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Abstract—Loopy belief propagation has been employed in a
wide variety of applications with great empirical success, but it
comes with few theoretical guarantees. In this paper, we analyze
the performance of the max-product form of belief propagation
for the weighted matching problem on general graphs. We show
that the performance of max-product is exactly characterized by
the natural linear programming (LP) relaxation of the problem. In
particular, we first show that if the LP relaxation has no fractional
optima then max-product always converges to the correct answer.
This establishes the extension of the recent result by Bayati,
Shah and Sharma, which considered bipartite graphs, to general
graphs. Perhaps more interestingly, we also establish a tight
converse, namely that the presence of any fractional LP optimum
implies that max-product will fail to yield useful estimates on some
of the edges. We extend our results to the weighted �-matching and
�-edge-cover problems. We also demonstrate how to simplify the
max-product message-update equations for weighted matching,
making it easily deployable in distributed settings like wireless or
sensor networks.

Index Terms—Belief propagation, combinatorial optimization,
graphical models, Markov random fields, matching, message
passing.

I. INTRODUCTION

L OOPY belief propagation (LBP) and its variants [1]–[3]
have been shown empirically to be effective in solving

many instances of hard problems in a wide range of fields. These
algorithms were originally designed for exact inference (i.e.,
calculation of marginals/MAP estimates) in probability distri-
butions whose associated graphical models are tree-structured.
While some progress has been made in understanding their con-
vergence and accuracy on general “loopy” graphs (see [3]–[5]
and their references), it still remains an active research area.

In this paper, we study the application of the widely used max-
product form of LBP (or simply max-product (MP) algorithm),
to the weighted matching problem.1 Our motivation for doing so
is twofold: first, weighted matching is a classical problem with
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much structure, and this structure can be used to provide a much
finer characterization of max-product performance than would
be possible for general graphical models. Second, fast and dis-
tributed computation of weighted matchings is often required in
areas as diverse as resource allocation, scheduling in communi-
cations networks [8], and machine learning [9].

Given a graph with nonnegative weights on
its edges , the weighted matching problem is to find the
heaviest set of mutually disjoint edges (i.e., a set of edges such
that no two edges share a node). Weighted matching can be nat-
urally formulated as an integer program (IP). The technique of
linear programming (LP) relaxation involves replacing the in-
teger constraints with linear inequality constraints. In general
graphs, the linear program for weighted matching can have frac-
tional optima—i.e., those that assign fractional mass to edges.
The primary contribution of this paper is an exact characteri-
zation of max-product performance for the weighted matching
problem: we show that

• If the LP has no fractional optima (i.e., if the optimum of
LP is unique and integral), then max-product will converge
and the resulting solution will be exactly the max-weight
matching (Theorem 1).

• For any edge, if there exists an optimum of LP that assigns
fractional mass to that edge, then the max-product estimate
for that edge will either oscillate or be ambiguous (The-
orem 2). For the entire graph, this implies that if fractional
optima exist then max-product will fail (Corollary 1).

Most of the existing analysis of classical loopy belief prop-
agation either provides sufficient conditions for correctness of
solutions (e.g., [10] and [4]), or provides an analysis/interpreta-
tion of fixed points (e.g., [5] and [3]). However, there are rela-
tively few results that provide necessary conditions for the con-
vergence/correctness of the iterative procedure. Theorem 2 is
thus significant in this regard, and we believe it is more general
than the weighted matching and covering problems discussed in
this paper.

Many tantalizing connections between belief propagation and
linear programming (in various forms) have been observed/con-
jectured [11]. This paper provides a precise connection between
the two for the weighted matching problem. An interesting in-
sight in this regard, obtained from our work, is the importance
of the uniqueness of the LP optimum, as opposed to uniqueness
of the IP optimum. In particular, it is easy to construct examples
where the LP has a unique integer optimum, but also has addi-
tional spurious fractional optima, for which max-product fails to
be informative. A more detailed discussion of this is presented
in Section V.

We extend our analysis to establish this equivalence between
max-product and LP relaxation for two related problems:
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weighted -matching and -edge-cover. Given a graph with
edge weights and node capacities , the weighted -matching
problem is to pick the heaviest set of edges so that at most
edges touch node , for each . Similarly, if the graph has
node requirements , the weighted -edge-cover problem is
to pick the lightest set of edges so that each node has
at least edges incident on it. Theorems 3 and 4 pertain to
-matching, and Theorems 5 and 6 to -edge-cover.

