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Abstract. The structural properties of graphs are usually characterized in terms of invariants, which
are functions of graphs that do not depend on the labeling of the nodes. In this paper
we study convex graph invariants, which are graph invariants that are convex functions
of the adjacency matrix of a graph. Some examples include functions of a graph such as
the maximum degree, the MAXCUT value (and its semidefinite relaxation), and spectral
invariants such as the sum of the k largest eigenvalues. Such functions can be used to
construct convex sets that impose various structural constraints on graphs and thus pro-
vide a unified framework for solving a number of interesting graph problems via convex
optimization. We give a representation of all convex graph invariants in terms of certain
elementary invariants, and we describe methods to compute or approximate convex graph
invariants tractably. We discuss the interesting subclass of spectral invariants, and also
compare convex and nonconvex invariants. Finally, we use convex graph invariants to pro-
vide efficient convex programming solutions to graph problems such as the deconvolution of
the composition of two graphs into the individual components, hypothesis testing between
graph families, and the generation of graphs with certain desired structural properties.
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1. Introduction. Graphs are useful in many applications throughout science and
engineering as they offer a concise model for relationships among a large number of
interacting entities. These relationships are often best understood using structural
properties of graphs. Graph invariants play an important role in characterizing ab-
stract structural features of a graph as they do not depend on the labeling of the nodes
of the graph. Indeed, families of graphs that share common structural attributes are
often specified via graph invariants. For example, bipartite graphs can be defined by
the property that they contain no cycles of odd length, while the family of regular
graphs consists of graphs in which all nodes have the same degree. Such descriptions
of classes of graphs in terms of invariants have found applications in areas as varied as
combinatorics [15], network analysis in chemistry [7] and biology [32], and in machine
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514 VENKAT CHANDRASEKARAN, PABLO A. PARRILO, AND ALAN S. WILLSKY

Fig. 1 An instance of a deconvolution problem: Given a composite graph formed by adding the
16-cycle and the Clebsch graph, we wish to recover the individual components. The Clebsch
graph is an example of a strongly regular graph on 16 nodes [21]; see section 5.2 for more
details about the properties of such graphs.

learning [27]. For instance, the treewidth [35] of a graph is a basic invariant that
governs the complexity of various algorithms for graph problems.

We begin by introducing three canonical problems involving structural properties
of graphs, and the development of a unified solution framework to address these
questions serves as motivation for our discussion throughout this paper.

• Graph deconvolution. Suppose we are given a graph that is the combination
of two known graphs overlaid on the same set of nodes. How do we recover the
individual components from the composite graph? For example, in Figure 1
we are given a composite graph that is formed by adding a cycle and the
Clebsch graph. Given no extra knowledge of any labeling of the nodes, can
we “deconvolve” the composite graph into the individual cycle/Clebsch graph
components?

• Graph generation. Given certain structural constraints specified by invari-
ants, how do we produce a graph that satisfies these constraints? A well-
studied example is the question of constructing expander graphs. Another
example may be that we wish to recover a graph given constraints, for in-
stance, on certain subgraphs being forbidden, on the degree distribution, and
on the spectral distribution.

• Graph hypothesis testing. Suppose we have two families of graphs, each
characterized by some common structural properties specified by a set of
invariants; given a new sample graph, which of the two families offers a “better
explanation” of the sample graph (see Figure 2 for an example)?

In section 5 we describe these problems in more detail, and we also give some concrete
applications in network analysis and modeling in which such questions are of interest.

To efficiently solve problems such as these we wish to develop a collection of
tractable computational tools. Convex relaxation techniques offer a candidate frame-
work as they possess numerous favorable properties. Due to their powerful model-
ing capabilities, convex optimization methods can provide tractable formulations for
solving difficult combinatorial problems exactly or approximately. Further, convex
programs may often be solved effectively using general-purpose off-the-shelf software.
Finally, one can also give conditions for the success of these convex relaxations based
on standard optimality results from convex analysis.
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CONVEX GRAPH INVARIANTS 515

Fig. 2 An instance of a hypothesis testing problem: We wish to decide which family of graphs offers
a “better explanation” for a given candidate sample graph.

Motivated by these considerations we introduce convex graph invariants in sec-
tion 2. These invariants are convex functions of the adjacency matrix of a graph.
More formally, letting A denote the adjacency matrix of a (weighted) graph, a convex
graph invariant is a convex function f such that f(A) = f(ΠAΠT ) for all permutation
matrices Π. Examples include functions of a graph such as the maximum degree, the
MAXCUT value (and its semidefinite relaxation), the second smallest eigenvalue of
the Laplacian (a concave invariant), and spectral invariants such as the sum of the k
largest eigenvalues; see section 2.3 for a more comprehensive list. As some of these
invariants may possibly be hard to compute, we discuss in what follows the question
of approximating intractable convex invariants. We also study invariant convex sets,
which are convex sets with the property that a symmetric matrix A is a member
of such a set if and only if ΠAΠT is also a member of the set for all permutations
Π. Such convex sets are useful in order to impose various structural constraints on
graphs. For example, invariant convex sets can be used to express forbidden sub-
graph constraints (i.e., that a graph does not contain a particular subgraph such as a
triangle), or require that a graph be connected; see section 2.4 for more examples.

In section 3 we investigate various properties of convex graph invariants and
invariant convex sets. In order to systematically evaluate the expressive power of
convex graph invariants we analyze elementary convex graph invariants, which serve
as a basis for constructing arbitrary convex invariants. Given a symmetric matrix P ,
these elementary invariants (again, possibly hard to compute depending on the choice
of P ) are defined as

(1) ΘP (A) = max
Π

Tr(PΠAΠT ),

where A represents the adjacency matrix of a graph and the maximum is taken over
all permutation matrices Π. It is clear that ΘP is a convex graph invariant, because
it is expressed as the maximum over a finite set of linear functions. Indeed, several
simple convex graph invariants can be expressed using functions of the form (1). For
example, P = I gives us the total sum of the node weights, while P = 11T − I gives
us twice the total (weighted) degree. Our main theoretical results in section 3 can
be summarized as follows: First, we give a representation theorem stating that any
convex graph invariant can be expressed as the supremum over elementary convex
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516 VENKAT CHANDRASEKARAN, PABLO A. PARRILO, AND ALAN S. WILLSKY

graph invariants (1) (see Theorem 3.1). Second, we have a similar result stating that
any invariant convex set can be expressed as the intersection of convex sets given
by sublevel sets of the elementary invariants (1) (see Proposition 3.4). These results
follow as a consequence of the separation theorem from convex analysis. We also
show that for any two nonisomorphic graphs given by adjacency matrices A1 and
A2, there exists a P such that ΘP (A1) �= ΘP (A2) (see Lemma 3.7). Hence convex
graph invariants offer a complete set of invariants as they can distinguish between
nonisomorphic graphs. Finally, we compare the strengths and weaknesses of convex
graph invariants versus more general nonconvex graph invariants.

In section 3.3 we discuss an important subclass of convex graph invariants, namely,
the set of convex spectral invariants. These are convex functions of symmetric matri-
ces that depend only on the eigenvalues, and they can be viewed equivalently as the
set of convex functions of symmetric matrices that are invariant under conjugation
by orthogonal matrices (note that convex graph invariants are only required to be
invariant with respect to conjugation by permutation matrices) [12]. The properties
of convex spectral invariants are well understood, and they are useful in a number of
practically relevant problems (e.g., characterizing the subdifferential of a unitarily in-
variant matrix norm [40]). These invariants play a prominent role in our experimental
demonstrations in section 5.

As noted above, convex graph invariants, and even elementary invariants, may in
general be hard to compute. In section 4 we investigate the question of approximately
computing these invariants in a tractable manner. For many interesting special cases
such as the MAXCUT value of a graph or (the inverse of) the stability number,
there exist well-known tractable semidefinite programming (SDP) relaxations that
can be used as surrogates [22, 33]. More generally, functions of the form of our
elementary convex invariants (1) have appeared previously in the literature; see [10] for
a survey. Specifically, we note that evaluating the function ΘP (A) for any fixed A,P
is equivalent to solving the so-called quadratic assignment problem (QAP), and thus
we can employ various tractable linear programming, spectral, and SDP relaxations
of the QAP [41, 10, 34]. In particular, we discuss recent work [13] on exploiting
group symmetry in SDP relaxations of the QAP, which is useful for approximately
computing elementary convex graph invariants in many cases.

Finally, in section 5 we return to the motivating problems described previously
and give their solutions. These solutions are based on convex programming formu-
lations, with convex graph invariants playing a fundamental role. We give theoret-
ical conditions for the success of these convex formulations in solving the problems
discussed above and experimental demonstration of their effectiveness in practice.
Indeed, the framework provided by convex graph invariants allows for a unified inves-
tigation of our proposed solutions. As an example result we give a tractable convex
program (in fact, an SDP) in section 5.2 to “deconvolve” the cycle and the Clebsch
graph from a composite graph consisting of these components (see Figure 1); a salient
feature of this convex program is that it only uses spectral invariants to perform the
decomposition.

Summary of Contributions. We emphasize again the main contributions of this
paper. We begin by introducing three canonical problems involving structural proper-
ties of graphs. These problems arise in various applications (see section 5) and serve
as a motivation for our discussion in this paper. In order to solve these problems
we introduce convex graph invariants and investigate their properties (see sections 2
and 3). Specifically, we provide a representation theorem for convex graph invariants
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and for invariant convex sets in terms of elementary invariants. Finally, we describe
tractable convex programming solutions to the motivating problems based on convex
graph invariants (see section 5). Therefore, convex graph invariants provide a useful
computational framework based on convex optimization for graph problems.

