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Abstract In applications throughout science and engineering one is often faced with
the challenge of solving an ill-posed inverse problem, where the number of available
measurements is smaller than the dimension of the model to be estimated. However in
many practical situations of interest, models are constrained structurally so that they
only have a few degrees of freedom relative to their ambient dimension. This paper
provides a general framework to convert notions of simplicity into convex penalty
functions, resulting in convex optimization solutions to linear, underdetermined in-
verse problems. The class of simple models considered includes those formed as
the sum of a few atoms from some (possibly infinite) elementary atomic set; exam-
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ples include well-studied cases from many technical fields such as sparse vectors
(signal processing, statistics) and low-rank matrices (control, statistics), as well as
several others including sums of a few permutation matrices (ranked elections, mul-
tiobject tracking), low-rank tensors (computer vision, neuroscience), orthogonal ma-
trices (machine learning), and atomic measures (system identification). The convex
programming formulation is based on minimizing the norm induced by the convex
hull of the atomic set; this norm is referred to as the atomic norm. The facial structure
of the atomic norm ball carries a number of favorable properties that are useful for re-
covering simple models, and an analysis of the underlying convex geometry provides
sharp estimates of the number of generic measurements required for exact and robust
recovery of models from partial information. These estimates are based on computing
the Gaussian widths of tangent cones to the atomic norm ball. When the atomic set
has algebraic structure the resulting optimization problems can be solved or approxi-
mated via semidefinite programming. The quality of these approximations affects the
number of measurements required for recovery, and this tradeoff is characterized via
some examples. Thus this work extends the catalog of simple models (beyond sparse
vectors and low-rank matrices) that can be recovered from limited linear information
via tractable convex programming.

Keywords Convex optimization · Semidefinite programming · Atomic norms · Real
algebraic geometry · Gaussian width · Symmetry

Mathematics Subject Classification 52A41 · 90C25 · 90C22 · 60D05 · 41A45

1 Introduction

Deducing the state or structure of a system from partial, noisy measurements is a
fundamental task throughout the sciences and engineering. A commonly encountered
difficulty that arises in such inverse problems is the limited availability of data rela-
tive to the ambient dimension of the signal to be estimated. However many interesting
signals or models in practice contain few degrees of freedom relative to their ambi-
ent dimension. For instance a small number of genes may constitute a signature for
disease, very few parameters may be required to specify the correlation structure in a
time series, or a sparse collection of geometric constraints might completely specify
a molecular configuration. Such low-dimensional structure plays an important role in
making inverse problems well-posed. In this paper we propose a unified approach to
transform notions of simplicity into convex penalty functions, thus obtaining convex
optimization formulations for inverse problems.

We describe a model as simple if it can be written as a nonnegative combination
of a few elements from an atomic set. Concretely let x ∈ R

p be formed as follows:

x =
k∑

i=1

ciai , ai ∈ A, ci ≥ 0, (1)

where A is a set of atoms that constitute simple building blocks of general signals.
Here we assume that x is simple so that k is relatively small. For example A could
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be the finite set of unit-norm one-sparse vectors, in which case x is a sparse vector,
or A could be the infinite set of unit-norm rank-one matrices, in which case x is a
low-rank matrix. These two cases arise in many applications, and have received a
tremendous amount of attention recently as several authors have shown that sparse
vectors and low-rank matrices can be recovered from highly incomplete informa-
tion [16, 17, 27, 28, 63]. However a number of other structured mathematical objects
also fit the notion of simplicity described in (1). The set A could be the collection
of unit-norm rank-one tensors, in which case x is a low-rank tensor and we are faced
with the familiar challenge of low-rank tensor decomposition. Such problems arise
in numerous applications in computer vision and image processing [1], and in neuro-
science [5]. Alternatively A could be the set of permutation matrices; sums of a few
permutation matrices are objects of interest in ranking [43] and multiobject tracking.
As yet another example, A could consist of measures supported at a single point so
that x is an atomic measure supported at just a few points. This notion of simplicity
arises in problems in system identification and statistics.

In each of these examples as well as several others, a fundamental problem of in-
terest is to recover x given limited linear measurements. For instance the question
of recovering a sparse function over the group of permutations (i.e., the sum of a
few permutation matrices) given linear measurements in the form of partial Fourier
information was investigated in the context of ranked election problems [43]. Simi-
lar linear inverse problems arise with atomic measures in system identification, with
orthogonal matrices in machine learning, and with simple models formed from sev-
eral other atomic sets (see Sect. 2.2 for more examples). Hence we seek tractable
computational tools to solve such problems. When A is the collection of one-sparse
vectors, a method of choice is to use the �1 norm to induce sparse solutions. This
method has seen a surge in interest in the last few years as it provides a tractable con-
vex optimization formulation to exactly recover sparse vectors under various condi-
tions [16, 27, 28]. More recently the nuclear norm has been proposed as an effective
convex surrogate for solving rank minimization problems subject to various affine
constraints [17, 63].

Motivated by the success of these methods we propose a general convex optimiza-
tion framework in Sect. 2 in order to recover objects with structure of the form (1)
from limited linear measurements. The guiding question behind our framework is:
How do we take a concept of simplicity such as sparsity and derive the �1 norm as
a convex heuristic? In other words what is the natural procedure to go from the set
of one-sparse vectors A to the �1 norm? We observe that the convex hull of (unit-
Euclidean-norm) one-sparse vectors is the unit ball of the �1 norm, or the cross-
polytope. Similarly the convex hull of the (unit-Euclidean-norm) rank-one matrices
is the nuclear norm ball; see Fig. 1 for illustrations. These constructions suggest a
natural generalization to other settings. Under suitable conditions the convex hull
conv(A) defines the unit ball of a norm, which is called the atomic norm induced
by the atomic set A. We can then minimize the atomic norm subject to measure-
ment constraints, which results in a convex programming heuristic for recovering
simple models given linear measurements. As an example suppose we wish to re-
cover the sum of a few permutation matrices given linear measurements. The convex
hull of the set of permutation matrices is the Birkhoff polytope of doubly stochas-
tic matrices [76], and our proposal is to solve a convex program that minimizes the
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Fig. 1 Unit balls of some atomic norms: In each figure, the set of atoms is graphed in red, and the unit ball
of the associated atomic norm is graphed in blue. In (a), the atoms are the unit-Euclidean-norm one-sparse
vectors, and the atomic norm is the �1 norm. In (b), the atoms are the 2×2 symmetric unit-Euclidean-norm
rank-one matrices, and the atomic norm is the nuclear norm. In (c), the atoms are the vectors {−1,+1}2,
and the atomic norm is the �∞ norm (Color figure online)

norm induced by this polytope. Similarly if we wish to recover an orthogonal matrix
from linear measurements we would solve a spectral norm minimization problem, as
the spectral norm ball is the convex hull of all orthogonal matrices. As discussed in
Sect. 2.5 the atomic norm minimization problem is, in some sense, the best convex
heuristic for recovering simple models with respect to a given atomic set.

We give general conditions for exact and robust recovery using the atomic norm
heuristic. In Sect. 3 we provide concrete bounds on the number of generic linear mea-
surements required for the atomic norm heuristic to succeed. This analysis is based
on computing certain Gaussian widths of tangent cones with respect to the unit balls
of the atomic norm [38]. Arguments based on Gaussian width have been fruitfully
applied to obtain bounds on the number of Gaussian measurements for the special
case of recovering sparse vectors via �1 norm minimization [66, 69], but computing
Gaussian widths of general cones is not easy. Therefore it is important to exploit the
special structure in atomic norms, while still obtaining sufficiently general results
that are broadly applicable. An important theme in this paper is the connection be-
tween Gaussian widths and various notions of symmetry. Specifically by exploiting
symmetry structure in certain atomic norms as well as convex duality properties, we
give bounds on the number of measurements required for recovery using very general
atomic norm heuristics. For example we provide precise estimates of the number of
generic measurements required for exact recovery of an orthogonal matrix via spec-
tral norm minimization, and the number of generic measurements required for exact
recovery of a permutation matrix by minimizing the norm induced by the Birkhoff
polytope. While these results correspond to the recovery of individual atoms from
random measurements, our techniques are more generally applicable to the recov-
ery of models formed as sums of a few atoms as well. We also give tighter bounds
than those previously obtained on the number of measurements required to robustly
recover sparse vectors and low-rank matrices via �1 norm and nuclear norm mini-
mization. In all of the cases we investigate, we find that the number of measurements
required to reconstruct an object is proportional to its intrinsic dimension rather than
the ambient dimension, thus confirming prior folklore. See Table 1 for a summary of
these results.
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Table 1 A summary of the recovery bounds obtained using Gaussian width arguments

Underlying model Convex heuristic No. of Gaussian measurements

s-Sparse vector in R
p �1 norm 2s log(p/s) + 5s/4

m × m rank-r matrix Nuclear norm 3r(2m − r)

Sign-vector {−1,+1}p �∞ norm p/2

m × m permutation matrix Norm induced by Birkhoff polytope 9m log(m)

m × m orthogonal matrix Spectral norm (3m2 − m)/4

Although our conditions for recovery and bounds on the number of measurements
hold generally, we note that it may not be possible to obtain a computable represen-
tation for the convex hull conv(A) of an arbitrary set of atoms A. This leads us to
another important theme of this paper, which we discuss in Sect. 4, on the connection
between algebraic structure in A and the semidefinite representability of the convex
hull conv(A). In particular when A is an algebraic variety the convex hull conv(A)

can be approximated as (the projection of) a set defined by linear matrix inequalities.
Thus the resulting atomic norm minimization heuristic can be solved via semidefi-
nite programming. A second issue that arises in practice is that even with algebraic
structure in A the semidefinite representation of conv(A) may not be computable in
polynomial time, which makes the atomic norm minimization problem intractable to
solve. A prominent example here is the tensor nuclear norm ball, obtained by taking
the convex hull of the rank-one tensors. In order to address this problem we give a
hierarchy of semidefinite relaxations using theta bodies that approximate the original
(intractable) atomic norm minimization problem [39]. We also highlight that while
these semidefinite relaxations are more tractable to solve, we require more measure-
ments for exact recovery of the underlying model than if we solve the original in-
tractable atomic norm minimization problem. Hence there is a tradeoff between the
complexity of the recovery algorithm and the number of measurements required for
recovery. We illustrate this tradeoff with the cut polytope and its relaxations.

Outline Section 2 describes the construction of the atomic norm, gives several ex-
amples of applications in which these norms may be useful to recover simple mod-
els, and provides general conditions for recovery by minimizing the atomic norm. In
Sect. 3 we investigate the number of generic measurements for exact or robust recov-
ery using atomic norm minimization, and give estimates in a number of settings by
analyzing the Gaussian widths of certain tangent cones. We address the problem of
semidefinite representability and tractable relaxations of the atomic norm in Sect. 4.
Section 5 describes some algorithmic issues as well as a few simulation results, and
we conclude with a discussion and open questions in Sect. 6.

2 Atomic Norms and Convex Geometry

In this section we describe the construction of an atomic norm from a collection of
simple atoms. In addition we give several examples of atomic norms, and discuss
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their properties in the context of solving ill-posed linear inverse problems. We denote
the Euclidean norm by ‖ · ‖.

2.1 Definition

Let A be a collection of atoms that is a compact subset of R
p . We will assume

throughout this paper that no element a ∈ A lies in the convex hull of the other el-
ements conv(A\a), i.e., the elements of A are the extreme points of conv(A). Let
‖x‖A denote the gauge of A [65]:

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
. (2)

Note that the gauge is always a convex, extended real-valued function for any set A.
We will assume without loss of generality that the centroid of conv(A) is at the origin,
as this can be achieved by appropriate recentering. With this assumption the gauge
function evaluates to +∞ if x does not lie in the affine hull of conv(A). Further the
gauge function can be rewritten as [10]:

‖x‖A = inf

{∑

a∈A
ca : x =

∑

a∈A
caa, ca ≥ 0 ∀a ∈ A

}
.

If A is centrally symmetric about the origin (i.e., a ∈ A if and only if −a ∈ A) we
have that ‖ · ‖A is a norm, which we call the atomic norm induced by A. The support
function of A is given as:

‖x‖∗
A = sup

{〈x,a〉 : a ∈ A
}
. (3)

If ‖ · ‖A is a norm the support function ‖ · ‖∗
A is the dual norm of this atomic norm.

