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Likelihood Calculation for a Class of 
Multiscale Stochastic Models, with 

Application to Texture Discrimination 
Mark R. Luettgen, Member, IEEE, and Alan S. Willsky, Fellow, IEEE 

Abstruct- A class of multiscale stochastic models based on 
scale-recursive dynamics on trees has recently been introduced. 
Theoretical and experimental results have shown that these mod- 
els provide an extremely rich framework for representing both 
processes which are intrinsically multiscale, e.g., llf processes, as 
well as 1-D Markov processes and 2-D Markov random fields. 
Moreover, efficient optimal estimation algorithms have been de- 
veloped for these models by exploiting their scale-recursive struc- 
ture. In this paper, we exploit this structure in order to develop a 
computationally efficient and parallelizable algorithm for likeli- 
hood calculation. We illustrate one possible application to texture 
discrimination and demonstrate that likelihood-based methods 
using our algorithm achieve performance comparable to that 
of Gaussian Markov random field based techniques, which in 
general are prohibitively complex computationally. 

I. INTRODUCTION 

CLASS of multiscale models describing stochastic pro- A cesses indexed by the nodes of a tree has recently 
been introduced in [5], [6]. This class of processes is quite 
rich. In particular, experimental results in [5] illustrate that 
these models are able to capture the statistical self-similarity 
exhibited by stochastic processes with generalized power 
spectra of the form l/fP. Moreover, in [13] we have described 
how they can be used to represent any 1-D Markov process 
or 2-D Markov random field. 

The basic concept underlying this modeling framework is 
the exploitation of the time-like nature of scale. In particular, 
these models provide a scale-recursive description for random 
processes and fields and, as a result, lead to extremely efficient 
scale-recursive algorithms for optimal estimation [5], [6]. In 
particular, while standard 2-D optimal estimation formula- 
tions--e.g., those based on MRF’s-have per-pixel compu- 
tational complexities that typically grow with image size, 
these scale-recursive algorithms have a per-pixel complexity 
independent of image size and thus can lead to substantial 
computational savings for standard image processing problems 
[141. 
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The conclusion that we draw from this is that the multiscale 
framework can in many cases provide a very useful basis for 
signal and image processing problems, both because of the rich 
class of phenomena that it can be used to describe and because 
of the efficient algorithms to which it leads. This motivates 
further algorithmic development and, in particular, we discuss 
in this paper a likelihood calculation algorithm for this class 
of processes. That is, we consider the problem of computing 
the log of the probability density of a set of noisy observations 
assuming that the data corresponds to a particular multiscale 
model. We exploit the structure of the multiscale models to 
develop an efficient and parallelizable algorithm that allows 
for multiresolution data and parameters which vary in both 
space and scale. The algorithm is noniterative and again has a 
constant per-pixel computational complexity. 

We illustrate one possible application of the algorithm to a 
texture classification problem in which one must choose from. 
a given set of models that model which best represents or most 
likely corresponds to a given set of random field measurements 
[ 101. Texture modeling with Gaussian Markov random field 
(GMRF) models is well documented in the literature [2], [7], 
[17]. One difficulty in using GMRF models, however, is that 
the calculation of likelihoods can be prohibitively complex 
computationally. If data are available on a regular rectangular 
grid, likelihoods for stationary GMRF’s can be computed 
efficiently using 2-D FFT’s. However, if there is an irregular 
sampling pattem or if there are regions without data (due to 
camera blockage, for instance), then the 2-D FFT approaches 
break down for GMRF models and exact likelihood calculation 
becomes computationally infeasible for even moderately-sized 
domains. 

As developed in [ 131, multiscale models representing 
GMRF’s to any desired level of fidelity can be readily 
constructed and this immediately suggests the idea of 
developing texture models and discrimination algorithms 
based on the multiscale modeling framework and the 
associated likelihood calculation algorithm that we develop 
in this paper. However, it is not immediately obvious that 
such a framework will provide significant advantages over 
classical GMRF-based approaches. Specifically, the approach 
developed in [13] yields a family of multiscale models 
representing approximations of a GMRF of increasing fidelity 
and complexity. Thus, if we require exact modeling of 
the GMRF, the apparent computational gain in using the 
multiscale framework may have diminished to the point that 
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the benefit of our formalism is not particularly significant. 
However, as the results in [13] illustrate, there is strong 
evidence that relatively low-order models yield processes 
which are visually indistinguishable from realizations of the 
GMRF’s they approximate. In this paper, we show that a 
corresponding statement is true when low-order multiscale 
models are used in place of GMRF priors as the basis for 
algorithm design, in this case for texture discrimination. 
Indeed, as we will see, we can achieve essentially the same 
performance in discriminating between two GMRF textures 
using likelihood calculations based on low-order multiscale 
models as can be achieved using exact likelihoods for GMRF 
models. Since for these low-order models the likelihood 
calculation algorithm is extremely efficient, and since the 
algorithm allows for arbitrarily irregular sampling pattems 
(i.e., it applies in many practical situations in which GMRF- 
based approaches relying on 2-D FFT computations do not), 
what this shows is that the multiscale framework does in fact 
offer substantial advantages over the GMRF-based framework. 
Indeed, given the potentially substantial computational savings 
in using the multiscale approach, and the fact that any model 
for a real texture is an idealization, these results demonstrate 
a potential advantage in using multiscale models, rather than 
GMRF’s, as a valid starting point for the modeling of textures. 

This paper is organized as follows. In Section 11, we 
discuss the class of multiscale stochastic models and the 
scale-recursive estimation algorithm associated with them. In 
Section 111, we present the algorithm for performing likelihood 
calculations. In Section IV, we present results of experiments 
that demonstrate the relative performance of our multiscale ap- 
proach and GMRF-based approaches to texture discrimination. 
Finally, our conclusions are summarized in Section V. 

11. MULTISCALE STOCHASTIC 
MODELING AND OPTIMAL ESTIMATION 

A .  Multiscale Stochastic Models 

The models presented in this section describe multiscale 
Gaussian stochastic processes indexed by nodes on a tree. A 
qth order tree is a pyramidal structure of nodes connected 
such that each node of the tree has q offspring. Different 
levels of the tree correspond to different scales of the process. 
In particular, the qm values at the mth level of the tree 
are interpreted as “information” about the mth scale of the 
process. For instance, quadtree models naturally arise in 2-D 
applications, and the simplest example of a quadtree multiscale 
representation is that in which the values of the spatial process 
at the mth scale correspond to averages of the process values 
at scale m+ 1 [16], [14]. However, the state variables can 
also be used to represent many other properties of the process 
of interest. For example, in [13], in which we demonstrate 
that these multiscale models can be used to represent any 1-D 
Markov process or 2-D MRF, the state variables at coarser 
scales are interpreted as decimated, rather than averaged, 
versions of the process at the finest scale. On the other hand, 
the approximate representations of GMRF’s developed in [ 131 
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Fig. 1 .  A third-order tree. 
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Fig. 2. 
likelihood calculation. 

An ordering of the nodes on the tree which leads to efficient 

and used in Section IV are based on yet another interpretation 
which is associated with both averaging and decimation. 

An example of a qth-order tree (for q = 3)  is depicted in 
Fig. 1 .  Here, each horizontal level corresponds to a particular 
scale, with coarser scales toward the top of the tree and finer 
scales toward the bottom. We denote nodes on the tree with 
an abstract index s, and define an upward (fine-to-coarse) shift 
operator Fy such that sFy is the parent of node s. We also 
define a corresponding set of downward (coarse-to-fine) shift 
operators ai, i = 1,2,  . . . , q,  such that the q offspring of node 
s are given by sal, saz, . . . , saq, and we let m(s) denote the 
level or scale of the node s (so that m(s7) = m ( s )  - 1 and 
m(sai) = m(s) + 1). Finally, we define the operator 6 such 
that i f s  = syak,  then s6 = s?ak+l, with the convention that 
aq+l = al .  In words, 6 is a horizontal shift operator, defined 
cyclically, and such that if s is the kth offspring of its parent, 
then s6 corresponds to the ( k  + l)(mod q)th offspring of the 
same parent node. 

