
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 3, APRIL 1999 955

The Modeling and Estimation of
Statistically Self-Similar Processes
in a Multiresolution Framework

Michael M. Daniel,Student Member, IEEE, and Alan S. Willsky,Fellow, IEEE

Abstract—Statistically self-similar (SSS) processes can be used
to describe a variety of physical phenomena, yet modeling these
phenomena has proved challenging. Most of the proposed models
for SSS and approximately SSS processes have power spectra
that behave as1=f
 , such as fractional Brownian motion (fBm),
fractionally differenced noise, and wavelet-based syntheses. The
most flexible framework is perhaps that based on wavelets,
which provides a powerful tool for the synthesis and estimation
of 1=f processes, but assumes a particular distribution of the
measurements. An alternative framework is the class of mul-
tiresolution processes proposed by Chouet al. [1994], which has
already been shown to be useful for the identification of the
parameters of fBm. These multiresolution processes are defined
by an autoregression in scale that makes them naturally suited to
the representation of SSS (and approximately SSS) phenomena,
both stationary and nonstationary. Also, this multiresolution
framework is accompanied by an efficient estimator, likelihood
calculator, and conditional simulator that make no assumptions
about the distribution of the measurements. In this paper, we
show how to use the multiscale framework to represent SSS
(or approximately SSS) processes such as fBm and fractionally
differenced Gaussian noise. The multiscale models are realized
by using canonical correlations (CC) and by exploiting the self-
similarity and possible stationarity or stationary increments of
the desired process. A number of examples are provided to
demonstrate the utility of the multiscale framework in simulating
and estimating SSS processes.

Index Terms—Canonical correlations, fractional Brownian mo-
tion, multiscale, self-similarity.

I. INTRODUCTION

A wide variety of physical phenomena are described by
random processes that are statistically self-similar (SSS).

A common characteristic of such processes is that the power
spectral densities behave as , particularly in the range

. Another common characteristic is long range
dependence, in either the process or its increments. The
long-range dependence is usually manifested by a covariance
function that decreases hyperbolically, i.e.,
for some , which is closely related to having a spectrum
described by a power law. Examples of physical phenomena
well described by processes are average temperature
distributions [1], [2], annual flow rates in rivers [1], the noise
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in vacuum tubes and electrical components [2], traffic in
communications networks [3], and biological and economic
time series [4], [5]. Processes with -like power spectra are
also used to generate images that model real-world objects like
clouds and mountain ranges [6], [7].

A number of models have been proposed that possess
long-range dependence and spectra.1 One is the class of
fractional Brownian motions [4], which are zero-mean statis-
tically self-similar Gaussian random processes with stationary
increments. Another class of models is given by the fractional
differencing and integration of discrete-time white noise [1],
[8], [9], which yields discrete-time processes that are closely
related to samples of fractional Brownian motion. A third class
of models, motivated by the voltage response of a transmission
line to a white-noise current source, was proposed by Keshner
[2]. A more recently introduced class of models, which
can approximate the statistics of the three aforementioned
models, is based on the observation that the wavelet transform
makes stationary and approximately whitens any process
[5], [10], [11]. This framework was recently extended in [12]
with the introduction of bi-orthogonal wavelets as a method for
more accurately synthesizing fractional Brownian motion. The
relative advantages of these models depend on the particular
application and whether one is interested in synthesizing,
estimating (smoothing and interpolating), or determining the
parameters of processes. Wornell showed in [5] how the
wavelet-based models can be used to efficiently synthesize,
estimate, and determine model parameters for time series.
The efficiency follows from efficient implementations of the
discrete wavelet transform. However, the estimation algo-
rithms based on this transform require that all of the measure-
ments are equally spaced and that the measurement noise have
constant variance. Also, for regular wavelets, one must account
for boundary effects at the edges of the interval of interest.

An alternative framework for the modeling and processing
of signals is the multiresolution stochastic processes
proposed in [13]. These processes are indexed by the nodes
of trees organized into scales, where the leaf-nodes of the
tree represent the finest scale features of interest. Much like
the wavelet models, these models are well-suited to the sta-
tistical self-similarity and possible nonstationarity of the
processes. Also, the tree structure allows the multiresolution

1This paper considers only the first and second moments of a stochastic
process, i.e., the process is either Gaussian or the higher order moments are
considered to be insignificant.
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models to compactly account for the long-range dependencies
of processes. More importantly, these multiresolution
processes are accompanied by very efficient estimation, simu-
lation (conditional [14] and unconditional), and likelihood cal-
culation [15] algorithms. These algorithms allow for measure-
ments that are at different resolutions are irregularly spaced
or are corrupted by measurement noise with nonconstant
variance. This flexibility is necessary for many applications,
like remote-sensing and geophysical inverse problems [16].

In this paper, we demonstrate that the multiresolution sto-
chastic processes of [13] can accurately model a range of SSS
and processes. In particular, we show that samples of fBm,
discrete fractional Gaussian noise (DFGN), and fractionally
differenced Gaussian noise (FDGN) can be represented to arbi-
trary accuracy by the multiresolution models. Multiresolution
models representing fBm that are based on random midpoint
displacement and the Haar wavelet basis were described in
[17], [18], but these models are limited to low-order approxi-
mations with no clear method for refining the approximations.
This paper develops a more general class of models that
provides an optimal tradeoff between the model order and the
accuracy of the representation. The realization algorithm for
these models is based on canonical correlations (CC) [19], [20]
and it exploits the statistical self-similarity and stationarity (or
stationary increments property) of the processes proposed
by Mandelbrot and Hosking. Representing these processes
within the multiresolution framework not only allows for ac-
curate statistics but also for efficient and flexible processing. In
Section II, some relevant properties of fBm, discrete fractional
Gaussian noise (DFGN) and fractionally differenced Gaussian
noises (FDGN) are described. In Section III, the class of
multiresolution models is defined. Next, in Sections IV and V,
an algorithm based on CC is described that provides accurate
multiresolution representations of fBm, DFGN, and FDGN.
The algorithm is justified with examples in Section VI. Con-
clusions and outstanding problems are provided in Section VII.

