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Abstract—Determining the structure of dependencies among a
set of variables is a common task in many signal and image pro-
cessing applications, including multitarget tracking and computer
vision. In this paper, we present an information-theoretic, machine
learning approach to problems of this type. We cast this problem
as a hypothesis test between factorizations of variables into mutu-
ally independent subsets. We show that the likelihood ratio can be
written as sums of two sets of Kullback–Leibler (KL) divergence
terms. The first set captures the structure of the statistical depen-
dencies within each hypothesis, whereas the second set measures
the details of model differences between hypotheses. We then con-
sider the case when the signal prior models are unknown, so that
the distributions of interest must be estimated directly from data,
showing that the second set of terms is (asymptotically) negligible
and quantifying the loss in hypothesis separability when the models
are completely unknown. We demonstrate the utility of nonpara-
metric estimation methods for such problems, providing a gen-
eral framework for determining and distinguishing between de-
pendency structures in highly uncertain environments. Addition-
ally, we develop a machine learning approach for estimating lower
bounds on KL divergence and mutual information from samples
of high-dimensional random variables for which direct density es-
timation is infeasible. We present empirical results in the context of
three prototypical applications: association of signals generated by
sources possessing harmonic behavior, scene correspondence using
video imagery, and detection of coherent behavior among sets of
moving objects.

Index Terms—Data association, factorization, hypothesis testing,
independence tests, kernel density estimates, Kullback–Leibler di-
vergence, mutual information, nonparametric.

I. INTRODUCTION

DETERMINING the structure of statistical dependencies
among a set of variables is a task common to many

signal and image processing applications, including multitarget
tracking, perceptual grouping, and multisensor data fusion. In
many of these applications, it is difficult to specify a model
for the data a priori due to lack of calibration, unknown
environmental conditions, and complex or nonstationary
interrelationships among sources. Estimating the dependency
structure from the observed data without a prior model is of
importance not only as an end in itself for applications such
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as data association in multitarget tracking and the correspon-
dence problem in computer vision but also as an initial step
in constructing signal models. In this paper, we present an
information-theoretic, machine learning approach to structure
discovery problems, focusing on the issues that arise when
prior signal models are unavailable. We suggest an approach
for learning informative statistics from data that is particularly
applicable when the data is high dimensional, yet highly
structured.

To be precise, we consider a class of hypothesis tests that we
refer to as factorization tests. The primary goal of such tests is to
determine the grouping of variables into a dependency structure.
These tests have the following characteristics.

• Individual hypotheses specify a partitioning of the full set
of variables into disjoint subsets, where

— the variables within each subset are dependent, and
— the subsets are mutually independent.

• The parameters of each component distribution may be
different under each hypothesis.

A consequence of the first characteristic is that for each hypoth-
esis, the distribution over the full set of variables factors into
a product of the distributions of each subset of variables speci-
fied by the hypothesis. It will be useful to distinguish the cases
in which the distribution parameterizations are known from the
cases in which they are not. We will refer to the former as para-
metric factorization tests and the latter as nonparametric factor-
ization tests.

Tests of this type commonly arise in problems such as data
association [1] and perceptual grouping [2]. We show that
this class of hypothesis tests naturally decomposes into two
parts. The first captures statistical dependency within each
subset, whereas the second summarizes differences between
the parameterizations of hypotheses. Additionally, we show
that in the absence of a parameterized model, nonparametric
approaches may be utilized, leading to a general framework for
determining and distinguishing between dependency structures
and quantifying the increase in difficulty of such factorization
tests for highly uncertain environments.

Finally, application of such methods to high-dimensional data
(e.g., imagery or spectrograms) presents an additional problem,
not only in terms of computational complexity but the infeasi-
bility of estimating high-dimensional distributions as well. We
address these issues by developing bounds on the log-likeli-
hood ratio using low-dimensional statistics of the observed sig-
nals. This leads to a machine learning procedure for learning
informative statistics. We demonstrate our approach on three
prototypical applications: association of signals generated by
sources possessing harmonic structure, scene correspondence
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using video imagery, and detection of coherent behavior among
sets of moving objects.

II. ASYMPTOTIC ANALYSIS OF FACTORIZATION TESTS

The general problem we consider is as follows: We have a set
of signals or data sources and a number
of hypotheses for how these signals are partitioned into mutu-
ally independent groups. As in all likelihood-based methods, the
key quantities are likelihood ratios associated with pairs of hy-
potheses. In the discussion to follow, we denote such a generic
pair of hypotheses by , .

Each of these two hypotheses has associated with it a partition
of the variables into dependency sets. For hypothesis

, we denote the number of subsets by and the th subset
by , with

and

The joint statistical model under is expressed as a product

(1)

In analyzing the likelihood ratio between hypotheses and
, it is also useful to identify those subsets of variables that

are dependent under both hypotheses. Specifically, define the
intersection sets by

(2)

Note that these subsets also form a (generally finer) partition
of and, thus, can be thought of as implicitly specifying yet a
third possible factorization of the joint probability distribution.
While this factorization is in general not one of the hypotheses
itself, this factorization plays an important role in the analysis,
especially in the case in which we do not have prior models for
the distributions under any of the hypotheses [e.g., the distribu-
tions on the right-hand side of (2)].