The multiscale stochastic models of interest here are speci- 
fied in terms of scale-recursive dynamic equations defined on 
the tree. Specifically, let x ( s )  E R” denote the value of the 
“state” of the process at node s. The statistical characterization 
of x ( s )  is then given by 

(1) 

under the assumptions that ~ ( 0 )  - N(O,P(O)), W ( S )  - 
N(0, I ) ,  A ( s )  and B ( s )  are matrices of appropriate size, and 
s = 0 corresponds to the root node at the top of the tree’. 
The state variable x(0)  provides an initial condition for the 
recursion. The driving noise w(s) E am is white, i.e., w(s) 
and w(n) are independent if s # 0, and independent of the 
initial condition. Interpreting each level as a representation of 

mean vector m and covariance P. 

x ( s )  = A(s)x(s?) + B ( s ) w ( s )  

‘The notation I N N ( m ,  P )  means that I is normally distributed with 
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one scale of the random process or field of interest, we see 
that (1) describes its evolution from coarse to fine scales. The 
term A(s)z (sT)  represents interpolation or prediction down to 
the next level, and B(s )w(s )  represents new information or 
detail added as the process evolves from one scale to the next. 

The class of models (1) has a statistical structure that we can 
exploit to develop extremely efficient algorithms. In particular, 
note that any given node on the qth-order tree can be viewed 
as a boundary between q+ 1 subsets of nodes ( q  corresponding 
to paths leading towards offspring and one corresponding to 
a path leading towards a parent). An important property of 
the scale-recursive model (1) is that not only is it Markov 
from scale-to-scale but also, conditioned on the value of the 
state at any node, the values of the state corresponding to the 
q + 1 corresponding subsets of nodes are independent. This 
fact is the basis for the development in [5] and [6] of an 
algorithm for computing smoothed estimates of z(s) based on 
noisy measurements y(s) E RP of the form 

(2 )  

where w(s) N N(O, R ( s ) )  and is independent of both the driv- 
ing noise w(s) and the initial condition z(O), and the matrix 
C( s) specifies measurements taken at different spatial loca- 
tions and perhaps at different scales. This algorithm provides 
the starting point for our likelihood calculation algorithm, and 
hence we briefly review it in the next section. 

Y(S) = C(s)z(s) + 4 s )  

B.  Multiscale Optimal Estimation 
The algorithm for computing the smoothed estimates of 

z(s) consists of an upward sweep in which the available 
measurement information in a subtree is successively fused 
in a fine-to-coarse recursion in scale, followed by a downward 
sweep in which the information is spread back throughout 
the tree. We denote the set of measurements in the subtree 
which has s as its root as Y,, i.e., Y, = {y(a)la = s or (T 

is a descendant of s } .  We also define ?(s ly )  as the expected 
value of the state z(s) given measurements in the set Y ,  i.e., 
?(s ly )  = E[z(s) lY] .  The set Y can be any subset of the 
measurements on the tree. In particular, the smoothed estimate 
of z(s), the estimate based on all of the data, is denoted 
i( slY0). Finally, we define the error covariance corresponding 
to ?(s ly )  as P(s lY)  = E[(z(s) - P(slY))(z(s)  - 
and the set Y,"' = Y, \ {y(s)}, where the notation Y, \ {y(s)} 
means that the measurement y(s) is not included in the set 
Y,"'. Note that ?(sly,"') is the best estimate at node s given 
all of the data in the subtree strictly below node s, whereas 
?(slYs) is the best estimate including y(s) as well. The upward 
sweep of the smoothing algorithm computes these quantities 
recursively from fine-to-coarse scales. The initializations of 

and the corresponding error covariance P(slY,"*) at 
the finest level reflect the prior statistics of z(s) at the finest 
scale, as we have not yet incorporated data. In particular, for 
every s at this finest scale we set ?(sly,"') to zero (which 
is the prior mean of z(s)) and similarly set P(slY,"') to the 
corresponding covariance, namely the solution at the finest 
level of the Lyapunov equation: 

= A ( ~ ) P ( ~ ~ ) A ~ ( ~ )  + B ( ~ ) B ~ ( ~ )  (3) 

where P ( s )  denotes the variance of the process z(s) at node s. 
The upward sweep of the smoothing algorithm then proceeds 
recursively. Specifically, suppose that we have i( sly;*) and 
P(slY;*) at a given node s. Then this estimate is updated to 
incorporate the measurement y(s) (if there is a measurement 
at node s) according to the following: 

P(SlY , )  = ?(sIY;') + K(s)[y(s) - C(S)?(Spy')]  (4) 

P(slY,) = [I - K(S)C(S)]P(SlY,"') ( 5 )  

where K (  s) P( s IY,"' )CT ( s )  [C( s)P( s [Y,"' ) CT ( s )  + 
R( s)] -'. 

Suppose, then, that we have the updated estimates 
?(sa, lyse,) at all of the immediate descendants of node s. The 
next step involves the use of these estimates to predict z(s) at 
the next coarser scale, i.e., to compute ?(S~Y,,~). Specifically, 
we can define an upward model for the tree process which 
describes its evolution in terms of fine-to-coarse dynamics 

= 

[61, VI:  

z(sy) = F ( s ) z ( s )  + a(s) (6 )  

with the measurement equation again given by (2), and where 
F ( s )  = P(sy)AT(s)P(s)- l  and E[6(s)UIT(s)] = P(s7) - 
P(S~)A~(S)P(S)-'A(S)P(S~) Q ( s ) .  This upward model 
is equivalent to the downward model in the sense that the joint 
second-order statistics of the states z( s) and measurements 
y(s) are the same. The driving noise term G(s) is white along 
any path from the finest to coarsest scales and, as a result, (6) 
can be used to obtain the fine-to-coarse predicted estimates: 

~ ( ~ I Y s a z )  = F(s~,)~(sa,IY,,*) (7) 
P(slYsa,) = F(saz)P(scrzIY,,~)FT(sa,) + &(sa,). (8) 

Next, note that Y,"' = Y,,, U Y,,, U . . . U Y,,, . This implies 
that ?(sly,"') can be obtained by using standard formulas for 
combining linear least squares estimates based on independent 
sets of measurements in the following merge step: 

4 

~(sIYQ0lq) = P(,lY,"') ~-l(slYs,y,)f(slYs,%) (9) 

P(slY,"q) = [(l - q)P(s)-l  + C P - l ( s l Y s a , ) ] - l .  

z=1 
P 

(10) 

The upward sweep given by the update, predict and merge 
equations proceeds recursively up the tree. At the top of the 
tree (corresponding to the root node s = 0), one obtains the 
smoothed estimate of the root node, f (O lY0) .  The estimate 
?(OlYo) provides initialization for a downward sweep in which 
?(slYa) is computed recursively from coarse-to-fine. It is 
also possible to derive a recursion for the smoothing error 
covariance P(slYo), and in fact a multiscale model for the 
smoothing error process which allows one to calculate the 
full correlation structure of the error statistics. The reader is 
referred to [5], [12], and [15] for further details. Our primary 
focus here will be on the relationship of the upward sweep 
of the algorithm, which we refer to as the multiscale Kalman 
filtering algorithm, to the likelihood calculations discussed in 
the next section. 

z=1  
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111. LIKELIHOOD FUNCTION CALCULATION 

In this section, we provide an algorithm for computing the 
likelihood function for the multiscale model, i.e., the log of the 
probability density of the data based on this model. We denote 
the set of nodes on the tree at which we have measurements 
as 7 and stack the measurements { y ( s ) j S E l  into a vector 
y .  Then, y - n/(O,A,), where A, is implicitly given by the 
model parameters. 

