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Sampling From Gaussian Markov Random
Fields Using Stationary and Non-Stationary

Subgraph Perturbations
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Abstract—Gaussian Markov random fields (GMRFs) or
Gaussian graphical models have been widely used in many ap-
plications. Efficiently drawing samples from GMRFs has been
an important research problem. In this paper, we introduce the
subgraph perturbation sampling algorithm, which makes use of
any pre-existing tractable inference algorithm for a subgraph by
perturbing this algorithm so as to yield asymptotically exact sam-
ples for the intended distribution. We study the stationary version
where a single fixed subgraph is used in all iterations, as well as the
non-stationary version where tractable subgraphs are adaptively
selected. The subgraphs used can have any structure for which
efficient inference algorithms exist: for example, tree-structured,
low tree-width, or having a small feedback vertex set. We present
new theoretical results that give convergence guarantees for both
stationary and non-stationary graphical splittings. Our experi-
ments using both simulated models and large-scale real models
demonstrate that this subgraph perturbation algorithm efficiently
yields accurate samples for many graph topologies.

Index Terms—Feedback vertex set, Gaussian graphical models,
Gaussian Markov random fields, graphical splittings.

I. INTRODUCTION

M ARKOV RANDOM FIELDS (MRFs) are graph-
ical models in which the conditional independence

structure of a set of random variables is represented by an undi-
rected graph. An important sub-class of MRFs are Gaussian
Markov random fields (GMRFs), where the joint distribution is
Gaussian. GMRFs have been widely used in computer vision
[2], computational biology [3], medical diagnostics [4], and
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communication systems [5]. GMRFs are particularly important
in very large probabilistic networks involving millions of
variables [6], [7].
This paper develops efficient algorithms for sampling from

large-scale GMRFs. Throughout this paper sampling refers
to drawing samples from a given probabilistic distribution
specified by model parameters. We distinguish the sampling
problem from the inference problem, wherein one computes
the mean and variance of each random variable. As a fun-
damental problem by itself, sampling also has the relative
advantage of allowing estimation of arbitrary statistics from
the random field, rather than only the mean and variance.
Moreover, sampling is useful for statistical models in which
a GMRF is one of several interacting components. In such a
setting, a sampler for the GMRF is an essential piece of any
Markov chain Monte-Carlo (MCMC) framework for the entire
system. Efficient sampling algorithms have been used to solve
inference problems [8], to estimate model parameters [9], and
are also used for model determination [10].
Very efficient algorithms for both inference and sampling

exist for GMRFs in which the underlying graph is a tree (i.e., it
has no cycles). Suchmodels include hierarchical hiddenMarkov
models [11], linear state space models [12], and multi-scale
auto-regressive models [13]. For these models exact inference
can be computed in linear time using belief propagation (BP)
[14] (which generalizes the Kalman filter and the Rauch-Tung-
Striebel smoother [12]), and exact samples can be generated
using the forward sampling method [14]. However, the mod-
eling capacity of trees is limited. Graphs with cycles can more
accurately model real-world phenomena, but exact inference or
sampling is often prohibitively costly for large-scale models.
MCMC samplers for general probabilistic models have been

widely studied and can generally be applied directly to GMRFs.
The most straightforward is the Gibbs sampler, wherein a new
sample for each variable is generated by conditioning on the
most recent sample of its neighbors [15]. However, the Gibbs
sampler can have extremely slow convergence even for trees,
making it impractical in large networks. For this reason, many
techniques, such as reordering [16], blocking [17], [18], or col-
lapsing [19], have been proposed to improve Gibbs sampling.
In particular, the authors of [20] have proposed a blocked Gibbs
sampler where each block includes a set of nodes whose in-
duced subgraph does not have cycles; in [8] a Metropolis-Hast-
ings sampler is studied, where a set of “control variables” are
adaptively selected.
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There are also sampling algorithms for GMRFs that make ex-
plicit use of the joint Gaussianity. Since inference in a GMRF
is equivalent to solving a linear system, sampling algorithms
are often closely related to direct or iterative linear solvers.
One approach is using the Cholesky decomposition to generate
exact samples. If a sparse Cholesky decomposition is provided
directly from the problem formulation, then generating sam-
ples using that decomposition is the preferred approach. Sim-
ilarly, in [21] the problem formulation leads directly to a de-
composition into sparse “filters”, which are then used, together
with random perturbations to solve linear equations that pro-
duce samples. Once again, for problems falling into this class,
using this method is unquestionably preferred. However, for
other Gaussian models for which such sparse decompositions
are not directly available, other approaches need to be consid-
ered. In particular, the computation of the Cholesky decompo-
sition has cubic complexity and a quadratic number of fills in
general, even for sparse matrices as arise in graphical models
[22]. While this complexity is acceptable for models of mod-
erate size, it can be prohibitively costly for large models, e.g.,
those involving millions of variables.
In this paper we propose a general framework to convert it-

erative linear solvers based on graphical splittings to MCMC
samplers by adding a random perturbation at each iteration. In
particular, our algorithm can be thought of as a stochastic ver-
sion of graph-based solvers and, in fact, is motivated by the use
of embedded trees in [23], [24] for the computation of the mean
of a GMRFs. That approach corresponds to decomposing the
graph of the model into a tractable graph1, i.e., one for which
sampling is easy (e.g., a tree), and a “cut” matrix capturing
the edges removed to form the tractable subgraph. The sub-
graphs used can have any structure for which efficient infer-
ence algorithms exist: for example, tree-structured, low tree-
width, or having a small feedback vertex set (FVS) [25]. Much
more importantly, in order to obtain a valid sampling algorithm,
we must exercise some care, not needed or considered for the
linear solvers in [23], [24], in constructing the graphical models
corresponding to both the tractable subgraph and to the set of
variables involved in the cut edges. We give general condi-
tions under which graph-based iterative linear solvers can be
converted into samplers and we relate these conditions to the
so-called P-regularity condition [26]. We then provide a simple
construction that produces a splitting satisfying those condi-
tions. Once we have such a decomposition our algorithm pro-
ceeds at each iteration by generating a sample from the model
on the subgraph and then randomly perturbing it based on the
model corresponding to the cut edges. That perturbation ob-
viously must admit tractable sampling itself and also must be
shaped so that the resulting samples of the overall model are
asymptotically exact. Our construction ensures both of these. As
was demonstrated in [23], [24], using non-stationary splittings,
i.e., different graphical decompositions in successive iterations,
can lead to substantial gains in convergence speed. We extend
our subgraph perturbation algorithm from stationary graphical
splittings to non-stationary graphical splittings and give theo-