II. FRACTIONAL BROWNIAN MOTION

AND FRACTIONAL GAUSSIAN NOISES

A fractional Brownian motion (fBm) is a Gaussian process
with zero mean and covariance [4]

(1)

Such a process is completely characterized by
and the Hurst exponent . The covariance and variance
functions are plotted in Fig. 1 for and three values
of , where corresponds to Brownian motion.
Fractional Brownian motion is SSS in the sense that

(2)

where denotes equality in (finite-dimensional) distribution.
While fBm is nonstationary, its power spectral density is well
defined over any finite bandwidth observation window as [5]

(3)

for some constant and any two positive frequencies

. The nonstationarity of the process is evidenced
near , where (3) implies infinite power in the low-
frequency components of .

The nonstationary covariance function in (1) masks a more
elegant definition of fBm in terms of its increments process.
A process is an fBm with Hurst exponent if
and only if: 1) is Gaussian and has zero mean; 2)
has stationary increments meaning that

where is called thestructure function; and 3) is self-
similar, which implies . The self-similarity
of the process implies that the structure function must
have the form . The covariance function in
(1) follows from this structure function and the stationary
increments property.

The long-range dependence of the increments of fBm for
is manifested in the correlations among these

increments. Consider the increments process

For any this process is stationary and its covariance
function is [21]

(4a)

(4b)

where the approximation follows from a Taylor Series ex-
pansion for . This approximation shows that the
correlation between increments decays polynomially with dis-
tance and is positive for and negative for

. Also, the power spectral density of is
proportional to for [21]. This spectrum
should not be surprising, given (3) and that is
an approximate derivative of fBm. The discrete-time process

is commonly referred to as DFGN. The
polynomial decay in the covariance of DFGN suggests sta-

tistical self-similarity. In fact, for
with , the covariance of is [22]

(5)

This self-similarity will be invoked when applying the real-
ization algorithm of Section IV.

Another class of discrete-time processes that possess long-
range dependence is the FDGN’s posed by Hosking [8] and
by Granger and Joyeux [9]. A fractionally differenced noise is
defined as the response of a linear time-invarient (LTI) system
with system function to a white noise input .
For , the system function can be expressed
as an infinite series that converges for leading to
[1], [8]

(6a)

(6b)
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(a) (b)

(c) (d)

Fig. 1. The covariance functions of fBm for�2 = 1 and (a)H = 0:3, (b) H = 0:5, and (c)H = 0:7. (d) The variance function of fBm for
H = 0:3 (dashed),H = 0:5 (solid), andH = 0:7 (dotted).

Since is absolutely summable for , the
power-spectral density of the fractional noise follows as

(7)

where is the variance of and is discrete-time
frequency. The covariance function is defined by the recursion

for , where
is controlled by . For small .

Also, for large [8], [23]. Thus, at least
at low frequencies, behaves identically to DFGN with

A similar analogy between samples of fBm
and FDGN can be made if we allow to be summed,
i.e., passed through an LTI filter with system function

.

III. M ULTISCALE STOCHASTIC PROCESSES

The multiscale random processes introduced in [13] are
indexed by the nodes of trees organized into scales. The
coarsest scale is indexed by the root node, while the finest

scale is indexed by the set of leaf nodes. For example, the
multiscale process indexed by the binary tree illustrated in
Fig. 2(a) consists of a random vector for each node on
the tree. Thescaleof node , which we denote by , is
the distance between nodeand the root node of the tree.
Define to be the upward (in scale) shift operator so that

is the parent of node, as illustrated in Fig. 2(b). The
nodes are defined to be the children of.
For the rest of this paper, we will consider only binary trees,
i.e., . The multiscale processes satisfy the following
autoregressionin scale2

(8a)

(8b)

The autoregression is initialized at the root node by

(9)

2The notationx � N (mx; Px) denotes thatx is a normal random vector
with meanmx and covariancePx.
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(a)

(b)

Fig. 2. (a) A binary tree used to index a random process at multiple
resolutions. (b) The local labeling of theq + 1 nodes connected to nodes.

Since and are zero mean, every process value
will be a zero-mean random vector.

The process noise is assumed to be a white-noise
process uncorrelated across scale and space and also uncor-
related with the root-node variable, i.e.,
The whiteness of the process noise implies that a multiscale
tree model is characterized completely by—the root-node
covariance—and the autoregression parametersand
for all nodes . More importantly, the whiteness of
the process noise implies a Markov property similar to the
Markov property for one-dimensional (1-D) autoregressive
processes driven by white noise [13], namely, every node

partitions the tree into sets of nodes (three sets
for binary trees) while the root node partitions the tree into
just sets (two sets for binary trees). The Markov property
is that conditioned on , the sets of random vectors
partitioned by node are mutually uncorrelated.

This Markov property leads to an efficient algorithm for
the estimation of the tree process from measurements, each of
which is a noise-corrupted observation of at some node

of the tree

(10)

where is white and uncorrelated with at all nodes on
the tree. The estimation algorithm, which is discussed in detail
in [13], [24], is a generalization of the Rauch–Tung–Striebel
(RTS) smoother [25]. The algorithm divides into two steps.
The first step is a fine-to-coarse scale processing, where the
optimal estimate of each state is computed based on all
measurements at nodeand its descendents. Call this estimate

. Analogous to the Kalman filter, is a linear
function of and the estimates at each of its
descendent nodes. The Markov property essentially allows the
estimates to be computed independently and then
incorporated into the computation of . The second step is
a coarse-to-fine processing, analogous to the backward sweep
of the RTS smoother. The output of the coarse-to-fine sweep
is the optimal estimate based on all measurements and
the estimation error covariance
at every node on the tree. The estimation algorithm requires

computations for a tree that hasnodes at the finest
scale and constant variable dimension.