The main problem in evaluating the likelihood is that the 
data covariance matrix A, is generally full, and thus inverting 
it directly is difficult if the number of data points is large. The 
algorithm below whitens the data, which allows the likelihood 
to be evaluated easily. In particular, the data is invertibly 
transformed to a new set of data {v(s ) jSET,  such that v ( s )  and 
.(U) are uncorrelated i f s  # o. In particular, if we construct a 
vector v by stacking up the residuals { ~ ( s ) } ,  then v = Ty for 
some invertible matrix T and the resulting covariance matrix, 
A, = TA,TT, is diagonal (or block diagonal)2. The likelihood 
function expressed in terms of { v ( s ) )  and its statistics is then 
given by: 

where m is the dimension of y3. 
Achieving a computational gain via whitening the data 

depends upon finding a transformation T for which (a) the 
specification of T and the calculation v = T y  can be 
performed efficiently and (b) IT1 = constant (usually equal 
to 1) independent of the parameters of the model4. One 
obvious choice for the transformation T is that based on an 
eigendecomposition of A,. In this case (b) is trivially satisfied, 
but only in certain situations will the same be true for (a). For 
example, if the parameters of the model ( 1 )  vary only as a 
function of scale, then the Haar transform (and appropriate 
generalizations for trees of order q > 2 )  can be used to whiten 
the data [6] .  On the other hand, if either the model or process 
is nonstationary (e.g., if the model parameters in (1) vary in 
both space and scale) or if the data collection is nonstationary 
(e.g., if the data for a 1-D or 2-D process has data dropouts, 
if 2-D data are available at a nonrectangular or irregular set 
of points, or if C(s) in (2) depends fully on s and not just on 
m(s) )  then not only is the determination of the eigenstmcture 
of A, extremely complex but also, even if.we can compute 
an eigendecomposition, the calculation v = T y  will itself be 
complex (in general, O(m2) operations). 

There are, of course, alternatives to the full eigendecom- 
position method of whitening. In particular, Gram-Schmidt 
orthogonalization, in which the data are ordered and se- 
quentially whitened, provides another approach which also 

2For simplicity in notation, we will use {U(.)} in place of { V ( S ) } ~ C ~ ,  
and similarly {y(s)} in place of { Y ( s ) } , ~ ~ .  

3For example, if each measurement y(s) is of dimensionp, then m = pS,  
where S is the cardinality of 7. 

4The latter can be of critical importance in parameter estimation since the 
dependence of IT1 on the parameters can greatly complicate maximization of 
L as a function of the parameters. 

automatically satisfies (b)5. Satisfying (a), on the other hand, 
requires the availability of substantial structure. In particular, 
in general the whitening of each successive data point requires 
subtracting from it an estimate of it based on all data preceding 
it in the chosen ordering; without additional structure the 
computation of these estimates requires growing memory as 
the orthogonalization procedure proceeds. For 1 -D time series, 
in which there is an obvious, natural ordering of the data 
points, the class of causal Gauss-Markov models has such 
structure and, in particular, the Kalman filter performs the 
whitening itself by generating the filter innovations, each 
sample of which is precisely the required difference between 
a measurement and its estimate based on previous data. 
The algorithm we present here can be viewed as a natural 
generalization to (l), (2) of the Kalman filter-based algorithm 
for 1-D Gauss-Markov models. In particular, note that for 
q = 1, the “tree” corresponds simply to a completely ordered 
sequence of points so that (l), (2) correspond to the usual 
state space model for time series for which the Kalman filter 
performs the desired whitening. Our algorithm for general 
qth-order trees is based directly on the multiscale Kalman 
filter described in Section 11, and hence reduces precisely to 
the standard algorithm6 in the case q = 1. For q > 1, the 
algorithm has an interesting new component not arising in the 
standard time series due to the fact that on higher order trees 
the multiscale Kalman filter provides only a partial whitening 
of the data. 

In particular, define the residuals generated by the multiscale 
Kalman filter as vf(s) y ( s )  - G(s)?(s(Y,”‘), where the 
subscript f is used to distinguished these filter residuals from 
the residuals v ( s )  which will be the result of the likelihood 
calculation algorithm. The fact that the set {vf(s)} is not white 
for q > 1 is apparent from the update equation (4) in which 
the residual term vf(s) is used to obtain P(sIY,). Since the 
estimate ?(sly,”*) does not depend on nodes outside of the 
subtree below node s, there is no reason to expect that vf(s) is 
orthogonal to the corresponding residuals calculated at nodes 
at the same level as s. More generally, from the structure of the 
upward sweep we can immediately conclude that vf(s) and 
vf(o) are necessarily uncorrelated if and only if one of these 
nodes is the ancestor of the other, i.e., if and only if for some 
T > 0, s = ayr or = sFyT. Thus, along any single path from a 
fine scale node back toward the root node, the corresponding 
multiscale Kalman filter residuals are white. For usual time 
series corresponding to q = 1, there is only one such path. 
However, for q > 1, there are many paths and the Kalman 
filter, which operates in parallel on these, does not whiten the 
data across them. Nevertheless, the partial whitening that the 
Kalman filter performs can be taken advantage of and in the 

5Assuming that y is constructed by stacking the measurements { y(s)} 
in the desired order for whitening, we immediately see that Gram-Schmidt 
orthogonalization always yields a lower block triangular matrix T with identity 
blocks along the diagonal. 

6The Kalman filter-based method for calculating the likelihood of a Gauss- 
Markov time series is now widely accepted. Of course, use of that method 
relies on an assumption that the time-series actually i s  Gauss-Markov. If it is 
not, e.g., if it is better modeled as the output of a discrete state process, then 
methods that exploit that altemative model structure can be developed (see, 
e.g., [22]). Likewise, processes on trees that do not fall into the class (I), (2), 
will obviously require other methodologies (see [l], [21]). 
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following subsections we describe an algorithm that does just 
that. 

A. Ordering the Nodes 

Any Gram-Schmidt procedure requires a total ordering 
of the data points. The essential attribute of the order we 
use is that offspring nodes appear earlier than their parents. 
This leads to a likelihood calculation algorithm which has a 
multiscale Kalman filter embedded in it, and which in essence 
provides the additional computations required to fully whiten 
the data. 

To motivate the ordering scheme, recall that if we choose 
some path from finest to coarsest levels, the Kalman filter will 
produce a completely uncorrelated sequence along this path. 
Thus, if we take the residuals along one such path as elements 
of our final whitened process, we won’t have any additional 
processing to do at these nodes. For example, consider the 
third-order tree in Fig. 1 and suppose that we take the “left- 
most” path sal-s-sy-0 as our chosen path along which we let 
the Kalman filter do all of the work-i.e., the corresponding 
Kalman filter residuals vf will also be the corresponding 
values of v, our final, completely whitened process. Note first 
that the Kalman filter estimate is initialized with a value of zero 
at the finest level so that, referring to Fig. 1, ?(sal(Y,“,‘,) = 0. 
Thus, vf(sa1) = y(sal), and it is natural then to think of the 
node sa1 in Fig. 1 as the first point in our total ordering of the 
nodes. However, its parent s should not be thought of as the 
second point. In particular, while the Kalman filter residual 
vf(s) at this node has certainly been whitened with respect 
to y(sal), it has also been whitened with respect to y ( sa2)  
and y ( sag) ,  and thus, to take advantage of the work already 
performed by the Kalman filter, we should place sa2 and sag 
before s in our total order. Obviously, just as in our arbitrary 
choice of an initial path, we can arbitrarily choose to place one 
of these two points before the other, so we choose to order 
the first four points as sa l ,  sa2, sag, s. 

Continuing with this logic on Fig. 1, since the Kalman filter 
will whiten vf(ŝ () with respect to all of the data in the subtree 
beneath sy, all of these points should be placed before s.’y 
in the order (so that sy will be the 13th point). Moreover, 
since the Kalman filter will also whiten v(s6)  with respect 
to its three descendants, those descendants should precede 
s6 in the ordering. More generally, the ordering philosophy 
that this suggests is the following: place each of the nodes as 
early in the order as possible, subject to the constraint that 
all descendants of any node precede that node in the order 
and to the constraint that each node immediately follows its 
descendent which is placed latest in the order (so that, referring 
to Fig. 1 and the example above, node s follows node sa3 in 
the order). There is still some freedom in this ordering and we 
arbitrarily order the immediate offspring of any node s “left-to- 
right” as sa l ,  sa2, . . . , saq., as we have done in the example 
above. The resulting order for the tree in Fig. 1 is given in 
Fig. 2. For future reference, we now adopt the notation s < a 
if s appears before a in this ordering. 

With the ordering established in this way, we see that 
the Kalman filter does all of the work for some nodes but 
only part of it for others. For example, consider the tree of 

(c) (4 
Fig. 3. Information flow in the likelihood calculation algorithm. 

