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ALGEBRAIC STRUCTURE AND FINITE DIMENSIONAL
NONLINEAR ESTIMATION*

STEVEN 1. MARCUSt AND ALAN S. WILLSKY:j:

Abstract. The algebraic structure of certain classes of nonlinear systems is exploited in order to prove
that the optimal estimators for these systems are recursive and finite dimensional. These systems are
represented by certain Volterra series expansions or by bilinear systems with nilpotent Lie algebras. In
addition, an example is presented, and the steady-state estimator for this example is discussed.

1. Introduction. Optimal recursive state estimators have been derived for very
general classes of nonlinear stochastic systems [14], [7]. The optimal estimator
requires, in general, an infinite dimensional computation to generate the conditional
mean of the system state given the past observations. This computation involves either
the solution of a stochastic partial differential equation for the conditional density or
an infinite set of coupled ordinary stochastic differential equations for the conditional
moments. However, the class of linear stochastic systems with linear observations and
white Gaussian plant and observation noises has a particularly appealing structure,
because the optimal state estimator consists of a finite dimensional linear system-the
Kalman-Bucy filter [12].

In this paper we exploit the algebraic structure of certain other classes of systems,
in order to prove that the optimal estimators for these systems are finite dimensional.
The general class of systems is given by a linear Gauss-Markov process g which feeds
forward into a nonlinear system with state x. Our goal is to estimate g and x given
noisy linear observations of g. Specifically, consider the system

(1.1)

(1.2)

(1.3)

dg(t) =F(t)g(t) dt+ G(t) dw(t),

N

dx(t) = ao(x(t)) dt+ L ai(x (t))gi (t) dt,
i=1

dz(t) =H(t)g(t) dt + R 1/\t) dv(t),

where g(t) is an n-vector, x(t) is a k-vector, z(t) is a p-vector, wand v are independent
standard Brownian motion processes, R> 0, g(O) is a Gaussian random variable
independent of wand v, x(O) is independent of g(O), w, and v, and {ai, i = 0, ... , N} are
analytic functions of x. It will be assumed that [F(t), G(t), H(t)] is completely
controllable and observable. Also we define Q(t)~ G(t)G'(t).

The optimal estimate, with respect to a wide variety of criteria, of x(t) given the
observations zt ~ {z (s), 0~ s ~ t}, is the conditional mean x(t\t), also denoted by
Et[x(t)] or E[x(t)lzt} [8] (henceforth we will freely interchange these three notations
for the conditional expectation given the rr field rr{z (s), 0~ s~ t} generated by the
observation process up to time t). Thus our objective is the computation of [(tit) and
;i(tlt). The computation of [(tit) can be performed by the finite dimensional (linear)
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(2.1)

Kalman-Bucy filter; moreover, the conditional density of e(t) given zt is Gaussian
with mean i(tIt) and nonrandom covariance P(t) [12], [8]. However, the computation
of x(tlt) requires in general an infinite dimensional system of equations. The purpose
of this paper is to show that if x(t) is characterized by a certain type of Volterra series
expansion, or if x(t) satisfies a certain type of bilinear equation, then x(tlt) can be
computed with a finite dimensional nonlinear estimator.

This research is related to the recent work of Brockett [1]-[3J on algebraic and
geometric methods in control theory and the work of Lo and Willsky [17], [25] on
estimation for bilinear systems.

2. Volterra series and finite dimensional estimation. As shown by Brockett [2J,
[3J and d'Alessandro, Isidori and Ruberti [5J in the deterministic case, considerable
insight can be gained by considering the Volterra series expansion of the system (1.2).
The Volterra series expansion for the ith component of x is given by

00 it it nx;(t) = wo;(t)+ L . . . L Wfikl'""".kJ)(t,CTI,·· ·,CTj)
j=l 0 0 k,."" ",kj=l

. !fk,(CTl)- .. !fkj(CTj) dCTl' . ,dCTj

where the jth order kernel Wj~kl'"" ".kj) is a locally bounded, piecewise continuous
function. We will consider, without loss of generality [2], only triangular kernels which
satisfy Wfikl'" ".,kj)(t,CT},' . ',CTj) =0 if CTl+m >CTm; I,m = 1,2,3,' . '. We say that a kernel
w(t,UI,' , ·,CTj) is separable if it can be expressed as a finite sum

(2.2)
m

W(t,CTI,' . ·,CTj) = L 'Yb(thf(CTlh'i(CT2)' . ·'Yj(Uj).
;--1

Brockett [2] discusses the convergence of (2.1) in the deterministic case, but we
will not consider this question in the general stochastic case. We will be more
concerned with the case in which the linear-analytic system (1.2) has a finite Volterra
series-that is, the expansion (2.1) has a finite number of terms. Brockett shows that a
finite Volterra series has a bilinear realization if and only if the kernels are separable.
Hence, a proof similar to that of Martin [20J of the existence and uniqueness of
solutions to a bilinear system drived by the Gauss-Markov process (1.1) implies that a
finite Volterra series in !f with separable kernels is well defined in the mean-square
sense.

With these preliminary concepts, the major results can be stated. The proofs are
contained in this section and Appendix B; an example follows.