In one simple but important context (discussed further in Sec-
tion III), namely, that in which the dependency subsets under
each hypothesis consist of pairs of signals, the intersection sets
take particularly simple forms. For example, consider a set of
four signals and two hypotheses (and the sets defined by their
factorizations)

(3)

In this case, the factorization implied by the resulting intersec-
tion sets

(4)

is that of complete independence of the variables, i.e.,
.

It is important to emphasize that in general, not only is each
hypothesis distinguished by the partitioning into dependency
sets but also by any assumed probability distribution for the

variables in each set. In classic hypothesis-testing problems, the
differences in those distributions provides useful information
(e.g., the problem of deciding if a single Gaussian variable is
zero mean or has mean two is a well-defined hypothesis testing
problem). In the case on which we focus here, such prior models
of distributions are unknown, and all we seek is to determine the
dependency structure. The key, as we will see, is distinguishing
the part of the likelihood ratio that depends on dependency struc-
ture alone from the part that exploits differences in assumed
models.

A. Parametric Factorization Tests

We are primarily interested in the properties of nonparametric
factorization tests. However, it is instructive to first consider the
asymptotic properties of the fully specified, parametric factor-
ization test.

If the model parameters under each hypothesis are known,
we can write the (normalized) log-likelihood ratio test between

and , given i.i.d. observations of the , indexed by
as

(5)

If is true, this quantity approaches the following limit:

(6)

(proof given in Appendix II-A), and similarly, if is true, it
approaches the limit

(7)

where denotes the Kullback–Leibler (KL) diver-
gence between and . While it is not a surprise that
KL-divergence terms arise (cf. [3]), the result expressed in (6)
and (7) allows us both to separate the parts of the log-likeli-
hood that deals with dependency structure exclusively from the
part that takes advantage of differences in assumed statistical
models (and hence will be unavailable to us in the case in which
prior models are not given). In particular, under either hypoth-
esis, the limit of the likelihood ratio test can be decomposed into
two KL divergence terms. The first term captures differences in
the dependency structure between hypotheses (e.g., under ,
the set of variables are dependent, but under , this set
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may be further decomposed into mutually independent sets ,
). In contrast, the second terms in (6) and (7) capture

differences stemming from different assumed statistical models
under the two hypotheses (for example, one model having mean
zero versus another with mean two). This decomposition is il-
lustrated with a specific example in Section II-C; but first, we
highlight the differences that arise for a nonparametric factor-
ization test.

B. Nonparametric Factorization Tests

Nonparametric factorization tests are distinguished from
parametric tests in that although the factorization under each
hypothesis is specified, the model parameters are not. If we
replace each density in (5) with a distribution estimated
from the data, use a consistent density estimator, and have the
luxury of collecting samples under each hypothesis, then (6)
and (7) still hold in the limit.

A more interesting case, however, is when we estimate the
models and perform the hypothesis test at the same time, i.e.,
we must both learn the models and distinguish between the
hypotheses using the same set of data. Of course, in this case,
the available data will come from one hypothesis or the other
(assuming, as we do, that “truth” does indeed correspond to
one of our hypothesized factorizations). Consequently, while
the model estimates formed for the correct hypothesis will
be asymptotically accurate, the estimates for the incorrect
hypothesis will not (since we are not basing them on data
corresponding to that hypothesis) but will be biased in a
manner that best matches the available data. This fact makes
the hypothesis testing problem more difficult in this case.

In particular, if the data are generated from a hypothesis under
which variables and are independent, then the estimate of
their joint distribution under any other hypothesis—in partic-
ular one that allows these two variables to be dependent—will
asymptotically converge to the product of their marginal distri-
butions. More generally, if the data are generated under hypoth-
esis , but we estimate densities assuming the factoriza-
tion of , then the resulting estimate will converge to the
factorization described by the intersection set, as defined previ-
ously. Specifically, assuming consistent density estimates (e.g.,
kernel density estimates; see Appendix I), we have

if is true,

if is true,

(8)

(where we have used the shorthand
and similarly for ). Thus, when models the correct fac-
torization, the estimate converges to the true distribution; con-
versely, when enforcing the structure under the incorrect hy-
pothesis, the estimate converges to a factorization consistent
with the intersection set.

This is perhaps best illustrated with a short example drawn
from (3). Suppose that is true; then, if we assume , our
estimate is .
In the limit, we have, e.g.,

(as these are independent under ), and we
obtain a factorization described by the intersection sets.

In fact, the intersection set can be thought of as a null hypoth-
esis for the test between factorizations and ; we therefore
denote this by . When the factorization of one hypothesis is
entirely contained within the other, corresponds to the more
factored of the two possibilities, as is typical for an indepen-
dence test.

The loss of test power when distributions must be learned is
similar to issues that arise in generalized likelihood ratio (GLR)
tests [4]. However, a nonparametric factorization test based on
kernel methods makes assumptions only about the smoothness
of the distributions and not their form.

As a consequence of estimating densities from samples drawn
from a single hypothesis, the limit of the likelihood ratio be-
tween estimated densities is expressed solely in terms of
the hypotheses’ divergence from the intersection factorization.
Under , this is

(9)

and similarly under

(10)
Note that as a result of estimating both models from the same
data, the KL-divergence terms stemming from model mismatch
in (6) and (7) have vanished. The value of these divergence terms
quantifies the increased difficulty of discrimination when the
models are unknown and illustrates the primary distinction be-
tween parametric and nonparametric factorization tests.

