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A Survey of Design Methods for Failure 
Detection in Dynamic Systems* 

A L A N  S. W I L L S K Y I "  

Examination of  statistical techniques for the detection of  failures in dynamic 
systems reveals key  concepts, similarities and differences in problem formulations, 
system structure, and performance. 

Summary--In this paper we survey a number of methods for 
the detection of abrupt changes (such as failures) in 
stochastic dynamical systems. We concentrate on the class of 
linear systems, but the basic concepts, if not the detailed 
analyses, carry over to other classes of systems. The methods 
surveyed range from the design of specific failure-sensitive 
filters, to the use of statistical tests on filter innovations, to 
the development of jump process formulations. Tradeoffs in 
complexity vs performance are discussed. 

I. INTRODUCTION 
Wrm the increasing availability and decreasing cost of digital 
hardware and software, there has developed a desire in 
several disciplines for the development of sophisticated 
digital system design techniques that can greatly improve 
overall system performance. A good example of this can be 
found in the field of digital aircraft control (see, for example, 
Doolin [,;5], Taylor [46], and Meyer and Cicolani [47]), where a 
great deal of effort is being put into the design of aircraft with 
reduced static stability, flexible wings, etc. Such vehicles can 
provide improved performance in terms of drag reduction 
and decreased fuel consumption, but they also require 
sophisticated control systems to deal with problems such as 
active control of unstable aircraft, suppression of flutter, the 
detection of system failures, and management of system 
redundancy. The demands on such a control system are 
beyond the capabilities of conventional aircraft control 
system design techniques, and the use of digital techniques is 
essential. 

Another example can be found in the field of electrocar- 
diography. In recent years a great deal of effort has been 
devoted to the development of digital techniques for the 
automatic diagnosis of electrocardiograms (ECG's; see, for 
example, [48]). Such systems can be used for preliminary 
screening of large numbers of ECG's, for the monitoring of 
patients in a hospital, etc. 

In this paper we review some of the recent work in one 
area of system theory that is of importance in both of these 
examples, as well as in many other system design problems. 
Specifically, we will discuss the problem of the detection of 
abrupt changes in dynamical systems. In the aircraft control 
problem one is concerned with the detection of actuator and 
sensor failures, while in the ECG analysis problem one wants 
to detect arrhythmias---sudden changes in the rhythm of the 
heart. For the sake of simplicity in our discussion, we will 
refer to all such abrupt changes as 'failures', although, as in 
the ECG example, the abrupt change need not be a physical 
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failure. Our aim in this survey is to provide an overview of a 
number of the basic concepts in failure detection. 

The design of failure detection systems involves the 
consideration of several issues. One is usually interested in 
designing a system that will respond rapidly when a failure 
occurs; however, in high performance systems one often 
cannot tolerate significant degradation in performance during 
normal system operation. These two consideration are 
usually in conflict. That is, a system that is designed to 
respond quickly to certain abrupt changes must necessarily 
be sensitive to certain high frequency effects, and this in turn 
will tend to increase the sensitivity of the system to noise, via 
the occurrence of false alarms signaled by the failure 
detection system. The trndeoff between these design issues is 
best studied in the context of a specific example in which the 
costs of the various tradeoffs can be assessed. For example, 
one might be more willing to tolerate false alarms in a highly 
redundant system configuration than in a system without 
substantial hack-up capabilities. 

In general, one would like to design a failure detection 
system that takes system redundancy into account. For 
example, in a system containing several hack-up subsystems 
we may be able to devise a simple detection algorithm that is 
easily implemented but yields only moderate false alarm 
rates. On the other hand, by implementing a more complex 
failure detection algorithm that takes careful account of 
system dynamics, one may be able to reduce requirements 
for costly hardware redundancy. 

In addition to taking hardware issues into consideration, 
the designer of failure detection systems should consider the 
issue of computational complexity. One clearly needs a 
scheme that has reasonable storage and time requirements. It 
would also be useful to have a design methodology that 
admits a range of implementations, allowing a tradeoff study 
of system complexity vs performance. In addition, it would 
be desirable to have a design that takes advantage of new 
computer capabilities and structures, e.g. designs that are 
amenable to modular or parallel implementations. 

In this paper we sur~ley a variety of failure detection 
methods, and, keeping the issues mentioned above in mind, 
we will comment on the characteristics, advantages, disad- 
vantages, and tradeoffs involved in the various techniques. In 
order to provide this survey with some organization and to 
point out some of the key concepts in failure detection 
system design, we have defined several categories of failure 
detection systems and have placed the designs we have 
collected into these groups. Clearly such a grouping can only 
be a rough approximation, and we caution the reader against 
drawing too much of an inference about individual designs 
based on our classification of them; several of the techniques 
could easily fall into a number of our classes. In addition, for 
the sake of brevity we have limited our detailed discussions 
to only a few of the many techniques. Our choice of those 
techniques has been motivated by a desire to span the range 
of available methods and by our familiarity with certain of 
these algorithms. Finally, we have attempted to collect all of 
those studies of the failure detection problem of which we are 
aware, and we apologize for any oversights. 

We also note that problems of equal importance to that of 
failure detection are the issue of system reorganization 

601 



602 A . S .  WILLSKY 

subsequent to the detection of a failure and the design of 
'fault tolerant' control systems that retain their integrity in 
the presence of system failures or large changes in system 
operating conditions. Since the principle thrust of this paper 
is directed at the detection problem, we limit ourselves in 
these other areas to pointing out the work of several authors 
on the closed loop control problem. Specifically, Beard[4] 
introduces several notions of analytical sensor and actuator 
redundancy and discusses how one might restructure a 
control system following failure detection. The work of 
Sworder et al.[17]-[20], [37] and that of Rather and 
Luenberger[21] is aimed primarily at the development of an 
adaptive control system for linear systems in which 
parameters may jump abruptly. Finally, several authors have 
devised contro ! system designs that are 'fault tolerant'  in that 
they remain stable in the presence of certain large changes in 
system characteristics. Belletrutti and MacFarlane[55] and 
Solheim[56] have used frequency domain methods to 
determine useful linear multivariable designs. Also, Wong 
and Athans[57] and Safonov and Athans[58] have deter- 
mined conditions under which optimal linear control systems, 
with quadratic criteria and Gaussian, additive noise, remain 
stable under large system variations. The interested reader is 
referred to these references for details. 

II. FORMULATIONS OF THE FAILURE 
DETECTION PROBLEM 

In this paper we are mostly concerned with the analysis of 
linear stochastic models in the standard state space form. 