THEOREM 2.1. Consider the linear system described by (1.1) and (1.3), and define
the scalar-valued process

(2.3) x(t)= e fJ (t)11(t)

where 11 is a finite Volterra series in !f with separable kernels. Then 'J1(tlt) and x(tlt) can
be computed with a finite dimensional recursive system of nonlinear stochastic differen
tial equations driven by the innovations dll(t)&dz(t)- H(t)x(tlt) dt.

THEOREM 2.2. Consider the linear system described by (1.1) and (1.3), and define
the scalar~valued processes

(2.4) 11(t)= fa'r"'· ..r"j ,!fk,(CTm,)- , '!fk,(CTm,)'Yt(CTl)- . 'n(CTj) dCTl' . ·dCTb

(2,5) x(t) = e Mt )11(t)
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(2.9)

(2.10)

where {yJ are deterministic functions of time and i > j. Then 71(t!t) and x(t\t) can be
computed with a finite dimensional recursive system of nonlinear stochastic differential
equations driven by the innovations.

The distinction between Theorems 2.1 and 2.2 lies in the fact that i > j in
(2.4}-i.e., there are more ~k 's than integrals. On the other hand, each term in the
finite Volterra series in (2.3) has i = j and the O"rnk are distinct. As Brockett [2]
remarks, we can consider (2.4) as a single term in Volterra series if the kernel is
allowed to contain impulse functions. As we will show in Lemma B.2, a term (2.4)
with i <j (more integrals than ~k'S) can be rewritten as a Volterra term with i = j; so
Theorem 2.1 also applies in this case.

The basic technique employed in the proofs of Theorems 2.1 and 2.2 is the
augmentation of the state of the original system with the processes which are required
in the nonlinear filtering equation (A.5}-(A.6) for x(t\t). For the classes of systems
considered here, it is shown that only a finite number of additional states are required.

Proof of Theorem 2.1. We consider one term in the finite Volterra series; since the
kernels are separable, we can assume without loss of generality that this term has the
form

(2.6) 1/(t)= fa' LlTl .. ·fO
lTi

-
1

~k,(0"1)" '~kJO"i)yl(O"l)" 'Yi(O"j)dO"l'" dO"j.

The theorem is proved by induction on j, the order of the Volterra term (2.6). We now
give the proof for j = 1; the proof by induction is given in Appendix B. If j = 1, then

(2.7) 1/(t)~ fa' l'l(0"1)~kl(0"1) dO"l

and 1/(t) is linear function of f Hence, if the state ~ of (1.1) is augmented with 1/, the
resulting system is also linear. Then the Kalman-Bucy filter for the system described
by (1.1), (1.3), and (2.7) generates [(tit) and 71 (tIt). In order to prove that x(t!t) is
"finite dimensionally computable" (FDC), we need the following lemilla. First we
define, for 0"1, 0"2 ~ t, the conditional cross-covariance matrix

(2.8) P(O"l, 0"2, t) = E[(~(0"1)- [(O"llt))(~(O"z)- [(O"zlt))'!ZI]

(where [(IT\t) = E[~(O")lz']).
LEMMA 2.1. The joint conditional density P{(lT,WlT2)(V, v'lz') is Gaussian with

nonrandom conditional cross-covariance P(O"l, 0"2, t}-i.e., P(O"l, 0"2, t) is independent
of {z(s), 0 ~ s ~ t}.

Proof. First, the conditional density is Gaussian because ( and z' are jointly
Gaussian random processes. Assume 0"1> 0"2; then

pC(lT,).€(lT2)(V, v'lz I) = PC(lTll(vl~(0"2) = v', z ')p c(lT2lv'\ z ')

= PC(lT,)(VI~(0"2)= v', Z~2)PC(lT2)(v'lzl)

where Z~2 = {z(s), lTz ~ S ~ t}.

Here (2.9) follows by the definition of the conditional density, and (2.10) is due to the
Markov property of the process (~, z) [8]. Each of the densities in (2.10) is the result of
a linear smoothing operation; hence, each is Gaussian with nonrandom covariance
PlT ,!lT2(t) and P(lT2,lT2,t), respectively [16]. Also, for 0">0, [11] P(lT,lT,t)=
[P-l(O")+ PB

1(0")r 1 where PB is the error covariance of a Kalman filter funning
backward in time from t to 0", and PBl(t) g, O. Due to the controllability of [F, G], P(O")
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(2.14)

is invertible for all 0" > 0 and PB(O") is invertible for all 0" < t [28]; consequently,
P(O", u, t) is invertible for all 0 < 0" ~ t. By the formula for the conditional covariance of
a Gaussian distribution [8], we have for 0~ 0"1 < 0"2 ~ t

(2.11) Pu1Iu2(t) =P(O"t. o"}, t)- P(O"t. U2, t)P-1(U2' U2, t)P'(ut. U2, t).