Related Previous Work. We note that convex optimization methods have been
used previously to solve various graph-related problems. We would particularly like
to emphasize a body of work on convex programming formulations to optimize convex
functions of the Laplacian eigenvalues of graphs [9, 8] subject to various constraints.
Although our objective is similar in that we seek solutions based on convex opti-
mization to graph problems, our work differs in several respects from these previous
approaches. While the problems discussed in [8] explicitly involve the optimization
of spectral functions, other graph problems such as those described in section 5 may
require nonspectral approaches (for example, hypothesis testing between two families
of graphs that are isospectral, i.e., have the same spectrum but are distinguished by
other structural properties). As convex spectral invariants form a subset of convex
graph invariants, the framework proposed in this paper offers a larger suite of convex
programming methods for graph problems. More broadly, our work is the first to
formally introduce and characterize convex graph invariants and to investigate their
properties as natural mathematical objects of independent interest.

Outline. Section 2 gives the definition of convex graph invariants and invariant
convex sets, as well as several examples of these functions and sets. We discuss vari-
ous properties of convex graph invariants in section 3. In section 4 we investigate the
problem of efficiently computing approximations to intractable convex graph invari-
ants. We describe applications and detailed solutions (using convex graph invariants)
of each of our motivating problems in section 5, and we conclude with a brief sum-
mary in section 6. In the appendix we discuss polytopes arising from convex hulls of
permutations (permutahedra) and the related notion of majorization, and we contrast
these with the properties of convex graph invariants and invariant convex sets.

2. Definition and Examples of Convex Graph Invariants. In this section we
define convex graph invariants and give several examples. Throughout this paper we

denote the space of n × n symmetric matrices by Sn � R
(n+1

2 ). All our definitions
of convexity are with respect to the space Sn. We use � to denote ordering with
respect to the cone of positive semidefinite matrices, i.e., for A,B ∈ Sn we have that
A � B if and only if A − B is positive semidefinite. We consider undirected graphs
that do not have multiple edges; these are represented by adjacency matrices that lie
in Sn. Therefore, a graph may possibly have node weights and edge weights. A graph
is said to be unweighted if its node weights are zero and if each edge has a weight
of 1 (nonedges have a weight of zero); otherwise, a graph is said to be weighted. Let
ei ∈ R

n denote the vector with a 1 in the ith entry and zero elsewhere, let I denote
the n×n identity matrix, let 1 ∈ R

n denote the all-ones vector, and let J = 11T ∈ Sn

denote the all-ones matrix. We define A = {A : A ∈ Sn, 0 ≤ Ai,j ≤ 1 ∀i, j}; we
will sometimes find it useful in our examples in section 2.4 to restrict our attention
to graphs with adjacency matrices in A. For a graph with nonnegative node and
edge weights given by an adjacency matrix A, let DA = diag(A1), where diag takes
as input a vector and forms a diagonal matrix with the entries of the vector on the
diagonal. The graph Laplacian is then defined as follows:

(2) LA = DA −A.
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Next let Sym(n) denote the symmetric group over n elements, i.e., the group of per-
mutations of n elements. Elements of this group are represented by n×n permutation
matrices. Let O(n) represent the orthogonal group of n× n orthogonal matrices. Fi-
nally, given a vector x ∈ R

n, we let x denote the vector obtained by sorting the entries
of x in descending order.

2.1. Motivation: Graphs and Adjacency Matrices. Matrix representations of
graphs in terms of adjacency matrices and Laplacians have been used widely in ap-
plications as well as in the analysis of the structure of graphs based on algebraic
properties of these matrices [6]. For example, the spectrum of the Laplacian of a
graph reveals whether a graph is “diffusive” [24] or whether it is even connected. The
degree sequence, which may be obtained from the adjacency matrix or the Lapla-
cian, reveals whether a graph is regular, and it plays a role in a number of real-world
investigations of graphs arising in social networks and the Internet.

Given a graph G defined on n nodes, a labeling of the nodes of G is a function �
that maps the nodes of G onto distinct integers in {1, . . . , n}. An adjacency matrix
A ∈ Sn is then said to represent or specify G if there exists a labeling � of the nodes of
G such that the weight of the edge between nodes i and j equals A�(i)�(j) for all pairs
{i, j} and the weight of node i equals A�(i)�(i) for all i. However, an adjacency matrix
representation A of the graph G is not unique. In particular ΠAΠT also specifies G
for all Π ∈ Sym(n). All these alternative adjacency matrices correspond to different
labelings of the nodes of G. Thus the graph G is specified by the matrix A only up
to a relabeling of the indices of A. Our objective is to describe abstract structural
properties of G that do not depend on a choice of labeling of the nodes. In order to
characterize such unlabeled graphs in which the nodes have no distinct identity except
through their connections to other nodes, it is important that any function of an adja-
cency matrix representation of a graph not depend on the particular choice of indices
of A. Therefore, we seek functions of adjacency matrices that are invariant under con-
jugation by permutation matrices, and we denote such functions as graph invariants.

2.2. Definition of Convex Invariants. A convex graph invariant is an invariant
that is a convex function of the adjacency matrix of a graph. Specifically we have the
following definition.

Definition 2.1. A function f : Sn → R is a convex graph invariant if it is
convex and if, for any A ∈ Sn, it holds that f(ΠAΠT ) = f(A) for all permutation
matrices Π ∈ Sym(n).

Thus convex graph invariants are convex functions that are constant over orbits
of the symmetric group acting on symmetric matrices by conjugation. As described
above, the motivation behind the invariance property is clear. The motivation be-
hind the convexity property is that we wish to construct solutions based on convex
programming formulations in order to solve problems such as those described in the
introduction (see section 5 for more details). We present several examples of convex
graph invariants in section 2.3. We note that a concave graph invariant is a real-valued
function over Sn that is the negative of a convex graph invariant.

We also consider invariant convex sets, which are defined in an analogous manner
to convex graph invariants.

Definition 2.2. A set C ⊆ Sn is said to be an invariant convex set if it is convex
and if, for any A ∈ C, it is the case that ΠAΠT ∈ C for all permutation matrices
Π ∈ Sym(n).

In section 2.4 we present examples in which graphs can be constrained to have
various properties by requiring that adjacency matrices belong to such convex invari-
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ant sets. To each graph we associate an invariant convex set (given by a polytope),
which summarizes all the “convex properties” of the underlying graph (see section 3.2
for details).

In order to systematically study convex graph invariants, we analyze certain ele-
mentary invariants that serve as a basis for constructing arbitrary convex invariants.
These elementary invariants are simply characterized in terms of a symmetric matrix
P and are defined as follows.

Definition 2.3. An elementary convex graph invariant is a function ΘP : Sn →
R of the form

ΘP (A) = max
Π∈Sym(n)

Tr(PΠAΠT )

for any P ∈ Sn.
It is clear that an elementary invariant is also a convex graph invariant, as it is

expressed as the maximum over a set of convex functions (in fact, linear functions).
We describe various properties of convex graph invariants in sections 3.1. One useful
construction that we give is the expression of arbitrary convex graph invariants as
suprema over elementary invariants. In section 3.3 we also discuss convex spectral
invariants, which are convex functions of a symmetric matrix that depend purely
on its spectrum. Finally, an important point is that convex graph invariants may
in general be hard to compute. In section 4 we discuss this problem and propose
further tractable convex relaxations for cases in which a convex graph invariant may
be intractable to compute.

In the appendix we describe convex functions defined on R
n that are invariant

with respect to any permutation of the argument, as well as convex sets in R
n obtained

by taking the convex hull of all the permutations of a vector (i.e., a permutahedron).
Such objects have been analyzed previously, and we provide a list of their well-known
properties. We contrast these properties with those of convex graph invariants and
invariant convex sets.

2.3. Examples of Convex Graph Invariants. We list several examples of convex
graph invariants. As mentioned previously some of these invariants may possibly be
difficult to compute, but we defer discussion of computational issues to section 4. A
useful property that we exploit in several of these examples is that a function defined
as the supremum over a set of convex functions is itself convex [36].

Number of Edges. The total number of edges (or sum of edge weights) is an
elementary convex graph invariant with P = 1

2 (11
T − I).

Node Weight. The maximum node weight of a graph, which corresponds to
the maximum diagonal entry of the adjacency matrix of the graph, is an elementary
convex graph invariant with P = e1e

T
1 . The maximum diagonal entry in magnitude

of an adjacency matrix is a convex graph invariant and can be expressed as follows
with P = e1e

T
1 :

max. absolute node weight(A) = max{ΘP (A),Θ−P (A)}.
Similarly, the sum of all the node weights, which is the sum of the diagonal entries
of an adjacency matrix of a graph, can be expressed as an elementary convex graph
invariant with P being the identity matrix.

Maximum Degree. The maximum (weighted) degree of a node of a graph is also
an elementary convex graph invariant with P1,i = Pi,1 = 1 ∀i �= 1 and all the other
entries of P set to zero.
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Largest Cut. The value of the largest weighted cut of a graph specified by an
adjacency matrix A ∈ Sn can be written as follows:

max. cut(A) = max
y∈{−1,+1}n

1

4

∑
i,j

Ai,j(1− yiyj).

As this function is a maximum over a set of linear functions, it is a convex function of
A. Further, it is also clear that max. cut(A) = max. cut(ΠAΠT ) for all permutation
matrices Π. Consequently, the value of the largest cut of a graph is a convex graph
invariant. We note here that computing this invariant is intractable in general. In
practice, one could instead employ the following well-known tractable SDP relaxation
[22], which is related to the MAXCUT value by an appropriate shift and rescaling:

(3)

f(A) = min
X∈Sn

Tr(XA)

s.t. Xii = 1 ∀i,
X � 0.

As this relaxation is expressed as the minimum over a set of linear functions, it is a
concave graph invariant. In section 4 we discuss in greater detail tractable relaxations
for invariants that are difficult to compute.

