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An eficient, approximate algorithm for square root Kalman filter is 
presented. Large-scale, space-time estimation can be performed sequentially 

over time by spatially distributed and local computation. 

Key Words-Kalman filters; image processing; multidimensional systems; model reduction; parallel 
processing; iterative methods. 

Abstract-We describe a distributed and iterative approach 
to perform the unitary transformations in the square root 
information filter implementation of the Kalman filter, 
providing an alternative to the common QR factorization- 
based approaches. The new approach is useful in 
approximate computation of filtered estimates for temporally 
evolving random fields defined by local interactions and 
observations. Using several examples motivated by computer 
vision applications, we demonstrate that near-optimal 
estimates can be computed for problems of practical 
importance using only a small number of iterations, which 
can be performed in a finely parallel manner over the spatial 
domain of the random field. 

1. INTRODUCTION 

We describe a highly parallel approach to the 
square root information (SRI) filter (Bierman, 
1977) implementation of the Kalman filter. Our 
motivation for developing this method comes 
from the field of image sequence processing and 
computer vision. In applications such as the 
estimation of motion and reconstruction of 
surfaces in image sequences we are faced with 
the problem of estimating an entire spatial field 
at each point in time. For example, in 
computational of ‘optical flow’ (Horn and 
Schunck, 1981) a two-dimensional apparent 
velocity vector is to be estimated in each pixel; 
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thus, for a 256 X 256 image we are faced with 
updating more than 100,000 (2 X 256 X 256) 
variables over time. While image processing has 
provided the original motivation for our work, 
problems of this scale potentially arise in any 
distributed parameter estimation or control 
application in which estimates of spatially 
distributed processes are to be computed and 
tracked. 

For problems of such large dimensions, a 
straightforward implementation of recursive 
estimation equations such as the Kalman filter is 
prohibitively expensive. In particular, the calcu- 
lation, propagation, and storage of the error 
covariance and Kalman gain matrices are often 
impossible. Indeed in many applications, includ- 
ing the estimation of optical flow and surface 
reconstruction, the measurement matrix can be 
data-dependent, requiring on-line calculation of 
the filter covariance and gain-an even more 
unreasonable demand. Consequently, there are 
compelling reasons to develop alternative, 
computationally efficient, and hopefully near- 
optimal approximations to the Kalman filtering 
equations. 

The key to our approach to this approximation 
problem is that the inverse of the square root of 
a covariance matrix has a natural interpretation 
as a model for a random phenomenon. As an 
illustration, consider a standard discrete state- 
space model 

x(s) = ax(s - 1) + w(s), (1) 

x(0) =x0 (2) 

where x0 is a zero-mean random variable and 
w(s), 15s 5 II, is zero-mean white noise 
independent of x0. If we let x be the vector 
constructed by stacking x(O) through x(n) and 
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let w be the vector consisting of 
x0, w(l), . . . , w(n), then our model becomes 

Mx=w (3) 

where M is a lower bidiagonal matrix capturing 
both the dynamic equations (1) and initial 
condition (2). From (3) we see that the 
covariance P of x is given by 

p = M-lQM-T (4) 

where Q is the diagonal covariance matrix of w. 
Thus, except for the simple scaling implied by 
the presence of Q on the right-hand side of 
equation (4), the matrix M is the inverse of the 
square root of the covariance of x. Similarly, if 
we have a 2-D random field f(~,, s2) described 
by the 2-D difference equation 

aof(s1, s2) + a&, + 1, s2) + a&,, s2 + 1) 

+ 4f@l - 1, s2) + Qf(s1, %! - 1) 

= W@I 7 s2), (5) 

together with appropriate (e.g. Dirichlet) boun- 
dary conditions, we can again collect the varibles 
f(s,, s2) into a vector x as well as the variables 
w(sl, s2) and the boundary conditions into a 
vector w, so that x and w are once again related 
as in equation (3). The associated matrix M, 
while not being lower bi-diagonal, is extremely 
sparse and, of course, spatially local. 

