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Optimal  Filtering and Filter Stability of 
Linear Stochastic Delay Systems 

RAYMOND HON-SING KWONG, MEMBER,  IEEE, AND ALAN S .  WILLSKY, MEMBER,  IEEE 

Abstmct-optimal filtering equations are obtained for very general the stiucture of the optimal filter for Gaussian noises, and 

the case where there are no delays in the using the duality the optimal filter. As a by-product of this study, the between linear fiiering and control, asymptotic s t a b i i  of the optimal 
filter is pmvd rindy, the ee of the filter and the kte-- precise relationships between optimal linear control with 
istic optimal  quadratic control system is shown to be asymptoticauy stable quadratic cost and optimal linear filtering are established. 
as well. By putting together the deterministic optimal control law 

and the optimal filter, the asymptotic stability of the 
I. INTRODUCTION stochastic control system  is also established. The main 

StoehastiC delay SYHem. stabfiw Of the OP- filter is Studied in under suitable conditions, obtain asymptotic stability of 

I N recent years, considerable attention has been paid to 
the optimal control of linear delay systems  with 

quadratic cost. Optimal control over a finite as well as 
infinite time interval has been studied, and most of the 

emphasis of the paper will  be on the interpretation of the 
results in comparison to the finite dimensional case.  De- 
tails of the proofs of the results are  too lengthy to be 
incorporated here and will  be published ekewhere [23]. 

analogs of the finite dimensional results have been estab- 
lished [1]-[6]. Linear delay systems constitute then an 
important class of systems  where a virtually complete 
extension of the theory of finite dimensional linear 
quadratic control is available. It is natural, therefore, to 
consider the extension of the linear stochastic filtering and 
control theory for finite dimensional systems to delay 
system as well. Linear filtering for delay systems  was  first 
considered by Kwakernaak [7], who  gave a formal deriva- 
tion of the filter equations using the approach of Kalman 
and Bucy  [8]. The linear filtering and stochastic control 
problem was then studied by Lindquist, who proved a 
duality theorem between estimation and control and a 
separation theorem of stochastic control [9]-[11]. How- 
ever,  he did not characterize the covariance of the optimal 
filter and his results did not clarify  the structure of the 
optimal filter. In particular, it is not quite appropriate for 
the stability analysis of the optimal filter. Mitter and 
Vinter  [12] studied the filtering problem from the 
viewpoint of stochastic evolution equations and discussed 
the filter stability problem. But they had to restrict their 
considerations to time-invariant systems and exclude 
point delays in the observations. In this paper, both the 
linear optimal filtering as well as stochastic control prob- 
lems will be .discussed. We  will completely characterize 

Paper  recommended  by Y. Bar-Shalom, Chairman of the  IEEE S-CS 
Manuscript  received March 30, 1976; revised November 7,  1976. 

Stochastic  Control  Committee. This work was performed  at  the M.I.T. 
Electronic  Systems  Laboratory  under NSF Grant GK41647  and NASA 
Ames  Grant  NGL-22-009-124,  and  at  McGill  University  under  National 
Research  Council of Canada  Grants  A9067  and  A3921,  and at the 
Centre  de  Recherches  Mathematiques,  Universite  de  Montreal  under 
Subvention  FCAC  du  Ministere  de  l'Education  du  Quebec. 
R. H. Kwong is with the  Department of Electrical  Engineering, 

versite  de  Montreal,  Montreal,  P.  Q., Canada. 
McGill  University  and  the  Centre  de  Recherches  Mathematiques,  Uni- 

A. S. Willsky is with the  Electromc  Systems  Laboratory  and  the 
Department of Electrical  Engineering  and  Computer  Science, 
Massachusetts  Institute of Technology, Cambridge, MA  02139. 