1Here the subgraph is a spanning subgraph, i.e., one that includes all of the
vertices and a subset of all edges.

retical results for convergence guarantees. We propose an algo-
rithm to select tractable subgraphs for stationary splittings and
an adaptive method for selecting non-stationary splittings.
The authors of [27] have proposed a sampling framework that

generalizes and accelerates the Gibbs sampler. Previous work
in [28] has shown that the Gibbs sampler is a stochastic ver-
sion of the Gauss-Seidel iteration for solving learning systems.
The sampling algorithm in [27] adds additional noises corre-
sponding to the first or second order Chebyshev coefficients to
accelerate the Gibbs sampler. While the idea of converting a
linear solver to a sampler is also discussed in [27], their work
is different from ours because their algorithm does not consider
graph structures in constructing the matrix splitting that is used
(i.e., the sparsity pattern of the base matrix remains the same
without considering any tractable subgraphs). Moreover, when
multiplematrix splittings are used, the different splittings in [27]
have differences only in the Chebyshev coefficients while in our
work, different matrix splittings correspond to different graph
structures.
The remainder of the paper is organized as follows. In

Section II we introduce some necessary background and review
some common sampling algorithms. In Section III we propose
the subgraph perturbation algorithm with stationary splittings,
providing efficient implementation as well as theoretical results
on the convergence rate. Next in Section IV we present the use
of non-stationary splittings and theoretical results on conver-
gence. We then discuss how to select tractable subgraphs for
both the stationary and the non-stationary settings in Section V.
In Section VI we present experimental results using simulated
data on various graph structures as well as using large-scale
real data. We compare the convergence rate of our algorithm
with several other techniques. Finally, we summarize the main
contributions of this paper in Section VII.

II. BACKGROUND

In this section, we first introduce necessary background on
GMRFs. Then we define the convergence rate used throughout
this paper and review some common sampling algorithms.

A. Gaussian Markov Random Fields

An undirected graph with vertex set and edge
set is used in an MRF to model the conditional independence
structure among a set of random variables [14]. Each node
corresponds to a random variable . For any subset ,
the random vector corresponds to the set of random vari-
ables and we will also simply write for .
This random vector has the Markov property with respect to the
graph if for any subsets where separates and
in the graph, and are independent conditioned on .

By the Hammersley-Clifford theorem, if the probabilistic distri-
bution function (p.d.f.) is positive everywhere, then
can be factored according to , where
is the collection of cliques (fully connected subgraphs) and

is the normalization factor or partition function [14].
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Fig. 1. (a) The sparsity pattern of the undirected graph; (b) The sparsity pattern
of the information matrix.

When the random vector is jointly Gaussian, the model is
a GMRF. The p.d.f. of a GMRF can be parametrized by

(1)

where is the information matrix or precision matrix and is
the potential vector. The mean and covariance matrix are
related to and by and . In this paper,
we denote this distribution by either or .
The structure of the underlying graph can be constructed using
the sparsity pattern of , i.e., there is an edge between and
if and only if . Hence, the conditional independence

structure can be read immediately from the sparsity pattern of
the information matrix as well as that of the underlying graph
(See Fig. 1). Our starting point will simply be the specification
of and (and with it the graphical structure). One setting in
which such a specification arises (and which we will illustrate
with our large-scale example) is in estimation problems, that in
which represents a large random field, which has prior dis-
tribution according to a specified graph2 (e.g., the
thin-membrane or the thin-plate model [29]) and where we have
potentially sparse and noisy measurements of components of
given by , where is a selection
matrix (a single 1 in each row, all other row elements being 0)
and is a (blocked) diagonal matrix. In this case, the posterior
distribution is , where and

.

B. Sampling and Its Convergence

The sampling problem considered in this paper is to effi-
ciently generate samples from a GMRF with underlying distri-
bution with given model parameters and . We
consider iterative samplers that produce a sequence of samples

for . An iterative sampling algorithm is correct
if the samples converge in distribution to the target distribution

where and . If the process to gen-
erate this sequence is Gaussian, then the marginal distribution
of each iteration is fully described by its mean and covari-
ance matrix . In this case, the convergence of the sampler is
equivalent to and as .

2Without loss of generality we can assume that the prior mean of is 0 simply
by subtracting it from the random field and from the measurements.

As we are especially interested in fast convergence to the
target distribution, we need a clear notion of convergence rate.
In the study of MCMC samplers, convergence rate is often mea-
sured by the total variation of the sample distribution from the
target distribution [15]. In this paper, for convenience, we in-
stead use the Euclidean norm (denoted by ) of the differ-
ence of the means and the Frobenius norm (denoted by )
of the difference of the covariance matrices to measure the de-
viation of the sample distribution from the target distribution.
It can be shown that for non-degenerate Gaussian models, the
convergence in total variation is equivalent to the convergence
in the model parameters. In particular, we define convergence
rate for the mean as3

(2)

and convergence rate for the covariance as

(3)

C. Commonly Used Sampling Algorithms

In this subsection, we summarize some commonly used sam-
pling algorithms including using the Cholesky decomposition,
forward sampling on trees (and beyond), and Gibbs sampling
(with its variants).
Sampling Using the Cholesky Decomposition: The Cholesky

decomposition gives a lower triangular matrix such that
. Let be an -dimensional random vector whose entries

are drawn i.i.d. from the standard Gaussian distribution. An
exact sample can be obtained by computing

. As mentioned in Section I, if such a decomposition is
available and if is sparse, sampling is fast even for very large
models. However, for a general sparse , the computation of
has cubic complexity while fill in can be quadratic in the size
of the model. For very large models, the Cholesky decomposi-
tion is computationally prohibitive.4

Forward Sampling for Tree-Structured Models: For a tree-
structured GMRF, an exact sample can be generated in linear
time (with respect to the number of nodes) by first computing the
variances and means for all nodes and covariances for the edges
using BP, and then sampling the variables one by one following
a root-to-leaf order where the root node can be an arbitrary node
[14].
Forward Sampling for Models With Small Feedback Vertex

Sets: There are other tractable graphical models that one can
consider, including models with small FVSs, i.e., models on
graphs for which there is a small set of so-called feedback nodes
that, if removed, leave no cycles. In this case, using the algo-
rithms developed in [25], one can compute the means and co-
variances using the feedback message passing algorithm that

3The notation denotes the limit superior, i.e.,
.