The limits in (9) and (10) can be expressed independent of
which hypothesis is correct (assuming one of the is correct)
as

(11)

since one of these two terms will be zero.
While many issues arise in the context of maximum likeli-

hood tests for dependence structure, for example model com-
plexity [5] and significance [4], our primary focus is on esti-
mating these KL-divergence terms (equivalently likelihoods) in
problems with high-dimensional, complex joint distributions.
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Fig. 1. Performance as a function of parameter assumptions I. When the two alternatives p and p are known a priori, the (c) parametric likelihood ratio
tests underH (solid) and H (dashed) benefit from the differences between the model parameters. Using (d) a nonparametric estimate with only the test data has
less separation (only that due to the factorization information). (e) Respective contributions are shown in the cross-section.

C. Comparison: Parametric versus Nonparametric
Factorization Tests

We illustrate the previous analysis with a simple bivariate
Gaussian example. Suppose we have two hypotheses

(12)

where

(13)

Note that this is a parametric factorization test, in that we specify
both a factorization (independence in , dependence in )

and a parameterization (that the distributions are Gaussian and
have parameters , , ). These two distributions are shown
in Fig. 1(a) and (b).

For this case, the expected log-likelihood ratio can be com-
puted in closed form. When is true, the result is

(14)
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and when is true

(15)

Let us now consider the equivalent nonparametric factoriza-
tion test, in which only the factorization is specified. In this case,
we learn densities that reflect the factorization under each hy-
pothesis from the observed samples. Necessarily, these samples
are collected under a single hypothesis, and as shown by the pre-
vious analysis, the model divergence terms disappear, resulting
in decreased separability between the two hypotheses. For this
case, under , the expected log-likelihood ratio converges to

(16)

and under

(17)

Monte Carlo simulations of both cases are shown in Fig. 1(c)
(parametric tests) and Fig. 1(d) (nonparametric tests). In both
cases, we compare the mean log-likelihood ratio under
(solid) and (dashed). Variance estimates are given by the
dotted lines; the separability of the two hypotheses increases
as a function of the number of observed data . In this
example, the parametric test benefits greatly from its (correct)
knowledge of the distribution. A cross-section from both kinds
of tests taken at is shown in Fig. 1(e), illustrating
the separability of both tests and the relative contribution of
dependency information and model parameters.

As Fig. 1 indicates, if the assumed Gaussian models for these
two hypotheses are in fact correct, we gain some performance
by using these models. However, if these detailed models are
incorrect, there can be significant loss in performance for the
primary goal of interest to us, namely, that of determining the
correct factorization of the distribution. Indeed, for data that
have one or the other of these factorization structures but have
distributions that differ from the Gaussian models, the use of a
test based on these models may fail catastrophically.

To illustrate this latter point, we intentionally choose two par-
ticularly difficult densities as the true underlying distributions.
Specifically, let the true data distributions be Gaussian sums,
located such that under either hypothesis, the two components

, are uncorrelated. However, in one case [Fig. 2(a)], the
variables are dependent, whereas in the other [Fig. 2(b)], they
are independent. Moreover, the parameters have been chosen so
that the variances of the variables under the dependent distribu-
tion match the variance in (13), whereas the variances under
the independent distribution match the variance .

Using a nonparametric estimate of the likelihood, we cor-
rectly estimate the statistical dependency and thus determine the
factorization [Fig. 2(d)]. Again, we show the likelihood ratio
under as solid, and under as dashed, along with their
respective variance estimates. The model-based test [Fig. 2(c)],
however, not only fails to find any statistical dependency (both
means are less than zero) but also rates the model with the cor-
rect factorization as having a lower likelihood.

III. PAIRWISE ASSOCIATION OF HIGH-DIMENSIONAL DATA

In the face of model uncertainty, machine learning and data-
based methods are appealing; however, the practical aspects of
using nonparametric density methods raise a number of impor-
tant issues. In particular, when observations are high-dimen-
sional or there are many observed variables, direct estimation of
the probability densities in (9)–(11) becomes impractical due to
sample and computational requirements. To render this problem
tractable, we apply a learning approach to estimate optimized
information-theoretic quantities in a low-dimensional space.

Data association between pairs of observations is a special
case of factorization tests. We illustrate aspects of this problem
with the following example. Suppose that we have a pair of
widely spaced acoustic sensors, each consisting of a small array
of microphones and producing both an observation of a source
and an estimate its of bearing. This in itself is insufficient to
localize a source; however, triangulation of bearing measure-
ments from both sensors can be used to estimate the target lo-
cation. When there is only one target, this is a relatively simple
problem.

Complications arise when there are multiple targets within
each sensors’ field of view. For two targets, each sensor deter-
mines two bearings, yielding four possible locations for the two
targets, as depicted in Fig. 3. Using bearing information alone,
one cannot determine which pair of locations is correct and
which is not. However, under the assumption that the sources
are statistically independent, this can be cast as a test between
factorizations of the source estimates. This interpretation allows
us to test an association even in the case that the source statistics
and/or transmission medium are poorly specified or completely
unknown.

This problem is further complicated by the fact that the sen-
sors’ observations may have long temporal dependency or be
of high dimension (for example video images), either of which
can render density estimation infeasible. However, the hypoth-
esis test may not require that these distributions be estimated
directly since [as evidenced by (6), (7), (9), and (10)] what we
really wish to estimate is a KL-divergence value. We avoid the
difficulties of density estimation in high dimension by instead
estimating a lower bound on divergence via statistics whose di-
mension is controlled by design.