A. Internal Multiscale Models

Recall that the finest-scale process of a multiscale model is
the process indexed by the leaf nodes of the tree. An internal
multiscale model is one for which the variable at each node

is a linear function of the finest-scale process that descends
from [20].3 If is defined to be the vector containing the
finest-scale process descending from node, then each variable
of an internal multiscale model can be expressed as

(11)

The matrices are calledinternal matricesand is the
internal variable at node .

Internal models are of interest because the tree parameters
and can be derived directly from the internal

matrices and . Specifically,

(12)

The parameters and can be computed by noting that
(8a) is just the optimal prediction of based upon ,
plus the associated prediction error, i.e.,

(13)

Using standard estimation equations, the model parameters
follow as

(14a)

(14b)

3The states of internal models actually can be functions of the entire
finest-scale process, but this generality is not needed for the models of this
paper.
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B. Choosing the Internal Matrices

In this paper, the finest-scale process will represent a finite
interval of fBm, DFGN, or FDGN. The only problem is
how to determine the internal matrices. The internal variables
must satisfy the Markov property, but an equally important
consideration is minimizing the complexity of the resulting
model, i.e., the state dimensions should be minimized so as
to reduce the complexity of the multiscale estimation and
likelihood calculation algorithms. In some cases, such internal
matrices can be found without any computation, e.g., for
Markov processes or Markov random fields [26]. In other
cases, internal matrices that lead to approximate multiscale
models are easily found. For example, the internal variables
for the multiscale models in [17], [18] that approximately
represent fBm are derived from the random midpoint dis-
placement and wavelet synthesis algorithms. In cases where
intelligent approximations are not easily found or when one
desires more accurate representations that make optimal use of
state dimension, a more systematic approach is required. One
approach is to make use of CC [20], extending the results of
1-D realization theory [19] to multiscale trees. This approach
can be computationally overwhelming, but, as shown in this
paper, when adapted to make use of SSS and stationarity (or
stationary increments), it is both efficient and accurate. In the
remainder of this section, we briefly summarize the application
of CC to multiscale realization.

If every variable satisfies (11), the Markov property is
satisfied at each node if and only if conditionally
decorrelates the three subsets of finest-scale variables parti-
tioned by node In other words, if we define to contain
the elements of not in , then and must
be uncorrelated after conditioning on . For approximate
models, the problem is to minimize the residual correlation
among these random variables while restricting the dimension
of . For any integer , CC provides the -dimensional
linear function that minimizes the correlation among
the vectors and . Before defining CC, however,
we must first define the correlation among multiple random
vectors.

The correlation between two random vectors and
can be defined as

(15)

which is just the maximum correlation between any two linear
functionals of and . The correlation among random
vectors is defined similarly as

The conditional correlation is just the correlation
after conditioning both and on the random vector .
To determine the matrix with row dimension less than
or equal to that minimizes , we make use
of the following. There exist matrices and

such that

(16)

where is an identity matrix with rows and has nonzero
entries only along its main diagonal. These nonzero entries

are the CC and they satisfy
. As shown in [20], the desired matrix

is given by the first rows of , i.e., , and

(17)

where for .
For multiscale modeling from CC, each internal variable

must be computed in two steps. First, CC is
used to determine the linear function of dimension

that maximally decorrelates from Next,
CC is used to determine the linear function of
dimension that maximally decorre-
lates from . The internal matrix is then given by

. Note that is not
necessarily the -dimensional linear function of that
minimizes , but it is generally a very
good approximation [20]. For the remainder of this paper, we
will ignore the possible suboptimality and refer to the internal
variable produced by CC as the optimal linear function.

Note that the multiscale realization algorithm based on CC
computes the internal variables independently at each node
[20]. Because computing the CC between two random vectors

and requires the eigenvalue or Cholesky decomposition
of both and as well as the SVD of , the
total algorithm will be computationally overwhelming when
the number of finest-scale elements, equal to the dimension
of , is large. Secondly, computing the internal variables
independently means that the approximations made at each
node may be done inconsistently. However, if the multiscale
model is to represent processes that are SSS with stationary
increments or stationary processes presenting the long-range
dependence phenomenon, these drawbacks can be overcome,
as detailed in the following sections.

IV. THE MULTISCALE MODELING

OF STATISTICAL SELF-SIMILARITY

In this section, we show how to represent SSS processes
at the finest scale of multiscale tree models. These models
are determined using CC and thus provide an optimal tradeoff
between model order (state dimensions) and statistical fidelity.
The realization algorithm is made efficient by exploiting the
SSS and the stationarity of the increments of the process to be
represented at the finest scale. The basis for simplifying the
realization algorithm for self-similar processes is provided in
Section IV-A, where we show that the linear functionals that
minimize the conditional correlation between two intervals of
a SSS process can be derived from the linear functionals that
minimize the conditional correlation between the process on
a common contraction or dilation of these intervals. Because
the internal variables of a multiscale model must minimize
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the conditional correlation between intervals of the finest-
scale process, the result of Section IV-A leads to a rule
for determining an internal variable at one scale from an
internal variable already computed at a coarser scale. This rule,
however, requires that the result of Section IV-A be extended
to discrete-time processes on a finite interval, since the finest
scale of a multiscale process can only represent samples on a
finite interval. These extensions are provided in Section IV-B.

