n)y, k=4
=1
1 0 —1 -1 01
M=o 0 oLM=| 0 0 0
1 0 1 -9 —1 0
0 0 0 11 =2
My=1{15 1 =13 My=]1 1 -2
-1 0 -1 1 ~2

3)and 4) Construct an 8 X 8 generalized-Jordan-form matrix A
and formulate (s — A)~L Settinga: = Oand a; = ay = a3 = 1, one
obtains, M. = ebs + asqeaicihs, My = by + by + asasebr +
asticsbs, Mz = cibs + cabs + csbs + a:ebs + ascebr + asedhs, M1 =
by + cabs - c3by - by - b - esbs - b + obs.

5) and 6) Rank M; = 1, assume a5 to be zero. My = by One
obtains ; = (1 1 1)7, and by = (1 1 —2). Since 1 £ n, £ min(3,3)
—1 = 2, as and a7 cannot be zero, and are set (o be one each.

7) Formulate a1z 4 csby = I3 — cgbs, a set of nine equations of
six variables, namely, by, O, b, €12, €2, and ez Upon Gauss—Jordan
reduction one obtains the following constraints for the svstem of
nine equations to be consistent:

(cos — e16Xbsr — bse) = 0.3, (€16 — ca6){ba — b2) = 1,
(€26 — €16)(2byt + bs3) = 1.5, (€16 — c36)(bss + 2bu) = —3.

There are four equations of six unknown variables. Again, additional
constraints may be considered. One finds ¢s = (=1 —1.5 0)7, and
bs = (—1 0 —1). From the original nine equations one obtains
¢ = (010)7, and by = (—1 0 —1). Repeat the procedures for the
two sets of equations successively, cibn - by + esbi + e1bs = Mo —
cebs, and iy + cabs + eshs + cshs = My — b — by — esh; — by,
and solve for b, b, ¢3, c7, and b, ¢;, by, bs, €3, o, respectively. They are:
by = (=9 —10), b7 = (=203 =23 -2:3),c3=(1300), ¢z =
(=100, and b; = (006), ¢ = (LOMT, 5 = (31 300)T, ¢ =
(—4300M7,by = (101),hs= (=163 =232 3).

IV, CoNcLusioN

The procedure can be applied to the synthesis of networks to
reduce the number of physical elements needed. Only simple tech-
niques are required in the computation. Digital computers ean be
used to further simplify the compurtation. The procedure needs to
determine the least common denominator of all the minors of G(s)
and to know the factors of the denominator.
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On the Invertibility of Linear Systems
ALAN 8. WILLSKY

Abstract—Sain and Massey [1] have obtained necessary and
sufficient conditions for the invertibility of continuous and discrete
time linear systems and have also found bounds for what they
termed the ‘‘inherent integration' (continuous time) or the ¢‘in-
herent delay” (discrete time) of an invertible linear system. In
this note, we tighten these bounds by modifying an argument used
to prove the Sain-Massey result,

1. InTRODUCTION

In recent yvears there have been a number of papers [1]-[5] written
that deal with the question of the invertibility of linear time-invari-
ant (LTI) systems—both diserete time and continuous time and over
the real field or over an arbitrary field. These studies have led to a
number of different algebraic criteria. Massey and Bain [2] have
devised a test for invertibility involving the ranks of a set of input
sequence — oufput sequence maps, while Sain and Massey [1] and
Brockett and Mesarovic [3] have developed a necessary and sufficient
test based upon a rank condition for a single large matrix. Recently,
Wang and Davison [5] have come up with an invertibility test that
involves the matrices associated with a particular realization, as
opposed to the preceding tests which depend only on the system
weighting pattern.

One notion that is intimately tied to the concept of invertibility is
that of inverse delay or integration. In general, there exists no
inverse for a LTI system such that the input to the original system is
reproduced as the output of the inverse without delay or integration.
The number of units of delay for the discrete time case is called the
inverse delay, while the number of integrations in the continuous
time case is called the inverse integration. The techniques of Sain
and Massev [1],[2] use these notions rather strongly. We note here
only that the amount of computation involved in checking to see if
there is an inverse with an {.-delay (or I-integration) increases with
L, and one of the most important results in {1] is that Sain and
Massey are able to bound the largest value of L that we need check.
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TECHNICAL NOTES AND CORRESPONDENCE

In this note, we tighten the Sain—Massey bound by modifying a
linear-algebraic argument in [1]. As a direect result of the tightened
bound, we also obtain a sharper version of the single matrix result
reported in [1] and [3].