Since P(Ul, U2, t), 0 ~Ul < 0"2 < t, can be computed from (2.11), it is also nonrandom;
and since we have shown previously that P(O, 0, t) is nonrandom, P(ut. U2, t) is
nonrandom for all 0~Ut. U2 ~ t. 0

This lemma allows the off-line computation of P(ut. U2, t) via the equations of
Kwakernaak [15] (for Ul ~(2)

P(u}, 0"2, t)=P(Ul)qi'(U2' Ul)

(2.12) - P(Ul)[L '11'('1', ul)H'('T)R-1(-r )H('T)'11(-1', (2) d'T]P(U2),

(2.13) .~ qi(t, '1') = [F(t)- P(t)H'(t)R-1(t)H(t)]qi(t, '1'); '11('1', '1') = I

where the Kalman filter error covariance matrix P(t) £ P(t, t, t) is computed via the
Riccati equation

p(t) =F(t)P(t) +P(t)F'(t)+Q(t)- P(t)H'(t)R-1(t)H(t)P(t),

P(O) =Po.

Recall [8] that the characteristic function of a Gaussian random vector y with
mean m and covariance P is given by

(2.15) My(u)= E[exp (iu'y)] =exp [iu'm -tu'Pu].

(2.16)

Hence, by taking partial derivatives of the characteristic function (see Lemma B.l),
we have

Et[x(t)] = f 'Yl(u)Et[e Cj(t)gk1(U)] du

=f 'Yl(u)[ik1(ult)+Pklolu, t, t)] efPlt)+(l/:)Pit) du,

={f 'Yl(U)Pk1iu, t, t) du +Et[f 'Yl(U)gk1(U) duJ} . e f/ t1t )+(l/2)PI/(t)

={f 'Yl(U)Pk1 Au, t, t) du +1}(tlt) }e f/ t1t )+(1/2)PI/(t).

Since the first term in (2.16) is nonrandom and 1}(t/t) and i(tlt) can be computed with
a Kalman-Bucy filter, x(tlt) is indeed FDC for the case j = 1.

The induction step of the proof of Theorem 2.1 is given in Appendix B. A crucial
component of the proof is Lemma B.l, which expresses higher order moments of a
Gaussian distribution in terms of the lower moments. Notice that in equation (2.16)
we have interchanged the operations of integration and conditional expectation. This
is justified by the version of the Fubini theorem proved in [18]; since we will be
dealing only with integrals of products of Gaussian random processes, the use of the
Fubini theorem is easily justified, and we will use it without further comment.
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The proof of Theorem 2.2 is almost identical to that of Theorem 2.1; the
differences are explained in Appendix B. We now present an example to illustrate the
basic concepts of these theorems; this example is a special case of Theorem 2.2.
However, we will need one preliminary lemma.

LEMMA 2.2. The conditional cross-covariance satisfies

(2.17)

where

P(u, t, t) = K(t, u)P(t)

(2.18) ~ K'(t, u) = -[F'(t) +P-1(t)Q(t)]K'(t, u); K'(u, u) = I.

Proof. Let

P(u, t)~ E[(~(u)- (ulu ))(~{t)- ({tl t))']

and consider

P(u, t, t)- P(u, t) =E[«((uju)- (ult))(~(t)- (tlt))'!z I].

Since (ulu)- (ult) is measurable with respect to the u-field u(z I), the projection
theorem [22] implies that P(u, t, t) - P(u, t) = O. The proof is concluded by noting that
[11] P(u, t)= K(t, u)P(t). 0

Example 2.1. Consider the system described by

(2.19)

(2.20)

(2.21)

dx(t) =(- yx(t)+ ~1{t)~2{t))dt,

(2.22)

where a, p, y > 0, WI. W2, Vb and V2 are independent, zero mean, unit variance
Wiener processes, ~1(0) and ~2(0) are independent Gaussian random variables which
are also independent of the noise processes, and x(O) = O.

The conditional expectation i(tlt) satisfies the nonlinear filtering equation (A.5}
(A.6):

di(t!t) = E ' [- yx(t)+ ~1(t)~2(t)]dt + {E'[ t' e -'Y(I-s)~l (s )~2(S) ds . f(t)]

- E'[ t' e -'Y(I-s)~l (s )~2(S) dS] ('{tIt)} dll(t)

where ~(t)= [~l(t), ~2(t)]' and the innovations process II is given by

(2.23) dll(t) = dz(t)-(tlt) dt.

Recall that the conditional covariance P(t) of ~(t) given Zl satisfies the Riccati
equation (2.14). Since ~1(0) and 6(0) are independent, it is not difficult to show that
Pdt) = P21 (t) = 0 for all t. From (2.17}-(2.18) we can compute

(2.24)p( )= [Pll{t)exp[a(t-u)- I~PINs)ds] 0 ]
u, t, t I' -l() ].o P22(t) exp[p(t - u)- uP22 S ds
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=E t{ f. te -y(t-s>[ 0
o P22(S, t, t)

=E t[111(t)Pll {t)]
112(t)P22(t)

(2.25b)

(2.25a)

These facts and equation (B.3a) imply that the transpose of the gain term in (2.22) is

Et[r e -y(t-S)~1(S)~2(S)~(t) dS] - Eff e -y(t-s)~1(s)6(s) ds]f(tlt)

=Le-y(t-s)(Et[~1(S)~2(S)~(t)] - Et[~1(S)~2(S)]Et[~(t)]) ds

Pll(s, t, t)][~1(S)]dS}
o 6(s)

where

(2.26) [
"h(t)] = [a - y - PINt)
1h(t) 0

111 (0) = 112(0) = O.

