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Finite  Group  Homomorphic Sequential Systems 

Absfmci-Because many systems of practical interest fall outside 
the scope of linear theory, it is desirable  to  enlarge as much as possi- 
ble the class of systems for which a complete structure  theory is avail- 
able. In this paper a class of finite-state sequential  systems evolv- 
ing in groups is considered. The concepts of controllability, observ- 
ability, minimality, realizability, and  the isomorphism of minimal 
realizations are developed. 

Results  that  are analogous to, but m e r  in essential  details 
from, those of linear  system theory are derived. These  results are 
potentially  useful in such diverse  areas as algorithmic design and 
algebraic decoding. 

T 
I. INTRODUCTION 

HE PURPOSE of this paper is to discuss cert,ain 
questions rela.t,ed t.0 the modeling of the input- 

output,  behavior of dynamical systems. We work in t,he 
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context of systems  with  finite input,  output,  and  state 
sets  that.  admit  group operat-ions. The  motivation for 
this st,udy comes from  a desire to  understa.nd  bett,er the 
key results  in  linear  system  theory (linear sequential 
machines included), a.nd, more importantly, it comes 
from a desire t.o  embrace in a,n analogous theory  a  broader 
class of input-output models t,ha.n has  heretofore  been 
possible. Our results are potentially useful in opt.imizing 
the basic recursions occurring in certain  elementary 
numerical processes, t,he  mechanization of a.lgebraic 
decoding procedures,  etc. 

This  paper  might  be  regarded as a  cont.ribution to t,he 
investigation of system  t,heory in the cont,ext of universal 
algebras. It does not include  t,he  vector  space  results a.s a 
special case, but it, does shed new- light, on t.he previous 
proofs in  that, cont.ext, in  t,hat it. makes clear which results 
depend only  on the a.dditive group  st,ructure  inherent  in 
a  vector space. We  have not, worked  for the weakest 
hypothesis  for each individual  theorem, but  rather  have 
sought t,o place a.11 t,heorems in a common  fra,mework- 
one ‘motivated by linear theory. 

Thus, a  number of t,he results  and  proofs  have  direct 
analogs in linear theory, a.nd the proofs  are  presented to 
emphasize the universality of these  argument,s. That is, 
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one  should  read  these  results keeping the following in 
mind. In the theory of algebra, there are  a few basic 
isomorphism theorems for groups,  rings,  vector spaces, 
etc., and one obtains  the results in one setting  from  those 
in  another simply by  replacing the key words  with  their 
analogs, e.g., group for ring  and  normal  subgroup  for 
ideal. The results  here  indicate tha,t  the same type of 
universal structure  and isomorphism results will hold  in  a 
syst,em-theoretic framework. 

One of the most difficult steps in constructing  a real- 
ization of input-output  maps  is the  state assignment 
problem.  This step is  crucial  in the design of recursive 
algorithms, filt.ers, etc. One of the essential  features of 
our work is that, we give a recipe for  solving some problems 
of this type. 

11. FINITE GROUP HOMOhTORPHIC SEQUENTL4L  SYSTENS 
Of course, an empirical  theory  should  avoid  making 

assumptions that cannot be verified experimentally. 
However, it is nonetheless useful to be  able to  ahcipate 
t.he consequences of various  assumptions about  the 
internal mechanism of a phenomenon under  st,udy,  even 
if we are,  in principle, incapable of verifying  or  denying 
the assumptions on the basis of experimentmation. I n  this 
paper we want t,o investigate the properties of certain 
finite-state  systems that evolve in  state spaces tha.t  admit 
a  group  structure,  and we verify in  a const.ructive way 
the existence of this  structure given the input-output 
data. 

Specifically, we consider a class of dynamica.1 models of 
the form 

x@ + 1) = b[u(k)loa[x(k)l; Y(k) = c[x(k) l  

where the  input,  output,  and  state spaces are the finite 
groups U = (V ,  -), y = ( Y ,  *), X = (X, o), respectively. 
Themapsa:X+'X,b:U-X,andc:X+Yareassumed 
to be  group homomorphisms. Invoking an analogy wit.h 
linear  sequential syst,ems, which are  a special case, we call 
this  a finite group homomorphic  sequential  system. This 
class of systems  has  many  things in common with dis- 
crete-time  linear  systems. The most obvious  is  t,he follow- 
ing  result,. 

Theorem 1: The  input, initial state,  and  output of a 
f i d e  group homomorphic sequential  system 

+ 1) = b[u(k)loa[x(k)l; Y(k> = c[x(k)l 

are related by 

b[u(k - l>]oa[b[u(k  - 2 ) ] ] 0 - .  0 

a"-'[b[u(O)]]oa~[x(O)] 

. .  .. . 
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where aR denotes k compositions of a with  itself. 

equations  and the  fact  that a and c are homomorphisms. 
Proof: This  result follosrs directly  from the system 

Q.E.D. 

