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Abstract We develop hierarchical, probabilistic models for
objects, the parts composing them, and the visual scenes
surrounding them. Our approach couples topic models
originally developed for text analysis with spatial trans-
formations, and thus consistently accounts for geometric
constraints. By building integrated scene models, we may
discover contextual relationships, and better exploit par-
tially labeled training images. We first consider images of
isolated objects, and show that sharing parts among object
categories improves detection accuracy when learning from
few examples. Turning to multiple object scenes, we pro-
pose nonparametric models which use Dirichlet processes
to automatically learn the number of parts underlying each
object category, and objects composing each scene. The re-
sulting transformed Dirichlet process (TDP) leads to Monte
Carlo algorithms which simultaneously segment and recog-
nize objects in street and office scenes.

E.B. Sudderth (�)
Computer Science Division, University of California, Berkeley,
USA
e-mail: sudderth@eecs.berkeley.edu

A. Torralba · W.T. Freeman · A.S. Willsky
Electrical Engineering & Computer Science, Massachusetts
Institute of Technology, Cambridge, MA, USA

A. Torralba
e-mail: torralba@csail.mit.edu

W.T. Freeman
e-mail: billf@mit.edu

A.S. Willsky
e-mail: willsky@mit.edu

Keywords Object recognition · Dirichlet process ·
Hierarchical Dirichlet process · Transformation · Context ·
Graphical models · Scene analysis

1 Introduction

Object recognition systems use the image features compos-
ing a visual scene to localize and categorize objects. We
argue that multi-object recognition should consider the re-
lationships between different object categories during the
training process. This approach provides several benefits. At
the lowest level, significant computational savings are pos-
sible if different categories share a common set of features.
More importantly, jointly trained recognition systems can
use similarities between object categories to their advantage
by learning features which lead to better generalization (Tor-
ralba et al. 2004; Fei-Fei et al. 2004). This transfer of
knowledge is particularly important when few training ex-
amples are available, or when unsupervised discovery of
new objects is desired. Furthermore, contextual knowledge
can often improve performance in complex, natural scenes.
At the coarsest level, the overall spatial structure, or gist,
of an image provides priming information about likely ob-
ject categories, and their most probable locations within the
scene (Torralba 2003; Murphy et al. 2004). In addition, ex-
ploiting spatial relationships between objects can improve
detection of less distinctive categories (Fink and Perona
2004; Tu et al. 2005; He et al. 2004; Amit and Trouvé 2007).

In this paper, we develop a family of hierarchical gen-
erative models for objects, the parts composing them, and
the scenes surrounding them. We focus on the so-called
basic level recognition of visually identifiable categories,
rather than the differentiation of object instances (Liter and
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Bülthoff 1998). Our models share information between ob-
ject categories in three distinct ways. First, parts define
distributions over a common low-level feature vocabularly,
leading to computational savings when analyzing new im-
ages. In addition, and more unusually, objects are defined
using a common set of parts. This structure leads to the dis-
covery of parts with interesting semantic interpretations, and
can improve performance when few training examples are
available. Finally, object appearance information is shared
between the many scenes in which that object is found.

This generative approach is motivated by the pragmatic
need for learning algorithms which require little manual su-
pervision and labeling. While discriminative models often
produce accurate classifiers, they typically require very large
training sets even for relatively simple categories (Viola
and Jones 2004; LeCun et al. 2004). In contrast, generative
approaches can discover large, visually salient categories
(such as foliage and buildings Sivic et al. 2005) without su-
pervision. Partial segmentations can then be used to learn
semantically interesting categories (such as cars and pedes-
trians) which are less visually distinctive, or present in fewer
training images. Moreover, by employing a single hierarchy
describing multiple objects or scenes, the learning process
automatically shares information between categories.

Our hierarchical models are adapted from topic models
originally used to analyze text documents (Blei et al. 2003;
Teh et al. 2006). These models make the so-called bag of
words assumption, in which raw documents are converted
to word counts, and sentence structure is ignored. While it
is possible to develop corresponding bag of features mod-
els for images (Sivic et al. 2005; Fei-Fei and Perona 2005;
Barnard et al. 2003; Csurka et al. 2004), which model the
appearance of detected interest points and ignore their loca-
tion, we show that doing so neglects valuable information,
and reduces recognition performance. To consistently ac-
count for spatial structure, we augment these hierarchies
with transformation (Miller et al. 2000; Jojic and Frey 2001;
Frey and Jojic 2003; Simard et al. 1998) variables describ-
ing the locations of objects in each image. Through these
transformations, we learn parts which describe features rel-
ative to a “canonical” coordinate frame, without requiring
the alignment of training or test images.

The principal challenge in developing hierarchical mod-
els for scenes is specifying tractable, scalable methods for
handling uncertainty in the number of objects. This issue
is entirely ignored by most existing models, which are ei-
ther tested on cropped images of single objects (Weber et al.
2000; Fei-Fei et al. 2004; Borenstein and Ullman 2002), or
use heuristics to combine the outputs of local “sliding win-
dow” classifiers (Viola and Jones 2004; Torralba et al. 2004;
Ullman et al. 2002). Grammars, and related rule-based
systems, provide one flexible family of hierarchical repre-
sentations (Tenenbaum and Barrow 1977; Bienenstock et al.

1997). For example, several different models impose dis-
tributions on hierarchical tree-structured segmentations of
the pixels composing simple scenes (Adams and Williams
2003; Storkey and Williams 2003; Siskind et al. 2004;
Hinton et al. 2000; Jin and Geman 2006). In addition,
an image parsing (Tu et al. 2005) framework has been
proposed which explains an image using a set of regions
generated by generic or object-specific processes. While
this model allows uncertainty in the number of regions, and
hence objects, its high-dimensional state space requires dis-
criminatively trained, bottom-up proposal distributions. The
BLOG language (Milch et al. 2005) provides a promising
framework for representing unknown objects, but does not
address the computational and statistical challenges which
arise when learning scene models from training data.

We propose a different, data-driven framework for han-
dling uncertainty in the number of object instances, based
on Dirichlet processes (DPs) (Jordan 2005; Pitman 2002;
Sudderth 2006). In nonparametric Bayesian statistics, DPs
are used to learn mixture models whose number of com-
ponents is automatically inferred from data (Escobar and
West 1995; Neal 2000). A hierarchical Dirichlet process
(HDP) (Teh et al. 2006) describes several related datasets
by reusing mixture components in different proportions. We
extend the HDP framework by allowing the global, shared
mixture components to undergo a random set of transfor-
mations. The resulting transformed Dirichlet process (TDP)
produces models which automatically learn the number of
parts underlying each object category, and objects compos-
ing each scene.

The following section begins by reviewing prior work on
feature-based image representations, and existing bag of fea-
tures image models. We then develop hierarchical models
which share parts among related object categories, auto-
matically infer the number of depicted object instances,
and exploit contextual relationships when parsing multi-
ple object scenes. We evaluate these models by learning
shared representations for sixteen object categories (Sect. 5),
and detecting multiple objects in street and office scenes
(Sect. 9).

2 Generative Models for Image Features

In this paper, we employ sparse image representations de-
rived from local interest operators. This approach reduces
dimensionality and dependencies among features, and sim-
plifies object appearance models by focusing on the most
salient, repeatable image structures. While the features we
employ are known to perform well in geometric correspon-
dence tasks (Mikolajczyk and Schmid 2005), we emphasize
that our object and scene models could be easily adapted to
alternative families of local descriptors.
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Fig. 1 Three types of interest
operators applied to two office
scenes: Harris-affine corners
(left), maximally stable extremal
regions (center), and linked
sequences of Canny edges
(right)

2.1 Feature Extraction

In each grayscale training or test image, we begin by de-
tecting a set of elliptical interest regions (see Fig. 1). We
consider three complementary criteria for region extraction.
Harris-affine invariant regions (Mikolajczyk and Schmid
2004) detect corner-like image structure by finding pix-
els with significant second derivatives. The Laplacian of
Gaussian operator (Lowe 2004) then provides a character-
istic scale for each corner. Alternatively, maximally stable
extremal regions (MSER) (Matas et al. 2002) are derived
by analyzing the stability of a watershed segmentation al-
gorithm. As illustrated in Fig. 1, this approach favors large,
homogeneous image regions.1 For object recognition tasks,
edge-based features are also highly informative (Belongie
et al. 2002). To exploit this, we find candidate edges via a
Canny detector (Canny 1986), and link them into segments
broken at points of high curvature (Kovesi 2005). These
lines then form the major axes of elliptical interest regions,
whose minor axes are taken to be 10% of that length.

Given the density at which interest regions are detected,
these features provide a multiscale over-segmentation of the
image. Note that low-level interest operators are inherently
noisy: even state-of-the-art detectors sometimes miss salient
regions, and select features which do not align with real 3D
scene structure (see Fig. 1 for examples). We handle this is-
sue by extracting large feature sets, so that many regions are
likely to be salient. It is then important to design recogni-
tion algorithms which exploit this redundancy, rather than
relying on a small set of key features.

2.2 Feature Description

Following several recent approaches to recognition (Sivic et
al. 2005; Fei-Fei and Perona 2005; Csurka et al. 2004), we
use SIFT descriptors (Lowe 2004) to describe the appear-
ance of interest regions. SIFT descriptors are derived from

1Software for the detection of Harris-affine and MSER features, and
computation of SIFT descriptors (Lowe 2004), was provided by the
Oxford University Visual Geometry Group: http://www.robots.ox.ac.
uk/~vgg/research/affine/.

windowed histograms of gradient magnitudes at varying lo-
cations and orientations, normalized to correct for contrast
and saturation effects. This approach provides some invari-
ance to lighting and pose changes, and was more effective
than raw pixel patches (Ullman et al. 2002) in our experi-
ments.

To simplify learning algorithms, we convert each raw,
128-dimensional SIFT descriptor to a vector quantized dis-
crete value (Sivic et al. 2005; Fei-Fei and Perona 2005).
For each training database, we use K-means clustering
to identify a finite dictionary of W appearance patterns,
where each of the three feature types is mapped to a dis-
joint set of visual words. We set the total dictionary size
via cross-validation; typically, W ≈ 1 000 seems appropriate
for categorization tasks. In some experiments, we improve
discriminative power by dividing the affinely adapted re-
gions according to their shape. Edges are separated by
orientation (horizontal versus vertical), while Harris-affine
and MSER regions are divided into three groups (roughly
circular, versus horizontally or vertically elongated). An ex-
panded dictionary then jointly encodes the appearance and
coarse shape of each feature.

Using this visual dictionary, the ith interest region in im-
age j is described by its detected image position vji , and the
discrete appearance word wji with minimal Euclidean dis-
tance (Lowe 2004). Let wj and vj denote the appearance and
two-dimensional position, respectively, of the Nj features in
image j . Figure 2 illustrates some of the visual words ex-
tracted from a database of office scenes.

2.3 Visual Recognition with Bags of Features

In many domains, there are several groups of data which are
thought to be produced by related generative processes. For
example, the words composing a text corpus are typically
separated into documents which discuss partially overlap-
ping topics (Blei et al. 2003; Griffiths and Steyvers 2004;
Teh et al. 2006). Alternatively, image databases like MIT’s
LabelMe depict visual scenes which compose many differ-
ent object categories (Russell et al. 2005). While it is sim-
plest to analyze each group independently, doing so often
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Fig. 2 A subset of the affine covariant features (ellipses) detected in images of office scenes. In five different colors, we show the features
corresponding to the five discrete vocabulary words which most frequently align with computer screens in the training images

neglects critical information. By sharing random parame-
ters among groups, hierarchical Bayesian models (Gelman
et al. 2004) provide an elegant mechanism for transferring
information between related documents, objects, or scenes.

Latent Dirichlet allocation (LDA) (Blei et al. 2003) pro-
vides one framework for learning mixture models which
describe several related sets of observations. Given J groups
of data, let xj = (xj1, . . . , xjNj

) denote the Nj data points
in group j , and x = (x1, . . . ,xJ ). LDA assumes that the data
within each group are exchangeable,2 and independently
sampled from one of K latent clusters with parameters
{θk}Kk=1. Letting πj = (πj1, . . . , πjK) denote the mixture
weights for the j th group, we have

p(xji |πj , θ1, . . . , θK) =
K∑

k=1

πjkf(xji |θk)

i = 1, . . . ,Nj . (1)

Here, f (x|θ) is family of probability densities, with corre-
sponding distributions F(θ) parameterized by θ . We later
use multinomial F(θ) to model visual words, and Gaussian
F(θ) to generate feature locations. LDA’s use of shared mix-
ture parameters transfers information among groups, while
distinct mixture weights capture the unique features of in-
dividual groups. As discussed in Appendix 1, we improve
the robustness of learning algorithms by placing conjugate
priors (Gelman et al. 2004; Sudderth 2006) on the cluster
parameters θk ∼ H(λ). Mixture weights are sampled from a
Dirichlet prior π j ∼ Dir(α), with hyperparameters α either
tuned by cross-validation (Griffiths and Steyvers 2004) or
learned from training data (Blei et al. 2003).

LDA has been used to analyze text corpora by asso-
ciating groups with documents and data xji with words.
The exchangeability assumption ignores sentence structure,
treating each document as a “bag of words”. This approx-
imation leads to tractable algorithms which learn topics
(clusters) from unlabeled document collections (Blei et al.
2003; Griffiths and Steyvers 2004). Using image features
like those in Sect. 2, topic models have also been adapted
to discover objects in simple scenes (Sivic et al. 2005) or

2Exchangeable datasets have no intrinsic order, so that every permuta-
tion has equal joint probability (Gelman et al. 2004; Sudderth 2006).

web search results (Fergus et al. 2005), categorize natural
scenes (Fei-Fei and Perona 2005; Bosch et al. 2006), and
parse presegmented captioned images (Barnard et al. 2003).
However, following an initial stage of low-level feature
detection or segmentation, these approaches ignore spatial
information, discarding positions vj and treating the image
as an unstructured bag of features wj . This paper instead
develops richer hierarchical models which consistently in-
corporate spatial relationships.

2.4 Overview of Proposed Hierarchical Models

In the remainder of this paper, we introduce a family of hi-
erarchical models for visual scenes and object categories.
We begin by considering images depicting single objects,
and develop models which share parts among related cat-
egories. Using spatial transformations, we then develop
models which decompose scenes via a set of part-based rep-
resentations of object appearance.

Fixed-Order Object Model In Sect. 3, we describe multi-
ple object categories using a fixed number of shared parts.
Results in Sect. 5 show that sharing improves detection per-
formance when few training images are available.

Nonparametric Object Model In Sect. 4, we adapt the hi-
erarchical Dirichlet process (Teh et al. 2006) to learn the
number of shared parts underlying a set of object categories.
The resulting nonparametric model learns representations
whose complexity grows as more training images are ob-
served.

Fixed-Order Scene Model In Sect. 6, we learn contextual
relationships among a fixed number of objects, which in turn
share parts as in Sect. 3. Results in Sect. 9 show that con-
textual cues improve detection performance for scenes with
predictable, global spatial structure.

