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[Mujdat Çetin, Lei Chen, John W. Fisher III, Alexander T. Ihler, 

Randolph L. Moses, Martin J. Wainwright, and Alan S. Willsky]

D
istributed inference methods developed for graphical models comprise a principled
approach for data fusion in sensor networks. The application of these methods, how-
ever, requires some care due to a number of issues that are particular to sensor net-
works. Chief of among these are the distributed nature of computation and
deployment coupled with communications bandwidth and energy constraints typical

of many sensor networks. Additionally, information sharing in a sensor network necessarily
involves approximation. Traditional measures of distortion are not sufficient to characterize the
quality of approximation as they do not address in an explicit manner the resulting impact on infer-
ence which is at the core of many data fusion problems. While both graphical models and a distrib-
uted sensor network have network structures associated with them, the mapping is not one to one.
All of these issues complicate the mapping of a particular inference problem to a given sensor net-
work structure. Indeed, there may be a variety of mappings with very different characteristics with
regard to computational complexity and utilization of resources. Nevertheless, it is the case that
many of the powerful distributed inference methods have a role in information fusion for sensor
networks. In this article we present an overview of research conducted by the authors that has
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sought to clarify many of the important issues at the intersection
of these domains. We discuss both theoretical issues and prototypi-
cal applications in addition to suggesting new lines of reasoning.

INTRODUCTION
Fusion of information in interconnected sensor networks and
the design of inference algorithms for graphical models are far
from synonymous lines of inquiry. That said, the evocative
“message-passing’’ structure of many graphical model inference
algorithms has motivated a number of research groups to exam-
ine how methods for such models might be applied or adapted
to challenges that arise in fusion for sensor networks. A variety
of questions arise that fall outside the standard domain of
graphical models. The result is a rich, new area of research that
has already shown its promise and offers more for the future.

Several reasons underlie the choice of graphical models for
addressing distributed fusion problems in sensor networks.
First, a graphical model is well suited to capture the structure
of a sensor network, which consists of nodes (for sensing, com-
munication, and computation) as well as connections between
the nodes (for modeling statistical dependencies and/or com-
munication links). Second, there has recently been significant
progress in the development and analysis of scalable inference
algorithms on graphs. This includes recent work on analyzing
and understanding the behavior of well-known classes of local
message-passing algorithms on graphs that contain loops [14],
[32]. There has also been considerable progress in developing
new message-passing algorithms with superior convergence
and accuracy properties; in some cases these algorithms have
provable guarantees of convergence to optimal answers [18],
[31], [33]. Third, the algorithms commonly used for perform-
ing estimation in graphical models involve parallel message-
passing operations that are not only efficient and scalable but
also well suited to parallel realization via physically distributed
processors, a crucial requirement in sensor network applica-
tions. Finally, graphical models provide a suitable framework
for the development and analysis of communication-con-
strained versions of message-passing algorithms, which are of
considerable interest in the context of sensor networks given
their severe power and energy limitations [15]; see also [7].
Distributed inference in sensor networks under communica-
tion constraints is a topic of much current interest. Aldosari
and Moura [1] address the use of these algorithms for distrib-
uted decision making as well as the effect of graph topology on
convergence rates. The message-passing algorithms studied in
this article, while closely related, are designed for statistical
estimation and fusion. Xiao et al. [37] consider random and
nonrandom parameter estimation in networks in which sensors
transmit quantized measurements.

We describe our ongoing line of inquiry on this subject. We
use two applications—self-localization in sensor networks and
distributed data association in multiobject tracking—first to
show how sensor network fusion problems can be cast as prob-
lems of inference in graphical models and then to look more
deeply at how conservation of power through judicious use of

communications resources provides new insights not previously
found in the graphical model literature.

The need to conserve communications resources requires
that the so-called “messages’’ found in inference algorithms for
graphical models be compressed and/or “censored’’ (i.e., not
transmitted). We describe results of such censoring methods for
the data association problem and of message approximation
methods for the self-localization problem. The method we
describe for message censoring—one that corresponds to a very
simple and local fusion protocol—provides a sensor network
with an adaptive fusion/communication mechanism that yields
excellent fusion performance with significantly reduced expen-
diture of communications resources. This framework leads to a
principled means for trading off communication load with the
accuracy of the resulting fused inference results. In addition,
this research provided the motivation and basis for examining
the effects of message “errors’’ (due to approximation, censor-
ing, or transmission loss) on overall inference accuracy, an
inquiry that had the surprising and important side benefit of
yielding the best known results on convergence of the most
widely used inference algorithm for graphical models. These
topics are developed in far greater detail in a number of publica-
tions that are referenced throughout this article.

GRAPHICAL MODELS
We begin with a brief discussion of graphical models, focusing
on aspects related to inference and linking these to distributed
inference in sensor networks in later sections. A graphical
model on an (undirected) graph, G = (V, E) (consisting of a 
vertex or node set V and edge set E ⊂ V × V) consists of a 
collection of random variables or vectors, X = {Xv, v ∈ V}, that
collectively satisfy a Markov property with respect to G; specifi-
cally, for any subset U of V, let XU = {Xv, v ∈ U}. The random
vector X is Markov with respect to G if for any partition of the
V into disjoint sets A, B, C, in which B separates A and C (i.e.,
all paths in G from A to C include vertices in B), the random
vectors XA and XC are conditionally independent given XB. For
the “graph’’ associated with time series, i.e., consecutive points
in time with each point connected to its immediate predecessor
and successor, this corresponds to the usual notion of temporal
Markovianity (i.e., that the past and future are conditionally
independent given the present). For general graphs, however,
the Markov property requires a far richer set of conditional
independencies and associated challenges in both specifying
such distributions and in performing inference using them. By
way of example, consider Figure 7(a) (used for subsequent
analysis) in which the variables x and y are conditionally inde-
pendent given the variables w and z. Due to the edge between w
and z, they are not conditionally independent given x and y.