The basis for using stationarity to simplify the multiscale re-
alization algorithm is provided in Section IV-C. We show that
the internal matrices produced by CC are relatively constant
across a given scale of the multiscale process whenever the
process to be represented at the finest scale is stationary or has
stationary increments. The variation in the internal matrices is
greatest at the coarsest scales and is due to the finite interval of
representation. These results imply that once a single internal
variable is known at scale then so are all the other internal
variables at scale , assuming that is not one of the coarsest
scales.

The simplifications under SSS and stationarity lead to an
efficient realization algorithm, namely, CC can be used to
compute the internal variables at the first few scales of the
tree. Next, self-similarity can be invoked to determine an
internal variable at each finer scale. Finally, all of the other
variables can be determined using stationarity or stationary
increments. The end result is that the number of CC required
by the algorithm is small and independent of the number of
samples represented at the finest scale of the tree. The complete
realization algorithm is summarized in Section V.

A. Statistical Self-Similarity and Canonical Correlations

Consider modeling evenly spaced samples of a SSS
process at the finest scale of a binary multiscale tree.

Let for be the samples. Assume
for notational simplicity that that for some positive
integer . Four consecutive samples of can be mapped
to each of the nodes at the finest scale of a binary tree
with scales. The mapping of the first thirty-two samples
is illustrated in Fig. 3 for . To see how SSS can
be used in the modeling process, consider nodeof the tree
in Fig. 3. The finest-scale descendents of noderepresent
samples of on the interval , while the finest scale
descendents of its parent represent on the interval

. Yet on the interval is SSS to on the
interval . Because of this similarity, we should expect
that the internal variable at nodeshould be closely related,
perhaps by some transformation, to the internal variable at
node . Now consider node in Fig. 3. Because on the
finest-scale interval descending from node , is SSS to

on the interval , which is the finest-scale interval
descending from , the internal variables at nodes and

should also be closely related.
To relate the internal variables at different scales, we first

consider the decorrelation of twointervals of and later
apply this result to the decorrelation of vectors of samples
of . We define the correlation between two intervals of

to be analogous to the correlation between two vectors

Fig. 3. The mapping ofx(n�t) for �t = 1=16 to the finest scale of
a binary tree withM + 1 scales. Four consecutive samples ofx(t) are
represented by each variable at scaleM .

in (15). Recall that the correlation between two scalar random
variables and after conditioning on is

where is the variance of after conditioning on .
Define to be the set of bounded linear functionals of

on the interval . The correlation between for
and for , allowing for conditioning

on a random variable is defined as [20]

(18)
Due to the homogeneity of linear operators and because
conditioning on is equivalent to conditioning on, we have

(19)

for any two scalars and .
Define for any . We will use the

following theorem (proved in the Appendix) to relate internal
variables at different scales when the finest-scale process is
SSS.

Theorem 1: Assume that the bounded linear functional
satisfies

(20)

For any SSS process and any scalar , the linear
functional that satisfies must
also satisfy

(21)

Theorem 1 can be extended to open intervals or unions of
intervals, e.g., or in lieu of .
Theorem 1 also applies if is a vector of linear functionals.

Theorem 1 basically states that the linear functionals that
maximally decorrelate two intervals of a SSS process can also
be used to determine the linear functionals that maximally
decorrelate any common dilations or contractions of these
intervals. For realizing multiscale models when the finest-
scale process is SSS, the utility of Theorem 1 is that internal
variables at one scale can be used to determine internal
variables at other scales, thereby reducing the number of
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CC computations that are required. For example, consider
deriving from in the tree illustrated in Fig. 3.
The internal variable must conditionally decorrelate

on the three intervals and where
is the complement of the interval in the entire

interval represented by the finest scale of the tree. (Ignore
for the moment that the finest scale of the tree represents
samples of not entire intervals.) Similarly, must
conditionally decorrelate on and .
Recall that the internal variables are computed in two steps
when using CC. For , the first step is to compute the
linear functionals of on that maximally decorrelate

on from on . Similarly, for the
first step is to compute the linear functionals of that
maximally decorrelate on from on .
Because the interval is related to by a simple
contraction, the first components of and should be
related through Theorem 1. Define the linear functional that
maximally decorrelates on from on by

(22)

for some function . From Theorem 1, the linear functional
for is the linear functional that

maximally decorrelates on from on .
That is

(23a)

(23b)

(23c)

From this analysis, once the internal variables at some scale
of the tree have been computed, all of the other internal
variables can be derived with the aid of Theorem 1. However,
there are two issues with this line of reasoning. First, the finest-
scale of the multiscale tree represents samples, not intervals,
of so that (23) cannot be directly applied. Secondly, in
using Theorem 1 to derive from , we implicitly
assumed that is related to by a contraction of
the time axis. This will be true only if and

, which is not the case if we are using a
tree to model a finite interval of . The following subsection
discusses how to overcome these problems and how the results
lead to an efficient algorithm for representing SSS processes
at the finest scale of multiscale trees.

B. Extending Theorem 1 to Sampled and
Discrete-Time Processes

To illustrate how Theorem 1 can be adapted for multiscale
modeling when the finest scale of the tree represents samples
of a SSS process, return to the tree illustrated in Fig. 3.
Assume that has been computed as in Section III-
B and we would like to determine the functional form of

directly from that of . Consider the first element
of , which is the linear functional of that
maximally decorrelates from . The first element of

, should maximally decorrelate from .
Since the intervals represented by and are and

, respectively, we should expect that is closely
related to . However, the dimension of is half that
of , so that a contraction of the time axis, like that used
in (23) for , cannot be directly applied to the derivation
of from . Instead, note that

(24a)

for

(24b)

where is the th element of the vector .
Because is the linear functional of that mini-
mizes the conditional correlation between samples on
and its complement, it will also approximately minimize

over all linear functionals .
The accuracy of this approximation depends on the aliasing
in the sampling of , i.e., the variation in on not
determined from the samples in.