In an insightful paper, Bayati, Shah and Sharma [10] were the
first to analyze max-product for weighted matching problems;
they established that max-product correctly solves weighted
matching in bipartite graphs, when the optimal matching is
unique. Theorem 1 represents a generalization of this result,2

as for bipartite graphs it is well known that the extreme points
of the matching LP polytope are integral. This means that if
the LP has a fractional optimum, it has to also have multiple
integral optima, i.e., multiple optimal matchings. So, requiring
unique optima in bipartite graphs is equivalent to requiring
no fractional optima for the LP relaxation. In [9] the results
of [10] were extended to weighted -matchings on bipartite
graphs. Theorem 3 represents the corresponding extension of
our results to -matching on general graphs.

A preliminary version [6] of this paper contained a different
proof of both Theorems 1 and 2. The proofs in that paper can be
adapted handle more general message update rules (as opposed
to the “fully synchronous” case considered in this paper). Both
[6] and this paper consider the case of “imperfect” matchings,
where each node can have at most one edge in the matching,
but may have none. Independently developed recent results by
Bayati et al. [7] provide an alternative proof for one of the two
theorems—Theorem 1 which shows that tightness of LP im-
plies BP success—for the conceptually harder case of perfect
matchings. Their proof also holds for arbitrary message update
schedules.

The outline of the paper is as follows. In Section III we set
up the weighted matching problem and its LP relaxation. We
describe the max-product algorithm for weighted matching in
Section IV. The main result of the paper is stated and proved
in Section V. In Section VI we establish the extensions to
-matching and -edge-cover. Finally, in Section VII we show

how max-product can be radically simplified to make it very
amenable for implementation.

II. RELATED WORK

This paper proves new results on the correctness and conver-
gence of Loopy Belief Propagation for the weighted matching
problem on general graphs. Belief propagation and its variants
have proven extremely popular in practice for the solution of
large-scale problems in inference, constraint satisfaction etc.;
here we provide a summary of the work most directly related to
this paper.

Classical BP in graphical models has two common fla-
vors—SumProduct, which is used for finding marginals of
individual/small groups of variables, and MaxProduct, which is
used for finding the global most likely assignment of variables.

2[10] uses a graphical model which is different from ours to represent
weighted matching, but this does not change the results.

Both flavors are iterative message-passing algorithms, designed
to be exact when the graphical model is a tree. Analysis of
their performance in graphs with cycles has been of much
recent interest; existing analysis falls into two methodological
categories. The first category is the direct analysis of fixed
points of the iterative algorithm: [3] shows that the fixed points
of SumProduct on general graphs correspond to zero-gradient
points of the Bethe approximation to the energy function. [12]
shows that the convergence of SumProduct is related to the
uniqueness of the Gibbs measure on the infinite model repre-
sented by the computation tree. [11] shows the correspondence
between BP fixed points and linear programming (LP) solutions
for the decoding problem. For MaxProduct on general graphs,
[5] establish that the fixed point solutions are locally optimal,
in a graph-theoretic sense.

The second category of analysis, also the one taken in this
paper, involves direct analysis of the dynamics of the iterative
procedure, to jointly establish both convergence and relation to
the correct solution. This approach was first used in [10] in the
context of weighted matching on bipartite graphs (i.e., those that
have no odd cycles). They established that if the optimum is
unique, MaxProduct always converges to it; they also precisely
bound the rate of convergence. Their approach generalizes to
-matchings as well, as established in [9]. Our paper generalizes

this result to all (i.e., not just bipartite) graphs, where the rele-
vant notion is not uniqueness of the true optimum, but unique-
ness of the LP relaxation. Independent work in the recent paper
[7] also establishes this result. Our paper also establishes a con-
verse: that MaxProduct will fail on edges where the LP has a
fractional value at some optimum. Parallel work [13] establishes
this converse for the more general problem of finding the max-
imum weight independent set.

A related but separate algorithmic approach to inference are
the variational techniques developed by [14] (see [15] for a more
recent tutorial survey of this and related methods). For ML es-
timation, these algorithms involve a variant of direct coordinate
descent on the dual of the LP. The algorithm in [16] is shown
to always converge to the dual optimum for binary pairwise in-
teger problems; more generally convergence of these algorithms
is not fully understood.