Nonparametric Scene Model In Sect. 7, we develop a
transformed Dirichlet process (TDP), and use it to learn
scene models which allow uncertainty in the number of vi-
sual object categories, and object instances depicted in each
image. Section 8 then integrates the part-based object repre-
sentations of Sect. 4 with the TDP, and thus more accurately
segments novel scenes (see Sect. 9).
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Fig. 3 A parametric, fixed-order model which describes the visual
appearance of L object categories via a common set of K shared parts.
The j th image depicts an instance of object category oj , whose posi-
tion is determined by the reference transformation ρj . The appearance
wji and position vji , relative to ρj , of visual features are determined

by assignments zji ∼ πoj
to latent parts. The cartoon example illus-

trates how a wheel part might be shared among two categories, bicycle
and cannon. We show feature positions (but not appearance) for two
hypothetical samples from each category

3 Learning Parts Shared by Multiple Objects

Figure 3 illustrates a directed graphical model which ex-
tends LDA (Blei et al. 2003; Rosen-Zvi et al. 2004) to learn
shared, part-based representations for multiple object cat-
egories. Nodes of this graph represent random variables or
distributions, where shaded nodes are observed during train-
ing, and rounded boxes are fixed hyperparameters. Edges
encode the conditional densities underlying the generative
process (Jordan 2004; Sudderth 2006). To develop this
model, we first introduce a flexible family of spatial trans-
formations.

3.1 Capturing Spatial Structure with Transformations

Figure 4 illustrates the challenges in developing visual scene
models incorporating feature positions. Due to variability
in three-dimensional object location and pose, the absolute
position at which features are observed may provide lit-
tle information about their corresponding category. Recall
that LDA models different groups of data by reusing iden-
tical cluster parameters θk in varying proportions. Applied
directly to features incorporating both position and appear-
ance, such topic models would need a separate global cluster
for every possible location of each object category. Clearly,
this approach does not sensibly describe the spatial structure
underlying real scenes, and would not adequately generalize
to images captured in new environments.

A more effective model of visual scenes would allow the
same global cluster to describe objects at many different lo-
cations. To accomplish this, we augment topic models with
transformation variables, thereby shifting global clusters
from a “canonical” coordinate frame to the object posi-
tions underlying a particular image. Let τ(θ;ρ) denote a

family of transformations of the parameter vector θ , in-
dexed by ρ ∈ ℘. For computational reasons, we assume that
parameter transformations are invertible, and have a com-
plementary data transformation τ̃ (v;ρ) defined so that

f (v|τ(θ;ρ)) = 1

Z(ρ)
f (τ̃ (v;ρ)|θ). (2)

The normalization constant Z(ρ), which is determined by
the transformation’s Jacobian, is assumed independent of
the underlying parameters θ . Using (2), model transforma-
tions τ(θ;ρ) are equivalently expressed by a change τ̃ (v;ρ)

of the observations’ coordinate system. In later sections,
we use transformations to translate Gaussian distributions
N (μ,Λ), in which case

τ(μ,Λ;ρ) = (μ + ρ,Λ), τ̃ (v;ρ) = v − ρ. (3)

Our learning algorithms use this relationship to efficiently
combine information from images depicting scale-norma-
lized objects at varying locations. For more complex data-
sets, we could instead employ a family of invertible affine
transformations (see Sect. 5.2.2 of Sudderth 2006).

Transformations have been previously used to learn mix-
ture models which decompose video sequences into a fixed
number of layers (Frey and Jojic 2003; Jojic and Frey 2001).
In contrast, the hierarchical models developed in this pa-
per allow transformed mixture components to be shared
among different object and scene categories. Nonparamet-
ric density estimates of transformations (Miller et al. 2000;
Miller and Chefd’hotel 2003), and tangent approximations
to transformation manifolds (Simard et al. 1998), have also
been used to construct improved template-based recognition
systems from small datasets. By embedding transforma-
tions in a nonparametric hierarchical model, we parse more
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Fig. 4 Scale-normalized images used to evaluate two-dimensional
models for visual scenes, available from the MIT LabelMe data-
base (Russell et al. 2005). Top: Five of 613 images from a partially
labeled dataset of street scenes, and segmented regions corresponding

to cars (red), buildings (magenta), roads (blue), and trees (green). Bot-
tom: Six of 315 images from a fully labeled dataset of office scenes,
and segmented regions corresponding to computer screens (red), key-
boards (green), and mice (blue)

complex visual scenes in which the number of objects is un-
certain.

3.2 Fixed-Order Models for Isolated Objects

We begin by developing a parametric, hierarchical model for
images dominated by a single object (Sudderth et al. 2005).
The representation of objects as a collection of spatially
constrained parts has a long history in vision (Fischler and
Elschlager 1973). In the directed graphical model of Fig. 3,
parts are formalized as groups of features that are spatially
clustered, and have predictable appearances. Each of the L

object categories is in turn characterized by a probability
distribution π
 over a common set of K shared parts. For
this fixed-order object appearance model, K is set to some
known, constant value.

Given an image j of object category oj containing Nj

features (wj ,vj ), we model feature positions relative to
an image-specific reference transformation, or coordinate
frame, ρj . For datasets in which objects are roughly scale-
normalized and centered, unimodal Gaussian distributions
ρj ∼ N (ζoj

,Υoj
) provide reasonable transformation priors.

To capture the internal structure of objects, we define K

distinct parts which generate features with different typi-
cal appearance wji and position vji , relative to ρj . The
particular parts zj = (zj1, . . . , zjNj

) associated with each
feature are independently sampled from a category-specific
multinomial distribution, so that zji ∼ πoj

.
When learning object models from training data, we as-

sign Dirichlet priors π
 ∼ Dir(α) to the part association
probabilities. Each part is then defined by a multinomial dis-
tribution ηk on the discrete set of W appearance descriptors,
and a Gaussian distribution N (μk,Λk) on the relative dis-
placements of features from the object’s transformed pose:

wji ∼ ηzji
, vji ∼ N (τ (μzji

,Λzji
;ρj )). (4)

For datasets which have been normalized to account for ori-
entation and scale variations, transformations are defined to
shift the part’s mean as in (3). In principle, however, the
model could be easily generalized to capture more complex
object pose variations.

Marginalizing the unobserved assignments zji of features
to parts, we find that the graph of Fig. 3 defines object ap-
pearance via a finite mixture model:
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p(wji, vji |ρj , oj = 
)

=
K∑

k=1

π
kηk(wji)N (vji; τ(μk,Λk;ρj )). (5)

Parts are thus latent variables which capture dependencies
in feature location and appearance, while reference transfor-
mations allow a common set of parts to model unaligned
images. Removing these transformations, we recover a vari-
ant of the author-topic model (Rosen-Zvi et al. 2004), where
objects correspond to authors, features to words, and parts
to the latent topics underlying a given text corpus. The LDA
model (Blei et al. 2003) is in turn a special case in which
each document (image) has its own topic distribution, and
authors (objects) are not explicitly modeled.

The fixed-order model of Fig. 3 shares information in two
distinct ways: parts combine the same features in different
spatial configurations, and objects reuse the same parts in
different proportions. To learn the parameters defining these
parts, we employ a Gibbs sampling algorithm (Griffiths and
Steyvers 2004; Rosen-Zvi et al. 2004), which Sect. 6.2 de-
velops in the context of a related model for multiple object
scenes. This Monte Carlo method may either give each ob-
ject category its own parts, or “borrow” parts from other
objects, depending on the structure of the given training im-
ages.

3.3 Related Part-Based Object Appearance Models

In independent work paralleling the original development
of our fixed-order object appearance model (Sudderth et
al. 2005), two other papers have used finite mixture mod-
els to generate image features (Fergus et al. 2005; Loeff et
al. 2006). However, these approaches model each category
independently, rather than sharing parts among them. In ad-
dition, they use discrete representations of transformations
and feature locations. This choice makes it difficult to learn
typical transformations, a key component of the contextual
scene models developed in Sect. 6. More recently, Williams
and Allan have pointed out connections between so-called
generative templates of features (Williams and Allan 2006),
like the model of Fig. 3, and probabilistic voting methods
such as the implicit shape model (Leibe et al. 2004).

Applied to a single object category, our approach is also
related to constellation models (Fischler and Elschlager
1973; Weber et al. 2000), and in particular Bayesian train-
ing methods which share hyperparameters among cate-
gories (Fei-Fei et al. 2004). However, constellation models
assume each part generates at most one feature, creating a
combinatorial data association problem for which greedy
approximations are needed (Helmer and Lowe 2004). In
contrast, our model associates parts with expected propor-
tions of the observed features. This allows several different

features to provide evidence for a given part, and seems bet-
ter matched to the dense, overlapping feature sets described
in Sect. 2.1. Furthermore, by not placing hard constraints
on the number of features assigned to each part, we develop
simple learning algorithms which scale linearly, rather than
exponentially, with the number of parts.

4 Sharing Parts using Nonparametric Hierarchical
Models

When modeling complex datasets, it can be hard to de-
termine an appropriate number of clusters for parametric
models like LDA. As this choice significantly affects per-
formance (Blei et al. 2003; Teh et al. 2006; Griffiths and
Steyvers 2004; Fei-Fei and Perona 2005), it is interesting
to explore nonparametric alternatives. In Bayesian statistics,
Dirichlet processes (DPs) avoid model selection by defining
priors on infinite models. Learning algorithms then produce
robust predictions by averaging over model substructures
whose complexity is justified by observed data. The follow-
ing sections briefly review properties of DPs, and then adapt
the hierarchical DP (Teh et al. 2006) to learn nonparamet-
ric, shared representations of multiple object categories. For
more detailed introductions to Dirichlet processes and clas-
sical references, see (Pitman 2002; Jordan 2005; Teh et al.
2006; Sudderth 2006).

4.1 Dirichlet Process Mixtures

Let H be a measure on some parameter space Θ , like the
conjugate priors of Appendix 1. A Dirichlet process (DP),
denoted by DP(γ,H), is then a distribution over measures
on Θ , where the scalar concentration parameter γ controls
the similarity of samples G ∼ DP(γ,H) to the base mea-
sure H . Analogously to Gaussian processes, DPs may be
characterized by the distribution they induce on finite, mea-
surable partitions (T1, . . . , T
) of Θ . In particular, for any
such partition, the random vector (G(T1), . . . ,G(T
)) has a
finite-dimensional Dirichlet distribution:

(G(T1), . . . ,G(T
)) ∼ Dir(γH(T1), . . . , γH(T
)). (6)

Samples from DPs are discrete with probability one, a
property highlighted by the following stick-breaking con-
struction (Pitman 2002; Ishwaran and James 2001):

G(θ) =
∞∑

k=1

βkδ(θ, θk),

(7)

β ′
k ∼ Beta(1, γ ), βk = β ′

k

k−1∏


=1

(1 − β ′

).

Each parameter θk ∼ H is independently sampled from
the base measure, while the weights β = (β1, β2, . . .) use
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beta random variables to partition a unit-length “stick” of
probability mass. Following standard terminology (Teh et
al. 2006; Pitman 2002), let β ∼ GEM(γ ) denote a sam-
ple from this stick-breaking process. As γ becomes large,
E[β ′

k] = 1/(1 + γ ) approaches zero, and G approaches H

by uniformly distributing probability mass among a densely
sampled set of discrete parameters {θk}∞k=1.

DPs are commonly used as prior distributions for mixture
models with an unknown, and potentially infinite, number
of components (Escobar and West 1995; Neal 2000). Given
G ∼ DP(γ,H), each observation xi is generated by first
choosing a parameter θ̄i ∼ G, and then sampling xi ∼ F(θ̄i).
Note that we use θk to denote the unique parameters asso-
ciated with distinct mixture components, and θ̄i to denote
a copy of one such parameter associated with a particular
observation xi . For moderate concentrations γ , all but a
random, finite subset of the mixture weights β are nearly
zero, and data points cluster as in finite mixture models.
In fact, mild conditions guarantee that DP mixtures provide
consistent parameter estimates for finite mixture models of
arbitrary order (Ishwaran and Zarepour 2002).

To develop computational methods, we let zi ∼ β in-
dicate the unique component of G(θ) associated with ob-
servation xi ∼ F(θzi

). Marginalizing G, these assignments
z demonstrate an important clustering behavior (Pitman
2002). Letting Nk denote the number of observations al-
ready assigned to θk ,

p(zi |z1, . . . , zi−1, γ )

= 1

γ + i − 1

[∑

k

Nkδ(zi, k) + γ δ(zi, k̄)

]
. (8)

Here, k̄ indicates a previously unused mixture component
(a priori, all clusters are equivalent). This process is some-
times described by analogy to a Chinese restaurant in which
the (infinite collection of) tables correspond to the mixture
components θk , and customers to observations xi (Teh et
al. 2006; Pitman 2002). Customers are social, tending to
sit at tables with many other customers (observations), and
each table shares a single dish (parameter). This clustering
bias leads to Monte Carlo methods (Escobar and West 1995;
Neal 2000) which infer the number of mixture components
underlying a set of observations.

4.2 Modeling Objects with Hierarchical Dirichlet
Processes

Standard Dirichlet process mixtures model observations via
a single, infinite set of clusters. The hierarchical Dirich-
let process (HDP) (Teh et al. 2006) instead shares infinite
mixtures among several groups of data, thus providing a
nonparametric generalization of LDA. In this section, we

augment the HDP with image-specific spatial transforma-
tions, and thereby model unaligned sets of image features.

As discussed in Appendix 1, let Hw denote a Dirichlet
prior on feature appearance distributions, Hv a normal-
inverse-Wishart prior on feature position distributions, and
Hw × Hv the corresponding product measure. To construct
an HDP, a global probability measure G0 ∼ DP(γ,Hw ×
Hv) is first used to define an infinite set of shared parts:

G0(θ) =
∞∑

k=1

βkδ(θ, θk),

β ∼ GEM(γ ), (ηk,μk,Λk) = θk ∼ Hw × Hv.

(9)

For each object category 
 = 1, . . . ,L, an object-specific
reweighting of these parts G
 ∼ DP(α,G0) is independently
sampled from a DP with discrete base measure G0, so that

G
(θ) =
∞∑

t=1

π̃
t δ(θ, θ̃
t ),

π̃
 ∼ GEM(α), θ̃
t ∼ G0, t = 1,2, . . . .

(10)

Each local part t (see (10)) has parameters θ̃
t copied from
some global part θk
t

, indicated by k
t ∼ β . Aggregating
the probabilities associated with these copies, we can also
directly express each object’s appearance via the distinct,
global parts:

G
(θ) =
∞∑

k=1

π
kδ(θ, θk), π
k =
∑

t |k
t=k

π̃
t . (11)

Using (6), it can be shown that π
 ∼ DP(α,β), where β and
π
 are interpreted as measures on the positive integers (Teh
et al. 2006). Thus, β determines the average importance of
each global part (E[π
k] = βk), while α controls the degree
to which parts are reused across object categories.

Consider the generative process shown in Fig. 5 for an
image j depicting object category oj . As in the fixed-order
model of Sect. 3.2, each image has a reference transfor-
mation ρj sampled from a Gaussian with normal-inverse-
Wishart prior (ζ
,Υ
) ∼ R. Each feature (wji, vji) is gener-
ated by choosing a part zji ∼ πoj

, and then sampling from
that part’s appearance and transformed position distribu-
tions, as in (4). Marginalizing these unobserved assignments
of features to parts, object appearance is defined by an infi-
nite mixture model:

p(wji, vji |ρj , oj = 
)

=
∞∑

k=1

π
kηk(wji)N (vji; τ(μk,Λk;ρj )). (12)

This approach generalizes the parametric, fixed-order object
model of Fig. 3 by defining an infinite set of potential global
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Fig. 5 Nonparametric, hierarchical DP model for the visual appear-
ance of L object categories. The generative process is as in Fig. 3,
except there are infinitely many potential parts. Left: Each of the J
 im-
ages of object 
 has a reference transformation ρj ∼ N (ζ
,Υ
), where
ϕ
 = (ζ
,Υ
). G0 ∼ DP(γ,Hw × Hv) then defines an infinite set of

global parts, and objects reuse those parts via the reweighted distrib-
ution G
 ∼ DP(α,G0). θ̄j i ∼ G
 are then the part parameters used to
generate feature (wji , vji ). Right: Equivalent, Chinese restaurant fran-
chise representation of the HDP. The explicit assignment variables k
t ,
tj i are used in Gibbs sampling algorithms (see Sect. 4.3)

parts, and using the Dirichlet process’ stick-breaking prior
to automatically choose an appropriate model order. It also
extends the original HDP (Teh et al. 2006) by associating a
different reference transformation with each training image.