Fig. 2. In this case, the Kalman filter will have done all of the 
desired whitening at nodes 1 (where no whitening is needed), 
4 (whitened with respect to nodes 1-3), and 13 (whitened 
with respect to nodes 1-12). Thus, at these three nodes we 
can take v ( s )  = vf(s). On the other hand, the Kalman filter 
does only part of the work for nodes 2-3, 5-8, and 9-12. 
For instance, node 8 is whitened relative to data at nodes 5-7 
but not with respect to nodes 1 4 .  The key to performing the 
remaining whitening is to propagate information around the 
tree structure in an efficient way. In particular, what we wish 
to compute at any node s is E{z(s)ly(a), a < s}, the estimate 
of the state z(s) at that node based on measurements at all of 
the nodes preceding s in the ordering. Having this, the residual 
calculationis simply v ( s )  = y(s)-C(s)E{z(s)ly(a), a < s}. 
The key then is to look carefully at the structure of the set 
of nodes {ala < s } ,  and to perform the calculation using 
prediction, merge, and update steps analogous to those used 
in the Kalman filter. 

B.  Algorithm Description 

Before describing the calculations required to obtain 
E{z(s)Iy(a),a < s} in general, we first consider those 
corresponding to nodes 1-13 in Fig. 2 in order to convey the 
essence of the algorithm. Consider first the whitening of the 
measurement at node 2 with respect to node 1 in Fig. 2. As 
illustrated in Fig. 3(a), in order to compute E{z(2)ly(l)}, we 
first take the Kalman filter estimate of the state at node 1 
based on node 1 data, and then use the upward dynamics (6 )  
to predict the value of the state at the parent node 4, and then 
use the downward dynamics (1) to obtain the estimate of the 
state at node 2 based on node 1 data. Likewise, as shown in 
Fig. 3(b), to obtain E{z(3)ly(l),y(2)}, we merge the upward 
predictions of the state at node 4 based individually on nodes 
1 and 2, and then predict downward to obtain the desired 
estimate at node 3. 

Continuing, consider the whitening of nodes 5-8. Since 
all of these are to be whitened with respect to nodes 1 4 ,  
a common calculation has the information flow depicted in 
Fig. 3(c). That is, we take the Kalman filter estimate of the 
state at node 4 based on data from nodes 1 4 ,  predict upward 
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to node 13 and then downward to node 8. This estimate is 
then (i) predicted downward to node 5; (ii) merged at node 
8 with an upward predicted estimate from node 5 and then 
predicted downward to node 6; (iii) merged at node 8 with 
the upward predicted and merged estimate based on nodes 
5 and 6 and then predicted downward to node 7; and (iv) 
merged at node 8 with the full predicted and merged estimate 
of the state at this node based on nodes 5-7 (i.e., the upward 
Kalman filter's predicted estimates at node 8). These results 
yield the estimates needed to compute v ( s )  in at nodes 5-8. 
Similarly, as shown in Fig. 3(d), the Kalman filter estimates at 
nodes 4 (based on measurements at nodes 1 4 )  and 8 (based 
on measurements at nodes 5-8) are predicted upward, merged, 
and then predicted downward to node 12, providing a common 
piece of information used in an exactly analogous fashion to 
obtain the desired residuals at nodes 9-12. 

Looking at the process we have just described, we see 
that it has similar structure to the multiscale Kalman filtering 
algorithm. The key differences are: (i) in the upward sweep 
we need to use several predicted estimates (e.g., at node 4 we 
make use of the prediction of the state at this node based on 
the measurement at node 1, measurements at nodes 1 and 2 
together, and measurements at nodes 1-3 together); and (ii) 
there is a downward sweep involving both pure downward 
prediction as well as merging of estimates in disjoint subtrees 
(e.g., in merging the estimate at node 8 based on the mea- 
surements at nodes 1 4  with that based on the measurement 
at node 5 before continuing the prediction to node 6). In 
effect, the computations required for whitening are a superset 
of those required for multiscale Kalman filtering, and as a 
result our algorithm has a multiscale Kalman filter embedded 
in it. We describe in detail below how the computations can 
be organized to obtain an efficient algorithm for likelihood 
calculation on qth-order trees. 

The required calculations in our algorithm can be broken up 
into three steps: an upward sweep, followed by a downward 
sweep, followed by the computation corresponding to (1 1). 
To describe the upward and downward sweeps, we begin 
by examining the structure of the set of data to be used 
in whitening g(s) at some node s. In particular, this set of 
data consists of measurements at all descendant nodes of 
s, Y:,, together with data at other nodes that have been 
placed earlier in the order. We define this latter set of nodes 
as Y, = {y(a)la < s and y(a) $!'Ys*'}. Thus, the general 
equation for the residual v ( s )  and its variance is: 

v ( s )  = y(s) - C ( S ) P ( S l Y , ,  YF') (12) 
(13) Av(sl = C(s)P(slY,,Y,"9)CT(~) + R(s)  

where 2(slYs, Y?) = E{x(s ) lYs ,  Y:'} = E{z(s)lg(a), a < 

Since the sets % and Kaq are disjoint, one way in which 
to compute the estimate 2(slYs, Ys"') and the corresponding 
error covariance is to perform a merge operation on the 
estimates ?(.slys) and i(sIY,"') and their corresponding error 
covariances. Note that the latter of these estimates is exactly 
the upward-predicted estimate calculated by the Kalman jilter 
(see (9), (10)). Also, note that Y,"' is nothing more than the 

S I -  

Fig. 4. 
node s. 

Examples of subsets kl,"' and vs of nodes defined with respect to 

union of the disjoint sets Y,,, , Y,,, , . . . , Y,,, (e.g., the set of 
all descendants of node 8 in Fig. 2 is the union of nodes 5, 6, 
and 7). We saw in the preceding section that we had need for 
estimates based on partial unions of these disjoint sets (e.g., 
we used estimates of node 8 based on node 5 alone, based on 
nodes 5-6, and based on nodes 5-7) and thus we define 

Examples of these sets are given in Fig. 3 (for s = a). 
Using (14), we can identify the basic downward recursive 

structure of the sets Y,, which will provide us with a simple 
method for obtaining the estimates P(sJYs) required in (12). 
In particular, if node s is the zth of the immediate descendants 
of its parent node sy, i.e., if s = sya,, then 

y s - - y -  sy uy""-1 sy (15) 

with the convention that Y? E 0. An example of this is 
illustrated in Fig. 4, in which we have indicated both the set 
of - -  descendants of node s, YF9, and the three components 
Y s ~ , Y s ~ , l ,  and Ysraz of Ys, where the union of the latter 
two of these yields Ysral U Ysraz = Y,"'. As we discuss in 
the detailed development below, both P(S~Y,"~) and the set 
of estimates 2(slYS.i%) for i = 1 , 2 , . . . , q  - 1, are computed 
recursively through a series of update-predict-merge steps, 
during the upward sweep of the algorithm. In the downward 
sweep, we use the estimates for z = 1,2 , .  . . , q - 1 
and the structure of Ys characterized in (15) to recursively 
compute P(sJY,)  at each node, combine this with ?(s(Y,"'), 
and then use (13) to compute the residual v(s ) .  

We begin with the upward sweep of the algorithm where at 
each node s we wish to compute and store the set of predicted 
and partially merged estimates ~ ( S I Y : ~ ) ,  i = 1 , 2 , .  . . , q. 
As in the upward sweep of the smoothing algorithm de- 
scribed in Section 11, we start by initializing the estimates 
i(s(Y,*') at the finest level of the tree to zero. Likewise, 
the covariances P(s\YF9) at the finest level are initialized 
using the Lyapunov equation (3). Suppose next that we have 
i ( ( ~ \ Y , " ~ ) , i ( o l Y ; ~ ) ,  . . . ,?(a[Y:') at each of the immediate 
descendants a = sa l ,  sa2,. . . , sa, of node s. At each of 
these nodes it is only the last of these estimates, the original 
Kalman filter predicted estimate i(alY:'), that is used in the 
upward calculation to obtain the desired quantities at node 
s. First, i(a1Y:') is updated to include the measurement 
at node a using the Kalman filter update equations (4), (5) 
(with s in (4), (5) replaced by a for a = sal,  sa2, ' . . , sa,), 
yielding the updated estimate 2(sa,IYSat) at each immediate 
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descendant of s. These estimates are then predicted up the 
tree according to (7)-(8), yielding P(slYSaz), i = 1,2,  . . . , q. 
What remains then is a horizontal recursion in which these q 
estimates are successively merged to form the desired estimates 
2(SlYS.l.), i = 1,2 , .  . . q: 

z 

= P(slY,Qa) ~ - l ( ~ l y s a J ) ~ ( ~ l y s a J )  