(2.27)

In other words, the argument of the conditional expectation in (2.25a) can be realized
as the output of a finite dimensional linear system with state 11(t) = [111(t), 112(t)]'
satisfying (2.26).

Thus the finite dimensional optimal estimator for the system (2.19}-(2.21) is con
structed as follows (see Fig. 1). First we augment the state ~ of (2.19) with the state 11
of (2.26). Then the Kalman-Bucy filter for the linear system (2.19), (2.26), with
observations (2.21), computes the conditional expectations f(tlt) and -r1(tlt). Finally,

dx(tlt) =[- yx(tlt)+ f1(tlt)f2(tlt)] dt+ -r1'(tlt)p(t) dp(t),

x(OIO)=o.

NONUNEAR
II

~,...... FILTER

dO'
1\ 1\

KALMAN-SUeY C'I
FILTER

FIo. 1. B/QCk diagram oft~ optimal filter for Example 2.1.

We now discuss the steady-state behavior of the optimal filter. Since the linear
system (2.19) is asymptotically stable (and hence detectable) and controllable, the
Riccati equation (2.14) has a unique positive-definite steady-state solution P [28]; a
simple computation shows that

(2.28) p=[Pll 0 ]=[-a+~ 0 ].
o P22 0 - {3 +.Jjj'l+l
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(2.30)

Thus, in steady-state, the augmented linear system (2.19), (2.26) is time-invariant.
Now consider the eigenvalues of (2.26) in steady-state:

a -y-Pi/ = a -y -( -a+~-l= -y-Ja 2 + I,

(3 - y - Pil = (3 - y - (- (3 + ..../(32 +1fl = -y - J(32 + 1.

Consequently, the augmented linear system is also asymptotically stable and con
trollable in steady-state. Let the conditional covariance matrix of the augmented state
[~(t), 1/(t)] given Zl be denoted by 5(t). Then the Riccati equation satisfied by 5(t) has
a unique positive-definite steady-state solution 5 (notice that 5 11 = P 11 and 522 = P22 ).

The steady.-state Kalman-Bucy filter [8] for the augmented system (2.19), (2.26)
is easily computed to be

d fl(tlt) -a 0 0 0 fl(tlt)

d f2(tlt) 0 -(3 0 0 f2(t!t)

d ~l(tlt) -y -Ja2+ 1 ~l(tlt)
dt

0 1 0

d ~2(tlt) 1 0 0 -y-J[32+1 fi2(t\t)

(2.29) Pll 0

0 P22 ~dV'(I)J+
0 523 d1l2(t)
514 0

where

5 - Pll P22 5 _ PllP22
14 - , 23-

PllP22 + (a - (3 + y)P22 + 1 PllP22 + ((3 - a + y)Pll + 1

(here Pll and P22 are defined in (2.28)). The conditional expectation x(tlt) is com
puted according to

dx(tlt) = [ - yx(tlt) +fl (t\t)f2(tlt)] dt + -ry'(tlt) P dll(t),

x(OIO)= 0

which is a nonlinear, time-invariant equation.
We note that the stability of the original linear system is not necessary for the

existence of the steady-state optimal filter in this example; in fact, a weaker sufficient
condition is the detectability [28] of the linear system (2.19), (2.21) and the positivity
of y in (2.20). The generalization of this result to other systems is presently being
investigated.

3. Finite dimensional estimators for bilinear systems. In this section the results of
the previous section are applied, with the aid of some concepts from the theory of Lie
algebra [23], to prove that the optimal estimators for certain bilinear systems are finite
dimensional. Consider the system described by (1.1), (1.3), and the bilinear system [I),
[10]

(3.1) X(O)=I
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where X is a k x k matrix. We associate with (3.1) the. Lie algebra ff ~
{A o, AI, ..., AN}LA, the smallest Lie algebra containing A o, AI, ... , AN; the idealIeo
in Ie generated by {AI, ..., AN}; the group G £ {expIe}G, the smallest group
generated by {exp A} for all A E.:t; and the subgroup Go £ {exp Ieo}G [10], [18], [19],
[26], [27].

DEFINITION 3.1 [23]. A Lie algebra Ie is solvable if the derived series of ideals

Ie(O) = Ie,

n~O,

is the trivial ideal {OJ for some n. Ie is nilpotent if the lower central series of ideals

o

.;eo = Ie,

Ien
+

1= [Ie, Ien
] ={[A, B]IA E Ien

}, n ~ 0,

is {OJ for some n. Ie is Abelian if .;e(1)=Ie1={0}. Note that Abelian::;>nilpotent::;>
solvable, but none of the reverse implications hold in general.

A useful structural result for nilpotent Lie algebras is present~d in the following
lemma [23, p. 224]. .

LEMMA 3.1. A matrix Lie algebra Ie is nilpotent if and only if there exists a
(possibly complex~valued) nonsingular matrix P such that, for all A E Ie, PAP-1has the
block diagonal form

[~~)
(3.2)

o

(this will be called the nilpotent canonical form). The functions<l>k: Ie~ C are linear.
Furthermore, <l>k([Ie, IeD ={OJ.