The HDP follows an extension of the DP analogy known
as the Chinese restaurant franchise (Teh et al. 2006). In
this interpretation, each object or group defines a separate
restaurant in which customers (observed features) (wji, vji)

sit at tables (clusters or parts) tj i . Each table shares a sin-
gle dish (parameter) θ̃
t , which is ordered from a menu G0

shared among restaurants (objects). Let k
 = {k
t } denote
the global parts assigned to all tables (local parts) of cate-
gory 
. We may then integrate over G0 and G
, as in (8), to
find the conditional distributions of these assignment vari-
ables:

p(tji |tj1, . . . , tj i−1, α) ∝
∑

t

Njt δ(tji , t) + αδ(tji , t̄ ), (13)

p(k
t |k1, . . . ,k
−1, k
1, . . . , k
t−1, γ )

∝
∑

k

Mkδ(k
t , k) + γ δ(k
t , k̄). (14)

Here, Mk is the number of tables previously assigned to θk ,
and Njt the number of customers already seated at the t th ta-
ble in group j . As before, customers prefer tables t at which
many customers are already seated (see (13)), but sometimes
choose a new table t̄ . Each new table is assigned a dish k
t̄

according to (14). Popular dishes are more likely to be or-
dered, but a new dish θk̄ ∼ H may also be selected. In this

way, object categories sometimes reuse parts from other ob-
jects, but may also create a new part capturing distinctive
appearance features.

4.3 Gibbs Sampling for Hierarchical Dirichlet Processes

To develop a learning algorithm for our HDP object appear-
ance model, we consider the Chinese restaurant franchise
representation, and generalize a previously proposed HDP
Gibbs sampler (Teh et al. 2006) to also resample refer-
ence transformations. As illustrated in Fig. 5, the Chinese
restaurant franchise involves two sets of assignment vari-
ables. Object categories 
 have infinitely many local parts
(tables) t , which are assigned to global parts k
t . Each ob-
served feature, or customer, (wji, vji) is then assigned to
some table tj i . By sampling these variables, we dynami-
cally construct part-based feature groupings, and share parts
among object categories.

The proposed Gibbs sampler has three sets of state vari-
ables: assignments t of features to tables, assignments k of
tables to global parts, and reference transformations ρ for
each training image. In the first sampling stage, summa-
rized in Algorithm 1, we consider each training image j

in turn and resample its transformation ρj and feature as-
signments tj . The second stage, Algorithm 2, then examines
each object category 
, and samples assignments k
 of local
to global parts. At all times, the sampler maintains dynamic
lists of those tables to which at least one feature is assigned,
and the global parts associated with these tables. These lists
grow when new tables or parts are randomly chosen, and
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Given a previous reference transformation ρj
(t−1), table assignments tj (t−1) for the Nj features in an image depicting object

category oj = 
, and global part assignments k

(t−1) for that object’s T
 tables:

1. Set tj = tj (t−1), k
 = k

(t−1), and sample a random permutation τ(·) of the integers {1, . . . ,Nj }. For each i ∈

{τ(1), . . . , τ (Nj )}, sequentially resample feature assignment tj i as follows:
(a) Decrement N
tji

, and remove (wji, vji) from the cached statistics for its current part k = k
tji
:

Ckw ← Ckw − 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) 	 (vji − ρj
(t−1))

(b) For each of the K instantiated global parts, determine the predictive likelihood

fk(wji = w,vji) =
(

Ckw + λ/W∑
w′ Ckw′ + λ

)
·N (vji − ρj

(t−1); μ̂k, Λ̂k).

Also determine the likelihood fk̄(wji, vji) of a potential new part k̄.
(c) Sample a new table assignment tj i from the following (T
 + 1)-dim. multinomial distribution:

tj i ∼
T
∑

t=1

N
tfk
t
(wji, vji)δ(tji , t) + α

γ + ∑
k Mk

[
K∑

k=1

Mkfk(wji, vji) + γfk̄(wji, vji)

]
δ(tji , t̄ ).

(d) If tj i = t̄ , create a new table, increment T
, and sample

k
t̄ ∼
K∑

k=1

Mkfk(wji, vji)δ(k
t̄ , k) + γfk̄(wji, vji)δ(k
t̄ , k̄).

If k
t̄ = k̄, create a new global part and increment K .
(e) Increment N
tji

, and add (wji, vji) to the cached statistics for its new part k = k
tji
:

Ckw ← Ckw + 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρj
(t−1)).

2. Fix tj (t) = tj , k

(t) = k
. If any tables are empty (N
t = 0), remove them and decrement T
.

3. Sample a new reference transformation ρj
(t) as follows:

(a) Remove ρj
(t−1) from cached transformation statistics for object 
:

(ζ̂
, Υ̂
) ← (ζ̂
, Υ̂
) 	 ρj
(t−1).

(b) Sample ρj
(t) ∼ N (χj ,Ξj ), a posterior distribution determined via (45) from the prior N (ρj ; ζ̂
, Υ̂
), cached part

statistics {μ̂k, Λ̂k}Kk=1, and feature positions vj .
(c) Add ρj

(t) to cached transformation statistics for object 
:

(ζ̂
, Υ̂
) ← (ζ̂
, Υ̂
) ⊕ ρj
(t).

4. For each i ∈ {1, . . . ,Nj }, update cached statistics for global part k = k
tji
as follows:

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) 	 (vji − ρj
(t−1)),

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρj
(t)).

Algorithm 1 First stage of the Rao–Blackwellized Gibbs sampler for
the HDP object appearance model of Fig. 5. We illustrate the sequential
resampling of all assignments tj of features to tables (category-specific
copies of global parts) in the j th training image, as well as that image’s
coordinate frame ρj . For efficiency, we cache and recursively update
statistics {ζ̂
, Υ̂
}L
=1 of each object’s reference transformations, counts

N
t of the features assigned to each table, and appearance and position
statistics {Ckw, μ̂k, Λ̂k}Kk=1 for the instantiated global parts. The ⊕ and
	 operators update cached mean and covariance statistics as features
are added or removed from parts (see Sect. 12.1). The final step en-
sures consistency of these statistics following reference transformation
updates
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Given the previous global part assignments k

(t−1) for the T
 instantiated tables of object category 
, and fixed feature

assignments tj and reference transformations ρj for all images of that object:

1. Set k
 = k

(t−1), and sample a random permutation τ(·) of the integers {1, . . . , T
}. For each t ∈ {τ(1), . . . , τ (T
)},

sequentially resample global part assignment k
t as follows:
(a) Decrement Mk
t

, and remove all features at table t from the cached statistics for part k = k
t :

Ckw ← Ckw − 1 for each w ∈ wt � {wji |tj i = t},
(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) 	 (v − ρj ) for each v ∈ vt � {vji | tj i = t}.

(b) For each of the K instantiated global parts, determine the predictive likelihood

fk(wt ,vt ) = p(wt |{wji |k
tji
= k, tji �= t},Hw) · p(vt |{vji |k
tji

= k, tji �= t},Hv).

Also determine the likelihood fk̄(wt ,vt ) of a potential new part k̄.
(c) Sample a new part assignment k
t from the following (K + 1)-dim. multinomial distribution:

k
t ∼
K∑

k=1

Mkfk(wt ,vt )δ(k
t , k) + γfk̄(wt ,vt )δ(k
t , k̄).

If k
t = k̄, create a new global part and increment K .
(d) Increment Mk
t

, and add all features at table t to the cached statistics for its new part k = k
t :

Ckw ← Ckw + 1 for each w ∈ wt ,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (v − ρj ) for each v ∈ vt .

2. Fix k

(t) = k
. If any global parts are unused (Mk = 0), remove them and decrement K .

3. Given gamma priors, resample concentration parameters γ and α using auxiliary variables (Escobar and West 1995;
Teh et al. 2006).

Algorithm 2 Second stage of the Rao–Blackwellized Gibbs sampler
for the HDP object appearance model of Fig. 5. We illustrate the se-
quential resampling of all assignments k
 of tables (category-specific
parts) to global parts for the 
th object category, as well as the HDP
concentration parameters. For efficiency, we cache and recursively

update appearance and position statistics {Ckw, μ̂k, Λ̂k}Kk=1 for the in-
stantiated global parts, and counts Mk of the number of tables assigned
to each part. The ⊕ and 	 operators update cached mean and covari-
ance statistics as features are reassigned (see Sect. 12.1)

shrink when a previously occupied table or part no longer
has assigned features. Given K instantiated global parts, the
expected time to resample N features is O(NK).

We provide high-level derivations for the sampling up-
dates underlying Algorithms 1 and 2 in Sect. 12.1. Note
that our sampler analytically marginalizes (rather than sam-
ples) the weights β , π̃
 assigned to global and local parts, as
well as the parameters θk defining each part’s feature distri-
bution. Such Rao–Blackwellization is guaranteed to reduce
the variance of Monte Carlo estimators (Sudderth 2006;
Casella and Robert 1996).

5 Sixteen Object Categories

To explore the benefits of sharing parts among objects, we
consider a collection of 16 categories with noticeable vi-
sual similarities. Figure 6 shows images from each category,

which fall into three groups: seven animal faces, five animal
profiles, and four wheeled vehicles. While training images
are labeled with their category, we do not explicitly mod-
ify our part-based models to reflect these coarser groupings.
As recognition systems scale to applications involving hun-
dreds of objects, the inter-category similarities exhibited by
this dataset will become increasingly common.

5.1 Visualization of Shared Parts

Given 30 training images from each of the 16 categories,
we first extracted Harris-affine (Mikolajczyk and Schmid
2004) and MSER (Matas et al. 2002) interest regions as
in Sect. 2.1, and mapped SIFT descriptors (Lowe 2004)
to one of W = 600 visual words as in Sect. 2.2. We then
used the Gibbs sampler of Algorithms 1 and 2 to fit an
HDP object appearance model. Because our 16-category
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Figure 6 Example images from a dataset containing 16 object cate-
gories (columns), available from the MIT LabelMe database (Russell
et al. 2005). These categories combines images collected via web
searches with the Caltech 101 (Fei-Fei et al. 2004) and Weizmann

Institute (Ullman et al. 2002; Borenstein and Ullman 2002) datasets.
Including a complementary background category, there are a total of
1,885 images, with at least 50 images per category

Figure 7 Mean (thick lines)
and variance (thin lines) of the
number of global parts created
by the HDP Gibbs sampler
(Sect. 4.3), given training sets of
varying size. Left: Number of
global parts used by HDP object
models (blue), and the total
number of parts instantiated by
sixteen independent DP object
models (green). Right:
Expanded view of the parts
instantiated by the HDP object
models

dataset contains approximately aligned images, the refer-
ence transformation updates of Algorithm 1, steps 3–4 were
not needed. Later sections explore transformations in the
context of more complex scene models.

For our Matlab implementation, each sampling itera-
tion requires roughly 0.1 seconds per training image on a
3.0 GHz Intel Xeon processor. Empirically, the learning pro-
cedure is fairly robust to hyperparameters; we chose Hv to
provide a weak (ν = 6 degrees of freedom) bias towards
moderate covariances, and Hw = Dir(W/10) to favor sparse
appearance distributions. Concentration parameters were as-
signed weakly informative priors γ ∼ Gamma(5,0.1), α ∼
Gamma(0.1,0.1), allowing data-driven estimation of appro-
priate numbers of global and local parts.

We ran the Gibbs sampler for 1000 iterations, and used
the final assignments (t,k) to estimate the feature appear-
ance and position distributions for each part. After an initial
burn-in phase, there were typically between 120 and 140
global parts associated with at least one observation (see
Fig. 7). Figure 8 visualizes the feature distributions defining
seven of the more significant parts. A few seem specialized
to distinctive features of individual categories, such as the
spots appearing on the leopard’s forehead. Many other parts
are shared among several categories, modeling common as-
pects such as ears, mouths, and wheels. We also show one of
several parts which model background clutter around image
boundaries, and are widely shared among categories.

To further investigate these shared parts, we used the
symmetrized KL divergence, as in (Rosen-Zvi et al. 2004),
to compute a distance between all pairs of object-specific
part distributions:

D(π
,πm) =
K∑

k=1

π
k log
π
k

πmk

+ πmk log
πmk

π
k

. (15)

In evaluating equation (15), we only use parts associ-
ated with at least one feature. Figure 9 shows the two-
dimensional embedding of these distances produced by
metric multidimensional scaling (MDS), as well as a den-
drogram constructed via greedy, agglomerative cluster-
ing (Shepard 1980). Interestingly, there is significant sharing
of parts within each of the three coarse-level groups (animal
faces, animal profiles, vehicles) underlying this dataset. In
addition, the similarities among the three categories of cat
faces, and among those animals with elongated faces, are
reflected in the shared parts.

5.2 Detection and Recognition Performance

To evaluate our HDP object appearance model, we con-
sider two experiments. The detection task uses 100 images
of natural scenes to train a DP background appearance
model. We then use likelihoods computed as in Sect. 12.1
to classify test images as object or background. Alterna-
tively, in the recognition task test images are classified
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Figure 8 Seven of the 135 shared parts (columns) learned by an HDP
model for 16 object categories (rows). Using two images from each
category, we display those features with the highest posterior proba-
bility of being generated by each part. For comparison, we show six of
the parts which are specialized to the fewest object categories (left, yel-

low), as well as one of several widely shared parts (right, cyan) which
seem to model texture and background clutter. The bottom row plots
the Gaussian position densities corresponding to each part. Interest-
ingly, several parts have rough semantic interpretations, and are shared
within the coarse-level object groupings underlying this dataset
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Figure 9 Two visualizations of
learned part distributions π
 for
the HDP object appearance
model depicted in Fig. 8. Top:
Two-dimensional embedding
computed by metric MDS, in
which coordinates for each
object category are chosen to
approximate pairwise KL
distances as in (15). Animal
faces are clustered on the left,
vehicles in the upper right, and
animal profiles in the lower
right. Bottom: Dendrogram
illustrating a greedy,
hierarchical clustering, where
branch lengths are proportional
to inter-category distances. The
four most significant clusters,
which very intuitively align with
semantic relationships among
these categories, are highlighted
in color

as either their true category, or one of the 15 other cate-
gories. For both tasks, we compare a shared model of all
objects to a set of 16 unshared, independent DP models
trained on individual categories. We also examine simpli-
fied models which ignore the spatial location of features,
as in earlier bag of features approaches (Sivic et al. 2005;
Csurka et al. 2004). We evaluate performance via the area
under receiver operating characteristic (ROC) curves, and
use nonparametric rank-sum tests (DeLong et al. 1988) to
determine whether competing models differ with at least
95% confidence.