= P( s lY,"t ) [P- 1 ( s  IY,"t-')k( s IY,"' -1 ) 
J=1 

+ ~ - ' ( ~ l y s , ~ ) ~ ( ~ l y s , ~ ) ]  (16) 
a 

P(slY,"t) = [(l - i )P(s)- l  + P-l(slYsaJ)]-l  
j = 1  

= [P-l(s[Y:t-l) + P-l(sIY,,J - P(s)-l]-l  

(17) 

Equations (16)-( 17) for computing these merged estimates 
follow from the fact that the measurements in the sets Y,,, , i = 
1,2,  . . . , q are conditionally independent, given ~ ( s ) .  Thus 
we see that, as compared to the merge step (9)-(10) for 
the Kalman filter, the merge step for likelihood calculation 
involves a q-step horizontal recursion (16), (17) in which the 
last step yields the same quantity ?(sly,"") as in the Kalman 
filter, but in which the preceding quantities 2(slY,".),i = 
1,2,  . . . , q are now explicitly computed and stored for later 
use in the downward recursion. 

The upward update-predict-merge process continues up the 
tree until the root node is reached. At the end of the upward 
sweep, we have obtained at each node the set of estimates 
2(slYFt) fori = 1,2 , .  . . , q. The downward sweep then begins 
with the residual calculation at the root node, 0, of the tree. 
Since YO = 8, we have that 

P(OIY0,  Y,"l) = i(OIY,"'), i = 1,2, .  . . , q (18) 

with a similar initialization for the error covariances P(OIY,"z). 
The estimate and error covariance at i = q are then used 
to calculate the residual and its covariance at the root node 
via (12), (13). Since the root node is the last one in our 
enumeration of nodes, the residual at this node is simply the 
Kalman filter residual. The other estimates in (18) for i = 
1,2, . . . , q - 1 provide initialization for recursive computation 
of P(slY,). In particular, using the recursive structure of the 
sets Y, given by (15), we have that if s = syai: 

P(slY,) = A(s)?(sylY,,, Ys7-') (19) 
P(slY,) = A(s)P(sylY,,, Ys'l_y.-')AT(s) + B(s)BT(s) .  

(20) 

Finally, these estimates are merged with the q estimates 
~ ( s I Y ~ ~ )  computed during the upward sweep 

2(slYs,Y,"1) 
= P( s I Y, , Y,"c ) [P- 1 ( s  I Y,"t )2( s I Y,"' ) + P - (s I Y, )2  ( s  I Y, ) ]  

P ( S l Y s ,  Y,"%) 
= [P-l(slY:$) + P-l(s lY,)  - P(s) - l ] - l  

(21) 

(22) 

The estimate 2(slY,,Y,"") is then used in the subsequent or- 
thogonalization step given by (12)-(13), while the q estimates 
~ ( s ~ Y s ) , 2 ( s ~ Y s l Y ~ ~ ) , i  = 1 , 2 , . . . , q - l  arepropagateddown 
the tree according to (19)-(20). At the end of the downward 
sweep we have obtained Y ( S )  and A,,(,) at each node s, and 
(1 1) can then be used to compute the associated likelihood. 

Both the upward and downward sweeps of the algorithm 
are parallelizable at each level of the tree. Consider first the 
upward sweep. The update step (4) at a given node s requires 
only the value of ?(sly,"'), which is available from computa- 
tions at the previous level, and the measurement y(s). Thus, all 
of the updates at any given level can be performed in parallel. 
Likewise, the prediction step (7) requires only the updated 
estimate, and the merge step (9) requires only the predicted 
estimates i ( s IYsa , ) , j  = 1,2, .  . . , q. Similar statements can be 
made about the corresponding error covariance calculations 
and about the downward sweep computations in (12)-(13), 
(16)-(17), and (19)-(22). 

Regarding the complexity of the algorithm, recall that 
~ ( s )  E R",w(s) E R", and y(s) E RP. Using the approxi- 
mation that inversion of an N x N symmetric matrix requires 
N 3 / 3  floating point operations (flops), it is straightforward to 
calculate the number of flops required by the algorithm (see 
Appendix A). In particular, if we assume that the measure- 
ments y(s) are available at all nodes on the tree, then the 
algorithm requires7 25n3/3 + 4p3/3 flops per node. Note that 
the total per-node computation is constant. Also, note that the 
structure of the model can often be exploited to substantially 
reduce the required computation, e.g., in the context of the 
multiscale model used for computing optical flow in 1141, we 
could use the fact that the dynamics are diagonal. Likewise, 
in the texture discrimination application in the next section 
in which we use the approximate GMRF multiscale models 
proposed in [13], simplification results from the fact that the 
matrices A(s )  have large blocks of zeros, and the fact that 
measurements are only available at the finest level. 

IV. A TEXTURE DISCRIMINATION APPLICATION 

In this section we illustrate the use of the likelihood calcu- 
lation algorithm in the context of texture discrimination. In the 
classical texture discrimination problem, we are given a set of 
texture models and a set of noisy random field observations, 
and we must choose that model which corresponds most 
closely in some sense to the data [lo]. When statistical models 
are available for the textures and the measurements, this 
problem can be formulated as a likelihood ratio test and that 
is the approach we take in this section. In particular, we will 
utilize GMRF models, and multiscale representations of these, 
as a basis for texture representation, and will examine for the 
discrimination problem the relative merits and performances 
of a GMRF-based LRT, a multiscale model-based LRT, and 
a minimum-distance classifier approach developed in [2]. Our 
analysis will be based on synthetic random field measurements 
which correspond to noisy realizations of GMRF texture 

7The number here is approximate - for simplicity we have ignored 
quadratic, linear and cross terms in p and R .  Obviously, such terms may 
be significant if n and p are small. A more detailed analysis in which these 
terms are accounted for can be found in Appendix A. 
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models. We show that texture discrimination based on the 
multiscale methods described in this paper provides a compu- 
tationally efficient approach that works in important contexts 
in which GMRF-based methods are either computationally un- 
feasible or suffer significant losses in performance. In addition, 
we apply the methodology to discrimination of three textures 
contained in a set of synthetic aperture radar (SAR) imagery. 

A .  Gaussian Markov Random Fields and Their 
Multiscale Representations 

to the following autoregressive model [3]: 
Gaussian MW's correspond, for some choice of parameters, 

z ( z , j )  = hk,p(i - Ic,j - 1)  + e ( i , j )  (23) 

where hk , l  = h-k,-l,  ( i , j )  E {O,l,...,Ml - 1) x 
{0,1,. . . , M2 - l}, D is a neighborhood around (O,O), and 
e ( i ,  j )  is a locally correlated driving noise term. As in [2], we 
interpret the lattice as a toroid, i.e., the independent variables 
( i ,  j )  in (23) are interpreted modulo ( M I ,  M2). For instance, 
the first-order neighborhood of lattice site (0,O) is given by 

In [ 131, we introduced a multiscale representation of (23) 
based on a generalization of the midpoint deflection construc- 
tion of a Brownian motion over an interval. In addition, we 
also introduced in [I31 a family of multiscale approximate 
GMRF representations, which allow one to trade off the 
complexity of the model (l), (2) for the accuracy in the 
representation. We provide the details of these representations 
in Appendix B. The fundamental result is a method for 
choosing the multiscale model parameters such that (1) and 
(2) represent, to any desired degree of fidelity, the GMRF in 
(23). 

( W E D  

the set {(0,1), (0, M2 - I), (1, O),  (MI - I,())}. 

