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Finite Group Homomorphic Sequential Systems
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Abstract—Because many systems of practical interest fall outside
the scope of linear theory, it is desirable to enlarge as much as possi~
ble the class of systems for which a complete structure theory is avail~
able. In this paper a class of finite-state sequential systems evolv~
ing in groups is considered. The concepts of controllability, observ~
ability, minimality, realizability, and the isomorphism of minimal
realizations are developed.

Results that are analogous to, but differ in essential details
from, those of linear system theory are derived. These results are
potentially useful in such diverse areas as algorithmic design and
algebraic decoding.

I. INTRODUCTION

HE PURPOSE of this paper is to discuss certain
questions related to the modeling of the input-
output behavior of dynamical systems. We work in the
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context of systems with finite input, output, and state
sets that admit group operations. The motivation for
this study comes from a desire to understand better the
key results in linear system theory (linear sequential
machines included), and, more importantly, it comes
from a desire to embrace in an analogous theory a broader
class of input-output models than has heretofore been
possible. Our results are potentially useful in optimizing
the basic recursions occurring in certain elementary
numerical processes, the mechanization of algebraic
decoding procedures, ete.

This paper might be regarded as a contribution to the
investigation of system theory in the context of universal
algebras. It does not include the vector space results as a
special case, but it does shed new light on the previous
proofs in that context, in that it makes clear which results
depend only on the additive group structure inherent in
a vector space. We have not worked for the weakest
hypothesis for each individual theorem, but rather have
sought to place all theorems in a common framework—
one motivated by linear theory.

Thus, a number of the results and proofs have direct
analogs in linear theory, and the proofs are presented to
emphasize the universality of these arguments. That is,
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one should read these results keeping the following in
mind. In the theory of algebra, there are a few basic
isomorphism theorems for groups, rings, vector spaces,
ete., and one obtains the results in one setting from those
in another simply by replacing the key words with their
analogs, e.g., group for ring and normal subgroup for
ideal. The results here indicate that the same type of

universal structure and isomorphism results will hold in a

system-theoretic framework.

One of the most diffieult steps in constructing a real-
ization of input-output maps is the state assignment
problem. This step is crucial in the design of recursive
algorithms, filters, etc. One of the essential features of
our work is that we give a recipe for solving some problems
of this type.

II. Finite Grour HOMOMORPHIC SEQUENTIAL SYSTEMS

Of course, an empirical theory should avoid making
assumptions that cannot be wverified experimentally.
However, it is nonetheless useful to be able to anticipate
the consequences of various assumptions about the
internal mechanism of a phenomenon under study, even
if we are, in principle, incapable of verifying or denying
the assumptions on the basis of experimentation. In this
paper we want to investigate the properties of certain
finite-state systems that evolve in state spaces that admit
a group structure, and we verify in a constructive way
the existence of this structure given the input-output
data.

Specifically, we consider a class of dynamical models of
the form

zk + 1) = blu®)]alz®];  yk) = clzk)]

where the input, output, and state spaces are the finite
groups U = (U, -}, Y = (¥, x), X = (X, o), respectively.
The maps ¢: — 9, b:U — X, and ¢: X — Y are assumed
to be group homomorphisms. Invoking an analogy with
linear sequential systems, which are a special case, we call
this a finite group homomorphic sequential system. This
class of systems has many things in common with dis-
crete-time linear systems. The most obvious is the follow-
ing result.

Theorem 1: The input, initial state, and output of a
finite group homomorphic sequential system

zk + 1) = bu@®]al®];  yk) = clz@)]
are related by
z(k) = blule — Dlabfulk — 2)JTe-- -
a* 1 [b[u(0)]1-a" [x(0)]

k=1
{IT ¢-—puel}- 60!

colutt — Dil*clapul — 2)11]*- - -=
cla*=* b [u(0) 111*c[a*[z(0)]]

E—1
{H ela == @) 1] la* ()]

1=

lie

y(k)
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where a* denotes & compositions of a with itself.
Proof: This result follows directly from the system
equations and the fact that ¢ and ¢ are homomorphisms.
Q.E.D.