In Fig. 7, we illustrate the number of global parts instanti-
ated by the HDP Gibbs sampler. The appearance-only HDP
model learns a consistent number of parts given between 10
and 30 training images, while the HDP model of feature po-
sitions uses additional parts as more images are observed.
Such data-driven growth in model complexity underlies
many desirable properties of Dirichlet processes (Sudderth
2006; Jordan 2005; Ishwaran and Zarepour 2002). We also
show the considerably larger number of total parts (roughly
25 per category) employed by the independent DP models
of feature positions. Because we use multinomial appear-
ance distributions, estimation of the number of parts for the
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Figure 10 Performance of Dirichlet process object appearance mod-
els for the detection (left) and recognition (right) tasks. Top: Area
under average ROC curves for different numbers of training images
per category. Middle: Average of ROC curves across all categories

(6 versus 30 training images). Bottom: Scatter plot of areas under ROC
curves for the shared and unshared models of individual categories
(6 versus 30 training images)

DP appearance-only model is ill-posed, and very sensitive
to Hw; we thus exclude this model from Fig. 7.

Figure 10 shows detection and recognition performance
given between 4 and 30 training images per category. Likeli-
hoods are estimated from 40 samples extracted across 1000
iterations. Given 6 training images, shared parts significantly
improve position-based detection performance for all cat-
egories (see scatter plots). Even with 30 training images,
sharing still provides significant benefits for 9 categories
(for the other seven, both models are extremely accurate).
For the bag of features model, the benefits of sharing are
less dramatic, but still statistically significant in many cases.
Finally, note that with fewer than 15 training images, the
unshared position-based model overfits, performing signif-
icantly worse than comparable appearance-only models for
most categories. In contrast, sharing spatial parts provides
superior performance for all training set sizes.

For the recognition task, shared and unshared appearan-
ce-only models perform similarly. However, with larger
training sets the HDP model of feature positions is less ef-
fective for most categories than unshared, independent DP
models. Confusion matrices (not shown) confirm that this
small performance degradation is due to errors involving
pairs of object categories with similar part distributions (see
Fig. 9). Note, however, that the unshared models use many
more parts (see Fig. 7), and hence require additional compu-
tation. For all categories exhibiting significant differences,
we find that models incorporating feature positions have sig-
nificantly higher recognition accuracy.

5.3 Comparison to Fixed-Order Object Appearance
Models

We now compare the HDP object model to the parametric,
fixed-order model of Sect. 3.2. Images illustrating the parts
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learned by the fixed-order model, which we exclude here
due to space constraints, are available in Sect. 5.4 of (Sud-
derth 2006). Qualitatively, the fixed-order parts are similar
to the HDP parts depicted in Fig. 8, except that there is more
sharing among dissimilar object categories. This in turn
leads to more overlap among part distributions, and inferred
object relationships which are semantically less sensible
than those found with the HDP (visualized in Fig. 9).

Previous results have shown that LDA can be sensi-
tive to the chosen number of topics (Blei et al. 2003;
Teh et al. 2006; Griffiths and Steyvers 2004; Fei-Fei and
Perona 2005). To further explore this issue, we examined
fixed-order object appearance models with between two and
thirty parts per category (32–480 shared parts versus 16 un-
shared 2–30 part models). For each model order, we ran a
collapsed Gibbs sampler (see Sect. 12.2) for 200 iterations,
and categorized test images via probabilities based on six
posterior samples. We first considered part association prob-
abilities π
 learned using a symmetric Dirichlet prior:

(π
1, . . . , π
K) ∼ Dir(ᾱ, . . . , ᾱ) = Dir(ᾱK). (16)

Our experiments set ᾱ = 5, inducing a small bias towards
distributions which assign some weight to each of the K

parts. Figure 11 shows the average detection and recognition
performance, as measured by the area under the ROC curve,
for varying model orders. Even with 15 training images
of each category, shared models with more than 4–6 parts

per category (64–96 total parts) overfit and exhibit reduced
accuracy. Similar issues arise when learning finite mixture
models, where priors as in (16) may produce inconsistent
parameter estimates if K is not selected with care (Ishwaran
and Zarepour 2002).

In some applications of the LDA model, the number of
topics K is determined via cross-validation (Blei et al. 2003;
Griffiths and Steyvers 2004; Fei-Fei and Perona 2005). This
approach is also possible with the fixed-order object appear-
ance model, but in practice requires extensive computational
effort. Alternatively, model complexity can be regulated by
the following modified part association prior:

(π
1, . . . , π
K) ∼ Dir

(
α0

K
, . . . ,

α0

K

)
= Dir(α0). (17)

For a fixed precision α0, this prior becomes biased towards
sparse part distributions π
 as K grows large (Sudderth
2006). Figure 11 illustrates its behavior for α0 = 10. In
contrast with the earlier overfitting, (17) produces stable
recognition results across a wider range of model orders K .

As K → ∞, predictions based on Dirichlet priors scaled
as in (17) approach a corresponding Dirichlet process (Teh
et al. 2006; Ishwaran and Zarepour 2002). However, if we
apply this limit directly to the model of Fig. 3, objects as-
ymptotically associate features with disjoint sets of parts,
and the benefits of sharing are lost. We see the beginnings of
this trend in Fig. 11, which shows a slow decline in detection

Figure 11 Performance of fixed-order object appearance models with
varying numbers of parts K . Part association priors are either biased
towards uniform distributions π
 ∼ Dir(ᾱK) (left block, as in (16)), or

sparse distributions π
 ∼ Dir(α0) (right block, as in (17)). We compare
detection and recognition performance given 4 (top row) or 15 (bottom
row) training images per category
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performance as K increases. The HDP elegantly resolves
this problem via the discrete global measure G0, which ex-
plicitly couples the parts in different categories. Comparing
Figs. 10 and 11, the HDP’s detection and recognition per-
formance is comparable to the best fixed-order model. Via
a nonparametric viewpoint, however, the HDP leads to effi-
cient learning methods which avoid model selection.

6 Contextual Models for Fixed Sets of Objects

The preceding results demonstrate the potential benefits
of transferring information among object categories when
learning from few examples. However, because the HDP
model of Fig. 5 describes each image via a single reference
transformation, it is limited to scenes which depict a single,
dominant foreground object. In the following sections, we
address this issue via a series of increasingly sophisticated
models for visual scenes containing multiple objects.

6.1 Fixed-Order Models for Multiple Object Scenes

We begin by generalizing the fixed-order object appearance
model of Sect. 3.2 to describe multiple object scenes (Sud-
derth et al. 2005). Retaining its parametric form, we assume
that the scene sj depicted in image j contains a fixed,
known set of object categories. For example, a simple of-
fice scene might contain one computer screen, one keyboard,
and one mouse. Later sections consider more flexible scene

models, in which the number of object instances is also un-
certain.

As summarized in Fig. 12, the scene transformation
ρj provides a reference frame for each of L objects. For
simplicity, we focus on scale-normalized datasets, so that
ρj is a 2L-dimensional vector specifying each object’s
image coordinates. Scene categories then have different
Gaussian transformation distributions ρj ∼ N (ζsj ,Υsj ),
with normal-inverse-Wishart priors (ζs,Υs) ∼ R. Because
these Gaussians have full, 2L-dimensional covariance ma-
trices, we learn contextual, scene-specific correlations in the
locations at which objects are observed.

Visual scenes are also associated with discrete distrib-
utions βs specifying the proportion of observed features
generated by each object. Features are generated by sam-
pling an object category oji ∼ βsj

, and then a corresponding
part zji ∼ πoji

. Conditioned on these assignments, the
discrete appearance wji of each feature is independently
sampled as in Sect. 3.2. Feature position vji is determined
by shifting parts relative to the chosen object’s reference
transformation:

wji ∼ ηzji
,

(18)
vji ∼ N (μzji

+ ρj
,Λzji
), oji = 
.

Here, ρj
 is the subvector of ρj corresponding to the refer-
ence transformation for object 
. Marginalizing unobserved
assignments zji of features to parts, we find that each ob-
ject’s appearance is defined by a different finite mixture

Figure 12 A parametric model for visual scenes containing fixed sets
of objects. The j th image depicts visual scene sj , which combines L

object categories at locations determined by the vector ρj of reference
transformations. Each object category is in turn defined by a distrib-
ution π
 over a common set of K shared parts. The appearance wji

and position vji of visual features, relative to the position of asso-

ciated object oji , are then determined by assignments zji ∼ πoji
to

latent parts. The cartoon example defines L = 3 color-coded object
categories, which employ one (blue), two (green), and four (red) of
the shared Gaussian parts, respectively. Dashed ellipses indicate mar-
ginal transformation priors for each object, but the model also captures
higher-order correlations in their relative spatial positions
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model:

p(wji, vji |ρj , oji = 
)

=
K∑

k=1

π
kηk(wji)N (vji;μk + ρj
,Λk). (19)

For scenes containing a single object, this model is equiv-
alent to the fixed-order model of Sect. 3.2. More generally,
however, (19) faithfully describes images containing sev-
eral objects, which differ in their observed locations and
underlying part-based decompositions. The graph of Fig. 12
generalizes the author-topic model (Rosen-Zvi et al. 2004)
by incorporating reference transformations, and by not con-
straining objects (authors) to generate equal proportions of
image features (words).

6.2 Gibbs Sampling for Fixed-Order Visual Scenes

Learning and inference in the scene-object-part hierarchy
of Fig. 12 is possible via Monte Carlo methods similar
to those developed for the HDP in Sect. 4.3. As sum-
marized in Algorithm 3, our Gibbs sampler alternatively
samples assignments (oji , zji) of features to objects and
parts, and corresponding reference transformations ρj . This
method, whose derivation is discussed in Sect. 12.2, gen-
eralizes a Gibbs sampler developed for the author-topic
model (Rosen-Zvi et al. 2004). We have found sampling
reference transformations to be faster than our earlier use
of incremental EM updates (Sudderth et al. 2005; Sudderth
2006).

Given a training image containing N features, a Gibbs
sampling update of every object and part assignment re-
quires O(NLK) operations. Importantly, our use of Gaus-
sian transformation distributions also allows us to jointly
resample the positions of L objects in O(L3) operations.
We evaluate the performance of this contextual scene model
in Sect. 9.1.

7 Transformed Dirichlet Processes

To model scenes containing an uncertain number of object
instances, we again employ Dirichlet processes. Section 4
adapted the HDP to allow uncertainty in the number of parts
underlying a set of object categories. We now develop a
transformed Dirichlet process (TDP) which generalizes the
HDP by applying a random set of transformations to each
global cluster (Sudderth et al. 2006b). Section 8 then uses
the TDP to develop robust nonparametric models for struc-
tured multiple object scenes.

7.1 Sharing Transformations via Stick-Breaking Processes

To simplify our presentation of the TDP, we revisit the hi-
erarchical clustering framework underlying the HDP (Teh
et al. 2006). Let θ ∈ Θ parameterize a cluster or topic
distribution F(θ), and H be a prior measure on Θ . To
more flexibly share these clusters among related groups,
we consider a family of parameter transformations τ(θ;ρ),
indexed by ρ ∈ ℘ as in Sect. 3.1. The TDP then employs
distributions over transformations ρ ∼ Q(ϕ), with densities
q(ρ|ϕ) indexed by ϕ ∈ Φ . For example, if ρ is a vector
defining a translation as in (3), ϕ could parameterize a zero-
mean Gaussian family N (ρ;0, ϕ). Finally, let R denote a
prior measure (for example, an inverse-Wishart distribution)
on Φ .

We begin by extending the Dirichlet process’ stick-
breaking construction, as in (9), to define a global measure
relating cluster parameters θ to transformations ρ:

G0(θ, ρ) =
∞∑


=1

β
δ(θ, θ
)q(ρ|ϕ
),

β ∼ GEM(γ ), θ
 ∼ H, ϕ
 ∼ R.

(20)

Note that each global cluster θ
 has a different, continuous
transformation distribution Q(ϕ
). As in the HDP, we then
independently draw Gj ∼ DP(α,G0) for each of J groups
of data. Because samples from DPs are discrete with proba-
bility one, the joint measure for group j equals

Gj(θ,ρ) =
∞∑

t=1

π̃j t δ(θ, θ̃j t )δ(ρ,ρjt ),

π̃ j ∼ GEM(α), (θ̃j t , ρjt ) ∼ G0.

(21)

Each local cluster in group j has parameters θ̃j t , and cor-
responding transformation ρjt , derived from some global
cluster. Anticipating our later identification of global clus-
ters with object categories, we let ojt ∼ β indicate this cor-
respondence, so that θ̃j t = θojt

. As summarized in Fig. 13,
each observation vji is independently sampled from the
transformed parameters of some local cluster:

(θ̄j i , ρ̄j i ) ∼ Gj, vji ∼ F(τ(θ̄ji; ρ̄j i)). (22)

As with standard mixtures, (22) can be equivalently ex-
pressed via a discrete variable tj i ∼ π̃ j indicating the trans-
formed cluster associated with observation vji ∼
F(τ(θ̃j tj i

;ρjtji
)). Figure 13 also shows an alternative graph-

ical representation of the TDP, based on these explicit
assignments of observations to local clusters, and local clus-
ters to transformations of global clusters.

As discussed in Sect. 4.2, the HDP models groups by
reusing an identical set of global clusters in different pro-
portions. In contrast, the TDP modifies the shared, global
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Given a previous reference transformation ρj
(t−1), and object and part assignments (oj

(t−1), zj
(t−1)) for the Nj features in

an image depicting scene sj = s:

1. Set (oj , zj ) = (oj
(t−1), zj

(t−1)), and sample a random permutation τ(·) of the integers {1, . . . ,Nj }. For i ∈
{τ(1), . . . , τ (Nj )}, sequentially resample feature assignments (oji , zji) as follows:
(a) Remove feature (wji, vji) from the cached statistics for its current part and object:

Ms
 ← Ms
 − 1, 
 = oji,

N
k ← N
k − 1, k = zji ,

Ckw ← Ckw − 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) 	 (vji − ρj

(t−1)).

(b) For each of the L · K pairs of objects and parts, determine the predictive likelihood

f
k(wji = w,vji) =
(

Ckw + λ/W∑
w′ Ckw′ + λ

)
·N (vji − ρj


(t−1); μ̂k, Λ̂k).

(c) Sample new object and part assignments from the following L · K-dim. multinomial distribution:

(oji, zji) ∼
L∑


=1

K∑

k=1

(Ms
 + γ /L)

(
N
k + α/K∑

k′ N
k′ + α

)
f
k(wji, vji)δ(oji , 
)δ(zji , k).

(d) Add feature (wji, vji) to the cached statistics for its new object and part:

Ms
 ← Ms
 + 1, 
 = oji,

N
k ← N
k + 1, k = zji ,

Ckw ← Ckw + 1, w = wji,

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρj

(t−1)).

2. Fix (oj
(t), zj

(t)) = (oj , zj ), and sample a new reference transformation ρj
(t) as follows:

(a) Remove ρj
(t−1) from cached transformation statistics for scene s:

(ζ̂s , Υ̂s) ← (ζ̂s , Υ̂s) 	 ρj
(t−1).

(b) Sample ρj
(t) ∼ N (χj ,Ξj ), a posterior distribution determined via (52) from the prior N (ρj ; ζ̂s , Υ̂s), cached part

statistics {μ̂k, Λ̂k}Kk=1, and feature positions vj .
(c) Add ρj

(t) to cached transformation statistics for scene s:

(ζ̂s , Υ̂s) ← (ζ̂s , Υ̂s) ⊕ ρj
(t).

3. For each i ∈ {1, . . . ,Nj }, update cached statistics for part k = zji as follows:

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) 	 (vji − ρj

(t−1)),

(μ̂k, Λ̂k) ← (μ̂k, Λ̂k) ⊕ (vji − ρj

(t)),


 = oji .