111. REALIZABILITY CRITERIA 
In  this section we give necessary and. mflicient condi- 

tions  for an input-out.put  map to have a sequential 
realization of the t.ype  under  consideration  here.  Recall 
that a sequence of linear  maps of E" into EP is realizable 
as t.he weighting patkerns of a finite-dimensional discrete- 
time  linear  system if and only if the sequence  satisfies 
a  linear  recursion.  What we find here  is that a sequence 
of homomorphisms of U into y is realizable as the 
"weight,ing pattern" of a f i d e  group  homomorphic se- 
quent,ial  system if and only if the sequence satisfies a homo- 
morphic recursion. 

Let U = (U ,  a )  and y = (Y ,  *) be  finite  groups. We 
then define F(U,y) to be the finite set of maps of U into 
y. F(U,Y) is a semigroup under the operation 

dfs) ( 4  f(u> * 9 ( 4  f,s E F(%,Y). 
Suppose a is a homomorphism of y X .  - . X 9 (r factors) 
4 y' int,o y. Then ?r naturally  induces  a homomorphism 
e of F(U,Y)' into F(U,Y) : 

+(A1,***,Ar)(u) 5 dA~(u) , . ** ,Ar (u ) ) ,  VU E U, 

A , .  . .,A7 E F(%Y). 
Th.eorem 2:' Let U and y be  finite  groups.  Given a 

sequence of group homomorphisms T,:U 3 y, i = 0,1,2, 
- , there  exists  a finite group X and group homomor- 

phisms a:X - X, b :U - X, and c : X  - such that 

T i ( * )  = c[ai13(.)ll 
if and only if there  is  an  integer T > 0 and  a homomorphism 

p:Y'+Y 

$(Ti, * * ,Ti+r-d = Ti+,- 

such that for i = 0,1,2,- - 

Proof (Sufiiency): Suppose  such  a homomorphism 
exists.  We  construct the analog of what  has, in t.he  context 
of linear syst.em theory,  been called the  standard observ- 
able  realization [l] .  Consider  t,he  map of y' into itself 
defined by 

a:  (xl,xZ, * * ,xr - l ,xr )  (xZ~x3, ' * ,xr,p(%xZj ' ' * ,ST))* 

This  is clearly a homomorphism if p is. NOIT define b, 
taking 'u int,o yr  by 

b : ~  + (To(u),T~(u),- * *:T+I(u)). 

Again, this is a  homomorphism if each of the T's is. Define 
c taking y r  into y according to 

c :  (Y1,Y2,- * -,Y,> - Y1. 

This  too is  a homomorphism. We claim that c [ai [b( a ) ] ]  = 

1 It has recently been pointed out to  us t.hat., for the special case of 
Abelian groups, a realizability result is given in [6]. 
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c[ara’-’[b(’)]] = C(TT-l(’),T7(’))*‘ ’,T27-2(.)) = T7-1(‘)* 

The  rest of the  relations follow in a similar manner by 
applying the recursion. Thus we may  take x = y‘. 

Proof (Necessity): Suppose that Ti(-) = c [ a i [ b ( . ) ] ]  
for  some  set of homomorphiqns a, b ,  and c wit,h a :  X --t X 
being defined on a finite  group. Since the  set of all  maps of 
X into it.self is  a  finite set., we see t.hat af = a‘“ for some T > 
k 2 0. Then = a‘+” for  all m >, 0. Then defining p 
as  the projection onto  the (k + 1)th component of an 
T-tuple 

P ( Y 0 ,  - * . , Y 7 - d  = Y r  

me see that 

fi(T$,Ti+l,. * *,T*+r-l)(*) = T<+n(*) = c[a’+’[b(.)]l 

= c [ u ” ~ [ ~ ( . ) ] ]  = Ti+,(.). Q.E.D. 

We  remark that  the proof  shows that, t.he only sequences 
of homomorphisms { Ti )  that  can  be realized by a finite- 
group  system  are  those that are  periodic  after a finite 
number of terms (see Fig. 1). The next  result shows that a 
is an automorphism if and only if there is no “tail.” 

Corollary: Under  the hypotheses of Theorem 2, there 
exists a realizat.ion with a an aut,omorphism if and only 
if = T ,  for some I and all k = 0,1,2, e .  

P/-oof: This  follom from  t,he  fact that a is an aut,omor- 
phism of a finite group if and only if ak is the  identity 
automorphism  for some k > 0. Q.E.D. 

In  automata t,heory,  one usually considers systems 
described by  maps of the form f :  U* + Y where U* is the 
set of all finit,e strings of elements in U and f(uo,- . . ,u,-,) 
is the  output of t,he  system at time n following the ap- 
plicat.ion of the input. string uo,. e . ,un-l (in this  order). 
One can  then ask which f’s come from finite group homo- 
morphic sequential systems. 

