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determined. For instance, if only c1 and bb have been fonnd in Step 6 , .  
t.hen from ( 4 )  one obtains 

X L I  = n b k - 1  + cphk + cn-l;+2bna.--t-p.. .a,_l. (9)  

Formulate a set of q X p equatious wing entries in unknown be-] 
and cp as variables 2nd the entries in unkuowl cn-,;Clbnan-b+S. . .an-l 
are moved to  the  other side of the equations t o  be cotnbined nith the 
numerical entrie i l l  . l l k - l .  Upon C;au~s-Jordan  reduction the con- 
sistency of the system of equations will give collstrnints for  the 
solution of the u n k ~ ~ o a n  rn-l;,p and h., nnd the ullkrlown a’s. Once 
again, the solutiotrs are not. unique, and additional  constraints may 
he considered. Substituting  the values iuto f 9 )  one C:UI find cL and 
bk-1.  I t  will be seen from the example that colnputation is simple and 
computerz may be  used. 

111. ES. \ l fPL*:  

The example used in [G],[9] is cousidered here for illustration. 

[ s 3 - 9 s * - s + 1  - - S P + l  s 3 - s - 2  1 s3 - s -+  0 1 1 -g3 + s? - 2 
G(s) = 1.3s + 1 sf 1 -1.3s - 2  :‘s4, 

1) The least common denominator of all minors of G(s) is 9. 

2) Upon part.ial-fraction expansion one obtains 
Degree (Gfs)) = n = S.  

I; 

G(s) = J I j j ( s  - X)j, k = 4 
j = l  

-111 = [: 0 1 0 -!I, -112 = [ :: “I. 
- 1  0 

= [I.? --‘.i], .1/1 = [i 
-1 0 - 1  

3) and 4) Construct.  an S X 8 getreralixedJordat1-form matrix d 
and  formdate (SI - A)-].  Setting a4 = 0 and nl = np = o3 = 1, one 
obtains, dl: = clb4 + aan6aicjhs, .Ita = clb3 f rnbr + aja6cjb, + 
OsaiCsbs, .I12 = ab? + rlh3 + c3h4 + a,c:h6 + a6csbi + a;cihs, .I/, = 
r h  + cph? + c3b3 + rib: f c.,h: f (-666 + c.;bi + c,h,. 

5 )  and 6)  Rank .I/, = 1, assume (15 to he zero. .I/, = e l +  One 
obtains c1 = (1 1 l i T ,  and ha = (1 1 -2). Since 1 n I  5 min(:3,:3) 
- 1 = 2: as and ai  cannot be zero, nud are set t o  hc one each. 
i) Formulate clb3 + c?h: = -11, - c6bs, a $et of nine equations of 

six variables, nnmel?-, h31, ha, baa, cl?, R I I ~  cd.  Upon G : ~ u ~ - J o r c l : ~ t ~  
reduction oue obtains the followillg constraints for the .system of 
nine equat.ions to be consistent: 

(e26 - r16)(bS, - hsz) = 0.3, fc16 - C36)ihhl - bnpi = 1. 

(e26 - C I ~ ) ( % I  + h a )  = 1.5, fc16 - ~36)(bs3 + 2hg) = - 3 .  

There  are four equations of six unknowll variables. -4gain, additional 
constraints ma>- he considered. One finds c6 = (- 1 - 1 . 5  O ) T ?  and 
bs = (-1 0 - 1). From  the original nine equations one obtains 
c2 = (0 1 O)T, and ba = (-1 0 -1 j. Kepeat the procedures for the 
t.n-0 sets of equations auccesively, r1h2 + cab4 + csbi + c;hs = .I[, - 
e&, and clhl f c h  + c6he + csh, = .I/, - crb? - c3h3 - riba - ribi. 
and solve for bp? h i ,  ca, ci. and h:,  e;, h. b,, c4, c,, respectively. They  are: 
b, = (-9 -1 O ) ,  hi = (-20 3 -2  :< -2 .3 )$  ca = i l  :< 0 O ) T ,  c; = 
( - 1  0 0jr,  and 6; = ( 0  0 G i ,  c;, = ( 1  0 ()IT. e, = (31 3 0 O ) T !  c4 = 
(-4;:3 0 0)”’: bl = (1 0 I), h s  = (-16 ‘ 3  - 2  3 2 3 ) .  