Algorithm 3 Rao–Blackwellized Gibbs sampler for the fixed-order
visual scene model of Fig. 12. We illustrate the sequential resampling
of all object and part assignments (oj , zj ) in the j th training image,
as well as that image’s coordinate frame ρj . A full iteration of the
Gibbs sampler applies these updates to all images in random order.
For efficiency, we cache and recursively update statistics {ζ̂s , Υ̂s}Ss=1

of each scene’s reference transformations, counts Ms
, N
k of the fea-
tures assigned to each object and part, and statistics {Ckw, μ̂k, Λ̂k}Kk=1
of those features’ appearance and position. The ⊕ and 	 operators
update cached mean and covariance statistics as features are added or
removed from parts (see Sect. 12.1)
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Figure 13 Directed graphical representations of a transformed Dirich-
let process (TDP) mixture model. Left: Each group is assigned an
infinite discrete distribution Gj ∼ DP(α,G0), which is sampled from a
global distribution G0(θ, ρ) over transformations ρ of cluster parame-
ters θ . Observations vji are then sampled from transformed parameters
τ(θ̄j i; ρ̄j i ). Center: Illustration using 2D spatial data. G0 is composed
of 2D Gaussian distributions (green covariance ellipses), and corre-
sponding Gaussian priors (blue dashed ellipses) on translations. The

observations vj in each of three groups are generated by transformed
Gaussian mixtures Gj . Right: Chinese restaurant franchise represen-
tation of the TDP. Each group j has infinitely many local clusters
(tables) t , which are associated with a transformation ρjt ∼ Q(ϕojt

)

of some global cluster (dish) ojt ∼ β . Observations (customers) vji

are assigned to a table tj i ∼ π̃ j , and share that table’s transformed
(seasoned) global cluster τ(θzji

;ρjtji
), where zji = ojtji

clusters via a set of group-specific stochastic transforma-
tions. As we later demonstrate, this allows us to model richer
datasets in which only a subset of the global clusters’ prop-
erties are naturally shared.

7.2 Gibbs Sampling for Transformed Dirichlet Processes

To develop computational methods for learning transformed
Dirichlet processes, we generalize the HDP’s Chinese
restaurant franchise representation (Teh et al. 2006). As in
Sect. 4.2, customers (observations) vji sit at tables tj i ac-
cording to the clustering bias of (13), and new tables choose
dishes via their popularity across the franchise (see (14)). As
shown in Fig. 13, however, the dish (parameter) θojt

at table
t is now seasoned (transformed) according to ρjt ∼ Q(ϕojt

).
Each time a dish is ordered, the recipe is seasoned dif-
ferently, and each dish θ
 has different typical seasonings
Q(ϕ
).

While the HDP Gibbs sampler of Sect. 4.3 associated a
single reference transformation with each image, the TDP
instead describes groups via a set of randomly transformed
clusters. We thus employ three sets of state variables: as-
signments t of observations to tables (transformed clusters),
assignments o of tables to global clusters, and the transfor-
mations ρ associated with each occupied table. As summa-
rized in Algorithm 4, the cluster weights β , π̃ j are then
analytically marginalized.

In the TDP, each global cluster 
 combines transforma-
tions with different likelihood parameters θ
. Thus, to ade-
quately explain the same data with a different cluster ojt , a
complementary change of ρjt is typically required. For this
reason, Algorithm 4 achieves much more rapid convergence
via a blocked Gibbs sampler which simultaneously updates
(ojt , ρjt ). See Sect. 12.3 for discussion of the Gaussian
integrals which make this tractable. Finally, note that the
TDP’s concentration parameters have intuitive interpreta-
tions: γ controls the expected number of global clusters,
while α determines the average number of transformed clus-
ters in each group. As in the HDP sampler, Algorithm 4
uses auxiliary variable methods (Escobar and West 1995;
Teh et al. 2006) to learn these statistics from training data.

7.3 A Toy World: Bars and Blobs

To provide intuition for the TDP, we consider a toy world
in which “images” depict a collection of two-dimensional
points. As illustrated in Fig. 14, the training images we con-
sider typically depict one or more diagonally oriented “bars”
in the upper right, and round “blobs” in the lower left. As in
more realistic datasets, the exact locations of these “objects”
vary from image to image. We compare models learned
by the TDP Gibbs sampler of Algorithm 4 and a corre-
sponding HDP sampler. Both models use Gaussian clusters
θ
 = (μ
,Λ
) with vague normal-inverse-Wishart priors H .
For the TDP, transformations ρ then define translations of
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Given previous table assignments tj (t−1) for the Nj observations in group j , and transformations ρj
(t−1) and global cluster

assignments oj
(t−1) for that group’s Tj tables:

1. Set tj = tj (t−1), oj = oj
(t−1), ρj = ρj

(t−1), and sample a random permutation τ(·) of {1, . . . ,Nj }. For each i ∈
{τ(1), . . . , τ (Nj )}, sequentially resample data assignment tj i as follows:
(a) Decrement Njtji

, and remove vji from the cached statistics for its current cluster 
 = ojtji
:

(μ̂
, Λ̂
) ← (μ̂
, Λ̂
) 	 (vji − ρjtji
).

(b) For each of the Tj instantiated tables, determine the predictive likelihood

ft (vji) = N (vji − ρjt ; μ̂
, Λ̂
), 
 = ojt .

(c) For each of the L instantiated global clusters, determine the marginal likelihood

g
(vji) = N (vji; μ̂
 + ζ̂
, Λ̂
 + Υ̂
).

Also determine the marginal likelihood g
̄(vji) of a potential new global cluster 
̄.
a) Sample a new table assignment tj i from the following (Tj + 1)-dim. multinomial distribution:

tj i ∼
Tj∑

t=1

Njtft (vji)δ(tji , t) + α

γ + ∑

 M


[
L∑


=1

M
g
(vji) + γg
̄(vji)

]
δ(tji , t̄).

(e) If tj i = t̄ , create a new table, increment Tj , and sample

oj t̄ ∼
L∑


=1

M
g
(vji)δ(oj t̄ , 
) + γg
̄(vji)δ(oj t̄ , 
̄).

If oj t̄ = 
̄, create a new global cluster and increment L.
(f) If tj i = t̄ , also sample ρj t̄ ∼ N (χj t̄ ,Ξj t̄ ), a posterior distribution determined via (57) from the prior N (ρj t̄ ; ζ̂
, Υ̂
)

and likelihood N (vji; μ̂
 + ρj t̄ , Λ̂
), where 
 = oj t̄ .
(g) Increment Njtji

, and add vji to the cached statistics for its new cluster 
 = ojtji
:

(μ̂
, Λ̂
) ← (μ̂
, Λ̂
) ⊕ (vji − ρjtji
).

2. Fix tj (t) = tj . If any tables are empty (Njt = 0), remove them and decrement Tj .
3. Sample a permutation τ(·) of {1, . . . , Tj }. For each t ∈ {τ(1), . . . , τ (Tj )}, jointly resample (ojt , ρjt ):

(a) Decrement Mojt
, and remove all data at table t from the cached statistics for cluster 
 = ojt :

(μ̂
, Λ̂
) ← (μ̂
, Λ̂
) 	 (v − ρjt ) for each v ∈ vt � {vji |tj i = t}.
a) For each of the L instantiated global clusters and a potential new cluster 
̄, determine the marginal likelihood g
(vt )

via the Gaussian computations of (58).
(c) Sample a new cluster assignment ojt from the following (L + 1)-dim. multinomial distribution:

ojt ∼
L∑


=1

M
g
(vt )δ(ojt , 
) + γg
̄(vt )δ(ojt , 
̄).

If ojt = 
̄, create a new global cluster and increment L.

Algorithm 4 Gibbs sampler for the TDP mixture model of
Fig. 13. For efficiency, we cache and recursively update statistics
{μ̂
, Λ̂
, ζ̂
, Υ̂
}L
=1 of each global cluster’s associated data and refer-

ence transformations, and counts of the number of tables M
 assigned
to each cluster, and observations Njt to each table. The ⊕ and 	 oper-
ators update cached mean and covariance statistics (see Sect. 12.1)
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(d) Sample a new transformation ρjt ∼ N (χjt ,Ξjt ), a posterior distribution determined via (57) from the prior
N (ρjt ; ζ̂
, Υ̂
) and likelihood N (v; μ̂
 + ρjt , Λ̂
), where 
 = oj t̄ and v ∈ vt .

(e) Increment Mojt
, and add all data at table t to the cached statistics for cluster 
 = ojt :

(μ̂
, Λ̂
) ← (μ̂
, Λ̂
) ⊕ (v − ρjt ) for each v ∈ vt .

4. Fix oj
(t) = oj , ρj

(t) = ρj . If any global clusters are unused (M
 = 0), remove them and decrement L.
5. Given gamma priors, resample concentration parameters γ and α using auxiliary variables (Escobar and West 1995;

Teh et al. 2006).

Algorithm 4 (continued)

Figure 14 Learning HDP and TDP models from toy 2D spatial data.
Left: Eight of fifty training “images” containing diagonally oriented
bars and round blobs. Upper right: Global distribution G0(θ, ρ) over
Gaussian clusters (solid) and translations (dashed) learned by the TDP

Gibbs sampler. Lower right: Global distribution G0(θ) over the much
larger number of Gaussian clusters (intensity proportional to probabil-
ity β
) learned by the HDP Gibbs sampler

global cluster means, as in Sect. 3.1, and R is taken to be

an inverse-Wishart prior on zero-mean Gaussians. For both

models, we run the Gibbs sampler for 100 iterations, and

resample concentration parameters at each iteration.

As shown in Fig. 14, the TDP sampler learns a global

distribution G0(θ, ρ) which parsimoniously describes these

images via translations of two bar and blob-shaped global

clusters. In contrast, because the HDP models absolute fea-

ture positions, it defines a large set of global clusters which

discretize the range of observed object positions. Because a

smaller number of features are used to estimate the shape of

each cluster, they less closely approximate the true shapes

of bars and blobs. More importantly, the HDP model cannot

predict the appearance of these objects in new image posi-

tions. We thus see that the TDP’s use of transformations is

needed to adequately transfer information among different

object instances, and generalize to novel spatial scenes.

7.4 Characterizing Transformed Distributions

Recall that the global measure G0 underlying the TDP
(see (20)) defines a discrete distribution over cluster para-
meters θ
. In contrast, the distributions Q(ϕ
) associated
with transformations of these clusters are continuous. Each
group j will thus create many copies θ̃j t of global cluster θ
,
but associate each with a different transformation ρjt . Ag-
gregating the probabilities assigned to these copies, we can
directly express Gj in terms of the distinct global cluster
parameters:

Gj(θ,ρ) =
∞∑


=1

πj
δ(θ, θ
)

[ ∞∑

s=1

ωj
sδ(ρ, ρ̌j
s)

]
,

πj
 =
∑

t |ojt=


π̃j t .

(23)
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In this expression, we have grouped the infinite set of
transformations which group j associates with each global
cluster 
:

{ρ̌j
s |s = 1,2, . . .} = {ρjt |ojt = 
}. (24)

The weights ωj
 = (ωj
1,ωj
2, . . .) then equal the propor-
tion of the total cluster probability πj
 contributed by each
transformed cluster π̃j t satisfying ojt = 
. The following
proposition provides a direct probabilistic characterization
of the transformed measures arising in the TDP.

Proposition Let G0(θ, ρ) be a global measure as in (20),
and Gj(θ,ρ) ∼ DP(α,G0(θ, ρ)) be expressed as in (23).
The marginal distributions of Gj with respect to parameters
and transformations then also follow Dirichlet processes:

Gj(θ) ∼ DP(α,G0(θ)), G0(θ) =
∞∑


=1

β
δ(θ, θ
), (25)

Gj(ρ) ∼ DP(α,G0(ρ)), G0(ρ) =
∞∑


=1

β
Q(ϕ
). (26)

Alternatively, given any discrete parameter θ
 from the
global measure, we have

Gj(ρ|θ = θ
) ∼ DP(αβ
,Q(ϕ
)). (27)

The weights assigned to transformations of θ
 thus follow a
stick-breaking process ωj
 ∼ GEM(αβ
).

Proof See Sect. 6.2.2 of the doctoral thesis (Sudderth
2006). �

Examining (25), we see that the TDP induces discrete mar-
ginal distributions on parameters exactly like those arising
in the HDP (Teh et al. 2006). The HDP can thus be seen
as a limiting case of the TDP in which transformations are
insignificant or degenerate.

As the concentration parameter α becomes a large, a
Dirichlet process DP(α,H) approaches the base measure
H by distributing small weights among a large number of
discrete samples (see Sect. 4.1). The result in (27) thus
shows that parameters θ
 with small weight β
 will also
have greater variability in their transformation distributions,
because (on average) they are allocated fewer samples. In-
tuitively, the concentration parameters {αβ
}∞
=1 associated
with transformations of all global clusters sum to α, the
overall concentration of Gj about G0.

7.5 Dependent Dirichlet Processes

The HDP is a special case of a very general dependent
Dirichlet process (DDP) (MacEachern 1999) framework for

introducing dependency among multiple DPs. DDPs have
been previously used to model spatial data, by using a sin-
gle “global” stick-breaking process to mix an infinite set of
Gaussian processes (Gelfand et al. 2005) or linear (ANOVA)
models (De Iorio et al. 2004). However, applied to the spa-
tial data considered in this paper, these approaches would
learn feature models which depend on absolute image co-
ordinates. As discussed in Sect. 3.1, such approaches are
poorly matched to the structure of visual scenes.

Viewing cluster parameters and transformations as one
augmented parameter vector, TDPs are also a special case
of the DDP framework. However, this perspective obscures
the interplay between the discrete and continuous portions
of the TDP base measure, and the manner in which transfor-
mations modify parameters to achieve a very rich class of
dependencies.

8 Modeling Scenes with Unknown Numbers of Objects

The transformed Dirichlet process developed in Sect. 7
defines global clusters via a parametric, exponential fam-
ily F(θ). As suggested by the toy example of Fig. 14,
this approach could be directly used to construct simple,
weakly structured models of object geometry (Sudderth et
al. 2006b). However, realistic objects have complex inter-
nal structure, and significant local appearance variations. We
thus extend the basic TDP of Fig. 13 to learn richer, part-
based models for object categories.

8.1 Transformed DP Models for Objects and Parts

As in the single-object HDP of Sect. 4.2, each part θ
k =
(η
k,μ
k,Λ
k) of object category 
 has a Gaussian position
distribution N (μ
k,Λ
k), and a multinomial appearance
distribution η
k . Letting H = Hw × Hv denote a prior mea-
sure on part parameters, F
 ∼ DP(κ,H) is then an infinite
discrete measure representing the potentially infinite set of
parts underlying the 
th visual category:

F
(θ) =
∞∑

k=1

ε
kδ(θ, θ
k),

ε
 ∼ GEM(κ), (η
k,μ
k,Λ
k) = θ
k ∼ H.

(28)

The Gaussian parameters (μ
k,Λ
k) associated with each
part model feature positions in an object-centered coordi-
nate frame. In the visual scenes considered by Sect. 9, we
expect there to be little direct overlap in the appearance of
different categories. For simplicity, (28) thus describes cat-
egories using independent parts, rather than hierarchically
sharing parts as in Sect. 4.2.

