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The Modeling and Estimation of
Statistically Self-Similar Processes
In a Multiresolution Framework

Michael M. Daniel,Student Member, IEEEand Alan S. Willsky,Fellow, IEEE

Abstract—Statistically self-similar (SSS) processes can be usedin vacuum tubes and electrical components [2], traffic in
to describe a variety of physical phenomena, yet modeling these communications networks [3], and biological and economic
phenomena has proved challenging. Most of the proposed modelstime series [4], [5]. Processes witli f-like power spectra are
for SSS and approximately SSS processes have power spectra P . . .
that behave asl/f7, such as fractional Brownian motion (fBm), also used to genera'te images that model real-world objects like
fractionally differenced noise, and wavelet-based syntheses. TheClouds and mountain ranges [6], [7].
most flexible framework is perhaps that based on wavelets, A number of models have been proposed that possess
which provides a powerful tool for the synthesis and estimation |ong-range dependence amgdf spectra: One is the class of
of 1/f processes, but assumes a particular distribution of the g5 qtional Brownian motions [4], which are zero-mean statis-
measurements. An alternative framework is the class of mul- . L . ’ . .
tiresolution processes proposed by Choet al. [1994], which has pcally self-similar Gaussian random processes with sta‘uqnary
already been shown to be useful for the identification of the increments. Another class of models is given by the fractional
parameters of fBm. These multiresolution processes are defined differencing and integration of discrete-time white noise [1],
by an autoregression in scale that makes them naturally suited to [8], [9], which yields discrete-time processes that are closely
the representation of SSS (and approximately SSS) phenomena, rg|ated to samples of fractional Brownian motion. A third class
both stationary and nonstationary. Also, this multiresolution . L
framework is accompanied by an efficient estimator, likelihood (_)f models, motlvgted by the voltage response of a transmission
calculator, and conditional simulator that make no assumptions lin€ to a white-noise current source, was proposed by Keshner
about the distribution of the measurements. In this paper, we [2]. A more recently introduced class a&f f models, which
show how to use the multiscale framework to represent SSS can approximate the statistics of the three aforementioned
(or approximately SSS) processes such as fBm and fractionally el is based on the observation that the wavelet transform

differenced Gaussian noise. The multiscale models are realized K tati d imatel hit 2
by using canonical correlations (CC) and by exploiting the self- makes stationary and approximately whitens apty process

similarity and possible stationarity or stationary increments of [5], [10], [11]. This framework was recently extended in [12]
the desired process. A number of examples are provided to with the introduction of bi-orthogonal wavelets as a method for

demonstrate the utility of the multiscale framework in simulating  more accurately synthesizing fractional Brownian motion. The
and estimating SSS processes. relative advantages of these models depend on the particular
Index Terms—Canonical correlations, fractional Brownian mo- application and whether one is interested in synthesizing,

tion, multiscale, self-similarity. estimating (smoothing and interpolating), or determining the
parameters ot/ f processes. Wornell showed in [5] how the
|. INTRODUCTION wavelet-based models can be used to efficiently synthesize,

estimate, and determine model parameterd fgrtime series.

Aw'de variety of physical phenomena are described By,q efficiency follows from efficient implementations of the
random processes that are statistically self-similar (SS§jscrete wavelet transform. However, the estimation algo-
A common characteristic of such processes is that the POWgfms based on this transform require that all of the measure-
spectral densities behave agf”, particularly in the range ments are equally spaced and that the measurement noise have
0 < v < 2. Another common characteristic is long rang@qnstant variance. Also, for regular wavelets, one must account
dependence, in either the process or its increments. THe hoyndary effects at the edges of the interval of interest.
long-range dependence is usually manifested by a covarianc@n, yjternative framework for the modeling and processing
function »(r) that decreases hyperbolically, i.e(7) ~ 77 ¢ 1/¢ signals is the multiresolution stochastic processes
for somea > 0, which is closely related to havmg a Spec”“”ﬂ)roposed in [13]. These processes are indexed by the nodes
described by a power law. Examples of physical phenomegg yees organized into scales, where the leaf-nodes of the
well described byl/f processes are average temperatUffse represent the finest scale features of interest. Much like
distributions [1], [2], annual flow rates in rivers [1], the noisgne \yavelet models, these models are well-suited to the sta-
Manuscript received December 10, 1997; revised October 17, 1998. Ttistical self-similarity and possible nonstationarity of thef
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models to compactly account for the long-range dependencies. f; < f.. The nonstationarity of the process is evidenced
of 1/f processes. More importantly, these multiresolutionear f = 0, where (3) implies infinite power in the low-
processes are accompanied by very efficient estimation, sirfriequency components af(¢).
lation (conditional [14] and unconditional), and likelihood cal- The nonstationary covariance function in (1) masks a more
culation [15] algorithms. These algorithms allow for measur@legant definition of fBm in terms of its increments process.
ments that are at different resolutions are irregularly spacAdorocessz(t) is an fBm with Hurst exponert < H < 1 if
or are corrupted by measurement noise with nonconstamd only if: 1) z(¢) is Gaussian and has zero mean;z2})
variance. This flexibility is necessary for many application§ias stationary increments meaning that
like remote-sensing and geophysical inverse problems [16]. 27

In this paper, we demonstrate that the multiresolution sto- Bl + ) = 2(t)7] = 9(s),
chastic processes of [13] can accurately model a range of S8%reg(s) is called thestructure functionand 3)z(t) is self-
andl/ f processes. In particular, we show that samples of fBrsimilar, which impliesg(as) = a? g(s). The self-similarity
discrete fractional Gaussian noise (DFGN), and fractionalbf the process implies that the structure functigis) must
differenced Gaussian noise (FDGN) can be represented to algive the formg(s) = o2|s|?”. The covariance function in
trary accuracy by the multiresolution models. Multiresolutiofil) follows from this structure function and the stationary
models representing fBm that are based on random midpaimtrements property.
displacement and the Haar wavelet basis were described ifhe long-range dependence of the increments of fBm for
[17], [18], but these models are limited to low-order approxi# > 1/2 is manifested in the correlations among these
mations with no clear method for refining the approximationgicrements. Consider the increments process
This paper develops a more general class of models that A
provides an optimal tradeoff between the model order and the xA_(t) =t +_ Ab) - +(®)- . ]
accuracy of the representation. The realization algorithm f6P" @ny At > 0, this process is stationary and its covariance
these models is based on canonical correlations (CC) [19], [gB]ction is [21]

and it exploits the statistical self-similarity and stationarity (or _ () = o?(Ag)?H

stationary increments property) of tii¢f processes proposed — “* 2

by Mandelbrot and Hosking. Representing these processes ' ‘L N 1‘2H N ‘L B 1‘2)’—{2‘ T ‘2[—[ )
within the multiresolution framework not only allows for ac- At At At

curate statistics but also for efficient and flexible processing. In ~ o2 (At)2H H(2H — 1)|r[2H—2 (4b)

Section Il, some relevant properties of fBm, discrete fractional

Gaussian noise (DFGN) and fractionally differenced Gaussidncre the approximation follows from a Taylor Series ex-

noises (FDGN) are described. In Section Ill, the class spnston for|r| > At. This approximation shows that the

multiresolution models is defined. Next, in Sections IV and Vcorrelation between increments decays polynomially with dis-
: : L . té}nce and is positive fot/2 < H < 1 and negative for

an algorithm based on CC is described that provides accur €y < 1/2. Also, the power spectral density ofs(¢) is

multiresolution representations of fBm, DFGN, and FDG ' ; P P y ol

: ; 2H-1 -1 i
The algorithm is justified with examples in Section VI. ConProportional tol/f for f < At~! [21]. This spectrum

clusions and outstanding problems are provided in Section V?IhOUId noF be surprising, given ) anq thag(t)/At IS
an approximate derivative of fBm. The discrete-time process