III. WEIGHTED MATCHING AND ITS LP RELAXATION

Suppose that we are given a graph with edge-weights .
A matching is any subset of edges such that the total number of
edges incident to any node is at most 1. The weighted matching
problem is to find the matching of largest weight. Weighted
matching can be formulated as the following integer program:

Here is the set of edges incident to node . The linear pro-
gramming (LP) relaxation of the above problem is to replace the
constraint with the constraint , for each

. We denote the corresponding linear program by .
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In this paper, we are interested in the presence or absence of
fractional optima for . An optimum of is fractional if
there exists some edge to which it assigns fractional mass, i.e.,
if there is an such that . Note that will have no
fractional optima if and only if has a unique optimum, and
this optimum is integral.

Example 0 (Fractional Optima of ): Consider, for ex-
ample, the following three graphs.

In the cycle on the left, the has no fractional optima: the
unique optimum (1,0,0) places mass 1 on the edge with weight 3,
and 0 on the other two edges. The two cycles on the right, how-
ever, do have fractional optima. The middle cycle has
as its unique optimum, while the one on the right has many
optima: (1,0,0), , and every convex combination of
the two. Note that in the right-most cycle the LP relaxation is
“tight”, i.e., the optimal values of and are equal. Also, the

has a unique optimum. However, there still exist fractional
optima for the .

Note that if the graph is bipartite (i.e., it contains no odd cy-
cles), then all the extreme points of the polytope are integral.
As a result, in this case, fractional optima exist if and only if
there are multiple integral optima of the . This is the reason
our Theorem 1 is a generalization of [10].

We need the following lemma for the proof of Theorem 1. Its
proof is obvious, and is omitted.

Lemma 1: Let be the polytope of feasible solutions for ,
and let the optimum be unique. Define

Then, it has to be that .

Remark: In the above lemma, is
the -norm of the perturbation from . The fact that the LP
has a unique optimum means that moving away from along
any direction that remains within will result in a strict linear
decrease in the objective function. The constant is nothing but
the smallest such rate of decrease. Uniqueness of implies that

should be strictly positive.

Remark 2: While has been defined via an infimum over all
points in the polytope, it is clear that we can replace this with
a minimum over all extreme points of the polytope. So, if we
consider the right-most triangle graph in Example 0 above—the
one with edge weights 3,1,1–then . This is because
the LP optimum is with weight , and
among the other extreme points (in this case all feasible points
where each coordinate is 0, 1 or [17]) the one which achieves
the minimum is the point , which has weight

.

IV. MAX-PRODUCT FOR WEIGHTED MATCHING

The Max-product form of belief propagation is used to find
the most likely state—the MAP estimate—of a probability dis-
tribution, when this distribution is known to be a product of fac-
tors, each of which depends only on a subset of the variables.
Max-product operates by iteratively passing messages between
variables and the factors they are a part of. In order to apply
max-product, we now formulate weighted matching on as
a MAP estimation problem, by constructing a suitable proba-
bility distribution. This construction is naturally suggested by
the form of the integer program . Associate a binary variable

with each edge , and consider the following
probability distribution:

(1)

which contains a factor for each node , the value
of which is if , and 0 otherwise.
Note that we use to refer both to the nodes of and factors
of , and to refer both to the edges of and variables of .
The factor enforces the constraint that at most one edge
incident to node can be assigned the value “1”. It is easy to
see that, for any , if the set of edges

constitute a matching in , and otherwise.
Thus the max-weight matching of corresponds to the MAP
estimate of .

Max-Product for Weighted Matching

• (INIT) Set and initialize each message to 1.
• (ITER) Iteratively compute new messages until

convergence as follows:
Variable to Factor:

Factor to Variable:

Also, at each compute beliefs

• (ESTIM) Each edge has estimate at time

The factor-graph version of the max-product algorithm [1]
passes messages between variables and the factors that con-
tain them at each iteration . For the in (1), each variable is
a member of exactly two factors. The output is an estimate of
the MAP of . We now present the max-product update equa-
tions adapted for the in (1). We use and to denote the
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same edge. Also, for two sets and the set difference is de-
noted by the notation .

Note that estimate means that, at time , Max-product
estimates that edge is part of a max-weight matching, while

means that it is not. means that Max-product
cannot decide on the membership of . In this paper, we will
say that the max-product estimate for an edge is uninformative
if its value keeps changing even after a large amount of time has
passed, or if its value remains constant and equal to ?.

The message update rules are described above in a form
familiar to readers already acquainted with Max-product. In
Section VII we show that the update rules can be substantially
simplified into a “node-to-node” protocol that is much more
amenable to implementation.

V. MAIN RESULTS

We now state and prove the main results of this paper. The-
orem 1 states that whenever the LP relaxation has no fractional
optima, max-product is successful at finding the max-weight
matching. Theorem 2, and Corollary 1, state the converse: if
there exist fractional optima, then max-product will fail.