It-. CorcLI~slos 

The procedure can  be applied t o  the syl1the.G of network t.o 
reduce the number of physical elements needed. Only simple tcch- 
niques are required i n  the comprltation. 1)igital ccrnlputerr can t)e 
used to  further simplify the complltation. The procedure II& to 
determine the least con1n1on denonlinator o f  all  the nlinors of Gfs) 
and to know the factors of the denonlitlator. 
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On the Invertibility of Linear Systems 

ALAN S. WILLSKY 

Abstract-Sain and Massey [l] have obtained necessary and 
sufficient conditions for the invertibility of continuous and discrete 
time linear systems and have also found bounds for what they 
termed the “inherent integration” (continuous time) or the “in- 
herent delay” (discrete time) of an invertible Linear system. In 
this note,  we tighten these bounds by modifying an argument used 
to prove the  Sain-Massey result. 

I. INTRODUCTION 
In recent years there have been a number of papers [l]-[S] wrjtt,en 

that deal aith  the  quetion of the invertibility of linear the-invari- 
ant (LTI) systems-both discrete  time  and  continuous time  and over 
the real field or over an arbitrary field. These studies have led t.o a 
tunnher o f  different algebraic criteria. hIassey and Gain [2] have 
devised a test for invertibility involving the ranks of a set of input 
sequence - output. sequence maps, while Sain  and Masse\. [ l ]  and 
Brockert and 1Iesarovic (31 have developed a necesar>-  and sufficient. 
test tmed upon :I rauk condition for a single large matrix. Ilecently, 
JVang and 1)avison [ 5 ]  have come up with an invert,ibility test that 
involves the matrices asociated m-ith a particular realization, as 
opposed to the preceding tests which depend only on the system 
weighting pattern. 

One  notion that is intimately t.ied to  the concept of invertibility  is 
that of iuverse delay or integration. I n  general, there exists no 
inverse for a LTI system  such that  the  input  to  the original system is 
reproduced as the  output of the inverse m-ithout delay or integration. 
The nnmber of units of delay for the discrete t h e  case is called the 
inverse delay, while the number of integrations in the continuous 
time r u e  is called the inverze integration. The techniques of Sain 
:~nd 1I:rssey [1],[2] use these notions rather  strongly. We note here 
only that  the amount of computation involved in checking to see if 
there is a11 inverse n-ith an /,-delay (or IAltegration) increases wit,h 
I,, aud one of the most. important. results in [ 11 is that Sain and 
11:wse)- are able to bound the largest value of I, that a e  need check. 



TECHNICAL NOTES AND CORRESPONDENCE 

In  this note, me t,ight.en the Sain-Massey bound by modifying a 
linear-algebraic argument  in [ 11. As a  direct  result of the tightened 
bound, we also obtain  a  sharper version of the single matrix result 
reported in [I] and [3]. 

11. NOTATION AND PROBLEM STaTEllENT 

We consider the  LTI continuous and discrete time linear  systems 
over  a field K 

i ( t )  = A z( t )  + B u(t) (1) 

y( t )  = C x ( t )  + D u(t) (2 ) 

x(k + 1) = A r ( k )  + B a(k) (3 1 
y(k) = C x(k) + D u ( k ) .  (4 1 

Here z E K", u E K m ,  y E KP, and A,B,C,D are matrices of appro- 
priate dimensions (in the continuous t.ime case we assume that K = 
R). The transfer  functions of these  systems are 

G ( s )  = C(ZS - A)-'B + D ( 5 )  

G(z )  = C(Z z - A)-'B + D. (6) 

We now recall two definit,ions from [ l ] .  

invertible if t.here exists a linear  system 
De-jinition 1: The continuous time  LTI system (1),(2) is L-integral 

i(t) = 2 z ( t )  + B u ( t )  (7 1 
w ( t )  = e Z ( t )  + b v ( t )  (8 )  

wit.h transfer function &s), such that 

YI; = M k G k  

where 
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(14) 

To = D, Ti = CA'-'B, i 2 1. (16) 

The following is an equivalent definition of L-delay invertibilit,y. 
Defin.itian 3: The  system (3),(4) is Ldelay invertible if Gk is 

uniquely determined by the response segment Y ~ L  for k = 0,1,2,. . . . 
Note  that  it is immediat.e from Definition 3 that if (3),(4) is Ldelay 
invertible, it. is k-delay invertible Y k 2 L. Also, it is clear that 
if the system (3),(4) is invert.ible, we must. have p , n  2 772.. In  the 
next sect.ion, we assume that  this holds. 