II1. REALIZABILITY CRITERIA

In this section we give necessary and. sufficient condi-
tions for an input-output map to have a sequential
realization of the type under considerastion here. Recall
that a sequence of linear maps of E™ into E? is realizable
as the weighting patterns of a finite-dimensional discrete-
time linear system if and only if the sequence satisfies
a linear recursion. What we find here is that a sequence
of homomorphisms of U into 9 is realizable as the
“weighting pattern” of a finite group homomorphic se-
quential system if and only if the sequence satisfies a homo-
morphic recursion.

Let w = (U, +) and Y = (¥, *) be finite groups. We
then define F(U,Y) to be the finite set of maps of U into
Y. F{U,Y) is a semigroup under the operation

(@) = flu)xg(u)  fig € F(WY).
Suppose = is a homomorphism of Y X - -+ X Y (r factors)
£ 9f into Y. Then 7 naturally induces & homomorphism
# of F(W, ) into F(U,\):
7J'\'(Aly' : 7Ar)(u) .é T(Al(u)i' : '1Ar(u))7 Yu € U,
Ay, 4, € F(U,Y).

Theorem 2:' Let U and Y be finite groups. Given a
sequence of group homomorphisms 7';:U —~ Y, ¢ = 0,1,2,
-+ +, there exists a finite group & and group homomor-
phisms a:% — X, b:U — X, and ¢:% — Y such that

T.(:) = cla’b(-)]]
if and only if there is an integer r > 0 and 2 homomorphism
Y~y
such that for ¢z = 0,1,2,- .-
ﬁ(Ti, v ':T1+r—1) = Tir

Proof (Sufficiency): Suppose such a homomorphism
exists. We construct the analog of what has, in the context
of linear system theory, been called the standard observ-
able realization [1]. Consider the map of <Y into itself
defined by

0 (@1, 2, " * * Tr1,Tr) ~> (T2, T3, * ;xnp(xlyz% RRI AR

This is clearly a homomorphism if p is. Now define b,
taking U into Y by

bru = (To(w),T1(u),- - - . Tra(u)).

Again, this is & homomorphism if each of the 7”s is. Define
¢ taking " into Y according to

¢ (Yuye, " - -5y = Y1
This too is & homomorphism. We claim that e[a*[b{-)]] =

1 It has recently been pointed out to us that, for the special case of
Abelian groups, a realizability result is given in [6].
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T,(-). This is true because of the recursion given by 5:
co(-)] = e(To(-),T1(-),- - -, Tra(+)) = To(+)
clap(:)1] = e(Ta(-), Ta(-),- - - B(T0, T1,+ - -, Tra) ()
C(Tl('),Tz('_);' = T(0) = Ta()

el B()T] = o(Tros(-),To(-);- -+ Tara(-)) = Troa(-).

The rest of the relations follow in a similar manner by
applying the recursion. Thus we may take z = y".

Proof (Necessity): Suppose that T,(-) = c[a’[b(-)]]
for some set of homomorphisms a, b, and ¢ with ¢: X — X
being defined on a finite group. Sinee the set of all maps of
& into itself is a finite set, we see that ¢” = af for some r >
kE 2 0. Then @’*™ = o*+™ for all m 2 0. Then defining p
as the projection onto the (¢ + 1)th component of an
r-tuple

p(yﬂ;' * '7yr-—1) = Yx
we see that
Za(Ti;Ti+1,"';T¢+r—1)(') = Tia() = cla®*[b()]]
= c[a’**[b(-)]] = Tu.(-). Q.E.D.

We remark that the proof shows that the only sequences
of homomorphisms { 7'} that can be realized by a finite-
group system are those that are periodic after a finite

number of terms (see Fig. 1). The next result shows that a

is an automorphism if and only if there is no ““tail.”’