It is easy to show, using Brockett's results [2] on finite Volterra series, that each
term in (2.3) can be realized by a bilinear system of the form

(3.3)
n

x(t) = ~j(t)x(t)+ L Ak(t)~k(t)x(t)
k=1

where x is a k-vector and the A j are strictly upper triangular (zero on and below the
main diagonal). For such systems, the Lie algebra Ieo is nilpotent. In this section we
will show conversely that if the Lie algebra Ieo corresponding to the bilinear system
(3.1) is nilpotent, then each component of the solution to (3.1) can be written as a
finite sum of terms of the form (2.3). Hence, such systems also have finite dimensional
estimators; this result is summarized in the next theorem.

THEOREM 3.1. Consider the system described by (1.1), (1.3), and (3.1) and assume
that Ieo is a nilpotent Lie algebra. Then the conditional expectation X(tlt) can be
computed with a finite dimensional system of nonlinear differential equations driven by
the innovations.

Remarks. (i) It can easily be shown that if Ieo is nilpotent, then Ie is solvable;
however, the converse is not true. Hence, Ie is always solvable in Theorem 3.1.

(ii) Theorem 3.1 provides a generalization of the work of Lo and Willsky [17] (in
which Ie is Abelian) and Willsky [25]. The Abelian discrete-time problem is also
considered by Johnson and Stear [9].
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(iii) The model considered in Theorem 3.1 is motivated by a problem in strap
down inertial navigation [18], [26]. However, in the navigation problem 2 0 is not
nilpotent (in fact, 2= so(3) is simple [23]), so Theorem 3.1 does not apply.

(iv) Usin¥. the notation of Brockett [2], it is easily seen that the pth order
moments X[p (t) satisfy an equation of the form (3.1) (with different coefficient
matrices Ai[p)), and hence X[pl(t\t) can also be computed with a finite dimensional
estimator. In particular, the performance of the estimator of Theorem 3.1 can be
evaluated by computing the conditional covariance of X(t) given z' in this
manner.

Theorem 3.1 is proved via a series of lemmas which reduce the estimation
problem to the case in which 2 is a particular nilpotent Lie algebra. The first lemma
generalizes a result of Willsky [25], Brockett [1], and Krener [13] (the proof is
analogous and will be omitted).

LEMMA 3.2. Consider the system described by (1.1), (1.3), and (3.1) and define the
k x k matrix-valued process

(3.4) Y(t) = e -A,,'X(t).

Then there exists a deterministic matrix-valued function D(t) such that Y satisfies

(3.5) Y(O)=I

where {Hb •• " H M } is a basis for 2 0 and

(3.6) Y(t) = D(t)~(t).

In addition, Xcan be computed according to

(3.7)
,

Lemma 3.2 enables us, without loss of generality, to examine the estimation
problem for Y(t) evolving on, the subgroup Go ={exp 2 0}o, rather than for X(t)
evolving on the full Lie group G ={exp 2}o. Thus, we need only consider the case in
which A o=0 and 2 =2 0 is nilpotent in order to prove Theorem 3.1.

By means of Lemma 3.1 the problem can be further reduced to the consideration
of Lie algebras in nilpotent canonical form.

LEMMA 3.3. Consider the system described by (1.1), (1.3), and (3.1), where A o=0
and 2 is nilpotent. Then there exists a (possibly complex-valued) nonsingular matrix P
such that

(3.8) X(tlt) =p-1 Y(t\t)P

where Y satisfies (3.5) and [{Hb · .. ,HM } are in nilpotent canonical form.
Proof. According to Lemma 3.1, there exists a nonsingular matrix P such that

P2P-1 is in nilpotent canonical form. If we define Hi =PA;P-\ then X(t)=
p-1 Y(t)P, where Y satisfies (3.5). Hence, X(t!t) = PY(t!t)P-1 and the lemma is
proved. 0

Finally, by means of the following trivial lemma, we reduce the problem to the
consideration of one block in the nilpotent canonical form.

LEMMA 3.4. Consider the system described by (1.1), (1.3), and (3.1), where A o=0
and {A b · . " AN} are in nilpotent canonical form. Then X(t) has a block diagonal
form conformable with that of {A b •• " AN}.

Let gn(m) denote the Lie algebra of upper triangular m x m matrices with equal
diagonal elements. Then Lemma 3.4 implies that the bilinear system (3.1) can be



ALGEBRAIC STRUCTURE

viewed as the "direct sum" of a number of decoupled krdimensional subsystems

321

(3.9)

where A{,"', A~belong to gn(kj ). Hence, Theorem 3.1 will be established when we
prove the following lemma.

LEMMA 3.5. Consider the system described by (1.1), (1.3), and (3.1), where A o = 0
and {A!," ·,AN}egn(k). Then each element of the solution X(t) of (3.1) can be
expressed in the form

(3.10)

where 71 is a finite Volterra series in g with separable kernels. Hence, Theorem 2.1
implies that X(tlt) can be computed with a finite dimensional system of nonlinear
stochastic differential equations.

Proof Since {A h .. " AN}e gn(k), the bilinear equation (3.1) can be rewritten in
the form

(3.11)

where ai are constants, I denotes the k x k identity matrix, and B 1, •• " BN are strictly
upper triangular (zero on the diagonal). It is easy to show that

X(t)=exp(Jl aiLgi(S)dS) yet)

where Y satisfies

(3.12) Y(O) = I.