Assuming that conditioning on the linear functional
minimizes the correlation between on and
on , Theorem 1 shows that conditioning on ,
where minimizes the correlation between on

from on . (We assume for the moment
that the interval represented at the finest scale has infinite
length, i.e., .) This linear functional will
also minimize the correlation between and , which
vectors represent samples of on the intervals and

, respectively. However, cannot be included in
since

(25)

is a function of samples of that are not to be represented
at the finest scale of the tree. A solution is to approximate this
inner product with a linear function of the samples that are
represented at the finest scale, e.g.,

(26)

which is obtained by replacing in (25) for odd
with . Another alternative is to replace
for odd with , where is the correlation
coefficient between the two samples.

Assuming that the multiscale tree is binary and the SSS
process to be represented at the finest scale is mapped to the
finest-scale nodes as in Fig. 3, (26) leads to a more general
method for determining internal variables from those already
computed at coarser scales, namely, if the finest-scale interval
descending from node represents samples of on ,
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(a) (b)

(c) (d)

Fig. 4. For fBm withH = 0:3; the linear functional that minimizes the conditional correlation betweenx(t) on the intervals (a)(1; 5=4] and(0; 1][(5=4;2]
and (b) (1=2;5=8] and (0;1=2] [ (5=8;2]. The dashed line in (b) is the linear functional derived from (27). (c) and (d) Identical plots for the next
additional linear functionals that minimize the conditional correlation.

then the internal variable can be derived from using
(in MATLAB pseudocode)

(27)

whenever and the finest-scale interval
descending from node is . Note that is
determined by averaging neighboring columns of so that

has one-half the number of columns of . Assuming
that minimizes over all -
dimensional linear functions of will approximately
minimize over -dimensional linear
functions of . This process can be continued recursively,
using to determine an internal variable at scale ,
assuming that is not the finest scale.

To justify the use of (27) in the multiscale modeling of
fBm and other SSS processes, we provide a few examples.
Consider modeling fBm for with and

. Fig. 4(a) illustrates the linear functional4 of (samples
of) on that minimizes the conditional correlation
between samples on and .
The solid line in Fig. 4(b) illustrates the linear functional of
(samples of) on that minimizes the conditional
correlation between samples on and

. Both linear functionals were computed
using CC. The dashed line in Fig. 4(b) illustrates the linear
functional derived from the linear functional in Fig. 4(a) using
(27). The linear functionals derived from CC and from (27) are
nearly identical. Fig. 4(c) and (d) show the linear functionals
that when combined with the linear functionals in Fig. 4(a) and
(b) minimize the conditional correlation between the respective
intervals. Again, the linear functionals derived from CC and
from (27) are nearly identical.

The difference between the linear functionals derived from
(27) and the optimal linear functionals derived from CC is due

4By “illustrating the linear functional” we mean that the vectorg is plotted
wheregT f is the linear functional andf is a vector of all of the samples on
(0;2].
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to both sampling and a finite interval of representation. Recall
that Theorem 1 applies to continuous-time processes and that
both of the intervals must be related by a common contraction.
While is the interval corresponding to after
the time axis is contracted by two, the complement
does not correspond exactly to after a contraction by
two. As a general rule, when the interval of interest increases in
size, i.e., for greater than two, the difference between
the linear functionals computed by CC and those computed
from (27) decreases.

The accuracy of (27) in determining linear functionals from
those already computed applies to fBm for all .
Also, remember that (27) was derived assuming only that the
finest scale of the multiscale process is to represent a SSS
process, not just fBm. Consider FDGN, which is not SSS but
has a geometrically decaying covariance function for large
lags [see Fig. 4(b)]. Consider FDGN for on the
interval for . (Recall that FDGN is a
discrete-time process.) The linear functional that minimizes the
correlation between on and
is illustrated in Fig. 5(a). The linear functional that mini-
mizes the correlation between on and

is illustrated in Fig. 5(b). Both of these linear
functionals are computed using CC. The linear functional
derived from the linear functional in Fig. 5(a) using (27) is
illustrated by the dashed line in Fig. 5(b). Again note the close
correspondence between the two linear functionals plotted in
Fig. 5(b). The additional linear functionals that decorrelate

and can also be derived quite
accurately from (27). This demonstrates that (27) or similar
relationships can be used in the multiscale modeling of SSS
processes such as fBm or long-range dependence processes
such as DFGN and FDGN.

C. Using Stationarity and Stationary Increments

While (27) reduces the computation required for multiscale
modeling, we are still left with a considerable number of CC’s
to compute. The problem is that the number of nodes increases
by two with each increase in scale, while (27) can be used to
compute onlyone internal variable at each scale from any
internal variable at a coarser scale. Thus, even if all of the
internal variables are known at some scale, only of the
variables at the level scales finer can be computed from (27).
The solution is to take advantage of stationarity for FDGN and
DFGN and stationary increments for fBm. The end result is
that the internal matrices remain approximately constant
for all nodes at a given scale, meaning that no additional
CC need to be computed onceone internal variable has been
computed at each scale.