System dynamics  

x (k  + 1) = dp(k )x(k ) + B(k  )u(k ) + w(k  ). (I) 

Sensor equation 

z (k  ) = H (k )x(k  ) + J(k  )u(k  ) + v(k ) (2) 

where u is a known input, and w and v are zero-mean, 
independent, white Gaussian sequences with covariances 
defined by 

E [ w ( k  )w'(j)] = QS, j, E [ v ( k  )v'(j)] = R~ j  (3) 

where ~ is the Kronecker delta. We think of (I)-(3) as 
describing the 'normal operation' or 'no failure' model of the 
system of interest. If no failures occur, the optimal state 
estimator is given by the discrete Kaiman filter equations [33] 

~(k + Ilk) = (l)(k):~(klk)+ B ( k ) u ( k )  (4) 

~(klk) = ~(k lk  - l ) + K (k )7(k ) (5) 

7(k) = z ( k ) -  H ( k ) i ( k l k  - I ) - J ( k ) u ( k )  (6) 

where 7 is the zero-mean, Gaussian innovation process, and 
the gain K is calculated from the equations 

P(k  + Ilk) = ~P(k )P(k lk )C ' (k )+  Q (7) 

V(k  ) = H ( k  )P(k lk  - l )H'(k) + R (8) 

K (k ) = P ( k l k  - I)H'(k)  V - ' ( k  ) (9) 

P(kik) = e(klk  - I ) - K ( k ) H ( k ) P ( k ] k  - 1). (10) 

Here P( i l j )  is the estimation error covariance of the estimate 
j ( i l j ) ,  and V(k )  is the covariance of "y(k). We refer to 
(4)--(1o) as the 'normal mode filter' in the sequel. 

In addition to the above estimator, one may also have a 
closed loop control law, such as the linear law 

u(k) = G(k)~(klk). (II) 

We then obtain the normal operation configuration depicted 
in Fig. I. 

Th¢ problem of failure detection is concerned with the 
detection of abrupt changes in a system, as modeled by 
(I)-.(3). Such abrupt changes can arise in a number of ways. 

ACTU ORS   .soRs 

u l C O N T R O L ~  Z [ [_LAW F ~ -  
FIG. 1. No-failure system configuration. 

For example, in aerospace applications, one is often 
concerned with the failure of control actuators and surfaces. 
Such abrupt changes can manifest themselves as shifts in the 
control gain matrix B, increased process noise, or as a bias in 
equation (1), as might arise if a thruster developed a leak[M]. 
In addition, failures of sensors may take the form of abrupt 
changes in H, increases in measurement noise, or as biases in 
(2). For simplicity, we will refer to abrupt changes in (1) as 
'actuator failures,' and shifts in (2) will be called 'sensor 
failures.' Again we point out that in many applications shifts 
in (1) or (2) may be used to model changes in observed system 
behavior that have nothing to do with actuators or sensors. 

The main task of a failure detection and compensation 
design is to modify the normal mode configuration in order to 
include the capability of detecting abrupt changes and 
compensating for them by activating back-up systems, 
adjusting the feedback design appropriately, etc. Conceptu- 
ally, we think of the detection-compensation system as part 
of the filtering portion of the feedback loop. As illustrated in 
Figs 2 and 3, the resulting filter design can take one of two 
forms. Either we perform a complete redesign of the filter, 
replacing (4)-(10) with a filter that is sensitive to failures, or 
we design a system that monitors the normal system 
configuration and adjusts the system accordingly. We will 
discuss examples of both of these structures. 

As mentioned earlier, we will concentrate primarily on the 
problem of failure detection, which we consider to consist of 
three tasks--alarm, isolation, and estimation. The alarm task 
simply consists of making a binary decision---either that 
something has gone wrong or that everything is fine. The 
problem of isolation is that of determining the source of the 
failure----e.g, which sensor or actuator has failed, what type of 
arrhythmia has occurred, etc. Finally, the estimation problem 
involves the determination of the extent of failure. For 
example, a sensor may become completely non-operational 
Can 'off' or 'hard-over'  failure), or it may simply suffer 
degradation in the form of a bias or increased inaccuracies, 
which may be modeled as an increase in the sensor noise 
covariance. In the latter case, estimates of the bias or the 
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FIG. 2. Failure detection system involving failure-sensitive 
primary filter (here ,~ denotes information concerning de- 

tected failures). 
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FIG. 3. Failure detection system involving a monitoring system 
for the no-failure configuration. 
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increase in noise may allow continued use of the sensor, 
albeit in a degraded mode. Clearly the extent to which we 
need to perform these various tasks depends upon the 
application. If a human operator is available, we may only be 
interested in generating an alarm that tells him to perform 
further tests. In other systems in which back-ups are 
available, we might settle for failure isolation without 
estimation. On the other hand, in the absence of hardware 
redundancy, we may be interested in using a degraded 
instrument and thus would need estimation information. 

Intuitively we can associate increased software system 
complexity with the tasks--i.e, isolation requires more 
sophisticated data processing than an alarm, and estimation 
more than isolation. On the other side, as  we increase failure 
detection capabilities, we may be able to decrease hardware 
redundancy. Also, in some applications we may be able to 
delay isolation and estimation until after an alarm has been 
sounded. In such a sequential structure, one increases 
detector complexity after a failure has been detected, 
thereby reducing the computational burden during normal 
operation. Again the details of such considerations depend 
upon the particular application. 

Another tradeoff involving failure detection system com- 
plexity involves its relation to detection system performance. 
For example, one might expect that one could achieve better 
alarm performance by using a priori knowledge concerning 
likely failure modes. That is, by looking for specific forms of 
system behavior that are characteristic of certain failures, 
one should be able to improve detection performance. Thus, 
it seems likely that alarm performance, as measured by the 
tradeoff between false alarms and missed detections, will be 
improved if we attempt simultaneous detection, isolation, and 
estimation of failures. This tradeoff of complexity vs 
performance is  extremely important in the design of failure 
detection systems. 

In the following sections we will discuss several failure 
detection methods and will comment on their characteristics 
with respect to the issues mentioned in this and the preceding 
section. In addition, in our concluding remarks we briefly 
summarize some of the advantages and disadvantages of the 
various methods and point out several areas for future work. 

In this section we have not attempted to define a general set 
of failure models to be considered, as the various techniques 
are based on quite different failure models. In addition, we 
will also see that there are differences between the 
hypothesized dynamic models for the different methods, i.e. 
modifications of the model (I), (2). These differences--both 
in dynamics and in failure models--are significant in that they 
indicate the basis for each of the methods and thus shed light 
on the relative merits and range of applicability of each 
technique. 

III. 'FAILURE-SENSITIVE' FILTERS 

Our first class of failure detection concepts is aimed at 
overcoming the problem of an 'oblivious filter'. As has been 
noted by many authors [1]-[3], [33], the optimal filter defined 
by (4)-(10) performs well if there are no modelling errors: 
however, it is possible for the filter estimate to diverge if 
there are substantial unmodeled phenomena. The problem 
occurs because the filter 'learns the state too well'--i.e, the 
precomputed error covariance P and filter gain K become 
small, and the filter relies on old measurements for its 
estimates and is oblivious to new measurements. Thus, if an 
abrupt change occurs, the filter will respond quite sluggishly, 
yielding poor performance. Consequently, one would like to 
devise filter designs that remain sensitive to new data so that 
abrupt changes will be reflected in the filter behavior. 

Two well-known techniques for keeping the filter sensitive 
to new data are the exponentially age-weighted filter studied 
by Fagin[I] and Tarn and Zaborszky[2] and the limited 
memory filter proposed by Jazwinski[3]. Others, such as 
increasing noise covariances or simply fixing the filter gain 
are discussed by Jazwinski in [33]. These techniques yield 
only indirect failure information. That is, if an abrupt change 
occurs, these filters will respond faster than the normal filter, 
and one can base a failure detection decision on sudden 
changes of ~. 