A. Mutual Information as a Special Case

When we are interested only in associations between pairs
of variables, the terms related to statistical dependence within a
given hypothesis simplify to the sum of the mutual information
between each pair. In other words, each set in ’s factoriza-
tion is , and the divergence from the intersec-
tion factorization is always a divergence from marginal distribu-
tions (leaving out any associations on which the two hypotheses
agree):

(18)
where is the mutual information (MI) between and

. As we have already observed, if each variable is high-di-
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Fig. 2. Performance as a function of parameter assumptions II. If we have only factorization information but attempt to use the same parametric assumptions
from Fig. 1, we may severely degrade performance (c). Here, because of the similar marginal distributions, the correct factorization is actually less likely under
our correlated Gaussian model. In contrast, (d) nonparametric methods can still estimate the statistical dependence information. (e) The cross-section shows the
relative influences.

mensional, direct estimation of even the pairwise mutual infor-
mation terms becomes difficult. However, a tractable method of
estimating mutual information for high-dimensional variables
follows from application of the data processing inequality [6].
Specifically, note that

(19)

where and are differentiable functions (which we
allow to be different for each pair of variables ). Gradient

ascent can be used to maximize the bound; if the functions are
scalar (a design choice), this is performed in a two-dimensional
(2-D) space. We have chosen to apply kernel (Parzen window)
density estimates [7], which can be used to obtain differentiable
estimates of the required information theoretic quantities; this
is discussed further in Appendix I. However, the focus of this
paper is not on the specifics of this optimization, but rather on
the utility of the optimized estimate. In fact, it is reasonable to
assume that any estimate of mutual information for which we
can optimize the functions , may be employed.

The left and right sides of (19) achieve equality when the
, are sufficient statistics for the data. Thus, if we knew
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Fig. 3. Data association problem: Two pairs of measurements results in
estimated sources at either the circles or the squares, but which one remains
ambiguous.

sufficient statistics, we could replace the original log-likelihood
ratio (5) with an alternate estimate of its limit (11), requiring
only the pairwise distributions of the statistics.

It may be difficult to find low-dimensional sufficient statis-
tics; in fact, in general, they will not exist. However, for any set
of features, it can be shown (see Appendix II-B) that the fol-
lowing limit holds:

(20)

where, for brevity, we have used the notation

The divergence terms become negligible in direct proportion
to the degree to which the functions , summarize the statis-
tical dependency between and . For sufficient statistics,
these divergence terms are exactly zero.

Notice that in (20), only the divergence terms involve
high-dimensional measurements; the mutual information is
calculated between low-dimensional features. Thus, if we dis-
card the divergence terms, we can avoid all calculations on the
high-dimensional data . We would like to minimize the effect
of ignoring these terms on our estimate of the likelihood ratio
(20) but cannot estimate the terms directly without evaluating
high-dimensional densities. However, by non-negativity of the
KL-divergence, we can bound the difference by the sum of the
divergences:

(21)

We then minimize this bound by minimizing the individual
terms or equivalently maximizing each mutual information
term (which can be done in the low-dimensional feature space).
Note that these optimizations are decoupled from each other
and, thus, may be performed independently. An outline of the
hypothesis testing procedure for pairwise interactions is given
in Fig. 4.

Fig. 4. Example: Nonparametric factorization tests using mutual information
estimated via low-dimensional features.

Finally, it should be pointed out that our estimate of the av-
erage log-likelihood is a difference of estimated lower bounds
on the statistical dependence in the data supporting each hy-
pothesis (11). When either hypothesis is correct, one of these
terms is asymptotically negligible.

B. Example: Associating Data Between Two Sensors

We return to the example of associating observations of two
sources, each received at two sensors, as depicted in Fig. 3.
Specifically, let us assume that each sensor observes nonover-
lapping portions of the Fourier spectrum (highpass versus
lowpass). We would like to determine the proper association
between low- and high-frequency observations. Note that for
Gaussian sources, nonoverlapping portions of the spectrum are
independent. However, in many cases—e.g., those involving
rotating machinery or engines—nonlinearities lead to the
presence of harmonics of underlying fundamental frequencies
in the source, implying dependencies of variations in different
parts of the spectrum. We simulate this situation by creating
two independent frequency-modulated signals, passing them
through a cubic nonlinearity and relating observations that have
been lowpass filtered and highpass filtered .
We test between the two possible associations:

(22)

Synthetic data illustrating this situation can be seen in Fig. 5.
Here, we represent the signals by their spectrograms
(sequence of windowed Fourier spectra). Sensor A measures
and (both low frequency), whereas sensor B measures and

(both high frequency), and the issue is to determine the cor-
rect pairing of measurements. In the resulting filtered spectra
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Fig. 5. Associating nonoverlapping harmonic spectra. The correct pairings of data sets (a)–(d) can be seen by inspection; the learned features yield estimates of
mutual information that are high for correct pairings (e), (f) and low for incorrect pairings (g), (h).