[I. FRACTIONAL BROWNIAN MOTION zaln] 2 xa(nAt) is commonly referred to as DFGN. The
AND FRACTIONAL GAUSSIAN NOISES polynomial decay in the covariance of DFGN suggests sta-
.. — . A
A fractional Brownian motion (fBm) is a Gaussian proceséstical self-similarity. In fact, fora,[n] = am—[2n + 1] +
with zero mean and covariance [4] am—1[2n] With ag[n] = za[n], the covariance ok, is [22]
o? Ta,, [k] = 22Hm7’9m (K] )
E[(t = [t*" |t — 5?7 0<H<L1. . o . .
(O] 2 [+ 1 [#= s, This self-similarity will be invoked when applying the real-

(1) ization algorithm of Section IV.
Such a process is completely characterized:lpy(1)?] = o2 Another class of discrete-time processes that possess long-
and the Hurst exponenf]. The covariance and variancefange dependence is the FDGN's posed by Hosking [8] and
functions are plotted in Fig. 1 fos2 = 1 and three values by Granger and Joyeux [9]. A fractionally differenced noise is
of H, where H = 1/2 corresponds to Brownian motion.defined as the response of a linear time-invarient (LTI) system
Fractional Brownian motion is SSS in the sense that with sy?tem functic;r(l—hz—l)—h tofa white noisebinpuw[n]. g
P H For —1/2 < h < 1/2, the system function can be expresse
w(at) = a”x(t), a>0 (2) as an infinite series that converges fer!| < 1, leading to

whereZ denotes equality in (finite-dimensional) distribution[1], [8]

While fBm is nonstationary, its power spectral density is well i
defined over any finite bandwidth observation window as [5] wpln] =Y c[klwln — k] (6a)
C k=0
Sac(f):—v fl<f§f2 (3) —
frHHt c[k] = kﬁ) (—1)¥, (6b)
for some constantc and any two positive frequencies
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in Fig. 2(b). The

(d) The variance function of fBm for
illustrated
are defined to be the children of

as

(d)

we will consider only binary trees,

The multiscale processes satisfy the following

ssionn scalé

Asz(s7) + w(s)

NN(Ov Qs)
) ~ N(0, Fy).

0.7.
0

(

indexed by the nodes of trees organized into scales. Thetne notation: ~ N(me, P.) denotes that is a normal random vector

q,
coarsest scale is indexed by the root node, while the finesh meanm, and covarianceP, .

)
)

indexed by the binary tree illustrated in

Fig. 2(a) consists of a random vectg(fs) for each nodes on
the tree. Thescale of node s, which we denote byn(s), is

S
S
z

?

(
(

The autoregression is initialized at the root nede 0 by

z

w

and (c) H
1,

1

For the rest of this paper,

i.e., q

(3]
2

0.5,
7 to be the upward (in scale) shift operator so that

@4 is the parent of node

nodessq;

the distance between nodeand the root node of the tree.

autoregre
m

0.3, (b) H

(7)

is discrete-time pefine

ned by the recursi

form >0

where

Sp(w) ~ 1/w?h,
[23]. Thus, at least

1 and (a) H
0.7 (dotted).

7

)

2
w

(8]

272h0_
n| behaves identically to DFGN with

sin?*(w/2)

is the variance ofw[n] and w

frequency. The covariance function is defi

ri[m + 1]

/(m+1—h
For small w
L for large m

)

w

0.5 (solid), and H
2

[

A similar analogy between samples of B

Sh(w)
m+h

n[m(
2h—

M ULTISCALE STOCHASTIC PROCESSES

=7
~ m
1.

The multiscale random processes introduced in [13] are

w

0.3 (dashed),H
2

h+1/2
and FDGN can be made if we allow,,[n] to be summed,

i.e., passed through an LTI filter with system functififz)

(1 —2"H=L

Sincec|n] is absolutely summable for1/2 < h < 1/2, the scale is indexed by the set of leaf nodes. For example, the

power-spectral density of the fractional noisg[n] follows as multiscale process

Fig. 1. The covariance functions of fBm for?

where &

rp[0] is controlled byo
Also, rp[m)]

at low frequenciesyy,
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Root Node of the tree
Coarse
Resolution

y(s) = Csz(s) + v(s) v(s) ~ N(0, Ry) (10)

wherew(-) is white and uncorrelated with(-) at all nodes on
the tree. The estimation algorithm, which is discussed in detail
in [13], [24], is a generalization of the Rauch—Tung-Striebel
(RTS) smoother [25]. The algorithm divides into two steps.
The first step is a fine-to-coarse scale processing, where the
optimal estimate of each stat€s) is computed based on all
measurements at nodeand its descendents. Call this estimate
Fi #(s|s). Analogous to the Kalman filterz(s|s) is a linear
1mne . . .
Resolution function of y(s) and the estimates(sc;|s«;) at each of its
;wﬁ* I descendent nodes. The Markov property essentially allows the
Ieaf Nodes estimatesz(sw;|sa;) to be computed independently and then
@) incorporated into the computation efs|s). The second step is
a coarse-to-fine processing, analogous to the backward sweep
of the RTS smoother. The output of the coarse-to-fine sweep
is the optimal estimaté(s) based on all measurements and
the estimation error covariandg{(z(s)—2(s)) (2(s)—2(s))7]
at every node on the tree. The estimation algorithm requires
O(Nd*) computations for a tree that hasnodes at the finest
scale and constant variable dimensidn

A. Internal Multiscale Models

Recall that the finest-scale process of a multiscale model is
the process indexed by the leaf nodes of the tree. An internal
multiscale model is one for which the variable at each node
s is a linear function of the finest-scale process that descends
from s [20].2 If f, is defined to be the vector containing the
SOL, SO SOL finest-scale process descending from ngdben each variable

1 2 q of an internal multiscale model can be expressed as

(b)

Fig. 2. (a) A binary tree used to index a random process at multiple 2(s) = W fs. (12)
resolutions. (b) The local labeling of the+ 1 nodes connected to node

The matriced¥V, are callednternal matricesand W f is the

Sincez(0) andw(s) are zero mean, every process vakfe) nternal variableat nodes.
will be a zero-mean random vector Internal models are of interest because the tree parameters

The process noisev(s) is assumed to be a white—noisePO’AS’ andd% C"";‘ bse de.:,'.veﬁ directly from the internal
process uncorrelated across scale and space and also unnélg}[lces ands(fofq ] Specifically,

related with the root-node variable, i.&w(s) 2(0)*] = 0.
The whiteness of the process noise implies that a multiscale

tree model is characterized completely By—the root-node e parameterst, and Q, can be computed by noting that

covariance—and the autoregression parameteysand Qs (8a) is just the optimal prediction of(s) based upon:(s¥),
for all nodess # 0. More importantly, the whiteness ofplus the associated prediction error, i.e.,

the process noise implies a Markov property similar to the

Markov property for one-dimensional (1-D) autoregressive z(s) = E[z(s)|z(s7)] + w(s). (13)

processes driven by white noise [13], namely, every node

s # 0 partitions the tree intg + 1 sets of nodes (three setdJsing standard estimation equations, the model parameters

for binary trees) while the root node partitions the tree inf®llow as

just ¢ sets (two sets for binary trees). The Markov property B

is that conditioned onx(s), the ¢ + 1 sets of random vectors Ao =WEILJSIWE(WaElfm f5IW5) (142)

partitioned by nodes are mutually uncorrelated. Qs =WLE[fo fIIW] — AWSE[f5fIIWE. (14b)
This Markov property leads to an efficient algorithm for _ _ _

the estimation of the tree process from measurements, each, gEre,Siies of eme, models scualy can be frctions of e ertie

which is a noise-corrupted observation «f) at some node paper.