Since the {Bi } are strictly upper triangular, the solution of (3.12) can be written as a
finite Peano-Baker (Volterra) series [2], and each element of X(t) can be expressed in
the form (3.10). 0

4. Conclusions. It is shown in [18] that if !eo is not nilpotent, then the optimal
estimator for (1.1), (1.3), and (3.1) is infinite dimensional. Thus, the results of this
paper cannot be generalized to much larger classes of systems.

However, the papers of FIiess [6] and Sussmann [24] show that, in the deter
ministic case with bounded inputs, any causal and continuous input-output map on a
finite interval can be uniformly approximated by a bilinear system of the form (3.1) in
which A o, A h ... ,AN are all strictly upper triangular. For such a bilinear system
both !eo and !e are nilpotent Lie algebras. Stochastic analogues of this result are
currently being investigated. The implication of such a result would be that suboptimal
estimators for a large class of nonlinear stochastic systems could be constructed using
the results of this paper.

Appendix A. General nonlinear filtering equations. In this Appendix we state
some results on nonlinear filtering [7], [8], [14]. Consider a model in which the state
evolves according to the Ito stochastic differential equation

(A. 1) dx(t) = f(x(t), t) dt+ G(x(t), t) dw(t)
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and the observed process is the. solution of the vector Ito equation

(A2) dz(t)= h(x(t), t) dt+ R 1/2(t) dv(t).

Here x(t) is an n-vector, z(t) is a p-vector, R 1/2 is the unique positive definite square
root of the positive definite matrix R, and v and ware independent Brownian motion
(Wiener) processes such that

(A3) E[w(t)w'(s)] = famine,.s) Q(r) dr,

(A4) E[v(t)v'(s)] =min (t, s)· I.

For any integrable random process a(t), we denote E(a(t)!z(s), O~s~t) by
a(t1t) or E'[a(t)]. Then, [7], [8], [14], the conditional mean x(t!t) satisfies

(AS) dx(tlt) =E'[f(x(t), t)] dt +{E'[x(t)h'(x(t), t)] - x(tlt)E'[h'(x(t), t)]}R-1(t) dv(t)

where the innovations process v is defined by

(A6) dv(t) =dz(t)- E'[h(x(t), t)] dt.

Appendix B. Proofs of Theorems 2.1 and 2.2.
B.1. Preliminary results. In this section we present some preliminary results

which are crucial in the proofs of Theorems 2.1 and 2.2. The first lemma follows easily
from some identities of Miller [21].

LEMMA B.1. Let x = [Xl,' . " Xk]' be a Gaussian random vector with mean m,
covariance matrix P, and characteristic function M x . Then, if I ~ k,

__a_I__M(Ut '" ud={et···el-'f,P. ·e····e·
aUt' • . aUI x , , /1/2 13 11

(B. 1) +" D .. p . . e. .. 'e. - .. '}M (Ut ... Uk)
U 1112 13J4 15 JI X"

where

(B.2)
k

ej = imj - 'f, UnPjn
n=l

and the sums in (B.l) are over all possible combinations of pairs of the {h, i = 1, . , . , I}.
Also,

(B.3a)

(B.3b)

(B.3c)

k-t

E[XtX2' . 'Xk] =E[Xk]E[X1X2' , 'xk-d + 'f, PkitE[xj,Xj3' 'XjH]
h=t

=E[Xt' . 'XiJE[Xi+t' . 'Xk] +'f, Phh,E[xj,' . 'XiJE[XI;+2' , 'xd

+'f,Pj,II+,Ph i<+2E [Xj3' 'XiJE[XI;+3' 'XIJ+'"

= m1" 'mk +'f,Phhmj3' 'mjk

+" p . . p . . m·" 'm· +...£.. 1'/2 13/4 Is Ik

where the sums in (B,3b, c) are defined as in (B.l); also, in (B.3b), g., a =1, ... ,i} is a
permutation of {I, .. " i} and {la, a = i +1, ' , " k} is a permutation of {i + 1,' , " k}.

In the remainder of this Appendix it will be assumed that ~ and z are Gauss
Markov processes satisfying (1.1) and (1.3), respectively. We now define classes of
random processes which occur as the jth order term in a Volterra series expansion in ~
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with separable kernels, and we prove some lemmas relating these to other relevant
processes.