It is important to note a performance tradeoff evident in 
this method. As we increase our sensitivity to new data, by 
effectively increasing the bandwidth of the Kalman filter, our 
system becomes more sensitive to sensor noise, and the 
performance of the filter under no-failure conditions de- 
grades. In some cases this can be rather severe, and one may 
not be able to tolerate the degradation in overall system 
performance under no-failure conditions. One might then 
consider a two filter system--the normal mode filter (4)-(10) 
as the primary filter, with this type of failure-sensitive filter as 
an auxiliary monitor, used only to detect abrupt changes. We 
remark that the tradeoff between detection performance and 
filter behavior under normal conditions is a characteristic of 
all failure detection systems and is analogous to the costs 
associated with false alarms and missed detections in 
standard detection problems[41]. 

The techniques mentioned so far in this section are rather 
indirect failure detection approaches. Several methods have 
been developed for the design of filters that are sensitive to 
specific failures. One method involves the inclusion of 
several 'failure states' in the dynamic model (1)-(3). Kerr [25] 
has considered a procedure in which failure modes, such as 
the onset of biases, are included as state variables. If the 
estimates of these variables vary markedly from their 
nominal values, a failure is declared. A two-confidence 
interval overlap decision rule for failure detection using such 
failure states is described and its performance is analyzed in 
[25]. Note that this approach provides failure isolation and 
estimation at the expense of increased dimensionality and 
some performance degradation under no-failure conditions 
since inclusion of the added states effectively opens up the 
bandwidth of the Kalman filter. 

An alternative to the addition of failure states to the 
dynamic model is the class of detector filters developed by 
Beard [4] and Jones [5]. Their work has led to a systematic 
design procedure for the detection of a wide variety of abrupt 
changes in linear time-invariant systems. They consider the 
continuous-time, time-invariant, deterministic system model 

X(t) = Ax(t) + Bu(t) (I I) 

z(t) = Cx(t) (12) 

and design a filter of the form 

d 
"~ ~(t)= A~(t)+ D(z(t)-C~(t))+ Bu(t). (13) 

The primary criterion in the choice of the gain matrix D is not 
that (13) provide a good estimate of x, as it is with observers 
or optimal estimators, but rather that the effects of certain 
failures are accentuated in the filter residual 

y(t) = z(t) - C$(t). (14) 

The basic idea is to choose D so that particular failure modes 
manifest themselves as residuals which remain in a fixed 
direction or in a fixed plane. 

To illustrate the Beard-Jones approach, let us consider a 
simple example from [4]. Suppose we wish to detect a failure 
of the ith actuator, i.e. in the actuator driven by the ith 
component of u. If we assume the failure takes the form of a 
constant bias, our state equation becomes 

~(t) = Ax(t) + B[u(t)+ ue~] 

= Ax(t)+ Bu(t)+ ub,, t >to (15) 

where e, is the ith standard basis vector, b, is the ith column 
of B, and to is the (unknown) time of failure. Suppose we 
consider the case of full state measurement--i.e, let C = / .  In 
this case we obtain a differential equation for the residual 

~,(t) = [A - D]3,(t) + vb,. 06) 

If we choose D = crl + A, we obtain 
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~:(t) = - ~ y ( t )  + vb, 

v(t) = e -~"-'0~ v(to) + v[l - e -°* ] b,. 
O" 

(17) 

Thus, as the effect of the initial condition dies out, 3,(t) 
maintains a fixed direction (b,) with magnitude proportional 
to failure size (v). Note that as we increase o-, thus increasing 
filter gain, the initial condition dies out faster, but the 
magnitude of the steady-state value of 3' decreases. Thus, if 
there is any noise in the system, we cannot make cr arbitrarily 
large. 

In their work Beard and Jones consider the design of such 
filters for an extremely wide variety of failure modes, 
including actuator and sensor shifts and shifts in A and B. 
The initial deterministic analysis for all of these cases was 
considered by Beard[4], while a systematic design procedure 
is given by Jones [5] for the design of the gain D to allow 
detection of several failures modes. Jones'  approach is quite 
geometric in nature, and his formulation allows one to gain 
considerable insight into the detection problem. As pointed 
out in [5], the gain selection problem is quite similar to the 
output decoupling problem and requires the introduction of 
the important concept of 'mutually detectable failure modes'  
in order to answer the question of whether or not one can 
simultaneously distinguish between several types of failures. 
Thus the question of failure isolation is of central importance 
in the design methodology derived in [5]. 

The results in [4], [5] represent perhaps the most thorough 
study of the basic concepts underlying failure detection. The 
tradeoff between detection and filter performance is discus- 
sed in depth in [5] and an attempt is made in [4] to introduce 
the concept of the level of redundancy in a dynamical system. 

As mentioned in the example, the basic design procedure is 
deterministic. However, in this simple example we can see 
how one can take noise into account. If the system (I 1), (12) 
contains noise, we have seen that one may not wish to make 
the scalar cr as large as possible. In fact, one could choose ~r 
so as to minimize the mean-square estimation error in the 
detector filter when there is no failure. In his thesis [5], Jones 
describes a procedure in which one first chooses the structure 
of D for failure detection purposes and then chooses the 
remaining free parameters in order to minimize the estima- 
tion error covariance. Although this yields a suboptimal filter 
design, it may work quite well, as it did in the problem 
reported in [5]. 

In summary, the Jones-Beard design methodology is 
extremely useful conceptually, can be used to detect a wide 
variety of failures, and provides detailed failure isolation 
information. It is suboptimal as an estimator, and if this 
presents a serious problem, one might wish to use the 
detector filter as an auxiliary monitoring system. This appears 
to be only a minor drawback, and the major limitation of the 
approach is its applicability only to time-invariant systems. 

IV. VOTING SYSTEMS 
Voting techniques are often useful in systems that possess 

a high degree of parallel hardware redundancy. Memoryless 
voting methods can work quite well for the detection of 'hard'  
or large failures, and the papers of Gilmore and McKern [6], 
Pejsa[7], and Ephgrave [8] discuss the successful application 
of voting techniques to the detection of hard gyro failures in 
inertial navigation systems. 

In standard voting schemes, one has (at least) three 
identical instruments. Simple logic is then developed to 
detect failures and eliminate faulty instruments, for example, 
if one of the three redundant signals differs markedly from 
the other two, the differing signal is eliminated. Recently, 
Broen[9] has developed a class of voter-estimators that 
possesses advantages relative to standard voting techniques: 
Consider the dynamical system 

x(k  + I) = ~ x ( k )  (18) 

with a triply redundant set of sensors 

y , ( k ) = H x ( k ) + v , ( k ) ,  i =  1 ,2 ,3  (19) 

Broen develops a set of recursive filter equations for 
computing the estimate J?(k) that minimizes 

=± A ~ wj, v;(i)RF'3"j(i) (20) 
i - o l - !  

where R~ is the covariance of the measurement noise vj, and 
3'j is the innovations sequence 

3,j(i) = yj(i) - HO'-~.f(k) .  (21) 

Here wl, is a function of YI(i), y2(i), y~(i) which is large if y~(i) 
is close to the other two y , ( i )  and is small if y~(i) deviates 
greatly from the other two. In this way, one obtains a 'soft '  
voting procedure in which faulty sensors are smoothly 
removed from considerations. This greatly alleviates the cost 
of false alarms, but the price is the on-line computation of the 
filter gain, which is a function of the w~. In addition, the 
limitation of the dynamic model (18) with respect to the 
general model (1) is quite apparent. 