The TDP model of Sect. 7.1 employed a global measure
G0 modeling transformations ρ of an infinite set of cluster
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Figure 15 TDP model for 2D
visual scenes (left), and cartoon
illustration of the generative
process (right). Global mixture
G0 describes the expected
frequency and image position of
visual categories, whose internal
structure is represented by
part-based appearance models
{F
}∞
=1. Each image
distribution Gj instantiates a
randomly chosen set of objects
at transformed locations ρ.
Image features with appearance
wji and position vji are then
sampled from transformed
parameters τ(θ̄j i; ρ̄j i )

corresponding to different parts
of object ōj i . The cartoon
example defines three
color-coded object categories,
which are composed of one
(blue), two (green), and four
(red) Gaussian parts,
respectively. Dashed ellipses
indicate transformation priors
for each category

parameters. Generalizing this construction, we allow infi-
nitely many potential visual categories o, and characterize
transformations of these part-based models as follows:

G0(o,ρ) =
∞∑


=1

β
δ(o, 
)q(ρ|ϕ
),

β ∼ GEM(γ ), ϕ
 ∼ R.

(29)

In this distribution, the random variable o indicates the part-
based model, as in (28), corresponding to some category.
The appearance of the j th image is then determined by a set
of randomly transformed objects Gj ∼ DP(α,G0), so that

Gj(o,ρ) =
∞∑

t=1

π̃j t δ(o, ojt )δ(ρ,ρjt ),

π̃ j ∼ GEM(α), (ojt , ρjt ) ∼ G0.

(30)

In this expression, t indexes the set of object instances
in image j , which are associated with visual categories ojt .
Each of the Nj features in image j is independently sampled
from some object instance tj i ∼ π̃ j . This can be equiva-
lently expressed as (ōj i , ρ̄j i ) ∼ Gj , where ōj i is the global
category corresponding to an object instance situated at
transformed location ρ̄j i . Finally, parameters corresponding
to one of this object’s parts generate the observed feature:

(η̄ji , μ̄ji , Λ̄ji) = θ̄j i ∼ Fōji
, wji ∼ η̄j i ,

vji ∼ N (μ̄ji + ρ̄j i , Λ̄ji).
(31)

In later sections, we let kji ∼ εōj i
indicate the part underly-

ing the ith feature. Focusing on scale-normalized datasets,
we again associate transformations with image-based trans-
lations.

The hierarchical, TDP scene model of Fig. 15 employs
three different stick-breaking processes, allowing uncer-
tainty in the number of visual categories (GEM(γ )), parts
composing each category (GEM(κ)), and object instances
depicted in each image (GEM(α)). It thus generalizes the
parametric model of Fig. 12, which assumed fixed, known
sets of parts and objects. As κ → 0, each category uses a
single part, and we recover a variant of the simpler TDP
model of Sect. 7.1. Interestingly, if α → 0 and transforma-
tions are neglected, we recover a single-object model related
to the recently (and independently) developed nested Dirich-
let process (Rodriguez et al. 2006).

8.2 Gibbs Sampling for TDP Models of Visual Scenes

To learn the parameters of the visual scene model depicted
in Fig. 15, we generalize the TDP Gibbs sampler of Al-
gorithm 4. We maintain a dynamic list of the instantiated
object instances t in each image j , representing each in-
stance by a transformation ρjt of global visual category ojt .
Each feature (wji, vji) is then assigned to a part kji of some
instance tj i . Via blocked Gibbs resampling of these four sets
of variables (o,ρ, t,k), we then simultaneously segment and
recognize objects.

Section 12.4 describes the form of this sampler in more
detail. In the first stage, we fix the object instances (oj ,ρj )
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in each image and jointly resample the part and instance
(kji , tj i) assigned to each feature. The resulting updates
combine aspects of our earlier TDP (Algorithm 4, steps 1–2)
and fixed-order scene (Algorithm 3, step 1) Gibbs samplers.
In the second stage, we fix assignments tj of features to
object instances, effectively segmenting images into inde-
pendent objects. We may then jointly resample the location
ρjt , visual category ojt , and part assignments {kji |tj i = t}
associated with each table by adapting the single-object
HDP sampler of Algorithms 1–2. Note that this second
stage approximates the infinite set of potential parts for cat-
egory 
 (see (28)) by the K
 parts to which at least one
feature is currently assigned. This can be seen as a dynamic
version of the stick-breaking truncations underlying certain
other DP sampling algorithms (Ishwaran and James 2001;
Rodriguez et al. 2006).

9 Street and Office Scenes

To evaluate our hierarchical models for multiple object
scenes, we use the two datasets depicted in Fig. 4. The
first set contains 613 street scenes depicting four “objects”:
buildings, cars (side views), roads, and trees. To align with
the assumptions underlying our 2D scene models, images
were normalized so that cars appear at comparable scales.
As shown in Fig. 4, some of these street scenes have labels
for all four categories, while others are only partially seg-
mented. The second dataset includes 315 pictures of office
scenes containing four objects: computer screens (frontal
views), keyboards, mice, and background clutter. In this
case, images were normalized so that computer screens ap-
peared at comparable scales, and all object instances were
labeled.

For both datasets, we represent training and test images
by the three types of interest regions described in Sect. 2.1.
We estimated a separate appearance dictionary for each
dataset, which after expansion to encode region shape (see
Sect. 2.2) contained W = 1600 visual words.

9.1 Fixed-Order Scene Models

We begin by examining the fixed-order visual scene model
of Fig. 12, and learn parameters via the Gibbs sampler of
Algorithm 3. For training, we used 400 street scenes and
250 office scenes; the remaining images then provide a seg-
mented test set. To estimate model parameters, we first ran
the Gibbs sampler for 500 iterations using only the training
images. We incorporate manual segmentations by fixing the
object category assignments oji of labeled features. For un-
labeled features, object assignments are left unconstrained,
and sampled as in Algorithm 3. Each scene model used
thirty shared parts, and Dirichlet precision parameters set
as γ = 4, α = 15 via cross-validation. The position prior
Hv weakly favored parts covering 10% of the image range,
while the appearance prior Dir(W/10) was biased towards
sparse distributions.

9.1.1 Visualization of Learned Parts

Figure 16 illustrates learned, part-based models for street
and office scenes. Although objects share a common set
of parts within each scene model, we can approximately
count the number of parts used by each object by thresh-
olding the posterior part distributions π
. For street scenes,
cars are allocated roughly four parts, while buildings and
roads use large numbers of parts to uniformly tile regions
corresponding to their typical size. Several parts are shared

Figure 16 Learned contextual,
fixed-order models for street
scenes (left) and office scenes
(right), each containing four
objects. Top: Gaussian
distributions over the positions
of other objects given the
location of the car (left) or
computer screen (right).
Bottom: Parts (solid) generating
at least 5% of each category’s
features, with intensity
proportional to probability. Parts
are translated by that object’s
mean position, while the dashed
ellipses indicate each object’s
marginal transformation
covariance
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between the tree and building categories, presumably due to
the many training images in which buildings are only par-
tially occluded by foliage. The office scene model describes
computer screens with ten parts, which primarily align with
edge and corner features. Due to their smaller size, key-
boards are described by five parts, and mice by two. The
background clutter category then uses several parts, which
move little from scene to scene, to distribute features across
the image. Most parts are unshared, although the screen and
keyboard categories reuse a few parts to describe edge-like
features.

Figure 16 also illustrates the contextual relationships
learned by both scene models. Intuitively, street scenes have
a vertically layered structure, while in office scenes the
keyboard is typically located beneath the monitor, and the
mouse to the keyboard’s right.

9.1.2 Segmentation of Novel Visual Scenes

To analyze test images, we fix the part and object assign-
ments corresponding to the final Gibbs sampling iteration
on the training set. To avoid local optima, we then run the
test image Gibbs sampler for 20 iterations from each of
ten different random initializations. Given reference trans-
formations sampled in this fashion, we use (50) to estimate
the posterior probability that test features were generated by
each candidate object category. Averaging these probabil-
ities provides a confidence-weighted segmentation, which
we illustrate by fading uncertain features to gray.

Figure 17 shows segmentations for several typical test
street scenes, and transformed parts from the highest like-
lihood sampling iteration. Segmentations of building and
road features are typically very accurate, as the contextual
model learns the vertical layering inherent in street scenes.

Figure 17 Feature segmentations produced by a contextual, fixed-
order model of street scenes containing cars (red), buildings (magenta),
roads (blue), and trees (green). For five test images (second row), we
compare segmentations which assign features to the most probable
object category for the contextual model (third row) and a baseline

bag of features model (first row). We also show model parts translated
according to each image’s reference transformation (fourth row), and
color-coded assignments of features to the different parts associated
with cars (fifth row)
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Figure 18 Feature segmentations produced by a contextual, fixed-
order model of office scenes containing computer screens (red),
keyboards (green), mice (blue), and background clutter (gray). For
six test images (second row), we compare segmentations which assign
features to the most probable object category for the contextual model

(third row) and a baseline bag of features model (first row). We also
show model parts translated according to each image’s reference trans-
formation (fourth row), and color-coded assignments of features to the
different parts associated with computer screens (fifth row)

Note that a number of test images violate our parametric
model’s assumption that scenes depict a single instance of
each object. To partially correct for this, the model learns
horizontally elongated car parts which extend beyond an
average car. Although this better segments adjacent cars,
nearby background clutter is often mislabeled. In images
containing widely separated cars, one car is usually missed
entirely. The assumption that every image contains one tree
is also problematic, since some features are typically classi-
fied as foliage even when no trees are present.

Figure 18 shows similar segmentation results for office
scenes. Because most test images do indeed contain a single
computer screen, the model’s use of a fixed-order trans-
formation causes fewer errors for office scenes. Contextual

information is especially important for detecting computer
mice (see Fig. 18). Very few features are detected in the
region corresponding to the mouse, and they are often not
distinctive. However, as screens can be reliably located, this
provides a strong constraint on the expected location of the
mouse. In fact, for test images in which no mouse is present
the system often hallucinates one in other appropriately po-
sitioned clutter.

For comparison, Figs. 17 and 18 also show segmentation
results for a bag of features model (Sivic et al. 2005), derived
from the full contextual model of Fig. 12 by ignoring feature
positions, and thus reference transformations. As confirmed
by the ROC curves of Fig. 19, the appearance-only model is
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Figure 19 ROC curves summarizing segmentation performance for
the features composing street scenes (left) and office scenes (right).
We compare the full TDP scene model of Fig. 15 (solid, colored) to

a simplified, single-part TDP model (dashed, colored), a fixed-order
contextual scene model (dash-dotted, black) as in Fig. 12, and a base-
line bag of features model (dotted, black)

significantly less accurate for all categories except trees. For
street scenes, the full, position-based model recognizes car
features reasonably well despite employing a single refer-
ence position, and roads are very accurately segmented. For
office scenes, it exploits contextual relationships to detect
mice and keyboards with accuracy comparable to the more
distinctive computer screens. These improvements highlight
the importance of spatial structure in visual scene under-
standing.

9.2 Transformed Dirichlet Process Scene Models

We now examine our TDP scene models via the training and
test images used to evaluate the fixed-order model. To esti-
mate model parameters, we first ran the Gibbs sampler of
Sect. 8.2 for 500 training iterations using only those fea-
tures with manually specified object category labels. For
street scenes, we then ran another 100 Gibbs sampling itera-
tions using all features. Empirically, this sequential training
converges faster because it initializes visual categories with
cleanly segmented objects. For each dataset, we compare
the full TDP scene model of Fig. 15 to a simplified model
which constrains each category to a single part (Sudderth et
al. 2006b). This single-part TDP is similar to the model in
Fig. 13, except that visual categories also have multinomial
appearance distributions.

During training, we distinguish the manually labeled ob-
ject categories from the visual categories composing the

TDP’s global distribution G0. We restrict the Gibbs sam-
pler from assigning different objects to the same visual
category, but multiple visual categories may be used to de-
scribe different forms of a particular object. When learning
TDP scene models, we also distinguish rigid objects (e.g.,
computer screens, keyboards, mice, and cars) from textural
objects such as buildings, roads, trees, and office clutter. For
rigid objects, we restrict all features composing each labeled
training instance to be associated with the same transformed
global cluster. This constraint, which is enforced by fixing
the table assignments tj i for features of rigid objects, en-
sures that the TDP learns descriptions of complete objects
rather than object pieces. For textural categories, we allow
the sampler to partition labeled training regions into trans-
formed object instances, and thus automatically discover
smaller regions with consistent, predictable structure.

One of the strengths of the TDP is that the learning
process is reasonably insensitive to the particular values
of the hyperparameters. The prior distribution H charac-
terizing object parts was set as in Sect. 9.1, while the
inverse-Wishart transformation prior R weakly favored
zero-mean Gaussians covering the full image range. The
concentration parameters defining the numbers of visual
categories γ ∼ Gamma(1.0,0.1) and parts per category
κ ∼ Gamma(1.0,0.1) were then assigned vague gamma
priors, and resampled during the learning process. To en-
courage the learning of larger global clusters for textural
categories, the concentration parameter controlling the num-
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ber of object instances was more tightly constrained as
α ∼ Gamma(1.0,1.0).

9.2.1 Visualization of Learned Parts

Figure 20 illustrates the global, visual categories that were
learned from the dataset of street scenes. The single-part
TDP uses compact global categories, and many transformed
object instances, to more uniformly spread features across
the image. Buildings, roads, and trees are each split into
several visual categories, which describe different character-
istic structural features. The full TDP scene model creates a
more detailed, 9-part car appearance model. It also learns
extended, multiple-part models of the large building and
road regions which appear in many training images. The
full part-based model thus captures some of the coarse-scale
structure of street scenes, while the simpler single-part TDP
is limited to modeling local feature dependencies.

As shown in Fig. 21, the single-part TDP model of office
scenes is qualitatively similar to the street scene model: im-
ages are described by large numbers of compact transformed
clusters. The multiple-part TDP, however, reveals interesting
differences in the global structure of these scene categories.
Due to their internal regularities, computer screens and key-
boards are each described by detailed visual categories with
many parts. To model background clutter, the TDP learns
several small clusters of parts which uniformly distribute
features within image regions. Because the TDP currently
lacks an explicit occlusion model, it also defines a frame-
like visual category which captures the background features
often found at image boundaries.

9.2.2 Segmentation of Novel Visual Scenes

To analyze test images, we fix the part and object assign-
ments from the final training Gibbs sampling iteration, and
then run the test image Gibbs sampler for 50 iterations from
each of ten initializations. Given the transformed object in-
stances created at each test iteration, we use (59) to estimate
the posterior probability that test features were generated by
each category, and average the probabilities from different
samples to produce segmentations.

Figure 22 illustrates feature segmentations for several
typical test street scenes, and transformed object instances
corresponding to one iteration of the Gibbs sampler. In con-
trast with the fixed-order model of Sect. 6, TDPs allow each
object category to occur at multiple locations within a single
image. This allows the TDP to correctly find multiple cars
in several scenes where the fixed-order model only detects
a single car. Conversely, because the TDP does not model
object relationships, it sometimes incorrectly detects cars
in textured regions of buildings. The fixed-order model’s
contextual Gaussian prior suppresses these false alarms by
forcing cars to lie beneath buildings.

We show similar segmentation results for office scenes
in Fig. 23. Computer screens are typically reliably detected,
particularly by the multiple-part TDP model. Perhaps sur-
prisingly, mice are also detected with reasonable accuracy,
although there are more false alarms than with the con-
textual model. In addition to accurately segmenting screen
features, the part-based TDP model correctly associates a
single transformed object cluster with most screen instances.
In contrast, the weaker appearance model of the single-
part TDP causes it to create several transformed clusters for
many computer screens, and thereby incorrectly label adja-
cent background features.