[the images shown in Fig. 5(a)–(d)], the correct pairings are
, (which might be ascertained by close in-

spection).
Using the inequality of (19), let and be linear statistics of

the Fourier spectra for each time window. Using the procedure
described in Appendix I, we optimize these statistics with re-
spect to their mutual information. Note that this is done for each
potential pairing of data, as specified by the hypotheses of (22).
Scatterplots of the trained features [see Fig. 5(e)–(h)] show that
indeed, features of the correct pairings have noticeably higher
statistical dependence than the incorrect pairings, the degree of
which is quantified by an estimate of mutual information in the
feature space.

IV. TESTING GENERAL FACTORIZATIONS

For general factorization tests, the KL divergence terms be-
come more complex. In addition to the difficulty associated with
high-dimensional measurements, we also have the potential for
large numbers of variables. Large numbers of variables pose a
two-fold problem: both an increase in the number of hypotheses
to be tested (a difficulty which we do not attempt to address in
this paper) and an increased difficulty in testing any given pair
of hypotheses. A straightforward extension of Section III’s ap-
proach—learning one feature for each variable—may not suf-
fice in that as the number of variables grows, so does the di-
mensionality of the required density estimate. This motivates
an alternate approach that (nominally) decouples the number of
variables from the dimensionality of the density estimates. The
advantage of this method is that we can control the number of
dimensions over which we are required to estimate a density,
independent of the number of variables.

A. Feature-Based Divergence Estimation

In contrast to learning a statistic for each of the , we can
exploit a superior bound based on a single statistic of all the

variables. Specifically, let be a differentiable function of
, and let us examine the distribution of under the

two hypotheses. For any deterministic function , we can
formulate a lower bound on the divergence of and as
follows:

(23)

Consequently, the challenge is to optimize to maximize
the right-hand side of (23). In this paper, we describe a gradient
ascent method over parameterized functions and use an esti-
mate of the KL-divergence, as discussed in Appendix I.

As was the case in Section II, if we have independent
observations under each hypothesis, we could estimate
the marginal distributions , and, thus, the
KL-divergence on the right of (23). However, as in Section II-B,
it is more interesting to consider the scenario in which we have
only one set of samples with which to perform a test between the
two hypotheses, and again, these samples are necessarily drawn
under a single hypothesis.

Through the use of bootstrap sampling [8], we can obtain
samples of according to the factorizations associated with
each hypothesis. In essence, this has the same meaning as (8);
but rather than estimating the full joint distributions, we merely
need to draw samples from them, which can be used to create
samples of and estimate the marginal over the feature .

Explicitly, we obtain a sample of that adheres to the factor-
ization of hypothesis by independently drawing joint sam-
ples of the variables in the set for each and evaluating the
function at this value. This process is illustrated in Fig. 6. Al-
ternately, it may be convenient to draw samples from the sets
without replacement; this leads to an estimate related to
permutation statistics [8]. Either method provides samples from

(and, thus, ), which can be used to estimate
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Fig. 6. Application of bootstrap sampling to estimate high-dimensional
divergences via a low-dimensional feature f .

the two marginals and, thus, an estimate of (a lower bound on)
the KL-divergence between our high-dimensional joint models.

Bootstrap sampling and permutation statistics are most com-
monly applied to finding confidence intervals for likelihood-
based tests [9]; for example, a nonparametric test for indepen-
dence based on this is proposed in [10]. Traditionally, these tests
assume some prespecified statistic of the complete sample set

(where indexes our i.i.d. samples), use permuta-
tion statistics to determine the distribution of under the null
hypothesis, and construct a confidence interval or critical value
against which to test ’s observed value. In contrast to this, we
use a statistic of each joint observation and employ ran-
domization methods to draw samples that are forced to obey
both of the assumed factorizations. This yields an estimate of
the distribution of under both hypotheses, enabling KL-diver-
gence to be used as our distance metric for the test. It should
also be possible to employ randomization statistics to estimate
similar confidence intervals and critical values for our tests.

Another set of closely related methods are so-called rank-like
tests [11], in which rank-based (and thus distribution-free) hy-
pothesis tests are applied to some prespecified functional .
However, extensions of such rank-based tests beyond scalar di-
mension are nontrivial [12]. Additionally, using kernel density
methods allows us to compute gradients with respect to the func-
tion . Thus, we may easily optimize to maximize this dis-
tance, removing the need to preselect a “good” statistic. Al-
though not the subject of this paper, the methodology for op-
timizing the choice of presented here may be extensible to
rank-like tests as well.

B. Comparison with Optimization of MI

Mutual information is a common metric for learning and fea-
ture selection [13]–[16]. However, as previously noted, MI is

sometimes insufficient to capture the kinds of interdependen-
cies in, for example, a model selection problem involving many
variables.

The estimation and optimization of KL-divergence presented
here may be considered an improvement on Section III’s mu-
tual information-based method for a number of reasons. First,
it is possible to estimate divergence over sets of many variables
directly. This means that if desired, each sum of mutual infor-
mation terms in (20) may be estimated as a whole rather than
individually. Second, it does so using a single, possibly scalar,
statistic. Estimates can thus be made in a lower dimensional
space, which reduces the difficulty of density (or divergence)
estimation. Finally, we note that the global maximum of (23)
is always greater than or equal to the global maximum of (19)
when the two are performed in equivalent dimensions, since the
construction achieves equality
between the two.