B.  The Texture Discrimination Problem 

esis test is based are of the form: 
The noisy random field measurements on which the hypoth- 

Y ( i 9 . d  
= c ( i , j ) z ( i , j )  + v ( i , j )  0 5 2 5 MI - 1,o 5 j 5 M2 - 1 

(24) 

where w ( i , j )  - N(0, r(Z, j ) ) ,  c ( i , j )  is a spatially varying gain 
and z ( z , j )  is a realization of a random field of the form (23). 
The spatially varying measurement gain, c ( i ,  j )  can be used to 
capture the possibility that measurements are available over 
only a subset D of the image lattice. In this case, one simply 
sets c ( z , j )  = l , ( i , j )  E 2, and c ( i , j )  = 0 otherwise. We 
focus here on a binary hypothesis testing problem and denote 
the parameters of the multiscale models used in calculating 
likelihoods as8 0," and OFm, and the parameters of the 
corresponding GMRF models as dosmrf and Ofm6. As is well 
known, the likelihood ratio test (LRT) for deciding between 
two statistical models with parameters Orm and OFm and 

'These parameters contain the information required to specify (1 )  and (2), 
i.e., A ( s ) ,  B ( s ) ,  C(s), R(s) ,  and PO. In the context of representing GMRF's 
we discuss in [13] and Appendix B how the latter can be obtained. 

given by: 

Choose OF"" 

results in optimum performance for the discrimination problem 
when (24) corresponds to measurements of a realization of 
a multiscale texture model. A similar test, based on Orf 
and OfmTf is, of course, optimal when the measurements 
correspond to a GMRF. We refer below to the LRT based 
on the GMRF and multiscale models as the GMRF-based and 
multiscale model (MM)-based approaches to texture classifi- 
cation, respectively. In the examples presented here, we have 
set 77 = 1, corresponding to the maximum-likelihood decision 
rule. 

To compare probability of error performance for the two 
approaches we have performed Monte Carlo simulations for a 
number of model pairs, image lattice sizes and noise levels. 
With regard to the choice of model pair, a number of GMRF 
models corresponding to natural textures are proposed in 
[4]. As observed there, two of these generate realizations 
which are quite similar visually. The parameters of these two 
models, which correspond to pigskin and sand, are given 
[4]. The specific results in this paper correspond to these 
two GMRF's, and in fact to the family of models given 

(where corresponds to pigskin and to sand) 
and to a complementary family of multiscale approximate 
representations of the GMRF family constructed using the 
method developed in [ 131 and reviewed in Appendix B. The 
motivation behind choosing a family of models is that we want 
to illustrate that the performance characteristics of the MM- 
and GMRF-based approaches are comparable as the distance 
between the model choices varies. In particular, if we are 
trying to distinguish between observations coming from 0, and 
81 for either MM or GMRF, this task is increasingly difficult 
as w --t 1 (at which point the two models are identical). 

by 6:m.f = (1 - w)eimrf + with o 5 5 I 

C .  Complete Data 

To demonstrate that the GMRF-based and multiscale model- 
based approaches to texture discrimination result in similar 
performance, we first compare their performance in the case 
that ~ ( i , j )  G T ,  c(z,j) E c, since in this case 2-D FFT's 
can be used to calculate the likelihoods required for the 
GMRF-based LRT. To implement the MM-based LRT, we 
need to make a choice of which multiscale models to use. 
We choose first and for most of our experiments the simplest 
of the multiscale approximate models corresponding to a given 
GMRF, namely a zeroth-order Haar-transform-based model 
(see Appendix B). The state dimension n of this model is 
16, and the measurement dimension at the finest scale is also 
16 (in this application, the measurements are only available 
at the finest scale). Assuming that M I  = M2 = M (see 
(23)), tedious but straightforward calculations show that in this 
case the algorithm of Section I11 requires approximately 6540 
flops per-pixel and thus 6540M2 flops in total (see Appendix 
A). The likelihood corresponding to the GMRF model can 
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Fig. 5. (a) Comparison of multiresolution model (MM)-based, GMRF-based 
and minimum-distance (MD) classifier approaches to texture classification; (b) 
improvement in performance as the approximate GMRF representation order 
is increased. 

be computed using 2-D-Fm approaches in O ( M 2  log M )  
computations, which in this case leads to less computation 
than the MM-based approach for reasonable values of M .  

The results of experiments in which we generated measure- 
ments according to (24) and then carried out three approaches 
to classification are given in Fig. 5. In particular, in Fig. 5(a), 
each data point corresponds to 1000 experiments in which we 
generated a random field corresponding to e$mTf or (500 
experiments each) for a 32 x 32 lattice and signal-to-noise 
ratio’ of 0 dB, and then implemented the MM-based, GMRF- 
based and minimum-distance (MD)-classifier approaches to 
texture classification (the minimum-distance classifier we used 
is based directly on that in [2], which uses least-squares 
estimates of the parameters as a sufficient statistic). The 
percentages of correct classifications we have plotted are 
estimates of the probabilities of correct classification. We can 
characterize the error in these estimates by noting that if we 
define the sample mean as fi = N , / N ,  where N, is the number 
of correct classifications in N trials, then a simple application 
of the central limit theorem allows us to show, for example, 
that if p = 0.5, with N = 1000, and with 95% confidence, 
the error in 5 is less than 0.031, whereas if p = 0.9, the 95% 
confidence error in fi is approximately 0.056. 

Note that, as expected, as w + 1 the percentage of 
correct classifications approaches 50%, reflecting the increas- 
ing similarity of the models. In Fig. 5(a), the GMRF-based 
approach is superior to the MM-based approach, since in the 

experiments the measurements actually did correspond to a 
GMRF. However, the difference in performance is small and 
of at best marginal or no statistical significance in view of 
the fact that, in any real application, the GMRF model is 
an idealization. In addition, both the GMRF- and MM-based 
approaches significantly outperform the MD-classifier. 

The results in Fig. 5(a) are based on the simplest zeroth- 
order multiscale model. By increasing the order of the approx- 
imate models, the performance results will become progres- 
sively closer to one another. For instance, we have performed 
experiments using the first- and second-order approximate 
representations discussed in [13], for SNR = 0, and M = 16. 
The results of these experiments (10 000 Monte Carlo trials) 
are shown in Fig. 5(b). The improvement in performance with 
increasing model order is apparent. Numerous other examples 
which complement and further reinforce these results for a 
variety of cases are discussed in [12]. 

D .  Incomplete Data 

The results in the previous section and in [12] provide 
substantial evidence that the MM-based and GMRF-based 
approaches to texture classification provide comparable perfor- 
mance under a variety of conditions. In this section, the results 
of experiments are presented which provide further evidence 
of this and, more importantly, allow us to demonstrate how 
our multiscale framework can be used to calculate likelihoods 
given measurements over only a subset of the image lattice. 
This is one case in which our multiscale approach provides a 
potentially significant computational advantage over GMRF- 
based approaches. 

Note that the measurement matrix C(s) in (2) can vary 
as a function of node. In the approximate multiscale models, 
the values of the GMRF are represented as components of 
state vectors at the finest level of the tree, each value being 
represented in one state vector. Thus, setting C(s) = I if s is 
a node at the finest level corresponds to the case of complete 
measurements, i.e. c ( i , j )  = 1 for all pairs (i,j). Likewise, 
when not all measurement data are available, we can take 
this into account by eliminating the appropriate rows of the 
matrices C(s). This is exactly what we have done in this 
section in which we used measurements over an incompletely 
sampled region, as in Fig. 6(a). 

Unavailable measurements correspond to black regions in 
Fig. 6(a), and might be single pixels or groups of pixels of 
various sizes. We have computed the relative performance 
of the GMRF-based and MM-based approaches on domains 
small enough to do the exact calculations for the GMRF 
models. Measurements of a GMRF random field were made 
at 90% of the 16 x 16 lattice sites, at SNR’s of -10, 0 
and 10 dB. The results are shown in Fig. 6(b) and illustrate 
that the GMRF-based and MM-based approaches provide 
comparable performance. Again, in view of the fact that in 
any real application both of these models are idealizations, the 
performance differential is insignificant. 

E .  Application to Synthetic Aperture Radar Signal Processing 

Finally, we present some results in the context of stripmap 
synthetic aperture radar (SAR) imagery [ 181. Specifically, we 
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(b) (a) 

Fig. 6. We demonstrate in Section IV-D how the multiscale framework can be used to calculate likelihoods when the data is sampled in an irregular 
fashion. For instance, data may not be available the blackened regions in (a) due to dropouts, camera blockage or sampling constraints; (b) performance 
data corresponding to 90% coverage. 