Isoperimetric Number (Cheeger Constant or Edge Expansion). The isoperi-
metric number, also known as the Cheeger constant [17] or edge expansion, of a graph
specified by adjacency matrix A ∈ Sn is defined as follows:

isoperimetric number(A) = min
U⊂{1,...,n},|U|≤n

2 ,y∈Rn,yU=1,yUc=−1

∑
i,j

Ai,j(1− yiyj)

4|U | .

Here U c = {1, . . . , n}\U denotes the complement of the set U , and yU is the subset
of the entries of the vector y indexed by U . As with the last example, it is again
clear that this function is a concave graph invariant as it is expressed as the minimum
over a set of linear functions. In particular it can be viewed as measuring the value
of a “normalized” cut and plays an important role in several aspects of graph theory
[24]. The isoperimetric number is a measure of whether there are any “bottlenecks”
in a graph—graphs in which there exists a partition of the vertices with few edges
connecting the partitions have a small isoperimetric number, while graphs with large
isoperimetric numbers have no partitioning of the vertices with few links between the
partitions. In fact, one way to define edge-expander graphs is to consider families of
graphs in which the isoperimetric number is bounded below by a fixed constant.

Degree Sequence Invariants. Given a graph specified by adjacency matrix A
(assume for simplicity that the node weights are zero), the weighted degree sequence
is given by the vector d(A) = A1, i.e., the vector obtained by sorting the entries of A1
in descending order. It is easily seen that d(A) is a graph invariant. Consequently,
any function of d(A) is also a graph invariant. However, our interest is in obtaining
convex functions of the adjacency matrix A. An important class of functions of d(A)
that are convex functions of A, and are therefore convex graph invariants, take the
form

f(A) = vTd(A)
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for v ∈ R
n such that v1 ≥ · · · ≥ vn. This function can also be expressed as the max-

imum over all permutations Π ∈ Sym(n) of the inner product vTΠA1. As described
in the appendix, such linear monotone functionals can be used to express all convex
functions over R

n that are invariant with respect to permutations of the argument.
Consequently, these monotone functions serve as building blocks for constructing all
convex graph invariants that are functions of d(A).

Spectral Invariants. Let the eigenvalues of the adjacency matrix A of a graph
be denoted as λ1(A) ≥ · · · ≥ λn(A), and let λ(A) = [λ1(A), . . . , λn(A)]. These eigen-
values form the spectrum of the graph specified by A and clearly remain unchanged
under transformations of the form A → V AV T for any orthogonal matrix V ∈ O(n)
(and therefore for any permutation matrix). Hence any function of the spectrum of
a graph is a graph invariant. Analogous to the previous example, an important class
of spectral functions that are also convex take the form

f(A) = vTλ(A)

for v ∈ R
n such that v1 ≥ · · · ≥ vn. We denote spectral invariants that are also

convex functions as convex spectral invariants. As with convex invariants of the degree
sequence, all convex spectral invariants can be constructed using monotone functions
of the type described here (see the appendix).

Second-Smallest Eigenvalue of Laplacian. For a graph with nonnegative node
and edge weights represented by an adjacency matrix A ∈ Sn, one can check that the
graph Laplacian (2) satisfies LA � 0. In this setting we denote the eigenvalues of LA

as λ1(LA) ≥ · · · ≥ λn(LA). It is easily seen that λn(LA) = 0 as the all-ones vector 1
lies in the kernel of LA. The second-smallest eigenvalue λn−1(LA) of the Laplacian is
a concave invariant function of A. It plays an important role as the graph specified
by A is connected if and only if λn−1(LA) > 0.

Inverse of Stability Number. A stable set of an unweighted graph G is a subset
of the nodes of G such that no two nodes in the subset are adjacent. The stability
number α(A) is the size of the largest stable set of a graph specified by A. By a
result of Motzkin and Straus [33], the inverse of the stability number can be written
as follows:

(4)

1

α(A)
= min

x
xT (I +A)x

s.t. xi ≥ 0 ∀i,
∑
i

xi = 1.

Here A is any adjacency matrix representing the graph G. Although this formulation
is for unweighted graphs with edge weights being either 1 or zero, we note that the
definition can in fact be extended to all weighted graphs, i.e., to graphs with adjacency
matrix given by any A ∈ Sn. Consequently, the inverse of this extended stability
number of a graph is a concave graph invariant over Sn as it is expressed as the
minimum over a set of linear functions. As this function is difficult to compute in
general (because the stability number of a graph is intractable to compute), one could
employ the following tractable relaxation:

(5)
f(A) = min

X∈Sn
Tr(X(I +A))

s.t. X ≥ 0, X � 0, 1TX1 = 1.
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This relaxation is also a concave graph invariant as it is expressed as the minimum
over a set of affine functions. It is clear that α(A) ≤ 1/f(A). For unweighted graphs,
a well-known tractable upper bound to the stability number of a graph is provided
by the Lovasz theta number [30]. We note here that the bound provided by 1/f(A)
is a tighter upper bound for α(A) than the Lovasz theta number [14].

2.4. Examples of Invariant Convex Sets. Next we provide examples of invariant
convex sets. As described below constraints expressed using such sets are useful
in order to require that graphs have certain properties. Note that a sublevel set
{A : f(A) ≤ α} for any convex graph invariant f is an invariant convex set. Therefore,
all the examples of convex graph invariants given above can be used to construct
invariant convex set constraints.

Algebraic Connectivity and Diffusion. As mentioned in section 2.3 a graph
represented by adjacency matrix A ∈ A has the property that the second-smallest
eigenvalue λn−1(LA) of the Laplacian of the graph is a concave graph invariant. The
constraint set {A : A ∈ A, λn−1(LA) ≥ ε} for any ε > 0 expresses the property that
a graph must be connected. Further, if we set ε to be relatively large, we can require
that a graph has good diffusion properties.

Largest Clique Constraint. Let Kk ∈ Sn denote the adjacency matrix of an
unweighted k-clique. Note that Kk is only nonzero within a k × k submatrix and is
zero-padded to lie in Sn. Consider the following invariant convex set for ε > 0:

{A : A ∈ A, ΘKk
(A) ≤ (k2 − k)− ε}.

This constraint set expresses the property that a graph cannot have a clique of size
k (or larger), with the edge weights of all edges in the clique being close to 1. For
example, we can use this constraint set to require that a graph has no triangles
(with large edge weights). It is important to note that triangles (and cliques more
generally) are forbidden with the only qualification that all the edge weights in the
triangle cannot be close to 1. For example, a graph may contain a triangle with each
edge having weight equal to 1

2 . In this case the function ΘK3 evaluates to 3, which is
much smaller than the maximum value of 6 that ΘK3 can take for matrices in A that
contain a triangle with edge weights equal to 1.

Girth Constraint. The girth of a graph is the length of the shortest cycle. Let
Ck ∈ Sn denote the adjacency matrix of an unweighted k-cycle for k ≤ n. As with the
k-clique note that Ck is nonzero only within a k× k submatrix and is zero-padded so
that it lies in Sn. In order to express the property that a graph has no small cycles,
consider the following invariant convex set for ε > 0:

{A : A ∈ A, ΘCk
(A) ≤ 2k − ε ∀k ≤ k0}.

Graphs belonging to this set cannot have cycles of length less than or equal to k0,
with the weights of edges in the cycle being close to 1. Thus we can impose a lower
bound on a weighted version of the girth of a graph.

Forbidden Subgraph Constraint. The previous two examples can be viewed as
special cases of a more general constraint involving forbidden subgraphs. Specifically,
let Ak denote the adjacency matrix of an unweighted graph on k nodes that consists
of Ek edges. As before, Ak is zero-padded to ensure that it lies in Sn. Consider the
following invariant convex set for ε > 0:

{A : A ∈ A, ΘAk
(A) ≤ 2Ek − ε}.
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This constraint set requires that a graph not contain the subgraph given by the
adjacency matrix Ak with edge weights close to 1.

Degree Distribution. Using the notation described previously, let d(A) = A1
denote the sorted degree sequence (d(A)1 ≥ · · · ≥ d(A)n) of a graph specified by
adjacency matrix A. We wish to consider the set of all graphs that have degree
sequence d(A). This set is in general not convex unless A represents a (weighted)
regular graph, i.e., d(A) = α1 for some constant α. Therefore, we consider the
convex hull of all graphs that have degree sequence given by d:

D(A) = conv{B : B ∈ Sn, B1 = d(A)}.

This set is in fact tractable to represent via linear equations and linear inequalities,
and it is given by the set of graphs whose degree sequence is majorized by d:

D(A) =

{
B : B ∈ Sn, 1TB1 = 1Td(A),

k∑
i=1

(B1)i ≤
k∑

i=1

d(A)i ∀k = 1, . . . , n− 1

}
.

By the majorization principle [4] another representation for this convex set is as the
set of graphs whose degree sequence lies in the permutahedron generated by d [42];
the permutahedron generated by a vector is the convex hull of all permutations of the
vector. See the appendix for more details on majorization, permutahedra, and their
connections.

Spectral Distribution. Let λ(A) denote the spectrum of a graph represented by
adjacency matrix A. As before we are interested in the set of all graphs that have
spectrum λ(A). This set is nonconvex in general, unless A is a multiple of the identity
matrix, in which case all the eigenvalues are the same. Therefore, we consider the
convex hull of all graphs (i.e., symmetric adjacency matrices) that have spectrum
equal to λ(A):

E(A) = conv{B : B ∈ Sn, λ(B) = λ(A)}.

This convex hull also has a tractable semidefinite representation analogous to the
description above [4]:
(6)

E(A) =
{
B : B ∈ Sn, Tr(B) = Tr(A),

k∑
i=1

λ(B)i ≤
k∑

i=1

λ(A)i ∀k = 1, . . . , n− 1

}
.