Corollary: Under the hypotheses of Theorem 2, there
exists a realization with ¢ an automorphism if and only
if Ty = T for someland allk = 0,1,2,---.

Proof: This follows from the fact that a is an automor-
phism of a finite group if and only if o* is the identity
automorphism for some & > 0. Q.E.D.

In automata theory, one usually considers systems
described by maps of the form f: U* — Y where U* is the
set of all finite strings of elements in U and f(uy,- - - %)
is the output of the system at time n following the ap-
plication of the input string uo,- - -,%,—1 (in this order).
One can then ask which f’s come from finite group homo-
morphie sequential systems.

Theorem 3: Given finite groups U = (U, ) and Y =
(Y, #), and an input—output map f:U* — Y, this can be
realized as a finite group homomorphic sequential system
if and only if 7;: U — 9, defined by

Ti(u) = f(u’ey v '36)
\-’\(./
1 identity inputs
are homomorphisms satisfying the conditions of Theorem
2, and
f(uﬂ) o ’:un) = Tﬁ(un)*Tl(un——l)*' : '*Tn(u'O)'

Proof: The proof is a straightforward calculation.
Q.E.D.
Note that the second condition in Theorem 3 is-equiv-
alent to the following: if wy, ws & U* and the length of
ws 18 k, then

Tie
*—,
/
Tkrr @
e
}o
>~
. ® L ¢~
. Tr Tr-2
T ./
Te
To®
Fig. 1. Realizability condition.

Flwnws) = flwn)#f(wr,e")

where & & U* is the string of k identity inputs.

For an input-output map f corresponding to a finite
group homomorphic sequential system, one should think
of the map from U7 into Y7 given by

Y = f (uDJ T ;ur—l) = To(u,_1)*T1(’LL,-_2)* v *Tr—l(u())

yrin = f (o, * + * Up—1,6) = T1(tr1)*To(utr—2)* - - - *T{10)

Yor1 = f(ul): e 7'ur—1:er-l) = TT—l(uT—l)*
Tr(ur—g)® - < %To_a(u)

as being the analog of the map corresponding to the
Hankel matrix. As will be shown, the number of elements
in the image space of this map equals the number of
states in the “minimal realization,” just as the rank of
the Hankel matrix determines the dimension of the state
space of a minimal linear realization.

IV. CoNTROLLABILITY, OBSERVABILITY,
AND MINIMAL SYSTEMS

One of the crucial results in linear system theory is that
a system is minimal if and only if it is controllable and
observable, and any two controllable and observable
realizations of the same input-output map differ at most
by a choice of basis for the state space. This result has a
natural analog here, but the analog of a related result,
namely, the fact that any input—output map that has a
linear realization has a controllable and observable linear
realization, fails. This means we must characterize all
those systems that have controllable and observable
realizations and this is done in Theorem 8 below. We
note that finite dimensional vector spaces over the same
field are isomorphie if and only if they are of the same di-
mension, whereas finite groups can have the same
number of elements and not be isomorphie. Thus the
state space isomorphism theorems are decidedly more
interesting here.

We say that the homomorphic sequential system

z(k + 1) = bu®)]alz(®)];  yk) = clz(®)]

which evolves in the group & = (X, <) is conirollable
from x; € X if for any 2, € X there exists a sequence of
controls in the input group such that the state is driven
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from z; to z; by this sequence. The system is said to be
controllable if it is controllable from all x € X. Two
states 71, 22 € X are said to be indistinguishable if, given
any input sequence, the corresponding output sequences
from the initial states z: and . are identical. Otherwise,
z1 and z. are said to be distznguishable, and an input
sequence that yields different output sequences from z:
and 2. is said to distinguish between x; and z,. We call the
system observable if any distinet pair of states is distin-
guishable.

Theorem 4: Consider the finite group homomorphic
sequential system

z(k + 1) = dlul®)]alz(k)];  yk) = clz(k)]

with state group X = (X, <). Let ¢, € X be the identity
in €. Then the system is controllable if and only if it is
controllable from e,. The states z; and z» are distinguishable
if and only if the identity control sequence distinguishes
between them. Also, z; is indistinguishable from 2. if and
only if ziz,~! is indistinguishable from e,.