(a) (b) 

Fig. 7. (a) Synthetic aperture radar image with three textures: grass, road and trees; (b) classification of 16 X 16 patches. 

have used the multiscale framework as a basis for discrimi- 
nating between the three types of background clutter shown 
in Fig. 7(a): grass, trees, and road". The data from which we 
generated this image were collected using a fully polarimetric 
SAR [20]. In this case, the processed radar retum Y(z , j )  is 
a complex vector which consists of two co-polarization terms 
and one cross-polarization term: 

H H I  + H H Q  
Y ( i , j )  = = [ H V I + H V Q ]  (26) 

where HVI and HVQ are, for example, the in-phase and 
quadrature components of the vertically polarized return from 
the horizontally polarized transmit pulse. To generate Fig. 7(a) 
we have processed the vector SAR image with the polarimetric 

vv i,j VVI + VVQ i,j 

l o m e  SAR data were provided by the MIT Lincoln Laboratory under the 
ARPA-sponsored Advanced Detection Technology program [20]. 

whitening filter (PWF) developed in [ 191, which corresponds 
to setting: 

(27) y ( i , j )  = Y ( i > j ) # F Y ( i , j )  

where the # symbol denotes the complex conjugate transpose 
and C is the sample covariance matrix of the image. As 
discussed in [ 191, under certain conditions the PWF minimizes 
the speckle commonly associated with coherent imagery. 

We interpreted the pixel values of the PWF image as 
measurements of a multiscale process as in (2) and used 
multiscale models for grass, trees, and road as a basis for 
discriminating between clutter types. GMRF model parameter 
estimates were obtained from imagery taken nearby using 
sample correlation data, as in [ l l ]  and [9]. These were 
then transformed multiscale models using the methodology 
discussed in Appendix B. The image in Fig. 7(a) was divided 
into 16 x 16 patches, and each patch was assigned classified 
according to which multiscale model (grass, trees, or road) had 
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the highest likelihood. The result is shown in Fig. 7(b): white 
corresponds to road, light gray to trees, and dark gray to grass. 
The classifications appear consistent with Fig. 7(a). Shadows 
in the lower and top left lead to classifications of some areas 
of trees as road. Likewise, bushes in the primarily grass upper 
right are classified as trees. 

While Fig. 7(b) is in essence a rudimentary segmentation of 
Fig. 7(a), we emphasize that this is not the goal. Rather, we 
view the ability of the multiscale framework to discriminate 
as indicative of the extent to which it can be used to model the 
underlying clutter. If models can be developed which capture 
the statistical structure of the clutter, then these can be used 
as a basis for the development of segmentation techniques far 
more powerful than simple block discrimination (in analogy 
to methods such as those developed in [4], [17] subsequent to 
[2] for GMRF’s) as well as new approaches to such tasks as 
anomaly detection, change detection, and target detection. 

V. CONCLUSIONS 

We have presented a likelihood calculation algorithm for a 
class of multiscale stochastic models. The algorithm exploits 
the structure of the tree on which the multiscale models are 
defined, resulting in an efficient and parallelizable approach. 
In addition, we have investigated one possible application of 
the algorithm to the problem of texture discrimination, and 
have demonstrated that likelihood-based methods using our 
algorithm and the results in [ 131 for modeling GMRF’s achieve 
performance comparable to that of GMRF-based techniques, 
which in general are prohibitively complex computationally. 
Since our multiresolution algorithm has constant per-pixel 
complexity independent of data array size and does not require 
uniform sampling of the domain, it represents a very promising 
altemative to GMRF-based methods. 

APPENDIX A 
COMPLEXITY ANALYSIS 

In this appendix, we analyze the computational complexity 
of the likelihood calculation algorithm presented in Section 
111. Recall that the algorithm consists of an upward sweep 
(including update, predict, and merge steps) and a downward 
sweep (including predict, merge, and orthogonalize steps) 
followed by a step in which the likelihoods corresponding 
to the normalized residuals are added up. We will analyze 
each of these in tum. As in Section 11, we assume that the 
state dimension is n and the measurement dimension is p (the 
complexity is not a function of the driving noise dimension). 
The number of branches in the tree is q. Finally, we assume 
that the computation of the process noise covariance (using 
the Lyapunov equation (3)) and the upward model parameters 
in (6) is negligible. This assumption is valid, for instance, 
when the multiscale model has parameters A(scui) and B(sai),  
which vary only as a function of scale or only as a function 
of scale and i, since in these cases the state covariance and 
upward model parameters vary similarly, and hence only need 
to be computed at one node at each scale (if the dependence 
is on scale only) or q nodes at each scale (if the dependence 
is on i as well). We recall that computing the inverse of a 

symmetric matrix requires approximately u3 / 3  floating point 
operations (flops), where U is the dimension of the matrix, 
that multiplying a U x v matrix by a v x w matrix requires 
approximately 2uvw flops, and that this latter computation can 
be reduced by approximately a factor of two if the matrices 
involved are symmetric. 

Upward Sweep Update (4),  (5): The computation of the 
gain K(s)requires approximately 2n’p + 4np’ + p 3 / 3  + p 2 / 2  
flops. The update of the covariance given K ( s )  requires 
an additional 2n’p + n3 + n flops. Finally, the update of 
the state estimate requires 4np + p + n flops. Thus, the 
total computation for an update step at each node requires 
approximately n3+p3/3+4n’p+4np’  + 4 n p + p 2 / 2 + 2 n + p  

Upward Sweep Prediction (7),  (8): The prediction of the 
covariance requires approximately 3n3 + n ’ / 2  flops, whereas 
the prediction of the state estimate requires an additional 2n’ 

Upward Sweep Merge (16), (17): By merging recursively 
across the offspring of node s, the additional computation 
required to obtain P(slY,“.) is equal to 2 n 3 / 3  + n’. The ad- 
ditional computation required to obtain the estimate i(slY?% ) 
is equal to 4n’ + n flops, for a total of 2 n 3 / 3  + 5n’ + n flops. 

Downward Sweep Prediction (19), (20): Predicting the co- 
variance requires 3n3 + n’ /2  flops, whereas the complexity 
of predicting the estimate down is 2n’ flops. 

Downward Sweep Merge (21), (22): Computing the co- 
variance requires 2 n 3 / 3  + n’ flops (recall that the inverse 
of P(S~Y,”~)  has already been computed during the upward 
sweep). Computation corresponding to (21) requires an addi- 
tional 4n’ + n flops, for a total of 2 n 3 / 3  + 5n’ + n flops. 

Orthogonalization (12), (13) and Summation (1  1):  The inno- 
vations covariance computation requires 2n’p + 2np’ + p’ /2  
flops, whereas computation of the innovation itself requires 
2 n p + p  flops. The summation requires 2p3/3+p3/3+2p’+2p 
flops per node, where we have assumed that the determinant 
computation requires 2 p 3 / 3  flops. Thus, the total per-node 
computation in these steps is 2n’p + 2np’ + p 3  + 5 p 2 / 2  + 
3p + 2np flops. 

Adding these up, we calculate that the total complexity 
of the algorithm is, with 2 + 1 being the number of levels, 
( q ’ + + ’ / ( q -  1))(25n3/3+4p3/3+6n’p+6np’ + 15n’ +3p’ + 
6np+4n+4p) flops. Since the number of nodes is q ’ + ’ / ( q - l ) ,  
the total per-node computation is constant in the sense that, 
if the number of levels of the tree is changed, the per- 
node computation does not. With measurements only available 
at the finest scale, the total complexity of the algorithm is 
q’(n3 + 4 p 3 / 3  + 6n’p + 6np’ + 6 n p  + 3p’ + 2n + 4 p )  + 
( q ‘ + l / q  - 1 ) ( 2 2 n 3 / 3  + 10n’ + 2 n )  flops, since the update 
and orthogonalize steps only need to be done at q’ nodes in 
that case, which again implies a constant per-node complexity 
(although in this case the per-node computation does depend 
on 4 ) .  

Finally, we can use the above analysis to calculate the per- 
pixel computational complexity of the likelihood calculation 
algorithm as applied to the texture discrimination problems in 
Section IV. In this case, n = p = 16 (see Appendix B ) ,  q = 4 ,  
and measurements are only available at the finest level. An 

flops. 

flops. 
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M x M image leads to a model with M2/16 + M2/64 + 
...  + 1 x M2/12 nodes, and M2/16 nodes at the finest 
level, and hence the total per-pixel computation in this case is 
approximately 6540 flops". 