Theorem 1: Let be a graph with nonnegative
real weights on the edges . If the linear programming
relaxation has no fractional optima, then the max-product
estimate is correct (i.e., it is the true max-weight matching)
for all times , where is the maximum weight of
any edge in the graph, and is as defined in Lemma 1.

Remark 1: Note that the requirement of “no fractional op-
tima” is equivalent to saying that the has a unique optimum,
and that this optimum is integral. The time after which the es-
timates will converge to correct values is determined by the
“pointedness” of the polytope at the optimum, as represented
by the constant of Lemma 1.

As noted previously, the requirement of absence of fractional
optima is in general strictly stronger than tightness of the LP
relaxation. It is illustrative at this point to consider the perfor-
mance of max-product on the right-most graph in Example 0:
the three-cycle with weights 2,1,1. For this there are infinitely
many optimal solutions to : (1,0,0), , and all convex
combinations of the two. Thus, even though the LP relaxation
is tight, there exist fractional optima. For this graph, it can be
easily verified (e.g., using the computation tree interpretation
below) that the estimates as a function of time will oscillate as
shown in the table below.

We see that the edges with weights 1 will have estimates that
oscillate between 0 and ?, while the edge with weight 2 will os-
cillate between 1 and ?. The oscillatory behavior of this example

is not just a particular case, it holds in general—as stated in the
following theorem. We first state the most general form of the
theorem, followed by corollaries and discussion.

Theorem 2: Let be a graph with nonnegative real
weights on the edges . The corresponding may, in
general, have multiple optima. Then, for any edge in ,

1) If there exists any optimum of for which the mass
assigned to edge satisfies , then the max-product
estimate is 1 or ? for all odd times .

2) If there exists any optimum of for which the mass
assigned to edge satisfies , then the max-product
estimate is 0 or ? for all even times .

Remark: In light of this theorem, it is easy to see that max-
product yields useful estimates for all edges if and only if each

has an integral value that is consistent at all optima of
LP. This means that has to have a unique optimum, and this
optimum has to be integral. Hence, Theorem 1 is tight: any devi-
ation from the sufficient condition therein will result in useless
estimates for some edges.

Corollary 1: Suppose the has at least one fractional op-
timum. Then, Theorem 2 implies that max-product estimates
will be uninformative for all edges that are assigned noninte-
gral mass at any optimum.

In the case of nonunique optima, note that in Theorem 2 the
choice of LP optimum is allowed to depend on , the edge of
interest. Thus, if there are optima and of such that
and , then the estimate will either keep changing at
every iteration, or will remain fixed at , an uninformative
estimate. It is thus easy to see that Theorem 2 covers both the
case when the LP relaxation is loose (has no integral optima),
and the case when the LP relaxation is tight, but multiple optima
exist.

In general, when fractional optima exist, max-product may
converge to useful estimates for some edges and oscillate or be
uninformative for others. It follows from theorem 2 that

• The useful estimates are exactly as predicted by the LP
relaxation: if for some , then for
all optima of , and correspondingly if then

.
• Any edge with fractional mass will not have

useful estimates. However, the converse is not true: there
may exist edges that are assigned the same integral mass
in every max-weight matching, but for which max-product
is un-informative. Thus, in a sense Max-product is weaker
than LP relaxation for the matching problem. Consider the
example below.

The unique optimum puts mass on all six edges in the
two triangles, mass 1 on the middle edge of weight 1.1, and mass
0 on the other two edges in the path. Max-product estimates
oscillate between 0 and 1 on all edges.
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Fig. 1. Computation tree figure for example 1.

We now proceed to prove the two theorems above. Both
proofs rely on the well-known computation tree interpretation
of Max-product beliefs [5], [12], which we describe first. The
proofs follow immediately after.

A. The Computation Tree for Weighted Matching

Recall the variables of the distribution in (1) correspond to
edges in , and nodes in correspond to factors. For any edge
, the computation tree at time rooted at , which we denote

by , is defined recursively as follows: is just the edge
, the root of the tree. The two endpoints of the root (nodes of
) are the leaves of . The tree at time is generated

from by adding to each leaf of a copy of
each of its neighbor edges in , except for the neighbor edge
that is already present in . Each edge in is a copy
of an edge in , and the weights of the edges in are the same
as the corresponding edges in .