The celebrated Hammersley-Clifford Theorem [2] provides
a sufficient condition (necessary for strictly positive probability
distributions) for the form that the joint distribution must
take to be Markov with respect to G. Specifically, let C denote
the set of all cliques in G, where a subset of nodes C is a clique
if it is fully connected (i.e., an edge exists between each pair of
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nodes in C). The random vector X is Markov with respect to G
if (and only if for strictly positive probability distributions) its
distribution admits a factorization as a product of functions of
variables restricted to cliques

p(x) =
∏

C∈C ψC(xC)

Z
; Z �

∑
x

∏
C∈C

ψC(xC), (1)

where Z is the partition function, and the ψC(xC) are 
so-called compatibility functions. The logarithms of these com-
patibility functions are commonly referred to as potentials or
potential functions.

For simplicity we will assume for the remainder of this arti-
cle that each of the nonzero potentials (or equivalently each
compatibility function in (1) that is not constant) is a function
either of the variable at a single node of the graph (node poten-
tials) or of the variables at a pair of nodes corresponding to an
edge in E (edge potentials). In this case, (1) takes the form

p(x) =
(∏

s∈V ψs(xs)
) (∏

(s,t)∈E ψs,t(xs, xt)
)

Z
. (2)

Note that any graphical model can be put into this form by
appropriate node aggregation [2]. While all of the ideas that are
presented here can be extended to the more general case, pair-
wise potentials are sufficient for the specific applications consid-
ered in this article. Moreover, the communication interpretation
of the so-called message-passing algorithms used herein are
more easily explained in this context.

As long as G is a relatively sparse graph, the factorizations (1)
or (2) represent parsimonious means to describe the joint distri-
bution of a large number of random variables, in the same way
that specifying an initial (or final) distribution and a set of one-
step transition distributions is a compact way in which to speci-
fy a Markov chain. Moreover, for many inference and estimation
problems (including those described in this article), such a spec-
ification is readily available. The challenge, however, is that
unless the graph has very special properties, such as in the case
of Markov chains, the compatibility functions do not readily
describe the quantities of most interest, such as the marginal
distributions of the variables at individual (or small sets of)
nodes or the overall peak of the distribution jointly optimized
over all nodes. Indeed, for discrete-valued random variables the
computation of such quantities for general graphs is NP-hard.

For graphs without loops (Markov chains and, more gener-
ally, graphical models on trees), computation of the marginal
distributions is relatively straightforward. In this case, the node
and pair-wise potentials of the joint distribution in (2) for any
cycle-free graph can be expressed in terms of the marginal prob-
abilities at individual nodes and joint probabilities of pairs of
nodes connected by edges [6], [32]

p(x) =
∏
s∈V

ps(xs)
∏

(s,t)∈E

pst(xs, xt)

ps(xs)pt(xt)
. (3)

That is, ψs(xs) = ps(xs) [or ψs(xs) = ps(xs)p(ys|xs) when
there is a measurement ys associated with xs] and
ψ(xs, xt) = (p(xs, xt)/p(xs)p(xt)) . Marginal probabilities can
be efficiently calculated in a distributed fashion by so-called
sum-product algorithms. Specifically, as shown in [26], the
marginal probabilities at any node s in the graph can be
expressed in terms of the local potential ψs at node s, along
with a set of so-called messages from each of its neighbors in
the set N (s) = {t ∈ V | (s, t) ∈ E}. The message from node t to
node s is a function Mts(xs) that (up to normalization) repre-
sents the likelihood function of xs based on the subtree rooted
at t and extending away from s. In particular, the marginal dis-
tribution ps takes the form

ps(xs) ∝ ψs(xs)
∏

t∈N (s)

Mts(xs). (4)

Furthermore, in the absence of loops, these messages are related
to each other via a sum-product formula:

Mts(xs) ∝
∑

xt

ψst(xs, xt)ψt(xt)
∏

u∈N (t)\s

Mut(xt). (5)

The product operation embedded in the message computation
from node t to node s combines the information in the subtree
rooted at node t, by combining the likelihood information from
all neighbors of node t other than s with the local potential at
node t. This yields a likelihood function for the random variable
Xt at node t. This is then converted to a likelihood for the ran-
dom variable Xs at node s by multiplying by the compatibility
function between these two nodes and then “summing’’ or inte-
grating out the variable at node t in a fashion analogous to the
Chapman-Kolmogorov equation in a Markov chain.

Together (4) and (5) relating messages throughout the loop-
free graph represent a set of fixed-point equations that can be
solved in a variety of ways corresponding to different message-
passing algorithms. For example, one can solve these equations
explicitly, much as in Gaussian elimination, by starting at leaf
nodes, working inward toward a “root’’ node, and then propa-
gating back toward the leaves; this is a generalization of two-
pass smoothing algorithms for Markov chains. An alternative is
to solve these equations iteratively; we begin with guesses
(often taken simply to be constant) of all of the messages and
iteratively update messages by substitution into the fixed-point
equations. Each step of this procedure involves passing the cur-
rent guess of messages among neighboring nodes. While there
is great flexibility in how one schedules these messages, the
happy fact remains that after a sufficient number of iterations
(enough so that information propagates from every node to
every other), the correct messages are obtained from which the
desired probabilities can then be computed.

Interestingly, for loop-free graphs, a variant of this approach
also yields the solution to the problem of computing the overall
maximum a posteriori (MAP) configuration for the entire
graphical model. For such graphical models, there is an
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alternative factorization of p(x) in terms of so-called max-mar-
ginals. As their name would suggest, these quantities are
defined by eliminating variables through maximization (as
opposed to summation); in particular, we define 

qs(xs) := max
xu,u∈V\s

p(x1, . . . , xn) (6a)

qst(xs, xt) := max
xu,u∈V\{s,t}

p(x1, . . . , xn). (6b)

It is a remarkable fact that for a tree-structured graph, the 
distribution (1) can also be factorized in terms of these max-
marginals, viz.,

p(x) ∝
∏
s∈V

qs(xs)
∏

(s,t)∈E

qst(xs, xt)

qs(xs)qt(xt)
. (7)

Furthermore, there are equations analogous to those for the
sum-product algorithm that show how these quantities can be
computed in terms of node potentials and messages, where the
fixed-point equations involve maximization rather than summa-
tion (yielding what are known as max-product algorithms). The
solution of these fixed-point equations can be computed via 
leaf-root-leaf message passing (corresponding to dynamic 
programming/Viterbi algorithms) or by iterative message pass-
ing with more general message scheduling.