4Sparse Cholesky decomposition can be employed to reduce the computa-
tional complexity. However, even for sparse graphs, the number of fills in the
worst case is still and the total computational complexity is in
general [22].
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Fig. 2. The grid shown in (a) can be decomposed into a spanning tree (b) and a
graph consisting of the missing edges (c). (a) Graph structure for , (b) Graph
structure for , (c) Graph structure for .

scales quadratically in the size of the FVS and linearly in the
overall size of the graph and can then produce samples by first
sampling the nodes in the FVS (perhaps using the Cholesky de-
composition, with complexity cubic in the size of the FVS) and
then performing forward tree sampling on the rest.
Basic Gibbs Sampling: The basic Gibbs sampler gener-

ates new samples, one variable at a time, by conditioning
on the most recent values of its neighbors. In particular,
in each iteration, a sample for all variables is drawn by
performing

, where
denotes the set of node ’s neighbors in the graph. The Gibbs
sampler always converges when ;5 however, the con-
vergence can be very slow for many GMRFs, including many
tree-structured models. More details on Gibbs sampling can be
found in [15].
Variants of Gibbs Sampling: There have been many variants

of the Gibbs sampler using the ideas of reordering, coloring,
blocking, and collapsing, as previously mentioned in Section I.
For example, in the blocked Gibbs sampler the set of nodes
is partitioned into several disjoint subsets and each subset is
treated as a single variable. One approach is to use graph col-
oring, in which variables are colored so that adjacent nodes have
different colors, and then each Gibbs block is the set of nodes
in one color [30]. In [20] the authors have proposed a blocking
strategy where each block induces a tree-structured subgraph.

III. SAMPLING BY SUBGRAPH PERTURBATIONS WITH
STATIONARY GRAPHICAL SPLITTINGS

In this section, we introduce our subgraph perturbation sam-
pling framework using stationary (fixed) splittings. First, we de-
scribe the general framework with an arbitrary graphical split-
ting followed by theoretical results on convergence. We then
describe a local construction of the splitting that builds up the
decomposition as a sum of rank-1 terms corresponding to each
of the edges removed from the tractable graph. The construc-
tion of this splitting is simple to perform at run time, leads to
very efficient sampling of the perturbation term required in the
sampling algorithm, and ensures convergence.

5Throughout this paper, the notation denotes that is positive definite
and positive semi-definite. We also use or to denote

or respectively. The symbols and are similarly
defined.

Algorithm 1: Sampling by Subgraph Perturbations with
Stationary Splittings

Input: , and subgraph structure
Output: samples with the asymptotic distribution

1) Form and .
2) Draw an initial sample from a Gaussian
distribution.

3) At each iteration:
a) Generate an independent sample with
zero mean and covariance matrix .

b) Compute using the equation
.

A. General Algorithm

Our sampling framework relies on a graph-basedmatrix split-
ting. Given the information matrix with underlying graph

, consider the splitting

(4)

where has sparsity corresponding to a tractable subgraph
with , and has sparsity corresponding

to the graph with edge set (See Fig. 2). Throughout this
paper, we assume that the splittings we consider are all graph-
ical splittings, i.e., both and are symmetric matrices cor-
responding to undirected graphs.
In [23] this type of splitting (although crucially without one

of the further assumptions we will make) was proposed for the
computation of the mean (but not covariance or samples). In
particular, when is non-singular the mean is computed using
the iterative equation

(5)

with the fixed-point solution . Note that the sequence
in (5) converges if and only if , i.e., the spectral
radius of the matrix is less than one. For this to be effi-
cient, the computation on the right-hand side of (5) would need
to be far simpler than solving for themean directly, using the full
matrix . The approach in [23] took to have tree structure
(so that the computation in (5) has linear complexity), although
in principle it is possible to choose to have other graph struc-
tures (e.g., as in [31]) that lead to tractable computations. More-
over, while the approach is not limited to the following, the orig-
inal idea in [23] and especially in [24] is simply to “cut” edges
from the graph, so that is obtained from simply by ze-
roing out the elements corresponding to the cut edges, and
is the matrix whose only nonzero elements are the values corre-
sponding to those cut edges.
The high-level idea of our sampling algorithm is to further

inject noise into (5), so that the iterative linear solver becomes a
stochastic process whose stationary distribution is the target dis-
tribution . However, the simple idea of constructing
by copying the elements of corresponding to cut edges may

not be feasible for our sampling algorithm. Rather, we need to
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ensure that is chosen so that . Assuming that we
have a splitting that satisfies this condition, our iterative sam-
pling algorithm is given by:

(6)

where the perturbation is a Gaussian random vector, in-
dependent of all other variables, with zero mean and covariance

. The general sampling framework is summarized in Al-
gorithm 1.
In the next subsection we provide theoretical results showing

that convergence of the iteration in (5) for a graphical splitting
is equivalent to the condition , which in turn implies
that the sampling method in (6) is well-defined. We also show
that in this case, the sample distribution indeed converges to the
correct distribution. In the last part of this section, we provide
a straightforward “local” edge-by-edge method for constructing
such a splitting that also directly yields an efficient generation
of the perturbation .