Py = WoE[fof1W{. (12)
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B. Choosing the Internal Matrices S, € RF*"2 such that
In this paper, the finest-scale process will represent a finiterg, ¢ P, P..1Ts, o1 [, B
interval of fBm, DFGN, or FDGN. The only problem is [0 52} [szalcl P;Zz} [0 SJ = [B% ij

how to determine the internal matrices. The internal variables (16)
must satisfy the Markov property, but an equally important

consideration is minimizing the complexity of the resultingvherel;, is an identity matrix witht; rows andB has nonzero
model, i.e., the state dimensions should be minimized so exstries only along its main diagonal. These nonzero entries
to reduce the complexity of the multiscale estimation and, = [B];;, are the CC and they satisfy > 4, > £, >
likelihood calculation algorithms. In some cases, such internal- 3,,,iyx, x,) = 0. As shown in [20], the desired matri¥
matrices can be found without any computation, e.g., f@ given by the firsd rows of 51, i.e, W = $1(1:d,:), and
Markov processes or Markov random fields [26]. In other _

cases, internal matrices that lead to approximate multiscale plas, za[Wa1) = fass 17
models are easily found. For example, the internal variabl\gﬁ]ere/derl 20 ford > min(ky, k).

for the multiscale models in [17], [18] that approximately o mtiscale modeling from CC, each internal variable

represent fBm are derived from the random midpoint di§-§j) c R4 must be computed in two steps. First, CC is

placement and wavelet synthesis algorithms. In cases whﬁ &d to determine the linear functioH, \fua, Of dimension

intelligent approximations are not easily found or when oncgés) that maximally decorrelates’ from f.... Next
f say saf - 1

desires more accurate representations that make optimal use1 is used to determine the linear functiol, »f.a, of
8,24 802
Ffension do(s) = d(s) — di(s) that maximally decorre-

state dimension, a more systematic approach is required.
approach is to make use of CC [20], extending the resultsl {es Fons frOM fouc. The internal matrix is then given by
1-D realization theory [19] to multiscale trees. This approa _ (fiag{W ) W ,}. Note thatz(s) = W,f, is not

can be computationally overwhelming, but, as shown in thf'?écessarily thel(s)-dimensional linear function off, that

paper, when adapted to make use of SSS and stationaritymtt]imizesﬁ(f Foows for |Wafs), but it is generally a very

statio_nary incre_ments_), it is bot_h efficient an_d accurate._ In FIE;%od approximation [20]. For the remainder of this paper, we
remainder of this section, we briefly summarize the applicatigfy jgnore the possible suboptimality and refer to the internal
of CC to muIt|§caIe rea_hzguon. _variable produced by CC as the optimal linear function.

If every variable satisfies (11), the Markov property iS e that the multiscale realization algorithm based on CC
satisfied at each node if and only .If W fs condlt!onally computes the internal variables independently at each node
decorrelates the three subsets of finest-scale variables pe&%] Because computing the CC between two random vectors

tioned by nodes. In other words, if we defing,. to contain ;. 34, requires the eigenvalue or Cholesky decomposition
the elements off, not in f;, then fsa,, fsa, and fs- must ¢ po P, and P,, as well as the SVD ofP, ,, the

be uncorrelated after conditioning &#f, f,. For approximate algorithm will be computationally overwhelming when

models, the problem is t_o minimiz_e the r_esfidual co_rrelati%e number of finest-scale elements, equal to the dimension
among these random variables Whlle_restrlctmg_ the d!men5|8]n fo. is large. Secondly, computing the internal variables
of z(s). For any integet! > 0, CC provides the-dimensional ;,janendently means that the approximations made at each
linear function W, f, that minimizes the correlation amongy,,qe may he done inconsistently. However, if the multiscale
the vectorsfa,, fsa,, andf,-. Before defining CC, however, e is'to represent processes that are SSS with stationary

we must first define the correlation among multiple randomCrements or stationary processes presenting the long-range

vectr(])rs. tion b d " and dependence phenomenon, these drawbacks can be overcome,
The correlation between two random vectoise R™ and <" jatailed in the following sections.

z2 € IR™ can be defined as

IV. THE MULTISCALE MODELING

- T
play, @2) = T;nax . 91 Porwog2 (15) OF STATISTICAL SELF-SIMILARITY
g1 2191 = . .
93 Pryga=1 In this section, we show how to represent SSS processes

at the finest scale of multiscale tree models. These models
which is just the maximum correlation between any two line&€ determined using CC and thus provide an optimal tradeoff
functionals ofz; and z,. The correlation among: random between_mo_del order_ (stat_e dlmenS|ons) and statlstlc_a_l fidelity.
vectorsz; is defined similarly as The realization algorithm is made efficient by exploiting the
SSS and the stationarity of the increments of the process to be
represented at the finest scale. The basis for simplifying the
realization algorithm for self-similar processes is provided in
Section IV-A, where we show that the linear functionals that
The conditional correlatiop(x1, z2|y) is just the correlation minimize the conditional correlation between two intervals of
after conditioning bothz; and z, on the random vectoy. a SSS process can be derived from the linear functionals that
To determine the matri¥¥” with row dimension less than minimize the conditional correlation between the process on
or equal tod that minimizesp(xy,z2|Wx1), we make use a common contraction or dilation of these intervals. Because
of the following. There exist matrice$; € R**™ and the internal variables of a multiscale model must minimize

ﬁ(xlv'/l?v T 7'Trn) = max ﬁ(xzvxj)
i#£j
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the conditional correlation between intervals of the finest- g.u.
scale process, the result of Section IV-A leads to a rule m-3
for determining an internal variable at one scale from an wm2»
internal variable already computed at a coarser scale. This rule,y |
however, requires that the result of Section IV-A be extended ,;

to discrete-time processes on a finite interval, since the finest | , , . +'e o . e v oo e sosesees _ .o vooee _ A
scale of a multiscale process can only represent samples on a 1 4

I{III\III\III\IIJIIIJIIIJIII\II
T T T T T T T L A et o

finite interval. These extensions are provided in Section IV-B. At 05 1 15 2

The basis for using stationarity to simplify the multiscale rq: 3. The mapping ofe(nAt) for A = 1/16 to the finest scale of
alization algorithm is provided in Section 1V-C. We show tha& binary tree withM + 1 scales. Four consecutive samplesigt) are
the internal matrices produced by CC are relatively constampresented by each variable at scale
across a given scale of the multiscale process whenever the
process to be represented at the finest scale is stationary orfagsy Recall that the correlation between two scalar random
stationary increments. The variation in the internal matnces\}anab'ew and v after conditioning ony is
greatest at the coarsest scales and is due to the finite interval of
representation. These results imply that once a single internal o, vly) = El(u —my)(v —m.)|y]
variable is known at scale: then so are all the other internal i TulyTuly
variables at scale:, assuming thatn is not one of the coarsest

where ¢, is the variance ofu after conditioning ony.