APPENDIX B 
MULTISCALE REPRESENTATIONS OF MARKOV RANDOM FIELDS 

In this appendix, we review the multiscale representations 
of Markov random fields introduced in [ 131. These represen- 
tations are based on a generalization of the classical midpoint 
deflection construction of Brownian motion. This construction 
is discussed first, followed by a review of our generalization to 
exact and approximate multiscale representations of MRF's. 

A .  Multiscale Representation of Brownian Motion 

Our multiscale representations of 1 -D Markov processes 
and 2-D MRF's rely on a generalization of the midpoint 
deflection technique for constructing a Brownian motion in 
one dimension. To construct a Brownian motion sample path 
b ( t )  over the interval [0,1] by mid-point deflection, we start 
by randomly choosing values for the process at the two 
boundary points and at the midpoint, i.e., we choose the three 
numbers [b(O), b(0.5), b ( l ) ]  according to the joint probability 
distribution implied by the Brownian motion model. We then 
use these three values to predict values of the Brownian motion 
at the one-fourth and three-fourths points of the interval-the 
Bayesian estimate of the midpoints just corresponds to linear 
interpolation as shown in Fig. 8(a). Random values, with 
appropriate error variances, are then added to the predictions 
at each of these new points, as seen in Fig. 8(b). The critical 
observation to be made here is that, since the Brownian 
motion process is a Markov process, its value at the one- 
fourth point, given the values at the initial point and midpoint, 
is independent of the process values beyond the midpoint, in 
particular the values at the three-fourths and end-points of the 
interval. Obviously, it is also the case that the value at the 
three-fourths point is independent of the values at the initial 
and one-fourth points, given the values at the midpoint and 
final point. What this means for us is that this construction 
can be interpreted as a sample realization of a particular 
multiscale model. This model has as its root-node state the 
3-tuple [b(O), b(0.5), b(l)], and two states at the second level 
given by [b(O) ,  b(0.25), b(0.5)] and [b(0.5), b(0.75), b(l)], as 
shown in Fig. 8(d). The Markov property of Brownian motion 
allows us to iterate the midpoint deflection construction and its 
equivalent multiscale model, generating values at increasingly 
dense sets of dyadic points in the interval. At each level in 
this procedure we generate values at the midpoints of all 
neighboring pairs of points. In fact, since the only properties of 
the Brownian motion that we have used are its Gaussianity and 
Markovianity, this approach can be generalized to represent all 
1 -D Gauss-Markov processes within the multiscale framework 
1131. Further, by generalizing the multiscale model class 

"This complexity could be further reduced by taking into account the 
special structure of the multiscale approximate GMRF models, e.g., as 
mentioned previously, the matrices A ( s )  in these models have large blocks 
of zeros. 

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 '1 

(a) (b) 

b(t) 

I%". :zgzz 
0 0.25 0.5 0.75 1 

(C) ( 4  

Fig. 8. Brownian motion representation with a multiscale model. 

appropriately, all 1 -D Markov processes can be represented 
1131. 

B. Exact Multiscale Representations of GMRF's 
The representations of 1-D Markov processes in the previ- 

ous section relied on the conditional independence of regions 
inside and outside a boundary set, and we use the same idea 
here to represent Markov random fields on a square lattice. 
The multiscale model is identical to that used in the 1-D case, 
except that it is defined on a quadtree instead of a dyadic tree. 
That is, we consider multiscale models exactly as in (1) but 
where s denotes a node on a quadtree. 

Consider a 2-D GMRF ~ ( t )  defined on a 2N x 2N lattice. 
The construction of Markov processes in 1-D started with the 
values of the process at the initial, middle, and end points of an 
interval. In two dimensions, the analogous top level description 
consists of the values of the GMRF around the outer boundary 
of the lattice and along the vertical and horizontal "midlines" 
which divide the lattice into four quadrants'*. For instance, 
on a 16 x 16 lattice, the state vector $0 at the root node of 
the quadtree contains the values of the GMRF at the shaded 
boundary and mid-line points shown in Fig. 9(a). To construct 
a sample path of the GMRF, we begin by choosing a sample 
from the joint pdf of the GMRF values defined on the boundary 
and midline set. 

In the 1-D case, transitions from the first to second level con- 
sisted of obtaining a sample from the conditional distribution 
of the state at the midpoints of the left and right half-intervals. 
In two dimensions, we predict the set of values at the midlines 
in each of the four quadrants. The components of the four state 
vectors at the second level are illustrated in Fig. 9(b) for the 
16 x 16 GMRF. Now, we can iterate the construction by 
defining the states at successive levels to be the values of the 
GMRF at boundary and midline points of successively smaller 
subregions. Because of the Markov property, at each level the 
states are conditionally independent, given their parent state 
at the next higher level. Thus, the GMRF can be thought of 

'*Strictly speaking, two midlines are not required. However, we take 
this approach here since it leads much more naturally to the approximate 
representations of GMRF's which are discussed in the next subsection and 
which form the basis for our experiments in Section IV. 
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(a) (b) 

Fig. 9. 
(b) the four states at the second level of the quadtree. 

(a) The state at the root node in an exact multiscale representation; 

precisely as a multiscale stochastic process and this leads to 
models exactly as in (1). 

C .  Approximate Multiscale Representations of GMRF’s 

In this subsection, we describe a family of approximate rep- 
resentations for Gaussian MRF’s that provide low-dimensional 
altematives to the exact multiscale representations. The basic 
idea behind the approximate representations is to take as the 
state not boundaries of regions, but rather some reduced-order 
representation of them. Conceptually, we would like to retain 
only those components of the boundary that are required to 
maintain nearly complete conditional independence of regions. 

As described in detail in [13], one way to do this is to 
view the GMRF values which make up a particular state of 
the multiscale model as a set of 1-D sequences. For instance, 
consider the values of the GMRF contained in the root-node 
state (see Fig. 9(a), and in particular the values denoted with 
~ , a , r > , A  which make up the boundary of the northwest 
quadrant. We can view these as a set of four 1-D sequences, 
each of which has a length that is half the number of rows 
or columns in the lattice. Any given sequence is just as well 
represented in the wavelet transform domain [8], [I6], and 
there are good reasons to believe that only a small number 
of wavelet coefficients are required to represent essentially all 
of the information in a given sequence [13]. This suggests 
transforming the state via a wavelet transform, and only 
keeping a subset of the coefficients as our representation of 
the state. In the simplest representation, we could retain just 
the averages of the various 1-D sequences, which results in 
a substantial reduction in the dimensionality of the multiscale 
model. By keeping more coefficients in the expansion, we 
obtain a better representation of the original GMRF, and in 
the extreme case that all wavelet coefficients are kept, the 
representation is, of course, exact. Hence, this provides a 
flexible framework allowing one to tradeoff representation 
complexity and fidelity, and our main goal is to provide 
representations which have a complexity low enough to allow 
for substantial computational advantages within the multiscale 
framework, while also providing equal or better performance. 

In our experiments in Section IV, we have used the simplest 
possible approximate representation, i.e., that which retains 
only the average of each 1-D sequence as the state. We refer 
to this as a zeroth-order Haar-transform-based model since 
only the scaling coefficient in a Haar transform representation 

of the sequence is retained (for generalizations to higher order 
representations and other wavelets we refer the reader to [ 131). 
Since, referring to Fig. 9(a), there are 16 boundary sequences, 
the state dimension in this model at the coarsest level is 16. The 
state dimension is also sixteen at the next level (see Fig. 9(b)). 
If we proceeded to the next level, each of the boundary and 
mid-line sequences would be of length two. At this point, the 
region in the image corresponding to these boundary and mid- 
line sequence is 4 x 4. However, the values do not completely 
represent the state since the “basis” in this case-i.e., the 
two-pixel averages-is not complete. Hence, at this level, we 
simply take as the state the values of the 16 pixels. At this 
point, all pixels in the image are represented and no more 
levels need to be added to the model. Thus, the state dimension 
is 16 at all levels and in fact at all nodes. An M x M image 
thus leads to a quadtree multiscale model with M2/16 nodes 
at the finest level. Since in an Z-level model there are 4“’ 
finest level nodes, the number of levels in a multiscale model 
corresponding to an M x M image (where M is a power of 
2 )  is Z = (log2M) - 1. 
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