Note that eigenvalues are specified in descending order, so that
∑k

i=1 λ(B)i represents
the sum of the k-largest eigenvalues of B.

3. Properties of Convex Graph Invariants. In this section we investigate vari-
ous properties of convex graph invariants and invariant convex sets.

3.1. Representation of Convex Graph Invariants. All invariant convex sets and
convex graph invariants can be represented using elementary convex graph invariants.
Here we describe both representation results. Representation theorems in mathemat-
ics give expressions of complicated sets or functions in terms of simpler, basic objects.
In functional analysis the Riesz representation theorem relates elements in a Hilbert
space and its dual by uniquely associating each linear functional on the space to an
element of the dual [38]. In probability theory de Finetti’s theorem states that an
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infinite collection of exchangeable random variables can be expressed as a mixture
of independent, identically distributed random variables. In convex analysis every
closed convex set can be expressed as the intersection of halfspaces [36]. In each of
these cases representation theorems provide a powerful analysis tool as they give a
canonical expression for complicated mathematical objects in terms of elementary
sets/functions.

First we give a representation result for convex graph invariants. In order to get
a flavor of this result consider the maximum absolute-value node weight invariant of
section 2.3, which is represented as the supremum over two elementary convex graph
invariants. The following theorem states that, in fact, any convex graph invariant can
be expressed as a supremum over elementary invariants.

Theorem 3.1. Let f be any convex graph invariant. Then f can be expressed as
follows:

f(A) = sup
P∈P

ΘP (A) − αP

for αP ∈ R and for some subset P ⊂ Sn.
Proof. Since f is a convex function, it can be expressed as the supremum over

linear functionals as follows:

f(A) = sup
P∈P⊆Sn

Tr(PA)− αP

for αP ∈ R. This conclusion follows directly from the separation theorem in convex
analysis [36]; in particular, this description of the convex function f can be viewed
as a specification in terms of supporting hyperplanes of the epigraph of f , which is
a convex subset of Sn × R. However, as f is also a graph invariant, we have that
f(A) = f(ΠAΠT ) for any permutation Π and for all A ∈ Sn. Consequently, for any
permutation Π and for any P ∈ P ,

f(A) = f(ΠAΠT ) ≥ Tr(PΠAΠT )− αP .

Thus we have that

(7) f(A) ≥ sup
P∈P

ΘP (A)− αP .

However, it is also clear that for each P ∈ P

ΘP (A)− αP ≥ Tr(PA)− αP ,

which allows us to conclude that

(8) sup
P∈P

ΘP (A)− αP ≥ sup
P∈P

Tr(PA)− αP = f(A).

Combining (7) and (8) we have the desired result.
Remark 3.2. This result can be strengthened in the sense that one need only

consider elements in P that lie in different equivalence classes up to conjugation by
permutation matrices Π ∈ Sym(n). In each equivalence class the representative func-
tional is the one with the smallest value of αP . This idea can be formalized as follows.
Consider the group action ρ : (M,Π) � ΠMΠT that conjugates elements in Sn by a
permutation matrix in Sym(n). With this notation we may restrict our attention in
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Theorem 3.1 to P ⊂ Sn/Sym(n), where Sn/Sym(n) represents the quotient space un-
der the group action ρ. Such a mathematical object obtained by taking the quotient of
a Euclidean space (or more generally a smooth manifold) under the action of a finite
group is called an orbifold. With this strengthening one can show that there exists a
unique, minimal representation set P ⊂ Sn/Sym(n). We do not, however, emphasize
such refinements in subsequent results, and we stick with the weaker statement that
P ⊆ Sn for notational and conceptual simplicity.

Remark 3.3. Instead of expressing a convex graph invariant as a supremum over
some set of basic functions, suppose we wish to obtain an expression in terms of a sum
or integral over some set of elementary functions. For such additive representations,
elementary convex graph invariants no longer suffice to represent all convex graph
invariants.

As our next result we show that any invariant convex set can be represented as
the intersection of sublevel sets of elementary convex graph invariants.

Proposition 3.4. Let S ⊆ Sn be an invariant convex set. Then there exists a
representation of S as follows:

S =
⋂
P∈P

{A : A ∈ Sn, ΘP (A) ≤ αP }

for some P ⊆ Sn and for αP ∈ R.
Proof. The proof of this statement proceeds in an analogous manner to that

of Theorem 3.1 and is again essentially a consequence of the separation theorem in
convex analysis.

3.2. Convex Sets Associated with Graphs. Section 2.4 lists several invariant
convex sets that are useful for constraining an adjacency matrix to have certain
structural properties. However, in some applications (e.g., the graph deconvolution
problem of section 1; see also section 5.2) we would like to constrain an adjacency
matrix to represent a fixed, known graph G. In such settings the best constraint set
is clearly the set of all adjacency matrices representing G, since we have no additional
information about the specific labeling of the nodes of G. What is the best convex set
that expresses this constraint? In this section we describe such a convex constraint
set by associating to each graph a convex polytope.

Definition 3.5. Let G be a graph that is represented by an adjacency matrix
A ∈ Sn (any choice of representation is suitable). The convex hull of the graph G is
defined as the following convex polytope:

C(G) = conv{ΠAΠT : Π ∈ Sym(n)}.

One can check that the convex hull of a graph is an invariant convex set and
that its extreme points are the matrices ΠAΠT for all Π ∈ Sym(n). This latter
point follows from the observation that for a given A each of the matrices ΠAΠT

lies on the boundary of a Euclidean ball; consequently, there exists a hyperplane to
separate each ΠAΠT from the Euclidean ball, and hence from the convex hull of
the underlying graph. The convex hull of a graph is the smallest convex set that
contains all the adjacency matrices that represent the graph. Therefore, C(G) is in
some sense the “best convex characterization” of the graph G. This intuition can
be formalized via the following result, which appeals to Proposition 3.4 and the fact
that C(G) is an invariant convex set, to give a representation of this set in terms of
sublevel sets of elementary convex graph invariants. Specifically, we show that the
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values of all elementary convex graph invariants of G can be used to produce such a
representation.

Proposition 3.6. Let G be a graph and let A ∈ Sn be an adjacency matrix
representing G. We then have that

C(G) =
⋂

P∈Sn

{B : B ∈ Sn, ΘP (B) ≤ ΘP (A)}.

Proof. One direction of inclusion in this result is easily seen. Indeed, we have
that for any Π ∈ Sym(n)

ΠAΠT ∈
⋂

P∈Sn

{B : B ∈ Sn, ΘP (B) ≤ ΘP (A)}.

As the right-hand side is a convex set it is clear that the convex hull C(G) belongs to
the above set on the right-hand side:

C(G) ⊆
⋂

P∈Sn

{B : B ∈ Sn, ΘP (B) ≤ ΘP (A)}.

For the other direction, suppose for the sake of a contradiction that we have a
point M �∈ C(G) but with ΘP (M) ≤ ΘP (A) for all P ∈ Sn. As M �∈ C(G) we appeal
to the separation theorem from convex analysis [36] to produce a strict separating
hyperplane between M and C(G), i.e., a P̃ ∈ Sn and an α ∈ R such that

Tr(P̃B) < α ∀B ∈ C(G) and Tr(P̃M) > α.

Further, as C(G) is an invariant convex set, it must be the case that

ΘP̃ (B) < α ∀B ∈ C(G).

On the other hand, as Tr(P̃M) > α we also have that ΘP̃ (M) > α. It is thus clear
that

ΘP̃ (A) < α < ΘP̃ (M),

which leads us to a contradiction and concludes the proof.
Hence constraining an adjacency matrix to lie in C(G) is equivalent to constructing

an invariant convex set that constrains the adjacency matrix based on all the “convex
properties” of G as given by all the elementary convex invariants evaluated at G. This
result agrees with the intuition that the “maximum amount of information” that one
can hope to obtain from convex graph invariants about a graph should be limited
fundamentally by the convex hull of the graph. In this sense, the convex hull of a
graph is similar in spirit to data-driven methods in robust optimization in which one
constructs “optimal” convex uncertainty sets that satisfy a certain invariance with
respect to relabeling of the underlying data [5].

The convex hull of a graph may in general be intractable to characterize; for
example, if G represents an unweighted cycle, then an efficient characterization of
C(G) would lead to an efficient algorithm for the traveling-salesman problem. One
can obtain outer bounds to C(G) by using a tractable subset of elementary convex
graph invariants; therefore, we may obtain tractable but weaker convex constraint sets
than the convex hull of a graph. From Proposition 3.6 such approximations can be
refined as we use additional elementary convex graph invariants. As an example, the
spectral convex constraint sets described in section 2.4 provide a tractable relaxation
that plays a prominent role in our experiments in section 5.
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3.3. Comparison with Spectral Invariants. Convex functions that are invariant
under certain group actions have been studied previously. The most prominent among
these is the set of convex functions of symmetric matrices that are invariant under
conjugation by orthogonal matrices [12]:

f(M) = f(VMV T ) ∀M ∈ Sn, ∀V ∈ O(n).

It is clear that such functions depend only on the spectrum of a symmetric matrix,
and therefore we refer to them as convex spectral invariants,

f(M) = f̃(λ(M)),

where f̃ : Rn → R. It is shown in [12] that f is convex if and only if f̃ is a convex
function that is symmetric in its argument:

f̃(x) = f̃(Πx) ∀x ∈ R
n, ∀Π ∈ Sym(n).

One can check that any convex spectral invariant can be represented as the supremum
over monotone functionals of the spectrum of the form

f̃(x) = vTx− α

for v ∈ R
n such that v1 ≥ · · · ≥ vn. See the appendix for more details. Such

monotone linear functionals of the spectrum are important examples of convex spectral
invariants (see section 2.3).