11. LINEAR STOCHASTIC DELAY SYSTEMS 

We shall study linear stochastic delay  systems  of the 
form 

d x ( t ) = J  d,A(r,e)x(t+e)dt+F(t)dw(t) (2.1) 

.(e)=x,(e), - 7 a G o  

d z ( t ) = J  d ,c ( t , e ) x ( t+e)d t+N( t )d t . ( t )  (2.2) 

z( t )=O,  t < O .  

0 

-I- 

0 

- r  

The system  process x ( r )  takes  values in R", the observa- 
tion process z ( t )  in R P .  The processes w ( t )  and v( t )  are 
standard Wiener  processes  in R" and R P ,  respectively, 
completely independent of each other. The initial function 
x. is taken to be some Gaussian process on [ - 7,0], 
completely independent of w ( t )  and v( t ) ,  with mean X,(8)  
and  cov[x0(e); x,(,$)]=E,(€J,.$). The maps A( t ,O)  and 
C ( t , e )  satisfy the same conditions as those stated in [ 141 
for deterministic linear delay systems. The maps F ( t )  and 
N ( t )  are n X m and p x p  matrix-valued continuous func- 
tions, respectively. Furthermore, N ( t )  is assumed to be 
nonsingular. We  shall often write F( t )F ' ( t )=  Q ( t )  and 
N ( t ) N ' ( t ) =  R(r). 

As in deterministic delay systems,  the state of the sys- 
tem  (2.1) is not the process x ( t )  but rather a piece of the 
trajectory x, [14]. The x, process  is derived from the x ( t )  
process and is defined on [ - 7,0] by 

x , ( e ) = x ( t + e ) ,  ~ E [ - ~ , O ] .  

As such, x, is a process taking values in a function space. 
Throughout this and the next section, we  will choose the 
function space to be C, the space of continuous functions 
on [ - 7,0]. Accordingly, we will also assume the initial 
function x. to take values  in C .  
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111. THE LINEAR FILTERING PROBLEM 

The filtering problem consists of characterizing the con- 
ditional mean of x( r )  given the observations up to time t. 
We shall  use the notation x^(t + @It), - 7 < 0 < 0, to mean 
E ( x ( t + 8 ) l z t } ,  where 2‘ is the a-algebra generated by 
z(s), 0 Q s < t. The optimal filter equations for the system 
(2.1), (2.2) have been derived rigorously  via probabilistic 
arguments in I131 and  are stated below. 

Theorem 3.1. The optimal filter for the systems  (2.1), 
(2.2) defined on the interval [0, T ]  is characterized as 
follows. 

1) The conditional mean i(  f t )  is generated by 
0 

d i ( t l t ) = J  d , A ( t , e ) i ( r + e I t ) d t  
- 7  

0 

+ L 7  
P(t,o,e)d,c ’ ( t ,e)R- ‘ ( r )dv(t)  (3.1) 

where v ( t )  is the innovations given  by 

v ( t ) = z ( t ) - J r /  d,c(s,e);(s+els)ds. 
0 

0 - 7  

2) The smoothed estimate 2(r + ell) is generated by 

q t + q t ) = q t + q t + e )  

+ J I : B ~ - o ~ ( s , t + s - s , 5 ) d * c / ( S , E )  

-R- ’ ( s )dv ( s ) ,  -7<8<0.  (3.2) 

3) The function P ( t ,  0, c )  has the interpretation of a 
conditional covariance, i.e., for - 7 < 8, 5 < 0, 

P ( t , e , ~ ) = E ( [ x ( t + e ) - ~ ( t + e ) t ) ]  

[ x ( r  +[) - x^ ( t  + ‘ g t ) ] ’ I Z ‘ } .  