DEFINITION B.l. The space A j of Volterra terms oforder j is the vector space over
R consisting of all scalar-valued random processes Aj of the form

(B.4)

where

N

Aj(t) = L Yh(t)A Xt)
j=1

(B.5) Aj(t) = fr·'··· fTi

-, Y~(0"1)" 'yj(O"j)~k,)0"1)-" ~ki.,(O"j)d0"1·· 'dO"j

where for each i, {~k,." .. " ~ki,.} are not necessarily distinct elements of ~, and {yn are
locally bounded, piecewise continuous, deterministic functions of time. We denote by
Aj the space of all processes

The next lemma, which is due to Brockett [4], shows that terms of the form (2.4)
with i < j (more integrals than ~k 's) are in fact elements of Aj •

LEMMA B.2. Let ~ satisfy (1.1) and consider the scalar-valued process

where Yi are as in Definition B.l, mn ¥. m/ for n ¥= I, and i < j. Then 11 E A j •

Proof It is easy to show using the construction of Brockett [2, Thm. 4] that 11(t)
has a realization as a time-varying bilinear system

(B.7)

(B.8)

j

i(t)=A(t)x(t)+ L ~kl(t)B/(t)x(t),
/=1

where A(t) and {B/(t)} are strictly upper triangular matrices. The Volterra series for
(B.7) can be expressed via the Peano-Baker series [2], and the Volterra series is finite
because A(t) and {B/(t)} are upper triangular. In fact, because the original expression
(B.6) contains only the product of i components of ~, the Volterra expansion of
11(t) = X1(t) will contain only an ith order term

where {nt, 1= 1,' . " i} is a permutation of the {k/, 1= 1, .. " i} of (B.6). Hence 11 E

Aj • 0
Recall that the conditional cross-covariance P(O"l, 0"2, t) (defined in (2.8)) was

shown to be nonrandom in Lemma 2.1; it can be computed from Kwakernaak's
equations (2.12}-(2.14). The following lemma shows that Pjj(O"l, 0"2, t) is a separable
kernel.

LEMMA B.3. Pjj(O"l' 0"2, t) is a separable kernel; i.e., it can be expressed in the form

(B.IO)
m

Pjj(O"l, 0"2, t)= L y~(t)yN0"1)y;(0"2).
k=1
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Proof. Assume Ut;a U2;a t. Then it follows from (2.12) that, for arbitrary real
numbers a, (3, and 8,

P(ut, U2, t) = P(Ut)'I"(a, Ut)[ '1" (U2, a)-r'1"(1', a )H'(1')R-t(1')H(1')'I'(1', (2) dT' P(U2)
U2

(B.ll) - J; '1"(1', a )H'(1')R-t(1')H(1')'I'(1', 8) d1' . '1'(8, (2)P(U2)]

A A(Ut)[B(U2)+C(t)D(U2)).

Hence, if ei denotes the ith unit vector in R n
, it is obvious from (B.ll) that

(B.12)

(B.l3)

(B.14)

has the form (B.10) for some functions {yt(t)}. 0
The next lemma proves that certain processes which occur in the proof of

Theorem 2.1 are elements of Aj •

LEMMA B.4. Let ~ satisfy (1.1), and consider the scalar-valued process

• "Yt(Ut)' . '"yj(Uj)~k,(Ut)' . '~kl(Uj) dUt' . 'duj

where the mi are arbitrary integers in {I, ... , i} and P "" n'2 are arbitrary elements of P.
Then 71 E Aj.

Proof. Since we have shown in Lemma B.3 that P """'2 (U ...., , U....2 ' t) is a separable
kernel, the kernel of the integral (B.l3) is also a separable kernel. Hence, 'T/ E Aj . 0

Lemma B.4 implies that if Aj(tlt) can be computed with a finite dimensional
estimator for all Aj E Aj , then -r1(t1t) where 71 is defined by (B.l3)) is also "finite
dimensionally computable" (FDC).

B.2. Proofs of Theorems 2.1 and 2.2. The proofs of these two theorems are
almost identical. We will prove Theorem 2.1; then we will explain how this proof is
modified to prove Theorem 2.2.

Proof of Theorem 2.1. As stated in § 2, we consider the jth order Volterra term

J
IJU' JUI ,

71 (t) = 0 0 0 "Yt (Ut)- .. "Yi(Uj) . ~k, (Ut)' .. ~kl(Uj) dUt' ..dUj.

The theorem is proved by induction on j, the order of the Volterra term. The proof for
j = 1 is presented in § 2. We now assume the theorem holds for j;a i -1 (Le., we
assume that E'[e~'(I)71(t)) is FDC, where 71 E Ai> for j;a i-I), and prove that it holds
for j= i.

The proof is in two steps. We first reduce the problem to the computation of the
elements of .t (see Definition B.1). We then show by induction that all of the
processes in Ai can be computed with finite dimensional estimators.

(i) We first consider the computation of x(t\t), where

(B.1S) x(t)=e~I(t)71(t).

Now

(B.16)
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By (B.l) and the definition of the characteristic function, it follows that

E ' [e e,(t)gk, (Ul)' .. gkl(UI)]

(B.17) = e i,(III)+(l/2)Pll(t){81(Ul)' . ·81(uI)

+I Phi2(Um" u m2' t)8iJ(um3 ). .. 8i;(um.)+· ..}
where

(B.18) 8jjuma ) = ija(umJt) +PI,jjt, Uma' t)

and {ja, a = 1, ... ,i} is a permutation of {ka , a = 1, ... ,i}.
Equation (B.3) implies that (B.17) can be rewritten as

E I[ee,(t)gk,(Ul)- . .gk,(Uj)] = e 4(t!I)+(l/2)Pll (t)
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(B.19)
. {E'[gk,(U,)- . ·gduI)] +I PI,h(t, um" t)EI[gh(Um2 )- . ·gi/(um,)]

+I PI,h(t, um" t)PI,h(t, Um2' t)EI[giJ(Um3 )' . ·gi;(um.)]