The set of convex spectral invariants is a subset of the set of convex graph invari-
ants as invariance with respect to conjugation by any orthogonal matrix is a stronger
requirement than invariance with respect to conjugation by any permutation matrix.
For example, monotone linear functionals of the degree sequence (i.e., the degree
sequence invariants of section 2.3) are convex graph invariants but are not convex
spectral invariants. As many convex spectral invariants are tractable to compute,
they form an important subclass of convex graph invariants. In section 4.1 we discuss
a natural approximation to elementary convex graph invariants using convex spec-
tral invariants by replacing the symmetric group Sym(n) in the maximization by the
orthogonal group O(n). Finally, one can define a spectrally invariant convex set S
(analogous to invariant convex sets defined in section 2.2) in which M ∈ S if and only
if VMV T ∈ S for all V ∈ O(n) (see (6) for an example). Such sets are very useful in
order to impose various spectral constraints on graphs, and they often have tractable
semidefinite representations.

3.4. Convex versus Nonconvex Invariants. There are many graph invariants
that are not convex. In this section we give two examples that serve to illustrate
the strengths and weaknesses of convex graph invariants. First, consider the spectral
invariant given by the fifth largest eigenvalue of a graph, i.e., λ5(A) for a graph
specified by adjacency matrix A. This function is a graph invariant but it is not
convex. However, from section 2.3 we have that the sum of the first five eigenvalues
of a graph is a convex graph invariant. More generally, any function of the form
v1λ1 + · · · + v5λ5 with v1 ≥ · · · ≥ v5 is a convex graph invariant. Thus information
about the fifth eigenvalue can be obtained in a “convex manner” only by including
information about all the top five eigenvalues (or all the bottom n − 4 eigenvalues).
As a second example, consider the total (weighted) number of triangles that occur as
subgraphs in a graph. This function is again a nonconvex graph invariant. However,
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recall from the forbidden subgraph example in section 2.4 that we can use elementary
convex graph invariants to test whether a graph contains a triangle as a subgraph
(with the edges of the triangle having large weights). Therefore, roughly speaking
convex graph invariants can be used to decide whether a graph contains a triangle,
while general nonconvex graph invariants can provide more information about the
total number of triangles in a graph. These examples demonstrate that convex graph
invariants have certain limitations in terms of the type of information that they can
convey about a graph.

The weaker form of information about a graph conveyed by convex graph invari-
ants is nonetheless still useful in distinguishing between graphs. As the next result
demonstrates, convex graph invariants are strong enough to distinguish between two
nonisomorphic graphs. The next lemma follows from a straightforward application of
Proposition 3.6.

Lemma 3.7. Let G1,G2 be two nonisomorphic graphs represented by adjacency
matrices A1, A2 ∈ Sn, i.e., there exists no permutation Π ∈ Sym(n) such that A1 =
ΠA2Π

T . Then there exists a P ∈ Sn such that ΘP (A1) �= ΘP (A2).
Proof. Assume for the sake of a contradiction that ΘP (A1) = ΘP (A2) for all P ∈

Sn. Then we have from Proposition 3.6 that C(G1) = C(G2). As the extreme points of
these polytopes must be the same, there must exist a permutation Π ∈ Sym(n) such
that A1 = ΠA2Π

T . This leads to a contradiction.
Hence for any two given nonisomorphic graphs there exists an elementary convex

graph invariant that evaluates to different values for these two graphs. Consequently,
elementary convex graph invariants form a complete set of graph invariants as they
can distinguish between any two nonisomorphic graphs.

4. Computing Convex Graph Invariants. In this section we focus on efficiently
computing and approximating convex graph invariants and on tractable represen-
tations of invariant convex sets. We begin by studying the question of computing
elementary convex graph invariants, before moving on to more general convex invari-
ants.

4.1. Elementary Invariants and the Quadratic Assignment Problem. As all
convex graph invariants can be represented using only elementary invariants, we ini-
tially focus on computing the latter. Computing an elementary convex graph invariant
ΘP (A) for fixed A,P is equivalent to solving the so-called quadratic assignment prob-
lem (QAP) [10]. Solving the QAP is hard in general, because it includes as a special
case the Hamiltonian cycle problem; if P is the adjacency matrix of the n-cycle, then
for an unweighted n-node graph specified by adjacency matrix A we have that ΘP (A)
is equal to 2n if and only if the graph contains a Hamiltonian cycle. However, there
are well-studied spectral and semidefinite relaxations for the QAP, which we discuss
next.

The spectral relaxation of ΘP (A) is obtained by replacing the symmetric group
Sym(n) in the definition by the orthogonal group O(n):

(9) ΛP (A) = max
V ∈O(n)

Tr(PV AV T ).

Clearly ΘP (A) ≤ ΛP (A) for all A,P ∈ Sn. As one might expect, ΛP (A) has a simple
closed-form solution [19]:

(10) ΛP (A) = λ(P )Tλ(A),

where λ(A), λ(P ) are the eigenvalues of A,P sorted in descending order.
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The spectral relaxation offers a simple bound, but is quite weak in many instances.
Next we consider the well-studied semidefinite relaxation for the QAP, which offers a
tighter relaxation [41]. The main idea behind the semidefinite relaxation is that we
can linearize ΘP (A) as follows:

ΘP (A) = max
Π∈Sym(n)

Tr(PΠAΠT )

= max
x∈Rn2 ,x=vec(Π),Π∈Sym(n)

〈x, (A ⊗ P )x〉

= max
x∈Rn2 ,x=vec(Π),Π∈Sym(n)

Tr((A⊗ P )xxT ).

Here A⊗P denotes the tensor product between A and P and vec denotes the operation
that stacks the columns of a matrix into a single vector. Consequently, it is of interest
to characterize the following convex hull:

conv{xxT : x ∈ R
n2

, x = vec(Π), Π ∈ Sym(n)}.
There is no known tractable characterization of this set, and by considering tractable
approximations the semidefinite relaxation to ΘP (A) is then obtained as follows:

(11)

ΩP (A) = max
y∈Rn2 , Y ∈Sn2

Tr((A⊗ P )Y )

s.t. Tr((I ⊗ (J − I))Y + ((J − I)⊗ I)Y ) = 0,

Tr(Y )− 2yT1 = −n,

Y ≥ 0,

(
1 yT

y Y

)
� 0.

We refer the reader to [41] for the detailed steps involved in the construction of this
relaxation. This SDP relaxation gives an upper bound to ΘP (A), i.e., ΘP (A) ≤
ΩP (A). In fact, the SDP relaxation is tighter than the spectral relaxation so we have
that ΘP (A) ≤ ΩP (A) ≤ ΛP (A). One can show that if the extra rank constraint

rank

(
1 yT

y Y

)
= 1

is added to the SDP (11), then ΘP (A) = ΩP (A). Therefore, if the optimal value of
the SDP (11) is achieved at some ŷ, Ŷ such that this rank-one constraint is satisfied,
then the relaxation is tight, i.e., we would have that ΘP (A) = ΩP (A).

While the semidefinite relaxation (11) can in principle be computed in polynomial-
time, the size of the variable Y ∈ S(n2) means that even moderate size problem
instances are not well suited to solution by interior-point methods. In many practical
situations, however, we often have that the matrix P ∈ Sn represents the adjacency
matrix of some small graph on k nodes with k � n, i.e., P is nonzero only inside a k×k
submatrix and is zero-padded elsewhere so that it lies in Sn. For example, as discussed
in section 2.4, P may represent the adjacency matrix of a triangle in a constraint
expressing that a graph is triangle-free. In such cases computing or approximating
ΘP (A) may be done more efficiently via direct combinatorial enumeration or using
more sophisticated methods such as color coding [3]. For larger values of k, the
special structure in P can be exploited to reduce the size of the SDP relaxation (11).
Specifically, using the methods described in [13] it is possible to reduce the size of the
matrix variables from O(n2)×O(n2) to size O(kn)×O(kn). More generally, it is also
possible to exploit group symmetry in P to similarly reduce the size of the SDP (11)
(see [13] for details).
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4.2. Other Methods and Computational Issues. In many special cases in which
computing convex graph invariants may be intractable, it is also possible to use other
types of tractable semidefinite relaxations. As described in section 2.3 the MAXCUT
value and the inverse stability number of graphs are invariants that are, respectively,
convex and concave. However, both of these are intractable to compute and, as
a result, we must employ the SDP relaxations for these invariants as discussed in
section 2.3.

Another issue that arises in practice is the representation of invariant convex sets.
As an example, let f(A) denote the SDP relaxation of the MAXCUT value as defined
in (3). As f(A) is a concave graph invariant, we may be interested in representing
convex constraint sets as follows:

{A : A ∈ Sn, f(A) ≥ α} = {A : A ∈ Sn, Tr(XA) ≥ α ∀X ∈ Sn s.t. Xii = 1, X � 0}.

In order to computationally represent such a set specified in terms of a universal
quantifier, we appeal to convex duality. Using the standard dual formulation of (3),
we have that

{A : A ∈ Sn, f(A) ≥ α} = {A : A ∈ Sn, ∃Y diagonal s.t. A � Y, Tr(Y ) ≥ α}.

This reformulation provides a description in terms of existential quantifiers that is
more suitable for practical representation. Such reformulations using convex dual-
ity are well known and can be employed more generally (e.g., for invariant convex
sets specified by sublevel sets of the inverse stability number or its relaxations in
section 2.3).

5. Using Convex Graph Invariants in Applications. In this section we give pre-
cise problem statements and solutions to the stylized problems described in the in-
troduction using convex graph invariants. In order to properly state our results we
begin with a few definitions. All the convex programs in our numerical experiments
were solved using a combination of the SDPT3 package [39] and the YALMIP parser
[29].