To see why the internal matrices are relatively constant
across a given scale when the finest-scale process is stationary,
consider the multiscale modeling of samples of DFGN on
the interval . Assume a finest-scale mapping of the
form illustrated in Fig. 3. At scale , the four inter-
nal variables have finest-scale descendents on the intervals

and . The inter-
nal variable whose finest scale descendents represent DFGN

(a)

(b)

Fig. 5. For FDGN withh = 0:2 and n 2 [1; 256], the linear functional
that minimizes the conditional correlation betweenwh[n] on the intervals (a)
(128; 160] and (128;160]c and (b)(64; 80] and (64;80]c. The dashed line
in (b) is the linear functional derived from (27).

on the interval must conditionally decorrelate
samples of DFGN on the interval from samples
on . These two intervals are illustrated by the
darkly and lightly shaded strips at the top of Fig. 6. Call
this internal variable , where is the finest scale
process on . The internal variable whose finest scale
descendents represent DFGN on the interval must
conditionally decorrelate samples of DFGN on the interval

from samples on . These two inter-
vals are illustrated by the darkly and lightly shaded strips in
the middle of Fig. 6. Call this internal variable ,
where is the finest scale process on . The
internal matrices and can be computed independently
using CC. Another solution, however, is to compute only
and define . This internal variable is approximate
in the sense that the intervals illustrated at the bottom of
Fig. 6, rather than those in the middle, will be decorrelated by
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Fig. 6. The vectorW1f1 decorrelates the finest-scale process on the interval
(T=4; T=2] from (0; T=4][(T=2; T ], whileW2f2 decorrelates(T=2;3T=4]
from (0; T=2] [ (3T=4; T ]. The linear functionW1f2 can be used as an
approximation ofW2f2, only it does not exactly decorrelate(T=2;3T=4]
from (0; T=4].

. The accuracy of the approximation, i.e., how well
accomplishes the decorrelation of , will depend on

the size of the lightly shaded interval relative to the size of
the entire interval of representation and how close the
lightly shaded interval is to the edges of . In other words,
the approximation is best at the finer-scale nodes and at nodes
away from the boundary of the tree.

For fBm, the reason why the internal matrices are approx-
imately “shift-invariant” across any given scale is a little
more subtle, since fBm is not stationary but has stationary
increments. To show that the stationary increments of fBm
leads to internal matrices that are effectively shift-invariant,
we examine the linear function that minimizes the conditional
correlation between samples of fBm on neighboring intervals.
Denote the sampled process by and consider
the two -sample intervals and

. For

...
and ...

(28)

define as the -by- matrix that minimizes
. The matrix can be found using

CC. To show that the internal matrices are approximately
shift-invariant, we will show that is asymptotically
independent of for .

From the definition of it follows that for any invertible
-by- transformations and the -row matrix

that minimizes is related to the -row
matrix that minimizes by

. Therefore, determining the-dimensional
linear function of that minimizes the conditional corre-
lation between and is equivalent to determining the
-dimensional linear function of that minimizes the

conditional correlation between and .
Because fBm has stationary increments, the process

is stationary and its covariance is
given by sampling in (4a). Define and to be

the invertible transformations that satisfy

...

...
(29)

where is the standard deviation of The CC anal-
ysis of and depends on the covariance matrices

and . Each of these matrices
has the form

(30)

where

• has entries of the form

for and is independent of due to
the stationarity of the increments process ;

• and have entries of the form

and

for ;
• is a scalar.

To show that the matrix returned by CC is slowly
varying and asymptotically independent of, we only need to
show the same for and for each of the three covariance
matrices.5

For and for all values of .
For

for

5Note that even if�; a; andb are slowly varying;Wn might not be slowly
varying when the corresponding covariance matrices are ill-conditioned.
However, this does not a detract from our case. Because of the stability of the
SVD (singular-value-decomposition)-based CC decomposition, the subspace
spanned byWn yn should be relatively insensitive to perturbations in the
corresponding covariance matrices, meaning that the conditioning information
remains unchanged. In this case, there should still exist a series of vectors
~Wn yn that is nearly statistically identical toWn yn and for which ~Wn

is slowly varying.
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Now examine the entries of and that have the form

for

where the last approximation is made using a Taylor series
expansion. This shows that and for all three covariance
matrices are slowly varying and all of the elements decay to
zero at the rate of . Thus, is slowly varying
and so must be the internal variables of the corresponding
multiscale model (assuming, of course, that the edge effects
due to the finite interval of representation are again negligible).

To demonstrate the shift-invariance of the internal variables,
consider modeling fBm for with and

. The linear functional that minimizes the conditional
correlation between samples of on and those on

is illustrated by the solid line in Fig. 7(a). The solid
line in Fig. 7(b) is the linear functional of on that
minimizes the remaining conditional correlation. The dashed
lines in Fig. 7(a) and (b) are given by appropriately shifting
in the linear functionals in Fig. 4(a) and (c), respectively.
The correspondence between the linear functionals computed
by CC and those determined by invoking shift-invariance is
so close that the dashed lines are hardly visible.

V. AN ALGORITHM FOR THE MULTISCALE

MODELING fBm, DFGN, AND FDGN

This section outlines a complete algorithm for the multiscale
modeling of fBm, DFGN, and FDGN that is based on the
preceding analysis. Consider modeling samples of a SSS
process with stationary increments or of a stationary long-
range dependent process. Assume for simplicity that

for some positive integer The samples can be
mapped to the finest scale of a binary tree with scales,
where each finest-scale variable represents four consecutive
samples of the process.

The first step of the multiscale modeling is to compute the
internal matrices at each node not at the finest scale, i.e.,

. (The internal matrices at are four-by-
four identity matrices.) Remember that we are interested in
approximate representations of the finest-scale process, e.g.,
fBm, since an exact model would generally require internal
variables with the same dimension as . Thus, the
following algorithm requires the specification at each node
of either the maximum state dimension or the maximum
conditional correlation , i.e., .