Theorem 3: Given  finite  groups ‘-U = ( U ,  a )  and y = 
( Y ,  *), and  an input-output  map f: U* + Y ,  this can be 
realized as a  finite  group homomorphic sequential  system 
if and only if T i :  ‘11 -t y, defined by 

Ti&) = f(u,e-e) 

i identity  inputs 

are homomorphisms satisfying  t,he condit,ions of Theorem 
2, and 

f(uo,* * *,uJ = To(u,)*Tl(u,-l)** * .*Tn(uo). 

Proof: The proof is a  stxaightforward  calculation. 
Q.E.D. 

Kot,e  that,  the second condit.ion in  Theorem 3 is equiv- 
alent t.0 the following: if wl ,  w2 E U* and  the length of 
w2 is k ,  then 

Tk+2 

f 
0 - .  

Tk+l 0 

Fig. 1. RealizabWy condit.ion. 

f (w+d = f(u2) *f(wl,ek) 

where 8 E U * is the  string of k identity  inputs. 
For an  input-output map f corresponding to a  finite 

group homomorphic sequential  system, one should think 
of the  map  from UT into Y‘ given by 

Y7 = f (UO,. ~u7-1) = To(u7-I) *TI(U,-Z)* * * *T 7-1 ( UO ) 

Y,+I = f(uo,. .,u,l,e) = T1(u,-1)*T~(u,-~)*. . *T,(uo) 

~ 2 , - - 1  = f(uo,. -,u7-1,e7-’) = Tr-l(ur-l)* 
T7(u7-2) * . . *Tz7-2(uo) 

a.s  being t.he analog of the map corresponding  t.o the 
Hankel  matrix. As m i l l  be shown, the  number of elements 
in  the image space of t.his map  equals the  number of 
states  in  the “nlinimal  realization,”  just as the  rank of 
t,he  Hankel  matrix det.ermines the  dimension of t,he state 
space of a minimal linear realization. 

IV. CONTROLLABILITY, OBSERVABILITY, 
AND klINIMAL SYSTEXS 

One of the crucial results  in  linear syst.em t.heory is that 
a system  is minimal if and only if it is cont,rollable and 
observable, and  any two  controllable  and  observable 
realizations of the same  input-output  map differ at most 
by a choice of basis  for the  stat,e space. This  result  has a 
nat.ura1 analog  here, but  the analog of a  related  result, 
namely, t.he fact that  any  input-output  map  that  has a 
linear  realization  has a controllable and observable  linear 
realization, fails. This means we must  characterize  all 
t.hose systems that have  controllable and observable 
realizations a.nd this is done in Theorem 8 below. We 
n0t.e that finit,e dimensional vector spaces over the same 
field are isomorphic if a.nd only if t,hey a,re of the same di- 
mension,  whereas finite groups  can  have  t,he  same 
number of elements and  not  be isomorphic. Thus  the 
&ate space  isomorphism t,heorems are decidedly more 
interesting here. 

We  say  that. the homomorphic sequential  system 

z(k + 1) = b[u(k)]oa[z(k)]; y(k) = c [ z ( k ) ]  

which evoIves in  the  group X = (X, 0 )  is conkollable 
from x1 E X if for any x2 E X there exists a sequence of 
cont.rols in the  input  group such that,  the  state is driven 
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from x1 to x2 by this sequence. The system  is  said to be c(x) = c[a(z)] = = c [ u ~ - ~ ( x ) ]  = identity. 

states X I ,  8 E X are  said  to  be indistinguishable if, given 
any  input sequence, the corresponding output sequences 
from t.he initial  states 2 1  and x2 are identical.  Otherwise, 
x1 and xa are  said to be distinguishable, and  an  input 
sequence that yields  different output sequences from x1 
and x2 is k i d  to distinguish between x1 and x2. We call the 
system observable if any  distinct  pair of stat.es  is dist,in- 
guishable. 

Theorem 4: Consider the finite  group homomorphic 
sequential  system 

cOntrOzlabze if it is controuable from all E x' TF5'0 Can it happen that this set of equalities  hol& but c[aP(x)] 
# identity  for some p > n? Clearly not, because  for  any 
x ,  a'(.) = d ( x )  for some n > i > j > 0 because there  are 
only n elements  in X .  This  means that for  any x and any 
positive  integer p we have aP(x) = d ( x )  with 0 6 k 6 
n - 1, mThere k, of course, depends on x and p .  (Actually 
for n > 2, n-e can  replace n - 1 by n - 2 in the expres- 
sions for @ and X, but while this is easy to prove  for a, 
the result  for X is  more cumbersome and we have  thus 
omitted  it.) 