5.1. Preliminary Definitions. Let C be a closed, convex set in Sn and let x ∈ C
be any point in C. Following standard notions from convex analysis [36], the tangent
cone at x with respect to C is defined as follows.

Definition 5.1. Given a closed, convex set C, the tangent cone at a point x ∈ C
with respect to C is the set of directions from x to any other point in C:

TC(x) = {αz : z = y − x,y ∈ C,α ≥ 0}.

If C is a closed, convex set expressing a constraint in a convex program, the
tangent cone at a point x ∈ C can be viewed as the set of feasible directions at x
to other points in C. Next we define the normal cone at x with respect to C, again
following the usual conventions in convex analysis [36].

Definition 5.2. Given a closed, convex set C, the normal cone at a point x ∈ C
with respect to C is the set of normal vectors to supporting hyperplanes of C at x:

NC(x) = {z : 〈z,y − x〉 ≤ 0 ∀y ∈ C}.

The normal cone and the (closure of the) tangent cone are polars of each other
[36]. A key property of normal cones that we use in stating our results is that for any
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closed, convex set C ⊆ Sn, the normal cones at all the extreme points of C form a
partition1 of Sn [36].

5.2. Application: Graph Deconvolution. Suppose we are given a graph that
is formed by overlaying two graphs on the same set of nodes. Can we recover the
individual components from the composite graph, without any information about the
relative labeling of the nodes in the two component graphs? Figure 1 gives a graphical
illustration of this question, where we wish to recover a 16-cycle and a Clebsch graph
from their convolution. In general, such decomposition problems may be ill-posed, and
it is of interest to give conditions under which unique deconvolution is possible as well
as to provide tractable computational methods to recover the individual components.
More formally, we have the following problem statement.

Problem 1. Let G1 and G2 be two graphs specified by particular adjacency matri-
ces A∗

1, A
∗
2 ∈ Sn. We are given the sum A = A∗

1 +A∗
2 and the additional information

that A∗
1, A

∗
2 correspond to particular realizations (labelings of nodes) of G1,G2. The

goal is to recover A∗
1 and A∗

2 from A.
Well-known problems that have the flavor of graph deconvolution include the

planted clique problem, which involves identifying hidden cliques embedded inside a
larger graph, and the clustering problem, in which the goal is to decompose a large
graph into smaller densely connected clusters by removing just a few edges. Convex
optimization approaches for solving such problems have been proposed recently [1, 2].
Graph deconvolution more generally may include other kinds of embedded structures
beyond cliques.

Applications of graph deconvolution arise in network analysis in which one seeks
to better understand a complex network by decomposing it into simpler components.
Graphs play an important role in modeling, for example, biological networks [32] and
social networks [25, 18], and they lead to natural graph deconvolution problems in
these areas. For instance, graphs are useful for describing social exchange networks
of interactions of multiple agents, and graph decompositions are useful for describing
the structure of optimal bargaining solutions in such networks [26]. In a biological
network setting, transcriptional regulatory networks of bacteria have been observed to
consist of small subgraphs with specific structure (called motifs) that are connected
together using a “backbone” [16]. Decomposing such regulatory networks into the
component structures is useful for obtaining a better understanding of the high-level
properties of the composite network.

The key unknown in the graph deconvolution problem is the specific labeling of
the nodes of G1 and G2 relative to each other in the composite graph represented by A.
As described in section 3.2, the best convex constraints that express this uncertainty
are the convex hulls of the graphs G1,G2. Therefore, we consider the following natural
solution based on convex optimization to solve the deconvolution problem.

Solution 1. Recall that C(G1) and C(G2) are the convex hulls of the unlabeled
graphs G1,G2 (which we are given), and let ‖ · ‖ denote the Euclidean norm. We
propose the following convex program to recover A1, A2:

(12)
(Â1, Â2) = arg min

A1,A2∈Sn
‖A−A1 −A2‖

s.t. A1 ∈ C(G1), A2 ∈ C(G2).

One could also use in the objective any other norm that is invariant under conjugation

1Note that there may be overlap on the boundaries of the normal cones at the extreme points,
but these overlaps have smaller dimension than those of the normal cones.
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by permutation matrices. This program is convex, although it may not be tractable if
the sets C(G1), C(G2) cannot be efficiently represented. Therefore, it may be desirable to
use tractable convex relaxations C1, C2 of the sets C(G1), C(G2), i.e., C(G1) ⊆ C1 ⊂ Sn

and C(G2) ⊆ C2 ⊂ Sn:

(13)
(Â1, Â2) = arg min

A1,A2∈Sn
‖A−A1 −A2‖

s.t. A1 ∈ C1, A2 ∈ C2.

Recall from Proposition 3.6 that we can represent C(G) using all the elementary
convex graph invariants. Tractable relaxations to this convex hull may be obtained,
for example, just by using spectral invariants, degree-sequence invariants, or any other
subset of invariant convex set constraints that can be expressed efficiently. We give
numerical examples later in this section. The following result gives conditions under
which we can exactly recover A∗

1, A
∗
2 using the convex program (13).

Proposition 5.3. Given the problem setup as described above, we have that
(Â1, Â2) = (A∗

1, A
∗
2) is the unique optimum of (13) if and only if

TC1(A
∗
1) ∩ −TC2(A

∗
2) = {0},

where −TC2(A
∗
2) denotes the negative of the tangent cone TC2(A

∗
2).

Proof. Note that in the setup described above, (A∗
1, A

∗
2) is an optimal solution of

the convex program (13) as this point is feasible (since by construction A∗
1 ∈ C(G1) ⊆

C1 and A∗
2 ∈ C(G2) ⊆ C2), and the cost function achieves its minimum at this point.

This result is concerned with (A∗
1, A

∗
2) being the unique optimal solution.

For one direction suppose that TC1(A
∗
1) ∩ −TC2(A

∗
2) = {0}. Then there exists

no Z1 ∈ TC1(A
∗
1), Z2 ∈ TC2(A

∗
2) such that Z1 + Z2 = 0 with Z1 �= 0, Z2 �= 0.

Consequently, every feasible direction from (A∗
1, A

∗
2) into C1 × C2 would increase the

value of the objective. Thus (A∗
1, A

∗
2) is the unique optimum of (13).

For the other direction suppose that (A∗
1, A

∗
2) is the unique optimum of (13), and

assume for the sake of a contradiction that TC1(A
∗
1) ∩ −TC2(A

∗
2) contains a nonzero

element, which we’ll denote by Z. There exists a scalar α > 0 such that A∗
1+αZ ∈ C1

and A∗
2 − αZ ∈ C2. Consequently, (A∗

1 + αZ,A∗
2 − αZ) is also a feasible solution

that achieves the lowest possible cost of zero. This contradicts the assumption that
(A∗

1, A
∗
2) is the unique optimum.

Thus we have that transverse intersection of the tangent cones TC1(A
∗
1) and

−TC2(A
∗
2) is equivalent to exact recovery2 of (A∗

1, A
∗
2) given the sum A = A∗

1 + A∗
2.

As C(G1) ⊆ C1 and C(G2) ⊆ C2, we have that TC(G1)(A
∗
1) ⊆ TC1(A

∗
1) and TC(G2) ⊆

TC2(A
∗
2). These relations follow from the fact that the set of feasible directions from

A∗
1 and A∗

2 into the respective convex sets is enlarged. Therefore, the tangent cone
transversality condition of Proposition 5.3 is generally more difficult to satisfy if we use
relaxations C1, C2 to the convex hulls C(G1), C(G2). Consequently, we have a tradeoff
between the complexity of solving the convex program and the possibility of exactly
recovering (A∗

1, A
∗
2). However, the following example suggests that it is possible to

obtain tractable relaxations that still allow for perfect recovery.

2The deconvolution problem and the proposed solution (13) can be naturally extended to the
setting in which we wish to deconvolve k graphs represented by A∗

1, . . . , A
∗
k given a composite graph

represented by A = A∗
1+ · · ·+A∗

k. Proposition 5.3 then naturally generalizes as follows: (A∗
1 , . . . , A

∗
k)

is the unique optimum of the modification of (13) if and only if Z1 + · · · + Zk = 0 with Z1 ∈
TC1

(A∗
1), . . . , Zk ∈ TCk

(A∗
k) implies that Z1 = · · · = Zk = 0.
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Fig. 3 The three graphs used in the deconvolution experiments of section 5.2. The Clebsch graph and
the Shrikhande graph are examples of strongly regular graphs on 16 nodes [21]; see section 5.2
for more details about the properties of such graphs.

Example. We consider the 16-cycle, the Shrikhande graph, and the Clebsch graph
(see Figure 3), and we investigate the deconvolution problem for all three pairings of
these graphs. For illustration purposes suppose A∗

1 is an adjacency matrix of the
unweighted 16-node cycle denoted G1 and that A∗

2 is an adjacency matrix of the 16-
node Clebsch graph denoted G2 (see Figure 1). These adjacency matrices are random
instances chosen from the set of all valid adjacency matrices that represent the graphs
G1,G2. Given the sum A = A∗

1 + A∗
2, we construct convex constraint sets C1, C2 as

follows:

C1 = A ∩ E(A∗
1),

C2 = A ∩ E(A∗
2).

Here E(A) represents the spectral constraints (6) of section 2.4. Therefore, the graphs
G1 and G2 are characterized purely by their spectral properties. By solving the convex
program described above for 100 random choices of labelings of the vertices of the
graphs G1,G2, we obtain exact recovery of the adjacency matrices (A∗

1, A
∗
2) in all cases

(see Table 1). Thus we have exact decomposition based only on convex spectral con-
straints, in which the only invariant information used to characterize the component
graphs G1,G2 are the spectra of G1,G2. Similarly successful decomposition results us-
ing only spectral invariants are also seen in the cycle/Shrikhande graph deconvolution
problem and the Clebsch graph/Shrikhande graph deconvolution problem; Table 1
gives complete results.