B. Correctness and Convergence

In this subsection, we present theoretical results for the gen-
eral subgraph perturbation framework. Proposition 1 and The-
orem 3 establish the correctness of Algorithm 1 as well as a con-
vergence guarantee. Proposition 4 and Corollary 5 give bounds
on the convergence rate.
In general, a matrix splitting is called aP-regular

splitting if is non-singular and is positive definite
[26]. The P-regularity condition has been proposed in the study
of iterative linear solvers as a condition for convergence [26],
[32]. In our graphical splitting , since is sym-
metric, the P-regular condition is precisely the con-
dition that the added noise term in our perturbation framework
is valid, i.e., that it corresponds to a random variable with pos-
itive definite covariance. Therefore, our sampling framework
provides a new interpretation of the P-regularity condition—for
graphical splittings as in (4), convergence of iterative solvers as
in (5) is equivalent to the noise in being valid. It has been
shown in [23] that the necessary and sufficient condition for the
embedded tree algorithm to converge with any initial point is

. In Proposition 1 we prove that this condition is
equivalent to the graphical splitting being P-regular, which fur-
ther guarantees the validity of the added noise in (6).
Proposition 1: Assuming and that is

a graphical splitting, the condition is satisfied
if and only if the splitting is P-regular, i.e., the added noise in
Algorithm 1 has a valid covariance matrix .
The proof of Proposition 1 is included in the Appendix. The

following Lemma 2 is used in the proof of Theorem 3, which
is our main result in this section. The proof of Lemma 2 is also
deferred to the Appendix.
Lemma 2: Let and be square matrices. If 1) is invert-

ible; 2) is symmetric and invertible, then
is a solution of the equation .
The following Theorem 3 states that for graphical splittings, a

convergent linear solver can be converted to a convergent sam-
pler with the same convergence rate.
Theorem 3: For a valid GMRF with information matrix
, let be a graphical splitting. If the corresponding

linear solver converges, i.e., , then the sample
distribution generated by Algorithm 1 is guaranteed to converge
to the target distribution and the asymptotic convergence rates
for the mean and for the covariance are both equal to

.
Proof: From Proposition 1, we have that ,

i.e., the covariance matrix of the added noise is valid. It can be
shown that with the initial sample distribution being Gaussian,
the iterations in Algorithm 1 generate a sequence of Gaussian
samples, with havingmean and covariancematrix .
From Step 3(b) in Algorithm 1, we have

(7)

(8)

(9)

Since , the mean converges to the unique
fixed-point satisfying

(10)

So , and thus converges
to the exact mean with convergence rate

.
Now we consider the convergence of the covariance matrix.

From Step 3(b) in Algorithm 1, we have

(11)

(12)

(13)

(14)

This equation can be rewritten in vector form as

(15)

where denotes the column vector obtained by stacking
all the columns in its argument and denotes the Kronecker
product of matrices and , i.e.,

...
. . .

... (16)

where is an -by- matrix . According to [33],
. Hence the it-

erative equation (15) is guaranteed to converge to a unique
fixed-point, denoted by , with asymptotic conver-
gence rate in the Euclidean norm. Hence,
(14) converges to a unique fixed-point matrix . By Lemma
2, the fixed-point solution is
exactly the target covariance matrix. Hence, the conver-
gence rate since

. This completes the proof of
Theorem 3.
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We have shown in Theorem 3 that the convergence rates for
both the mean and the covariance are . Naturally,
we want to choose a splitting with a small . This spec-
tral radius is a highly nonlinear function of both and , and
it is useful to have bounds that are simple (and monotonic) func-
tions of or alone. The following Proposition 4 is adapted
from Theorem 3 in [23]. For a valid distribution with ,
the condition of in Proposition 4 is sufficient to ensure

, which guarantees the convergence of Algorithm
1. In the next subsection, we provide a local implementation of
Algorithm 1 where the condition is satisfied.
Proposition 4: Consider a graphical splitting

with . If , then

, where and denote the
maximum and the minimum eigenvalues respectively.

Proof: Use Theorem 2.2 in [34] and let .
A simpler (and looser) bound that is much easier to com-

pute (and hence can be used in choosing ) is given in the fol-
lowing Corollary 5. We define the weight of the -th row of
as and let .
Corollary 5: In the same setting as in Proposition 4, we have

.
Proof: Since , we have . By

Corollary 8.1.18 in [35], we have that , where
takes the entry-wise absolute values of . By Corollary 8.1.22
in [35], , so

. This corollary thus follows from Proposition 4.

C. Efficient Localized Implementation

Given a graphical splitting , Algorithm 1 requires
generating noise vectors with zero mean and covariance

. Depending on the splitting, these random noise
vectors may be difficult to generate. In this subsection, given
a tractable subgraph we provide a method to construct the
splitting matrices and specifically so that the noise vec-
tors can be constructed efficiently and to guarantee conver-
gence. Moreover, our construction is entirely local with respect
to the graph. In this subsection, we focus on the construction of
the splitting with a given subgraph and postpone the selection
of subgraphs to Section V.
Let denote the set of edges in the subgraph . We con-

struct to be sparse with respect to the subgraph with edge
set as follows. For each , let

, and let be the -by- matrix zero-

padded from , i.e., the principal submatrix corresponding
to rows (and columns) and of equals while
other entries are zero. It can be easily verified that
. We define to be the sum of these rank-one matrices as

(17)

The matrix is then obtained by

(18)

Note that is sparse with respect to . Moreover, is posi-
tive semi-definite and is positive definite (since is positive
definite for a valid model).

Algorithm 2: Sampling by Subgraph Perturbations with
Local Implementation

Input: , and
Output: samples with the asymptotic distribution

1) Construct and using (17) and (18).
2) Draw an initial sample from a Gaussian
distribution.

3) At each iteration:
a) Generate an independent sample
using (20).

b) Generate a sample from
.