From this definition we see that the unit ball of ‖ · ‖A is equal to conv(A). In many
examples of interest the set A is not centrally symmetric, so that the gauge function
does not define a norm. However our analysis is based on the underlying convex
geometry of conv(A), and our results are applicable even if ‖ · ‖A does not define
a norm. Therefore, with an abuse of terminology, we generally refer to ‖ · ‖A as
the atomic norm of the set A even if ‖ · ‖A is not a norm. We note that the duality
characterization between (2) and (3) when ‖·‖A is a norm is in fact applicable even in
infinite-dimensional Banach spaces by Bonsall’s atomic decomposition theorem [10],
but our focus is on the finite-dimensional case in this work. We investigate in greater
detail the issues of representability and efficient approximation of these atomic norms
in Sect. 4.

Equipped with a convex penalty function given a set of atoms, we propose a con-
vex optimization method to recover a “simple” model given limited linear measure-
ments. Specifically suppose that x� is formed according to (1) from a set of atoms A.
Further suppose that we have a known linear map Φ : R

p → R
n, and we have linear

information about x� as follows:

y = Φx�. (4)
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The goal is to reconstruct x� given y. We consider the following convex formulation
to accomplish this task:

x̂ = arg min
x

‖x‖A s.t. y = Φx. (5)

When A is the set of one-sparse atoms this problem reduces to standard �1 norm
minimization. Similarly when A is the set of rank-one matrices this problem reduces
to nuclear norm minimization. More generally if the atomic norm ‖ · ‖A is tractable
to evaluate, then (5) potentially offers an efficient convex programming formulation
for reconstructing x� from the limited information y. The dual problem of (5) is given
as follows:

max
z

yT z

s.t.
∥∥Φ†z

∥∥∗
A ≤ 1.

(6)

Here Φ† denotes the adjoint (or transpose) of the linear measurement map Φ .
The convex formulation (5) can be suitably modified in case we only have access

to inaccurate, noisy information. Specifically suppose that we have noisy measure-
ments y = Φx� +ω where ω represents the noise term. A natural convex formulation
is one in which the constraint y = Φx of (5) is replaced by the relaxed constraint
‖y − Φx‖ ≤ δ, where δ is an upper bound on the size of the noise ω:

x̂ = arg min
x

‖x‖A s.t. ‖y − Φx‖ ≤ δ. (7)

We say that we have exact recovery in the noise-free case if x̂ = x� in (5), and ro-
bust recovery in the noisy case if the error ‖x̂ − x�‖ is small in (7). In Sects. 2.4 and 3
we give conditions under which the atomic norm heuristics (5) and (7) recover x� ex-
actly or approximately. Atomic norms have found fruitful applications in problems in
approximation theory of various function classes [3, 24, 44, 59]. However this prior
body of work was concerned with infinite-dimensional Banach spaces, and none of
these references considers or provides recovery guarantees that are applicable in our
setting.

2.2 Examples

Next we provide several examples of atomic norms that can be viewed as special
cases of the construction above. These norms are obtained by convexifying atomic
sets that are of interest in various applications.

Sparse Vectors The problem of recovering sparse vectors from limited measure-
ments has received a great deal of attention, with applications in many problem do-
mains. In this case the atomic set A ⊂ R

p can be viewed as the set of unit-norm
one-sparse vectors {±ei}pi=1, and k-sparse vectors in R

p can be constructed using a
linear combination of k elements of the atomic set. In this case it is easily seen that
the convex hull conv(A) is given by the cross-polytope (i.e., the unit ball of the �1

norm), and the atomic norm ‖ · ‖A corresponds to the �1 norm in R
p .
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Low-Rank Matrices Recovering low-rank matrices from limited information is also
a problem that has received considerable attention as it finds applications in problems
in statistics, control, and machine learning. The atomic set A here can be viewed as
the set of rank-one matrices of unit-Euclidean-norm. The convex hull conv(A) is the
nuclear norm ball of matrices in which the sum of the singular values is less than or
equal to one.

Sparse and Low-Rank Matrices The problem of recovering a sparse matrix and a
low-rank matrix given information about their sum arises in a number of model selec-
tion and system identification settings. The corresponding atomic norm is constructed
by taking the convex hull of an atomic set obtained via the union of rank-one matri-
ces and (suitably scaled) one-sparse matrices. This norm can also be viewed as the
infimal convolution of the �1 norm and the nuclear norm, and its properties have been
explored in [14, 19].

Permutation Matrices A problem of interest in a ranking context [43] or an object
tracking context is that of recovering permutation matrices from partial information.
Suppose that a small number k of rankings of m candidates is preferred by a popula-
tion. Such preferences can be modeled as the sum of a few m × m permutation ma-
trices, with each permutation corresponding to a particular ranking. By conducting
surveys of the population one can obtain partial linear information of these preferred
rankings. The set A here is the collection of permutation matrices (consisting of m!
elements), and the convex hull conv(A) is the Birkhoff polytope or the set of doubly
stochastic matrices [76]. The centroid of the Birkhoff polytope is the matrix 11T /m,
so it needs to be recentered appropriately. We mention here recent work by Jaga-
bathula and Shah [43] on recovering a sparse function over the symmetric group (i.e.,
the sum of a few permutation matrices) given partial Fourier information; although
the algorithm proposed in [43] is tractable, it is not based on convex optimization.

Binary Vectors In integer programming one is often interested in recovering vectors
in which the entries take on values of ±1. Suppose that there exists such a sign-vector,
and we wish to recover this vector given linear measurements. This corresponds to a
version of the multiple knapsack problem [52]. In this case A is the set of all sign-
vectors, and the convex hull conv(A) is the hypercube or the unit ball of the �∞ norm.
The image of this hypercube under a linear map is also referred to as a zonotope [76].

Vectors from Lists Suppose there is an unknown vector x ∈ R
p , and that we are

given the entries of this vector without any information about the locations of these
entries. For example if x = [3 1 2 2 4]′, then we are only given the list of numbers
{1,2,2,3,4} without their positions in x. Further suppose that we have access to
a few linear measurements of x. Can we recover x by solving a convex program?
Such a problem is of interest in recovering partial rankings of elements of a set. An
extreme case is one in which we only have two preferences for rankings, i.e., a vector
in {1,2}p composed only of one’s and two’s, which reduces to a special case of the
problem above of recovering binary vectors (in which the number of entries of each
sign is fixed). For this problem the set A is the set of all permutations of x (which we
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know since we have the list of numbers that compose x), and the convex hull conv(A)

is the permutahedron [67, 76]. As with the Birkhoff polytope, the permutahedron also
needs to be recentered about the point 1T x/p.

Matrices Constrained by Eigenvalues This problem is in a sense the noncommu-
tative analog of the one above. Suppose that we are given the eigenvalues λ of a
symmetric matrix, but no information about the eigenvectors. Can we recover such a
matrix given some additional linear measurements? In this case the set A is the set of
all symmetric matrices with eigenvalues λ, and the convex hull conv(A) is given by
the Schur–Horn orbitope [67].

Orthogonal Matrices In many applications matrix variables are constrained to be
orthogonal, which is a nonconvex constraint and may lead to computational difficul-
ties. We consider one such simple setting in which we wish to recover an orthogonal
matrix given limited information in the form of linear measurements. In this example
the set A is the set of m × m orthogonal matrices, and conv(A) is the spectral norm
ball.

Measures Recovering a measure given its moments is another question of interest
that arises in system identification and statistics. Suppose one is given access to a lin-
ear combination of moments of an atomically supported measure. How can we recon-
struct the support of the measure? The set A here is the moment curve, and its convex
hull conv(A) goes by several names including the Caratheodory orbitope [67]. Dis-
cretized versions of this problem correspond to the set A being a finite number of
points on the moment curve; the convex hull conv(A) is then a cyclic polytope [76].

Cut Matrices In some problems one may wish to recover low-rank matrices in
which the entries are constrained to take on values of ±1. Such matrices can be used
to model basic user preferences, and are of interest in problems such as collaborative
filtering [68]. The set of atoms A could be the set of rank-one signed matrices, i.e.,
matrices of the form zzT with the entries of z being ±1. The convex hull conv(A)

of such matrices is the cut polytope [25]. An interesting issue that arises here is that
the cut polytope is in general intractable to characterize. However there exist several
well-known tractable semidefinite relaxations to this polytope [25, 37], and one can
employ these in constructing efficient convex programs for recovering cut matrices.
We discuss this point in greater detail in Sect. 4.3.

Low-Rank Tensors Low-rank tensor decompositions play an important role in nu-
merous applications throughout signal processing and machine learning [47]. Devel-
oping computational tools to recover low-rank tensors is therefore of great interest.
In principle we could solve a tensor nuclear norm minimization problem, in which
the tensor nuclear norm ball is obtained by taking the convex hull of rank-one ten-
sors. A computational challenge here is that the tensor nuclear norm is in general
intractable to compute; in order to address this problem we discuss further convex
relaxations to the tensor nuclear norm using theta bodies in Sect. 4. A number of ad-
ditional technical issues also arise with low-rank tensors, including the nonexistence
in general of a singular value decomposition analogous to that for matrices [46], and
the difference between the rank of a tensor and its border rank [23].
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Nonorthogonal Factor Analysis Suppose that a data matrix admits a factorization
X = AB . The matrix nuclear norm heuristic will find a factorization into orthogonal
factors in which the columns of A and rows of B are mutually orthogonal. However
if a priori information is available about the factors, precision and recall could be
improved by enforcing such priors. These priors may sacrifice orthogonality, but the
factors might better conform with assumptions about how the data are generated. For
instance in some applications one might know in advance that the factors should only
take on a discrete set of values [68]. In this case, we might try to fit a sum of rank-
one matrices that are bounded in �∞ norm rather than in �2 norm. Another prior that
commonly arises in practice is that the factors are nonnegative (i.e., in nonnegative
matrix factorization). These and other priors on the basic rank-one summands induce
different norms on low-rank models than the standard nuclear norm [34], and may be
better suited to specific applications.

2.3 Background on Tangent and Normal Cones

In order to properly state our results, we recall some basic concepts from convex
analysis. A convex set C is a cone if it is closed under positive linear combinations.
The polar C∗ of a cone C is the cone

C∗ = {x ∈ R
p : 〈x, z〉 ≤ 0 ∀z ∈ C

}
.

Given some nonzero x ∈ R
p we define the tangent cone at x with respect to the scaled

unit ball ‖x‖Aconv(A) as

TA(x) = cone
{
z − x : ‖z‖A ≤ ‖x‖A

}
. (8)

The cone TA(x) is equal to the set of descent directions of the atomic norm ‖ · ‖A
at the point x, i.e., the set of all directions d such that the directional derivative is
negative.

The normal cone NA(x) at x with respect to the scaled unit ball ‖x‖Aconv(A) is
defined to be the set of all directions s that form obtuse angles with every descent
direction of the atomic norm ‖ · ‖A at the point x:

NA(x) = {s : 〈s, z − x〉 ≤ 0 ∀z s.t. ‖z‖A ≤ ‖x‖A
}
. (9)

The normal cone is equal to the set of all normals of hyperplanes given by normal
vectors s that support the scaled unit ball ‖x‖Aconv(A) at x. Observe that the polar
cone of the tangent cone TA(x) is the normal cone NA(x) and vice versa. Moreover
we have the basic characterization that the normal cone NA(x) is the conic hull of
the subdifferential of the atomic norm at x.

2.4 Recovery Condition

The following result gives a characterization of the favorable underlying geometry
required for exact recovery. Let null(Φ) denote the nullspace of the operator Φ .
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Proposition 2.1 We have that x̂ = x� is the unique optimal solution of (5) if and only
if null(Φ) ∩ TA(x�) = {0}.

Proof Eliminating the equality constraints in (5) we have the equivalent optimization
problem

min
d

∥∥x� + d
∥∥

A s.t. d ∈ null(Φ).

Suppose null(Φ) ∩ TA(x�) = {0}. Since ‖x� + d‖A ≤ ‖x�‖ implies d ∈ TA(x�), we
have that ‖x� + d‖A > ‖x�‖A for all d ∈ null(Φ) \ {0}. Conversely x� is the unique
optimal solution of (5) if ‖x� +d‖A > ‖x�‖A for all d ∈ null(Φ)\ {0}, which implies
that d �∈ TA(x�). �

Proposition 2.1 asserts that the atomic norm heuristic succeeds if the nullspace of
the sampling operator does not intersect the tangent cone TA(x�) at x�. In Sect. 3 we
provide a characterization of tangent cones that determines the number of Gaussian
measurements required to guarantee such an empty intersection.

A tightening of this empty intersection condition can also be used to address the
noisy approximation problem. The following proposition characterizes when x� can
be well approximated using the convex program (7).

Proposition 2.2 Suppose that we are given n noisy measurements y = Φx� + ω

where ‖ω‖ ≤ δ and Φ : R
p → R

n. Let x̂ denote an optimal solution of (7). Further
suppose for all z ∈ TA(x�) that we have ‖Φz‖ ≥ ε‖z‖. Then ‖x̂ − x�‖ ≤ 2δ

ε
.