The inspiration for using the Clebsch graph and the Shrikhande graph as examples
for deconvolution is based on Proposition 5.3. Specifically, a graph for which the
tangent cone with respect to the corresponding spectral constraint set E(A) (defined
in section 2.4) is small is well suited to being deconvolved from other graphs using
spectral invariants. This is because the tangent cone being smaller implies that the
transversality condition of Proposition 5.3 is easier to satisfy. In order to obtain
small tangent cones with respect to spectral constraint sets, we seek graphs that have
many repeated eigenvalues. Strongly regular graphs, such as the Clebsch graph and the
Shrikhande graph, are prominent examples of graphs with repeated eigenvalues as they
have only three distinct eigenvalues. A strongly regular graph is an unweighted regular
graph (i.e., each node has the same degree) in which every pair of adjacent vertices has
the same number of common neighbors, and every pair of nonadjacent vertices has the
same number of common neighbors [21]. We explore in more detail the properties of
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Table 1 A summary of the results of graph deconvolution via convex optimization. We generated
100 random instances of each deconvolution problem by randomizing over the labelings
of the components. The convex program uses only spectral invariants to characterize the
convex hulls of the component graphs, as described in section 5.2.

Underlying graphs # successes in 100 random trials

The 16-cycle and the Clebsch graph 100
The 16-cycle and the Shrikhande graph 96

The Clebsch graph and the Shrikhande graph 94

these and other graph classes in a separate report [11], where we characterize families
of graphs for which the transverse intersection condition of Proposition 5.3 provably
holds for constraint sets C1, C2 constructed using tractable graph invariants.

5.3. Application: Generating Graphs with Desired Structural Properties.
Suppose we wish to construct a graph with certain prescribed structural constraints.
A very simple example may be the problem of constructing a graph in which each node
has degree equal to two. A graph given by a single cycle satisfies this constraint. A
less trivial problem is one in which the objective may be to build a connected graph
with constraints on the spectrum of the adjacency matrix, the degree distribution,
and the additional requirements that the graph be triangle-free and square-free. As
constraints on graphs may be specified by very different sets of invariants, it is of
interest to develop a suitably flexible yet tractable computational framework to in-
corporate any structural information available about a graph. Formally, we consider
the following problem.

Problem 2. Suppose we are given structural constraints on a graph in terms of
a collection of (possibly nonconvex) graph invariants {hj(A) = αj}. Can we recover
a graph that is consistent with these constraints? For example, we may be given
constraints on the spectrum, the degree distribution, the girth, and the MAXCUT
value. Can we construct some graph G that is consistent with this information?

A prominent instance of a graph construction problem that has received much
attention is the question of generating expander graphs [24]. Expanders are, roughly
speaking, sparse graphs that are well connected, and they have found applications
in numerous areas of computer science. Methods used to construct expanders range
from random sampling approaches to deterministic constructions based on Ramanujan
graphs. Later in this section we describe an approach based on convex optimization
to generate sparse, weighted graphs with small degree and large spectral gap.

The graph generation problem may be infeasible in that there may be no graph
consistent with the given information. We do not address this feasibility question
here, and instead focus only on the computational problem of generating graphs that
satisfy the given constraints, assuming such graphs do exist. Next we propose a convex
programming approach using invariant convex sets to construct a graph G, specified
by an adjacency matrix A, which satisfies the required constraints. Both the problem
and the solution can be suitably modified to include inequality constraints.

Solution 2. We combine information from all the invariants to construct an
invariant convex set C. Given a constraint of the form hj(A) = αj, we consider the
following convex set:

Cj = conv{A : A ∈ Sn, hj(A) = αj}.

This set is convex by construction, and is an invariant convex set if hj is a graph
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invariant. If hj is a convex graph invariant, this set is equal to the sublevel set
{A : A ∈ Sn, hj(A) ≤ αj}. Given a collection of constraints {hj(A) = αj}, we then
form an invariant convex constraint set as follows:

C = ∩j Cj .

Therefore, any invariant information that is amenable to approximation as a convex
constraint set can be incorporated in such a framework. For example, constraints on
the degree distribution or the spectrum can be naturally relaxed to tractable convex
constraints, as described in section 2.4. If the set C as defined above is intractable
to compute, one may further relax C to obtain efficient approximations. In many
cases of interest a subset of the boundary of C corresponds to points at which all the
constraints are active {A : hj(A) = αj}. In order to recover one of these extreme
points, we maximize a random linear functional defined by M ∈ Sn (with the entries
in the upper-triangular part chosen to be independent and identically distributed to
zero-mean, variance-one standard Gaussians) over the set C:

(14)
Â = arg max

A∈Sn
Tr(MA)

s.t. A ∈ C.

This convex program is successful if Â is indeed an extreme point at which all the
constraints {hj(A) = αj} are satisfied.

Clearly this approach is well suited to constructing constrained graphs only if
the convex set C described in the solution scheme contains many extreme points at
which all the constraints are satisfied. The next result gives conditions under which
the convex program recovers an Â that satisfies all the given constraints.

Proposition 5.4. Consider the problem and solution setup as defined above.
Define the set N as follows:

N =
⋃

{A : A∈C, hj(A)=αj ∀j}
NC(A).

If M ∈ N , then the optimum Â of the convex program (14) satisfies all the specified
constraints exactly. In particular, if M is chosen uniformly at random as described
above, then the probability of success is equal to the fraction of Sn covered by the union
of the normal cones N .

Proof. The proof follows from standard results in convex analysis. In particular
we appeal to the fact that a linear functional defined by M achieves its maximum at
Â ∈ C if and only if M ∈ NC(Â).

As a corollary of this result we observe that if the invariant information provided
exactly characterizes the convex hull of a graph G, then the set C above is the convex
hull C(G) of the graph G. In such cases the convex program given by (14) produces an
adjacency matrix representing G with probability 1. Next we provide the results of a
simple experiment that demonstrates the effectiveness of our approach in generating
sparse graphs with large spectral gap.

Example. In this example we aim to construct graphs on n = 40 nodes with
adjacency matrices in A that have degree d = 8, node weights equal to zero, and
whose second-smallest eigenvalue of the Laplacian is larger than ε = 4. The goal
is to produce relatively sparse graphs that satisfy these constraints. The specified
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Fig. 4 An adjacency matrix of a sparse, well-connected graph example obtained using the approach
described in section 5.3. The weights of this graph lie in the range [0, 1], the black points
represent edges with nonzero weight, and the white points denote absence of edges. The
(weighted) degree of each node is 8, the average number of nonzero (weighted) edges per
node is 8.4, the second-smallest eigenvalue of the Laplacian is 4, and the weighted diameter
is 3.

constraints can be used to construct a convex set as follows:

C = {A : A ∈ A, 1
8A1 = 1, λn−1(LA) ≥ 4, Aii = 0 ∀i}.

By maximizing 100 random linear functionals over this set we obtain graphs in all
100 cases with total degree equal to 8, and in 98 of the 100 cases with the minimum
eigenvalue of the Laplacian equal to 4 (it is greater than 4 in the remaining two cases).
Interestingly the average number of edges with nonzero weight incident on each node
is 8.8 over these 100 trials, thus providing very sparse graphs that are well-connected.
Figure 4 gives an example of a graph generated randomly using this procedure; the
average number of nonzero (weighted) edges per node of this graph is 8.4, and its
(weighted) diameter is 3. Therefore, this approach empirically yields sparse graphs
that are well-connected (i.e., with a large spectral gap).

We would like to point out here a different approach to constructing well-connected
graphs that tries to add edges from a subset of candidate edges to maximize the sec-
ond eigenvalue of the graph Laplacian [20]. An interesting problem is to understand
the structure of the extreme points of the set C in our example as the graph size
and the degree (n, d) grow large, with ε held constant. For instance, it may be useful
to compute the volumes of the normal cones at those extreme points corresponding
to expander graphs. More generally, it is of interest to give conditions on constraint
sets under which the procedure described above is successful in providing graphs that
satisfy all the constraints with high probability.

5.4. Application: Graph Hypothesis Testing. Suppose we have two families of
graphs, each characterized by certain invariants, and we wish to decide which of these
families offers a “better explanation” for a given candidate “sample” graph. For
example, as illustrated in Figure 2, we may have two families of graphs—one being
the collection of cycles, and the other being the set of sparse, well-connected graphs.
If a new sample graph is a path (i.e., a cycle with an edge removed), we would expect
that the family of cycles should be a better explanation. On the other hand, if the
sample is a cycle plus some edges connecting diametrically opposite nodes, then the
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second family of sparse, well-connected graphs offers a more plausible fit. Notice that
these classes of graphs may often be specified in terms of different sets of invariants,
and it is of interest to develop a suitable framework into which we can incorporate
diverse structural information provided about graph families. Formally, we consider
the following problem statement.

Problem 3. Let F1 and F2 denote two families of graphs characterized in terms
of invariants {h1

j} and {h2
j}, respectively; for example, a family could be specified as

some set of graphs that have similar spectral distributions, similar degree sequences,
and similar girths. Given a graph G, which of the two families F1,F2 of graphs is
more similar to G?

We differentiate this problem from the well-studied question of testing properties
of graphs [23]. Examples of property testing include testing whether a graph is 3-
colorable or whether it is close to being bipartite. An important goal in property
testing is to test for graph properties by making only a small number of “queries” of
a graph. We do not explicitly seek such an objective in our algorithms for hypothesis
testing. We also note that hypothesis testing can be posed more generally than a
yes/no question as in property testing, and as mentioned above the two families in
hypothesis testing may be specified in terms of very different sets of invariants.