Voting schemes are in general relatively easy to implement 
and usually provide fast detection of hard failures, but they 
are only applicable in systems possessing a high level of 
parallel redundancy. They do not in general take advantage of 
redundant information provided by unlike sensors, and thus 
cannot detect failures in single or even doubly redundant 
sensors. In addition, voting techniques can have difficulties in 
detecting 'soft '  failures, such as a small bias shift. 

V. MULTIPLE HYPOTHESIS FILTER-DETECTORS 
A rather large class of adaptive estimation and failure 

detection schemes involves the use of a 'bank'  of linear 
filters based on different hypotheses concerning the underly- 
ing system behavior. In the work of Athans and Willner[lO] 
and Lainiotis[l 1], several different sets of system matrices 
are hypothesized. Filters for each of the models are 
constructed, and the innovations from the various filters are 
used to compute the conditional probability that each system 
model is the correct one. In this manner, one can do 
simultaneous system identification and state estimation. In 
addition, an abrupt change in the probabilities can be used to 
detect changes in true system behavior. This technique has 
been investigated in the context of the adaptive control of the 
F-gc digital fly-by-wire aircraft by Athans et al. [35] and also 
has been applied to the problem of classifying rhythms and 
detecting rhythm shifts in electrocardiograms. Extremely 
good results in the latter case are reported by Gustafson et al. 
in [36]. 

Techniques involving multiple hypotheses have also been 
used to design failure detection systems. Montgomery, 
Caglayan and Price[12], [13] have used such a technique for 
digital flight control systems and have studied its robustness 
in the presence of nonlinearities via simulations. Recently a 
technique involving a bank of observers has been devised, 
and a successful application to a hydrofoil sensor failure 
problem is reported by Clark et al. in [34]. Also, Wiiisky, 
Deyst, and Crawford [ 15], [ 16] have applied the methodology 
devised by Buxhaum and Haddad in [14] to study failure 
detection for an inertial navigation problem. We will briefly 
describe this technique to illustrate some of the concepts 
underlying the bank of filters approach. We also refer the 
reader to Wernersson[42] for a technique that is similar to 
that discussed in [16]. 

Consider the system 

x(k  + 1)= ~ ( k ) x ( k ) +  w(k) (22) 

z (k  ) = H ( k  )x(k  ) + v(k ). (23) 

We are interested in detecting sudden shifts in certain of the 
components of x, e.g. bias states. We model these shifts by 
choosing the distribution of w appropriately. Let if, . . . . .  jr,} 
be the set of hypothesized failure directions. We then assume 
that w has a high probability of being the usual process noise 
and a small probability of including a burst of noise in each of 
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the failure directions. Thus the density for w(k) is 

poN(0, Q) + ~f, p,N(O, Q + ~df, f',) (24) 

~ , p , = l ,  PoX'P, i = i  . . . . .  r. (25) 
J - o  

Here N(m,P)  is a normal density with mean m and 
covariance P. 

If we hypothesize such a density at each point in time and 
if we assume that x(0) is normally distributed, we have the 
following expression for the conditional density of x (k) given 
z(l) . . . . .  z(k) 

p(x , k )=  ~ "'" '~ p,N('q,,p,). (26) 
~o-o i / - I - O  

Here |= ( io  . . . . .  /~_~) and the density has the following 
interpretation. Let ] = (Jo . . . . .  j,_~) be a random k-tuple where 
j. = i if there is a shift in the f, direction at time s (i = 0 is 
used to denote no shift). Then 

p, = Prob (j = i[z(l) . . . . .  z(k)) (27) 

and ~, and p~ are the mean and covariance of the Kalman 
filter designed assuming j = i ,  i.e. assuming w(s) has 
covariance Q+trJ,,f~,. The l~ can be computed in a 
sequential manner as a function of the various filter 
innovations. We refer the reader to [14]-[ 16] for the details of 
the calculations. 

Note that the implementation of (26) requires an exponen- 
tially growing bank of filters: there are (r + i)* terms in (26). 
To avoid this problem a number of approximation techniques 
have been proposed [14]-[16]. The one used in [16] involves 
hypothesizing shifts only once every N steps. At the end of 
each N step period we "fuse" the (r + !) densities into a 
single density and begin the procedure again. In this way we 
implement only (r + 1) filters at any time. We note that the 
techniques devised in [10]--[12] do not involve growing banks 
of filters, since the number of hypothesized models do not 
grow in time. However, it is possible for all of the filters in the 
bank to become oblivious, and thus shifts between the 
hypotheses may go undetected (see [16], [36] for examples). 
The technique of periodic fusing of the densities and 
initiation of new bank effectively avoids this problem, as 
would designing the original bank using age-weighted filtering 
techniques. 

The technique described above was applied to the problem 
of detecting gyro and accelerometer bias shifts in a 
time-varying inertial calibration and alignment system. The 
results of these tests ate extremely impressive. This is not 
surprising, as the multiple hypothesis method computes 
precisely the quantities of interest--the probabilities of all 
types of failures under consideration. The cost associated 
with such a high level of performance is an extremely 
complex failure detection system. Note, however, that the 
parallel structure of the system allows one to consider highly 
efficient parallel processing computer implementations. In 
addition, the use of reduced-order filters for the various 
failure hypotheses may increase the practicality of such a 
scheme, or one might consider the use of a simpler 
detection-only system to detect failures, with a switch to a 
multiple hypothesis procedure for failure isolation and 
estimation after a failure has been detected. 

However, even if such a failure detection scheme cannot 
be implemented in a particular application, it provides a 
useful benchmark for comparison with simpler techniques. In 
addition, by studying the simulation of a multiple hypothesis 
method, one can gain useful insight into the dynamics of 
failure propagation and detection (see the discussion in [16]). 

One of the earliest techniques for detecting a switch 
between different models was derived by Newbold and 
Ho[52]. They considered the problem of detecting a single 
switch between two dynamic models ('failed' and 'unfailed') 
with different process noise covariances. By eliminating the 
possibility of multiple switches, one immediately reduces the 
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exponential growth in the required number of filters to linear 
growth, since we implement one new filter at each point in 
time based on the hypothesis that the process has just 
changed. Newbold and Ho proposed an implementation that 
eliminated this linear growth by using a decision rule based 
on the sequential probability ratio test (SPRT)[61]. This test 
proceeds as follows: given two hypotheses (for example, the 
process switched at time n or the process did not), we 
compute the a posteriori probabilities of the two models (in 
the same manner as in the other multiple model methods: e.g. 
see [35],[36] and the calculation discussed above in 
connection with equations (26) and (27)). We compare the 
logarithm of the ratio of these two probabilities to two 
thresholds. If it exceeds one threshold or falls below the 
other we terminate the test with a decision corresponding to 
the threshold that is crossed. Until the log likelihood ratio 
exceeds the threshold, we defer decision. The SPRT is an 
extremely powerful test, and we refer the reader to [61] for a 
detailed description of it. We note here only that the SPRT 
minimizes the time to reach a decision for given probabilities 
of making the wrong decisions, e.g. declaring hypothesis 1 
when it is really hypothesis 2 and vice versa. Given this 
property, Newbold and Ho were motivated to propose that 
one perform 'occasional' tests--i.e, we run a single SPRT. 
Once it reaches a decision, we again hypothesize that a shift 
has occurred and start again. We note that this has the same 
flavor as the method proposed earlier in which one 
hypothesizes changes only every N steps. The advantage of 
the Newbold-Ho algorithm is that the size N can vary, 
depending upon actual data. That is we do not start a new test 
until the previous SPRT tells us that nothing happened in the 
preceding interval. As with all such 'occasional' or 'every N 
step' tests, these algorithms may not respond optimally if a 
change occurs in the middle of a test. That is, we may have to 
wait until the next test to detect the change. We refer the 
reader to [52] for details of the above method, for another 
suboptimal approximation, and for the application of this 
technique to a gyro failure detection problem. 