It is a deterministic quantity and is characterized by the 
following coupled set of equations: 

- P ( ~ , o , o ) = J  dr d P(t,O,e)d,A’(t ,e)  
0 

--7 

0 
+J-7$A(t ,B)P(r ,B,0)  

- ~ - o - 7 / - o ~ ( t , o , e ) d e c ‘ o R  - l ( t ) d S  

- c ( f , O P ( t 9 5 , 0 ) + Q ( t )  (3-3) 
0 

v2PT(r,e,0)=/ P ( t , e , t y t A w )  
- 7  

where 77 is the unit vector in the (1, - 1,O) direction, u the 
unit vector in the (1, - 1, - 1) direction, and P, ( t , e ,O)  and 
Po(t,8,()  are the directional derivatives of P ( r , @ , O )  and 
P (r,t9,[) in the directions 77 and u, respectively. The initial 
conditions are given by 

i ( e Io )=x , ( e ) ,  e € [  -7,0] 

P ( o , B , ~ =  zo(e,[), - 7 ~ e , [ < o .  
Remark 3.1: Similar equations for the optimal filter for 

systems  with point delays only have been formally derived 
by Kwakernaak 171, but his proofs were not satisfactory. 
For example he used partial derivatives formally for the 
smoothed estimates and did not demonstrate that it is 
sufficient to specify the function P(t,O,[) in the interval 
0 < t < T ,  - 7 < 8, 5 < 0. This is related to the structure of 
delay systems, as the next remark will explain. 

Remark 3.2: Equation (3.1) shows that the evolution of 
the conditional mean depends on the smoothed estimate 
x^(t + 8 It). If we interpret this formally as the process 
E [x,It], we see that we need the “conditional mean” of the 
true state x, to determine ;(tit). Similarly, we can think of 
P(r,O,[) as the “covariance” of the true state x, (formally, 
this corresponds to saying 

E {  [ ~ , - ~ ~ ~ , l ~ ~ l ~ ~ ~ C ~ , - ~ ~ x , l ~ ~ l ‘ ~ ~ ~ l , ~ } = ~ ~ ~ ~ ~ ~ U . ~  

Hence, while we would  be primarily interested in the 
process i ( t l t ) ,  we need also the smoothed estimate x^(slt) 
over the interval f - 7 < s < t. Similarly, while the estima- 
tion error covariance is provided by the function P ( t ,  O,O), 
we must characterize the entire function P(t,O,[). This 
constitutes the complete information about  the optimal 
filter. 

Remark 3.3: For general linear stochastic delay sys- 
tems of the form (2.1) and (2.2), the function P(t,B,[) will 
not be continuously differentiable in ( f ,O ,E) .  A similar 
situation has been discussed  in the optimal control of 
delay systems  with quadratic cost [6] .  This is  why direc- 
tional derivatives have to be  used. Of course, if P( t ,O , [ )  
were continuously differentiable, 

We have given the optimal filter equations for very 
general linear stochastic delay systems. For our stability 
analysis, however, we shall restrict our attention to a class 
of linear delay systems,  those  with delays in  the dynamics 
only. 

Iv. FILTER STABILITY FOR SYSTEMS  WITH DELAYS 
IN THE DYNAMICS 

In this section, we will discuss the .stability of the 
optimal filter for the delay system 

d x ( t ) = A x ( t ) d r + B x ( r - 7 ) d 7 + F d w ( t )  (4.1) 
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~ ( 8 ) = 0 ,  - 7 Q 8 < 0 
d z ( f ) =  Cx( t )d t+Ndu( t ) .  (4.4 

There are several reasons for restricting our  attention  to 
this, the simplest of linear stochastic delay systems. First, 
since we are interested in asymptotic stability, the assump- 
tion of zero initial condition entails no essential  loss of 
generality since initial effects will “die” away. Second, the 
techniques used in establishing asymptotic stability can be 
readily generalized to situations with multiple and  or 
distributed delays in the dynamics. Third, while delays in 
the observations can also be treated, such delays will 
introduce additional complications which  will lengthen 
the present paper considerably. Fourth, for purposes of 
compaiison with the finite dimensional case, the results 
for this  simple  system  show  most transparently where the 
similarities and differences occur. Finally, for this  case, 
the matrix P(t,O,t) can be shown  [13] to be continuously 
differentiable in (t,O,t). Hence, directional derivatives can 
be replaced by partial derivatives and technical complica- 
tions can be kept to a minimum. On the other hand, most 
of the basic ideas and techniques wi4 already be  used in 
the discussion of this  simple  system. It is therefore deemed 
best at this stage to restrict our attention  to  the simplest 
case, and relegate the various generalizations and refine- 
ments, particularly the delays in the observations problem, 
to a future paper (see also [16]). 