As confirmed by the ROC curves of Fig. 19, both TDP
models improve significantly on the bag of features model.
For large, rigid objects like computer screens and keyboards,
including parts further increases recognition performance.
The two TDP models perform similarly when segmenting
cars, perhaps due to their lower typical resolution. However,
the street scene interpretations illustrated in Fig. 22 show
that the part-based TDP does a better job of counting the
true number of car instances depicted in each image. While
including parts leads to more intuitive global models of tex-
tural categories, for these simple datasets it does not improve
segmentation accuracy.

Comparing the TDP’s performance to the fixed-order
scene model (see Fig. 19), we find that their complemen-
tary strengths are useful in different situations. For example,
the fixed-order model’s very strong spatial prior leads to im-
proved building and road detection, but worse performance
for the less structured features composing trees. The TDP
more cleanly segments individual cars from the background,
but also makes additional false alarms in contextually im-
plausible regions of buildings; the overall performance of
the two models is comparable. Mouse detection perfor-
mance is also similar, because the rigid contextual prior
cannot find mice which are not to the right of a computer
screen. For computer screens, however, the TDP’s allowance
for multiple instances, and creation of additional parts to
form a stronger appearance model, leads to significant per-
formance improvements. Finally, we emphasize that the
TDP also estimates the number of objects composing each
scene, a task which is beyond the scope of the fixed-order
model.

10 Discussion

The hierarchical models developed in this paper are de-
signed to capture the complex structure of multiple object
scenes. We provide a framework for integrating spatial re-
lationships with “bag of features” models, and show that
this leads to significant gains in recognition performance.
In addition, by coupling transformations with nonparametric
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Figure 20 Learned TDP models for street scenes containing cars
(red), buildings (magenta), roads (blue), and trees (green). Top: Sim-
plified, single-part TDP in which the shape of each visual category is
described by a single Gaussian (solid ellipses). We show the 11 most
common visual categories at their mean positions, and also plot their

transformation covariances (dashed ellipses). Bottom: Multiple-part
TDP in which the number of parts (solid ellipses, intensity proportional
to probability) underlying each category is learned automatically. We
again show the 11 most probable categories, and their Gaussian trans-
formation distributions (dashed ellipses)
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Figure 21 Learned TDP models for office scenes containing com-
puter screens (red), keyboards (green), mice (blue), and background
clutter (black). Left: Simplified, single-part TDP in which the shape
of each visual category is described by a single Gaussian (solid el-
lipses). We show the 7 most common visual categories at their mean

positions, and also plot their transformation covariances (dashed el-
lipses). Right: Multiple-part TDP in which the number of parts (solid
ellipses, intensity proportional to probability) underlying each category
is learned automatically. We show the 10 most probable categories, and
their Gaussian transformation distributions (dashed ellipses)

prior distributions, the transformed Dirichlet process (TDP)
allows us to reason consistently about the number of ob-
jects depicted in a given image. By addressing these issues
in a generative framework, we retain an easily extendable,
modular structure, and exploit partially labeled datasets.
Furthermore, our nonparametric approach leads to expres-
sive part-based models whose complexity grows as more
images are observed.

Interestingly, the pair of scene models analyzed by this
paper have complementary strengths. The fixed-order model
learns contextual relationships among object categories and
uses parts to describe objects’ internal structure, but assumes
that the number of parts and objects is known. In contrast,
the TDP models unknown numbers of visual categories,

object instances, and parts, but ignores contextual relation-

ships. Our experimental results suggest that a model which

balances the TDP’s flexibility with additional global struc-

ture would prove even more effective.

More generally, the TDP framework can accommodate

far richer classes of transformations. Natural candidates

include spatial rotation and scaling, and also appearance

transformations, which could be used to account for light-

ing or texture variations. In recent work building on this

paper, we developed a variant of the TDP which infers three-

dimensional scene structure from the predictable geometry

of known objects (Sudderth et al. 2006a). Nonparametric

methods may also play an important role in the design of
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Figure 22 Feature segmentations produced by TDP models of street
scenes containing cars (red), buildings (magenta), roads (blue), and
trees (green). We compare a simplified TDP model which describes
object shape via a single Gaussian cluster (top rows) to the full,
multiple-part TDP model (bottom rows) of Fig. 15. Row 4: Five test

images. Rows 3 & 5: Segmentations for each model, in which features
are assigned to the object category with the highest posterior proba-
bility. Rows 2 & 6: Parts corresponding to the objects instantiated at a
single Gibbs sampling iteration. Rows 1 & 7: Color-coded assignments
of features to different parts and instances of the car category
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Figure 23 Feature segmentations produced by TDP models of office
scenes containing computer screens (red), keyboards (green), mice
(blue), and background clutter (gray). We compare a simplified TDP
model which describes object shape via a single Gaussian cluster (top
rows) to the full, multiple-part TDP model (bottom rows) of Fig. 15.
Row 4: Six test images. Rows 3 & 5: Segmentations for each model,

in which features are assigned to the object category with the highest
posterior probability. Rows 2 & 6: Parts corresponding to the objects
instantiated at a single Gibbs sampling iteration (background clutter
not shown). Rows 1 & 7: Color-coded assignments of features to dif-
ferent parts and instances of the screen category
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models which share more expressive, multi-layer structures
among object categories.
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Appendix 1: Learning with Conjugate Priors

Let f (x|θ) denote a family of probability densities, para-
meterized by θ , and h(θ |λ) a corresponding prior for the
generative process. This prior is itself a member of some
family with hyperparameters λ. Such priors are conjugate
to f (x|θ) if, for any N independent observations {xi}Ni=1
and hyperparameters λ, the posterior distribution remains in
the same family:

p(θ |x1, . . . , xN ,λ) ∝ h(θ |λ)

N∏

i=1

f (xi |θ) ∝ h(θ |λ̄). (32)

The posterior distribution is then compactly described by an
updated set of hyperparameters λ̄. Conjugate priors exist for
any regular exponential family f (x|θ) of probability distri-
butions (Gelman et al. 2004; Sudderth 2006), and lead to
efficient learning algorithms based on sufficient statistics of
observed data.

11.1 Dirichlet Analysis of Multinomial Observations

Let x be a discrete random variable taking one of K cate-
gorical values, and πk � Pr[x = k]. A set of N independent
samples {xi}Ni=1 then follow the multinomial distribution:

p(x1, . . . , xN |π1, . . . , πK) = N !∏
k Ck!

K∏

k=1

πk
Ck ,

Ck �
N∑

i=1

δ(xi, k).

(33)

Counts Ck of the frequency of each category provide suf-
ficient statistics for maximum likelihood (ML) parameter
estimates π̂k = Ck/N . However, such unregularized esti-
mates may be inaccurate unless N  K . The Dirichlet
distribution (Gelman et al. 2004) is the multinomial’s conju-
gate prior:

Dir(π;α) = �(
∑

k αk)∏
k �(αk)

K∏

k=1

πk
αk−1, αk > 0. (34)

The Dirichlet’s mean is Eα[πk] = αk/α0, where α0 �
∑

k αk .
Its variance is inversely proportional to this precision para-
meter α0. We sometimes use Dir(α0) to denote a Dirichlet

prior with symmetric parameters αk = α0/K . When K = 2,
the Dirichlet is equivalent to the beta distribution (Gelman
et al. 2004).

Given N observations from a multinomial distribution
with Dirichlet prior π ∼ Dir(α), the parameters’ posterior
distribution is Dir(α1 + C1, . . . , αK + CK), where Ck are
counts as in (33). In the Monte Carlo algorithms developed
in this paper, the predictive likelihood of a new observation
x̄ ∼ f (x|π) is used to reassign visual features to objects or
parts:

p(x̄ = k|x1, . . . , xN ,α) =
∫

�

f (x̄|π)p(π |x1, . . . , xN ,α)dπ

= Ck + αk

N + α0
. (35)

This prediction smooths the raw frequencies underlying
the ML estimate by the pseudo-counts contributed by the
Dirichlet prior. More generally, the predictive likelihood
of multiple categorical observations can be expressed as
a ratio of gamma functions (Griffiths and Steyvers 2004;
Gelman et al. 2004).

11.2 Normal-Inverse-Wishart Analysis of Gaussian
Observations

Consider a continuous-valued random variable x taking val-
ues in R

d . A Gaussian or normal distribution (Gelman et al.
2004) with mean μ and positive definite covariance matrix
Λ equals

N (x;μ,Λ)

= 1

(2π)d/2|Λ|1/2
exp

{
−1

2
(x − μ)T Λ−1(x − μ)

}
. (36)

The sums of observations and their outer products, or equiv-
alently the sample mean and covariance, provide sufficient
statistics of Gaussian data. The conjugate prior for the co-
variance of a zero-mean Gaussian is the inverse-Wishart
W(ν,�), a multivariate extension of the scaled inverse-χ2

density (Gelman et al. 2004). Its strength is determined by
the degrees of freedom ν > d , interpreted as the size of a
pseudo-dataset with covariance �. If a Gaussian’s mean μ is
also uncertain, we take Λ ∼ W(ν,�) and μ ∼ N (ϑ,Λ/κ).
Here, ϑ is the expected mean, for which we have κ pseudo-
observations on the scale of observations x ∼ N (μ,Λ). The
resulting normal-inverse-Wishart prior (Gelman et al. 2004)
equals

NW(μ,Λ;κ,ϑ, ν,�)

∝ |Λ|−( ν+d
2 +1)

× exp

{
−1

2
tr(ν�Λ−1) − κ

2
(μ − ϑ)T Λ−1(μ − ϑ)

}
.

(37)
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Note that the mean and variance parameters (μ,Λ) are
dependent, so that means which differ significantly from
ϑ typically have larger associated variance (Gelman et al.
2004; Sudderth 2006).

Given N observations xi ∼ N (μ,Λ) from a Gaussian
with prior (μ,Λ) ∼ NW(κ,ϑ, ν,�), the posterior distrib-
ution is also normal-inverse-Wishart, with updated hyperpa-
rameters (κ̄, ϑ̄, ν̄, �̄):

κ̄ϑ̄ = κϑ +
N∑

i=1

xi, κ̄ = κ + N, (38)

ν̄�̄ = ν� +
N∑

i=1

xix
T
i + κϑϑT − κ̄ϑ̄ ϑ̄T , ν̄ = ν + N.

(39)

To robustly determine these posterior parameters, we cache
the observations’ sum (see (38)), and the Cholesky de-
composition of the sum of observation outer products
(see (39)). Marginalizing over posterior uncertainty in the
true Gaussian parameters, the predictive likelihood of a
new observation x̄ ∼ N (μ,Λ) is multivariate Student-t
with (ν̄ − d + 1) degrees of freedom (Gelman et al. 2004).
Assuming ν̄  d , this density is well approximated by a
moment-matched Gaussian (Sudderth 2006):

p(x̄|x1, . . . , xN , κ,ϑ, ν,�)

≈ N
(

x̄; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
�̄

)
. (40)

The predictive likelihood thus depends on regularized esti-
mates of the sample mean and covariance.

Appendix 2: Posterior Inference via Gibbs Sampling

This appendix provides partial derivations for the Gibbs
samplers used in earlier sections of this paper. Our al-
gorithms combine and generalize previous Monte Carlo
methods for Gaussian hierarchical models (Gelman et al.
2004), variants of LDA (Griffiths and Steyvers 2004; Rosen-
Zvi et al. 2004), DP mixtures (Escobar and West 1995;
Neal 2000), and the HDP (Teh et al. 2006).

12.1 Hierarchical Dirichlet Process Object Appearance
Model

We first examine the HDP object appearance model of
Sect. 4.2, and use the HDP’s Chinese restaurant franchise
representation (Teh et al. 2006) to derive Algorithms 1–2.
To avoid cumbersome notation, let zji = koj tji

denote the
global part associated with feature (wji, vji). Note that zji

is uniquely determined by that feature’s table assignment
tj i = t , and the corresponding table’s part assignment k
t .

Table Assignment Resampling Consider the table assign-
ment tj i for feature (wji, vji), given all other variables.
Letting t\ji denote all table assignments excluding tj i , Fig. 5
implies that

p(tji |t\ji ,k,w,v,o,ρ)

∝ p(tji |t\ji , oj )p(wji |t,k,w\ji)

× p(vji |t,k,v\ji ,ρ). (41)

Because samples from the Dirichlet process are exchange-
able (Pitman 2002), we evaluate the first term by thinking
of tj i as the last in a sequence of Nj observations, so that
it follows the Chinese restaurant franchise predictive rule of
(13). The second and third terms of (41) are the predictive
likelihood of the ith feature’s appearance wji and position
vji . For existing tables t , the appearance likelihood is deter-
mined via counts Ckw of the number of times each visual
word w is currently assigned to global part k = k
t (see
Sect. 11.1). The position likelihood instead depends on sta-
tistics of the relative displacements of image features from
the current reference transformations:

p(vji |zji = k, t\ji ,k,v\ji ,ρ)

=
∫∫

Hv(μk,Λk)

×
∏

j ′i′|zj ′i′=k

N (vj ′i′ ; τ(μk,Λk;ρj ′))dμkdΛk

∝
∫∫

Hv(μk,Λk)

×
∏

j ′i′|zj ′i′=k

N (τ̃ (vj ′i′ ;ρj ′);μk,Λk)dμkdΛk. (42)

Here, the data transformation of (2) allows us to describe
all observations of part k in a common coordinate frame.
Because Hv is normal-inverse-Wishart, the predictive likeli-
hood of (42) is multivariate Student-t . We approximate this
via a Gaussian N (vji; μ̂k, Λ̂k), with parameters determined
via regularized moment-matching of transformed observa-
tions τ̃ (vji;ρj ) as in (40). For compactness, we define
(μ̂k, Λ̂k) ⊕ vji to be an operator which updates a normal-
inverse-Wishart posterior based on a new feature vji (see
(38, 39)). Similarly, (μ̂k, Λ̂k) 	 vji removes vji from the
posterior statistics of part k. Algorithm 1 uses these op-
erators to recursively update likelihood statistics as table
assignments and transformations change.

When computing the likelihood of new tables, Algo-
rithm 1 marginalizes over potential global part assign-
ments (Teh et al. 2006). If a new table is instantiated
(tj i = t̄), we also choose a corresponding global part k
t̄ .
Exchangeability again implies that this assignment is biased
by the number of other tables Mk assigned to each global
part, as in the Chinese restaurant franchise of (14).
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Reference Transformation Resampling Fixing all assign-
ments (t,k), each feature is associated with a unique global
part. While marginalization of part parameters (μk,Λk) im-
proves efficiency when resampling feature assignments, it
complicates transformation resampling. We thus employ an
auxiliary variable method (Neal 2000), and sample a single
position parameter from the posterior of each part associated
with at least one observation:

(μ̂k, Λ̂k) ∼ p(μk,Λk|{(vji − ρj )|zji = k}),
k = 1, . . . ,K. (43)

Sampling from these normal-inverse-Wishart distributions
(see Sect. 11.2) is straightforward (Gelman et al. 2004).
To determine the current transformation prior for object
category oj = 
, we similarly sample (ζ̂
, Υ̂
) given fixed
transformations {ρj ′ |oj ′ = 
} for all other images of ob-
ject 
.