McGarty[23] has developed a method for rejecting bad 
measurements that bears some similarity to the approaches 
just discussed. Each measurement has a binary random 
variable g(k) associated with it. If g(k) = I the measurement 
is 'good', i.e. the measurement contains the signal of interest, 
while g(k) = 0 denotes a bad data point, the measurement is 
pure noise. McGarty devises a maximum likelihood approach 
for estimating the values of the exponentially growing set of 
possibilities (g(i) = 1 or 0, i = 1 . . . . .  k). He also allows these 
variables to have a sequential correlation, i.e. knowing that 
the present measurement is good or bad says something 
about the next observation. A computationally feasible 
approximation method is devised and simulation results are 
described. We refer the reader to [23] for details. We also 
note that Nahi[54] considered the same problem formulation 
as McGarty, but he considered the problem of finding the best 
linear estimator of the state of the system. Thus, he obtained 
a linear filter, similar to a Kalman filter, but with dynamics 
appropriately modified to take into account the a priori 
probability of any measurement containing only noise. 
Although the solution is far simple than McGarty's, it does 
not remove bad measurements or provide any adaptivity in 
the filter structure. 

Recently, Athans et al.[51] have also considered the 
problem of designing an estimator that can detect and remove 
bad or false measurements. Their approach is Bayesian in 
nature--i.e, an estimate is generated of the a posteriori 
probability that a given measurement is false. The method of 
calculation of these pseudo-probabilities is quite similar to 
that used in the other multiple hypothesis methods (see 
[10]-[14]). The reader is referred to [51] for details of the 
analysis and for a discussion of some successful simulation 
results. 

VI. JUMP PROCESS FORMULATIONS 
The problem of the detection of abrupt changes in 

dynamical systems suggests the use of jump process 
techniques in devising system design methodologies (see [39], 
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[49]-[50] for general results on jump processes). One models 
potential failures as jumps, characterized by a priori 
distributions which reflect initial information concerning 
failure rates. The size of the possible failures are usually 
taken to be known. One could, however, model failure 
magnitude as a random variable. This leads to a compound 
jump process formulation which greatly complicates the 
desired analysis. In any event, taking such a jump process 
formulation, one can devise failure-sensitive control laws and 
methods for computing the conditional probability of failure. 
Control problems of this type have received a great deal of 
attention in the literature. Sworder and Robinson[17]-[20], 
[37] and Rather and Luenberger[21] have considered the 
design of control laws which take into account the possibility 
of sudden shifts in system matrices. The results they have 
obtained are for the full-state feedback problem with no 
system randomness other than the jumping of the system 
matrices among a finite set of possible matrices. 

Davis[22] has utilized nonlinear estimation techniques to 
solve a fault detection problem. His formulation is as follows: 
consider the scalar stochastic equations 

dx(t) = a(t)x(t) dt + g(t) dr(t) (28) 

d y e  h(t)x(t)dt +dw( t )  (29) 

where w and v are independent Brownian motion processes 
and 

a(t) = ao(t)[i - 6(t)] + a,(t)l~(t) (30) 

where 

~(t) = t -- r (31) 

and T is a random variable. Here we interpret ao as the 
unfailed dynamics, and a, represents the failure mode. Davis 
derives the optimal, infinite-dimensional equations for the 
computation of the conditional mean of x and the conditional 
probability 

~(tlt)=Pr[t>-Tiy(s), O < s < t ] .  (32) 

An implementable approximation is described in [22], but 
evaluation of its performance has not as yet been made. 

Note that Davis' method leads to an estimate of x that is 
suboptimal under no-failure conditions. Chien[24] has 
devised a jump process formulation that avoids this difficulty 
for the problem of the detection of a jump or a ramp in a gyro 
bias. He considers the dynamical model. 

Jr(t) = tax(t) + w(t ) (33) 

where w is a white noise process. Three hypotheses are 
conjectured for the form of the gyro output. 

Normal Mode /4o: 

z(t) = x(t) + v(t) Vt (34) 

Bias Mode H,: 

z( t )=x(t)+m6(t)+ v(t) t > T (35) 

Ramp Mode H2: 

z(t) = x ( t ) + n f t - T ) 6 ( t ) + v ( t )  t>  T (36) 

where n and m are unknown constants, v is white noise, T is 
the time of failure, and 6(t) is as in (31). 

Chien's approach is as follows: design a filter based on Ho 
(which will thus yield the optimal estimate for t < T, 
assuming no false alarms occur), and determine the 
steady-state effect of the degradations H, and H2 on the filter 
residuals. If one then hypothesizes a failure rate q-- i .e .  

Prob (T > t) = e-" (37) 

and if one further assumes a nominal size for the bias m, one 
can then compute an approximate stochastic differential 
equation for Pr(H,]z(s), s <-t), in which the input to this 
equation is the residual y of the Ho filter. The details of the 
analysis are described in [24]. 

For his problem Chien is able to demonstrate that his 
detection procedure--based on the assumption of a nominal 
value for the bias failure m--has  the capability of detecting 
biases larger than m and also can be used to detect ramps 
(mode H0. Of course, the delay times until detection in these 
cases are greater than if one implemented a filter based on the 
proper bias size or if one were looking for a ramp, indicating 
the potential usefulness of estimating the failure magnitude. 
The major advantages of Chien's approach are the simplicity 
of the detector, implementation of a scalar stochastic 
equation, and the fact that one obtains an estimate of 
precisely the quantity of interest--the conditional probability 
of failure. The simplicity of the scheme may, in fact, make it a 
great deal more robust in the face of system modelling errors, 
such as the use of an extremely simplified gyro error model, 
than more sophisticated approaches. Also, this approach 
leads to no degradation in performance prior to detection of 
the failure. In addition, the use of a probabilistic description 
of the time of failure allows one to avoid the problem of the 
oblivious filter--i.e, the fact that a failure can occur at any 
time has been incorporated in the design, which therefore will 
remain sensitive to new data. 

The drawbacks of the scheme are the use of a fixed bias 
size and the use of the steady-state effect of the failure on the 
filter residual. The first of these may not be too much of a 
problem, as Chien as pointed out, but the second may cause 
difficulties. Specifically, this limits the approach to time- 
invariant systems and filters. In addition, as the transient 
effect of the failure has been ignored, it may be difficult to 
make quick detections of certain changes, i.e. we may have to 
wait until the transient dies out. In the next section we will 
discuss an approach (the GLR method) which has several 
concepts in common with Chien's approach and which allows 
one to overcome these two drawbacks, at the cost of added 
computational complexity, of course. 