While the representation of marginal distributions or max-
marginals at individual nodes in terms of messages holds only if
the graph is loop free, (4) and (5) are well defined for any graph,
and one can consider applying the sum-product algorithm to
arbitrary graphs which contain loops (often referred to as loopy
belief propagation); this corresponds to fusing information
based on assumptions that are not precisely valid. For example,
the product operation in (4) as well as (5) corresponds to the
fusion of information from the different neighbors of a node, t,
assuming that the information contained in the messages from
these different neighbors are conditionally independent given
the value of xt, something that is valid for trees but is decidedly
not true if there are loops.

Despite this evident suboptimality, this loopy form of the
sum-product algorithm has been extremely successful in cer-
tain applications, most notably in decoding of low-density pari-
ty check codes [20], [28], which can be described by graphs
with long cycles. In contrast, sensor network applications (as
well as others) involve graphs with relatively short cycles. This
has led to a considerable and still growing body of literature on
the analysis of these algorithms on arbitrary graphs as well as
the development of new ones that yield superior performance.
For arbitrary loopy graphs, the reparameterization perspective
on these algorithms [32], in conjunction with a new class of
efficiently computable bounds [34] on the partition function Z,
provide computable bounds on the error incurred via applica-
tion of sum-product to loopy graphs. Similar analysis is also

applicable to the max-product updates [9], [31]. The fact that
the max-product algorithm may yield incorrect (i.e., non-MAP)
configurations motivates the development of a new class of
tree-reweighted max-product algorithms (TRMP) [33] for
which, in sharp contrast with the ordinary max-product
updates, there is a set of testable conditions for determining if
the solution is indeed the MAP configuration. Tight perform-
ance guarantees can be provided for TRMP for specific classes
of graphs [8], [18]. More broadly, we refer the reader to various
research and survey papers, e.g., [23], [35], [38], as well as cita-
tions at the end of this article, which provide only a sampling
of this rapidly growing literature. 

NONPARAMETRIC BELIEF PROPAGATION
We next provide a brief discussion of one specific contribution
that plays a role in what follows; specifically, whether applied to
loop-free or loopy graphs, message-passing algorithms corre-
sponding to the iterative solution of (5) require the transmission
of full likelihood functions, each of which is a function of the
variable at the receiving node. In the case of discrete random
variables, this corresponds to the transmission of a vector of
numbers, while for Gaussian models, these messages can be
reduced to the transmission of means and covariances. However,
for non-Gaussian continuous random variables, as commonly
occur in many sensor network applications, one must transmit a
representation of an entire function Mts(xs). A common
approach is simply to discretize the underlying continuous vari-
ables often leading to unwarranted computational complexity
(and communication overhead for sensor networks). An alterna-
tive, developed recently, is nonparametric belief propagation
(NBP), representing a significant generalization of particle filter-
ing methods for Markov chains [29].

Particle filtering for Markov chains also involves an equa-
tion similar to (5), with the important distinction that there is
no “product’’ as there is only one neighbor of node t. The set of
particles, representing samples from the single message corre-
sponding to the product term in (5), are weighted by the local
node compatibility function (and perhaps resampled from the
weighted particle representation). This step is followed by a
“sum’’ operation by simulating the transition dynamics from
node t to s, i.e., for each sample at node t we sample from the
transition distribution to generate a sample at node s. All of
these steps, with one significant exception, apply equally well to
message passing in general graphical models. The additional
complexity is that we have the product of particle-based mes-
sages from several neighbors of node s, which requires that we
make sense of this product and then find an efficient method to
generate particles corresponding to this product.

As developed in [29], each particle-based message can be
interpreted as a nonparametric estimate of the likelihood 
function or probability density function corresponding to the
exact message; e.g., if we use Gaussian kernels for these non-
parametric densities, the set of particles corresponds to a
Gaussian mixture. Consequently, the problem of generating
samples from the product of messages, with each represented



by a set of particles, reduces to drawing samples from a den-
sity that is the product of a set of Gaussian mixtures. Unless
we are careful, however, we may have a geometrically grow-
ing number of terms in these resulting Gaussian mixtures,
making sampling intractable. The key to overcoming this
problem is that of finding ways of sampling from this product
without explicitly constructing the product. Generating such
a sample can be accomplished in two steps: choosing one of
the product Gaussian kernels from which to sample (i.e., the
set of labels corresponding to
specific terms in each of the
Gaussian mixtures in the prod-
uct) and then drawing a sample
from the Gaussian correspon-
ding to that set of labels. Since
sampling from a Gaussian is
straightforward, the real chal-
lenge is in sampling from the
sets of labels of components, something that can be solved
via importance and Gibbs sampling methods.

Moreover, dramatic speedups can be achieved through a mul-
tiresolution representation utilizing k-dimensional (KD) trees, a
data structure that plays a very important role in efficient coding
and communication of messages. Specifically, suppose that the
variables at each node are KD real-valued vectors. Then, given a
set of KD particles representing one of the messages in (5), we
aggregate these into a multiresolution tree, starting with all of the
particles clustered together at the root of this tree. Proceeding
down the tree, at each node, we take whichever particles are clus-
tered at that node and divide them into two subclusters (which
correspond to the children of this node) along one of the compo-
nents of the vector (so that we cycle through these components as
we proceed down the tree). At the finest level we have individual
particles and hence individual “labels’’ for a term in the Gaussian
mixture representation of this message. Sampling of labels can
then be accomplished very efficiently using this coarse-to-fine
representation. We refer the reader to [11] for details. Note that
here, nonparametric refers to the sample-based representation of
the messages, while the graphical model itself remains defined in
terms of the potential functions ψ (which are parametric in our

applications). In contrast, the paper by Predd et al. [27] discusses
nonparametric, data-based models in sensor networks. 