At iteration of the algorithm, rather than generating the
noise vector directly, instead we generate a noise vector

to be Gaussian with zero mean and covariance , then
let be a sample from the Gaussian distribution with in-
formation matrix and potential vector .
Hence we have

(19)

where is Gaussian with zero mean and covariance .
The above procedure is equivalent to Algorithm 1 since

is equal in distribution to , whose covariance
matrix is . Note that can be generated efficiently
thanks to the assumption that is tractable (e.g., if it is tree-
structured, the sample can be generated by forward sampling).
Furthermore, the structure of allows to be computed
efficiently and locally: For each , let be
a two-dimensional vector sampled from a zero-mean Gaussian
distribution with covariance matrix . Moreover, note that
since each of the matrices is rank-1, we can generate each
of the using an independent scalar sample drawn from
the standard Gaussian distribution and thenmultiplying
this by the vector . We then obtain
by computing

(20)

where is the -dimensional vector zero-padded from
, i.e., the -th and -th entries of take the two en-

tries of and all other entries of are zero.
We have that from our construction, so this

constitutes a P-regular graphical splitting. Hence according to
Proposition 1 and Theorem 3, the sample distribution converges
to the target distribution. This local implementation is summa-
rized in Algorithm 2. The computational complexity of one iter-
ation is , where is the complexity of drawing
a sample from the tractable subgraph and
is the number of edges missing from .

IV. SAMPLING BY SUBGRAPH PERTURBATIONS WITH
NON-STATIONARY GRAPHICAL SPLITTINGS

In the previous section, we have introduced the subgraph per-
turbation algorithm with stationary splittings. It is natural to
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Algorithm 3: Sampling by Subgraph Perturbations with
non-Stationary Splittings

Input:
Output: samples with the asymptotic distribution

1) Draw an initial sample from a Gaussian
distribution.

2) At each iteration for
a) Form a graphical splitting ,
where .

b) Generate an independent sample with
zero mean and covariance matrix .

c) Compute using the equation
.

extend Algorithm 1 to using multiple subgraphs for different it-
erations (i.e., at iteration ), which we refer to as
non-stationary graphical splittings. Using non-stationary graph-
ical splittings for sampling is related to using non-stationary
graphical splittings for inference (i.e., for computation of the
mean) [23], [24], but the additional constraint
is needed to ensure that the added noise at each iteration is
valid. In this section, we first summarize our sampling algo-
rithm using non-stationary graphical splittings in Algorithm 3
and then present theoretical results on convergence. The results
in this section provide theoretical foundations for the adaptive
selection of the splittings, which will be studied in Section V.
The authors in [23] have studied the use of periodic splittings

(i.e., using the set of splittings in a periodic
manner) for inference as a special case of using an arbitrary se-
quence of splittings. In this case, the average convergence rate
is . While a non-trivial sufficient con-
dition guaranteeing convergence for a general is difficult to
find, the authors have given a sufficient condition for the case

. In [24] the inference problem for a GMRF is solved by
adaptively selecting the next graphical splitting given the cur-
rent error residual. The authors have proven that if a GMRF is
walk-summable (cf. [24]), then their algorithm converges to the
correct solution for an arbitrary sequence of splittings where the
diagonal of each of the ’s is fixed to be zero.
In order for our non-stationary perturbation sampler to pro-

ceed, the noise covariance matrix at each iteration needs to be
positive semidefinite (which is equivalent to the P-regularity
condition according to Proposition 1). Because of this extra con-
straint, the conclusions for inference using non-stationary split-
tings do not directly apply to sampling. In the following The-
orem 6, we prove that as long as we have the condition in the
theorem, namely that each element in the set of splittings would
produce by itself a convergent stationary perturbation sampler,
the use of any arbitrary sequence from this set (including, of
course, periodic selection) also leads to a convergent algorithm.
Theorem 6: Consider a finite collection of graphical splittings

. The non-stationary subgraph pertur-
bation sampling algorithm (Algorithm 3) converges to the target
distribution with an arbitrary sequence of splittings chosen from
if and only if the stationary sampling algorithm (Algorithm 1)

converges to the target distribution with each of the splittings in
the sequence.

We now state several lemmas prior to proving Theorem 6.
The proofs for these lemmas are provided in the Appendix.
Lemma 7: If and the graphical splitting

is P-regular, then there exists such
that .
For a positive definite matrix , we define the induced ma-

trix norm as , where the

vector norm is defined by .
Lemma 8: If and is a P-regular graphical

splitting, then .
For a P-regular graphical splitting , Lemma

8 states that . In general it is not true that
; however, the following Lemma 9 estab-

lishes that under mild conditions there exists an integer such
that the -induced norm of the product is less than
.
Lemma 9: Consider and a sequence of P-regular

graphical splittings . If the splittings
are chosen from a finite number of distinct graphical splittings

, then there exists a positive integer de-
pending only on such that
for any positive integer .
Proof of Theorem 6:
Proof: The necessity is easy to prove since for Algorithm

3 to proceed, the noise at each iteration needs to be valid, which
implies the convergence with each of the splittings according to
Proposition 1.
Now we prove the sufficiency. Similarly as in the proof of

Theorem 3, we use and to represent the mean and co-
variance matrix of the sample distribution at iteration . From
Step 2 of Algorithm 3, we can prove that

(21)

and

(22)

From Lemma 8, we have that .
Since is a finite collection of splittings, let

. Hence

(23)

(24)

(25)

Similarly,

(26)

(27)

(28)
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Let be the integer in Lemma 9. Then when , we have
that

(29)

where and
.

For a positive definite symmetric matrix of fi-
nite dimension, there exist such that

for any vector and
such that for any matrix .
Hence, we have that and

. Therefore, Algorithm
3 converges using this sequence of splittings. This concludes
the proof of Theorem 6.
Alternative Proof of Corollary 1 in [24]: One of the main re-

sults in [24] states that if the graphical model is walk-summable
then the embedded tree algorithm converges to the correct mean
using any sequence of graphical splittings
where each corresponds to a tree-structured graph and each
corresponds to the cut edges and has zero diagonal. The orig-

inal proof in [24] uses walk-sum diagrams. Here we give an al-
ternative proof using results presented in this section.6

Proof: Consider the splittings used in [24], where has
zero diagonal and the nonzero off-diagonal entries of take
the opposite values of the corresponding entries in . We de-
fine and thus the entries in have the same
absolute values as the corresponding entries in . Since is
walk-summable, we have that is also walk-summable by the
definition of walk-summability (cf. [36]). Since walk-summa-
bility implies the validity of a model, we have that . By
Lemma 8, we have that for all . Since there
are a finite number of different splittings in this setting, we can
show the convergence using the same arguments as in the proof
of Theorem 6.