Proof The set of descent directions at x� with respect to the atomic norm ball is
given by the tangent cone TA(x�). The error vector x̂ − x� lies in TA(x�) because x̂ is
a minimal atomic norm solution, and hence ‖x̂‖A ≤ ‖x�‖A. It follows by the triangle
inequality that

∥∥Φ
(
x̂ − x�

)∥∥≤ ‖Φx̂ − y‖ + ∥∥Φx� − y
∥∥≤ 2δ. (10)

By assumption we have that
∥∥Φ
(
x̂ − x�

)∥∥≥ ε
∥∥x̂ − x�

∥∥, (11)

which allows us to conclude that ‖x̂ − x�‖ ≤ 2δ
ε

. �

Therefore, we need only concern ourselves with estimating the minimum value of
‖Φz‖
‖z‖ for nonzero z ∈ TA(x�). We denote this quantity as the minimum gain of the

measurement operator Φ restricted to the cone TA(x�). In particular if this minimum
gain is bounded away from zero, then the atomic norm heuristic also provides robust
recovery when we have access to noisy linear measurements of x�. Minimum gain
conditions have been employed in recent recovery results via �1 norm minimization,
block-sparse vector recovery, and low-rank matrix reconstruction [8, 18, 54, 72]. All
of these results rely heavily on strong decomposability conditions of the �1 norm and
the matrix nuclear norm. However there are several examples of atomic norms (for
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instance the �∞ norm and the norm induced by the Birkhoff polytope) as specified
in Sect. 2.2 that do not satisfy such decomposability conditions. As we will see in
the sequel, the more geometric viewpoint adopted in this paper provides a fruitful
framework in which to analyze the recovery properties of general atomic norms.

2.5 Why Atomic Norm?

The atomic norm induced by a set A possesses a number of favorable properties that
are useful for recovering “simple” models from limited linear measurements. The
key point to note from Sect. 2.4 is that the smaller the tangent cone at a point x�

with respect to conv(A), the easier it is to satisfy the empty intersection condition of
Proposition 2.1.

Based on this observation it is desirable that points in conv(A) with smaller tan-
gent cones correspond to simpler models, while points in conv(A) with larger tan-
gent cones generally correspond to more complicated models. The construction of
conv(A) by taking the convex hull of A ensures that this is the case. The extreme
points of conv(A) correspond to the simplest models, i.e., those models formed from
a single element of A. Further the low-dimensional faces of conv(A) consist of those
elements that are obtained by taking linear combinations of a few basic atoms from A.
These are precisely the properties desired, as points lying in these low-dimensional
faces of conv(A) have smaller tangent cones than those lying on larger faces.

We also note that the atomic norm is, in some sense, the best possible convex
heuristic for recovering simple models. Any reasonable heuristic penalty function
should be constant on the set of atoms A. This ensures that no atom is preferred over
any other. Under this assumption, we must have that, for any a ∈ A, a′ − a must be
a descent direction for all a′ ∈ A. The best convex penalty function is one in which
the cones of descent directions at a ∈ A are as small as possible. This is because,
as described above, smaller cones are more likely to satisfy the empty intersection
condition required for exact recovery. Since the tangent cone at a ∈ A with respect to
conv(A) is precisely the conic hull of a′ − a for a′ ∈ A, the atomic norm is the best
convex heuristic for recovering models where simplicity is dictated by the set A.

Our reasons for proposing the atomic norm as a useful convex heuristic are quite
different from previous justifications of the �1 norm and the nuclear norm. In particu-
lar let f : R

p → R denote the cardinality function that counts the number of nonzero
entries of a vector. Then the �1 norm is the convex envelope of f restricted to the unit
ball of the �∞ norm, i.e., the best convex underestimator of f restricted to vectors
in the �∞ norm ball. This view of the �1 norm in relation to the function f is often
given as a justification for its effectiveness in recovering sparse vectors. However if
we consider the convex envelope of f restricted to the Euclidean norm ball, then we
obtain a very different convex function than the �1 norm! With more general atomic
sets, it may not be clear a priori what the bounding set should be in deriving the
convex envelope. In contrast the viewpoint adopted in this paper leads to a natural,
unambiguous construction of the �1 norm and other general atomic norms. Further,
as explained above, it is the favorable facial structure of the atomic norm ball that
makes the atomic norm a suitable convex heuristic to recover simple models, and this
connection is transparent in the definition of the atomic norm.
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3 Recovery from Generic Measurements

We consider the question of using the convex program (5) to recover “simple” models
formed according to (1) from a generic measurement operator or map Φ : R

p → R
n.

Specifically, we wish to compute estimates on the number of measurements n so
that we have exact recovery using (5) for most operators comprising n measure-
ments. That is, the measure of n-measurement operators for which recovery fails
using (5) must be exponentially small. In order to conduct such an analysis we study
random Gaussian maps whose entries are independent and identically distributed
(i.i.d.) Gaussians. These measurement operators have a nullspace that is uniformly
distributed among the set of all (p − n)-dimensional subspaces in R

p . In particular
we analyze when such operators satisfy the conditions of Proposition 2.1 and Propo-
sition 2.2 for exact recovery.

3.1 Recovery Conditions Based on Gaussian Width

Proposition 2.1 requires that the nullspace of the measurement operator Φ must miss
the tangent cone TA(x�). Gordon [38] gave a solution to the problem of character-
izing the probability that a random subspace (of some fixed dimension) distributed
uniformly misses a cone. We begin by defining the Gaussian width of a set, which
plays a key role in Gordon’s analysis.

Definition 3.1 The Gaussian width of a set S ⊂ R
p is defined as:

w(S) := Eg

[
sup
z∈S

gT z
]
,

where g ∼ N (0, I ) is a vector of independent zero-mean unit-variance Gaussians.

Gordon characterized the likelihood that a random subspace misses a cone C purely
in terms of the dimension of the subspace and the Gaussian width w(C ∩ S

p−1),
where S

p−1 ⊂ R
p is the unit sphere. Before describing Gordon’s result formally, we

introduce some notation. Let λk denote the expected length of a k-dimensional Gaus-
sian random vector. By elementary integration, we have that λk = √

2	(k+1
2 )/	(k

2 ).
Further, by induction, one can show that λk is tightly bounded as k√

k+1
≤ λk ≤ √

k.
The main idea underlying Gordon’s theorem is a bound on the minimum gain of

an operator restricted to a set. Specifically, recall that null(Φ) ∩ TA(x�) = {0} is the
condition required for recovery by Proposition 2.1. Thus if we have that the minimum
gain of Φ restricted to vectors in the set TA(x�) ∩ S

p−1 is bounded away from zero,
then it is clear that null(Φ)∩ TA(x�) = ∅. We refer to such minimum gains restricted
to a subset of the sphere as restricted minimum singular values, and the following
theorem of Gordon gives a bound on these quantities.

Theorem 3.2 (Corollary 1.2, [38]) Let Ω be a closed subset of S
p−1. Let Φ : R

p →
R

n be a random map with i.i.d. zero-mean Gaussian entries having variance one.
Then

E

[
min
z∈Ω

‖Φz‖2

]
≥ λn − w(Ω). (12)
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Theorem 3.2 allows us to characterize exact recovery in the noise-free case us-
ing the convex program (5), and robust recovery in the noisy case using the convex
program (7). Specifically we consider the number of measurements required for ex-
act or robust recovery when the measurement map Φ : R

p → R
n consists of i.i.d.

zero-mean Gaussian entries having variance 1/n. The normalization of the variance
ensures that the columns of Φ are approximately unit-norm, and is necessary in or-
der to properly define a signal-to-noise ratio. The following corollary summarizes the
main results of interest in our setting.

Corollary 3.3 Let Φ : R
p → R

n be a random map with i.i.d. zero-mean Gaussian
entries having variance 1/n. Further let Ω = TA(x�) ∩ S

p−1 denote the spherical
part of the tangent cone TA(x�).

1. Suppose that we have measurements y = Φx� and solve the convex program (5).
Then x� is the unique optimum of (5) with probability at least 1 − exp(− 1

2 [λn −
w(Ω)]2) provided

n ≥ w(Ω)2 + 1.

2. Suppose that we have noisy measurements y = Φx� +ω, with the noise ω bounded
as ‖ω‖ ≤ δ, and that we solve the convex program (7). Letting x̂ denote the
optimal solution of (7), we have that ‖x� − x̂‖ ≤ 2δ

ε
with probability at least

1 − exp(− 1
2 [λn − w(Ω) − √

nε]2) provided

n ≥ w(Ω)2 + 3/2

(1 − ε)2
.

Proof The two results are simple consequences of Theorem 3.2 and a concentration
of measure argument. Recall that for a function f : R

d → R with Lipschitz constant
L and a random Gaussian vector, g ∈ R

d , with mean zero and identity variance,

P
[
f (g) ≥ E[f ] − t

]≥ 1 − exp

(
− t2

2L2

)
(13)

(see, for example, [49, 60]). For any set Ω ⊂ S
p−1, the function

Φ �→ min
z∈Ω

‖Φz‖2

is Lipschitz with respect to the Frobenius norm with constant 1. Thus, applying The-
orem 3.2 and (13), we find that

P

[
min
z∈Ω

‖Φz‖2 ≥ ε
]

≥ 1 − exp

(
−1

2

(
λn − w(Ω) − √

nε
)2
)

(14)

provided that λn − w(Ω) − √
nε ≥ 0.

The first part now follows by setting ε = 0 in (14). The concentration inequality is
valid provided that λn ≥ w(Ω). To verify this, note that

λn ≥ n√
n + 1

≥
√

w(Ω)2 + 1

1 + 1/n
≥
√

w(Ω)2 + w(Ω)2/n

1 + 1/n
= w(Ω).



Found Comput Math (2012) 12:805–849 819

Here, both inequalities use the fact that n ≥ w(Ω)2 + 1.
For the second part, we have from (14) that

∥∥Φ(z)
∥∥= ‖z‖

∥∥∥∥Φ
(

z
‖z‖
)∥∥∥∥≥ ε‖z‖

for all z ∈ TA(x�) with high probability if λn ≥ w(Ω) + √
nε. In this case, we can

apply Proposition 2.2 to conclude that ‖x̂ − x�‖ ≤ 2δ
ε

. To verify that concentration of
measure can be applied is more or less the same procedure as in the proof of Part 1.
First note that, under the assumptions of the theorem,

w(Ω)2 +1 ≤ n(1− ε)2 −1/2 ≤ n(1− ε)2 −2ε(1− ε)+ ε2

n
=
(√

n(1− ε)− ε√
n

)2

as ε(1 − ε) ≤ 1/4 for ε ∈ (0,1). Using this fact, we then have

λn − √
nε ≥ n − (n + 1)ε√

n + 1
≥
√

w(Ω)2 + 1

1 + 1/n
≥ w(Ω)

as desired. �

Gordon’s theorem thus provides a simple characterization of the number of mea-
surements required for reconstruction with the atomic norm. Indeed the Gaussian
width of Ω = TA(x�) ∩ S

p−1 is the only quantity that we need to compute in order
to obtain bounds for both exact and robust recovery. Unfortunately it is generally
not easy to compute Gaussian widths. Rudelson and Vershynin [66] have worked out
Gaussian widths for the special case of tangent cones at sparse vectors on the bound-
ary of the �1 ball, and derived results for sparse vector recovery using �1 minimization
that improve upon previous results. In the next section we give various well-known
properties of the Gaussian width that are useful in computations. In Sect. 3.3 we dis-
cuss a new approach to width computations that gives near-optimal recovery bounds
in a variety of settings.

3.2 Properties of Gaussian Width

The Gaussian width has deep connections to convex geometry. Since the length
and direction of a Gaussian random vector are independent, one can verify that for
S ⊂ R

p

w(S) = λp

2

∫

Sp−1

(
max
z∈S

uT z − min
z∈S

uT z
)

du = λp

2
b(S)

where the integral is with respect to the Haar measure on S
p−1 and b(S) is known as

the mean width of S. The mean width measures the average length of S along unit
directions in R

p and is one of the fundamental intrinsic volumes of a body studied in
combinatorial geometry [45]. Any continuous valuation that is invariant under rigid
motions and homogeneous of degree 1 is a multiple of the mean width and hence a
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multiple of the Gaussian width. We can use this connection with convex geometry to
underscore several properties of the Gaussian width that are useful for computation.

The Gaussian width of a body is invariant under translations and unitary transfor-
mations. Moreover it is homogeneous in the sense that w(tK) = tw(K) for t > 0.
The width is also monotonic. If S1 ⊆ S2 ⊆ R

p , then it is clear from the definition of
the Gaussian width that

w(S1) ≤ w(S2).