Proof: These results are obtained by straightforward
calculations. Q.E.D.

Thus, as in the case of linear systems, the test for
controllability reduces to a test for controllability from
the identity, and the test for observability reduces to a
test for indistinguishability from the identity.

The next theorem gives a formula for the set reachable
from the identity and the set indistinguishable from the
identity.

Theorem 5: If the finite group homomorphic sequential
system

zk + 1) = blu®)]alz®];  ylk) = cle(k)]

evolves in a group £ = (X, <) with » elements then the
set of states reachable from the identity is

{b(uryoalb(ua)lo- - - ca 1 [b(ur) l|us, - -
b(U)Yeab(U)o- - -2a (V).

The set of states indistinguishable from the identity is
K = ker e(-) N ker cla(-)}] N---N ker cla*~*(+)].

The set ® is not necessarily a group, but X is a normal
subgroup of <.

Proof: With respect to the reachable set, this result is
immediate from the formula

z(k + 1) = b(uk))alb(ulk — 1))]o-
a*tb(u(1))]a*[x(1)]

and the observation that, because of the stationarity of

the system, any state reachable from the identity is

reachable along a trajectory that contains no state more
than once and thus is of length less than or equal to =.

®

Uz e U’}

[I>

If the input sequence is a string of identity elements,.

then the output sequence from the identity state is
simply a string of identity elements in Y. If the output
from the state z is to be indistinguishable from this
string, then it must happen that
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c(z) = cla(@)] = = cla"'(@)] =

Can it happen that this set of equalities holds but ¢[a?(z)]
# identity for some p 2> n? Clearly not, because for any
z, a*(z) = a’(z) for some n > ¢ > ;7 > 0 because there are
only 7 elements in X. This means that for any z and any
positive integer p we have a?(z) = ¢*(z) with 0 < k <
n — 1, where k, of course, depends on z and p. (Actually
for n 2 2, we can replace n — 1 by n — 2 in the expres-
sions for ® and X, but while this is easy to prove for ®,
the result for X is more cumbersome and we have thus
omitted it.)

To see that & is a normal subgroup, we need only
observe that the map of & into YY" defined by

z = (c(@),cla(@)],- -+ cla” " (z) )

18 a homomorphism and & is its kernel. That ® need not
be a subgroup of & will be shown by example later.
Q.E.D.
Corollary: Under the hypotheses of Theorem 5, the
set @ is a subgroup if X is an Abelian group.

Proof: We need only note that for all m > 0, a™b(U)
is a subgroup, and that the product of two subgroups of
an Abelian group is itself a subgroup. Q.E.D.

We now recall some of the concepts of abstract real-
ization theory ([2], ¢h. 10). If A and B are sets and we
have an input-output map f:A — B, a factorization of f
through a state set C is a pair of maps a:A — C and
B:C — B such that f = feq, i.e., the following diagram

commutes.
A— »g
[

This factorization is canonzcal if « is onto and 8 is one-to-
one.

In this case, the “size” of € is minimal in some sense.
Tor instance, if A, B, and C are vector spaces and f, «,
and B are linear maps, and if €, &, § is any other, not
necessarily canonical, factorization, then dim C < dim C.
Also, if 4, B, C, and C are finite sets, with C corresponding
to a canonical and C to any other factorization, then
card (C) < card (0).

Suppose we have an input group U = (U, ), an output
group Y = (¥, #), and an input-output map f:U* — ¥
that has at least one realization as a finite group homo-
morphic sequential system:

gk + 1) = blu@®lalz®)], ylk) = cla®)]

with finite state group X = (X, °). Suppose L has n
elements, and define F:U*¥ — Y" by flug, - u) =
(f(’uu:‘ ) '1uk),f(u0) v ':ukue)y te ',F(uﬂx t ';uk:en_l))- We then
have a factorization of F':

identity.

vt g"

A/
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where

I

b (uz) cab(uy_y) o+ » 0a¥b(ug)
(c(x),ca(x), e :Ca'ﬂ_l(x))'

We immediately see that the above factorization is
minimal if and only if the system is controllable and
observable. In this ease, we say that the triple of homo-
morphisms (a,b,c) defines a minimal realization.