We emphasize that the sets of invariants that characterize F1,F2 may in gen-
eral be very different. Note that graph hypothesis testing as described here is not
completely well-posed, as there may be different answers depending on one’s notion
of similarity. In order to address this point, we need to develop a statistical theory
for graphs. In such a setting one could phrase this question formally as a statistical
hypothesis testing problem with appropriate error metrics. Our focus in the present
paper is on proposing a convex optimization solution to graph hypothesis testing
based on convex graph invariants, and on using a reasonable notion of similarity.

Solution 3. Let A ∈ Sn be an adjacency matrix that represents the graph G. We
construct invariant convex sets C1 and C2 based on the sets of invariants {h1

j}, {h2
j}

in an analogous manner to the construction described in the solution to the graph
construction problem of section 5.3. As before one could employ further tractable
relaxations of these sets if they were intractable to compute. Assuming that these
convex constraint sets that summarize the families F1 and F2 are compact, we declare
that F1 offers a better explanation of G than F2 if the following holds:

(15) max
M∈C1

Tr(AM) ≥ max
M∈C2

Tr(AM).

Naturally we declare the opposite result if the inequality is switched. Computing the
two sides in this test can be done via convex optimization, and this computation is
tractable if C1, C2 are tractable to characterize.

Our choice of the function to be maximized over C1, C2 is motivated by a similar
procedure in statistics and signal processing, which goes by the name of “matched
filtering.” Of course, other (convex invariant) cost functions can also be optimized
depending on one’s notion of similarity. We point out two advantages of this approach
to hypothesis testing. First, the two families of graphs can be specified in terms of
different sets of invariants, as seen in these examples. Second, the optimal solutions
of the convex programs in (15) in fact provide approximations to the graph G by
elements in the families F1,F2. We give illustrations of these points in our examples,
which we describe next.

Example. Let Acycle denote the adjacency matrix of a 16-node unweighted cycle.
As our first family we consider the set of cycles on 16 nodes. We approximate this
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family by the set of graphs that are triangle-free (in the sense described in section 2.4),
have degree equal to 2, and share the spectral properties of a 16-node unweighted cycle.
Therefore, the set C1 is defined as follows:

C1 = {A : A ∈ A, Aii = 0 ∀i, 1
2A1 = 1, ΘK3(A) ≤ 4} ∩ E(Acycle).

As our second family, we consider sparse well-connected graphs on 16 nodes with max-
imum weighted degree less than or equal to 2.5, with the second-smallest eigenvalue
of the Laplacian bounded below by 1.1:

C2 = {A : A ∈ A, Aii = 0 ∀i, (A1)i ≤ 2.5 ∀i, λn−1(LA) ≥ 1.1}.

Applying the solution described above to a test graph given by a 16-node unweighted
path graph (i.e., an unweighted cycle with an edge removed, see Figure 2), we find
that the path graph is “better explained” by the family F1 of cycles approximated by
the set C1 than it is by the family F2. This agrees with the intuition that a path graph
is not well-connected and is only one edge away from being a cycle. We also point
out that the optimal solution to the convex program on the left-hand side of the test
(15) is in fact an unweighted 16-node cycle with the missing edge in the path graph
added as an extra edge. Next we consider a different test graph—a 16-node cycle with
two additional edges across diametrically opposite nodes, i.e., assuming we label the
nodes of the 16-node cycle, we add edges between nodes 1 and 9 and between nodes
5 and 13 (again see Figure 2). While this graph is only two edges away from being a
cycle, the edges connecting far away nodes dramatically increase the connectivity of
the graph. In this case we find using the convex programming hypothesis test (15)
that the family F2 is in fact closer than F1 to the sample graph. Interestingly, the
optimal solution to the convex program on the left-hand side of the test (15) is again
an unweighted 16-node cycle, this time with the two additional edges removed.

In order to thoroughly address the graph hypothesis testing problem, we need
to develop a framework of statistical models over spaces of graphs. With a proper
statistical framework in place we can evaluate the probability of error achieved by
a hypothesis-testing algorithm with respect to a suitable error metric, analogous to
similar methods developed in other classical decision-theoretic problems in statistics.
We defer these questions to a separate paper.

6. Discussion. In this paper we introduced and studied convex graph invariants,
which are graph invariants that are convex functions of the adjacency matrix. Convex
invariants form a rich subset of the set of all graph invariants, and they are useful in
developing a unified computational framework based on convex optimization to solve
a number of graph problems. In particular, we described three canonical problems
involving the structural properties of graphs, namely, graph construction given con-
straints, graph deconvolution of a composite graph into individual components, and
graph hypothesis testing in which the objective is to decide which of two given families
of graphs offers a better explanation for a new sample graph. We presented solutions
based on convex relaxations to all of these problems, with convex graph invariants
playing a prominent role. These solutions had attractive empirical performance, and
the resulting convex programs are tractable and can be solved using general-purpose
off-the-shelf software for moderate size instances.

We are presently investigating several research questions arising from this paper.
It is of interest to provide theoretical guarantees on the performance of our convex
programs in section 5 in solving our motivating problems. For example, which families
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of graphs can be deconvolved or efficiently sampled from using convex optimization?
It is also preferable to develop special-purpose software to efficiently compute some
subset of convex graph invariants in order to enable the solution of very large problem
instances. Finally, in order to properly analyze the success of algorithms for graph
deconvolution, sampling, and hypothesis testing, it is important to develop a formal
statistical framework for graphs.

Appendix. Convex Symmetric Functions and Majorization. We contrast con-
vex graph invariants with convex symmetric functions, which are convex functions
over Rn that are invariant to permutation of the argument.

Definition A.1. A function g : Rn → R is a convex symmetric function if it is
convex and if, for any x ∈ R

n, it holds that g(Πx) = g(x) for all permutation matrices
Π ∈ Sym(n).

Thus, convex symmetric functions are convex functions that are constant over
orbits of the symmetric group acting on vectors in R

n. The properties of such functions
are well known in the literature on convex analysis and optimization, and they arise
in many applications. We briefly describe some of these properties and applications
here.

An important class of convex symmetric functions is the set of monotone linear
functionals given by

g(x) = vTx,

where v1 ≥ · · · ≥ vn. Recall that x is the vector obtained by sorting the entries
of x in descending order. Monotone linear functionals can be used to express any
convex symmetric function. Specifically, let M ⊂ R

n represent the cone of monotone
decreasing vectors in R

n. Then, for any convex symmetric function g : Rn → R, we
have that

g(x) = sup
v∈M

vTx− αv.

This statement is a simple consequence of the separation theorem from convex analysis
[36], and is similar in spirit to Proposition 3.1. Specifically, we see that monotone
linear functionals are analogous to elementary convex graph invariants since all convex
graph invariants can be represented via elementary invariants. In contrast, however,
monotone linear functionals are always efficient to compute, whereas the computation
of general elementary convex graph invariants includes as special cases certain NP-
hard problems (e.g., the traveling-salesman problem).

Monotone linear functionals have the interesting property that they can be ex-
pressed as the sum of even more elementary functions called distribution functions,
which are defined as follows:

gk(x) =

k∑
i=1

(x)i.

Such functions can be used to bound quantiles of probability distributions, which are
closely related to the notion of conditional value-at-risk [37].

Convex symmetric functions are intimately connected with the concept of ma-
jorization [31]. A vector x ∈ R

n is said to majorize another vector y ∈ R
n if

gk(x) ≥ gk(y) ∀k = 1, . . . , n− 1 and gn(x) = gn(y).
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The permutahedron of a vector x ∈ R
n is the convex hull of all permutations of x and

is given by the set of vectors in R
n that are majorized by x. Thus, convex constraints

given by distribution functions provide a simple characterization of the permutahe-
dron generated by x. The permutahedron of a vector is to be viewed as an analogue
of the convex hull of a graph (see section 3.2). Indeed, in analogy to the represen-
tation result of Proposition 3.6 in which the convex hull of a graph is expressed via
inequalities given by the elementary convex invariants, one could equivalently express
the permutahedron of a vector x ∈ R

n using all the monotone linear functionals eval-
uated at x. However, it suffices to use only the distribution functions as described
above since these can be used to express all monotone linear functionals. We also
note that in contrast to the convex hull of a graph, a permutahedron of any vector
x ∈ R

n is always tractable to characterize.
Majorization is also closely related to the notion of Lorenz dominance; a (typically

nonnegative) vector x ∈ R
n is said to Lorenz-dominate y ∈ R

n if −x is majorized
by −y. Lorenz dominance is used to measure the level of inequality in income distri-
butions, i.e., if a distribution x Lorenz-dominates a distribution y, then x is “more
equal” than y (see also the Gini coefficient, which is used to measure inequalities in
countries). To see this, note that −ymajorizing−x implies that the gk(−y) ≥ gk(−x)
for each k—equivalently, the sum of the smallest-k entries of x is larger than the sum
of the smallest-k entries of y, which implies a more equal distribution.

A convex symmetric function is an example of a Schur-convex function, which is
a function f such that f(x) ≥ f(y) whenever x majorizes y. Hence a Schur-convex
function preserves order with respect to majorization. A Schur-convex function is
symmetric (since x both majorizes and is majorized by Πx for any permutation Π),
but is not necessarily convex. Schur-convex functions arise in many applications in
which majorization plays a prominent role. Marshall and Olkin [31] give a compre-
hensive treatment of these connections, and they provide a precise characterization of
convex symmetric functions in terms of Schur-convex functions—specifically, convex
symmetric functions are exactly those that are both convex and Schur-convex.

A fairly similar set of results holds for convex functions of symmetric matrices
that are invariant under conjugation of the argument by orthogonal matrices [12, 28],
i.e., convex functions f : Sn → R such that f(V AV T ) = f(A) for all A ∈ Sn and for
all V ∈ O(n).
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