To see that X is a  normal  subgroup, we need only 
x(k  + 1) = b[u(k ) ]oa[x (k ) ] ;  y(k) = c [ x ( k ) ]  observe that  the map of X into 9" d e h e d  by 

with state group X = (X, 0 ) .  Let e, E X be the  identity x + (C(x>,C[a(x)I,*.  *,c[an-l(X)I) 
in x. Then  the system is controllable if and only if it is 
controllable  from e,. The  states x1 and x2 a.re dist.inguishable 
if and only if the  identity  control sequence distinguishes 
between  them. Also, 21 is indistinguishable  from xa if and 
only if x1x2-l is  indistinguishable  from e,. 

Proof: These  results  are  obtained  by  straightformud 
calculations. Q.E.D. 

Thus, as in  the case of linear  systems, the t,est,  for 
controllability  reduces to  a  test for  controllability  from 
the identity,  and  t.he  t.est for observability  reduces to a 
test for  indistinguishability  from the ident,ity. 

The next theorem gives a  formula for the set  reachable 
from the identity  and  the  set  indistinguishable  from the 
identity. 

Theorem 5: If the finite  group homomorphic sequential 

is a homomorphism and X is its kernel. That (R need not 
be  a  subgroup of X -dl be  shoxn by example later. 

Q.E.D. 
Corollary: Under the hypotheses of Theorem 5,  the 

set (R is a subgroup if X is an Abelian group. 
Proof: We  need only note that for  all m > 0, a"b(U) 

is  a  subgroup,  and  t,hat the  product of two  subgroups of 
an Abelian group is itself a  subgroup.  Q.E.D. 

We nom- recall some of the concepts of abst.ract rea,l- 
ization  theory ([2], ch. 10). If A and B are  sets  and we 
have an input-out.put  map j : A  + B,  a factorization of f 
through  a  state  set C is  a  pair of maps a: A + C and 
@ : C  +- B such that, j = @oa, Le., t,he following diagram 
commutes. 

system ALB 

x(k  + 1) = b[u(k ) ]oa[x (k ) ] ;  y(L) = c[x (k ) ]  

evolves in a group X = (X, 0 )  with n elements then  the 
set of states reachable  from the identity  is 

v C 

a = {b(ul)a[b(U.2)]O- * * oan-l[b(un)]lul,. . .,U" E li) This factorization is canonical if a is  onto and p is one-to- 
one. 

A b(U)  oab.(U) 0 * * * oa'l-lb ( U )  * In this case, the "size" of C is minimal in some sense. 

The  set of states indistinguishable  from the  identity  is  For  instance, if A ,  B,  and C are  vector  spaces and j ,  a, 
and /3 are  linear  maps,  and if e, 6, 6 is any  ot,her, not 

X = ker C(*> n ker c[a(->l n * * * n ker c[an-'(*)1. necessarily canonical,  factorization,  then  dim C 6 dim e. 
The set cii is  not necessa,rily a  group, but X is  a  normal 
subgroup of X. 

Proof: With  respect to  the reachable  set,  this  result is 
immediate  from the formula 

x ( k  + 1) = b(u(k))oa[b(u(k - l))].. - * 0 

a" - ' [b (u ( l ) ) ]~a ' [x ( l ) ]  

and  the observation that, because of the stat.ionarity of 
the system,  any  stat.e  reachable  from the  identity is 
reachable along a  trajectory that contains no state more 
than once and  thus is of length less than or equal t,o n. 

If the  input sequence is  a  string of identity  elements,. 
then  the  output sequence from the ident,ity &ate is 
simply a  string of identity  elements  in y. If the  out,put 
from the  state x is to be  indistinguishable  from  this 
string,  then it must  happen that 

Also, if A,  B,  C, and e are finite set.s, with C corresponding 
to a  canonical  and 0 to any  other  factorizat,ion, then 
card (C) 6 card (e). 

Suppose we have  an  input  group U = (li, .), an  output 
group y = ( Y ,  *), and an input-output,  map f: U* 3 Y 
that has at least. one realization as  a finite  group homo- 
morphic  sequential  system: 

x(k  + 1) = b[u(k)loa[x(k)l ,  y(k) = c[x(k) l  
with  finite state group = ( X ,  0 ) .  Suppose % has n 
elements, and define F :  U* 3 Y" by f(u0,. ,uk) = 
(f(uo,. . -,uk),f(u0, - . -,u,,e), - ' ,F(ua, .  . .,u,,e"-')). We then 
have  a  factorization of F :  
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where Not,e that  in  the theorem, the  group  structure of .U 
is  never  used, however the  group  structure of y and  the 
fact that m and q are  both one-to-one  homomorphisms are 

m(z) = (c(x),ca(z),. * .,can-l(z)). used to show that p is an isomorphism. This  lack of 

We  immediately see that  the above  factorization is 
minimal if and only if the system  is  controllable and 
observable. In t,his case, we say  that  the  triple of homo- 
morphisms (a,b,c) defines a minimal realization. 