II. NoTATION AND PROBLEM STATEMENT

We consider the LTT continuous and discrete time linear systems
over a field K

Z(t) = A z(t) + Bu() 1)
y(&) = Cz(t) + D ud) @)
z(k +1) = A z(k) + B uk) 3)
y(k) = Cx(k) + Du(k). 4)

Herex € K*, u € K™, y € K?, and 4,B,C,D are matrices of appro-
priate dimensions (in the continuous time case we assume that KX =
R). The transfer functions of these systems are

G(s)=C(Is—A)'B+ D (5)
G(z) = C(lz— A)7'B + D. (6)

We now recall two definitions from [1].
Definition 1: The continuous time LTI system (1),(2) is L-integral
invertible if there exists a linear system

Az20) + Bo@) (7)
G 2t) + D o(t) (8)

with transfer function G(s), such that

2(t)
w(t)

I

N 1
G(s)G(s) = o 1. (€))

The system (7),(8) is called an L-iniegral #nverse. If (1),(2) is L~
integral invertible for some L, the system is called invertible, and the
smallest L such that (1),(2) is L-invertible is called the nherent
entegration Lo of an invertible system.

Definition 2: The discrete time LTI system (3),(4) is L-delay in-
vertible if there exists a linear system

2k + 1) = 4 2(8) + B v(k) (10)
w(k) = € 2(k) + D o(k) (1)
with transfer function é(z), such that
a 1
G(2)G(z) = e I (12)

The system (10),(11) is called an L-delay inverse. If (3),(4) is L-delay
invertible for some L, the system is called invertible and the smallest
L such that (3),(4) is L~delay invertible is called the inherent delay L.

Thus, it is clear that we can determine L-integral invertibility
and the inherent integration of a system (1),(2) by looking at the
question of L-delay invertibility and the inherent delay of the dis-
crete system (3),(4) formed by using the same 4,B,C, and D ma-
trices. Therefore, we restrict our attention to the discrete time system
(3),(4). To do this, we first define some notation and an equivalent
definition of L-delay invertibility [1],[2]. Let U, € R®&*0m and
Y: € R*“D? be the vectors of the first £ + 1 inputs and outputs,
respectively,

u(0) y(0)
u(1) y(1)

Ue=| _ | =] (13)
u(k) y(k)

Assuming that z(0) = 0 (or at least that it is known so that we can
subtract out its effect), we have
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Yie = MUr (14)
where
To 0 o 0 T

T T, 0-- 0
111’;; = ’ - 3 (15)

0

Tk Tk._[ . To
To=D, T;=CA4"B i>1 (16)

The following is an equivalent definition of L-delay invertibility.

Definttion 3: The system (3),(4) is L-delay invertible if Uy is
uniquely determined by the response segment Yy, zfork = 0,1,2,- - -,
Note that it is immediate from Definition 3 that if (3),(4) is L-delay
invertible, it is k-delay invertible ¥ k& > L. Also, it is clear that
if the system (3),(4) is invertible, we must have p,n > m. In the
next section, we assume that this holds.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR THIS
INvERTIBILITY OF Lingar SysTEMS

We first recall a characterization of invertibility proven in [1],[2]
(here rank M _; is defined to be zero).
Theorem 1: For any nonnegative integer Z,

rank (M) — rank (M) <m (17)

with equality if and only if (3),(4) has an L-delay inverse.
We now strengthen the two corollaries in [1] to Theorem 1 and
also the single matrix invertibility condition stated in [1] and [3].
Corollary 1: Let ¢ = dimension of the nullspace of D. The system
(3),(4) is invertible if and only if

rank (Mn_g1) — rank (Mag) = m, (18)

ie, if (3),(4) is in;rertible, its inherent delay I, cannot exceed
n—q+ 1.
Proof: Note that

rank 37y = rank D = m — q. 19)

Thus if ¢ = 0, the system is 0-delay invertible, and (18) is satisfied,
since the system is k-delay invertible for all & > 0. Suppose ¢ > 1
and that the system is not L-delay invertible. Then it is not k-delay
invertible for any k¥ < L. Thus, from Theorem 1 and (19), we have

rank My < L{(m — 1) +m — gq. (20)
Thus, the (L 4 1)p X (L + 1) m matrix has column nullity
(L + 1ym — rank (M) > L. + q. 21)
Let 9z be the subspace of R(Z D that is annihilated by M.
dim 9. > L + ¢ ' (22)

Consider the map that sends u(0),u(1),- - -,u(L) into the state at
time L + 1, and restrict this map to the control sequences in M.
If dim 911 > n + 1, this restricted map has a nontrivial kernel—i.e.,
there exists an input sequence u(0),- - -,u(L), not identically zero,
such that the corresponding output segment is

y(0) = y(1) = --- =y(l) =0 (23)

and

2L + 1) = 0. (24)

Thus, the output sequence corresponding to the input sequence
u(0),- - -,u(L), 0, 0,--- is identically zero, and the system is not
invertible.