Applying  (3.1) and (3.2) to the system (4.1),  (4.2), yields 

d u ^ ( t l t ) = [ A x ^ ( t l t ) + B ~ ( t - 7 1 t ) ] d t  

i ( t - + ) = i ( ? - 7 1 t - T )  

+ P , ( t ) C ’ R - ’ [ d t ( t ) - C ~ ( t l t ) d t ]  

, + j j ~ ~ , ( s , r - . r - s ) C ’ R - ’ [ d z ( s ) - C ~ ( s l s ) d s ] .  

Here we have, for convenience in later comparison with 
optimal control results, defined Po(?)= P(t,O,O), P,(t ,O)= 
P ( t ,  8,O) and Pz( t ,  8, t) = P ( t ,  8,t). Combining these  two 
equations we conclude that the optimal estimate x^(tlt) is 
generated by a stochastic delay differential equation 
driven by the observations 

Furthermore, from (3.3)-(3.5),  we obtain the following 
equations for the matrices Po(t), P,(t,B), and P2(t,B,t):  

;i;Po(t)=APo(t)+P(I)A’-Po(t)C’R-’CPo(r) d 

+ Q + BP, ( E ,  - 7) + P; ( t ,  - +3’ (4.4) 

= - P, ( t ,  e ) m  - ‘CP; (t,t) (4.6) 

with 

~ ~ ( o ) = ~ , ( o , e ) = ~ , ( o , e , ~ ) = o  

P , ( o , o ) = P , ( t , q  

~ ~ ( t ) = ~ ; ( t ) ,  P z ( t , 8 , [ ) = P ; ( t , t , B ) ,  - T < e , t < o .  

P,(t,O)=P,,(t) (4-7) 

In establishing stability of the optimal filter, we shall 
make essential use of the duality between optimal filtering 
of linear stochastic delay systems and optimal control of 
linear delay systems  with quadratic cost. We begin  there- 
fore by summarizing the optimal control results [1]-f6]. 
Consider the system 

X ( t ) = A x ( t ) + B x ( t - 7 ) + C u ( t )  

x ( e  = xo(e 1. (4-8) 

Since the following results hold for x. in C or in the 
product space R” X L, [4],  we shall not worry about the 
specific choice of function space. The cost functional is 
given  by 

~ ~ ( ~ , x o ) = ~ T [ x ~ ( ~ ) ~ ~ ( r ) + U ~ ( r ) ~ ~ ( t ) l ~ r  

where 1M and S are symmetric matrices of appropriate 
dimensions, M > 0, S > 0. When T <  co, the optimal con- 
trol is  given  by 

u * ( t ) =  - s - ‘C’K, (r )x( t )  

- S - 1 c ‘ ~ O K , ( t , e ) x ( r + e ) d e .  (4.9) 
- 7  

The feedback gains  satisfy the following coupled set of 
partial differential equations: 
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K l ( r ,  -7 )=K0( t )B  Remark 4.1: Proposition 4.1 was proved earlier in [5] 
and [6] under the assumption that M >O. This was relaxed 
m [ 131 to requiring ( A , B , H )  to be observable [13]. Subse- 

K, ( t ,  - 7,e) = B ’ K ,  (t ,e (4.13) . 