In summary, jump process formulations appear to be quite 
natural for failure detection problems. One usually makes 
approximations in the analysis in order to obtain implement- 
able solutions. These simplifications impose some limitations 
on the capabilities of the designs, but there is at present no 
systematic analytical procedure for evaluating these limita- 
tions or for studying tradeoffs between design complexity 
and system performance. 

VII. INNOVATIONS-BASED DETECTION SYSTEMS 
Chien's failure detection technique can also be placed in 

the class of failure detection methods that involve the 
monitoring of the innovations of a filter based on the 
hypothesis of normal system operation. In such a configura- 
tion the overall system uses the normal filter until the 
innovations monitoring system detects some form of aberrant 
behavior. The fact that the monitoring system can be 
attached to a filter--controller feedback system is particularly 
appealing, since overall system behavior is not disturbed until 
after the monitor signals a failure and since the monitoring 
system can be designed to be added to an existing system. 

Mehra and Peschon[26] have suggested a number of 
possible statistical tests to be performed on the innovations. 
One of these is a chi-squared test which was applied in 
[15], [16] by Willsky, Deyst and Crawford. Let v(k) be the 
p-dimensional innovations for the filter defined by (4)--(10). If 
the system is operating normally, the innovations is 
zero-mean and white with known covariance V(k). In this 
case the quantity 

I(k)= ~ ~/'(j)V-'(j)y(j) (38) 
t - / - N + I  

is a chi-squared random variable with Np degrees of 
freedom[26], [15], [16]. If a system abnormality occurs, the 
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statistics of 7 change, and one can consider a detection rule 
of the form 

i ( k ) >  • = > FAILURE 

I ( k ) ~  • = > NO FAILURE. (39) 

With the aid of chi-squared tables, one can compute the 
probability PF of false alarm as a function of the innovations 
window length N and the decision threshold •. The 
probability P~, of correct detection depends upon the 
particular failure mode as indicated in [16] and the discussion 
of the GLR approach to follow. We note that for a given 
failure mode, as N increases the probability of correct 
detection may decrease--i.e, by averaging a larger number of 
residuals we smooth out the effect of a failure on y, and the 
detector may become somewhat oblivious, or at the very best 
respond quite slowly, to new data. On the other hand, too 
small a value of N may yield an unacceptably high value of 
PF. 

The implementation of the chi-squared test (38), (39) is 
quite simple, but, as one might expect, one pays for this 
simplicity with rather severe limitations on performance. As 
described in [15], [16] this method was applied to the same 
inertial calibration and alignment problem to which the 
Buxbaum-Hadded multiple hypothesis approach [14]--[16], 
described in Section V was applied. The performance of the 
chi-squared test was mixed. The method is basically an alarm 
method--i.e, the system (38), (39) makes no attempt to isolate 
failures--and one finds that those failure modes that have 
dramatic effects on 3' are detectable by this method; however 
more subtle failures are more difficult to detect with this 
simple scheme. Comparing the performance of the multiple 
hypothesis and chi-squared systems, we see that in some 
cases we can obtain superior alarm capabilities if we 
simultaneously attempt to do failure isolation and estimation. 
One can obtain some failure isolation information by 
considering the components of 3' separately (this may be 
especially useful for sensor failures), and we refer the reader 
to [ 15], [ 16] for a detailed discussion of this and other aspects 
of the chi-squared method. 

Another innovations-based approach, developed by 
Merrill [27], is motivated by a desire to suppress bad sensor 
data. Merrill devises a modification of the least squares 
criterion in order to suppress extremely large residuals, 
which are given a very large weighting in the usual least 
squares framework, and he applies his methodology to a 
power system application. The use of weighted residuals tests 
(as in {38]), combined with Merrill's nonquadratic criterion 
were used by Schweppe, Hanschin et a1.[62], [64] for bad 
data analysis in static power system estimation problems. 
Dynamic versions of these concepts were briefly considered 
by Merrill[27], and Peterson [63] has extended the 
Schweppe-Handschin technique to the case of bad data 
suppression for dynamic systems. This method essentially 
involves performing a static test at each point in time. 
incorporating the new measurement and the predicted 
estimate of this measurement based on previous data, 
regarded as an additional measurement of the present state. 
We refer the reader to [63] for details. 

A final technique in this category has been studied by 
several researchers--Willsky and Jones[28], [29], McAulay 
and Denlinzer[30], Deyst and Deckert[31], Sanyal and 
Shen[32], and Chow, Dunn and Wiilsky[38]--and we will 
describe the most general formulation of the approach, 
developed in [28], [29]. This technique, which we call the 
generalized likelihood ratio (GLR) approach, was in part 
motivated by the shortcomings of the simpler chi-squared 
procedure. The GLR approach, which can be applied to a 
wide range of actuator and sensor failures, makes an attempt 
to isolate different failures by using knowledge of the 
different effects such failures have on the system innova- 
tions. The method provides an optimum decision rule for 
failure detection and provides useful failure identification 
information for use in system reorganization subsequent to 
the detection of a failure. In addition, one can devise a 

number of simplifications of the technique and can study 
analytically the tradeoff between GLR complexity and GLR 
performance. 

Consider the basic dynamical model (!)-(3). The following 
are 4 possible modifications of these equations that incorpo- 
rate certain sudden system changes (see Willsky and 
Jones[28],[29] and Gustafson, Willsky and Wang[36] for 
physical motivation for these and other failure modes of the 
same general type) 

Dynamics Jump 

x (k  + l )=~P(k )x ( k )+  B ( k ) u ( k ) +  w ( k ) +  ~ .. . . . .  (40) 

Here v is an unknown,n-vector, 0 is the unknown time of 
failure, and 8u is the Kronecker delta. Such a model can be 
used to model sudden shifts in bias states, as in the inertial 
problem studied in [15], [16]. 

Dynamic Step 

x(k + !) = ¢~(k)x(k) + B ( k ) u ( k )  + w(k )  + t,o'~ ..... (41) 

Here cr,~ is the unit step 

1 i>~j o',j = (42) 
0 i < j .  

This model can be used to model certain actuator failures 
(compare to the Beard-Jones example in Section III; see 
equation (15)). 

Sensor Jump 

z ( k  ) = H x ( k  ) + Ju(k  ) + v(k ) + u$~.,. (43) 

We can use this to model bad data points. 
Sensor Step 

z(k) = H x ( k )  + Ju(k)  + v(k) + ~rl.,. (44) 

Sudden changes in sensor biases fit into this model. 
By the linearity of the system (!)-(3) and the filter (4)-410), 

one can determine the effect of each of the failure modes on 
the innovations. The general form is 

y (k )  = G(k :  O)v + ~(k)  (45) 

where ~(k) is the filter innovations if no failure occurs, and 
the matrix G can be precomputed (see [29l, [38]). This matrix. 
which is different for each of the four cases (40)-(44), is 
called the failure signature matrix and provides us with an 
explicit description of how various failures propagate 
through the system and filter. 

The full-blown GLR method involves the following: we 
assume we are looking for one of the four classes of failures 
and have computed the appropriate signature matrix. Given 
the residuals, we compute the maximum likelihood estimates 
of v and 0. and, assuming that these estimates are correct, we 
compute the log-likelihood ratio for failure vs no failure (see 
Van Trees [41] for a general discussion of GLR methods and 
see Middleton and Esposito [53l for some detailed analysis of 
the utility of GLR). The implementation of the full GLR 
requires a linearly growing bank of matched filters, comput- 
ing the best estimates of v assuming a particular value of 
o ~ { i  . . . . .  k} .  