Another result of abstract realization theory is the
following: given f: A — B and two canonical factorizations
—that is, two sets ¢ and ¢ and corresponding maps
a:A —C, a:A — C, both onto, and 8:C — B, §:C — B,
both one-to-one, such that f = oo = fed—then the two are
equivalent, in that there exists a unique one-to-one and
onto map v:C — €, such that & = yoa and 8 = Bory.

When we apply this result to the problem of finite
group homomorphic sequential systems, we obtain
stronger results, as in linear theory, beeause of the struc-
ture of the systems.

Theorem 6: Suppose U = (U, -) and Y = (¥, *) are
finite groups, and f: U* — Y is an input—output map that
has two controllable and observable finite group homo-
morphic sequential realizations

gb + 1) = dbu®)lalze®];  yk) = cle@®] @)
2k + 1) = glu®)]flz()];  yk) = hlz(k)] (2)

where the system (1) evolves in a finite state group X =
(X, ) and system (2) evolves in a finite state group
~Z = (Z, ). Then there exists a group isomorphism p:
% — Z such that f = pap—!, g = pb, and A = ¢p~—'. The
two realizations are said to be conjugate.

Proof: Suppose the cardinality of % is n. Then the
same is true of Z by the comments preceding the theorem.
Let F:U*—>9Y*, &:U* - &, and m: X — Y* be as before,
and define §: U* — Z and ¢:Z— Y* by

& (o, -+ suz)

I

m(z)

) = gug) ofg(ug—1)o- - - of*g(uo)
q(@) = (R@)Hf (@), - - B 71(2)).

Then, by controllability and observability, we have two
canonical factorizations of F and the commutative
diagram

g(u07 tt

Il

U*B/Y?;\
i A

where p is the unique one-to-one and onto map such that
the diagram remains commutative.
Let 21,2, € X. Then we have

!
3

g[p(@iozs)] = m(x1°x2) = m(xy) *m(zz)
= glp(z) ]*qlp(z)] = ¢lp(@1) op(z2) ].
Since q is one-to-one p(z1°%s) = p(z1) op(xs). Thus p is an

isomorphism. It is then a simple eomputation to arrive
at the relation betwen (a,b,¢) and (f,g,h). Q.E.D.
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Note that in the theorem, the group structure of U
is never used, however the group structure of Y and the
fact that m and ¢ are both one-to-one homomorphisms are
used to show that p is an isomorphism. This lack of
symmetry in the arguments is discussed in the next
section.

As was mentioned in Theorem 5, ®—the set of states
reachable from the identity—need not be a subgroup.
Thus, given a finite group homomorphic sequential sys-
tem, there need not exist a controllable system of this
type with the same input—output description. In fact, one
might expect that a homomorphic sequential system has a
minimal realization as a homomorphic sequential system

if and only if the set ® of states reachable from e, is, in

any particular realization, a subgroup. The example below
shows that this need not be the case. If ® 4s a subgroup,
we can restrict our homomorphisms to ®, modulo the
kernel of (c,eq,---,ca® 1): % — Y* and thus construct
a controllable and observable homomorphie realization
(a simple echeck shows that one can redefine the homomor-
phisms in a well-defined manner after extracting the
kernel—therefore, there always exists an observable
homomorphie realization). Thus, for example, if there
exists a homomorphic realization with an Abelian state
group, there exists a controllable and observable homo-
morphic realization.