V. THE SELECTION OF TRACTABLE SUBGRAPHS

In this section, we discuss the selection of tractable sub-
graphs. First, we discuss how to choose graph structures for
stationary splittings; then, we propose an algorithm to adap-
tively select tractable subgraphs for non-stationary splittings.

A. Select Subgraph Structures for Stationary Splittings

1) Using Tree-Structured Subgraphs: From the inequalities
in Corollary 5, a heuristic is to choose with small absolute
edge weights and at the same time ensure the rest of the graph
is tree-structured. Hence, the tree-structured subgraph is encour-
aged to contain strong edges. An effective method is to find the
maximum spanning tree (MST) with edge weights being
the absolute values of the normalized edge weights in , i.e.,

. The idea of using an MST has been dis-
cussed in the support graph preconditioner literature [37] as well
as in the studies of the embedded tree algorithm for inference

6Note that our sampling algorithm requires additional constraints to ensure
the validity of the added noise. It is coincidental that the results in this paper
lead to an alternative proof of one of the main results in [24].

Algorithm 4: Selecting a Tree-Structured Subgraph

Input:
Output: a tree-structured subgraph
1) Compute the normalized edge weights

for all .
2) Compute the maximum spanning tree using
edge weights .

[24]. An MST can be constructed using Kruskal’s algorithm in
time, where is the number of edges. This selec-

tion procedure is summarized in Algorithm 4.
In our perturbation sampling framework, the tractable sub-

graphs can be structures beyond trees. Here we also suggest
several other tractable graph structures with existing efficient
inference and sampling algorithms.
2) Using Subgraphs With Low Tree-Width: Graphical

models with low tree-width have efficient inference and sam-
pling algorithms and have been widely studied.We can compute
a low tree-width approximation to using algorithms such
as those in [38]–[40].
3) Using Subgraphs With Small FVSs: As mentioned in

Section II, an FVS is a set of nodes whose removal results in
a cycle-free graph. In [25] an exact inference algorithm was
given for graphical models with small FVSs. This work allows
one to use a graph with a small FVS as the tractable subgraph
in our framework. Moreover, [25] introduced the concept of a
pseudo-FVS, which is a set of nodes that breaks most, but not
all, of the cycles in the graph. We can first use the algorithm in
[25] to select a set of nodes constituting a pseudo-FVS for the
full graph. Then we compute a MST among the other nodes. We
choose our subgraph to be the combination of nodes (with
all incident edges) as well as the MST of the remaining graph.
Note that even though is a pseudo-FVS of the original graph,
it is a true FVS of the subgraph, and therefore the algorithm
from [25] provides exact inference. Using this technique, there
is a trade-off in choosing the size of : a larger set means
more computation per iteration but faster convergence.
4) Using Spectrally Sparsified Subgraphs: Many widely

used GMRFs such as thin-membrane or thin-plate models have
diagonally dominant information matrices. Some recent studies
have shown that the graph Laplacian of a dense graph can
be well-approximated by the graph Laplacian of graphs with
nearly-linear number of edges [41]. These spectrally sparsified
graphs have efficient inference and sampling algorithms and
can also be used as tractable subgraphs.

B. Adaptive Selection of Graph Structures for Non-Stationary
Splittings

In this subsection, we propose an algorithm to adaptively
select the structure of the subgraphs for non-stationary split-
tings. We explain our algorithm assuming that each subgraph
is tree-structured, but this algorithm can be extended to other
tractable subgraphs such as thosementioned in the previous sub-
section.
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From Algorithm 3, it can be shown that

(30)

which characterizes the residual error for the mean. Similarly,
for the sample covariance, we have

(31)

In [24] the authors have proposed an adaptive method using the
walk-sum analysis framework: at each iteration , choose
the MST in (30) with weights for edge , where

(32)

and .7 This adaptive method significantly im-
proves the speed of convergence for inference compared with
using stationary splittings. In our case of sampling, both the
error for the mean and the error for the covariance matrix need
to be considered. However, a similar relaxation for the covari-
ance matrix based on (31) is too computationally costly. Hence,
we resort to an auxiliary inference problem with the same infor-
mation matrix and the potential vector being the all-one
vector. At each iteration of our sampling algorithm, we use the
subgraph adaptively selected based on the auxiliary inference
algorithm (i.e., choosing the MST with weight as in (32) but
using the potential vector ).

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results using our per-
turbation sampling algorithms with both stationary graphical
splittings and non-stationary graphical splittings. In the first two
sets of experiments, we use simulatedmodels on grids of various
sizes; in the third example, we use standard test data of a power
network of moderate size; finally, we present results using a
large-scale real example for sea surface temperature estimation.

A. Motivating Example: 3 10 Grids

In this motivating example, we consider a simple 3 10 grid
(Fig. 3(a)). In the simulated models, the model parameters
and are randomly generated as follows: the entries of the po-
tential vector are generated . from a uniform distribution

; the sparsity pattern of is determined by the graph
structure and the non-zero entries of are also generated i.i.d.
from with a multiple of the identity matrix added to en-
sure . We compare several sampling algorithms, namely
basic Gibbs sampling, chessboard (red-black) blocked Gibbs
sampling (Fig. 3(b)), forest Gibbs sampling (Fig. 3(c), cf. [20]),
and our algorithm using a stationary splitting (Fig. 3(d)) selected
with Algorithm 4 (listed as “1-Tree Perturbation” in Table I).We
randomly generate 100 sets of model parameters and compute

7Note that here the matrix is normalized to have unit diagonal.