MAPPING TWO PROTOTYPICAL APPLICATIONS 
TO GRAPHICAL MODELS
Mapping fusion problems in sensor networks to problems on
graphical models might at first seem to be an obvious function,
as there is a natural graph that exists, defined by the sensor
nodes and the intersensor communication structure. However,

it is the informational structure of
the inference problem, involving
the relationships between sensed
information and the variables
about which we wish to perform
estimation, that is just as critical
as the communication structure
of the problem. We describe two
sensor networks applications

here, focusing on the informational structure.

SELF-LOCALIZATION IN SENSOR NETWORKS
A well-recognized problem for many sensor network applica-
tions is that of sensor localization. Figure 1 illustrates such a
problem. Here each node corresponds to a sensor, and the ran-
dom vector at that node describes sensor calibration informa-
tion, such as its location, and also perhaps its orientation (e.g., if
the node provides directional-sensing capability), and time offset
(e.g., if intersensor time-of-flight measurements are used).
While the framework we describe extends immediately to a gen-
eral setting, we assume for simplicity that only the location vari-
ables are of interest. We consider a case in which the available
information for estimating sensor locations consist of: i) uncer-
tain prior information about the location of a subset of the sen-
sors (e.g., if any of the sensors are provided with GPS); ii) the
ability of sensors to “hear” one another and attempt to measure
their intersensor distance (typically only possible for nearby sen-
sors); and iii) any distance measurements so obtained. 

Specifically, let us denote by ρs(xs) the prior location probabil-
ity distribution for sensor s, if any, let Pr(xs, xt) be the probability
of obtaining a distance measurement between two sensors s, t
located at xs and xt, and let ρL(lst|xs, xt) the probability distribu-
tion of measuring a distance lst given that the true sensor positions
are xs and xt. Notice that all three sources of information involve
only the variables at single sensors or pairs of sensors; thus we may
use a pairwise graphical model to describe the joint distribution of
sensor locations, with each node in the graph associated with one of
the sensors and its variables of interest. One may immediately write
that the joint distribution has the form of (2), with 

ψs(xs) = ρs(xs) (8a)

ψst(xs, xt) =
{

Pr(xs, xt)ρL(lst); lst is observed
1 − Pr(xs, xt); otherwise.

(8b)

The sensor localization problem is then precisely one of
computing the best estimates of all sensor locations given all
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[FIG1] Sensor localization: (a) the physical location of a collection
of sensors may be represented as (b) a graphical model in
which nodes correspond to the sensor node location variables
and edges correspond to observed information, such as 
intersensor distance measurements from a subset of node pairs.

(a) (b)

THERE HAS ALSO BEEN CONSIDERABLE
PROGRESS IN DEVELOPING NEW
MESSAGE-PASSING ALGORITHMS
WITH SUPERIOR CONVERGENCE
AND ACCURACY PROPERTIES.
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of this information. As an optimization problem this has been
well studied by others (e.g., [24], [25], [30], often under the
assumption that the distributions (ρs, ρL ) involved are
Gaussian so that its solution entails the nonlinear optimiza-
tion of a quadratic cost function. However, by formulating
this problem as one of inference
for a graphical model (in which
localization corresponds to com-
puting the marginal distribu-
tions of variables at each node),
we directly obtain message-pass-
ing algorithms (such as sum-
product) that distribute the
computations across the net-
work. Moreover, the graphical model formulation allows us to
easily include features which bring additional realism, accura-
cy, and well-posedness [12], [13]. In particular, anomalous
range measurements can occur with nontrivial probability;
this phenomenon is easily included through a simple modifi-
cation of the edge potential likelihood functions to capture
such a noise model. Also, location distributions for sensors
can be multimodal (e.g., receiving perfect range measure-
ments from two neighboring sensors whose locations are
known perfectly yields two possible locations). The NBP for-
mulation finds an estimate of the node location probability
distributions (as opposed to a point estimate such as the dis-
tribution maximum); from which multimodal, non-Gaussian,
or other characteristics are readily seen. Representing such
multimodality at the individual node level is one of the
strengths of the NBP algorithm, and is far easier than dealing
with this at a centralized level.

The graphical model formulation of the localization prob-
lem also provides a natural mechanism for including informa-
tion about which pairs of sensors are able to measure
distance. This information can improve the well-posedness
and reduce estimation error in the location estimates. For
example, the topmost sensor node in Figure 1 forms a loca-
tion estimate using distance measurements from two very
closely located sensors. Thus, the distribution for the location
estimate will have large values in an entire circle centered at
these two other sensors. However, if we also account for the
fact that the node on the other side of these two sensors can-
not hear (or can hear only with small probability) the topmost
sensor, this circular ambiguity is considerably reduced.
Dealing with the absence of a measurement as an indicator of
being more distant from each other can be difficult to accom-
modate in the traditional optimization framework (for exam-
ple, it is certainly not a simple quadratic cost). In our
graphical model formulation, however, this information can
be included by adding edges to the graph. Specifically, we
include 2-step (or more generally, n-step) edges, where a 2-
step edge is one between sensors that are both heard by a
common sensor but cannot hear each other; see [13] for
details. Including these additional edges can increase the
complexity of inference slightly, although experimentally it

appears that a few edges are often sufficient to resolve most of
the ambiguities that may arise.

The fact that the variables in our model are continuous—
leading to our use of the particle-based NBP algorithm—raises
questions unique to sensor networks, namely how best to make

use of scarce communication
resources. For example, how
many particles do we need to
send, and how can we encode
them efficiently? Moreover, how
do we adjust this as estimates
evolve dynamically (e.g., as ambi-
guities due to multimodality in
distributions resolve them-

selves)? These issues are considered later in this article.

MULTIOBJECT DATA ASSOCIATION 
IN SENSOR NETWORKS
A second application for sensor networks is that of multisensor,
multiobject tracking. This is a challenging problem even for
centralized algorithms, in large part because of the embedded
problem of data association, i.e., of determining which measure-
ments from different sensors correspond to the same object. For
sensor networks there are additional challenges, due to the need
for distributed implementation, but typical networks also have
structure; e.g., sensors have limited sensing range overlapping
the range of a limited number of other sensors. This suggests
new approaches for solving data association problems that are
computationally feasible and fully distributed.