Another  result of a.bstract  realization  theory  is the 
following: given f: A 4 B and 'two ca.nonica.1 factorizat,ions 
-that is, two  sets C and I!? and corresponding  ma.ps 
a : A  3 C, &:A + e, both  onto,  and p:C+ B, f i : f ? +  B ,  
both one-to-one, such  t.hat f = b o a  = bod-then the two  are 
equicalent, in that  there exist.s a  unique one-to-one and 
onto  map y : C + f?, such  t,hat. & = y w  a.nd b = f i o  y. 

When n-e apply  this  result to  the problem of finite 
group homomorphic  sequent.ia.1 systems, we obtain 
stronger  results, as in  linear  theory, because of the &rue- 
ture of the systems. 

Theorem 6: Suppose U = ( U ,  .) and y = ( Y ,  *) are 
finite groups,  and f :  G* + Y is an input,-out,put  map that 
has  two  controllable a.nd observable f i d e  group homo- 
morphic sequent,ial rea.lizations 

z (k  + 1) = b[u(k)]oa[s(k)]; y(k) = c[z(K)] (1) 

+ 1) = g[U(k)lof[z(k)l; y(W = h[Z(k)l (2) 

where t,he  system (1) evolves in a finite  stat.e  group X = 
(X, 0 )  and  system (2) evolves in a  finite state  group 
Z = (2, 0 ) .  Then  there exists a. group isomorphism p :  
X 4 Z such  t,hat. f = pap-l ,  g = pb,  and h. = cp-'. The 
two  realizations are said t.0 be conjugate. 

Proof: Suppose the  cardinality of X is n.. Then  the 
same is true of Z by  the comments preceding the theorem. 
Let F :  U* + y", a: U* 3 X, a.nd m:% 3 y" be  as before, 
anddefineS:C*+Zandy:Z+y"by 

S(U0,. * -,uk) = 9(%€)0fg(Uk-d0' * .Of"(%> 

Y ( 4  = (k(z),hf(z),-. .,hf"-Yz)). 

Then,  by controllability and observability, we have trwo 
canonical factorizat.ions of F and  the  commutative 
diagram 

where p is t.he unique one-t.0-one and  onto  map such  t.hat 
the  diagram remains commut.ative. 

Let x1,z2 E X. Then we have 

Q [P(zlozJ I = m(moz2) = m(z1)*m(zJ 

= Q IP (21) 1 *Q [I, ( 4  I = 9 [P (21) "p (Z?) I. 
Since y is one-t>o-one p(z1oz2) = p(x1) op(z2). Thus p is an 
isomorphism. It, is then a. simple computation t.o arrive 
at, t.he rela.tion betwen (a,b,c) and (f,g,h). Q.E.D. 

symmetry  in the arguments  is discussed in the  next 
sectrion. 

As was mentioned in Theorem 5, @-the set of stat.es 
reachable  from the ident.it,y-need not  be a  subgroup. 
Thus, given a finite  group homomorphic sequential sys- 
t.em, there need not exist a  controllable  system of t,his 
type w-ith t.he same  input-output  description. In fact,, one 
might expect that a homomorphic sequential  system ha.s a 
minimal realization as a homomorphic sequential  system 

, i f  and only if the  set 6i of states reachable  from e, is, in 
any  particular  realization, a subgroup. The exa.mple  below 
shows that  this need not  be  the ca.se. If (R is a  subgroup, 
we can  restrict our homomorphisms to  (R, modulo t,he 
kernel of (c,ca; ,ca"-l) :X + yn, and  thus constxuct 
a controllable and observable homomorphic realization 
(a simple  check shorn-s t,hat, one can redefine the homomor- 
phisms in  a well-defined manner  after  extra.cting the 
kernel-therefore, there always exists an obsercable 
homomorphic realization). Thus, for example, if there 
exist.s a homomorphic realizat.ion with  an Abelian state 
group,  there exists a cont.rollable and observable  homo- 
morphic realizat,ion. 

An  example  will illustrate t.hese ideas. The  dihedral 
group D, is a  group of order 212 generated by two e1ement.s 
z a.nd y that sa.tisfy t,he relations 

xn = e,  y2 = e ;  zyx = y 

where e is t.he group  identity.  The cyclic group of order n 
m<ll be  denoted  as Z,, and  its elements are { O , l , . .  -, 
n - I]. Consider t.he finite group homomorphic sequential 
system 

z (k  + 1) = b[u(k)]oa[z(k)]; y(k) = c[z(k)]  

where U = y = 2 2 ,  X = Dd, and a, b, and c are homo- 
morphisms  uniquely determined by 

b(1) = y 

a(.) = e,  a(y) = zy 

C(.) = 0, c(y) = 1. 