A number of remarks can be made concerning the GLR 
system. We note that, as with other methods such as 
Buxbaum-Haddad or Chien, the inclusion of the variable 0 to 
indicate our uncertainty as to the time of failure keeps the 
detection system sensitive to new data. However, it is the 
estimation of 0 that causes the growing complexity problem. 
On the other hand, even if the full GLR is not implementable, 
it can serve as a benchmark for other schemes and can in fact 
be used as a starting point for the design of simpler systems. 
One simplification that eliminates the growing complexity is 
the restriction of the estimate of 0 to a window 

k-N~O~k-M 
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where the lower bound is included to limit complexity, and 
the upper bound is set by failure observability and false alarm 
considerations. Successful simulation runs with N = M (i.e. 
when we don't optimize 0 at all and have only one matched 
filter for ~) are reported by Willsky and Jones in [29]. We 
remark only that the price one pays for 'windowing' the 
estimate'of 0 is in a reduction in the accuracy of the estimate 
of u. For example, in the case of N = M, we often are able to 
detect failures extremely quickly, but if 0 = k - N is not the 
correct time of failure, the estimate of u may be severely 
degraded, e.g. our estimate of the slope of a ramp changes as 
we change our estimate of the time at which it started. We 
note that the estimation of 0 is similar to time-of-arrival 
estimation problems that arise in various applications, and 
refer the reader to Van Trees [44] for a general discussion of 
several techniques. 

Also, we note that even if the physical system and filter 
are time-invariant, the GLR monitoring system is time- 
varying, as the failure signature G includes transient effects. 
In some cases one may be able to neglect these and utilize a 
simpler steady state signature. This is quite similar to Chien's 
use[24] of the steady-state effect of the failure on the 
residuals, and the criticisms of that approach, given in 
Section VI, apply here as well. 

One can also simplify the implementation by either 
partially or completely specifying the failure magnitude ~. 
Constrained GLR (CGLR) is based on the assumption that 

v = aL (46) 

where a is an unknown scalar and ~ is one of r possible 
failure directions. This technique is described in [29]. If we 
completely specify v 

v = uo (47) 

we obtain the simplified GLR (SGLR) algorithm which is 
extremely simple to implement, as we have completely 
eliminated the need for the matched filters to estimate u. The 
use of specified failure sizes is similar to that proposed by 
Chien[24], although in SGLR one can use the time-varying 
failure signature, which should aid in failure detection. As 
initial results for the detection of electrocardiogram arrhyth- 
mias indicate (see Gustafson et al. [36]), the estimation of u is 
not nearly as important for detection as the matching of 
failure signatures. Also, by the use of several values of Uo (i.e. 
by implementing several parallel SGLR's), one can achieve a 
high level of failure isolation without a great deal of 
additional software complexity. In addition, one could 
consider a 'dual-mode' procedure in which SGLR is used for 
alarm and isolation, with full GLR used only afterward in 
order to estimate the magnitude of the failure. 

We note that the use of assumed failure sizes combined 
with SPRT tests on the residuals, i.e. essentially SGLR with a 
two threshold test, was used by Dcckert et al. in [59], [60] to 
design a sensor failure detection system for the NASA F8 
Digital-Fly-By-Wire aircraft. In this system, the determina- 
tion of the failure time 0 was greatly simplified, since 
dnal-redundant sensors were available. Thus, a discrepancy 
between the two like instruments was used to 'trigger' the 
initiation of SPRT's that used filter residuals, as well as other 
differences among the sensed quantities, to decide which 
instrument actually failed. This combination of part-voting, 
part-estimation/detection leads to major computational simp- 
lifications. We refer the reader to [59], [60] for details. 

The various simplifications of GLR, as well as full GLR, 
are amenable to certain analysis, such as the calculation of 
Pp, Pa and, at least for SGLR, the expected time delay in 
detection. By performing such analyses, one can study in 
detail the tradeoff between complexity and performance. A 
methodology for such comparisons is presently being 
developed and is being applied to an aircraft failure detection 
problem. Initial results are reported by Chow et al., in [38], 
and a description of a detailed methodology will be reported 
in the near future, (see Bueno et a!.[43]). In addition to the 
calculation of PF and PD, the comparison methodology 
reported in [43] includes the computation of cross-detection 

probabilities--i.e, the probability of detecting a failure of 
type A when a failure of type B has occurred. Such 
information can be useful in designing failure isolation 
procedures and also in determining if failure detector A can 
be successfully utilized as an alarm for failures of type B. 
This can lead to substantial simplifications in a failure alarm 
system. Also, we refer the reader to [29], [36] and [38] for 
successful simulations of the GLR method. 

Presently the GLR method is being extended to other 
failure modes, such as: 

Hard-Over Actuator Failure 

x (k  + 1) = dP(k)x(k) + [B + Mo'~.,.,Ju(k) + w(k) .  (48) 

With this model we can take into account complete (or 'off') 
failures of certain actuators. For example an off failure of the 
ith actuator can be modeled by choosing M all zero except 
for the ith column, which is taken to be the negative of the 
ith column of B. The GLR detector for (48) is presently under 
development[38], [43], and we note that this model is more 
difficult than the others as the effect of the failure is 
modulated by the input values u(k) .  

Increased Process Noise Failures 

x (k  + !) = ep(k)x(k) + B ( k ) u ( k )  + w(k)  + 6(k)cr~ ..... 
(49) 

Here ~ is additional white process noise. 
Hard-Over Sensor Failures 

z (k  ) = H x ( k  ) + Ju(k  ) + v(k  ) + [ M x ( k  ) + su(k  )]o~.°. 
(50) 

Here the failures are modulated by u and x, and a failure of 
the ith sensor is modeled by choosing the ith rows of M and 
S appropriately. 

Added Sensor Noise Failures 

z ( k ) = H x ( k ) + J u ( k ) + v ( k ) + 6 ( k ) c r ~ + , . , .  (51) 

The analysis of these failure modes is presently being 
performed[38],[43], and it is anticipated that SGLR al- 
gorithms will also be developed. 

In addition to these failure modes, one can develop 
additional models along these lines for particular applica- 
tions. In particular, we have developed several additional 
models similar to those described by equations (40)-(44) for 
our work on the detection and classification of arrhythmias in 
electrocardiograms. The results reported in [36] are rather 
striking, as in all the tests performed we observed no false 
alarms, detected all rhythm changes immediately, with no 
incorrect estimates of 0, and classified all rhythm changes 
correctly. These tests utilized the full GLR approach and 
have provided useful insight into the characteristics of the 
method. For example, the use of maximum likelihood 
estimates of u and 0 precludes the use of a priori statistics on 
these variables. In the ECG problem, one is quite interested 
in accurate estimates of v, and one also can come up with 
reasonable a priori statistics on u based on physical 
arguments. Thus, it may pay to incorporate such a priori 
statistics into the GLR system, and this can be done rather 
easily by proper initialization of the matched filters estimat- 
ing v. On the other hand, for the ECG problem one does not 
want to look for abrupt changes at one point in the record 
more than at another, and thus it does not make sense to 
include a priori statistics on 0. In fact, one can argue that 
inclusion of a priori failure information tends to discount the 
observed data in order to avoid false alarms, unless failures 
are extremely likely, and one should probably avoid the 
inclusion of such information unless one is especially worried 
about false alarms. However, if one wishes to use such data, 
one can utilize the interpretation of the likelihood ratios as 
ratios of conditional probabilities of failure times in order to 
determine the appropriate modification of GLR[29]. 