Noting from (22) that dim My, > n 4+ 1 L = n — ¢ 4 1, we have
that the system is invertible if and only if it is (n — ¢ + 1) — delay
invertible.
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We remark that for ¢ = 0 the invertibility question is trivial, for
g = 1 our result is the same as the Sain—Massey result, and our
result is stronger for ¢ > 1. In particular, if D = 0, we have

Corollary 2: The system

z(k+ 1)
y(k)

is invertible if and only if it is (n — m 4 1) — delay invertible.

We also have the following strengthened corollary, the proof of
which involves a trivial modification of the analogous result in [1]
if we keep the above proof of Corollary 1 in mind.

Corollary 3: The system (3),(4) is invertible if and only if there is
no input segment Un_y.1 # 0 followed by all zeroes, which produces
the all zero output sequence in (3),(4) when z, = 0.

Similarly, we obtain a strengthened version of the single matrix
result in [1] and [3].

Theorem 2: The system (3),(4) is invertible if and only if

A (k) + B u(k)
C (k)

(25)
(26)

1

rank (N) = (n — ¢ + 2)m 27)
where ¥ is the (2n — g + 2)p X (n — ¢ + 2)m matrix
- D 0 e 0 ]
C B D -0
N = CAB CAr—<B ... D (28)
C An—et1B (C Ar—B CB
| CA»-eB (¢ Aw-em1B ¢ A»1B ], | |
Corollary 4: The rank condition

rank (¥) = (n — ¢ + 2)m (29)

holds if and only if

B <o

We also note that in a similar manner one can obtain strengthened
versions of the necessary and sufficient conditions, presented in [1]
and |3], for the dual concept of functional controllability.

rank (M, gn) — rank (M,_,) = m.

IV. CoNcLUSIONS

In this note we have obtained a strengthened version of the
necessary and sufficient conditions, derived in [1]-[3], for linear
system invertibility. These results reduce the question of inverti-
bility to a set of rank tests for certain matrices, and our strengthening
of these results depends on a careful counting argument.

The question of system invertibility is important in such applica-
tions as the design of encoding-decoding systems, and has received a
great deal of attention in the literature. We refer the reader to more
general invertibility results in [6]-{9]. In particular the finite group
system resulis in [6]—[8] are quite similar in flavor to the results in
[1]1-[3] and in this note.
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Minimal Order Observers and Certain Singular Problems
of Optimal Estimation and Control

HARRY G. KWATNY

Abstract—It is shown that a Riccati equation of particular struc-
ture which arises in a number of singular optimal estimation and
control processes can be reduced in order. This fact leads directly
to a procedure for the design of a class of minimal order observers,
the structure of which can be interpreted as the limiting form of
appropriate Kalman estimators with vanishing observation noise.

I. INTRODTCTION

As might be anticipated, the theory of minimal order observers
can be closely allied with certain singular problems of optimal
estimation and control. This commonality is particularly striking
when it is recognized that minimal order observer design can be
accomplished through solution of a matrix Riecati equation which
is identical in structure to those arising in singular optimal regulator
problems and which admits a reduction in order.

It is known that the problem of minimal order observer design for
an nth order, completely observable system with r independent
outputs can be conveniently solved by solution of an (n — r) X
(n — r) dimension matrix Riceati equation [1].

In what follows it is shown that the required Riccati equation can
be derived through reduction of a larger n X » Riccati equation and
that, in appropriate circumstances, observers designed in this way
are limiting forms of Kalman estimators for vanishing observation
noise in the sense of Friedland [2]. Furthermore, it is observed that
certain Riceati equations obtained by Friedland [2] and Moylan and
Moore [3] for singular optimal regulator problems are structured
identically to that obtained for the observer design problem and can
be reduced in order. Certain problems of estimating the state of a
linear dynamical system from observation of outputs corrupted by
correlated noise are duals of these singular regulator problems and
consequently can be solved by identical procedures.

II. OrpEr REDUCTION OF A CLass oF Riccari EQuaTioNs

Let €' be an 7 X n matrix of full rank and let Co* denote a right
inverse of C.
Let P be an n X n symmetric matrix which satisfies the relation

CP =0 (1)
as well as the algebraic Riccati equation
PA'[I — Co*CY + [ — Co*ClAP — PA'J'STWJAP + M =0 (2)

where 8 > 0 is a symmetric 7 X r matrix, M > 0 is a symmetric
n X n matrix which has the property

CiM = 0. (3)

Jis an r X = matrix which will be required to satisfy a controllability
condition given below. A method will be given for obtaining P
satisfying both (1) and (2) by solving a Riceati equation of dimension
n—7r)X {n—r1)
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