For any edge and time , the max-product estimate accu-
rately represents the membership of the root in max-weight
matchings on the computation tree , as opposed to the
original graph . This is the computation tree interpretation,
and is stated formally in the following lemma (for a proof, see
e.g., [5]).

Lemma 2: For any edge at time ,
• if and only if the root of is a member of every

max-weight matching on .
• if and only if the root of is not a member of

any max-weight matching on .
• else.

Remarks: The beliefs are the max-marginals at the
root of the computation tree . If then any
matching in which excludes the root has a suboptimal
weight. Similarly, if , then any matching in
including the root is suboptimal. However, when ,
then there exists an optimal matching with , and another
optimal matching with .

Note that max-product estimates correspond to max-weight
matchings on the computation trees , as opposed to on the
original graph . Suppose is a matching on the original graph

, and is a computation tree. Then, the image of in
is the set of edges in whose corresponding copy in is a
member of . We now illustrate the ideas of this section with
a simple example.

Example 1 (Concepts Related to Computation Trees):
Consider Fig. 1. appears on the left, the numbers are the
edge weights and the letters are node labels. The max-weight
matching on is , depicted in bold on

. In the center plot we show , the computation tree at
time rooted at edge . Each node is labeled in accor-
dance to its copy in . The bold edges in the middle tree depict

, the matching which is the image of onto .
The weight of this matching is 6.6, and it is easy to see that
any matching on that includes the root edge will have
weight at most 6.6. In the right-most tree, the dotted edges
represent , the max-weight matching on the tree .
has weight 7.3. In this example we see that even though is
in the unique optimal matching in , it turns out that root
is not a member of any max-weight matching on ,
and hence we have that . Note also that the dotted
edges are not an image of any matching in the original graph .
This example thus illustrates how “spurious” matchings in the
computation tree can lead to incorrect beliefs, and estimates. In
the example above the reason why Max-product disagrees with
LP relaxation is that Max-product has not yet converged.

B. Proof of Theorem 1

We now prove that the uniqueness and tightness of the LP
relaxation ensures that each estimate is 0 or 1, and also that
the estimate corresponds to the optimal matching. As mentioned
in the Introduction, this is a generalization of the bipartite graph
result in [10]—since it is well known [17] that in the bipartite
case all vertices of the LP polytope are integral.3 Let be the
optimal matching, and the corresponding 0–1 vector that is
the unique optimum of .

To prove the theorem, we need to show that, for a large
enough time , the estimates satisfy

Consider now any time , where is
the weight of the heaviest edge, and is as in Lemma 1 above.
Suppose that there exists an edge for which the estimate

3Our proof below is along similar lines to the one in [10], namely that both
proofs proceed via contradiction by constructing a new optimum. In [10], this
new optimum is actually an alternate matching on the computation tree; in ours
it is a new LP optimum.
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at time is not correct: (i.e., ). We now show
that this leads to a contradiction.

We start with a brief outline of the proof. Let be the
computation tree at time for that edge . From Lemma 2, the
fact that means that there exists a max-weight matching

on that does not contain the root . Due to the unique-
ness of the LP optimum we can use to modify and obtain
a matching on which has strictly larger weight than

. This contradicts the optimality of on , and proves
that has to be equal to 1.

We now give the details in full. Let be the image of
onto . By assumption, in original graph , and
hence the root . Recall that, from Lemma 2,
implies there exists some max-weight matching of that
does not contain the root, i.e., root . Thus the root

. From root , build an alternating path on by
successively adding edges as follows: first add , then add all
edges adjacent to that are in , then all their adjacent
edges that are in , and so forth until no more edges can
be added. This will occur either because no edges are available
that maintain the alternating structure, or because a leaf of
has been reached. Note also that will be a path, because
and are matchings and so any node in can have at
most one adjacent edge in each of the two matchings.

For illustration, consider Example 1 of Section IV. in this
case is the edge , and is denoted by the bold edges
in the left-most figure . The computation tree at time
4 is shown in the center, with the image marked in bold.
Note that the root . In the right-most figure is depicted

, a max-weight matching of . The alternating path ,
as defined above, would in this example be the path adcabcda
that goes from the left-most leaf to the right-most leaf. It is easy
to see that this path alternates between edges in and

. We now use the following lemma to complete the
proof of Theorem 1.

Lemma 3: Suppose has no fractional optima. Let be
a matching in which disagrees with on the root, i.e.,
root . Let be the maximal al-
ternating path containing the root. Then

, provided .
Lemma 3 is proved in the appendix, using a perturbation ar-

gument: if lemma is false, then it is possible to perturb to
obtain a new feasible point such that , thus
violating the optimality and uniqueness of for the LP on .