Fig. 3. Sampling from a 3 10 grid using basic Gibbs sampling, chessboard
(red-black) Gibbs sampling, forest Gibbs sampling, and our subgraph perturba-
tion sampling using a stationary splitting. (a) Graph structure of the 3 10 grid;
(b) Chessboard (red-black) blocked Gibbs sampling: the set of black nodes and
the set of white nodes form two blocks; (c) Forest Gibbs sampling: the set of
black nodes and the set of white nodes form two separate trees. At each itera-
tion of the forest Gibbs sampling, conditioned on one block, the other block is
sampled by forward sampling; (d) Subgraph perturbation sampling using a fixed
tree-structured subgraph: the thicker red edges are edges in the tree-structured
subgraph while the thinner blue edges are edges in the cut matrix.

TABLE I
CONVERGENCE RATES OF VARIOUS SAMPLING ALGORITHMS

the asymptotic convergence rates. The average numbers of iter-
ations (to reduce the covariance error in half), i.e., average ,
are shown in Table I.
We also study the convergence rates using non-stationary

splittings. For each generated model, we run Algorithm 3 for
20 iterations and obtain 20 tree-structured subgraphs adaptively
selected using (32). Fig. 4 shows the first four tree-structured
subgraphs adaptively selected on one of the generated models.
We summarize the asymptotic convergence rates in Table II
for the following six cases: 1) the single tree that gives the
best convergence among the 20 trees8; 2) the worst single tree
of the 20 trees; 3) alternating between the best pair of trees
(by an exhaustive search among all pairs of the 20 trees); 4)
alternating between the worst pair of trees; 5) using the first two
adaptively selected trees (and alternating between them); and
6) using adaptively selected trees at each of the 20 iterations.
From the results, we can see that using different subgraph
structures give significantly different performances. On av-
erage, the best single tree can reduce the residual covariance
error in half in 6 iterations while the worst single tree takes
88 iterations. The best combination of two trees gives the best

8The number of all spanning trees of a grid is very large (there are more than
spanning trees even for this small 3 10 grid, computed using

recursive equations in [42]), which makes it intractable to do exhaustive search
among all spanning trees. In addition, for a fair comparison with the adaptive
method, the single tree is chosen from the 20 adaptively selected trees.
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Fig. 4. Sampling from a 3 10 grid using non-stationary splittings. (a)—(d)
show the first four trees adaptively selected using (32) on one run. (a) First tree,
(b) Second tree, (c) Third tree, (d) Fourth tree.

TABLE II
CONVERGENCE RATES OF SUBGRAPH PERTURBATION
USING NON-STATIONARY GRAPHICAL SPLITTINGS

convergence rate, but is included only as a benchmark, as
exhaustive search is not computationally feasible in practice.
Using the sequence of adaptively selected trees gives the second
best performance while having much less computational com-
plexity. The sampling algorithm with non-stationary graphical
splittings outperforms its stationary counterpart even using the
best single tree, which demonstrates the advantages of using
non-stationary graphical splittings for sampling.
Note that the comparisons between sampling methods in

Table I focus on the number of iterations required for each
method, even though iterations for different methods may
have different run-time complexities. Indeed, each iteration
of our subgraph perturbation methods requires more compu-
tation than that of a Gibbs sampler. For example, a red-black
blocked Gibbs sampler may take advantage of parallelization
in a computer cluster giving very fast run-time per iteration.
While precise analysis of the exact run-times of different
methods, including the effects of parallelization, is beyond
our scope, we provide the following order-of-magnitude ar-
gument that our method is comparable to a Gibbs sampler,
and in many cases faster. Suppose that we have an
grid with nearest-neighbor graph structure. In this case, using
simple red-black coloring, a single parallelized sweep of Gibbs
(consisting of parallel updating of all red nodes and then all

black ones) takes time. However, it takes iter-
ations for the effects from nodes at one extreme of the grid
to reach nodes at the other extreme—hence time for a
set of iterations to have influences propagate throughout the
graph. On the other hand, our method (which may also employ
parallelization for computations on the embedded tree at each
iteration) takes time but effects from one extreme to
the other occur within each iteration. Hence on a fair playing
field, the two approaches have comparable time complexity
for effects to propagate throughout the graph. Moreover, if
graphs are weakly correlated, long-distance effects are very
small, so that fully parallel Gibbs will win out. On the other
hand, for strongly correlated graphs, as are needed to capture
random fields with correlations at a full range of scale (e.g., as
is the case for the ocean data used in our large-scale example
below), those long-distance correlations are crucial, and in such
cases, Gibbs, even parallelized, can take considerable time to
capture those correlations. We also note that for graphs with
small numbers of very high degree nodes, the complexity of
Gibbs iterations, even if parallelized, increases (e.g., due to
the computations and communication required to update those
nodes). Such high-degree nodes can provide mechanisms for
capturing long-distance correlation efficiently, and our method,
exploiting small feedback vertex sets can take advantage of
this structure to achieve great gains in convergence. Indeed, as
we have shown in [31] models consisting of small FVS’s with
edges essentially to all other nodes can do an excellent job of
capturing such correlations, and for such a model (small FVS
plus tree) our algorithm yields exact samples directly without
need for iteration.

B. Using Subgraphs Beyond Trees

In this experiment, we study the convergence rates using dif-
ferent subgraph structures on grids of various sizes. For each
given structure, we randomly generate model parameters using
the same method as in Subsection VI.A. We compute the num-
bers of iterations needed to achieve an approximating error of

, i.e., the minimum such that . We
run the subgraph perturbation algorithm on -by- grids with
ranging from 3 to 30. For each grid, two different subgraphs
are used: one is a tree-structured subgraph, the other is a sub-
graph with an FVS of size . For each size, we repeat the
algorithm for 100 sets of random model parameters and the re-
sults shown are averaged over the 100 runs. Since the sizes of
the simulated models are moderate, we are able to compute and
compare with the exact solutions. As we can see from Fig. 5, our
subgraph perturbation algorithm outperforms the Gibbs sampler
and the use of subgraphs with small FVSs gives further im-
provement on convergence rate.9

C. Power System Network: Standard Test Matrix 494 Bus

In this subsection, we use standard test data from the Har-
well-Boeing Sparse Matrix Collection, which includes standard

9Note that more computation is involved at each iteration using FMP, but the
complexity grows slowly if, as in this example, we use FVSs of sizes that are
logarithmic in the size of the overall graph.
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Fig. 5. The performance of subgraph perturbation sampling using various
kinds of subgraphs on grids of size 3-by-3 to 30-by-30. The tractable subgraphs
used include tree-structured graphs and graphs with small FVSs.