~ , ( t ) = q t ) ,  K , ( t , o , t ) = q t , t , q .  quently, the work of Zabczyk [ 151 became known to the 

To discuss the infinite time control problem, we need 
the concepts of stabilizability and detectability. As  in the 
finite dimensional case, stabilizability corresponds to the 
existence of a linear feedback operator on the complete 
state xt which stabilizes the system, and detectability 
corresponds to stabilizability of the adjoint system. For 
our purposes, we do  not need the most general setup for 
these notions. The following definitions will  suffice. 

Definition 4.1: The linear delay system 

i ( t ) = A x ( t ) + B ~ ( t - ~ ) +  Cu(t) 

is said to be stabilizable if there exist a constant matrix KO 
and a continuous matrix-valued function K , ( @ ) ,  - r < 8 Q 
0, such that the system 
a ( t ) = A x ( t ) + B x ( t - T ) + C K + ( t )  

+ c~_-’: ( s ) x ( t + e ) d o  

is asymptotically stable. We then also  say that ( A ,  B, C )  is 
stabilizable. 

Definition 4.2: The delay system 

i ( t > = A x ( t ) + B x ( t - 7 )  

z ( t ) = H x ( t )  

is said to  be detectable if there exist a constant matrix Lo 
and a continuous matrix-valued function &(e), - T < 8 Q 
0, such that 
i ( t ) = A x ( t ) + B x ( t - 7 ) + L o z ( t )  

+ J - 0 y ? ) z ( t + 8 ) d 0  

is asymptotically stable. We then also say that ( A ,  B ,  H )  is 
detectable. 

The properties of stabilizability and detectability for 
delay systems are discussed further in [6] and [13], to 
which the reader is referred. 

We can now state the result concerning the infinite time 
quadratic control problem obtained essentially  in [5] ,  [ti], 
and [15]. Let M =  H ’ H .  

Proposifion 4.1: Assume that ( A ,  B ,  C )  is stabilizable 
and ( A , B , H )  is detectable. Then the gains Ko(t), K , ( t , 8 )  
and K,(t,8,[), for each fixed t <  T, converge to KO, K,(O),  
and K2(8, 8, respectively, as T+co. The optimal control 
law for the infinite time problem is  given  by 

u*( t )  = - S - ‘C’K O X ( * )  

- L o T  
~ - ~ c ’ ~ , ( e ) x ( t + ~ ) d e .  (4.14) 

Furthermore, the optimal closed-loop  system is asymptoti- 
cally stable. The matrices KO, K , (8 ) ,  and &(e,() satisfy 
the obvious equations. 

author. The fact that the weak& condition of detectability 
is  sufficient can be deduced from the results of [15]. 

Remark 4.2: If  we substitute the control law (4.9) into 
(4.Q we  see that the resulting delay system  is  very similar 
to the optimal filter (4.3) with the observations set to zero. 
Furthermore,  the covariance equations (4.4H4.7) are also 
very similar to the control gain equations (4.10H4.13). 
This strongly suggests that duality relations between opti- 
mal quadratic control and optimal linear filtering exist, 
and that proving results for one case allows us to prove 
results for the other case also.  We shall see that this is 
indeed true. 

Proposition 4.2 ([9], [ 131): Consider the optimal filter- 
ing problem over the interval [0, TI for the system defined 
by (4.1),  (4.2). Define the dual control system by 

i ( t ) = - A ’ y ( t ) - B B y ( t + 7 ) - C ’ u ( t )  (4.15) 

with 
y ( T ) = b ,  y(s)=O, s>T.  (4.16) 

The  dual control problem is defined to  be  to minimize 

where Q = FF‘ > 0 and R = NN’  > 0. As before, let the 
optimal linear least squares estimate for x ( T )  be ;(TIT), 
and let the optimal control for the dual problem be uT’ 
Then b’;( TI T )  is related to uT by 

b ’ i  (TI T )  = - I u&(s)dz(s). 
T 

0 
(4.18) 

Remark 4.3: Proposition 4.2 as stated was first proved 
in [9]. One of us gave a somewhat different proof in [ 131 
using a certain bilinear form in the theory of delay dif- 
ferential systems, This second proof appears to be simpler 
and perhaps of independent interest. 