Less obviously, the width is modular in the sense that if S1 and S2 are convex bodies
with S1 ∪ S2 convex, we also have

w(S1 ∪ S2) + w(S1 ∩ S2) = w(S1) + w(S2).

This equality follows from the fact that w is a valuation [4]. Also note that if we have
a set S ⊆ R

p , then the Gaussian width of S is equal to the Gaussian width of the
convex hull of S:

w(S) = w
(
conv(S)

)
.

This result follows from the basic fact in convex analysis that the maximum of a
convex function over a convex set is achieved at an extreme point of the convex set.

If V ⊂ R
p is a subspace in R

p , then we have that

w
(
V ∩ S

p−1)=√dim(V ),

which follows from standard results on random Gaussians. This result also agrees
with the intuition that a random Gaussian map Φ misses a k-dimensional subspace
with high probability as long as dim(null(Φ)) ≥ k + 1. Finally, if a cone S ⊂ R

p is
such that S = S1 ⊕S2, where S1 ⊂ R

p is a k-dimensional cone, S2 ⊂ R
p is a (p − k)-

dimensional cone that is orthogonal to S1, and ⊕ denotes the direct sum operation,
then the width can be decomposed as follows:

w
(
S ∩ S

p−1)2 ≤ Eg

[(
sup

z∈S1∩Sp−1
gT z
)2]+ Eg

[(
sup

z∈S2∩Sp−1
gT z
)2]

.

Here g ∼ N (0, I ) is as usual a vector of independent zero-mean unit-variance Gaus-
sians. These observations are useful in a variety of situations. For example a width
computation that frequently arises is one in which S = S1 ⊕ S2 as described above,
with S1 being a k-dimensional subspace. It follows that the width of S ∩ S

p−1 is
bounded as

w
(
S ∩ S

p−1)2 ≤ k + Eg

[(
sup

z∈S2∩Sp−1
gT z
)2]

. (15)

Another tool for computing Gaussian widths is based on Dudley’s inequal-
ity [32, 49], which bounds the width of a set in terms of the covering number of
the set at all scales.
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Definition 3.4 Let S be an arbitrary compact subset of R
p . The covering number of

S in the Euclidean norm at resolution ε is the smallest number, N(S, ε), such that
N(S, ε) Euclidean balls of radius ε cover S.

Theorem 3.5 (Dudley’s Inequality) Let S be an arbitrary compact subset of R
p , and

let g be a random vector with i.i.d. zero-mean, unit-variance Gaussian entries. Then

w(S) ≤ 24
∫ ∞

0

√
log
(
N(S, ε)

)
dε. (16)

We note here that a weak converse to Dudley’s inequality can be obtained via Su-
dakov’s minoration [49] by using the covering number for just a single scale. Specif-
ically we have the following lower bound on the Gaussian width of a compact subset
S ⊂ R

p for any ε > 0:

w(S) ≥ cε

√
log
(
N(S, ε)

)
.

Here c > 0 is some universal constant.
Although Dudley’s inequality can be applied quite generally, estimating covering

numbers is difficult in most instances. There are a few simple characterizations avail-
able for spheres and Sobolev spaces, and some tractable arguments based on Mau-
rey’s empirical method [49]. However it is not evident how to compute these numbers
for general convex cones. Also, in order to apply Dudley’s inequality we need to esti-
mate the covering number at all scales. Dudley’s inequality can also be quite loose in
its estimates, and it often introduces extraneous polylogarithmic factors. In the next
section we describe a new mechanism for estimating Gaussian widths, which pro-
vides near-optimal guarantees for recovery of sparse vectors and low-rank matrices,
as well as for several of the recovery problems discussed in Sect. 3.4.

3.3 New Results on Gaussian Width

We now present a framework for computing Gaussian widths by bounding the Gaus-
sian width of a cone via the distance to the dual cone. To be fully general let C be a
nonempty convex cone in R

p , and let C∗ denote the polar of C . We can then upper-
bound the Gaussian width of any cone C in terms of the polar cone C∗.

Proposition 3.6 Let C be any nonempty convex cone in R
p , and let g ∼ N (0, I ) be

a random Gaussian vector. Then we have the following bound:

w
(

C ∩ S
p−1)≤ Eg

[
dist
(
g, C∗)],

where dist here denotes the Euclidean distance between a point and a set.

The proof is given in Appendix A, and it follows from an appeal to convex duality.
Proposition 3.6 is more or less a restatement of the fact that the support function of
a convex cone is equal to the distance to its polar cone. As it is the square of the



822 Found Comput Math (2012) 12:805–849

Gaussian width that is of interest to us (see Corollary 3.3), it is often useful to apply
Jensen’s inequality to make the following approximation:

Eg
[
dist
(
g, C∗)]2 ≤ Eg

[
dist
(
g, C∗)2]. (17)

The inspiration for our characterization in Proposition 3.6 of the width of a cone
in terms of the expected distance to its dual came from the work of Stojnic [69],
who used linear programming duality to construct Gaussian-width-based estimates
for analyzing recovery in sparse reconstruction problems. Specifically, Stojnic’s rela-
tively simple approach recovered well-known phase transitions in sparse signal recov-
ery [29], and also generalized to block-sparse signals and other forms of structured
sparsity.

This new dual characterization yields a number of useful bounds on the Gaussian
width, which we describe here. In the following section we use these bounds to derive
new recovery results. The first result is a bound on the Gaussian width of a cone in
terms of the Gaussian width of its polar.

Lemma 3.7 Let C ⊆ R
p be a nonempty closed, convex cone. Then we have that

w
(

C ∩ S
p−1)2 + w

(
C∗ ∩ S

p−1)2 ≤ p.

Proof Combining Proposition 3.6 and (17), we have that

w
(

C ∩ S
p−1)2 ≤ Eg

[
dist
(
g, C∗)2],

where as before g ∼ N (0, I ). For any z ∈ R
p we let ΠC (z) = arg infu∈C ‖z − u‖

denote the projection of z onto C . From standard results in convex analysis [65], we
note that one can decompose any z ∈ R

p into orthogonal components as follows:

z = ΠC (z) + ΠC∗(z),
〈
ΠC (z),ΠC∗(z)

〉= 0.

Therefore we have the following sequence of bounds:

w
(

C ∩ S
p−1)2 ≤ Eg

[
dist
(
g, C∗)2]

= Eg
[∥∥ΠC (g)

∥∥2]

= Eg
[‖g‖2 − ∥∥ΠC∗(g)

∥∥2]

= p − Eg
[∥∥ΠC∗(g)

∥∥2]

= p − Eg
[
dist(g, C)2]

≤ p − w
(

C∗ ∩ S
p−1)2. �

In many recovery problems one is interested in computing the width of a self-dual
cone. For such cones the following corollary to Lemma 3.7 gives a simple solution.
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Corollary 3.8 Let C ⊂ R
p be a self-dual cone, i.e., C = −C∗. Then we have that

w
(

C ∩ S
p−1)2 ≤ p

2
.

Proof The proof follows directly from Lemma 3.7 as w(C ∩ S
p−1)2 = w(C∗ ∩

S
p−1)2. �

Our next bound for the width of a cone C is based on the volume of its polar
C∗ ∩ S

p−1. The volume of a measurable subset of the sphere is the fraction of the
sphere S

p−1 covered by the subset. Thus it is a quantity between zero and one.

Theorem 3.9 (Gaussian Width from Volume of the Polar) Let C ⊆ R
p be any closed,

convex, solid cone, and suppose that its polar C∗ is such that C∗ ∩S
p−1 has a volume

of Θ ∈ [0,1]. Then for p ≥ 9 we have that

w
(

C ∩ S
p−1)≤ 3

√

log

(
4

Θ

)
.

The proof of this theorem is given in Appendix B. The main property that we
appeal to in the proof is Gaussian isoperimetry. In particular there is a formal sense
in which a spherical cap1 is the “extremal case” among all subsets of the sphere with
a given volume Θ . Other than this observation the proof mainly involves a sequence
of integral calculations.

Note that if we are given a specification of a cone C ⊂ R
p in terms of a member-

ship oracle, it is possible to efficiently obtain good numerical estimates of the volume
of C ∩ S

p−1 [33]. Moreover, simple symmetry arguments often give relatively accu-
rate estimates of these volumes. Such estimates can then be put into Theorem 3.9 to
yield bounds on the width.

3.4 New Recovery Bounds

We use the bounds derived in the last section to obtain new recovery results. First,
using the dual characterization of the Gaussian width in Proposition 3.6, we are able
to obtain sharp bounds on the number of measurements required for recovering sparse
vectors and low-rank matrices from random Gaussian measurements using convex
optimization (i.e., �1 norm and nuclear norm minimization).

Proposition 3.10 Let x� ∈ R
p be an s-sparse vector. Letting A denote the set of

unit-Euclidean-norm one-sparse vectors, we have that

w
(
TA
(
x�
)∩ S

p−1)2 ≤ 2s log

(
p

s

)
+ 5

4
s.

Thus, 2s log(
p
s
) + 5

4 s + 1 random Gaussian measurements suffice to recover x� via
�1 norm minimization with high probability.

1A spherical cap is a subset of the sphere obtained by intersecting the sphere S
p−1 with a halfspace.
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Proposition 3.11 Let x� be an m1 × m2 rank-r matrix with m1 ≤ m2. Letting A
denote the set of unit-Euclidean-norm rank-one matrices, we have that

w
(
TA
(
x�
)∩ S

m1m2−1)2 ≤ 3r(m1 + m2 − r).

Thus 3r(m1 + m2 − r) + 1 random Gaussian measurements suffice to recover x� via
nuclear norm minimization with high probability.

The proofs of these propositions are given in Appendix C. The number of measure-
ments required by these bounds is on the same order as previously known results. For
sparse vectors, previous results obtaining 2s log(p/s) were asymptotic [26, 30, 74].
Our bounds, in contrast, hold with high probability in finite dimensions. For low-rank
matrices, our bound provides sharper constants than those previously derived (for ex-
ample [15]) and is also applicable over a wider range of matrix ranks and number of
measurements than in previous work [64]. We also note that we have robust recovery
at these thresholds. Further these results do not require explicit recourse to any type of
restricted isometry property [15], and the proofs are simple and based on elementary
integrals.

Next we obtain a set of recovery results by appealing to Corollary 3.8 on the
width of a self-dual cone. These examples correspond to the recovery of individual
atoms (i.e., the extreme points of the set conv(A)), although the same machinery is
applicable in principle to estimate the number of measurements required to recover
models formed as sums of a few atoms (i.e., points lying on low-dimensional faces
of conv(A)). We first obtain a well-known result on the number of measurements
required for recovering sign-vectors via �∞ norm minimization.

Proposition 3.12 Let A ∈ {−1,+1}p be the set of sign-vectors in R
p . Suppose x� ∈

R
p is a vector formed as a convex combination of k sign-vectors in A such that x�

lies on a k-face of the �∞ norm unit ball. Then we have that

w
(
TA
(
x�
)∩ S

p−1)2 ≤ p + k

2
.

Thus p+k
2 random Gaussian measurements suffice to recover x� via �∞ norm mini-

mization with high probability.

Proof The tangent cone at x� with respect to the �∞ norm ball is the direct sum of
a k-dimensional subspace and a (rotated) (p − k)-dimensional nonnegative orthant.
As the orthant is self-dual, we obtain the required bound by combining Corollary 3.8
and (15). �

This result agrees with previously computed bounds in [31, 52], which relied on
a more complicated combinatorial argument. Next we compute the number of mea-
surements required to recover orthogonal matrices via spectral norm minimization
(see Sect. 2.2). Let O(m) denote the group of m × m orthogonal matrices, viewed as
a subgroup of the set of nonsingular matrices in R

m×m.
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Proposition 3.13 Let x� ∈ R
m×m be an orthogonal matrix, and let A be the set of all

orthogonal matrices. Then we have that

w
(
TA
(
x�
)∩ S

m2−1)2 ≤ 3m2 − m

4
.

Thus 3m2−m
4 random Gaussian measurements suffice to recover x� via spectral norm

minimization with high probability.

Proof Due to the symmetry of the orthogonal group, it suffices to consider the tangent
cone at the identity matrix I with respect to the spectral norm ball. Recall that the
spectral norm ball is the convex hull of the orthogonal matrices. Therefore the tangent
space at the identity matrix with respect to the orthogonal group O(m) is a subset of
the tangent cone TA(I ). It is well known that this tangent space is the Lie Algebra of
all m × m skew-symmetric matrices. Thus we only need to compute the component
S of TA(I ) that lies in the subspace of symmetric matrices:

S = cone{M − I : ‖M‖A ≤ 1, M symmetric}
= cone

{
UDUT − UUT : ‖D‖A ≤ 1, D diagonal, U ∈ O(m)

}

= cone
{
U(D − I )UT : ‖D‖A ≤ 1, D diagonal, U ∈ O(m)

}

= −PSDm.