Fig. 6. Perturbation sampling using various subgraph structures on a power
system network. The normalized error of the sample covariance is defined as
the ratio between the sample covariance error at each iteration and the initial
covariance error.

test matrices arising from a wide variety of scientific and
engineering disciplines. We use the test matrix corresponding
to a moderately sized (494 nodes) power system network10. We
first add a multiple of the identity matrix to make the matrix
positive definite and then normalize the matrix to have unit
diagonal. Note that a diagonally dominant covariance matrix is
easy to sample from (consider the extreme case of a diagonal
matrix, which corresponds to independent Gaussian variables)
even with the basic Gibbs sampler, but they do not represent
many real applications. Hence, in order to study the models
that are challenging for the Gibbs sampler or other common
algorithms (which is the scenario that we focus on in this

10The test matrix can be obtained from http://math.nist.gov/MatrixMarket/
data/Harwell-Boeing/psadmit/494_bus.html.

TABLE III
CONVERGENCE RATES USING A SINGLE TREE AND

SUBGRAPHS WITH FVS OF VARIOUS SIZES

paper), we add just enough diagonal loading to make the matrix
positive definite. We compare the performances of Gibbs sam-
pling, subgraph perturbation sampling using a tree-structured
subgraph and using subgraphs with FVSs of sizes one, three
and five. In this experiment, we focus on stationary splittings
since we are interested in comparing the performances using
different types of subgraphs. The experimental results are
shown in Table III and Fig. 6. As these results show, for this
problem using a single tree subgraph reduces the number of
iterations needed to achieve 50% error reduction by almost an
order of magnitude, and using a very small size-5 FVS cuts the
number down significantly further.

D. Large-Scale Real Example: Sea Surface Temperature

We also run the algorithm on a large-scale GMRF built to es-
timate the sea surface temperature (the dataset is publicly avail-
able at http://podaac.jpl.nasa.gov/dataset/). The raw data is pre-
processed to have rawmeasurements at 720 1440 different lo-
cations. We construct a grid of 1 036 800 nodes with additional
edges connecting the eastmost and westmost nodes at the same
latitudes since they are neighbors geographically. We then re-
move the nodes that have invalid measurements (most of which
correspond to land areas). We construct a GMRF with this un-
derlying structure using the thin-plate model [29]. Note that be-
cause of the significant number of observations, the information
matrix for this model is far better conditioned than the one in the
preceding section, implying that far fewer iterations are needed
to reach approximate convergence. The structure of the resulting
model is shown in Fig. 7(a) and the tractable subgraph used for
our perturbation sampling algorithm is shown in Fig. 7(b) (for
clarity, we plot a much coarser version and omit the edges con-
necting the eastmost and westmost nodes). A sample from the
posterior distribution after 200 iterations is shown in Fig. 7(c).

VII. CONCLUSION

The primary contributions of this paper include: (1) We
provide a general framework for converting subgraph-based
iterative solvers to samplers with convergence guarantees. In
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Fig. 7. Perturbation sampling from a GMRF for sea surface temperature esti-
mation. (a) The entire GMRF for sea surface temperature, (b) The spanning tree
used as a tractable subgraph, (c) Sea surface temperature in degrees (Celsius).

addition, we provide a construction where the injected noise
at each iteration can be generated simply using a set of i.i.d.
scalar Gaussian random variables. (2) We extend our pertur-
bation sampling algorithm from stationary graphical splittings
to non-stationary graphical splittings. In the previous studies
on linear solver, it has been observed that using multiple
subgraphs may give much better convergence than using any
of the individual subgraphs. We prove that if we choose from
a finite collection of P-regular graphical splittings, then the
convergence is always guaranteed. (3) We study the use of
different kinds of tractable subgraphs and we also propose
an algorithm to adaptively select the subgraphs based on an
auxiliary inference problem.

APPENDIX A

Proof of Proposition 1:
Proof: We first prove the sufficiency. If ,

then and thus . Hence, has a

unique positive definite square root . Then we have

.

Hence, , for all , where denotes the
-th eigenvalue of the argument. From the condition

, we have that ,

and thus , for all . Because

, we have that has the same eigen-

values as . Therefore, for all and
thus .
We now prove the necessity. If , then

has positive eigenvalues. Since
has a unique positive definite square root ,

and thus . So we have
. Hence has a unique positive definite

square root . So has the same eigen-

values as since , and

thus . Hence, ,

so . Therefore,
is a P-regular splitting.

Proof of Lemma 2:
Proof: It is equivalent to showing

To do so, consider

where is due to the assumption that is symmetric.
Proof of Lemma 7:
Proof: Since , there exists some

such that . Hence, to prove Lemma 7,
it is sufficient to show that there exists such that

, which is equivalent to showing
that .
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where is due to that and are both non-singular since
and .

Proof of Lemma 8:
Proof: For any , we have that

From Lemma 7, there exist such that
. Hence, we have
. Thus for any

. Hence, by the definition of
the -induced norm, we have that .
Proof of Lemma 9:
Proof: Since the sequence is arbitrary, without loss of gen-

erality, we only need to prove for . Since is an
induced norm, there exists depending only on
such that for any square ma-
trix . From Lemma 8, for all . Since there
are finitely many distinct splittings, there exists
such that for all . For induced
norms, it can be shown that .
Hence, there exists integer depending only on such that

.
Since the Frobenius norm is invariant to transposition, we have
that , and thus

(33)

(34)

(35)

(36)

(37)

This completes the proof.
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