An example will illustrate these ideas. The dihedral
group D, is a group of order 2n generated by two elements
z and y that satisfy the relations

=6 Yy =e yr=y

where ¢ is the group identity. The eyclic group of order n
will be denoted as Z,, and its elements are {0,1,- SO
n — 1}. Consider the finite group homomorphic sequential
system

zk + 1) = bluk)leale(k)];  yk) = clak)]

where U = Y = Zy, € = Dy, and a, b, and ¢ are homo-
morphisms uniquely determined by
b(1) =
alz) =e  aly) = 2y
cx) =0, ¢y =1

The set of states reachable from e may be shown to be

& = {eyyrxy’x3}

which is not a subgroup.
However if we compute the input-output homomor-
phisms T'; = ca’b:Z; — Z,, we find that

T, = identity for all ¥ > 0.

Although the above nonminimal realization has an
identity-reachable set that is not a group, there still
exists a minimal homomorphic sequential - system. In
fact, such a realization is found by taking U = &€ = Y
= Z,and a = b = ¢ = identity. The reason we can find
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such a realization is that our original system is not ob-
servable. It is easy to see that there exists a controllable
and observable homomorphic sequential realization of a
given input—output map if and only if the identity-
reachable set in any particular observable realization is a
group. An example of an observable system for which ® is
not a group is found by modifying the previous example.
Let U, &, a, and b be as above, but let Y = £ = Dy and
¢ = identity (i.e., state output). This is observable, and &
is the same as before.

There are conditions under which ® is a subgroup, in
which case we do have a controllable and observable
homomorphic realization. The following theorem in-
dicates one such condition.

Theorem 7: Under the hypotheses of Theorem 5, the
set R of states reachable from the identity is a subgroup of
« if @ is an automorphism.

Proof: The group of automorphisms of a finite group
is itself a finite group with funetion composition as the
group operation. Thus there exists a & > 0 such that

a* = identity automorphism.

From Theorem 1 we see that the set ® of states reachable
from the identity can be written in the form

I am-%()
01=0

®=U
U B@)eab(D)e:--oa=b(O) "

[

where U is the input group and for H € X
H™ 2 {hyohgo- - - ohm|hy € HY.

Thus if z, y € ®, we have that x € [B(U)e ab(T)e--+o
()™ and y € [B(U)ab(U)e- - - oa*~(U)[™ for
some my; and ms. Then zoy & [B(U)eab(U)o--
B(U)]™ ™. We see that foralln > 0,2 €E Rifz € R.
Since % is a finite group, there exists on N > 0 such that
2~t = 2%, Therefore & is a subgroup. Q.E.D.

The next theorem completely characterizes those
sequences of input-output homomorphisms that have
controllable and observable finite group homomorphic
sequential realizations. To do this, we must define what
we mean by a free response of a system. If a system is
given in recursive form (as our first equation), a free
response is the identity input response of the system from
some initial state. If the system is given in input—output
form, it is the response to an input sequence, which
consists of the identity only, from some point onward,
and where the response is observed from the point in
time where the nonidentity inputs stop. Thus we apply a
(possibly) nounidentity input up to time & and record the
output from time & + 1 on. Note that the set of free
responses of an input—output map corresponds to the set
of free responses of a homomorphic realization of that
map started in a state reachable from the identity state.
In what follows, free responses refer to the input-output
system description. Note that we can consider the set of

ok —1
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free responses as a subset of the infinite direct product
groupY X Y X --- XY X ---.

Theorem 8: Let the sequence of homomorphisms T,:
U - Y, ¢ =012, -+, with U and Y finite groups,
satisfy the hypotheses of Theorem 2. Then there exists a
controllable and observable finite group homomorphie
sequential realization if and only if the set of free re-
sponses form a subgroup of the infinite direct product
group.

Proof (Suffictency): Let & be the group of all free
responses. Let &, be defined as follows.

Yo, Y1, - * Y1 are the
first n elements of a
free response & ¥

(yO)yli' . '7yn—-1) S yn

F, =

Obviously &, is a subgroup of Y* if & is a subgroup of the
infinite direct product.