Here PSDm denotes the set of m × m symmetric positive semidefinite matrices. As
this cone is self-dual, we can apply Corollary 3.8 in conjunction with the observations
in Sect. 3.2 to conclude that

w
(
TA(I ) ∩ S

m2−1)2 ≤
(

m

2

)
+ 1

2

(
m + 1

2

)
= 3m2 − m

4
.

�

We note that the number of degrees of freedom in an m×m orthogonal matrix (i.e.,
the dimension of the manifold of orthogonal matrices) is m(m−1)

2 . Propositions 3.12
and 3.13 point to the importance of obtaining recovery bounds with sharp constants.
Larger constants in either result would imply that the number of measurements re-
quired exceeds the ambient dimension of the underlying x�. In these and many other
cases of interest Gaussian width arguments not only give order-optimal recovery re-
sults, but also provide precise constants that result in sharp recovery thresholds.

Finally we give a third set of recovery results that appeal to the Gaussian width
bound of Theorem 3.9. The following measurement bound applies to cases when
conv(A) is a symmetric polytope (roughly speaking, all the vertices are “equivalent”),
and is a simple corollary of Theorem 3.9.

Corollary 3.14 Suppose that the set A is a finite collection of m points, with the
convex hull conv(A) being a vertex-transitive polytope [76] whose vertices are the
points in A. Using the convex program (5) we have that 9 log(m) random Gaussian
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measurements suffice, with high probability, for exact recovery of a point in A, i.e.,
a vertex of conv(A).

Proof We recall the basic fact from convex analysis that the normal cones at the
vertices of a convex polytope in R

p provide a partitioning of R
p . As conv(A) is

a vertex-transitive polytope, the normal cone at a vertex covers 1
m

fraction of R
p .

Applying Theorem 3.9, we have the desired result. �

Clearly we require the number of vertices to be bounded as m ≤ exp{p
9 }, so that

the estimate of the number of measurements is not vacuously true. This result has
useful consequences in settings in which conv(A) is a combinatorial polytope, as
such polytopes are often vertex-transitive. We have the following example on the
number of measurements required to recover permutation matrices.2

Proposition 3.15 Let x� ∈ R
m×m be a permutation matrix, and let A be the set of

all m × m permutation matrices. Then 9m log(m) random Gaussian measurements
suffice, with high probability, to recover x� by solving the optimization problem (5),
which minimizes the norm induced by the Birkhoff polytope of doubly stochastic ma-
trices.

Proof This result follows from Corollary 3.14 by noting that there are m! permutation
matrices of size m × m. �

4 Representability and Algebraic Geometry of Atomic Norms

All of our discussion thus far has focused on arbitrary atomic sets A. As seen in
Sect. 2 the geometry of the convex hull conv(A) completely determines conditions
under which exact recovery is possible using the convex program (5). In this section
we address the question of computing atomic norms for general sets of atoms. These
issues are critical in order to be able to solve the convex optimization problem (5).
Although the convex hull conv(A) is always a mathematically well-defined object,
testing membership in this set is generally undecidable (for example, if A is a fractal).
Further, even if these convex hulls are computable they may not admit efficient repre-
sentations. For example if A is the set of rank-one signed matrices (see Sect. 2.2), the
corresponding convex hull conv(A) is the cut polytope for which there is no known
tractable characterization. Consequently one may have to resort to efficiently com-
putable approximations of conv(A). The tradeoff in using such approximations in
our atomic norm minimization framework is that we require more measurements for
robust recovery. This section is devoted to providing a better understanding of these
issues.

2While Proposition 3.15 follows as a consequence of the general result in Corollary 3.14, one can remove
the constant factor 9 in the statement of Proposition 3.15 by carrying out a more refined analysis of the
Birkhoff polytope.
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4.1 Role of Algebraic Structure

In order to obtain exact or approximate representations (analogous to the cases of the
�1 norm and the nuclear norm) it is important to identify properties of the atomic set
A that can be exploited computationally. We focus on cases in which the set A has
algebraic structure. Specifically let the ring of multivariate polynomials in p variables
be denoted by R[x] = R[x1, . . . ,xp]. We then consider real algebraic varieties [9].

Definition 4.1 A real algebraic variety S ⊆ R
p is the set of real solutions of a system

of polynomial equations:

S = {x : gj (x) = 0, ∀j
}
,

where {gj } is a finite collection of polynomials in R[x].

Indeed all of the atomic sets A considered in this paper are examples of algebraic
varieties. Algebraic varieties have the remarkable property that (the closure of) their
convex hull can be arbitrarily well-approximated in a constructive manner as (the pro-
jection of) a set defined by linear matrix inequality constraints [39, 58]. A potential
complication may arise, however, if these semidefinite representations are intractable
to compute in polynomial time. In such cases it is possible to approximate the convex
hulls via a hierarchy of tractable semidefinite relaxations. We describe these results
in more detail in Sect. 4.2. Therefore the atomic norm minimization problems such
as (7) arising in such situations can be solved exactly or approximately via semidefi-
nite programming.

Algebraic structure also plays a second important role in atomic norm minimiza-
tion problems. If an atomic norm ‖ · ‖A is intractable to compute, we may approxi-
mate it via a more tractable norm ‖ · ‖app. However not every approximation of the
atomic norm is equally good for solving inverse problems. As illustrated in Fig. 2
we can construct approximations of the �1 ball that are tight in a metric sense, with
(1 − ε)‖ · ‖app ≤ ‖ · ‖�1 ≤ (1 + ε)‖ · ‖app, but where the tangent cones at sparse vec-
tors in the new norm are halfspaces. In such a case, the number of measurements
required to recover the sparse vector ends up being on the same order as the ambi-
ent dimension. (Note that the �1 norm is in fact tractable to compute; we simply use
it here for illustrative purposes.) The key property that we seek in approximations

Fig. 2 The convex body given
by the dotted line is a good
metric approximation to the �1
ball. However as its “corners”
are “smoothed out,” the tangent
cone at x� goes from being a
proper cone (with respect to the
�1 ball) to a halfspace (with
respect to the approximation)
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to an atomic norm ‖ · ‖A is that they preserve algebraic structure such as the ver-
tices/extreme points and more generally the low-dimensional faces of the conv(A).
As discussed in Sect. 2.5, points on such low-dimensional faces correspond to simple
models, and algebraic-structure-preserving approximations ensure that the tangent
cones at simple models with respect to the approximations are not too much larger
than the corresponding tangent cones with respect to the original atomic norms (see
Sect. 4.3 for a concrete example).

4.2 Semidefinite Relaxations Using Theta Bodies

In this section we give a family of semidefinite relaxations to the atomic norm min-
imization problem whenever the atomic set has algebraic structure. To begin with if
we approximate the atomic norm ‖ · ‖A by another atomic norm ‖ · ‖Ã defined using

a larger collection of atoms A ⊆ Ã, it is clear that

‖ · ‖Ã ≤ ‖ · ‖A.

Consequently outer approximations of the atomic set give rise to approximate norms
that provide lower bounds on the optimal value of the problem (5).

In order to provide such lower bounds on the optimal value of (5), we discuss
semidefinite relaxations of the convex hull conv(A). All of our discussion here is
based on results described in [39] for semidefinite relaxations of convex hulls of
algebraic varieties using theta bodies. We only give a brief review of the relevant
constructions, and refer the reader to the vast literature on this subject for more details
(see [39, 58] and the references therein). For subsequent reference in this section, we
recall the definition of a polynomial ideal [9, 41].

Definition 4.2 A polynomial ideal I ⊂ R[x] is a subset of the ring of polynomials
that contains the zero polynomial (the polynomial that is identically zero), is closed
under addition, and has the property that f ∈ I, g ∈ R[x] implies that f · g ∈ I .

To begin with we note that a sum-of-squares (SOS) polynomial in R[x] is a poly-
nomial that can be written as the (finite) sum of squares of other polynomials in
R[x]. Verifying the nonnegativity of a multivariate polynomial is intractable in gen-
eral; therefore SOS polynomials play an important role in real algebraic geometry,
as an SOS polynomial is easily seen to be nonnegative everywhere. Further check-
ing whether a polynomial is an SOS polynomial can be accomplished efficiently via
semidefinite programming [58].

Turning our attention to the description of the convex hull of an algebraic vari-
ety, we will assume for simplicity that the convex hull is closed. Let I ⊆ R[x] be a
polynomial ideal, and let VR(I ) ∈ R

p be its real algebraic variety:

VR(I ) = {x : f (x) = 0, ∀f ∈ I
}
.

One can then show that the convex hull conv(VR(I )) is given as:

conv
(
VR(I )

) = {x : f (x) ≥ 0, ∀f linear and nonnegative on VR(I )
}
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= {x : f (x) ≥ 0, ∀f linear s.t. f = h + g, ∀h nonnegative, ∀g ∈ I
}

= {x : f (x) ≥ 0,∀f linear s.t. f nonnegative modulo I
}
.

A linear polynomial here is one that has a maximum degree of one, and the meaning
of “modulo an ideal” is clear. As nonnegativity modulo an ideal may be intractable to
check, we can consider a relaxation to a polynomial being SOS modulo an ideal, i.e., a
polynomial that can be written as

∑q

i=1 h2
i +g for g in the ideal. Since it is tractable to

check via semidefinite programming whether bounded-degree polynomials are SOS,
the k-th theta body of an ideal I is defined as follows in [39]:

THk(I ) = {x : f (x) ≥ 0, ∀f linear s.t. f is k-sos modulo I
}
.

Here k-sos refers to an SOS polynomial in which the components in the SOS decom-
position have degree at most k. The k-th theta body THk(I ) is a convex relaxation of
conv(VR(I )), and one can verify that

conv
(
VR(I )

)⊆ · · · ⊆ THk+1(I ) ⊆ THk

(
VR(I )

)
.

By the arguments given above (see also [39]) these theta bodies can be described us-
ing semidefinite programs of size polynomial in k. Hence by considering theta bodies
THk(I ) with increasingly larger k, one can obtain a hierarchy of tighter semidefi-
nite relaxations of conv(VR(I )). We also note that in many cases of interest such
semidefinite relaxations preserve low-dimensional faces of the convex hull of a va-
riety, although these properties are not known in general. We will use some of these
properties below when discussing approximations of the cut polytope.

Approximating Tensor Norms We conclude this section with an example applica-
tion of these relaxations to the problem of approximating the tensor nuclear norm.
For notational simplicity we focus on the case of tensors of order three that lie in
R

m×m×m, i.e., tensors indexed by three numbers, although our discussion is applica-
ble more generally. In particular the atomic set A is the set of unit-Euclidean-norm
rank-one tensors:

A = {u ⊗ v ⊗ w : u,v,w ∈ R
m, ‖u‖ = ‖v‖ = ‖w‖ = 1

}

= {N ∈ R
m3 : N = u ⊗ v ⊗ w, u,v,w ∈ R

m,‖u‖ = ‖v‖ = ‖w‖ = 1
}
,

where u ⊗ v ⊗ w is the tensor product of three vectors. Note that the second descrip-
tion is written as the projection onto R

m3
of a variety defined in R

m3+3m. The nuclear
norm is then given by (2), and is intractable to compute in general. Now let IA denote
a polynomial ideal of polynomial maps from R

m3+3m to R:

IA =
{

g : g =
m∑

i,j,k=1

gijk(Nijk − uivj wk) + gu

(
uT u − 1

)+ gv

(
vT v − 1

)

+ gw

(
wT w − 1

)
,∀gijk, gu, gv, gw

}
.
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Here gu, gv, gw, {gijk}i,j,k are polynomials in the variables N,u,v,w. Following the
program described above for constructing approximations, a family of semidefinite
relaxations to the tensor nuclear norm ball can be prescribed in this manner via the
theta bodies THk(IA).

4.3 Tradeoff Between Relaxation and Number of Measurements

As discussed in Sect. 2.5 the atomic norm is the best convex heuristic for solving
ill-posed linear inverse problems of the type considered here. However we may wish
to approximate the atomic norm in cases when it is intractable to compute exactly,
and the discussion in the preceding section provides one approach for constructing
a family of relaxations. As one might expect, the tradeoff for using such approxi-
mations, i.e., a weaker convex heuristic than the atomic norm, is an increase in the
number of measurements required for exact or robust recovery. The reason is that the
approximate norms have larger tangent cones at their extreme points, which makes
it harder to satisfy the empty intersection condition of Proposition 2.1. We highlight
this tradeoff here with an illustrative example involving the cut polytope.