To determine the internal matrices using a minimum number
of CC decompositions, we will, of course, make use of the
self-similarity and shift-invariance of the internal matrices,
as detailed in the previous two subsections. Recall that the
self-similarity and shift-invariance of the internal variables are

(a)

(b)

Fig. 7. For fBm withH = 0:3, a comparison of linear functionals computed
from CC (solid line) and linear functionals determined from Fig. 4 by invoking
shift-invariance (dashed line). Note that the dashed and solid lines are, as
expected, indistinguishable.

most descriptive (in terms of minimizing residual correlation)
when the finest-scale descendents of the internal variable (from
which all other internal variables are computed) are on an
interval that is both narrow relative to the length of the
entire finest-scale interval and far from the edges of the entire
interval. Therefore, one must decide for how many scales

to compute the internal variables using CC
where the remaining internal variables are computed using
(27) and shift-invariance. The tradeoff is between accuracy
and computations. The general algorithm has the following
form.

1) Use CC to compute the internal matrices at scales
. The dimensions of the internal variables

are controlled by or .
2) Use CC to compute , where is the th (middle)

node at scale .
3) Determine all the remaining internal matrices at scales

using (27) and shift-invariance.
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(a) (b)

(c) (d)

Fig. 8. The finest-scale covariance of multiscale approximations of fBm for�2 = 1 andH = 0:3 when the state dimensions are (a) four and (b) six. The
absolute value of the difference between (1) and the finest-scale covariances in (a) and (b) are illustrated in (c) and (d), respectively.

4) Determine the multiscale model parameters using (12)
and (14).

All of the examples in the following section use
. In this case, the entire algorithm requires seven6 CC

decompositions of the finest-scale covariance matrix
independent of the number of samples to be represented at the
finest scale. The effects of the finite interval of representation
can be further minimized by increasing . However, the
following examples show that multiscale representations of
fBm and FDGN are very accurate for .

VI. EXAMPLE MULTISCALE MODELS

This section provides a number of examples that demon-
strate both the effectiveness of the algorithm detailed in
Section V for the multiscale modeling of SSS processes and
the utility of the multiscale framework for estimating and
simulating these random processes.

A. fBm

Consider modeling samples of fBm for and
on with . These 256 samples can be

6Recall thatW0 requires only one CC, while the other internal variables
require two.

represented at the finest scale of a seven scale binary
tree. Using the algorithm of Section V, the finest scale of the
multiscale model has the covariance illustrated in Fig. 8(a)
when the dimension of all of the internal variables is four.
The absolute value of the difference between (1) and the finest-
scale covariance is plotted in Fig. 8(c). Note that the variance
of fBm is modeled exactly by the multiscale process, which
is a by-product of (14).

If the state dimensions are increased, the decorrelation pro-
duced by each internal variable will increase, leading to more
accurate models. The finest-scale covariance and modeling
error when the state dimensions are fixed at six—except at
the finest scale, where the state dimension is fixed at four—are
illustrated in Fig. 8(b) and (d), respectively. Note that the error
in modeling the covariance function decreases by roughly an
order of magnitude when the state dimensions increase from
four to six.

As a second example, consider the multiscale modeling of
fBm for The finest-scale covariance and modeling
error for a state dimension of four are illustrated in Fig. 9.
As for , the finest scale of the multiscale model
provides a very accurate approximation of fBm, even when
the state dimensions are small. More generally, the multiscale
models realized using the algorithm of Section V provide very
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(a)

(b)

Fig. 9. (a) The finest-scale covariance of multiscale approximations of fBm
for �2 = 1; H = 0:7. All of the states have a dimension of four. (b) The
absolute value of the difference between the finest-scale covariance and (1).

accurate representations of fBm for all values of ,
even when the state dimensions are small. Also, the finest-scale
covariances of these models are nearly identical to the finest-
scale covariances of multiscale models for which CC is used
to compute the internal matrix at every node on the tree. For
example, the matrices formed by the errors in Figs. 8(c) and
9(b) have Frobenius norms of 3.6 and 0.69, respectively, while
the errors for the corresponding four-dimensional multiscale
models computed using CC at every node have Frobenius
norms of 2.4 and 0.40.

Another important property of the multiscale models of
fBm is that the modeling errors (when the state dimension
is fixed) do not change significantly when the resolution

or size of the interval represented at the finest scale
increases. For instance, when and the state
dimension is four, the ratio of the Frobenius norm of the
error in modeling the covariance to the Frobenius norm of
the covariance matrix of the samples represented at the finest
scale is 0.023 for , 0.032 for , and
0.039 for . (We normalize by the Frobenius norm
of the covariance, since increasing the number of samples
will increase the Frobenius norm of the error, even when the

magnitude of the errors remains constant.) This means that
low-order multiscale models provide accurate representations
of fBm now matter how fine the resolution or how large the
interval to represented.

Multiscale models are of interest for the modeling of fBm
and other SSS processes not only because they provide accu-
rate and efficient representations, but also because the efficient
estimation and simulation algorithms of the multiscale frame-
work can be used. While the multiscale estimator requires

computations when the state dimensions areand
the number of samples represented at the finest scale is, we
just demonstrated that the state dimensions are independent
of for a desired level of fidelity in the model. Thus,
for a given error tolerance, the complexity of the estimator
actually grows as . This growth in computations is
independent of the number of measurements incorporated,
whereas a standard implementation of the normal equations
would require computations when all or nearly all of
the finest-scale samples are measured. As an example, consider
the estimation of fBm for and from
sparse, noisy, and irregularly sampled measurements. Assume
a multiscale model for which the dimension of all the states
is four. A sample path of fBm is illustrated in Fig. 10(a). The
measurement noise is assumed to have a standard deviation
of 0.05 and the measurements are indicated by the’s in
Fig. 10(a). The estimate of fBm produced by the multiscale
model is illustrated by the solid line in Fig. 10(b). The dotted
line indicates the estimate produced using an exact model
of fBm. Without any additional computations, the multiscale
estimator also produces the variance of the estimation error.
The one standard deviation error lines are indicated by the
dashed lines in Fig. 10(b). Note that the difference between
the exact and approximate (multiscale) estimate is well within
the one standard deviation error.