scales. ; ;
Define L]t;, t2] to be the set of bounded linear functionals of
The simplifications under SSS and stationarity lead to ara #) on the intervallt,, £z]. The correlation between(t) for

efficient realization algorithm, namely, CC can be used € [t1, 2] and z(t) for ¢ € [ts, 4], allowing for conditioning
compute the internal variables at the first few scales of tf&% a random variable is defined as [20]

tree. Next, self-similarity can be invoked to determine an

internal variable at each finer scale. Finally, all of the others(z, [t;. 5], [ta. tally) 2 = max _ p(f(2), L2(2)|y).
variables can be determined using stationarity or stationary ?Eﬁ?’iﬂ
increments. The end result is that the number of CC required aemhem (18)

by the algorithm is small and independent of the number
samples represented at the finest scale of the tree. The comp
realization algorithm is summarized in Section V.

ue to the homogeneity of linear operators and because
SP?dltlonmg onyy is equivalent to conditioning og, we have

plaz, [t1,ta], [t3, ta]|vy) = P, [t o], [t3, ta]ly)  (19)

A. Statistical Self-Similarity and Canonical Correlations for any two scalarsy and ~.

. a A .
Consider modelingV evenly spaced samples of a SSS Define 2°(¢) = z(at) for any a > 0. We will use the

processz(t) at the finest scale of a binary multiscale tredollowing theorem (proved in the Appendix) to relate internal

Let «[n] A #(nAt) for 1 < n < N be the samples Assumevariables at different scales when the finest-scale process is
bt ' SSS.

for notational simplicity that thatv = 2*+2 for some positive

integer M. Four consecutive samples ofn] can be mapped  Theorem 1: Assume that the bounded linear functiodat

to each of the2™ nodes at the finest scale of a binary treg[t,  ¢,] satisfies

with M +1 scales. The mapping of the first thirty-two samples ] _

is illustrated in Fig. 3 forAt = 1/16. To see how SSS can t=arg e pla, [t1, 2], [ts, tallbo(2))- (20)

be used in the modeling process, consider noaé the tree

in Fig. 3. The finest-scale descendents of nedeepresent FOr any SSS process(t) and any scalan > 0, the linear

samples ofz(¢) on the interval(0, 1], while the finest scale functional #(x) € L{at1, at,] that satisfied(x) = £(z*) must

descendents of its parenty representz(t) on the interval also satisfy

_(0,2]. Yet x(t) on the interva}l(o,.l]_is .SSS tox(t) on the  j _ arg min B, [aty, ata], [ats, ata|fo(2)). (21)

interval (0,2]. Because of this similarity, we should expect bocLlaty ats)

that the internal variable at nodeshould be closely related,

perhaps by some transformation, to the internal variable atTheorem 1 can be extended to open intervals or unions of

nodesy. Now consider node in Fig. 3. Because(t) on the intervals, e.g.[t1,2) or (¢1,%2) U (0,¢1/2) in lieu of [¢1, to].

finest-scale interval descending from nadg1, 2], is SSS to Theorem 1 also applies ) is a vector of linear functionals.

x(t) on the interval(1/2, 1], which is the finest-scale interval Theorem 1 basically states that the linear functionals that

descending fromsas, the internal variables at nodesand maximally decorrelate two intervals of a SSS process can also

sae should also be closely related. be used to determine the linear functionals that maximally
To relate the internal variables at different scales, we firdecorrelate any common dilations or contractions of these

consider the decorrelation of twiatervals of z(¢) and later intervals. For realizing multiscale models when the finest-

apply this result to the decorrelation of vectors of samplesale process is SSS, the utility of Theorem 1 is that internal

of z(t). We define the correlation between two intervals ofariables at one scale can be used to determine internal

x(t) to be analogous to the correlation between two vectovariables at other scales, thereby reducing the number of
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CC computations that are required. For example, considds), w?! f,.,, should maximally decorrelatg,,, from Jsas-
deriving z(s) from z(s¥) in the tree illustrated in Fig. 3. Since the intervals represented fiy and /., are(0,1] and
The internal variablez(sy) must conditionally decorrelate (0,1/2], respectively, we should expect that, is closely
z(t) on the three intervalg0,1],(1,2], and (0,2]°, where related tow,;. However, the dimension of, is half that
(0,2]¢ is the complement of the intervaD, 2] in the entire of w., so that a contraction of the time axis, like that used
interval represented by the finest scale of the tree. (Igndre(23) for ¢(¢), cannot be directly applied to the derivation
for the moment that the finest scale of the tree represenfsw, from wSTW. Instead, note that
samples ofz(¢) not entire intervals.) Similarlyz(s) must X
conditionally decorrelate(¢) on(0,1/2], (1/2, 1], and(0, 1]°.
Recall that the internal \(/azriabl(es z{\re]z S:o/mpu]ted in( tW(]) steps wizfs = /0 g()a(t) dt (24a)
when using CC. Foe(s¥), the first step is to compute the
linear functionals ofr(¢) on (0, 1] that maximally decorrelate for
z(t) on (0,1] from x(¢) on (0,1]°. Similarly, for z(s) the 16
first step is to compute the linear functionals oft) that 9(t) A Z wys k] 8(t — k/16) (24b)
maximally decorrelate(¢) on (0, 1/2] from =(¢) on (0,1/2]°.
Because the intervgl0, 1] is related to(0, 1/2] by a simple
contraction, the first components ofsy) and z(s) should be where w,z[k] is the kth element of the vectorw,s.
related through Theorem 1. Define the linear functional thBecause (z,g) is the linear functional ofz that mini-
maximally decorrelates(¢) on (0,1] from z(¢) on (0,1]° by mizes the conditional correlation between samples(@ri]
1 and its complement, it will also approximately minimize
b(x) = / g(t)x(t) dt (22) p(z,(0,1],(0,1]°|¢(z)) over all linear functionalg € £(0,1].
0 The accuracy of this approximation depends on the aliasing

for some functiony(t). From Theorem 1, the linear functionalin the sampling of:(¢), i.e., the variation in:(¢) on (0, 1] not
b (z) = 4 () for a = 1/2 is the linear functional that determined from the samples f.

k=1

maximally decorrelates(t) on (0, 1/2] from z(¢) on (0, 1/2]°. Assuming that conditioning on the linear functional, ¢)
That is minimizes the correlation between(t) on (0,1] and x(¢#)
1 on (0,1]°, Theorem 1 shows that conditioning a, g),
4(z®) = / gtz (t/2) dt (23a) where g = g(2¢) minimizes the correlation betweer(t) on

0 (0,1/2] from z(t) on (0,1/2]°. (We assume for the moment

1/2 . ) P

—9 / 9(2t)a(t) dt (23b) that the interval represented at the finest scale has infinite

0 length, i.e., (0,1]° = (1,00).) This linear functional will
:Zl(g;)_ (23c) also minimize the correlation betweei,, and fs.;, which

_ _ _ _ vectors represent samples«f) on the intervalg0, 1/2] and
From this analysis, once the internal variables at some scgje1 /9]¢, respectively. However(z, §) cannot be included in
of the tree have been computed, all of the other interngls) since

variables can be derived with the aid of Theorem 1. However,

there are two issues with this line of reasoning. First, the finest- R . 16
scale of the multiscale tree represents samples, not intervals, (z,9) = 3 Z wz[k] 2 (k/32) (25)
of z(t) so that (23) cannot be directly applied. Secondly, in k=1

using Theorem 1 to derive(s) from z(s7), we implicitly is a function of samples of(¢) that are not to be represented