The  set of sta.tes reachable  from e ma,y be shown to  be 

6l = t e , y , w , z 3 j  

which is not a subgroup. 

phisms T i  = caib : Zz + Z2,  me find that 
However if  me cornputme t,he input-output homomor- 

T ,  = identit,y  for  all k 3 0. 

Although  t,he  above nonminimal rea.liza.tion has  an 
identity-reacha.ble  set that is not a, group,  there &ill 
exists a minimal  homomorphic sequential  system. I n  
fa.ct, such a realiza.t.ion is  found  by ta.king U = X = y 
= Z 2  and a = b = c = identit,y.  The rea.son we can  find 
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such  a  realization is that our original system is not ob- 
servable. It is easy to see that  there exists a controllable 
and observable  homomorphic sequential  realization of a 
given input-output map if and only if the ident.ity- 
rea.chable set  in  any  particular observable realization  is a. 
group. An example of an observable syst,em for which (R is 
not a  group is found by modifying t,he previous  example. 
Let, U, X, a, and b be as above, but  let y = X = Dd and 
c = ident.ity (i.e., st.ate  out.put). This is observable, and 6i 
is the same as before. 

There  are conditions  under which (R is a subgroup, in 
which case we do  have a controllable and observable 
homomorphic realization. The following theorem in- 
dicates one such  condition. 

Theorem 7: Under  the hypotheses of Theorem 5, the 
set (R of st,ates  reachable  from the  identity is a  subgroup of 
X if a is an automorphism. 

Proof: The group of automorphisms of a  finite  group 
is itself a finite group  with  function composition  a.s the 
group operatmion. Thus  there exists a k > 0 such that 

ax = identity automorphism. 

free responses as a  subset of the infinite  direct product 
g r o u p y x y x ~ ~ ~ x y x - - ~ .  

Theorem 8: Let  the sequence of homomorphisms T,: 
U + y, i = 0,1,2, . . ,with U and 3 f i d e  groups, 
satisfy t,he hypotheses of Theorem 2. Then t,here exist,s a 
controllable and observable h i t e  group homomorphic 
sequential  realization if and only if t.he set of free re- 
sponses form a. subgroup of the infinite direct  product 
group. 

Proof (Suf ic iency):  Let 5 be  the  group of all free 
responses. Let 5, be defined as folloxs. 

i lyo,yl,- - .,yn--l are  the 
5, = ('yo,yl,- . .,Y,-~) E y" lfirst. n elements of a . 

lfree  response E 5 1 
Obviously 5, is a  subgroup of yn if 5 is a  subgroup of the 
infinite direct  product. 

Consider the  standard observable  realization given in 
the proof of Theorem 2. In  that realizat,ion, the  st,ate 
space is y', and it. is easy  t.0  see that  the  set 6i of stat,= 
reachable  from the  identity is  just 5,. Then,  restricting 
our homomorphisms to 5,, we have  a minimal  homo- 

From  Theorem 1 -*e see that  the set (R of states reachable 
from  the  identity  can  be n;ritt,en in  the  form 

morphic realizat.ion. 

homomorphic realization of the Ti:  
Proof  (Necessity): Suppose we ha.ve a minimal 

(R = u n: U m - % ( u )  
m 

m > O  i = O  

= u p ( u ) o a b ( u ) o . .  ~uk-'b(U)]" 
m ) l  

where U is the  input  group  and for H c X 

H" A {ht&o* - * oklhz E El]. 

Thus if x, y E 63, we have that z E [ b ( U ) o  a b ( U ) o .  * - 0  

ak-%(U)]"' and y E [b(U)oab(U)o- . . ~a'-'b(U)]"' for 
some m1 and m. Then xoy E [b(U)~ab(U)o.-~oa'"-~ 
b(U)]"""'. ViTe see that for all n > 0, xn E 6i if z E a. 
Since x is a  finite  group,  there exists on N > 0 such t.hat 
x-' = 2'". Therefore  is  a  subgroup.  Q.E.D. 

The next t,heorem completely characterizes  those 
sequences of input-output homomorphisms that have 
contxollable and observable finite group homomorphic 
sequent,ia.l realizations. To do  this, we must define what 
we mean by a free response of a system. If a system is 
given in recursive form (as our &st equation),  a  free 
response is t,he identity  input response of the system  from 
some initial  state. If the system is given in  input-output 
form, it is the response to  an  input sequence, which 
consists of the  identity only, from some point  onward, 
and where the response is observed from  the point in 
time where the  nonidentity  inputs  stop.  Thus we apply a 
(possibly) nonidentity  input  up  to  time k and  record the 
output from  time k + 1 on. Note  t,hat  the set of free 
responses of an  input-output  map  corresponds t.o the  set 
of free responses of a homomorphic realization of that 
map  start.ed  in  a  state  reachable  from  the  identit,y  state. 
In  what. follows, free responses refer to  the  input-output 
system description. Kote  that we can consider t,he set of 

z (k  + 1) = b[u(k)]ou[~(k)]; y(k) = c [ z ( k ) ] .  