Another useful feature of the multiscale estimator is that
it also produces the coefficients for a multiscale model that
represents the estimation error. Because multiscale models
can be efficiently simulated by simply evaluating the au-
toregression in (8), the multiscale error models can provide
conditional simulations that are necessary for any applica-
tions requiring Monte Carlo analysis. Two conditional sample
paths corresponding to the example of Fig. 10 are provided
in Fig. 11. Note that the conditional sample paths nearly
pass through each of the measurements. The advantage of
the multiscale framework is that once the parameters of
the multiscale error model are returned by the estimation
algorithm, each conditional simulation can be computed in
(approximately) computations where is the number of
finest-scale samples andis the dimension of the states in the
model. By contrast, a Cholesky factorization of the estimation
error covariance, which is nonstationary, will require
computations.

Other features of the multiscale framework are that arbitrary
nonlocal measurements of fBm can also be incorporated by
the estimator [16], and the likelihood calculator can be used to
estimate and from noisy measurements of sample paths of
fBm, although more crude models of fBm frequently suffice
for the latter application [18].
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(a)

(b)

Fig. 10. (a) A sample path of fBm for�2 = 1 and H = 0:2. Noisy
measurements are illustrated by�’s. (b) The estimate produced at the finest
scale of the multiscale model with state dimension four (solid line), the
estimate based on the exact fBm covariance (dotted line), and the one standard
deviation estimation errors (dashed line).

B. FDGN

Now consider modeling 256 samples of FDGN using the
multiscale realization algorithm of Section V. For ,
the finest-scale covariance of the multiscale model with state
dimensions set to four is given by the solid line in Fig. 12(a).
The dotted line in Fig. 12(a) is where is the
covariance function of FDGN. While FDGN is stationary, the
process at the finest scale of the multiscale model for FDGN is
not exactly stationary, and will vary slightly with the location
of the finest-scale sample. Thus, the solid line Fig. 12(a) really
represents only a single column of the finest-scale covariance
matrix, but the approximation errors given in this plot are
typical of all the columns.

The finest-scale covariance of the multiscale model with
state dimensions set to six is plotted in Fig. 12(b). As would be
expected, increasing the state dimension from four to six leads

(a)

(b)

Fig. 11. Two conditional simulations of fBm conditioned on the measure-
ments illustrated in Fig. 10.

to a noticeable reduction in modeling errors. For ,
the finest-scale covariance function is plotted in Fig. 12(c) and
(d) for the multiscale models with state dimensions of four and
six. Again, the multiscale model is quite accurate even when
the state dimensions are limited to four and the representation
improves as the state dimension increases from four to six.

Results similar to these were obtained for the multiscale
modeling of DFGN, which should not be surprising given the
close correspondence between the covariances of FDGN and
DFGN.

VII. CONCLUSION

This paper developed an efficient realization algorithm for
the modeling of SSS processes using the multiscale processes
introduced in [13]. The models were then applied to fBm,
DFGN, and FDGN, demonstrating the tradeoff between ac-
curacy and state dimension. The multiscale models are quite
accurate even when the state dimensions are very small, and
the accuracy of the representations remains relatively constant
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(a) (b)

(c) (d)

Fig. 12. The finest-scale covariance of multiscale approximations of FDGN forh = 0:2 and state dimensions of (a) four and (b) six and forh = �0:2 and
state dimensions of (c) four and (d) six. The solid line is the covariance of the multiscale model, and the dashed line is that of FDGN.

when the state dimension is fixed and the number of samples
represented at the finest scale is increased. This means that the
processing algorithms of the multiscale framework have
growth in computations for a desired level of accuracy. The
flexibility and processing power of the multiscale framework
were demonstrated by estimating fBm from sparse irregu-
larly sampled measurements and then generating conditional
simulations.

The most significant issue not addressed in this paper is the
number of computations required by the CC in the algorithm
of Section V. While the number of CC decompositions does
not increase with , the number of computations required to
compute each CC is certainly a function of and, in fact,
grows cubicly with . One possible solution to this growth
in complexity is suggested by the fact that independent of the
size of , only a very small number of linear functions of the
finest-scale process are generally desired from the CC since
low-dimensional models are quite accurate even for large.
Also, these linear functions are rather smooth functions of
the finest-scale process, with all of the detail concentrated at

the boundaries of the finest-scale intervals to be decorrelated.
Therefore, there is really no need to perform a CC analysis of
the entire finest-scale covariance matrix. Instead, especially at
the coarser-scale nodes, we are only interested in the linear
functions that decorrelate a reduced-order subspace of the
finest-scale process. The form of the linear functionals gives
us some insight for choosing this subspace, but a complete
analysis is beyond the scope of this paper.

A more long-term objective of this research is to model
statistically self-similar processes using multiscale models
without having to perform the intermediate step of computing
the internal matrices. Namely, we would like to determine
the form of the autoregressive moving-average (ARMA) pa-
rameters and that leads to finest-scale processes that
have polynomial decay in the correlation function without
having to operate on the covariance matrix for the finest scale
process. Another objective is to discover whether or not it is
possible to represent two-dimensional SSS random processes
with low-order multiscale models.
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APPENDIX

PROOF OF THEOREM 1

For any two linear functionals and
, statistical self-similarity implies that

Riesz’s Lemma [27] shows that there exists a function
such that

for any bounded linear functional . Applying a change
of variables to such integrals, there exist linear functionals

and such that
and . The existence of these linear functionals
leads to

where the last equality follows from . Therefore,

The result of the theorem follows. Q.E.D.
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