The cut polytope is defined as the convex hull of all cut matrices:

P = conv
{
zzT : z ∈ {−1,+1}m}.

As described in Sect. 2.2 low-rank matrices that are composed of ±1’s as entries are
of interest in collaborative filtering [68], and the norm induced by the cut polytope is
a potential convex heuristic for recovering such matrices from limited measurements.
However it is well known that the cut polytope is intractable to characterize [25],
and therefore we need to use tractable relaxations instead. We consider the following
two relaxations of the cut polytope. The first is the popular relaxation that is used in
semidefinite approximations of the MAX-CUT problem:

P1 = {M : M symmetric, M � 0, Mii = 1, ∀i = 1, . . . , p}.
This is the well-studied elliptope [25], and it can be interpreted as the second theta
body relaxation (see Sect. 4.2) of the cut polytope P [39]. We also investigate the
performance of a second, weaker relaxation:

P2 = {M : M symmetric, Mii = 1, ∀i, |Mij | ≤ 1, ∀i �= j
}
.

This polytope is simply the convex hull of symmetric matrices with ±1’s in the off-
diagonal entries, and 1’s on the diagonal. We note that P2 is an extremely weak
relaxation of P , but we use it here only for illustrative purposes. It is easily seen that

P ⊂ P1 ⊂ P2,

with all the inclusions being strict. Figure 3 gives a toy sketch that highlights all the
main geometric aspects of these relaxations. In particular P1 has many more extreme
points than P , although the set of vertices of P1, i.e., points that have full-dimensional
normal cones, is precisely the set of cut matrices (which are the vertices of P ) [25].
The convex polytope P2 contains many more vertices compared to P as shown in
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Fig. 3 A toy sketch illustrating
the cut polytope P and the two
approximations P1 and P2.
Note that P1 is a sketch of the
standard semidefinite relaxation
that has the same vertices as P .
On the other hand P2 is a
polyhedral approximation to P
that has many more vertices

Fig. 3. As expected the tangent cones at vertices of P become increasingly larger as
we use successively weaker relaxations. The following result summarizes the number
of random measurements required for recovering a cut matrix, i.e., a rank-one sign
matrix, using the norms induced by each of these convex bodies.

Proposition 4.3 Suppose x� ∈ R
m×m is a rank-one sign matrix, i.e., a cut matrix,

and we are given n random Gaussian measurements of x�. We wish to recover x� by
solving a convex program based on the norms induced by each of P , P1, P2. We have
exact recovery of x� in each of these cases with high probability under the following
conditions on the number of measurements:

1. Using P : n = O(m).
2. Using P1: n = O(m).
3. Using P2: n = m2−m

4 .

Proof For the first part, we note that P is a symmetric polytope with 2m−1 vertices.
Therefore we can apply Corollary 3.14 to conclude that n = O(m) measurements
suffices for exact recovery.

For the second part we note that the tangent cone at x� with respect to the nuclear
norm ball of m × m matrices contains within it the tangent cone at x� with respect
to the polytope P1. Hence we appeal to Proposition 3.11 to conclude that n = O(m)

measurements suffices for exact recovery.
Finally, we note that P2 is essentially the hypercube in

(
m
2

)
dimensions. Appealing

to Proposition 3.12, we conclude that n = m2−m
4 measurements suffices for exact

recovery. �

It is not too hard to show that these bounds are order-optimal, and that they cannot
be improved. Thus this particular instance rigorously demonstrates that the number
of measurements required for exact recovery increases as the relaxations get weaker
(and as the tangent cones get larger). The principle underlying this illustration holds
more generally, namely that there exists a tradeoff between the complexity of the
convex heuristic and the number of measurements required for exact or robust recov-
ery. It would be of interest to quantify this tradeoff in other settings, for example,
in problems in which we use increasingly tighter relaxations of the atomic norm via
theta bodies.
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We also note that the tractable relaxation based on P1 is only off by a constant
factor with respect to the optimal heuristic based on the cut polytope P . This suggests
the potential for tractable heuristics to approximate hard atomic norms with provable
approximation ratios, akin to methods developed in the literature on approximation
algorithms for hard combinatorial optimization problems.

4.4 Terracini’s Lemma and Lower Bounds on Recovery

Algebraic structure in the atomic set A also provides a means for computing lower
bounds on the number of measurements required for exact recovery. The recovery
condition of Proposition 2.1 states that the nullspace null(Φ) of the measurement op-
erator Φ : R

p → R
n must miss the tangent cone TA(x�) at the point of interest x�.

Suppose that this tangent cone contains a q-dimensional subspace. It is then clear
from straightforward linear algebra arguments that the number of measurements n

must exceed q . Indeed this bound must hold for any linear measurement scheme.
Thus the dimension of the subspace contained inside the tangent cone (i.e., the di-
mension of the lineality space) provides a simple lower bound on the number of
linear measurements.

In this section we discuss a method to obtain estimates of the dimension of a
subspace component of the tangent cone. We focus again on the setting in which A
is an algebraic variety. Indeed in all of the examples of Sect. 2.2, the atomic set A is
an algebraic variety. In such cases simple models x� formed according to (1) can be
viewed as elements of secant varieties.

Definition 4.4 Let A ∈ R
p be an algebraic variety. Then the k’th secant variety Ak

is defined as the union of all affine spaces passing through any k + 1 points of A.

Secant varieties and their tangent spaces have been extensively studied in algebraic
geometry [41]. A particular question of interest is to characterize the dimensions of
secant varieties and tangent spaces. In our context, estimates of these dimensions are
useful in giving lower bounds on the number of measurements required for recovery.
Specifically we have the following result, which states that certain linear spaces must
lie in the tangent cone at x� with respect to conv(A).

Proposition 4.5 Let A ⊂ R
p be a smooth variety, and let T (u, A) denote the tangent

space at any u ∈ A with respect to A. Suppose x =∑k
i=1 ciai , ∀ai ∈ A, ci ≥ 0, such

that

‖x‖A =
k∑

i=1

ci .

Then the tangent cone TA(x�) contains the following linear space:

T (a1, A) ⊕ · · · ⊕ T (ak, A) ⊂ TA(x�),

where ⊕ denotes the direct sum of subspaces.
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Proof We note that if we perturb a1 slightly to any neighboring a′
1 so that a′

1 ∈ A,

then the resulting x′ = c1a′
1 +∑k

i=2 c2ai is such that ‖x′‖A ≤ ‖x‖A. The proposition
follows directly from this observation. �

This result is applicable, for example, when A is the variety of rank-one matri-
ces or the variety of rank-one tensors, as these are smooth varieties. By Terracini’s
lemma [41] from algebraic geometry the subspace T (a1, A) ⊕ · · · ⊕ T (ak, A) is in
fact the estimate for the tangent space T (x, Ak−1) at x with respect to the (k − 1)’th
secant variety Ak−1:

Proposition 4.6 (Terracini’s Lemma) Let A ⊂ R
p be a smooth affine variety, and let

T (u, A) denote the tangent space at any u ∈ A with respect to A. Suppose x ∈ Ak−1

is a generic point such that x =∑k
i=1 ciai , ∀ai ∈ A, ci ≥ 0. Then the tangent space

T (x, Ak−1) at x with respect to the secant variety Ak−1 is given by T (a1, A)⊕· · ·⊕
T (ak, A). Moreover the dimension of T (x, Ak−1) is at most (and is expected to be)
min{p, (k + 1)dim(A) + k}.

Combining these results we have that estimates of the dimension of the tangent
space T (x, Ak−1) lead directly to lower bounds on the number of measurements
required for recovery. The intuition here is clear as the number of measurements re-
quired must be bounded below by the number of “degrees of freedom,” which is
captured by the dimension of the tangent space T (x, Ak−1). However Terracini’s
lemma provides us with general estimates of the dimension of T (x, Ak−1) for generic
points x. Therefore we can directly obtain lower bounds on the number of measure-
ments, purely by considering the dimension of the variety A and the number of ele-
ments from A used to construct x (i.e., the order of the secant variety in which x lies).
As an example the dimension of the base variety of normalized order-three tensors
in R

m×m×m is 3(m − 1). Consequently, in principle, if we were to solve the ten-
sor nuclear norm minimization problem, we should expect to require at least O(km)

measurements to recover a rank-k tensor.

5 Computational Experiments

5.1 Algorithmic Considerations

While a variety of atomic norms can be represented or approximated by linear matrix
inequalities, these representations do not necessarily translate into practical imple-
mentations. Semidefinite programming can be technically solved in polynomial time,
but general interior point solvers typically only scale to problems with a few hundred
variables. For larger scale problems, it is often preferable to exploit structure in the
atomic set A to develop fast, first-order algorithms.

A starting point for first-order algorithm design lies in determining the structure
of the proximity operator (or Moreau envelope) associated with the atomic norm,

ΠA(x;μ) := arg min
z

1

2
‖z − x‖2 + μ‖z‖A. (18)
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Here μ is some positive parameter. Proximity operators have already been har-
nessed for fast algorithms involving the �1 norm [20, 21, 35, 40, 73] and the nuclear
norm [12, 51, 71] where these maps can be quickly computed in closed form. For the
�1 norm, the ith component of ΠA(x;μ) is given by

ΠA(x;μ)i =
⎧
⎨

⎩

xi + μ, xi < −μ,

0, −μ ≤ xi ≤ μ,

xi − μ, xi > μ.

(19)

This is called the soft thresholding operator. For the nuclear norm, ΠA soft thresh-
olds the singular values. In either case, the only structure necessary for the cited
algorithms to converge is the convexity of the norm. Indeed, essentially any algo-
rithm developed for �1 or nuclear norm minimization can in principle be adapted for
atomic norm minimization. One simply needs to apply the operator ΠA wherever a
shrinkage operation was previously applied.

For a concrete example, suppose f is a smooth function, and consider the opti-
mization problem

min
x

f (x) + μ‖x‖A. (20)

The classical projected gradient method for this problem alternates between taking
steps along the gradient of f and then applying the proximity operator associated
with the atomic norm. Explicitly, the algorithm consists of the iterative procedure

xk+1 = ΠA
(
xk − αk∇f (xk);αkλ

)
(21)

where {αk} is a sequence of positive stepsizes. Under very mild assumptions, this iter-
ation can be shown to converge to a stationary point of (20) [36]. When f is convex,
the returned stationary point is a globally optimal solution. Recently, Nesterov has
described a particular variant of this algorithm that is guaranteed to converge at a rate
no worse than O(k−1), where k is the iteration counter [57]. Moreover, he proposes
simple enhancements of the standard iteration to achieve an O(k−2) convergence rate
for convex f and a linear rate of convergence for strongly convex f .

If we apply the projected gradient method to the regularized inverse problem

min
x

‖Φx − y‖2 + λ‖x‖A (22)

then the algorithm reduces to the straightforward iteration

xk+1 = ΠA
(
xk + αkΦ

†(y − Φxk);αkλ
)
. (23)

Here (22) is equivalent to (7) for an appropriately chosen λ > 0 and is useful for
estimation from noisy measurements.

The basic (noiseless) atomic norm minimization problem (5) can be solved by
minimizing a sequence of instances of (22) with monotonically decreasing values of
λ. Each subsequent minimization is initialized from the point returned by the previ-
ous step. Such an approach corresponds to the classic method of multipliers [6] and
has proven effective for solving problems regularized by the �1 norm and for total
variation denoising [13, 75].



Found Comput Math (2012) 12:805–849 835

This discussion demonstrates that when the proximity operator associated with
some atomic set A can be easily computed, then efficient first-order algorithms are
immediate. For novel atomic norm applications, one can thus focus on algorithms
and techniques to compute the associated proximity operators. From a computational
perspective, it may be easier to compute the proximity operator via dual atomic norm.
Associated to each proximity operator is the dual operator

ΛA(x;μ) = arg min
y

1

2
‖y − x‖2 s.t. ‖y‖∗

A ≤ μ. (24)

By an appropriate change of variables, ΛA is nothing more than the projection of
μ−1x onto the unit ball in the dual atomic norm:

ΛA(x;μ) = arg min
y

1

2
‖y − μ−1x‖2 s.t. ‖y‖∗

A ≤ 1. (25)

From convex programming duality, we have x = ΠA(x;μ) + ΛA(x;μ). This can
be seen by observing

min
z

1

2
‖z − x‖2 + μ‖z‖A = min

z
max

‖y‖∗
A≤μ

1

2
‖z − x‖2 + 〈y, z〉 (26)

= max
‖y‖∗

A≤μ
min

z

1

2
‖z − x‖2 + 〈y, z〉 (27)

= max
‖y‖∗

A≤μ
−1

2
‖y − x‖2 + 1

2
‖x‖2. (28)

In particular, ΠA(x;μ) and ΛA(x;μ) form a complementary primal-dual pair for
this optimization problem. Hence, we only need to be able to efficiently compute
the Euclidean projection onto the dual norm ball to compute the proximity operator
associated with the atomic norm.