111. NECESSARY A N D  SUFFICIENT  COlVDITIONS FOR THIS 

IXVERTIRILITY OF LINEAR SYSTEMS 

We first recall a  characterizat,ion of invertibility  proven  in [1],[2] 

Th.eorm 1: For any nonnegative  integer L, 
(here  rank ;If-1 is defined to be zero). 

rank ( M L )  - rank ( M L - ~ )  5 712 (17) 

m4h equalit.3. if and only if (3),(4) has  an Ldelay inverse. 
We now strengthen t.he two corollaria in [ l ]  t.0 Theorem 1 and 

also the single mat.rix invertibility condition stated i n  [l] and [3]. 

&s)G(s) = - I .  
1 
SL 

- 
Corollary 1: Let q = dinlension of the nullspace of D. The system 

(3),(4) is invertible if and only if 

The system ( i ) , ( 8 )  is called an Lintegral inverse. If ( l ) , (2)  is L 
integral  invertible  for some L, the syst,em is called invertible, and  the 
smallest L such  that (1),(2) is Linvertible is called the inherent 
in.tegration Lo of an invert,ible system. 

Definition 2: The discret.e time LTI system (3),(4) is Ldelay in- 
vertible if there exists a  linear  systenl 

Z(k + 1) = d Z(k) + B dk) (10) 

w ( k )  = 2 z(k) + 6 Z(k) (11) 

with transfer  function b(z), such  that, 

1 
&z)G(z) = > I. (12) 

The system (10),(11) is called an LdeZay inoerse. If (3),(4) is L-delay 
invert.ible for some L, the system is called invertible and  the smallest 
L such  that (3),(4) is Ldelay invert.jble is called t.he inherent  delay Lo. 

Thus,  it is clear t.hat we can  determine  L-integral  invertibility 
and  the  inherent integrat.ion of a system (1),(2) by looking at. the 
question of L-delay invertibility and  the inherent  delay of the dis- 
crete  system (3),(4) formed by using the  same A,B,C, and D ma- 
trices. Therefore, we restrict our attention to  the discrete time system 
(3))(4). To do  this, we first. define some not.ation and  an equivalent 
definition of L-delay invert.ibility [l], [2]. Let Gs E R ( k + l ) M  and 
Ye E R(kL')P be the vectors of the first k + 1 inputs  and  outputs, 
respectively, 

rank (Mz9+l) - rank = m, (18) 

Le., if (3),(4) is invertible, its inherent de1a.y Lo cannot exceed 
n - q f l .  

Proof: N0t.e that. 

ra.& dl,, = rank D = nL - y. (19) 

Thus if q = 0, t.he system is O-delay invertible, and (18) is satisfied, 
since the system is k-delay invertible  for  all k 2 0. Suppose q 2 1 
and  t,hat  the syst.em is not L-delay invertible. Then  it is not. li-delay 
invertible for any k 5 L. Thus, from Theorem 1 and (19), we have 

rank :Irl~ 5 L(nl - 1) + nt - q.  (20) 

Thus, the ( L  + 1 ) p  x ( L  + 1 )  -m. matrix  has column nullity 

( L  + 1)m - rank ( J J L )  2 L + q. (21) 

Let XL be t.he subspace of R(L'l)m that is annihilated by ~ 1 . l ~ .  

dim XL 2 L + q. ( 2 2 )  

Consider the  map  that sends u(O),u(l), . . . , u ( L )  int.0 t,he sta.t.e a t  
t.ime L + 1, and restrict. this  map t.o t.he control sequences in XL. 
If dim 3 t ~  2 n + 1, this restricted map h s  a nont.rivia1 kernel-Le., 
there exists an input. sequence u ( O ) ,  . . .,u(L), not. ident.ically zero, 
such  that  the corresponding output segment is 

g(0) = M ( 1 )  = . ' .  = y(L) = 0 (23 1 

(13) Thus, the  output. sequence corresponding t.0 the  input sequence 
u(o), . . .,M(L), 0, 0,. . . is ident,ically zero, and t.he system is not 
invertible. 

Noting from (22) that dim 3 t ~  2 n + 1 if L = n. - p -I- 1, we have 
Assuming t,hat ~ ( 0 )  = 0 (or at least that i t  is known so that we can  that  the system is invertible if  and only if it is (n - 4 + 1)  - delay 
subt.ract out  its effect), we have invertible. 
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We remark that  for q = 0 the invert.ibility quest.ion is trivial,  for 
q = 1 our result is the  same as the Sain-hIassey result., and  our 
result, is stronger for q > 1 .  I n  particular, if D = 0, we have 

CoroUary 2: The system 

z(k + 1) = A z(k) + B u(k)  (25) 

= c 4 k )  (26) 

is invertible if and only if it is (n - m + 1) - delay invert,ible. 
We also have the folloEing st.rengt.hened corollary, t.he proof of 

which involves a trivial modification of the analogous result in [I] 
if we keep the above proof of Corollary 1 in mind. 