Now consider the matching , and change it by “flipping”
the edges in . Specifically, let
be the matching containing all edges in except the ones in ,
which are replaced by the edges in . It is easy to see that

is a matching in . Also, from Lemma 3(a) it follows
that . This however, violates the assumption
that is an optimal matching in . We have arrived at a
contradiction, and thus it has to be the case that for all

.
A similar argument can be used to establish that

for all . In particular, suppose that for some
. This means there exists a max-weight matching

in that contains the root . Again, let be the image
of onto . Note that the root . Let be

a maximal alternating path that the root . Using Lemma 3, it
follows that . Now, as before, define

. It follows that
, violating the assumption that is an optimal matching

in . Thus the root has to have . This proves the
theorem.

C. Proof of Theorem 2

We now prove Theorem 2. Suppose part 1 is not true, i.e.,
there exists edge , an optimum of with , and
an odd time at which the estimate is . Let be
the corresponding computation tree. Using Lemma 2 this means
that the root is not a member of any max-weight matching of

. Let be some max-weight matching on . We now
define the following set of edges

In words, is the set of edges in which are not in ,
and whose copies in are assigned strictly positive mass by the
LP optimum .

Note that by assumption the root and hence .
Now, as done in the proof of Theorem 1, build a maximal al-
ternating path which includes the root , and alternates be-
tween edges in and edges in . By maximal, we mean that
it should not be possible to add edges to and still maintain
its alternating structure. Note that in contrast to Theorem 1, we
may have multiple edges in touching a node. In such a case,
we pick an arbitrary one of them and add to . We use the fol-
lowing lemma.

Lemma 4: The weights satisfy .
The proof is included in the appendix and is similar in prin-

ciple to that of Lemma 3: if the weights are not as specified,
then it is possible to perturb to obtain a feasible solution of

with strictly higher value than , thus violating the assump-
tion that is an optimum of . The fact that is odd is used
to ensure that the perturbation results in a feasible point.

We now use Lemma 4 to finish the proof of part 1 of Theorem
2. Consider , which is a new
matching of . Lemma 4 implies that ,
i.e., is also a max-weight matching of . However, note
that the root , and so this contradicts the fact that root
should not be in any max-weight matching of . This proves
part 1 of the theorem.

Part 2 is proved in a similar fashion, with the perturbation
argument now requiring that be odd. Specifically, suppose part
2 is not true, then there exists an edge , an optimum of
with , and an even time at which the estimate is

. This implies that root is a member of every max-weight
matching of . Let be any such max-weight matching in

, and define the following set of edges

In words, is the set of edges in which are not in ,
and whose copies in are assigned strictly positive mass by the
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LP optimum . Note that the root and hence .
Let be a maximal alternating path which includes the root ,
and alternates between edges in and edges in .

Lemma 5: The weights satisfy .
The proof of this lemma is similar to that of Lemma 4, and

is given in the appendix. It uses the fact that is even. Now, as
before, consider , which is a
new matching of . Lemma 5 implies that ,
i.e., is also a max-weight matching of . However, note
that the root , and so this contradicts the fact that root
should be in every max-weight matching of . This proves
part 2 of the theorem.

VI. EXTENSIONS

We now establish the extensions of Theorems 1 and 2 to
the weighted -matching and -edge-cover problems. The main
ideas remain unchanged, and thus the proofs are outlines, with
just the important differences from the corresponding proofs for
the simple matching highlighted.

A. Weighted -Matching

The weighted -matching problem is given by the following
integer program: given numbers for each node

The LP relaxation of this integer program is obtained by re-
placing the constrains by the constraints
for each . We will denote the resulting linear program by

.
To apply Max-product, first consider a probability distri-

bution as in (1), but with now defined to be 1 if
, and 0 otherwise. The max-product updates

remain as specified in Section IV. The following two theorems
are the respective generalizations of Theorems 1 and 2.

Theorem 3: If has no fractional optima, then the max-
product estimate is correct (i.e., it is the true max-weight
-matching) for all times , where is the max-

imum weight of any edge in the graph, and is as defined in
Lemma 1 (but with being the -matching polytope)

Theorem 4: For any edge in ,
1) If there exists any optimum of for which the mass

assigned to edge satisfies , then the max-product
estimate is 1 or ? for all odd times .

2) If there exists any optimum of for which the mass
assigned to edge satisfies , then the max-product
estimate is 0 or ? for all even times .