We  now have  two representations of &;(TIT), one 
directly from (4.3H4.7), the other indirectly from (4.17). 
Our strategy is to compare the two representations and 
identity the control and filter gains appropriately. This 
will enable us to exploit the known results of the optimal 
control problem to conclude filter stability. The reason for 
adopting this somewhat indirect method of proof  is that it 
is  usually  much easier to prove results for optimal control 
owing to its variational interpretation. In this  case, -this 
basically enables us to avoid analysing the coupled equa- 
tions (4.4H4.7) directly. - - 

ToJhis  end, we introduce the matrices Ko(t), K , ( t , 8 ) ,  
and K,(t, e,(). These are the optimal gains corresponding 
to the dual control problems (4.15H4.17). They satisfy 
equations very  similar to those of (4.10H4.13), with suit- 
able changes in the variables and with A ,  B, C replaced by 
A’,  B’, C‘ ,  respectively. The optimal closed-loop system is 
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given  by 
* 

~ ( t ) = - [ A ' - C ' R - 1 C K o ( t ) ] y ( t ) - B ' y ( t + 7 )  

+Jr,rCfR-lCKl(r ,O)y( t+B)de.  (4.19) 

But then the equations for i o ( t ) ,  tI(t,O), and k2(t,0,.$) 
look exactly like those for Po(t), P,(t,O), and P2(t,  e,.$). In 
fact, the following result establishes their precise relation- 
ships [ 13 ]. 

Lemma 4.1: Let the fundamental matrix associated 
with the system 

i ( t ) = [ A - P O ( t ) C ' R - ' C ] x ( t ) + B x ( t - r )  

0 

- BJ-r ~ , ( t + e , - e - ~ ) ~ ' ~ - ~ c ~ ( t + O ) d o  (4.20) 

[i.e., the homogeneous part of (4.3)] be @(t ,s)  and let the 
fundamental matrix associated with  (4.19) be Y ( t , s ) .  Then 
wehave,forO<t<T,O<O,.$Qr,  

Po ( t )  = 2 0  ( 4  (4.21) 
I 

P;  ( t , O - 7 ) B ' =  K ,  ( t , O )  (4.22) - 
B P , ( t , 8 - r , . $ - - ) B ' = K 2 ( t , 0 , ~ ) .  (4.23) 

Moreover, (4.19) and (4.20) are adjoints of each other [ 151 
so that 

@(t,s)= Y'(s , t ) .  

We have now everything for proving asymptotic stabil- 
ity of the optimal filter. We state it as Theorem 4.1. 

Theorem 4.1: Consider the system defined by  (4.1) and 
(4.2). Suppose ( A ,  B, C )  is detectable and ( A ,  B , F )  is 
stabilizable. Then the gains of the optimal filter defined 
by (4.3H4.7) converge, and the steady-state optimal filter 
is asymptotically stable. 

Remark 4.4: Theorem 4.1  is not the most general form 
of the filter stability results. For example, if there are 
delays in the observations, the dual control problem corre- 
sponds to  systems  with delays both in the state as well as 
control. To study the infinite time quadratic control prob- 
lem for such systems, we have to extend our notion of 
stabilizability and detectability. Such and other generali- 
zations will be taken up in a future paper. 

V. STOCHASTIC CONTROL OF LINEAR DELAY 
SYSTEMS 

and the criterion is given  by 

J , = % = [ X ~ ( t ) M X ( f ) + u ' ( f ) S u ( f ) ] d t .  (5.3) 

The objective is to choose a control law u in a suitable set 
of admissible laws such that the cost functional (5.3) is 
minimized.  Following Lindquist [lo], [ 111  we let zo(t)  be 
the process generated by (5.2) with u(t)=O. Define the set 
Uo of admissible control laws to be the class of measur- 
able processes  satisfying the following conditions. 