Given these auxiliary part parameters, and assuming
transformations are chosen to translate image features as in
(3), the posterior distribution for transformation ρj factors
as follows:

p(ρj |oj = 
, t,k,v, {μ̂k, Λ̂k}Kk=1, ζ̂
, Υ̂
)

∝N (ρj ; ζ̂
, Υ̂
)

K∏

k=1

∏

i|zji=k

N (vji − ρj ; μ̂k, Λ̂k). (44)

Reference transformations for other images induce a Gauss-
ian prior on ρj , while feature assignments in image j effec-
tively provide Gaussian observations. The posterior trans-
formation distribution is thus also Gaussian, with mean χj

and covariance Ξj expressed in information form (Gelman
et al. 2004):

Ξj
−1 = Υ̂ −1


 +
K∑

k=1

∑

i|zji=k

Λ̂−1
k ,

Ξj
−1χj = Υ̂ −1


 ζ̂
 +
K∑

k=1

∑

i|zji=k

Λ̂−1
k (vji − μ̂k).

(45)

Note that Ξj
−1 adds one multiple of Λ̂−1

k for each fea-
ture assigned to part k. After resampling ρj ∼ N (χj ,Ξj ),
the auxiliary part and transformation parameters are dis-
carded. Because our datasets have many training images,
these auxiliary variables are well approximated by modes
of their corresponding normal-inverse-Wishart posteriors.
For simplicity, Algorithm 1 thus directly uses the Gaussian
parameters implied by cached statistics when resampling
transformations.

Global Part Assignment Resampling We now consider the
assignments k
t of tables to global parts, given fixed as-
sociations t between features and tables. Although each

category 
 has infinitely many tables, we only explicitly
sample assignments for the T
 tables occupied by at least
one feature (N
t > 0). Because k
t determines the part for
all features assigned to table t , its posterior distribution
depends on their joint likelihood (Teh et al. 2006). Let
w
t = {wji |tj i = t, oj = 
} denote the appearance features
for table t , and w\
t all other features. Defining v
t and v\
t
similarly, we have

p(k
t |k\
t , t,w,v,ρ)

∝ p(k
t |k\
t )p(w
t |t,k,w\
t )p(v
t |t,k,v\
t ,ρ). (46)

Via exchangeability, the first term follows from the Chinese
restaurant franchise of (14). The joint likelihood of w
t is
determined by those features assigned to the same part:

p(w
t |k
t = k, t,k\
t ,w\
t )

∝
∫

p(ηk|{wj ′i′ |zj ′i′ = k, tj ′i′ �= t})

×
∏

j,i|tj i=t

p(wji |ηk)dηk. (47)

As discussed in Sect. 11.1, this likelihood has a closed form
for conjugate Dirichlet priors. The likelihood of v
t has a
similar form, except that part statistics are determined by
transformed feature positions as in (42). Evaluating these
likelihoods for each of the K currently instantiated parts, as
well as a potential new global part k̄, we may then resam-
ple k
t as summarized in Algorithm 2.

Concentration Parameter Resampling The preceding sam-
pling equations assumed fixed values for the concentration
parameters γ and α defining the HDP’s stick-breaking pri-
ors (see (9, 10)). In practice, these parameters noticeably
impact the number of global and local parts learned by
the Gibbs sampler. As with standard Dirichlet process mix-
tures (Escobar and West 1995), it is thus preferable to choose
weakly informative gamma priors for these concentration
parameters. Auxiliary variable methods may then be used
to resample α and γ following each Gibbs iteration (Teh et
al. 2006).

Likelihoods for Object Detection and Recognition To use
our HDP object model for recognition tasks, we compute the
likelihood that a test image j is generated by each candidate
object category oj . Because images are independently sam-
pled from a common parameter set, we have

p(wj ,vj |oj ,J )

=
∫

p(wj ,vj |oj ,π , θ ,ϕ)p(π , θ,ϕ|J )dπdθdϕ.
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In this expression, J denotes the set of training images,
θ = {ηk,μk,Λk}∞k=1 the part position and appearance pa-
rameters, and ϕ = {ζ
,Υ
}L
=1 the reference transformation
parameters. The Gibbs samplers of Algorithms 1 and 2
provide samples (t(a),k(a),ρ(a)) approximately distributed
according to p(t,k,ρ|J ). Given A such samples, we ap-
proximate the test image likelihood as

p(wj ,vj |oj ,J )

≈ 1

A

A∑

a=1

p(wj ,vj |oj ,π
(a), θ (a),ϕ(a)). (48)

Here, (π (a), θ (a),ϕ(a)) denote parameters sampled from the
posterior distributions induced by (t(a),k(a),ρ(a)), which
have simple forms (Sudderth 2006; Teh et al. 2006; Ishwaran
and James 2001).

In practice, we approximate the infinite stick-breaking
process of (7) by only sampling parameters for the K(a)

global parts to which (t(a),k(a)) assigns at least one feature.
Ignoring reference transformations, image features are then
conditionally independent:

p(wj ,vj |oj = 
,π (a), θ (a))

=
Nj∏

i=1

K(a)∑

k=1

π̂
kη̂k(wji)N (vji; μ̂k, Λ̂k). (49)

Here, θ (a) = {η̂k, μ̂k, Λ̂k}K(a)

k=1 , and π̂
k indicates the total
weight assigned to global part k by the tables of object 
,
as in (11). This expression calculates the likelihood of Nj

features in O(NjK
(a)) operations. To account for reference

transformations, we run the Gibbs sampler of Algorithm 1
on the test image, and then average the feature likelihoods
implied by sampled transformations.

12.2 Fixed-Order Models for Objects and Scenes

In this section, we extend methods developed for the author-
topic model (Rosen-Zvi et al. 2004) to derive a Gibbs
sampler for the fixed-order visual scene model of Sect. 6.1.
A special case of this sampler, as summarized in Algo-
rithm 3, is also used for learning in the fixed-order, single
object model of Sect. 3.2.

To improve convergence, we develop a blocked Gibbs
sampler which jointly resamples the object oji and part
zji associated with each feature. Fixing transformations ρj ,
Fig. 12 implies that

p(oji, zji |o\ji , z\ji ,w,v, s,ρ)

∝ p(oji |o\ji , sj )p(zji |z\ji , oji)p(wji |z,w\ji)

× p(vji |z,v\ji ,o,ρ). (50)

Because βs ∼ Dir(γ ) is assigned a Dirichlet prior, (35)
shows that the first term depends on the number Ms
 of
features that o\ji assigns to object 
 in images of scene s.
Similarly, because π
 ∼ Dir(α), the second term depends
on the number N
k of features simultaneously assigned to
object 
 and part k. Finally, the appearance and position like-
lihoods are identical to those in the HDP object model (see
Sect. 12.1), except that each object 
 has its own reference
location ρj
. Note that features associated with different ob-
jects contribute to a common set of K shared parts.

We resample reference transformations ρj via an exten-
sion of the auxiliary variable method of Sect. 12.1. Given
sampled parameters for parts {μ̂k, Λ̂k}Kk=1 and the 2L-dim.
reference prior distribution (ζ̂s , Υ̂s), the posterior distribu-
tion of ρj factors as follows:

p(ρj |sj = s,o, z,v, {μ̂k, Λ̂k}Kk=1, ζ̂s , Υ̂s)

∝N (ρj ; ζ̂s , Υ̂s)

K∏

k=1

∏

i|zji=k

N (vji − ρjoji
; μ̂k, Λ̂k). (51)

Each feature vji provides a Gaussian observation of the sub-
vector of ρj corresponding to its assigned object oji . Trans-
formations thus have a Gaussian posterior, with mean χj

and covariance Ξj :

Ξj
−1 = Υ̂ −1

sj
+ blkdiag

{
∑K

k=1
∑

i|zji=k

oji=1
Λ̂−1

k , . . . ,

∑K
k=1

∑
i|zji=k

oji=L

Λ̂−1
k

}
,

Ξj
−1χj = Υ̂ −1

sj
ζ̂sj

+
[

K∑

k=1

∑

i|zji=k

oji=1

Λ̂−1
k (vji − μ̂k), . . . ,

K∑

k=1

∑

i|zji=k

oji=L

Λ̂−1
k (vji − μ̂k)

]T

.

(52)

By caching statistics of features, we may then sample a
new reference transformation ρj ∼ N (χj ,Ξj ) in O(L3) op-
erations. As in Sect. 12.1, Algorithm 3 approximates the
auxiliary variables underlying this update by modes of the
Gaussian parameters’ normal-inverse-Wishart posteriors.

12.3 Transformed Dirichlet Process Mixtures

We now generalize the HDP Gibbs sampler of Sect. 12.1 to
learn parameters for the TDP mixture model of Sect. 7.1.
As summarized in Algorithm 4, we first fix assignments ojt

of tables to global clusters, and corresponding transforma-
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tions ρjt . From the graphical TDP representation of Fig. 13,
we have

p(tji |t\ji ,o,v,ρ) ∝ p(tji |t\ji)p(vji |t,o,v\ji ,ρ). (53)

As in the HDP Gibbs sampler of Sect. 12.1, the Chinese
restaurant process (see (13)) expresses the first term via the
number Njt of other observations currently assigned to each
table. For existing tables, the likelihood term may then be
evaluated by using the data transformation τ̃ (vji;ρjtji

) to
describe observations in a common coordinate frame. This
approach is analogous to (42), except that the TDP indexes
reference transformations by tables t rather than images j .

For new tables t̄ , we improve sampling efficiency by
integrating over potential assignments oj t̄ to global clus-
ters (Teh et al. 2006). As in Sects. 12.1 and 12.2, we assume
fixed transformation parameters ϕ̂
 and observation parame-
ters θ̂
 for each of the L instantiated global clusters; these
may either be sampled as auxiliary variables (Neal 2000), or
approximated by corresponding posterior modes. Marginal-
izing over transformations ρj t̄ , the overall likelihood of a
new table equals

p(vji |tj i = t̄ ,o, θ̂, ϕ̂)

∝
∑




p(oj t̄ = 
|o)

∫

℘

f (τ̃ (vji;ρ)|θ̂
)q(ρ|ϕ̂
)dρ. (54)

The prior probability of each global cluster follows from the
Chinese restaurant franchise prediction rule (see (14)). The
integral of (54) is tractable when θ̂
 = (μ̂
, Λ̂
) parameter-
izes a Gaussian distribution, and ϕ̂
 = (ζ̂
, Υ̂
) a Gaussian
prior on translations (see Sect. 3.1). We then have

∫

℘

N (vji − ρ; μ̂
, Λ̂
)N (ρ; ζ̂
, Υ̂
)dρ

= N (vji; μ̂
 + ζ̂
, Λ̂
 + Υ̂
). (55)

For more complex transformations, numerical or Monte
Carlo approximations may be needed.

A related approach is used to jointly resample assign-
ments ojt of tables to global clusters, and corresponding
transformations ρjt , given fixed associations t between ob-
servations and tables:

p(ojt = 
,ρjt |o\j t ,ρ\j t , t, θ̂ , ϕ̂) ∝ p(ojt = 
|o\j t )q(ρjt |ϕ̂
)

×
∏

i|tj i=t

f (τ̃ (vji;ρjt )|θ̂
). (56)

Suppose again that θ̂
 = (μ̂
, Λ̂
), ϕ̂
 = (ζ̂
, Υ̂
) parame-
terize Gaussian distributions. Conditioning on this table’s
assignment to some global cluster ojt = 
, the posterior
distribution of the transformation ρjt is Gaussian as in

Sect. 12.1, with mean χjt and covariance Ξjt equaling

Ξjt
−1 = Υ̂ −1


 +
∑

i|tj i=t

Λ̂−1

 ,

(57)
Ξjt

−1χjt = Υ̂ −1

 ζ̂
 +

∑

i|tj i=t

Λ̂−1

 (vji − μ̂
).

Using standard manipulations of Gaussian random vari-
ables, we may then marginalize ρjt to determine the overall
likelihood that ojt = 
:

p(ojt = 
|ρ\j t , t, θ̂ , ϕ̂)

∝
( |Ξjt |

|Λ̂
|Njt |Υ̂
|
)1/2

× exp

{
−1

2

∑

i|tj i=t

(vji − μ̂
)
T Λ̂−1


 (vji − μ̂
)

− 1

2
ζ̂ T

 Υ̂ −1


 ζ̂
 + 1

2
χjt

T Ξjt
−1χjt

}
. (58)

Note that we evaluate this expression with a different
(χjt ,Ξjt ), computed as in (57), for each candidate global
cluster 
. Step 3 of Algorithm 4 first uses this marginalized
likelihood to choose ojt , and then samples a corresponding
transformation ρjt from the Gaussian of (57).

12.4 Transformed DP Models for Objects and Scenes

This section generalizes the TDP Gibbs sampler of Sect. 12.3
to learn parameters for the full TDP scene model of
Sect. 8.1. Because visual categories are defined by differ-
ent sets of parts, blocked resampling of instance and part
assignments (tji , kji) is necessary. Figure 15 implies that

p(tji , kji |t\ji ,k\ji ,w,v,o,ρ)

∝ p(tji |t\ji)p(kji |k\ji , t,o)p(wji |t,k,o,w\ji)

× p(vji |t,k,o,v\ji ,ρ). (59)

The first term encourages assignments to object instances t

associated with many other features Njt , as in (13). Sim-
ilarly, the second term is derived from the stick-breaking
prior ε
 ∼ GEM(κ) on the probabilities associated with
each visual category’s parts:

p(kji |tj i = t, ojt = 
,k\ji , t\ji ,o\j t )

∝
K
∑

k=1

B
kδ(kji , k) + κδ(kji , k̄). (60)

Here, B
k denotes the number of other features currently as-
signed to each of the K
 instantiated parts of object 
, and
k̄ a potential new part. The appearance likelihood is as in
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Sect. 12.1, except that we maintain counts C
kw of the num-
ber of times appearance descriptor w is assigned to each
instantiated category 
 and part k. Finally, our position like-
lihood computation extends the scheme of Algorithm 4 to
cache statistics (μ̂
k, Λ̂
k) of the transformed features for
each category and part. To sample from (59), we evaluate
these likelihoods for every existing part, and a potential new
part, of each object instance. We also determine the like-
lihood of creating a new object instance by marginalizing
potential category assignments and transformations as in
(54), (55).

The second phase of our Gibbs sampler fixes object
assignments t, and considers potential reinterpretations of
each instance t using a new global object category ojt . Be-
cause parts and transformations are defined differently for
each category, blocked resampling of (ojt , ρjt , {kji |tj i = t})
is necessary. As in Sect. 12.3, we resample transformations
by instantiating auxiliary parameters for parts (η̂
k, μ̂
k, Λ̂
k)

and category-specific transformation priors (ζ̂
, Υ̂
). Sup-
pose first that ojt = 
 is fixed. Due to the exponentially
large number of joint assignments of this instance’s fea-
tures to parts, the marginal distribution of ρjt is intractable.
However, given ρjt , part assignments kji have conditionally
independent posteriors as in (41). Alternatively, given fixed
part assignments for all features, ρjt follows the Gaussian
posterior of (44), which arose in the single-object HDP sam-
pler. Intuitively, fixing t effectively segments the scene’s
features into independent objects.

For each candidate visual category ojt , we first per-
form a small number of auxiliary Gibbs iterations which
alternatively sample part assignments {kji |tj i = t} and the
transformation ρjt . Fixing the final ρjt , part assignments are
then marginalized to compute the likelihood of ojt . Typi-
cally, the posterior distribution of ρjt is tightly concentrated
given fixed t, and 3–5 auxiliary iterations provide an ac-
curate approximation. Combining this likelihood with the
global DP clustering bias of (14), we resample ojt , and then
conditionally choose (ρjt , {kji |tj i = t}).
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