Consider the standard observable realization given in
the proof of Theorem 2. In that realization, the state
space is Y7, and it is easy to see that the set & of states
reachable from the identity is just ¥. Then, restricting
our homomorphisms to &, we have a minimal homo-
morphie realization.

Proof (Necessity): Suppose we have a minimal
homomorphic realization of the T';:

zb + 1) = bu®)]ealz®)]; yk&) = clz(®]

Since every state is reachable from the identity, the set of
free responses in the input-output sense is identical to the
set of free responses in the state space sense. Consider the
map from & into the infinite direct produet group Y X
(y X - X‘y X ...»givenby

T (c(x),ca(:z;),- t ,ca,k(:c),- ’ )

This is obviously a homomorphism, and its image is &,
which therefore must be a group. Q.E.D.
Corollary: Under the hypothesis of Theorem 8, if &
is a group, ¥ is isomorphic to F, for some n.
Proof: Suppose @ is the state transition homomorphism
for a minimal realization. Then there exist ¥ > p 2 0
such that a* = a?, and then

(C(CL‘),C&(:ZI),' : ';Can(x)’ o ') = (C(:C),CQ(III),' . ,’wk—l(x)’
CG,D(:II),' " ,ca"—l(x),~ ) )

and the isomorphism is obvious. Note that even if F is
not a group, there exists an = such that the elements of &
and ¥, are in one-to-one correspondence. Q.E.D.

V. SomME CoMMENTS ON STATE SpacE REpucTION

A number of questions were raised in the preceding
sections. We have derived the standard observable
realization; what about a “standard controllable realiza-
tion” in the sense of [1]? The set of states indistinguishable
from the identity is a (normal) subgroup; why is not the set
of statesreachable from the identity necessarily a subgroup?
In Theorem 6 we used the fact that m and ¢ are homomor-
phisms; what about ® and g? We have seen that & need
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not be a group, and for similar reasons ® and § are not
homomorphisms and there is no standard controllable
realization.

Note that these difficulties arise from the following
consideration. Suppose we have a set of homomorphisms
¢, ¢ = 1,2,---,m, mapping a finite group & into a finite
group Y. Then the “fan-out” map taking & into Y~*

r— (61(1?),' ) ',Cn(iE))
is always a homomorphism, but the “fan-in” map taking
X" into Y

@1, 0) = C1(T) (@) - - Cal@a)

need not be a homomorphism. (For example, the map of
* X X into &K defined by group multiplication is typically
not a homomorphism.)

In the rest of this section, we will discuss these problems
in some depth. We will also present some additional
conditions which enable us to circumvent some of the
diffieulties.

Even if ® is a group, we cannot be sure that the map ®
is a homomorphism. If & has n elements, then the map &
defined by

®B:U X - X U(ntimes) > R
® (o, -+ Un1) = B(up_1)oab(Wy_s)o- - oa™ b (1)

is onto. We would like to investigate putting a semi-
direct product structure on U X --- X U in order to
make ® a homomorphism. We have the following necessary
condition.

Theorem 9: Consider a finite group homomorphic
sequential system. If there exists a semidirect product
structure on U X --- X U (n times) such that ®&:U X
s+ X U — & is a homomorphism, then the set of states
reachable from the identity in & steps is a group for all
k>0

Proof: Choose k & {1,--+,n}. Consider the set of
input strings

evvk = { <eun—kyu07 M )ul:—l)luO) s Up E L'T} .

For any semidirect product structure on U X --- X U,
this is a subgroup. Thus ®(W,) is a subgroup if ® is a
homomorphism and ®(W,) is just the set of elements
reachable from the identity in k steps. For k£ > n use
Theorem 3. Q.E.D.

We now modify the earlier example. We concern our-
selves with the input-state side of the system only. Again
let U = Z,, & = Dy, and let b be as before, but redefine a
by

aly) =2y  alzy) = y.