1]¢ i 1/2)¢ i . S . .
assumed that0, 1]° is related to(0, 1/2]° by a contraction of at the finest scale of the tree. A solution is to approximate this

the time axis. This will be true only if0,1]° = (1,0) and . : . .
(0,1/2]° = (1/2,00), which is not the case if we are using Anner product with a linear function of the samples that are

tree to model a finite interval of(¢). The following subsection represented at the finest scale, e.g.,
discusses how to overcome these problems and how the results 8
lead to an efficient algonthm for representing SSS processestTfm1 = % Z (ws=[2k — 1] + ws=[2k]) x(k/16) (26)
at the finest scale of multiscale trees. _ ~

ws[k]

B. Extending Theorem 1 to Sampled and which is obtained by replacing (k/32) in (25) for & odd
Discrete-Time Processes with z((k +1)/32). Another alternative is to replace k/32)

To illustrate how Theorem 1 can be adapted for multiscafer £ odd with pz((k + 1)/32), wherep is the correlation
modeling when the finest scale of the tree represents samplesfficient between the two samples.
of a SSS process, return to the tree illustrated in Fig. 3.Assuming that the multiscale tree is binary and the SSS
Assume thatz(s¥) has been computed as in Section lllprocess to be represented at the finest scale is mapped to the
B and we would like to determine the functional form ofinest-scale nodes as in Fig. 3, (26) leads to a more general
z(s) directly from that ofz(s7). Consider the first elementmethod for determining internal variables from those already
of z(sﬁ),w;fs, which is the linear functional off, that computed at coarser scales, namely, if the finest-scale interval
maximally decorrelatesf; from fs;.. The first element of descending from node represents samples oft) on (¢4, t2],
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Fig. 4. For fBm withH = 0.3, the linear functional that minimizes the conditional correlation betwe@hon the intervals (aj1, 5/4] and(0,1]U(5/4,2]
and (b) (1/2,5/8] and (0,1/2] U (5/8.,2]. The dashed line in (b) is the linear functional derived from (27). (c) and (d) Identical plots for the next
additional linear functionals that minimize the conditional correlation.

then the internal variablé/, can be derived from¥,. using H = 0.3. Fig. 4(a) illustrates the linear functiofalf (samples
(in MATLAB pseudocode) of) z(¢) on (1, 5/4] that minimizes the conditional correlation
between samples ofi, 5/4] and (1, 5/4]¢ = (0,1] U (5/4,2].
The solid line in Fig. 4(b) illustrates the linear functional of
We=3 Wr(:1:2:n—1)+W,(,2:2:n))  (27) (samples ofy:(t) on (1/2,5/8] that minimizes the conditional
correlation between samples ¢h/2,5/8] and (1/2,5/8]¢ =
(0,1/2] U (5/8,2]. Both linear functionals were computed
wheneverm(s) = m(7) + 1 and the finest-scale intervalusing CC. The dashed line in Fig. 4(b) illustrates the linear
descending from node is (¢1/2,¢2/2]. Note that W, is functional derived from the linear functional in Fig. 4(a) using
determined by averaging neighboring columnsi®f so that (27). The linear functionals derived from CC and from (27) are
W, has one-half the number of columns Bf,. Assuming nearly identical. Fig. 4(c) and (d) show the linear functionals
that W, £, minimizes p(fra,, fra., f2|2(7)) over all d- that when combined with the linear functionals in Fig. 4(a) and
dimensional linear functions of-, W; f; will approximately (b) minimize the conditional correlation between the respective
minimize 5(fsa,, fsas, f<]2(s)) over d-dimensional linear intervals. Again, the linear functionals derived from CC and
functions of f,. This process can be continued recursivelffom (27) are nearly identical.
using W, to determine an internal variable at scaigs) + 1, The difference between the linear functionals derived from
assuming thatn(s) + 1 is not the finest scale. (27) and the optimal linear functionals derived from CC is due
To justify the use of (27) in the multiscale modeling of , . . N .
. By “illustrating the linear functional” we mean that the vectois plotted
fBm and other SSS processes, we prowde a few exampl\ﬁﬁeregl'f is the linear functional and is a vector of all of the samples on
Consider modeling fBm fot € (0, 2] with A¢ = 1/128 and (0,2].
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to both sampling and a finite interval of representation. Recall 1 . ;
that Theorem 1 applies to continuous-time processes and thaot_9>
both of the intervals must be related by a common contraction.
While (1/2,5/8] is the interval corresponding {d, 5/4] after 0.8 1
the time axis is contracted by two, the complem@ntz, 5/8]¢
does not correspond exactly b, 5/4]° after a contraction by
two. As a general rule, when the interval of interest increases ind-é- ]
size, i.e.(0, 7] for I" greater than two, the difference betweenz .|
the linear functionals computed by CC and those computed
from (27) decreases. 04r i
The accuracy of (27) in determining linear functionals from ;|
those already computed applies to fBm for @lkc H < 1.
Also, remember that (27) was derived assuming only that the®?| 1
finest scale of the multiscale process is to represent a SSg,|. ]
process, not just fBm. Consider FDGN, which is not SSS but

0.7r b

has a geometrically decaying covariance function for large % 64 128 182 256
lags [see Fig. 4(b)]. Consider FDGN fdr = 0.2 on the "
interval n. € [1,N] for N = 256. (Recall that FDGN is a @

discrete-time process.) The linear functional that minimizes the 1 : ;
correlation betweemy,[n] on (N/2,5N/8] and(N/2,5N/8]¢

is illustrated in Fig. 5(a). The linear functional that mini-
mizes the correlation betweem, [n] on (N/4,5N/16] and 0.8F 1
(N/4,5N/16]° is illustrated in Fig. 5(b). Both of these linear |
functionals are computed using CC. The linear functional
derived from the linear functional in Fig. 5(a) using (27) is 06 ]
illustrated by the dashed line in Fig. 5(b). Again note the closg, |
correspondence between the two linear functionals plotted i
Fig. 5(b). The additional linear functionals that decorrelate 4F l ]
(N/4,5N/16] and (N/4,5N/16]° can also be derived quite .| Vi |
accurately from (27). This demonstrates that (27) or similar -
relationships can be used in the multiscale modeling of SSS*2} 7
processes such as fBm or long-range dependence processgs
such as DFGN and FDGN.