Finally, though the proximity operator provides an elegant framework for algo-
rithm generation, many other possible algorithmic approaches may be employed to
take advantage of the particular structure of an atomic set A. For instance, we can
rewrite (24) as

ΛA(x;μ) = arg min
y

1

2
‖y − μ−1x‖2 s.t. 〈y,a〉 ≤ 1 ∀a ∈ A. (29)

Suppose we have access to a procedure that, given z ∈ R
n, can decide whether

〈z,a〉 ≤ 1 for all a ∈ A, or can find a violated constraint where 〈z, â〉 > 1. In this
case, we can apply a cutting plane method or an ellipsoid method to solve (24)
or (6) [56, 61]. Similarly, if it is simpler to compute a subgradient of the atomic
norm than it is to compute a proximity operator, then the standard subgradient
method [7, 56] can be applied to solve problems of the form (22). Each computa-
tional scheme will have different advantages and drawbacks for specific atomic sets,
and relative effectiveness needs to be evaluated on a case-by-case basis.
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5.2 Simulation Results

We describe the results of numerical experiments in recovering orthogonal matrices,
permutation matrices, and rank-one sign matrices (i.e., cut matrices) from random
linear measurements by solving convex optimization problems. All the atomic norm
minimization problems in these experiments are solved using a combination of the
SDPT3 package [70] and the YALMIP parser [50].

Orthogonal Matrices We consider the recovery of 20 × 20 orthogonal matrices
from random Gaussian measurements via spectral norm minimization. Specifically
we solve the convex program (5), with the atomic norm being the spectral norm. Fig-
ure 4 gives a plot of the probability of exact recovery (computed over 50 random
trials) versus the number of measurements required.

Permutation Matrices We consider the recovery of 20 × 20 permutation matrices
from random Gaussian measurements. We solve the convex program (5), with the
atomic norm being the norm induced by the Birkhoff polytope of 20 × 20 doubly
stochastic matrices. Figure 4 gives a plot of the probability of exact recovery (com-
puted over 50 random trials) versus the number of measurements required.

Cut Matrices We consider the recovery of 20 × 20 cut matrices from random Gaus-
sian measurements. As the cut polytope is intractable to characterize, we solve the
convex program (5) with the atomic norm being approximated by the norm induced
by the semidefinite relaxation P1 described in Sect. 4.3. Recall that this is the second
theta body associated with the convex hull of cut matrices, and so this experiment
verifies that objects can be recovered from theta body approximations. Figure 4 gives

Fig. 4 Plots of the number of measurements available versus the probability of exact recovery (computed
over 50 trials) for various models
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a plot of the probability of exact recovery (computed over 50 random trials) versus
the number of measurements required.

In each of these experiments we see agreement between the observed phase tran-
sitions, and the theoretical predictions (Propositions 3.13, 3.15, and 4.3) of the num-
ber of measurements required for exact recovery. In particular the phase transition
in Fig. 4 for the number of measurements required to recover an orthogonal matrix

is very close to the prediction n ≈ 3m2−m
4 = 295 of Proposition 3.13. We refer the

reader to [29, 52, 63] for similar phase transition plots for recovering sparse vec-
tors, low-rank matrices, and signed vectors from random measurements via convex
optimization.

6 Conclusions and Future Directions

This manuscript has illustrated that, for a fixed set of base atoms, the atomic norm
is the best choice of a convex regularizer for solving ill-posed inverse problems with
the prescribed priors. With this in mind, our results in Sects. 3 and 4 outline meth-
ods for computing hard limits on the number of measurements required for recovery
from any convex heuristic. Using the calculus of Gaussian widths, such bounds can
be computed in a relatively straightforward fashion, especially if one can appeal to
notions of convex duality and symmetry. This computational machinery of widths
and dimension counting is surprisingly powerful: near-optimal bounds on estimating
sparse vectors and low-rank matrices from partial information follow from elemen-
tary integration. Thus we expect that our new bounds concerning symmetric, vertex-
transitive polytopes are also nearly tight. Moreover algebraic reasoning allowed us
to explore the inherent tradeoffs between computational efficiency and measurement
demands. More complicated algorithms for atomic norm regularization might extract
structure from less information, but approximation algorithms are often sufficient for
near-optimal reconstructions.

This report serves as a foundation for many new exciting directions in inverse
problems, and we close our discussion with a description of several natural possibil-
ities for future work.

Width Calculations for More Atomic Sets The calculus of Gaussian widths de-
scribed in Sect. 3 provides the building blocks for computing the Gaussian widths for
the application examples discussed in Sect. 2. We have not yet exhaustively estimated
the widths in all of these examples, and a thorough cataloging of the measurement
demands associated with different prior information would provide a more complete
understanding of the fundamental limits of solving underdetermined inverse prob-
lems. Moreover our list of examples is by no means exhaustive. The framework de-
veloped in this paper provides a compact and efficient methodology for constructing
regularizers from very general prior information, and new regularizers can be easily
created by translating grounded expert knowledge into new atomic norms.

Recovery Bounds for Structured Measurements Our recovery results focus on
generic measurements because, for a general set A, it does not make sense to delve
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into specific measurement ensembles. Particular structures of the measurement ma-
trix Φ will depend on the application and the atomic set A. For instance, in com-
pressed sensing, much work focuses on randomly sampled Fourier coefficients [16]
and random Toeplitz and circulant matrices [42, 62]. With low-rank matrices, several
authors have investigated reconstruction from a small collection of entries [17]. In
all of these cases, some notion of incoherence plays a crucial role, quantifying the
amount of information garnered from each row of Φ . It would be interesting to ex-
plore how to appropriately generalize notions of incoherence to new applications. Is
there a particular definition that is general enough to encompass most applications?
Or do we need a specialized concept to match the specifics of each atomic norm?

Quantifying the Loss Due to Relaxation Section 4.3 illustrates how the choice of
approximation of a particular atomic norm can dramatically alter the number of mea-
surements required for recovery. However, as was the case for vertices of the cut poly-
tope, some relaxations incur only a very modest increase in measurement demands.
Using techniques similar to those employed in the study of semidefinite relaxations
of hard combinatorial problems, is it possible to provide a more systematic method
to estimate the number of measurements required to recover points from polynomial-
time computable norms?

Atomic Norm Decompositions While the techniques of Sects. 3 and 4 provide
bounds on the estimation of points in low-dimensional secant varieties of atomic sets,
they do not provide a procedure for actually constructing decompositions. That is, we
have provided bounds on the number of measurements required to recover points x
of the form

x =
∑

a∈A
caa

when the coefficient sequence {ca} is sparse, but we do not provide any methods for
actually recovering c itself. These decompositions are useful, for instance, in actually
computing the rank-one binary vectors optimized in semidefinite relaxations of com-
binatorial algorithms [2, 37, 55], or in the computation of tensor decompositions from
incomplete data [47]. Is it possible to use algebraic structure to generate determin-
istic or randomized algorithms for reconstructing the atoms that underlie a vector x,
especially when approximate norms are used?

Large-Scale Algorithms Finally, we think that the most fruitful extensions of this
work lie in a thorough exploration of the empirical performance and efficacy of
atomic norms on large-scale inverse problems. The proposed algorithms in Sect. 5
require only the knowledge of the proximity operator of an atomic norm, or a Eu-
clidean projection operator onto the dual norm ball. Using these design principles
and the geometry of particular atomic norms should enable the scaling of atomic
norm techniques to massive data sets.
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Appendix A: Proof of Proposition 3.6

Proof First note that the Gaussian width can be upper-bounded as follows:

w
(

C ∩ S
p−1)≤ Eg

[
sup

z∈C∩B(0,1)

gT z
]
, (30)

where B(0,1) denotes the unit Euclidean ball. The expression on the right-hand side
inside the expected value can be expressed as the optimal value of the following
convex optimization problem for each g ∈ R

p:

max
z

gT z

s.t. z ∈ C,

‖z‖2 ≤ 1.

(31)

We now proceed to form the dual problem of (31) by first introducing the Lagrangian

L(z,u, γ ) = gT z + γ
(
1 − zT z

)− uT z

where u ∈ C∗ and γ ≥ 0 is a scalar. To obtain the dual problem we maximize the
Lagrangian with respect to z, which amounts to setting

z = 1

2γ
(g − u).

Putting this into the Lagrangian above gives the dual problem

min γ + 1

4γ
‖g − u‖2

s.t. u ∈ C∗,
γ ≥ 0.

Solving this optimization problem with respect to γ we find that γ = 1
2‖g−u‖, which

gives the dual problem to (31)

min ‖g − u‖
s.t. u ∈ C∗.

(32)

Under very mild assumptions about C , the optimal value of (32) is equal to that of (31)
(for example as long as C has a nonempty relative interior, strong duality holds).
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Hence we have derived

Eg

[
sup

z∈C∩B(0,1)

gT z
]

= Eg
[
dist
(
g, C∗)]. (33)

This equation combined with the bound (30) gives us the desired result. �

Appendix B: Proof of Theorem 3.9

Proof We set β = 1
Θ

. First note that if β ≥ 1
4 exp{p

9 } then the width bound exceeds√
p, which is the maximal possible value for the width of C . Thus, we will assume

throughout that β ≤ 1
4 exp{p

9 }.
Using Proposition 3.6 we need to upper-bound the expected distance to the polar

cone. Let g ∼ N (0, I ) be a normally distributed random vector. Then the norm of g is
independent from the angle of g. That is, ‖g‖ is independent from g/‖g‖. Moreover
g/‖g‖ is distributed as a uniform sample on S

p−1, and Eg[‖g‖] ≤ √
p. Thus we have

Eg
[
dist
(
g, C∗)]≤ Eg

[‖g‖ · dist
(
g/‖g‖, C∗ ∩ S

p−1)]≤ √
p Eu

[
dist
(
u, C∗ ∩ S

p−1)]

(34)
where u is sampled uniformly on S

p−1.
To bound the latter quantity, we will use isoperimetry. Suppose A is a subset of

S
p−1 and B is a spherical cap with the same volume as A. Let N(A, r) denote the

locus of all points in the sphere of Euclidean distance at most r from the set A. Let
μ denote the Haar measure on S

p−1 and let μ(A; r) denote the measure of N(A, r).
Then spherical isoperimetry states that μ(A; r) ≥ μ(B; r) for all r ≥ 0 (see, for ex-
ample, [48, 53]).

Let B now denote a spherical cap with μ(B) = μ(C∗ ∩ S
p−1). Then we have

Eu
[
dist
(
u, C∗ ∩ S

p−1)]=
∫ ∞

0
P
[
dist
(
u, C∗ ∩ S

p−1)> t
]

dt (35)

=
∫ ∞

0

(
1 − μ

(
C∗ ∩ S

p−1; t))dt (36)

≤
∫ ∞

0

(
1 − μ(B; t))dt (37)

where the first equality is the integral form of the expected value and the last inequal-
ity follows by isoperimetry. Hence we can bound the expected distance to the polar
cone intersecting the sphere using only knowledge of the volume of spherical caps
on S

p−1.
To proceed let v(ϕ) denote the volume of a spherical cap subtending a solid an-

gle ϕ. An explicit formula for v(ϕ) is

v(ϕ) = z−1
p

∫ ϕ

0
sinp−1(ϑ)dϑ (38)
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where zp = ∫ π

0 sinp−1(ϑ)dϑ [45]. Let ϕ(β) denote the minimal solid angle of a cap
such that β copies of that cap cover S

p−1. Since the geodesic distance on the sphere
is always greater than or equal to the Euclidean distance, if K is a spherical cap
subtending ψ radians, μ(K; t) ≥ v(ψ + t). Therefore

∫ ∞

0

(
1 − μ(B; t))dt ≤

∫ ∞

0

(
1 − v

(
ϕ(β) + t

))
dt. (39)

We can proceed to simplify the right-hand side integral:

∫ ∞

0

(
1 − v

(
ϕ(β) + t

))
dt

=
∫ π−ϕ(β)

0

(
1 − v

(
ϕ(β) + t

))
dt (40)

= π − ϕ(β) −
∫ π−ϕ(β)

0
v
(
ϕ(β) + t

)
dt (41)

= π − ϕ(β) − z−1
p

∫ π−ϕ(β)

0

∫ ϕ(β)+t

0
sinp−1 ϑ dϑ dt (42)

= π − ϕ(β) − z−1
p

∫ π

0

∫ π−ϕ(β)

max(ϑ−ϕ(β),0)

sinp−1 ϑ dt dϑ (43)

= π − ϕ(β) − z−1
p

∫ π

0

{
π − ϕ(β) − max

(
ϑ − ϕ(β),0

)}
sinp−1 ϑ dϑ (44)

= z−1
p

∫ π

0
max

(
ϑ − ϕ(β),0

)
sinp−1 ϑ dϑ (45)

= z−1
p

∫ π

ϕ(β)

(
ϑ − ϕ(β)

)
sinp−1 ϑ dϑ (46)

(43) follows by switching the order of integration, and the rest of these equalities
follow by straightforward integration and some algebra.