Since  every st.at.e is reachable  from the identitmy,  the  set of 
free responses in  the  input-output sense is identical to  the 
set of free responses in  the  state space sense.  Consider the 
map  from X into  the infinite direct product  group y X 
y X ... X y X - - - -g ivenby 

x+ (c(x),ca(.),~~~,cu~(x),~~~). 

This  is obviously a homomorphism, and its image is 5, 
which t.herefore must. be  a  group.  Q.E.D. 

Corollary: Under  the hypot.hesis of Theorem S, if 5 
is  a  group, 5 is isomorphic  t.o 5, for some n. 

Proof: Suppose a is the  state  transition homomorphism 
for a minimal realization. Then  there exist k > p 2 0 
such that ak = up, and t,hen 

(c(x),ca(x),* ' ,can(x),.  - )  = ( c (x ) , ca (x ) , - .  *,ca'-'(z), 

caP(z),- * * ,Cd-1(x) ,*  - 0 )  

and  the isomorphism is obvious, K0t.e that even if 5 is 
not  a  group, there exists an n such that t,he elements of 5 
and 5, are  in one-to-one  correspondence.  Q.E.D. 

TT. SOJIE COMMEWE ON STATE SPACE REDUCTION 

A number of questions were ra.ised in the preceding 
sections. We have  derived the  standard observable 
realizat.ion; Khat  about  a  "standard cont.rollable realiza- 
tion" in t.he sense of [l]? The  set of st.ates  indistinguishable 
from  the identit,y  is  a  (normal)  subgroup; why is not t.he set 
of sta.tes  reachable  from the  identity necessarily a  subgroup? 
I n  Theorem 6 we  used  t.he fa.ct that m and q are homomor- 
phisms; what  about  and s? We have seen that 6i need 
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not  be a group,  and for similar reasons @ and S are  not 
homomorphisms and  there is no standard controllable 
realization. 

Note  that t,hese difficulties arise  from the following 
consideration.  Suppose we have  a  set of homomorphisms 
ci ,  i = 1,2,. - . , m ,  mapping  a finite group int,o a finite 
group y. Then  the "fan-out" map  t,aking X into y n  

2 - (CI(Z),. . .,cfl(z)) 

is aln-ays a homomorphism, but  the "fan-in" map taking 
X" into y 

(XI,. * ' ~ n )  - ~ 1 ( ~ 1 ) * ~ 2 ( ~ 2 ) .  * .  . . c n ( ~ n )  

need not be a homomorphism. (For example, the map of 
X X X into X defined by  group multiplication is typically 
not a homomorphism.) 

I n  the  rest of this section, we  will discuss these  problems 
in some depth. We  will also present some addit,ional 
condit.ions which  enable us  to circumvent some of the 
difficulties. 

Even if (R is  a  group, we cannot  be sure  that t>he  map @ 
is a homomorphism. If X has 71 elements, then  the map 63 
defined by. 

@:% X X U (n times) - (R 

&(u,, . . -,un-l) C b(ufl-l)o~b(~,-2>o. * oa"-'b(uo) 

is onto. We would like t.0 investigate  putt.ing a semi- 
direct  product  st,ructure  on % X . . . X % in  order  to 
make 63 a homomorphism.  We have  the following necessary 
condition. 

Theorem 9: Consider a finite group homomorphic 
sequent,ial system. If t.here exists a semidirect product 
struct.ure  on U X . . . X % (n times)  such that @: % X 
. - X % + X is a homomorphism, then  the set. of st.ates 
reachable  from the ident.ity  in k steps is a. group for all 
k > 0. 

Proof:  Choose k E { 1,. a ,n} . Consider the set of 
input  strings 

\vk = { (eunMk,Ug,- . . , u ~ ~ - ~ ) / u ~ , .  E a).  
For any semidirect product,  st,ructure  on % X . . X %, 
this is a  subgroup. Thus @(W,) is a subgroup if @ is a 
homomorphism and @(ETk) is  just, the'  set of elements 
reachable  from the  identity  in k steps. For k > n use 
Theorem 5. Q.E.D. 

We now  modify the earlier example. We  concern  our- 
selves with the input-st,at.e  side ofthe system  only. Again 
let % = Z?, X = D4, and  let b be as before, but. redefine a 
by 

a(y) = zy a(& = y. 

I t  is easy to check that a is an automorphism of D4, and 
thus  by  Theorem 7 @i is a subgroup. However, 

W W ~ )  = { e,y,w,z3f,  

which is not. a  group,  and  thus is not a homomorphism 
for any semidirect. product  structure on % x . . . x %. 