0.9r q

0

: I
0 64 128 192 256
n

C. Using Stationarity and Stationary Increments (b)

While (27) reduces the computation required for multiscafgd: 5. For FDGN with = 0.2 anan ¢ [1,256], the linear functional
. . . . ‘hat minimizes the conditional correlation betweep[n] on the intervals (a)
modeling, we are still left Wlth a considerable number _of CC'8128,160] and (128, 160]° and (b)(64,80] and (64,80]°. The dashed line
to compute. The problem is that the number of nodes increase) is the linear functional derived from (27).
by two with each increase in scale, while (27) can be used to
compute onlyone internal variable at each scale from any . the interval

) : . (T'/4,T/2] must conditionally decorrelate
internal variable at a coarser scale. Thus, even if all of tg%m les of DFGN on the intervair’/4, /2] from samples
internal variables are known at some scale, qnl§2)* of the P ’ P

variables at the levét scales finer can be computed from (27)9n (I'/4,T/2]°. These two intervals are illustrated by the

The solution is to take advantage of stationarity for FDGN ar%grk_ly and I|gh.tly shaded strips at the_top Of. Fig. 6. Call
DFGN and stationary increments for fBm. The end result [5'S internal variable:, = W1 f1, where f, s the finest scale
that the internal matriced, remain approximately constantPTC€SS oniT/4,T/2]. The internal varllable whose finest scale
for all nodes at a given scale, meaning that no additiondfScendents represent DFGN on the intef¥gk, 377/4] must
CC need to be computed onoeeinternal variable has beenconditionally decorrelate samples of DFGN on the interval
computed at each scale. (T'/2,3T/4] from samples or{T’/2,37T/4]°. These two inter-

To see why the internal matrices are relatively constaM@ls are illustrated by the darkly and lightly shaded strips in
across a given scale when the finest-scale process is station@§,middle of Fig. 6. Call this internal variable = W5 f;,
consider the multiscale modeling of samples of DFGN offhere f; is the finest scale process dfi’/2,37/4]. The
the interval (0,7]. Assume a finest-scale mapping of thénternal matrices¥; and W, can be computed independently
form illustrated in Fig. 3. At scalen = 2, the four inter- using CC. Another solution, however, is to compute oy
nal variables have finest-scale descendents on the intenaid definezs = Wi f,. This internal variable is approximate
(0,T/4),(T/4,T/2],(T/2,3T/4], and (3T/4,T]. The inter- in the sense that the intervals illustrated at the bottom of
nal variable whose finest scale descendents represent DFEYl 6, rather than those in the middle, will be decorrelated by
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Intervals the invertible transformations that satisfy
decorrelated
by: z[no + 1]/on,+1
Wi f| : : wlng + 2]
Yng = leng = .
Wty wlno + pl
Wity z[no +p + 1]/0ns+p+1
2 . . . . . wlng +p + 2]
— Yoy = Q2o = : 29)
0 T/4 T2  3T/4 T 5T/4 wine + 2]

b £}t £,

Fig. 6. The vectoil f; decorrelates the finest-scale process on the intery ; it _
(T/4.T/2) from (0. T/4U(T/2. ), while Wa f, decorrelate€T /2, 3T/4] @here o, is the standard deviation of[n]. The CC anal

from (0.7/2] U (3T7/4,T). The linear function?, f, can be used as an YSis Of y,, and Y,, depends on the covariance matrices
approximation ofi¥ f2, only it does not exactly decorrelatd’/2,37/4] E[?Jno y;-’;o]’ E[Y YT]’ andE[ynO Yrg] Each of these matrices

N~ ng
from (0, 7/4]. has the form

z2 = W1 fa. The accuracy of the approximation, i.e., how well [Oé a® (30)
W, fo accomplishes the decorrelationdt; /-, will depend on b P,
the size of the lightly shaded interval relative to the size of
the entire interval of representatidfi, 7] and how close the
. . ) where
lightly shaded interval is to the edges(6f 7. In other words, (r—1)x (p—1) i
the approximation is best at the finer-scale nodes and at nodes Py € R has entries of the form
away from the boundary of the tree.
For fBm, the reason why the internal matrices are approx- Elwlnolw[no + ]|
imately “shift-invariant” across any given scale is a little
more subtle, since fBm is not stationary but has stationary for » = 1,---,2p — 1, and is independent af, due to

increments. To show that the stationary increments of fBm the stationarity of the increments procesg:];

leads to internal matrices that are effectively shift-invariant, « 4 ¢ R@=9*1 gndp € R?~1*! have entries of the form
we examine the linear function that minimizes the conditional

correlation between samples of fBm on neighboring intervals. E[z[no + 1wlng + 71l /ong 11

Denote the sampled process by 2 x(nAt) and consider

; and
the two p-sample intervals: € [ng + 1,70 + p] andn €
[no +p + 1,n0 + 2p]. For Elz[no 4+ p + 1wlno + ]l /ong+p+1
z[no + 1] x[no +p +1] for r = 2,...,2p;
A |z[no+2] A |x[no +p+2] * « is a scalar.
Fro = : and X,, = : (28) To show that the matri¥¥,,, returned by CC is slowly
2[no + 1] o + 2p] varying and asymptotically independentqf, we only need to

show the same foty, « andb for each of the three covariance
matrices>

For E[yn,ogfo] and E[Y,,,Y,L],a = 1 for all values ofny.
For Elun, Yy,

define 1,, as the d-by-p matrix that minimizes
P(Zngs Xng | TngTng ). The matrix T,, can be found using
CC. To show that the internal matrices are approximate
shift-invariant, we will show thatZ,, is asymptotically

independent ofyy for ng > p. a = Elz[no + 1]z[no +p + 1]/0n+10ng+p+1
From the definition ofp, it follows that for any invertible 5 (no + 127 + |no + p+ 112 — |p|*H)
m-by-m transformations(); and )2, the d-row matrix 7;,, - Ino+ 1[H|ng +p+ 1|7

that minimizesp(x,,,, Xn, [ Tne%n, ) 1S related to thed-row
matrix W, that minimizesp(Q1 ., Q2Xn,|Wn, @12n,) DY
T,, = W,,Q1. Therefore, determining thé&-dimensional
linear function ofz,, that minimizes the conditional corre- SNote thateven ify, «, andb are slowly varying#¥,,, might not be slowly

lation between:, and X, is equivalent to determining thevarying when the corresponding covariance matrices are ill-conditioned.
7o o However, this does not a detract from our case. Because of the stability of the

d'dime_nSional Iinea_‘r function Oleno that minimizes the SVD (singular-value-decomposition)-based CC decomposition, the subspace
conditional correlation betwee®;z,, and QX . spanned by, yn, should be relatively insensitive to perturbations in the

Because fBm has stationary increments, the procé*ggesponding covariance matrices, meaning that the conditioning information
’ remains unchanged. In this case, there should still exist a series of vectors

w[n] = z[n] — 37[” — 1] IS Stat'onary.and Its covariance ISy, . thatis nearly statistically identical 6/, yn, and for whichi¥y,,
given by sampling-,.. () in (4a). Define(); and Q)2 to be is slowly varying.

~1, for ng > p.
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Now examine the entries af and b that have the form 1

Elalnolwlne +7]] oor 1
Tng 0.81
a(At)H
= G o o2 g+ 7 = 2 ]
0.6 b
+r = 1P+ ] _
ADH =057
G [2H |no|F 1
2 0.4r ,
+ (I = 1P = [r*lno| =1, forng >+ o3l
where the last approximation is made using a Taylor series o2r 1
expansion. This shows thatand b for all three covariance 0k
matrices are slowly varying and all of the elements decay to
zero at the rate of 27~ Thys W, is slowly varying % oz o5  om 1 iss 15 175 2

and so must be the internal variables of the corresponding
multiscale model (assuming, of course, that the edge effects
due to the finite interval of representation are again negligible). -
To demonstrate the shift-invariance of the internal variables,
consider modeling fBm fot € (0, 2] with At = 1/128 and U

H = 0.3. The linear functional that minimizes the conditional ~ °¢ ‘
correlation between samples oft) on (3/4, 1] and those on oal ‘ |
(3/4,1]° is illustrated by the solid line in Fig. 7(a). The solid ‘

line in Fig. 7(b) is the linear functional af(¢) on (3/4, 1] that |
minimizes the remaining conditional correlation. The dasheds o ‘w
lines in Fig. 7(a) and (b) are given by appropriately shifting | | |
in ¢ the linear functionals in Fig. 4(a) and (c), respectively. ‘