It is easy to check that ¢ is an automorphism of Dy, and
thus by Theorem 7 ® is a subgroup. However,

®(Ws) = {ey,ay.a%,

which is not a group, and thus ® is not a homomorphism
for any semidirect produect structure on U X --- X U.
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These examples illustrate an asymmetry in the theory.
Unlike linear system theory—or even the Abelian group
case here, where it is clear that none of these difficulties
appear—we do not have a naive duality theory without
additional assumptions.

An assumption that avoids some of these difficulties
is that of requiring a to be a normal endomorphism. A
homomorphism f of a group § into itself is called a normal
endomorphism if for all z, y € G

af @z = flayz=?).

Theorem 10: Consider the finite group homomorphie
sequential system

zk + 1) = blu)lealz®)];  yk) = clak)]

evolving in a finite group % of order n. Suppose a is a
normal endomorphism. Then there exists a semidirect
product strucfure on U X --- X U (n times) such that
the input-state map ® is a homomorphism, and thus the
identity-reachable set @ is a subgroup.

Proof: Define the binary operation on U X --- X U
(n times)

(o, U1, * * Y1) (Uo,01, * * Un—1)

A —_ —_ —
=) (vl 1.1)2 1, ... Dy Luovn__l. .o

.vzvlvo,vg—lvs—l. . 'vn—l_lulvn—l' .

VUL, " W gy 10 p2y U 1Up1).

Direct computation verifies that this does define a semi-
direct product structure on U X -+ X U (n times), and
another computation, using the fact that a is a normal
endomorphism verifies that ® is a homomorphism,.
Q.E.D.
Thus, in this case, we can reduce our system to a
minimal homomorphie realization by first restricting the
homomorphisms to ® and then taking ® modulo the
kernel of m, the state-output map (see Theorem 6).
‘We then have the following canonical factorization of
the input—-output map m®

mA

3

Yx, . xY Yx..xy

where Z is the reduced state group, and &’ and m’ are the
reduced input-state and state-output homomorphisms,
with ®’ onto and m’ one-to-one.

Another question arises in the case where ® is not a
group. When this happens, we have 2,20 € ® such that
z1°z; & ®. Thus this particular group multiplication
never oceurs in the operation of the system and is ir-
relevant information. One can then ask whether or
not we can redefine these irrelevant multiplications in
such a manner as to make & a group, while at the same
time requiring that a, b, and ¢ remain homomorphisms
when restricted to ® The example given previously
shows that, at least in some eases, this can be done. Again
let U = Y = Z,, X = D, with a, b, ¢ defined by b(1) = y;
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a(z) = e,aly) = ay; e(z) = 0, c(y) = 1. We saw that
®R = {e,y,xy,a:3}.

The superfluous multiplications are (zy)ey, (xy)oz?,

z%y, and z%x%. If we define these as follows:

(xy)oy & 2* adoy & zy

li>

£ ¢

(@y)ex® =y zlea?

then ® is the Klein4 group, and it is easy to check that
a, b, and ¢ are still homomorphisms. In fact, since the
Klein4 group is Abelian, ¢ is a normal endomorphism,
and we can reduce our system as described above.

VI, CoNcLusION

In this paper we have considered a broader class of
input—output relations than those found in linear system
theory and have derived results analogous to some of the
more crucial properties of linear systems. In particular,
we have considered dynamical systems of the form

zk + 1) = blu®lealz®)];  yk) = clz@)]

where the input, state, and output spaces are finite
groups, and @, b, and ¢ are homomorphisms. The concepts
of controllability, observability, and minimality are
developed, and conditions for the realization of an input—
output map by such a system are given. As in the linear
case, the equivalence of any two minimal homomorphic
realizations is established.

In addition, several problems, all directly or indirectly
related to duality, arise in considering this broader class
of systems. These are discussed, and it is shown that an
additional assumption removes these problems.

The analogy with linear theory has by no means been
completely exploited. Concepts such as transform theory
have not been considered at all. Also, extensions of
some of these results to infinite group problems can be
made, possibly making contact with the study of dynam-
ical systems on topological groups [7].
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