Section IV introduces an application that will make use of
some of these advantages. However, we first show the similar
applicability of the two approaches by relearning statistics for
the example problem of Section III-B using divergence-based
estimates (see Fig. 7). To make the comparison to Fig. 5 more
straightforward, we learn a 2-D feature for each pair of variables
previously tested [as opposed to one-dimensional (1-D) features
of each variable in the MI case]. In each plot, we show features
of the two variables listed drawn from their observed joint distri-
bution, drawn in black, and optimized with respect to the same
feature sampled while enforcing the opposing hypothesis’ fac-
torization, drawn in gray (which in this case is equivalent to in-
dependence). As with the MI estimates, the pairings associated
with the incorrect hypothesis show only minor divergence
from their distribution under a model based on the factoriza-
tion in , whereas the converse is not the case. The computed
values tend to be slightly higher under the KL-optimized esti-
mates, due to the relaxation of their statistics’ forms; this is ex-
hibited as a more tightly clustered joint distribution (black) in
the figure.

Reiterating some possible benefits of using a KL-based ap-
proach, note that this same experiment could have been per-
formed with only two learning operations (one accounting for
all independence constraints of and optimizing with respect
to , the other doing the same for ). The feature could also
be taken to be a scalar function, potentially reducing the amount
of data required to adequately represent the distributions and,
thus, reducing both data collection and computational costs.

V. ASSOCIATING IMAGE SEQUENCES

To illustrate another high-dimensional data association
problem, we consider the task of determining which of a set
of cameras have overlapping fields of view. Such tasks are
commonplace in video surveillance, for instance, in performing
initial calibration (determining the camera locations and fields
of view). The problem is also similar in nature to wide-base-
line stereo correspondence tasks in computer vision [17]. In
essence, it is similar to the association problem of Section III,
except that every combination of sensors comprises a possible
association.
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Fig. 7. Revisiting the pairwise association problem: Here, we have optimized a single (2-D) statistic for each divergence term inH ,H by comparison with its
distribution under the intersection factorization. The estimated divergences are similar to the MI estimates of Fig. 5.

Fig. 8. Four cameras with different views of a room. To simulate multiple observation modalities, each image is transformed. In (a) and (b), we observe gray-scale
image sequences, in (c) color (hue) information only, and in (d) instantaneous difference (edge) images.

We perform a test to determine the dependence between sev-
eral loosely synchronized image sequences taken from a set of
uncalibrated cameras that view the same region from substan-
tially different locations. Each camera acquires an image only
every few seconds (making tracking from frame to frame dif-
ficult), and as we possess relatively few data samples (several
hundred frames), each of which is of high dimension (thousands
of pixels), we are precluded from direct estimation and turn to
information-preserving projections of the image data to estimate
its interdependence. Note that for the purposes of this experi-
ment, our conjecture is that statistical dependency, as measured
by our approach, will be largely due to scene changes caused by
the same object or objects.

Specifically, given image sequences (where the
first index represents the camera, and indicates the time
index), we test whether they are observations of independent
scenes. Placed in the hypothesis testing framework discussed
previously, this is

(24)

(25)

We can construct a test between the by evaluating the diver-
gence between the observed distribution
and an independently resampled version, specifically

for some permutations .
The methodology proposed here makes no strong assump-

tions about the signal type, making it applicable for testing de-
pendency across multimodal observations. To demonstrate this,
we apply a postprocessing step to the images from two of the
cameras as a proxy for different modalities. The observed values
from the first two cameras are taken to be their gray-scale image

Fig. 9. Approximate locations and viewing angles of the four cameras
described in Fig. 8.

intensities [Fig. 8(a) and (b)], whereas a third (c) retains only the
color (hue) of its image. The fourth (d) observes instantaneous
difference images, which we create by subtracting two images
taken in quick succession. A notional camera geometry is shown
in Fig. 9, where the camera pairs (a,c) and (b,d) have overlap-
ping views. Note that cameras with overlapping fields of view
observe different modalities.

We begin by examining only the pairwise association tests.
Again, we do not address the combinatorial nature of the task of
structure discovery (only the issue of high dimensionality). In
the case of four cameras, there are six pairs to consider (as op-
posed to only four in Section III); therefore, enumeration of all
possible pair-wise associations remains tractable. For each pair,
we learn a single projection , which maximizes the KL-diver-
gence between and . The eval-
uated KL-divergences of these distributions are shown by the
arrows in Fig. 10.
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Fig. 10. KL-divergence from independence for the image sequences from
each pair of cameras in Fig. 8. An estimate of the distribution of KL-divergence
values under the null hypothesis (that the image sequences are mutually
independent). The correct associations (a; c) and (b; d) are the rightmost
two arrows, whereas the incorrect associations form the arrows to their left,
indicating that the correct two pairs are the most likely to be dependent.

However, we would also like to know how significant these
values are. In order to test the statistical significance of the infor-
mation content between each pair of image sequences, we also
need to determine the distribution of our estimate under the null
hypothesis (i.e., that the pair of image sequences are indepen-
dent). Again, we employ randomization statistics. As discussed
previously, we can easily generate data under the null hypoth-
esis by permuting the time indices of both image sequences. We
optimize a statistic to maximize the estimated KL-divergence
between two data sets, both of which are generated under the
null hypothesis. This yields a sample of the divergence estimate
when the data is truly independent; many such samples can be
used to estimate a distribution and enables us to evaluate the sig-
nificance level of the observed divergence values.