Figure 2 depicts a notional example of the problem. Here, a
number of sensors cover a region of interest with overlapping
areas of regard. A number of targets are located within the
region, each sensed by one or more sensors. In this case the
mapping of the inference problem to a graphical model is not
unique, and different approaches present tradeoffs that lead to
a very different solutions than in the well-studied case of cen-
tralized multitarget tracking. In particular, as is well-docu-
mented [22], the preferred centralized way in which to
organize the various data association hypotheses is that based
on so-called track hypotheses, which leads to data structures—
and corresponding graphical models—in which, roughly
speaking, the nodes correspond to targets.

In a sensor network, however, it is advantageous to organ-
ize the representation around sensors rather than targets.
For centralized processing, such measurement-oriented
approaches have been discarded for the same basic reason
that purely sensor-based representations do not work here.
In particular, consider a simple situation in which we know
how many targets are present and we know which sensors
see which targets. If we wish to use a model in which the
nodes are in one-to-one correspondence with the sensors,
the variable to be estimated at each node is simply the asso-
ciation vector that describes which measurement from that
sensor goes with which target, which measurements are false
alarms, and which targets in its area of regard it fails to

WE USE TWO APPLICATIONS TO
SHOW HOW SENSOR NETWORK
FUSION PROBLEMS CAN BE CAST

AS PROBLEMS OF INFERENCE
IN GRAPHICAL MODELS.



detect. The problem with such a graphical model is that if
multiple targets are seen by the same set of sensors, the like-
lihoods of these sets of associations (across sensors and tar-
gets) are coupled, implying that in the representation in (1),
we must include cliques of size larger than two. In principle,
these cliques can be quite large, and it is precisely for this
reason that the association problem is NP-hard.

By taking advantage of the sparse structure of sensor net-
works; i.e., the fact that each sensor has only a limited field of
view and thus has only a modest number of other sensors with
which it interacts and small number of targets within its meas-
urement range—one can readily construct a hybrid representa-
tion comprised of two types of nodes. Sensor nodes capture the
assignment of groups of measurements to multitarget nodes in
addition to assignments that do not have any multisensor/
target contention. Multitarget nodes correspond to sets of tar-
gets seen by the same set of three or more sensors. In such a
model, the variable at each sensor node captures the assign-
ment of groups of measurements to each of these multitarget
nodes as well as any assignments that do not have such a level
of multisensor/target contention. Moreover, the resulting
graphical model yields a representation as in (2) with only pair-

wise potentials [5]. Furthermore, while we have described the
idea for the case in which we already know which targets are
seen by which sets of sensors, it is also possible to formulate
graphical models that deal with the problem of also determin-
ing which targets are seen by which subsets of sensors. We do
so by introducing virtual nodes representing regions of space
corresponding to overlaps in areas of regard of multiple sen-
sors, as shown in Figure 3. In addition, although we have dis-
cussed the data association problem at a single time point here
for simplicity, the tracking problem is dynamic, and our
framework can be generalized to incorporate data from multi-
ple time slices by using a multiple hypothesis tracking-like
approach [4].

For the data association problem, both the computation of
marginal probabilities and of the overall MAP estimate are of
interest. The MAP estimate is of importance because it cap-
tures consistency of association across multiple sensors and
targets (for example, capturing the fact that one measurement
cannot correspond to multiple targets). As a result, algorithms
such as sum-product and max-product are both of interest as
is the issue of communications-sensitive message passing, a
topic to which we turn in the next section.
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[FIG2] A snapshot of a typical data association scenario in a sensor network. Twenty five sensors (circle nodes) and the bearing-only
measurements (line segments) are shown. Each cluster of samples represents the prior position distribution of one target.
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SOLVING INFERENCE PROBLEMS IN 
COMMUNICATION-CONSTRAINED NETWORKS 
The sensor network applications in the previous section are two
of many that can be naturally cast as problems of inference in
graphical models—at least in part, as there are other issues,
including power conservation and careful use of scarce commu-
nication resources, that must be considered. Using the two pre-
vious applications as examples, we describe approaches to
dealing with such power and communication issues.

MESSAGE CENSORING
As described in the preceding section, multiobject data associa-
tion in sensor networks can be formulated as a problem either
of computing the marginal probabilities or the overall MAP esti-
mate for a graphical model whose variables are discrete and rep-
resent various assignments of measurements to objects or
spatial regions. In our work we have applied a variety of different
algorithms to solve this problem, including the sum-product
algorithm [21] for the computation of approximate marginals,
the max-product algorithm [31] for the computation of approxi-
mate MAP estimates, and the TRMP algorithm [31] for the com-
putation of the true MAP estimate. 

One issue with all of these algorithms is that messages are,
in principle, continually transmitted among all of the nodes in
the graphical model. In typical graphical model applications
some type of global stopping rule is applied to decide when the
inference iterations should be terminated. Also, it is often the
case that convergence behavior can depend strongly on the
message schedule—i.e., the order in which messages are creat-
ed, transmitted, and processed. For sensor network applica-
tions, convergence criteria or message schedules that require
centralized coordination are out of the question. Rather, what
is needed are local rules by which individual nodes can decide,
at each iteration, whether it has sufficient new information to
warrant the transmission of a new message, with the under-
standing that the receiving node will simply use the preceding
message if it does not get a new one and will use a default value
corresponding to a noninformative message if it has not
received any prior message. This formulation also allows for
transmission erasures.

A simple local rule for message censoring is the following.
first, we interpret each message as a probability distribution on
the state of the node to which the message is to be sent; easily
accomplished by normalizing the message. We then compute
the Kullback-Leibler divergence (KLD) between each message
and its successor

D
(

Mk
ts‖Mk−1

ts

)
=

∑
xs

Mk
ts(xs)log

Mk
ts(xs)

Mk−1
ts (xs)

(9)

as a measure of novel information and send Mk
ts only if

D(Mk
ts || Mk−1

ts ) exceeds a threshold ε. This procedure is com-
pletely local to each node and provides for network adaptivity, as
these rules lead to data-dependent message scheduling; indeed,
it is quite common for a node to become silent for one or more

iterations and then to restart sending messages as sufficiently
new information reaches it from elsewhere in the network.