1) For each t ,  u( t )  is measurable with  respect to o { z(s), 
0 < s Q t } ,  the u-algebra generated by z(s), 0 < s < t .  

2) For each uE Uo, there exist unique solutions to (5.1) 
and (5.2). 

3) J;EIu(t)l*dt< co. 
4) For each u E U o ,  o { z ( s ) ,  O < s < t } = u { z , ( s ) ,  O<sd 

We shall not dwell on the reasons for this choice of Uo as 
the set of admissible laws, but refer the reader to [IO], [ I  I], 
and [ 131 for additional comments. The following  version 
of the separation theorem has been proved by Lindquist 

Proposition 5.1: The optimal control for the problem 

t } .  

I101. 

defined immediately above is given  by 

u * ( t ) =  - S-'G'KO(t);  ( t l t )  

- ~ - 1 ~ ' I _ ; ~ , ( t , o ) x ^ ( t + e I t ) d ~  0 (5.4) 

where, as before, Ko(t) and K,(t ,O) are the optimal gains 
for the deterministic optimal control problem and x̂ (slt), 
t - r Q s Q t ,  is the conditional expectation of x(s) given 

The expression for the optimal cost has been obtained 

Lemma 5.1: Corresponding to the optimal law  (5.4), 

r(u), 0 Q u < t .  

in [ 131 and is  given  by  Lemma  5.1. 

the optimal cost  is  given  by 

+ L T t r (  K,(t)GS-'G'K,(t)P,(t) 

K ;  ( t ,O)GS- 'G'K , ( t )P;  (t,O)dO 

We can now combine the results for optimal control 
with quadratic cost and optimal linear filtering to obtain a 
stable stochastic control system. The stochastic control 
system is given  by 

K o ( f ) G S - ' G ' K ,  ( t , e ) P ,  (t,O)dO 

+ ]-orJ-oT ( t ,  4 ) GS - 'G'K1 ( t ,  t)  
d x ( t ) = [ A x ( t ) + B x ( t - r ) + G u ( t ) ] d t + F d w ( r )  (5.1) 
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where 

Remark 5.1: Notice that  in (5.4), the conditional mean 
of the true state x, is  used. This vividly demonstrates the 
need to use the true state in the design of feedback 
control. Note also the striking similarity in the structure of 
the optimal cost in this  case as compared to the finite 
dimensional case: there is a term due to initial conditions, 
a term due to the noise in the system dynamics, and terms 
due to the estimation error. 

We turn our attention now to the properties of closed- 
loop system under the stationary version of the law (5.4). 
This is  now just  a matter of putting together the results we 
have developed. 

Theorem 5.1: Let M =  H’H. Suppose ( A , B , G )  and 
( A ,  B , F )  are stabilizable, and ( A  , B ,  C )  and ( A ,  B , H )  are 
detectable. Then the control law 

where ; ( I +  B i t ) ,  - T < 8 < 0, is generated by the steady- 
state filter and KO, K,(8) are given  by the deterministic 
optimal stationary control law,  gives  rise to an asymptoti- 
cally stable closed-loop  system. 

VI. CONCLUSIONS 

We have treated the problem of filtering and control for 
linear stochastic delay systems. The case with  delays  in 
the dynamics only  is studied in detail, with particular 
emphasis on the stability of the optimal systems. These 
results show  very  clearly  where the analogies with  the 
finite dimensional case  lie and what are the additional 
complications due  to the presence of delays. The structure 
of delay systems in thus brought into focus. The study 
also indicates that  a complete linear-quadratic-Gaussian 
theory for delay systems can be developed. It is hoped 
that this paper will serve as  a stimulus to the development 
of a successful  design method for this important class of 
systems. 
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