The resulting comparison is shown in Fig. 10; the black curve
indicates the null hypothesis distribution. As can be seen, the
two rightmost arrows correspond to the correct associations be-
tween image sequences; these arrows have very little likelihood
of coming from the null hypothesis.

Notably, the other arrows are all somewhat higher than ex-
pected under the null hypothesis as well, possibly indicating
a slight interdependence even between nonoverlapping cam-
eras. This coupling could result from second-order dependen-
cies, such as joint lighting changes or the limited number of
people moving in and between each scenes. In fact, the fol-
lowing similar experiment also indicates this dependence.

Let us next consider a somewhat more structured
problem—to choose one (or neither) of two possible as-
sociations. Specifically, we assume (correctly) that the two
gray-scale image sequences are not associated and test only
between the three possibilities

(26)

where is the intersection set factorization of and .
We can do this by learning one statistic for each. To evaluate

Fig. 11. Distributions of the proposed KL-divergence estimate over 100 Monte
Carlo trials. An estimate of its distribution when the data are independent is
given by the gray curve. The correct association (a; c) and (b; d) is shown by the
solid black curve, whereas the incorrect association (a; d) and (b; c) is shown
as dashed, indicating that the correct pairs are significantly more dependent.
However, the differences observed from true independence (gray) indicate that
there is some small but measurable coupling between nonoverlapping cameras.

the variation in this procedure, we perform 100 Monte Carlo
trials, using only half of the available images (chosen at random)
for each trial. As in the previous example, we also perform the
same procedure for data that have been permuted so as to obey

. The distributions of the (three) KL-divergence estimates so
obtained are shown in Fig. 11. Notably, neither the divergence
values assuming (solid black) nor the divergence values as-
suming (dashed) appear the same as the data assuming
(gray). If the nonoverlapping camera pairs were truly indepen-
dent, we would expect the data sampled under the incorrect
factorization to be the same as the data sampled under

. The fact that it is not reinforces the earlier observation that
there exists some residual dependency between all four cam-
eras. However, we correctly determine that the desired associa-
tion is significantly larger than its alternatives.

VI. DETECTING OBJECT INTERACTION

Another common association problem is that of determining
which subsets of a group of objects move together and which
move independently. For example, this application appears in
computer vision for determining structure from motion [18],
[19]. However, object motion is rarely characterized by inde-
pendence between time samples, and thus we will require some
mechanism to account for these dynamics and dependencies.

A. Incorporating Observation Dependency

One way to model temporal dynamics is via the con-
ditional distribution . Let us suppose
that for each set of variables at time , our process
satisfies a Markov property—that for some , we have

and,
additionally, that the process is conditionally stationary—that

is the same for all . For brevity, we present
equations assuming (i.e., first-order Markov), but it is
straightforward to extend to the general case.



IHLER et al.: NONPARAMETRIC HYPOTHESIS TESTS FOR STATISTICAL DEPENDENCY 2245

Fig. 12. (a) Two objects’ motions are coupled by a third object that moves between them. We test for their interaction as given in (31) and (32); the density
estimates of the resulting features are (b)H (black curve) versusH (gray), high divergence (indicating that the three objects move in a coupled fashion), and (c)
H (black) versus H (gray), low divergence (indicating that, without x , x , and x move independently).

Under these assumptions, the average log-likelihood ratio of
(9) is instead a sum over each conditionally i.i.d. observation:

(27)

and an identical analysis to that presented previously leads to
a decomposition into statistical dependency and model diver-
gence terms. If we again learn our models nonparametrically
under different factorization assumptions, (11) becomes

(28)

and we can again estimate each of these terms separately via a
lower bound and use their difference to evaluate a test between
hypotheses.

This raises the question of how to apply the feature-based es-
timate of Section IV to determine the conditional divergences
required in (28). It is easy to show that the conditional diver-
gence is equivalent to a difference of two divergences between
factorizations of all variables (see Appendix II-C). For example,
the divergence term due to takes the form

(29)

Consequently, there are two KL-divergence terms, the ar-
guments of which are in a form such that we can apply the
sampling technique of Section IV-A. Specifically, for a given
statistic , we sample from the distribution of under each

of the four factorizations (one for each argument of the two
divergence terms) on the right-hand side of (29), then estimate
the difference of these two divergences. In order to maximize a
bound on divergence, the function is optimized (separately)
for each term in the difference (29).

B. Example: Moving Objects

Here, we give an example of testing for dependency between
sets of moving objects. In this problem, we compare sets of
many variables, for which it would be difficult to estimate the
mutual information in the manner of Section III. Thus, here, we
apply (only) the KL-divergence estimation method described in
Section IV. Fig. 12(a) shows two objects , that move in in-
dependent, bounded random walks (gray paths), and a third
that attempts to interpose itself between them (black). Thus, the
first two paths are coupled by the third, and the correct factor-
ization is given by

(30)

We can test between possible factorizations of this distribution
in a pairwise manner. It is not our goal to address the combi-
natoric nature of such a test; thus, we only compute values for
two illustrative pairs of hypotheses: a full joint relationship to
independent motions

(31)

and a test between models that both assume to be independent

(32)

The first test asks the question of whether there is any interac-
tion between the three objects, whereas the second asks whether
there is any direct interaction between and . Furthermore,
these two tests have a strong relationship to the true distribu-
tion, which we make precise shortly. In addiiton, note that each
object position variable is 2-D, naively requiring (for
example) to estimate a 12-D density. Using learned features, we
may instead perform this test in a 1-D space.