When applying the above method to algorithms such as
sum-product, we observe that major savings in communica-
tion (hence power) can be achieved without significant per-
formance loss as compared to standard message passing
algorithms. An example is shown in Figure 4, where the data
are obtained by simulating tracking of 50 targets in a 25-sen-
sor network and censored versions of max-product are readily
compared to max-product and TRMP. In the figure, the cen-
soring threshold is varied. It can be seen that with certain
thresholds the performance deviations from the max-product

[FIG3] (a) A piece of a partially organized sensor network, where
the sensor-target coverage relationship is ambiguous. Two
sensors with their surveillance regions (s1 and s2) and non-
parametric representations of two target distributions (T2 and
T2) are shown. The surveillance area is divided into three non-
overlapping subregions (r1, r2, r3), each of which is covered by a
distinct subset of sensors. (b) The graphical model for the
scenario in (a); circles, squares, and triangles correspond to
sensors, subregions, and targets, respectively.
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[FIG4] Performance-communication tradeoff with varying
thresholds for message censoring. Inference performance is
evaluated by the association error rate, which is defined as the
ratio of the number of measurements that are assigned to
wrong targets to the total number of measurements. The
amount of communication is defined as the number of messages
sent by each node on average. Max–product (cyan) and TRMP
(red) are plotted for comparison.
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and the TRMP algorithms are very small, even though the
amount of communication is dramatically reduced. This
shows that censored message passing can provide significant
communication savings together
with near-optimal performance.
In addition, we have found exam-
ples in which this algorithm
yields better performance than
one without message censoring.
We conjecture this is related to
the so-called “rumor propaga-
tion’’ behavior of algorithms
such as sum-product in which
the repeated propagation of messages around loops leads to
incorrect corroboration of hypotheses; by censoring mes-
sages, this corroboration is attenuated. The communication-
fusion performance tradeoff is examined more thoroughly in
the next section.

TRADING OFF ACCURACY FOR BITS IN 
PARTICLE-BASED MESSAGING
The NBP approach to inference in graphical models involves
particle-based representations of messages sent from node to
node. In the context of sensor networks this raises two ques-
tions: i) how does one efficiently transmit such messages, and ii)
how many particles does one need; i.e., how accurate a represen-
tation of the true, continuous message is required and what
transmitted particles provide that level of accuracy?

These questions can be posed as follows. We are trying to
transmit a probability distribution q(x) from one node to
another, where the representation is specified by a set of parti-
cles {xi} that can be viewed as a set of independent, identically
distributed samples from that distribution. While this seems
like a standard problem in transmission of information (see,
for example, [10]), an important distinction here is neither the
order in which samples are transmitted nor the accuracy of the
transmission of those individual particles is important, as we
are ultimately interested in the accuracy with which the
receiver can reconstruct q(x). The flexibility in ordering sam-
ples immediately suggests protocols for transmission that can
reduce the required numbers of bits. For example, for scalar

particles, one can order the particles from smallest to largest
and encode only the differences xi+1 − xi . A significant sav-
ings in bits can thus be achieved [15].

Alternatively, either for scalar
or vector variables, we can
employ the KD tree structure
used in NBP to provide a mul-
tiresolution protocol, conceptu-
ally illustrated in Figure 5. The
idea of the KD tree is to group
particles in a binary tree struc-
ture, starting from a root node in
which all of the particles are

grouped together and refining the clustering of points at each
level of the tree by splitting each set into two subsets. By creat-
ing simple density approximations at each node of the KD tree,
such as a Gaussian with mean and variances obtained from the
samples associated with that node, we create a multiresolution
representation of the distribution. This representation provides
a direct means of trading off message accuracy with total bits
transmitted. In particular, any cut through this tree corresponds
to an approximation of the full, finest scale distribution, q(x).
The tree structure allows us to easily to estimate the K-L diver-
gence between q(x) and any such approximation. Furthermore,
the transmit protocol can take advantage of the structure
between the means of the children and their parent in the tree
and the fact that the covariances of the children are typically
smaller than that of the parent, to efficiently encode these
means and covariances. Using a simple predictive encoder which
captures this information, we can readily compute the bit cost of
transmitting any particular approximation. 

This structure allows one to adapt message transmission in a
variety of ways. For example, specifying a desired message accu-
racy leads directly to a specific cut through the tree and corre-
sponding message approximation, which then in turn leads to a
specific protocol for efficient transmission of that approxima-
tion. Alternatively one can specify an upper bound on bits to be
communicated and then determine the most accurate approxi-
mation whose transmission satisfies that bound.

Figure 6 illustrates the type of result that such an
approach yields for the sensor localization problem, in this

case for a network consisting of 25
sensors. Figure 6(a) depicts the
tradeoff between message approxi-
mation error (as measured by the
KLD) and localization error (where,
of course, there is a nonzero irre-
ducible error even if messages are
sent exactly). A curve such as this
allows the system designer to deter-
mine the threshold on message
approximation error to be used to
achieve an acceptable level of local-
ization performance. This threshold,
then, in turn is used as the basis for
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[FIG5] Approximating a message (or density estimate) q(x) using a hierarchical, KD-tree
structure. The same hierarchical structure can also be used to encode the approximation,
providing a quantified tradeoff between message bits and approximation error.

x xx x x x xx

x xx x x x xx

x xx x xx x x

x xx x xx x x

x xx x xx x x

CAN WE DEVELOP ALGORITHMS THAT
USE MORE MEMORY AND PERFORM
MORE LOCAL COMPUTATION AND

THAT AS A RESULT REDUCE THE
NUMBER OF MESSAGES THAT

NEED TO BE SENT? 



IEEE SIGNAL PROCESSING MAGAZINE [51] JULY 2006

the adaptive message transmission procedure just described.
Figure 6(b) illustrates how the entropy in successive messages
behaves as localization iterations proceed. Initially, distribu-
tions and messages may be multimodal; however, as sum-
product iterations proceed and individual sensor locations
come into focus, this multimodality disappears. As a result, an
adaptive algorithm as we have described may start with the
need to transmit multiple particles but over time will use
coarser, single-mode distributions, thereby saving bits.
Combining this with message censoring, as described previ-
ously, provides a communication resource-sensitive solution
to the sensor localization problem that trades off total
resources used for message errors incurred. 