+... +I Pu,(t, Ul, t)· . ·PI,k.(t, Uj, t)}.

Hence, Lemmas B.2 and BA imply that the computation of £(tlt) involves only the
computation of elements in Ai> j = 1, "', i. However, the induction hypothesis
implies that the elements of Ai> j = 1, ... , i-I are FDC, so we need only prove that
the elements of AI are FDC.

(ii) Assume that fl E Ai is defined by (B.14) (where j = n. Then the nonlinear
filtering equation (A.5)-(A.6) for ?1(tlt) is

(B.20) .d?1(tlt) =E ' ['Yl(t)gk,(t)A (t)] +{E ' [ fl(t)f(t)] -'71 (tlt)t (tlt)}H'(t)R- 1(t) dv(t)

where

(B.21)

and

dv(t) =dz(t)- H(t}f(tlt) dt

(B.22) A(t)= fa'r·2

••• LO'I-' 'Y2(U2)" ''Y;(U;)gdU2)'' . gk,(U;)dU2' . ·du;

is an element of AI-I; thus, by the induction hypothesis ,\(tlt) is FDC. The first term in
(B.20) (the drift term) is (see (B.3a»

E ' ['Yl (t)gk, (t)A (t)] = 'Yl (t)[k, (tlt),\ (tit)

(B 23) [ I f'f0'2 fO"-'. + 'Yl(t)EI I . . . Pklok,(t, UI, t)Y2(U2)' .. 'Y;(U;)
/=2 0 0 0

. gk2 . ·gk,_,gk'+l· . ·gkl dU2' . .dut].

The first term in (B.23) is FDC by the induction hypothesis, and the second term, by
Lemmas B.2 and B.4, is also FDC (i.e., it is an element of AI- 2).

Equation (B.3a) implies that the gain term in (B.20) is the row vector (here
PI(u, t, t) denotes the ith row of P(u, t, t»

E ' [fl(t)f(t)] -'71 (tlt)t(tlt)

(B.24) = ±E'[f' fO" ... fO"-' 'Yl(Ul)' .. 'Y;(U;)
1=1 0 0 0

. gk,(Ul)' . ·gkl _,(U/-l)gkl+,(U/+l)· . ·gkl(U;)Pk,(U/, t, t) dUI' . 'dUkJ
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(B.26)

each element of which, by LemmasB.2 and B.4, is an element of Ai-I. Thus, by the
induction hypothesis, the gain term, and hence the nonlinear equation (B.20) for
'l1(tlt) is FDC. This completes the proof of Theorem 2.1. 0

Proof of Theorem 2.2. This proof is identical to the proof of Theorem 2.1, except
for the computation of the drift term in (B.20), so we will consider only that aspect of
the proof. Assume that.,., is defined as in (2.4}--i.e., .,., is given by

(B.25) .,.,(t) = L' ('1 ...tT

; I~kl(CTml)" '~ki(CTm,)yI(CTI)' . ''Yj(CTj) dCTI' . 'dCTj

where i > j; we also assume that ml = ... = ma =1 and ml3 f:. 1 for {3 > a. In this proof,
the induction is on j, the number of integrals in (B.25). That is, we assume that the
theorem is true when '11 contains ~ j - 1 integrals, and prove that the theorem holds if
.,., contains j integrals.

The nonlinear filtering equation yields

d~(tlt) =E t['YI(CTI~kl(t)· . •~k" (t)A (t)]

+{Et[11 (t)f(t)] - 'l1(tlt)/'(tlt)}H'(t)R -l(t) dll(t)

where dll is defined in (B.21) and

It f. <T2 r<T; 1

(B.27) A(t)= 0 0 ••• 1
0

'Y2(CT2)' . ''Yj(CTj)~ka+I(CTma+1)' . ·~ki(CTm.) dCT2' . ·dCTj.

The drift term in (B.26) is, from (B.3b),

E t['YI(t)~kl(t)· . '~ka (t)A (t)]

= 'YI(t)Et[~kl(t)- . '~ka(t)]A(tlt)

(B.28) + 'YI(t)I{Et[~'2(t)- . ~.~dt)]

[I
t r<T2 r<T;-1

. E t
0 1

0
••. 1

0
'Y2(CT2)' .. 'Yj(CTj)P'I'a+1 (t, CTma+I' t)

. ~'a+2«(1'ma+2)- . '~,,(CTm,) dCT2' . 'dCTa} +...
where {iI, .. " la} is a permutation of {k h .. " k",} and {la+h .. " lJ is a permutation of
{ka + h ' . " kJ. The first term of (B.28) is FDC by the induction hypothesis, and the
other terms, by Lemmas B.2 and B.4 and the induction hypothesis, are also FDC. We
have also used the fact that the conditional distribution of ~(t) given zt is Gaussian
(Lemma 2.1) in order to conclude that Et[~k,(t)· . .~k" (t)] can be computed (via (B.3c»
as a memoryless function of /(t\t) and P(t).

The gain term in (B.26) is also FDC; the proof is identical to that of Theorem 2.1.
Hence ~(tlt) is FDC, and Theorem 2.2 is proved. 0
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