These examples illust.rate an  asymmetry  in t.he theory. 
Unlike  linear  system theory-or even the Abelian group 
case here, where it is clear that.  none of these difficulties 
appear-we do  not  have a naive  duality  t.heory  wit.hout 
additional assumptions. 

An assumption that avoids some of these difficult.ies 
is that of requiring a to be a  normal  endomorphism. A 
homomorphism f of a  group S int.0 it,self is called a normal 
endomorphism if for  all Z, y E s 

zj(y)z-l = f(zyz-1). 

Theorem 10: Consider the finite  group homomorphic 
sequential  system 

z ( k  + 1) = b [ ~ ( k ) ] o a [ x ( k ) ] ;  y(k) = c [ z ( k ) ]  

evolving in  a finite group X of order n. Suppose a is a 
normal endomorphism. Then  there exists a  semidirect 
product  structure  on % X . . . X % (n times)  such that 
t.he inpubstate  map @ is  a  homomorphism,  and thus  the 
identity-reachable  set @i is a subgroup. 

Proof: Define the  binary operation  on % x . . . x % 
(n times) 

(u~,uI,. . * yun-1) (v~,vI, .  . . ,v~-I)  
A (v1-'.v2-1. . . . . ufl-l-Luovn-l* - ' 

. vzv1uo,v2-1v3-1~ * * . ' un-l-lulufl-l~ * . 
u3v2v1, * , v n ~ 1 - ~ U n ~ ~ v n ~ - 1 v n ~ - 2 , U n ~ - 1 v n ~ l ) .  

Direct.  comput,ation verifies that t,his does define a semi- 
direct  product  struct,ure on % x . . . x % (n times), and 
another  computation, using the  fact  t.hat a is  a  normal 
endomorphism verifies t.hat. @ is  a homomorphism. 

Q.E.D. 
Thus,  in  this case, we can  reduce  our  system to a 

minimal  homomorphic rea.lization by first  restricting  the 
homomorphisms to  (R and  then t.aking (R modulo t,he 
kernel of nz, the state-out.put  map (see Theorem 6 ) .  
We  then  have  the following canonical factorization of 
t.he input-out,put  map m@ 

where Z is the reduced  st.ate  group, and @' and m' are t.he 
reduced inpubstate  and state-out,put. homomorphisms, 
with @' onto  and m' one-to-one. 

Another  question a.rises in  the case where (R is not a 
group. When this  happens, we have z1,x2 E (R such that 
z10x2 (R. Thus  this  particular  group multiplication 
never  occurs in  the  operation of the syst,em and is ir- 
relevant.  information.  One  can then ask  whether or 
not. m-e can redefine these  irrelevant.  multiplications in 
such  a  manner as t,o make @i a  group, while at  the same 
time  requiring that a, b,  and c remain homomorphisms 
when rest.ricted to (R. The example  given previously 
shows that, at. least. in some cases, this  can  be done. Again 
let 21 = y = 2 2 ,  X = D, with a, b, c defined by b(1) = y; 
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a(.) = e, a(y) = sy; c(z) = 0, c(y) = 1. We saw that 

a = te,Y,xY,x3j 

The superfluous multiplications are (xy) oy, (zy) ox3, 
x3oy, and x30x3. If we define these  as follows: 

(q )y  x3 x39 xy 

(xy)os3 6 y 530x3  e 

then is the  Klein4 group,  and it is easy to check that, 
a, b, and c are still homomorphisms. I n  fact, since the 
Klein4 group is Abelia.n, a is a  normal endomorphism, 
and we can  reduce our system as described  above. 

VI. CONCLUSION 

In this  paper we have considered a broader class of 
input-output relat.ions than  those  found  in linear  system 
theory  and  have  derived  results ana.logous to some of the 
more  crucial  properties of linear system. In particular, 
we have considered dynamical  systems of the form 

s(k + 1) = b[u(k)]oa[~(k)]; y(k) = c[x(k)] 

where t.he input,,  state,  and  out,put spaces are finite 
groups,  and a, b,  and c are homomorphisms. The concepts 
of controllability,  observability,  and  minimality are 
developed, and condit.ions for the realization of an input- 
output  map  by such  a  system are given. As in  the linear 
case, the equivalence of any  two minimal  homomorphic 
realizations is established. 

In  addition,  several problems, all directly or indirectly 
related t o  duality,  arise in considering this  broader class 
of systems. These  are discussed, and it is shown t.hat an 
additional  assumption  removes  these problems. 

The analogy  with h e a r  theory  has  by  no  means  been 
completely exploited. Concepts  such as transform  theory 
have  not been  considered at  all. Also, extensions of 
some of these  results t.0 infinite  group problems can  be 
made, possibly making  contact xvit.h the  study of dgna.m- 
ical  systems on t,opological groups [7]. 
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