The proofs of both theorems are similar to those of Theorems
1 and 2, respectively. In particular, note that there will be an al-
ternating path between any two -matchings on the computation
tree. All the alternating path and perturbation arguments remain
as before.

B. Weighted -Edge-Cover

The min-weight -edge-cover problem is given by the fol-
lowing integer program: given numbers for each node
, where is the degree of node

The LP relaxation of is obtained by replacing the constrains
by the constraints for each .

We will denote the resulting linear program by . To apply
max-product, consider the following probability distribution

(2)

Here the factor for node takes value 1 if and only
if , and 0 otherwise. It is easy to see that any
maximum of corresponds to a min-weight -edge-cover of
the graph. The max-product updates remain as specified in
Section IV, except that should be replaced by . The
two theorems are now stated here.

Theorem 5: If - has no fractional optima, then the max-
product estimate is correct (i.e., it is the true min-cost -edge-
cover) for all times , where is the maximum
weight of any edge in the graph, and is as defined below ( is
the feasible polytope of )

Theorem 6: For any edge in ,
1) If there exists any optimum of for which the mass

assigned to edge satisfies , then the max-product
estimate is 1 or ? for all odd times .

2) If there exists any optimum of for which the mass
assigned to edge satisfies , then the max-product
estimate is 0 or ? for all even times .

Theorems 5 and 6 are most easily obtained by mapping the
max-product updates for the -edge-cover problem to those of
the -matching problem. In particular, if is the degree of node
, set

Then, any edge will be included in the min-weight
-edge-cover if and only if it is not included in the max-weight
-matching. The following lemma shows that there is an

exact relationship between the max-product updates for the
-edge-cover problem and the corresponding -matching

problem. It can easily be proved by induction, we include the
proof in the appendix.

Lemma 6: Given a weighted -edge-cover problem, let de-
note the max-product messages and the beliefs. Consider now
the weighted -matching problem where edge weights remain
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the same and each . Let and denote the mes-
sages and beliefs for this -matching problem. Then, we have
that for time , node and edge ,

Note now that the estimate depends only on the ratio .

In particular, if and only if is, respectively,
, , to 1. Thus, Lemma 6 implies that the -edge cover

max-product estimate for edge will be 1 if and only if the
corresponding -matching max-product estimate is 0. Similarly,
0 maps to 1, and ? to ? Thus, Theorems 5 and 6 follow from
Theorems 3 and 4, respectively.

VII. PROTOCOL SIMPLIFICATION

In this section, we show that max-product for the weighted
matching problem can be simplified for implementation pur-
poses. Similar simplifications have also been performed in [9]
and [10]. Recall that in the specification given in Section IV,
messages are passed between edges and nodes. However, it
would be more desirable to just have an implementation where
messages are passed only between nodes. Toward this end,
for every pair of neighbors and , let be the edge
connecting the two, and define

The protocol with the -messages is specified below.

Simplified Max-Product for Weighted Matching

• (INIT) Set and initialize each
• (ITER) Iteratively compute new messages until

convergence as follows:

• (ESTIM) Upon convergence, output estimate : for
each edge set or ? if is,
respectively, , , or .

The update equations for -matching and -edge-cover can
also be simplified by defining ’s as above.

Proof of Lemma 3: The outline of the proof is as follows:
we will use to define a new feasible point of the by
modifying , the unique optimum of the . We obtain by
subtracting from for every edge in and adding
for every edge in , counting repeated occurrences. The
fact that the weight is strictly less than will prove the
lemma.

Formally, We define two length- vectors and as fol-
lows: for every in the original graph,

number of (copies of) that appear in .
Note that only for edges , and
for other edges .

number of (copies of) that appear in ,
excluding copies that touch a leaf of . Note that

only for , and for .
In the above, the leaves of tree are nodes at the last level
of , i.e., furthest away from the root. The path has two
endpoints, and hence it can have at most two leaf edges in

. Let and be equal to the weights of these two edges, if
they exist, and if the corresponding edge does not exist.
Then, we have that

(3)

(4)

For an illustration of these definitions, look at the footnote.4 We
are now ready to define the perturbation: let be a small
positive number, and

(5)

We now need the following auxiliary lemma, which is proved
later in the Appendix.

Lemma 7: The vector as defined in (5) is a feasible point
of , for a small enough choice of .

We now find it convenient to separately consider two possible
scenarios for the path and weights , .