The correspondence between the linear functionals computed-o4f ‘

by CC and those determined by invoking shift-invariance is "’
so close that the dashed lines are hardly visible. ‘

0.2r

-0.8r

V. AN ALGORITHM FOR THE MULTISCALE T P i s s 19 2
MODELING fBm, DFGN, AND FDGN !

. . . . . (b)
ThIS_ section outlines a complete algorlthm _fOI‘ the mU|tlsca|'-e|g. 7. For fBm withH = 0.3, a comparison of linear functionals computed
modeling of fBm, DFGN, and FDGN that is based on th@om cc (solid line) and linear functionals determined from Fig. 4 by invoking
preceding analysis. Consider modeling samples of a SSS shift-invariance (dashed line). Note that the dashed and solid lines are, as

; ; ; ; pected, indistinguishable.

process with stationary increments or of a stationary long*
range dependent process. Assume for simplicity tNat=
2M+2 for some positive integelV. The N samples can be most descriptive (in terms of minimizing residual correlation)
mapped to the finest scale of a binary tree with+- 1 scales, when the finest-scale descendents of the internal variable (from
where each finest-scale variable represents four consecufiyfich all other internal variables are computed) are on an
samples of the process. o interval that is both narrow relative to the length of the
~ The first step of the multiscale modeling is to compute t&yire finest-scale interval and far from the edges of the entire
internal matriced¥, at each node not at the finest scale, I.8mterval. Therefore. one must decide for how many scales

T(S).j ];/{[ (Th(ta '|ntern::1?l matnti_)es ?: t: M are.fctnur—bi/—d ﬁvm =0,---,mp) to compute the internal variables using CC
our identity matrices.) Remember that we are intereste there the remaining internal variables are computed using

approximate representations of the finest-scale process, eg ) and shift-invariance. The tradeoff is between accuracy

fBm, since an exact model would generally require intemand computations. The general algorithm has the followin
variables W, f; with the same dimension ag,. Thus, the P ’ 9 9 9

following algorithm requires the specification at each nngrm' ) )

of either the maximum state dimensidfs) or the maximum 1) Use CC to compute the internal matrices at scates

conditional correlation, i.e., 5( fsa,s faogs [ |Wafs) < €. 0,---,mg — 1. The dimensions of the internal variables
To determine the internal matrices using a minimum number ~ are controlled byd(s) or «,.

of CC decompositions, we will, of course, make use of the 2) Use CC to comput&’s, whereg is the2™°th (middle)

self-similarity and shift-invariance of the internal matrices, node at scalen,.

as detailed in the previous two subsections. Recall that the3) Determine all the remaining internal matrices at scales

self-similarity and shift-invariance of the internal variables are ~ m = my,---,M — 1 using (27) and shift-invariance.
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Fig. 8. The finest-scale covariance of multiscale approximations of fBrarfor= 1 and H# = 0.3 when the state dimensions are (a) four and (b) six. The
absolute value of the difference between (1) and the finest-scale covariances in (a) and (b) are illustrated in (c) and (d), respectively.

4) Determine the multiscale model parameters using (1@presented at the finest scale of a seven gddle= 6) binary

and (14).

All of the examples in the following section use, =
2. In this case, the entire algorithm requires sév&C
decompositions of the finest-scale covariance matif /& |

tree. Using the algorithm of Section V, the finest scale of the
multiscale model has the covariance illustrated in Fig. 8(a)
when the dimension of all of the internal variables is four.

The absolute value of the difference between (1) and the finest-

independent of the number of samples to be represented at3f@le covariance is plotted in Fig. 8(c). Note that the variance
finest scale. The effects of the finite interval of representati®h fBm is modeled exactly by the multiscale process, which
can be further minimized by increasing,. However, the iS @ by-product of (14).

following examples show that multiscale representations oflf the state dimensions are increased, the decorrelation pro-

fBm and FDGN are very accurate fatg = 2.

VI. EXAMPLE MULTISCALE MODELS

duced by each internal variable will increase, leading to more
accurate models. The finest-scale covariance and modeling
error when the state dimensions are fixed at six—except at

This section provides a number of examples that demdifie finest scale, where the state dimension is fixed at four—are
strate both the effectiveness of the algorithm detailed iustrated in Fig. 8(b) and (d), respectively. Note that the error
Section V for the multiscale modeling of SSS processes atidmodeling the covariance function decreases by roughly an
the utility of the multiscale framework for estimating andPrder of magnitude when the state dimensions increase from

simulating these random processes.

A. fBm

Consider modeling samples of fBm fof = 1 andH = 0.3

four to six.

As a second example, consider the multiscale modeling of
fBm for H = 0.7. The finest-scale covariance and modeling
error for a state dimension of four are illustrated in Fig. 9.

on (0,1] with At = 1/256. These 256 samples can beéAs for H = 0.3, the finest scale of the multiscale model

provides a very accurate approximation of fBm, even when

6Recall thatlVy requires only one CC, while the other internal variableéhe state dimensions are small. More generally, the multiscale

require two.

models realized using the algorithm of Section V provide very



DANIEL AND WILLSKY: SELF-SIMILAR PROCESSES IN MULTIRESOLUTION FRAMEWORK 967

¢

magnitude of the errors remains constant.) This means that
low-order multiscale models provide accurate representations
of fBm now matter how fine the resolution or how large the
interval to represented.

Multiscale models are of interest for the modeling of fBm
and other SSS processes not only because they provide accu-
rate and efficient representations, but also because the efficient
estimation and simulation algorithms of the multiscale frame-
work can be used. While the multiscale estimator requires
O(Nd*) computations when the state dimensions @rand
the number of samples represented at the finest scale \ge

R just demonstrated that the state dimensions are independent
SRR of N for a desired level of fidelity in the model. Thus,
S for a given error tolerance, the complexity of the estimator
s 0, 0.2 ' ' actually grows asO(N). This growth in computations is
! independent of the number of measurements incorporated,
@ whereas a standard implementation of the normal equations
0.035 would requireQ(N?) computations when all or nearly all of
0.03 the finest-scale samples are measured. As an example, consider
the estimation of fBm fos? = 1, H = 0.2, andt € (0, 1] from
sparse, noisy, and irregularly sampled measurements. Assume
a multiscale model for which the dimension of all the states
is four. A sample path of fBm is illustrated in Fig. 10(a). The
measurement noise is assumed to have a standard deviation
of 0.05 and the measurements are indicated by dkein
Fig. 10(a). The estimate of fBm produced by the multiscale
model is illustrated by the solid line in Fig. 10(b). The dotted
line indicates the estimate produced using an exact model
of fBm. Without any additional computations, the multiscale
estimator also produces the variance of the estimation error.
The one standard deviation error lines are indicated by the
_ . _ _ o dashed lines in Fig. 10(b). Note that the difference between
fFO'?'U% :(a1)7 E'e:f'gﬁslt';ﬁa('ﬁ fhogirtg;‘;eh‘gvz‘g“ji‘;i‘fng‘(’)ﬂ%’?rfr(‘)?ﬂf”(‘ﬁ)o;ggfﬂe exact and approximate (multiscale) estimate is well within
absolute value of the difference between the finest-scale covariance and )¢ one standard deviation error.
Another useful feature of the multiscale estimator is that