THE EFFECTS OF MESSAGE APPROXIMATION
The methods described in the preceding section deal explicitly
with the issue of conserving communication resources by incur-
ring message approximations and errors due to censoring or to
particle-based approximation. Of course, what one really would
like is to relate the expenditure of communication resources to
the accuracy of the fused estimates produced as a result of hav-
ing used approximate messages. The missing piece required to
yield this tradeoff is to relate message error size to the ultimate
errors in the resulting fused outputs. Ihler et al. [14] examine
this relationship in detail. Additionally, Xiao et al. [37] analyze
the effect of quantized sensor measurements (messages in their
context) on estimation performance.

The analysis in [14] involves the use of two alternate metrics to
quantify the difference between an exact and an approximate mes-
sage. One of these is the KLD; the other is a measure of the dynam-

ic range in this difference. In particular, the dynamic range is

d
(

Mts, M̂ts

)
= sup

x,x′

(
Mts(x)

M̂ts(x)

M̂ts(x′)
Mts(x′)

)1/2

, (10)

which can be shown to be equivalent [14], in the log-domain, to

log d
(

Mts, M̂ts

)
= inf

α
sup

x
| log α + log Mts(x) − log M̂ts(x)|.

(11)

The measure d(·) has several very important properties. First, as
with KLD, it is insensitive to the (irrelevant) scaling of entire mes-
sages. Second, the sup-norm on measurement error in the log-
messages is bounded below by log d(·) and above by 2log d(·),
enabling one to compute simple bounds on the effects of message
approximation. Most importantly, d(·) satisfies conditions that
bound how this error propagates through the two steps in mes-
sage generation contained in (5). Specifically, log d(·) satisfies a
subadditivity condition with respect to the “product’’ operation in
the sum-product algorithm. Furthermore, one can compute a
bound on the mixing that results from the “sum’’ part of message
generation. If there is sufficient mixing associated with this tran-
sition, the error is attenuated—the sum operation acts as a con-
traction. It is straightforward to specify a bound on how the log of
dynamic range contracts. A particular measure of the strength of
a potential ψts that turns out to be analytically convenient (i.e.,
one can derive bounds) is

S(ψts) = sup
a,b,c,d

sup
ψs,ψt

ψts(a, b)
ψt(a)ψs(b)

ψt(c)ψs(d)

ψts(c, d)
(12)

[FIG6] Illustrating the basic ideas behind the adaptive message approximation and transmission procedure for network sensor
localization. (a) depicts localization error as a function of message approximation error (in terms of the KLD). Such a curve allows the
designer to set an approximation threshold as a function of the target localization accuracy desired; (b) illustrates the behavior of
message entropy as the sum-product localization iterations proceeds. As sensors become better localized, the message entropy
decreases. Using whatever approximation threshold that has been specified, our method automatically adapts to this by sending
multiple Gaussian components early on (to capture multimodality and higher entropy) but then sending simple and eventually single
Gaussian components as location ambiguities are resolved over time. 
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and if one denotes the product of incoming messages and local
potential as M, one may show that 

d
(∑

ψtsM,
∑

ψtsM̂
)

≤ S(ψts)d(M, M̂) + 1

S(ψts) + d(M, M̂)
. (13)

These two conditions provide
the basis for bounding how errors
propagate through multiple itera-
tions of the sum-product algo-
rithm. This propagation is most
easily visualized through a com-
putation tree, found by “unwrap-
ping’’ a loopy graph into a tree as shown in Figure 7. Combining
the subadditivity and contraction bounds, it is then possible to
compute a bound on the log of the dynamic range after any
number of iterations of sum-product. Interestingly this proce-
dure also provides important new results for sum-product with-
out message approximations, namely the best conditions known

to date for algorithm convergence and bounds on the distance
between fixed points of the algorithm [14].

Since the analysis yields bounds, there are cases in which
the results it provides can be conservative. As an alternative,
we have also developed an approximation (not a bound) built

on the same principle used in
roundoff noise analysis of digital
filters, namely that at each point
at which messages are approxi-
mated, the log dynamic range
error can be modeled as a white
noise perturbation. This then
leads to easily computed approx-

imations to the variance in this measure.
Figure 8 shows two illustrations of these analyses for a case

in which errors are introduced by message quantization, one for
relatively weak edge potentials (ones for which convergence of
sum-product is guaranteed) and one for stronger edge potentials
(typical of cases in which one would expect our strict bounds to
be conservative). These curves depict resulting error measures
as functions of the quantization error introduced at each stage.
Note that even in the difficult case of strong potentials the
approximation provides an accurate (if somewhat conservative)
estimate of resulting error. Furthermore, taken together with
the relationship between communication costs and message
approximation error, we now have the elements needed for a
complete “audit trail’’ from bits used to message errors incurred
and finally to resulting errors in the desired fused outputs.

OPEN QUESTIONS AND FUTURE DIRECTIONS
We have described a line of research that provides a bridge from
the rich field of graphical models to the emerging field of data
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[FIG8] Maximum errors incurred as a function of the quantization error δ in a quantized implementation of sum–product. The
scatterplot indicates the maximum error measured in the graph for each of 200 Monte Carlo runs, as compared to our upper bound
(solid) and approximation (dashed). (a) log S(ψ) = .25 and (b) log S(ψ) = 1.
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fusion for sensor networks. We have i) demonstrated how two
prototypical sensor network problems can be mapped to prob-
lems of inference on graphical models, ii) discussed issues that
arise when one attempts to solve
these inference problems, iii)
developed a particle-based
method for message passing as
well as communications-sensitive
messaging strategies; and iv) pre-
sented an approach to analyzing
the impact of messaging errors
(due to approximation, communication limitations, or simple
message dropouts) on the resulting fusion results. While these
results and lines of inquiry provide substantive results of impor-
tance for sensor network applications, they are far from the
complete story in moving from the confines of graphical model
inference to the domain of sensor networks. Indeed there are a
number of questions, each of which is the subject of current
research and raises new issues not seen in the graphical models
literature but that have strong conceptual ties to that literature
and that offer considerable promise for the future.