Corollary 3: The system (3),(4) is invertible if and only if there is 
no input segment L~,,++I # 0 followed by all zeroes, which produces 
the all zero output sequence in (3),(4) rvhen zn = 0. 0 

Similarly, we obt.ain a strengthened version of t.he single matrix 
result  in 111 and 131. 

Theorem 2; The system (3),(4) is invertible if and only if 

rank ( X )  = (n - q + 2 ) m  

where X is the (2n - q + 2 ) p  X (n - q + 2)m matrix 

‘ D  0 ... 0 
C B  D ... 0 

Corollary 4: The rank condit.ion 

rank (X) = (n, - q + 2)nt 

holds if and only if 

rank ( N , , + + , )  - rank (X,,+) = at.. (30) 

We also n0t.e that in  a similar manner  one  can obt.ain strengthened 
versions of the necessary and sufficient. conditions, presented  in [ I ]  
and 131, for the  dual concept. of functional  controllability. 

IV. CONCLUSIONS 

In this note we have  obtained  a strengthened version of the 
necessary and sufficient. conditions, derived in [1]-[3], for linear 
system invert.ibility. These  results  reduce the question of inverti- 
bility to  a  set of rank  tests for  certain  matrices, and our st.rengthening 
of these results depends on a careful counting argument .  

The quest.ion of system  invert.ibility is important  in  such applica- 
tions as the design of encoding-decoding systems, and has received a 
great deal of attention in  t,he literature. We refer t.he reader t.o more 
general  invertibility  results  in [ 6 ] - [ 9 ] .  In  particular  the finite group 
system  results  in [6]-[S]  are  quite similar in flavor to  the results in 
[ I ] - [3 ]  and  in  this note. 
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Minimal Order Observers and Certain Singular Problems 
of Optimal Estimation and Control 

Abstract-It is shown that a  Riccati  equation of particular  struc- 
ture which arises  in a number of singular optimal estimation and 
control  processes can be reduced in order. This fact  leads directly 
to a  procedure  for the design of a  class of minimal order observers, 
the  structure of which can be  interpreted as  the limiting  form of 
appropriate Kalman  estimators with  vanishing  observation noise. 

I. ISTRODCCTION 

-4s might he anticipated, the theory of minimal order observers 
can  be closely allied wit.h certain singular problenls of optimal 
est,imat.ion and control. This commonality is particularly  striking 
when it is recognized that. minimal order observer design can be 
accomplished through solution of a matrix Riccati  equation which 
is identical  in  st.ructure to those  arising in singular  optimal regulat.or 
problenls and rrhich  admits a reduction in order. 

It, is known that.  the problem of minimal  order  observer design for 
an nt.h order, completely observable  system  with r independent 
outputs can be convenient.ly solved by solution of an (n. - r )  x 
( n  - r )  dimension nlatris R.iccati equation [ I ] .  

In  what follows i t  is shorn  that  the required Riccati  equation can 
be derived through reduction of a larger n X n Riccati  equation and 
that., in appropriate circumst.ances, observers designed in  this way 
are limiting  forms of Kalman est.imatots  for  vanishing observat.ion 
noise in  the sense of Friedland [2 ] .  Furthermore, it. is observed that 
certain  Biccati  equations  obtained by Friedland [2] and Xioylan and 
Moore [3]  for singular optimal  regulator problems are  structured 
identically to t.hat obtained  for the observer deign problem and can 
be reduced in  order. Certain problenls of estimating the  state of a 
linear dynanlical  system from observation of outputs  corrupted by 
correlated noise are duals of these singular regulator problenls and 
consequently can be solved by identical procedures. 

11. ORDER  REDUCTIOK OF .I CL.ISS OF RICC.ITI EQCATIOXS 

Let. C be an r X n nlatris of full rank  and let Co* denote  a right. 

Let P be an n X n. synlmetric  matriv which satisfies the relation 
inverse of C. 

CP = 0 ( 1 )  

as well as the algebraic Iliccati equation 

where S > 0 is a  symmetric r x r matrix, -11 2 0 is a synmletric 
n X n matrix which has the pr0pert.y 

c31 = 0. (3 1 

J is an r X R matrix which ail1 be reqnired to satisfy a control1abilit.y 
condition given below. A method \ d l  be given for obtaining P 
satisfying both ( 1 )  and ( 2 )  by solving a Iliccati equation of dimension 
( n  - r )  X (n - P). 
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