) ¢ t8m for all val o it also produces the coefficients for a multiscale model that
accurate representations of fBm for all valueshot H <1, represents the estimation error. Because multiscale models

even when the state dimensions are small. Also, the finest-s & be efficiently simulated by simply evaluating the au-

covariances. of these mod'els are nearly identigal to thg ﬁnel%tr'egression in (8), the multiscale error models can provide
scale covariances of multiscale models for which CC is usgfgitional simulations that are necessary for any applica-
to compute the internal matrix at every node on the tree. F@ins requiring Monte Carlo analysis. Two conditional sample
example, the matrices formed by the errors in Figs. 8(c) apdths corresponding to the example of Fig. 10 are provided
9(b) have Frobenius norms of 3.6 and 0.69, respectively, whilg Fig. 11. Note that the conditional sample paths nearly
the errors for the corresponding four-dimensional multiscajfyss through each of the measurements. The advantage of
models computed using CC at every node have Frobenig multiscale framework is that once the parameters of
norms of 2.4 and 0.40. the multiscale error model are returned by the estimation
Another important property of the multiscale models digorithm, each conditional simulation can be computed in
fBm is that the modeling errors (when the state dimensiqapproximately)Nd computations wheréV is the number of
is fixed) do not change significantly when the resolutiofinest-scale samples amds the dimension of the states in the
(1/At) or size of the interval represented at the finest scaieodel. By contrast, a Cholesky factorization of the estimation
increases. For instance, whefl = 1, H = 0.3 and the state error covariance, which is nonstationary, will requif¢ N%)
dimension is four, the ratio of the Frobenius norm of theomputations.
error in modeling the covariance to the Frobenius norm of Other features of the multiscale framework are that arbitrary
the covariance matrix of the samples represented at the finesnlocal measurements of fBm can also be incorporated by
scale is 0.023 forAt = 1/128, 0.032 for At = 1/256, and the estimator [16], and the likelihood calculator can be used to
0.039 for At = 1/512. (We normalize by the Frobenius normestimated ando from noisy measurements of sample paths of
of the covariance, since increasing the number of sampl&n, although more crude models of fBm frequently suffice
will increase the Frobenius norm of the error, even when tffer the latter application [18].
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Fig. 10. (a) A sample path of fBm for?2 = 1 and H = 0.2. Noisy Fig. 11. Two conditional simulations of fBm conditioned on the measure-
measurements are illustrated bis. (b) The estimate produced at the finestments illustrated in Fig. 10.

scale of the multiscale model with state dimension four (solid line), the

estimate based on the exact fBm covariance (dotted line), and the one standard . . . .

deviation estimation errors (dashed |ine)_ to a nOtlceab|e redUCtIOH n mOdehng errors. FIED& —02,

the finest-scale covariance function is plotted in Fig. 12(c) and
(d) for the multiscale models with state dimensions of four and
B. FDGN six. Again, the multiscale model is quite accurate even when
Now consider modeling 256 samples of FDGN using thihe state dimensions are limited to four and the representation
multiscale realization algorithm of Section V. Far= 0.2, improves as the state dimension increases from four to six.
the finest-scale covariance of the multiscale model with stateResults similar to these were obtained for the multiscale
dimensions set to four is given by the solid line in Fig. 12(aynodeling of DFGN, which should not be surprising given the
The dotted line in Fig. 12(a) is,[» — 128] wherer,[n] is the close correspondence between the covariances of FDGN and
covariance function of FDGN. While FDGN is stationary, th&FGN.
process at the finest scale of the multiscale model for FDGN is
not exactly stationary, and will vary slightly with the location VII. CONCLUSION

of the finest-scale sample. Thus, the solid line Fig. 12(a) reallyThis paper developed an efficient realization algorithm for
represents only a single column of the finest-scale covariange modeling of SSS processes using the multiscale processes
matrix, but the approximation errors given in this plot arghtroduced in [13]. The models were then applied to fBm,
typical of all the columns. DFGN, and FDGN, demonstrating the tradeoff between ac-
The finest-scale covariance of the multiscale model wituracy and state dimension. The multiscale models are quite
state dimensions set to six is plotted in Fig. 12(b). As would lzecurate even when the state dimensions are very small, and
expected, increasing the state dimension from four to six leati® accuracy of the representations remains relatively constant
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Fig. 12. The finest-scale covariance of multiscale approximations of FDGH fer0.2 and state dimensions of (a) four and (b) six and/foe —0.2 and
state dimensions of (c) four and (d) six. The solid line is the covariance of the multiscale model, and the dashed line is that of FDGN.

when the state dimension is fixed and the number of sampths boundaries of the finest-scale intervals to be decorrelated.
represented at the finest scale is increased. This means thattierefore, there is really no need to perform a CC analysis of
processing algorithms of the multiscale framework héN&/) the entire finest-scale covariance matrix. Instead, especially at
growth in computations for a desired level of accuracy. Thfie coarser-scale nodes, we are only interested in the linear
flexibility and processing power of the multiscale frameworknctions that decorrelate a reduced-order subspace of the
were demonstrated by estimating fBm from sparse iregjnest.scale process. The form of the linear functionals gives
larly sampled measurements and then generating conditiopal some insight for choosing this subspace, but a complete

simulations. i :
_— . o . analysis is beyond the scope of this paper.
The most significant issue not addressed in this paper is t% more long-term objective of this research is to model

number of computations required by the CC in the algorithrsqatisticall self-similar processes using multiscale models
of Section V. While the number of CC decompositions does. y P 9

not increase withv, the number of computations required ta/wthout having to perform the intermediate step of computing

compute each CC is certainly a function A and, in fact, the internal matrices. Namgly, we yvould like to determine
grows cubicly with V. One possible solution to this growththe form of the autoregressive moving-average (ARMA) pa-
in complexity is suggested by the fact that independent of tFmeters4, and @, that leads to finest-scale processes that
size of N, only a very small number of linear functions of the'ave polynomial decay in the correlation function without
finest-scale process are generally desired from the CC sif@ing to operate on the covariance matrix for the finest scale
low-dimensional models are quite accurate even for ld¥ge process. Another objective is to discover whether or not it is
Also, these linear functions are rather smooth functions pbssible to represent two-dimensional SSS random processes
the finest-scale process, with all of the detail concentratedvéith low-order multiscale models.
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APPENDIX
PROOF OF THEOREM 1

(7]

(8]
El

For any two linear functionald; € L[t;,%:] and 4, €
L[ts,t4], statistical self-similarity implies that

plli(w), 2(x)) = p(£r(x°), £a(7)).

Riesz’s Lemma [27] shows that there exists a functjdt)
such that

[10]
(11]

[12]

for any bounded linear functiond(x). Applying a change [13]
of variables to such integrals, there exist linear functionals
¢ € Llaty, aty] andéy € Llats, aty] such tha¥y (z) = £;(z%)  [14]
and/,(z) = ¢2(z*). The existence of these linear functionals

leads to [15]

max p(l1(x), La(x)|4(x))
{ £1C L[t ta] } [16]
[2C£[t3,t4]
— H H H
T el pti(a” x), b2(a” z)[l(a" 1)) [17]
{42€£[t3,t41 }
= max p(L1(z®), Lo(z®)|£(x®)) (28]
£1EL[E,t2]
{aethnt}
R . . [19]
= max p( 1( )7 2($)| ( ))

i1 CLlaty ats)] [20]

i3 CLlats,aty]

}

where the last equality follows fromf(z) = £(x”). Therefore, [22]
ﬁ(.’r, [tl, tg], [tg, t4]|£(.’1’)) = ﬁ(.’r, [atl, atg], [atg, at4]|£(x)) [23]

Q.E.D.
[24]

[21]

The result of the theorem follows.
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