The distributions of a scalar statistic maximizing the first
likelihood ratio (31) is displayed in Fig. 12(b). As expected,
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this demonstrates the large KL-divergence between these two
models, i.e., that represents the data considerably better than

. However, the likelihood ratio between should be
near-zero since and do, in fact, move independently of
each other. Fig. 12(c) shows distributions for a statistic maxi-
mizing this divergence and that do, in fact, predict a small value.

The two example tests above are particularly illustrative in
that they form the basis for several other tests of interest as well.
For instance, the test between (full independence) and the
true underlying distribution [which we denote , (30)] can be
expressed (see Appendix II-D) in terms of the computed diver-
gence values. Specifically

(33)

which gives a large value, indicating that is to be strongly
preferred to . Similarly, the test between (full joint) and

is given by

(34)

indicating that the two are nearly equivalent in a likelihood sense
(note that will always have higher likelihood than any other
hypothesis). Applying any reasonable penalty for the increased
complexity of the full joint distribution, we may conclude that

is the preferred option.

VII. CONCLUSION

In the context of testing between alternative dependency
structures for a set of random variables, we have cast the
problem of determining this structure when the models are un-
known or highly uncertain as a likelihood test between learned
models with assumed factorizations and proposed the use of
nonparametric density estimation techniques for evaluating
this test. We then showed that the model-based likelihood ratio
test may be decomposed into one set of terms measuring the
statistical dependency structure supporting each hypothesis,
and one set of terms that measure the fit of the models’ param-
eterizations, allowing us to quantify the increased difficulty of
tests in which the models must be learned directly from data.

We then addressed the difficulty of applying nonparametric
methods to high-dimensional problems by proposing alternate
estimates of the likelihood ratio based on the information-the-
oretic interpretation of its asymptotic limit. We showed how
low-dimensional statistics of the data can be used to estimate
lower bounds on mutual information and KL divergence and
demonstrated that machine learning methods may be used to
find statistics that optimize these bounds.

We have demonstrated the utility of this approach on three ex-
ample problems. In the first, we showed each estimator’s ability
to perform association of data between multiple sensors, de-
tecting harmonic relationships between two pairs of observed
signals. The second example showed the ability of the proposed
method to find which sets of image sequences have strong de-
pendency (indicating overlap in their observed field) and, fur-
thermore, to estimate the significance of this dependency. Fi-
nally, we applied nonparametric models to test between poten-
tial groupings of moving objects in order to determine whether
a set of such objects moves coherently or independently.

APPENDIX I
NONPARAMETRIC ESTIMATES OF ENTROPY

There are a variety of nonparametric methods of estimating
entropy (see [20] for an overview), several of which are based
on kernel density estimates [7], [21]. Kernel methods model a
distribution by assuming that the density is smooth around a set
of observed samples; the kernel density estimate , given a
set of i.i.d. samples , is

(35)

where is a kernel function, and represents
a smoothing parameter; we use the Gaussian density

. There are a number of data-based
methods for choosing the smoothing parameter ; in practice,
even simple methods such as the so-called rule of thumb [21]
appear more than adequate.

The entropy estimate used in this work is the leave-one-out
resubstitution estimate of [20]

(36)

where is again taken to be the the Gaussian distribution.
It is then relatively straightforward to take the derivative of (36)
with respect to any parameter of the statistic

(37)

where is the derivative of the kernel function (for the
Gaussian kernel, ), and the statistic’s
derivative is with respect to the parameter .

Additionally, the mutual information between two statistics
, may be estimated by

(38)

and its derivative is straightforward to compute by repeated ap-
plication of (37).

We may use a resubstitution estimate similar to (36) for the
KL-divergence given two sets of samples , :

(39)

and take its derivative with respect to in a similar fashion
to (37), yielding a gradient-based learning rule for maximizing
KL-divergence (or MI as a special case).

In the empirical sections of this paper, we have applied
kernel-based methods, but any consistent density estimate
whose gradient may be taken with respect to the function
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may be used. Extending the learning algorithm to alternate
entropy estimates is a subject of ongoing research.

APPENDIX II
MISCELLANEOUS DERIVATIONS

Here, we present proofs and derivations that have been
omitted from the main text.

A. Derivation of (6)

From (5), we have

(40)

The latter term can be rewritten as

and, marginalizing over all variables which do not appear in the
integral, we have

yielding (6):

Thus, the divergence between two hypotheses and may
be decomposed into one term corresponding to factorization dif-
ferences between and the intersection sets , and one term
accounting for differences between the distribution of the inter-
section sets under and the distribution under .

B. Derivation of (20)

Each of the divergences in (11) contributes one divergence
for each associated pair of variables :

(41)

To each term, we repeatedly apply the identity

which match the mutual information and divergence terms
summed in (20).

C. Derivation of (29)

Due to the similar form of both conditional divergences in
(28), we simply show the identity stated in the text, that the di-
vergence due to ’s departure from the null hypothesis’ fac-
torization is given by the equation at the top of the next page,
yielding the right-hand side of (29).

D. Derivation of (33) and (34)

For simplicity, here we leave as implied the depen-
dence on past measurements. Recall that the correct
distribution is and that

, , and
. We then have
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which is (33); similarly

which, by an argument similar to that of Appendix II-A

giving (34).
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