Using the inequalities that zp ≥ 2√
p−1

(see [48]) and sin(x) ≤ exp(−(x −
π/2)2/2) for x ∈ [0,π], we can bound the last integral as

z−1
p

∫ π

ϕ(β)

(
ϑ − ϕ(β)

)
sinp−1 ϑ dϑ

≤
√

p − 1

2

∫ π

ϕ(β)

(
ϑ − ϕ(β)

)
exp

(
−p − 1

2

(
ϑ − π

2

)2)
dϑ. (47)

Performing the change of variables a = √
p − 1(ϑ − π

2 ), we are left with the integral

1

2

∫ √
p−1π/2

√
p−1(ϕ(β)−π/2)

{
a√

p − 1
+
(

π

2
− ϕ(β)

)}
exp

(
−a2

2

)
da (48)
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= − 1

2
√

p − 1
exp

(
−a2

2

)∣∣∣∣

√
p−1π/2

√
p−1(ϕ(β)−π/2)

+
π
2 − ϕ(β)

2

∫ √
p−1π/2

√
p−1(ϕ(β)−π/2)

exp

(
−a2

2

)
da (49)

≤ 1

2
√

p − 1
exp

(
−p − 1

2

(
π/2 − ϕ(β)

)2
)

+
√

π

2

(
π

2
− ϕ(β)

)
. (50)

In this final bound, we bounded the first term by dropping the upper integrand, and
for the second term we used the fact that

∫ ∞

−∞
exp
(−x2/2

)
dx = √

2π. (51)

We are now left with the task of computing a lower bound for ϕ(β). We need to
first reparameterize the problem. Let K be a spherical cap. Without loss of generality,
we may assume that

K = {x ∈ S
p−1 : x1 ≥ h

}
(52)

for some h ∈ [0,1]. Here h is the height of the cap over the equator. Via elementary
trigonometry, the solid angle that K subtends is given by π/2 − sin−1(h). Hence,
if h(β) is the largest number such that β caps of height h cover S

p−1, then h(β) =
sin(π/2 − ϕ(β)).

The quantity h(β) may be estimated using the following estimate from [11]. For
h ∈ [0,1], let γ (p,h) denote the volume of a spherical cap of S

p−1 of height h.

Lemma B.1 (See [11]) For 1 ≥ h ≥ 2√
p

,

1

10h
√

p

(
1 − h2) p−1

2 ≤ γ (p,h) ≤ 1

2h
√

p

(
1 − h2) p−1

2 . (53)

Note that for h ≥ 2√
p

,

1

2h
√

p

(
1 − h2) p−1

2 ≤ 1

4

(
1 − h2) p−1

2 ≤ 1

4
exp

(
−p − 1

2
h2
)

. (54)

So if

h =
√

2 log(4β)

p − 1
(55)

then h ≤ 1 because we have assumed β ≤ 1
4 exp{p

9 } and p ≥ 9. Moreover, h ≥ 2√
p

and the volume of the cap with height h is less than or equal to 1/β . That is

ϕ(β) ≥ π/2 − sin−1
(√

2 log(4β)

p − 1

)
. (56)
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Combining the estimate (50) with Proposition 3.6, and using our estimate for ϕ(β),
we get the bound

w(C) ≤ 1

2

√
p

p − 1
exp

(
−p − 1

2
sin−1

(√
2 log(4β)

p − 1

)2)

+
√

πp

2
sin−1

(√
2 log(4β)

p − 1

)
. (57)

This expression can be simplified by using the following bounds. First, sin−1(x) ≥
x lets us upper-bound the first term by

√
p

p−1
1

8β
. For the second term, using the

inequality sin−1(x) ≤ π
2 x results in the upper bound

w(C) ≤
√

p

p − 1

(
1

8β
+ π3/2

2

√
log(4β)

)
. (58)

For p ≥ 9 the upper bound can be expressed simply as w(C) ≤ 3
√

log(4β). We recall
that β = 1

Θ
, which completes the proof of the theorem. �

Appendix C: Direct Width Calculations

We first give the proof of Proposition 3.10.

Proof Let x� be an s-sparse vector in R
p with �1 norm equal to 1, and let A denote

the set of unit-Euclidean-norm one-sparse vectors. Let � denote the set of coordinates
where x� is nonzero. The normal cone at x� with respect to the �1 ball is given by

NA
(
x�
)= cone

{
z ∈ R

p : zi = sgn
(
x�
i

)
for i ∈ �, |zi | ≤ 1 for i ∈ �c

}
(59)

= {z ∈ R
p : zi = t sgn

(
x�
i

)
for i ∈ �, |zi | ≤ t for i ∈ �c for some t > 0

}
.

(60)

Here �c represents the zero entries of x�. The minimum squared distance to the nor-
mal cone at x� can be formulated as a one-dimensional convex optimization problem
for arbitrary z ∈ R

p

inf
u∈NA(x�)

‖z − u‖2
2 = inf

t≥0|ui |<t,i∈�c

∑

i∈�

(
zi − t sgn

(
x�
i

))2 +
∑

j∈�c

(zj − uj )
2 (61)

= inf
t≥0

∑

i∈�

(
zi − t sgn

(
x�
i

))2 +
∑

j∈�c

shrink(zj , t)
2 (62)

where

shrink(z, t) =
⎧
⎨

⎩

z + t z < −t,

0 −t ≤ z ≤ t,

z − t z > t

(63)
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is the �1-shrinkage function. Hence, for any fixed t ≥ 0 independent of g, we have

E

[
inf

u∈NA(x�)
‖g − u‖2

2

]
≤ E

[∑

i∈�

(
gi − t sgn

(
x�
i

))2 +
∑

j∈�c

shrink(gj , t)
2
]

(64)

= s
(
1 + t2)+ E

[∑

j∈�c

shrink(gj , t)
2
]
. (65)

Now we directly integrate the second term, treating each summand individually.
For a zero-mean, unit-variance normal random variable g,

E
[
shrink(g, t)2]= 1√

2π

∫ −t

−∞
(g + t)2 exp

(−g2/2
)

dg

+ 1√
2π

∫ ∞

t

(g − t)2 exp
(−g2/2

)
dg (66)

= 2√
2π

∫ ∞

t

(g − t)2 exp
(−g2/2

)
dg (67)

= − 2√
2π

t exp
(−t2/2

)+ 2(1 + t2)√
2π

∫ ∞

t

exp
(−g2/2

)
dg (68)

≤ 2√
2π

(
−t + 1 + t2

t

)
exp
(−t2/2

)
(69)

= 2√
2π

1

t
exp
(−t2/2

)
. (70)

The first simplification follows because the shrink function and Gaussian distribu-
tions are symmetric about the origin. The second equality follows by integrating by
parts. The inequality follows by a tight bound on the Gaussian Q-function:

Q(x) = 1√
2π

∫ ∞

x

exp
(−g2/2

)
dg ≤ 1√

2π

1

x
exp
(−x2/2

)
for x > 0. (71)

Using this bound, we get

E

[
inf

u∈NA(x�)
‖g − u‖2

2

]
≤ s
(
1 + t2)+ (p − s)

2√
2π

1

t
exp
(−t2/2

)
. (72)

Setting t =√2 log(p/s) gives

E

[
inf

z∈NA(x�)
‖g − z‖2

2

]
≤ s

(
1 + 2 log

(
p

s

))
+ s(1 − s/p)

π
√

log(p/s)
≤ 2s log(p/s) + 5

4
s.

(73)
The last inequality follows because
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(1 − s/p)

π
√

log(p/s)
≤ 0.204 < 1/4 (74)

whenever 0 ≤ s ≤ p. �

Next we give the proof of Proposition 3.11.

Proof Let x� be an m1 × m2 matrix of rank r with singular value decomposition
UΣV ∗, and let A denote the set of rank-one unit-Euclidean-norm matrices of size
m1 × m2. Without loss of generality, impose the conventions m1 ≤ m2, Σ is r × r ,
U is m1 × r , and V is m2 × r , and assume the nuclear norm of x� is equal to 1.

Let uk (respectively vk) denote the k’th column of U (respectively V ). It is con-
venient to introduce the orthogonal decomposition R

m1×m2 = � ⊕ �⊥ where � is
the linear space spanned by elements of the form ukzT and yvT

k , 1 ≤ k ≤ r , where z
and y are arbitrary, and �⊥ is the orthogonal complement of �. The space �⊥ is the
subspace of matrices spanned by the family (yzT ), where y (respectively z) is any
vector orthogonal to all the columns of U (respectively V ). The normal cone of the
nuclear norm ball at x� is given by the cone generated by the subdifferential at x�:

NA
(
x�
)= cone

{
UV T + W ∈ R

m1×m2 : WT U = 0, WV = 0, ‖W‖∗
A ≤ 1

}
(75)

= {tUV ∗ + W ∈ R
m1×m2 : WT U = 0, WV = 0, ‖W‖∗

A ≤ t, t ≥ 0
}
.

(76)

Note that here ‖Z‖∗
A is the operator norm, equal to the maximum singular value

of Z [63].
Let G be a Gaussian random matrix with i.i.d. entries, each with mean zero and

unit variance. Then the matrix

Z(G) = ∥∥P�⊥(G)
∥∥UV ∗ + P�⊥(G) (77)

is in the normal cone at x�. We can then compute

E
[∥∥G − Z(G)

∥∥2
F

]= E
[∥∥P�(G) − P�

(
Z(G)

)∥∥2
F

]
(78)

= E
[∥∥P�(G)

∥∥2
F

]+ E
[∥∥P�

(
Z(G)

)∥∥2
F

]
(79)

= r(m1 + m2 − r) + r E
[∥∥P�⊥(G)

∥∥2]
. (80)

Here (79) follows because P�(G) and P�⊥(G) are independent. The final line fol-
lows because dim(T ) = r(m1 + m2 − r) and the Frobenius (i.e., Euclidean) norm of
UV ∗ is ‖UV ∗‖F = √

r . Due to the isotropy of Gaussian random matrices, P�⊥(G)

is identically distributed as an (m1 − r)× (m2 − r) matrix with i.i.d. Gaussian entries
each with mean zero and variance one. We thus know that

P
[∥∥P�⊥(G)

∥∥≥ √
m1 − r + √

m2 − r + s
]≤ exp

(−s2/2
)

(81)

(see, for example, [22]). To bound the latter expectation, we again use the integral
form of the expected value. Letting μT ⊥ denote the quantity

√
m1 − r + √

m2 − r ,
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we have

E
[∥∥P�⊥(G)

∥∥2]=
∫ ∞

0
P
[∥∥P�⊥(G)

∥∥2
> h
]

dh (82)

≤ μ2
T ⊥ +

∫ ∞

μ2
T ⊥

P
[∥∥P�⊥(G)

∥∥2
> h
]

dh (83)

≤ μ2
T ⊥ +

∫ ∞

0
P
[∥∥P�⊥(G)

∥∥2
> μ2

T ⊥ + t
]

dt (84)

≤ μ2
T ⊥ +

∫ ∞

0
P
[∥∥P�⊥(G)

∥∥> μT ⊥ + √
t
]

dt (85)

≤ μ2
T ⊥ +

∫ ∞

0
exp(−t/2)dt (86)

= μ2
T ⊥ + 2. (87)

Using this bound in (80), we obtain

E

[
inf

Z∈NA(x�)
‖G − Z‖2

F

]
≤ r(m1 + m2 − r) + r(

√
m1 − r + √

m2 − r)2 + 2r (88)

≤ r(m1 + m2 − r) + 2r(m1 + m2 − 2r) + 2r (89)

≤ 3r(m1 + m2 − r) (90)

where the second inequality follows from the fact that (a + b)2 ≤ 2a2 + 2b2. We
conclude that 3r(m1 +m2 − r) random measurements are sufficient to recover a rank
r , m1 × m2 matrix using the nuclear norm heuristic. �
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