Finally, we note that the GLR system provides extremely 
useful information for system compensation subsequent to 
the detection of a failure. For example, one can utilize the 
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GLR-produced estimates of v and 0 to determine an optimal 
update procedure for the filter estimate and covariance [29]. 
Once this update has been performed, the GLR system can 
be used to detect further failures, thus allowing the detection 
of multiple events. We refer the reader to [29], [38] for further 
discussions of the use of GLR-produced information in the 
design of failure compensation systems. 

VIII. CONCLUSIONS 
In this paper we have discussed a number of the issues 

involved in the design of failure detection systems. We have 
also reviewed a variety of existing failure detection methods 
and have discussed their characteristics and design tradeoffs. 
The failure detection problem is an extremely complex one, 
and the choice of an appropriate design depends heavily on 
the particular application. Issues such as available computa- 
tional facilities and level of hardware redundancy enter in a 
crucial way in the design decision. For example, as we have 
mentioned, the use of a sophisticated failure detection- 
compensation system may allow one to reduce the level of 
hardware redundancy without much of a loss in overall 
system reliability. 

Let us say a few words about the relative merits of the 
various failure detection methods described. Of course the 
most reliable means of failure detection is straight voting 
among like instruments. In this case one never runs into 
errors introduced by comparing the outputs of dissimilar 
devices. However, one pays the price of hardware redun- 
dancy in order to implement a voting scheme. In addition, 
voting has its built-in limitations. Like instruments may not 
be exactly alike, and one may have to use other instruments 
to compensate for these discrepancies. For example, 
redundant accelerometers may be mounted in different places 
in an aircraft and one must use rate gyro information to 
subtract out rotational effects. In addition, voting cannot be 
used to detect failures that affect both instruments in the 
same way, e.g. common power supply failures, common 
thermal effects, etc., and once a single instrument in a triad 
has failed, we can no longer perform failure detection by 
voting. Finally, voting techniques may have difficulties in 
detecting subtle degradations in instrument behavior. 

The remaining techniques discussed in this paper are aimed 
at some or all of the above drawbacks of voting techniques. 
Of course, they all have their own limitations. In the first 
place, the use of indirect information necessarily leads to 
higher false alarm and missed detection probabilities, and the 
price one pays in order to keep these values small is 
computational complexity. Much of this complexity arises 
from the fact that one must detect when  a change occurs. If 
one uses a dual-redundant system--as proposed by Deckert 
et al., in [59], [60J--one can use a direct comparison to trigger 
a more sophisticated identification technique. This can 
greatly reduce the computational burden. For example, the 
growing bank of filters for the multiple hypothesis and GLR 
methods can be eliminated. This tradeoff between hardware 
and software complexity is certainly deserving of further 
study. 

There are a number of key issues that must be considered 
in comparing the merits of the various failure detection 
methods. Among these, the following fall out as being of 
obvious importance 

Types of failure modes that can be considered 
Complexity in implementation 
Performance, as measured by false alarms, delays in 
detection, etc. 
Robustness in the presence of modelling errors. 

As discussed by Beard [4] and Jones [5], the detector filters 
described in Section III can be used to detect an extremely 
wide variety of system failures. In addition, Jones has 
considered the problem of the distinguishability of failure 
modes and has provided an analytical framework in which 
one can answer this question. This is essentially an 
observability issue, and Jones'  work represents the first 

major effort in this area. As mentioned earlier, a minor 
drawback with this method is its suboptimality in producing a 
state estimate, while a major limitation is its applicability only 
to time-invariant systems. 

Of all of the methods, the multiple hypothesis techniques 
of Section V are the most complex and, if implemented in 
full, will yield the best performance for the widest class of 
failures. This is true, since all of the failure models 
considered in this paper can be modelled as abrupt switches 
among several hypothesized models. As the results of Athans 
et aL [35] and Gustafson et  al. [36] indicate, these methods are 
particularly well-suited to the detection of changes that 
manifest themselves via switches in system dynamics or 
parameters. The potential of multi-filter methods is suffi- 
ciently great that serious consideration should be given to the 
development of useful approximate methods, such as those 
used by Gustafson et a1.[36], Willsky et aL[15],[16], and 
Newbold and Ho[52]. 

As mentioned in Section VI, jump process formulations are 
particularly natural for the failure detection problem. The 
results of Chien [24] indicate the power of this framework, 
but the tractability and performance of methods such as that 
of Davis[22] for complex systems remains to be demon- 
strated. 

The innovations- based detection systems offer several 
advantages. In the first place, they can be adapted to utilize 
the residuals of an existing filter with relative ease, and a wide 
range of procedures--from the simple statistical tests of 
Mehra and Peschon [26] to the more complex GLR method of 
Wiilsky et al. [28], [29], [38], [43]---are available, offering 
various tradeoffs between performance and complexity. In 
addition, since we implement a Kalman filter based on no 
failures, we suffer no performance degradation prior to 
detection, unlike, for example, the Beard-Jones approach. 
The GLR method is particularly amenable to detailed 
analysis (see [381, [43], [65]) of performance and allows the 
study of failure mode distinguishability in an informational 
sense, much as in the work of Jones[5]. As discussed in 
Section VII, GLR performance is quite outstanding for 
failure that can be modelled as additive effects. This, 
combined with the range of implementations available and its 
analytical tractability, make it appealing. The method is being 
extended to the case of parametric failures, as in (48)-(51), 
but in these cases the multi-filter methods of Section V 
should prove to be theoretically superior. The advantage of 
GLR in this case may be in its implementability. 

Finally, we note that the issue of robustness of these 
methods has not been discussed in this paper. This remains 
an extremely important open question that must be answered 
before one can completely assess the various methods. It is 
fair to say that the more complex the system model and the 
more model-dependent the technique, the more danger there 
is that one will run into sensitivity problems. This is not to say 
that sophisticated techniques cannot be used in practice, but 
rather it does indicate that in using such techniques one 
should take care in defining the dynamic model to be used 
and, as a rule, should use as simple a model as possible. The 
results of Gustafson et al.[36] using GLR and multifilter 
methods on real ECG data and the work Deckert et 
al. [59], [60] using a SPRT-based test for failure detection for 
the F8 aircraft indicate that such methods are most certainly 
feasible in practice. 

The development of failure detection methods is still a 
relatively new subject. At this time most of the work has 
been at a theoretical level with only a few real applications of 
techniques [6]-[9], [I 3], [3 I l, [36], [59]-[60]. Much work is yet 
to be done in the development of implementable systems 
complete with a variety of design tradeoffs. Work is needed 
in the development of efficient techniques for failure 
compensation and system reorganization. In addition, as 
mentioned above, there is a great need for the analysis of the 
robustness of various failure detection systems in the 
presence of variations in system parameters and in the 
presence of modeling errors and system nonlinearities. These 
and other issues, such as the incorporation of fault-tolerant 
computer concepts into an overall reliable design methodol- 
ogy, see Deyst[40], await investigation in the future. 
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