Case 1:
Suppose now that the statement of Lemma 3 is not true, i.e.,

suppose that . From (3) and (4), and
the assumption , it then follows that .
From (5) it then follows that . Note also that
because . We have thus obtained a feasible point of
the with weight at least as large as the unique optimum .
This is a contradiction, and hence for this case it has to be that

.

Case 2: At least one of or is nonzero.
For or to be non-zero, at least one endpoint of has

to be a leaf of . The tree has depth , and contains the
root and a leaf, so the path length . Now, for each edge

, , and for each ,
. Thus we have that

4For illustration of these definitions, we refer back to example 1 of Section V.
The computation tree in the center shows the projection � , and the tree on
the right shows a max-weight matching � on � ���. Suppose now � is the
path starting from the left-most leaf of � ��� and ending at the right-most
leaf. It alternates between � and � . For this � , we have that the vectors are:
� � �, � � �, and � � � for all other edges � . � � �,
� � �, and � � � for all other edges � . The weights � � � �
weight of edge ��	 
�.
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Thus we have that the -norm satisfies . Now, by
the definition of in Lemma 1

and thus, . Also, . Thus we
have that

However, by assumption , and hence it has to be that
. This finishes the proof. .

Proof of Lemma 4: The proof of this lemma is also a pertur-
bation argument. For each edge , let denote the number
of times appears in and the number of times it
appears in . Define

We now show that this is a feasible point for , for small
enough . To do so we have to check edge constraints

and node constraints . Consider first the edge
constraints. For any , by definition, . Thus,
for any and , making small enough can ensure that

. On the other hand, for any
, , because a neighboring edge that belongs to

has positive weight. Making small enough ensures that
.

Consider now the node constraints for a node . For every
copy of that appears in the interior of , the mass on one edge
is increased by , and on another is decreased by . Thus the
only nodes where there is a potential for constraint violation are
the endpoints of for which the corresponding last edge is in

. Suppose that is one such endpoint, and assume for now
that is not a leaf node of . Note now that, by construction,
every edge in has . So, the fact that could
not be extended beyond means that ,
where is the edge in (and ) touching . This means that
the constraint at is inactive for , and so for small the new

will be feasible.
The only remaining case to check is if the endpoint of

is a leaf node of . If the last edge in touching is in
, the node constraint at will not be violated since the

perturbation decreases the total mass at . Note that, since is
odd, this includes the case where is a leaf node at the lowest
level. So, consider the final case that is a leaf node that is not
at the lowest level in the tree, such that ends in with an edge
in . This edge has mass strictly less than 1. The fact that

is not at the lowest level means that is a leaf in the original
graph as well, and ha no other edges touching it. Thus it has to
be that the constraint at node is not tight at the LP optimum

. This means that a small finite will ensure feasibility.
Thus is a feasible point of . Note that the weights satisfy

Thus, if , then we would have that
, which violates the assumption that is an op-

timum of . So it has to be that .
This proves the lemma.

Proof of Lemma 5: Let , and be defined exactly as in the
proof of Lemma 4 above, with replaced by . By reasoning
exactly as above, it follows that all edge constraints
are satisfied, and also all node constraints are satisfied except
possibly for nodes that are endpoints of which are leafs of

and also the last edge is in . However, the fact
that the root is in , and that is even, means that last edge

and not in . Thus is a feasible point of .
Now, as before, we have that

. Thus, if the lemma is not true, it follows that
, violating the optimality of . The lemma is thus proved.

Proof of Lemma 7: We now show that as defined in (5) is
a feasible point of , for small enough . For this we have to
show that it satisfies the edge constraints for all
edges and the node constraints for all
nodes (here is the set of all edges touching node )

First the edge constraints. If , then the assumption
that is integral means that , and hence .
Thus for small enough , it will be the case that .
On the other hand, if then and .
Thus, again, a small enough will ensure .

We now turn to the node constraints. Note that

The term counts the number of times edges in
touch (copies of) node in the computation tree. Similarly,

counts the number of times edges in touch
. Suppose first that is not an endpoint of , so that every

time touches it will do so with one edge in and one
in . This means that and hence
that . Thus the node constraint at is
not violated.

Suppose now that appears as an endpoint of , and
is the corresponding last edge of . If ,
this means that , and hence

—so the constraint at node is
not violated.5 If last edge and it touches a leaf-node
then it is not counted in (see how is defined). If
and it ends in the interior of , then the fact that could
not be extended beyond means that there are no edges of
touching in the tree . Since is the image of , this
means there are no edges in touching node in original
graph . Thus . So, for small enough we
can ensure that , ensuring that the
constraint at node is not violated.
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