One such issue deals with how one maps inference
responsibility to sensor nodes. As we have already seen in the
data-association example, there is considerable flexibility in
how one maps a sensor network fusion problem to a graphi-
cal model. The ones that we have chosen here have some
nodes that are explicitly identified with individual sensor
nodes and other hidden or “virtual’’ nodes correspond to
groups of objects or regions in space. Where do the infer-
ence computations associated with these parts of the model
reside? Moreover, in a dynamic problem, as objects move, one
would expect that these hidden variables might “migrate,’’
which raises a new resource allocation problem, namely that
sensor handoff, i.e., of deciding when and to whom the
responsibility for such nodes should be handed off. Such a
handoff involves communication—e.g., of particle-based rep-
resentations of the object location and velocity—and the
analysis in this article provides tools to quantify the commu-
nication cost/accuracy tradeoff of different handoff strategies.
Having such costs allows one to develop dynamic strategies
not only for querying sensors (since taking measurements
and transmitting messages use power) but also for handing
off fusion responsibility [36]. 

In addition, there is considerable motivation to consider
alternative fusion algorithms to the ones based on sum-prod-
uct or max-product. For example, one can imagine operational
structures in which “seed’’ nodes initiate messaging, propagat-
ing information radially outward, fusing information around
these radially expanding regions as they meet, and then propa-
gating information back inward toward the seed nodes. Such
an algorithmic structure allows great flexibility (e.g., one can
imagine allowing any sensor to act as a seed if it measures
something of interest) and also leads to new algorithms with
great promise for inference on graphical models more general-
ly. We refer to reader to [17] for a first treatment of this

approach. Also, the computation tree interpretation of the
sum-product algorithm allows one to clearly see the computa-
tions that sum-product fails to make that a truly optimal algo-

rithm would—computations that
in essence take into account the
dependencies between messages
that sum-product neglects [16].
This suggests another line of
research that focuses on one of
the significant differences
between standard graphical

model inference problems and sensor networks. In particular,
when viewed as a sensor network fusion algorithm sum-prod-
uct has the property that it makes very little use of local node
memory and computational power (all that is remembered
from step to step are the most recent messages, and all that
are computed are essentially the sum-product computations).
Can we develop algorithms that use more memory and per-
form more local computation and that as a result reduce the
number of messages that need to be sent? Several ideas along
these lines are currently under investigation. Also, a standard
feature in wireless networks is the inclusion of header bits that
provide information on the path a message has taken from ini-
tiator to receiver. Can we take advantage of such header bits to
capture dependencies between messages so that they can then
be used to fuse messages in a manner that is not as naïve as
assuming conditional independence? Of course using such
header bits for what we term informational pedigree means
that there are fewer bits available for the actual message, so
that the message quantization error will be larger. How does
the error incurred by such an increased quantization error
compare to the additional fusion accuracy provided by provid-
ing these pedigree bits? Current research building on what we
have presented here, is addressing this question.

Finally, there is the introduction of ideas from team theory
and decentralized decision making. In particular, while we have
described message approximation and censoring methods, they
are all based solely on the perspective of the sending node with-
out explicit regard for the objectives (e.g., in terms of desired
fusion results) of the receiver. Taking such objectives into
account makes the problem of network fusion system design
one of team decision making, a notoriously difficult problem if
one seeks truly optimal solutions. In [3], the authors describe a
set of results that deal with a widely studied problem of distrib-
uted detection in which the sensors in a network must provide
limited numbers of bits, through a possibly uncertain channel
to a “fusion center” which is then responsible for making an
overall decision. As discussed in [3], the fact that these sensors
act as a “team” has a significant effect on the signal processing
strategy employed by each individual sensor.

In [19] we consider a problem in which both the sensing
and the decision making are distributed throughout the net-
work—i.e., each node acts as a provider of information to
other nodes, a receiver of information from others, and poten-
tially also a decision maker for part of the overall inference

IN A SENSOR NETWORK, IT IS
ADVANTAGEOUS TO ORGANIZE THE

REPRESENTATION AROUND
SENSORS RATHER THAN TARGETS. 



problem. We examine all of this in the context of a loop-free
directed network and in the process expose several key ques-
tions that we believe will fuel considerable research. The first
is that in the presence of communication limitations, and even
if the fusion responsibilities of
each node have been specified
(e.g., we have specified to whom
responsibility for inference on
hidden variables will fall), the
nodes must organize to specify
what we term a fusion protocol,
namely not only the rules by
which a sending node decides when and what bits to transmit,
based on the impact of those bits on the fusion decisions made
by other nodes subsequently affected by those transmitted bits,
but also the specification of enough information at the receiv-
ing node to know how to interpret the received information.
Roughly speaking, the specification of such a protocol corre-
sponds to the design of the free parts of a composite graphical
model, involving i) the variables the network senses and about
which we wish to make inferences; ii) the variables that are
transmitted from node to node; and iii) the decisions made by
each node and their relationship to the external phenomenon,
i.e., the overall objective function represented in distributed
fashion. It is only the second of these that is generally at our
control (assuming that the fusion responsibilities in iii) have
been determined). Problems of this type can capture very sub-
tle effects, ones that can be important but that also make clear
the intractability of full optimization and the need for new
methods of approximate solution, much as algorithms such as
sum-product represent principled suboptimal algorithms that
are in fact optimal for particularly nice (namely loop-free)
graphs. For example, suppose that each node in a network has
the possibility either not to communicate with its neighbor or
to send 1 b, at a cost of some power. Once a network organiz-
es—i.e., once the neighbor knows something about the rule
that the transmitting node will be using, then no news is
indeed news, i.e., not receiving a bit from its neighbor tells a
node something! This idea has already shown benefit in the
sensor localization problem.

These questions and issues form just the tip of the iceberg
and make it clear that sensor network problems are truly ones of
information science in the large: they are not problems that are
nicely separated into signal processing, communications, and
optimization problems; they are all of those at the same time.
We are all in for a long, enjoyable, and educational ride.
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