Having such sparse structures in the inverse of 
the square root of a covariance matrix has 
important consequences for the interpretation 
and computation of the SRI filtering algorithm. 
Consider the Kalman filtering problem for the 
discrete dynamic system 

x(t) = A(t)x(t - 1) + w(t) (6) 

Y(l) = C(t)x(t) + v(t) (7) 

where w(t) and v(t) are independent Gaussian 
white noise processes with covariances Q(t) and 
R(t), respectively. Let G(t) be the filtered 
estimate, i.e. the conditional mean 
%(t) = E[x(t) ( y(r), r 5 t], and Z(t) be the 
associated estimation error with covariance P(t). 
Define the SRI matrix I(t) to be the inverse of a 
square root of P(t), i.e. a square matrix such that 
IT( = P-‘(t). The SRI filtering algorithm 
performs recursive propagation of I’(t) and of 
z(t) -I’(t)%(t). We will refer to (z(r), I’(t)) as the 
SRI pair, in contrast to the conditional mean and 
covariance pair (g(t), P(t)). In other words, the 
SRI pair is an implicit representation of the 
mean-covariance pair. While the standard 
Kalman filter algorithm performs direct recur- 
sion of the mean and covariance, the SRI filter 
algorithm instead propagates and updates z(t) 

and l(t) temporally based on the system 
equations (6) (7) and the values of the 
measurements y(t). Compared with standard 
Kalman filtering algorithms, square root algo- 
rithms are known for the superior numerical 
properties (Bierman, 1977, Kaminski et al., 

1971) especially desirable in applications in 
which the space-time filters are the hard-wired, 
high-speed ‘front-ends’ of complex control 
systems (e.g. Masaki, 1992). 

If we wish to compute the optimal estimate 
Z(t) given the SRI pair, we need to solve 

r(t)qt) = z(t). (8) 
For the problems motivating this work, explicit 
inversion of I(t) and even the exact calculation 
and storage of I’(t) are prohibitively complex. 
However, if I(t), or more precisely an adequate 
approximation of I(t), were sparse and banded, 
then equation (8) could be solved efficiently 
using various methods of numerical linear 
algebra, such as successive overrelaxation, 
multigrid, etc. Note that, as we have observed, 
I(t) provides us with what can be viewed as 
either a whitening filter or a model for the 
estimation error E(t), i.e. 

r(t)i(t) = s(t) (9) 

where 8(t) is zero-mean with identity covariance. 
Computation of I(t), then, corresponds to the 
specification of a spatial? model for the 
components of the error Z(t) for each t Thus, 
specifying a sparse approximation to r(t) 
corresponds precisely to reduced-order spatial 
modeling of the error field s(t). The main 
computational issue in the Kalman filtering 
problem is, therefore, how to time-recursively 
compute the elements of this sparsely approxim- 
ated SRI matrix, denoted as I,(t), and its 
accompanying vector z,(t) = r,(t)%(t) efficiently. 

In this paper, we present a spatially distributed 
algorithm to perform the time-recursion of the 
sparsely approximated SRI pair. The design of 
the algorithm is based on two results. First we 
demonstrate that in important space-time es- 
timation problems the sparse approximation (or, 
equivalently, reduced-order modeling) of the 
SRI matrix has little effect on the accuracy of the 
state estimates, with respect to those computed 
using the optimal Kalman filter. The accuracy of 
the sparse approximation certainly depends on 
the problem formulation and, in particular, 
hinges on our assumption that the interactions 
among the components of the space-time 

t It is important to emphasize that this perspective 
interprets f’(l) as a model among the components of E(t) at 
each instant of time, i.e. each such model is for a fixed value 
of I. 
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processes are local (distributed) both spatially 
and temporally. We require that the matrices 
A(t) and C(t) as well as the inverse square root 
of the noise covariance matrices in equations (6) 
and (7) to have sparsely banded structures, 
reflecting the spatially local interactions among 
the dynamic variables. All dynamic models 
specified by a set of parital differential equations 
lead to such matrix structures, and most 
observation models for large-scale space-time 
processes are spatially local (with a notable 
exception of tomographic measurements). For 
such distributed space-time estimation problems, 
sparsely banded approximations of the informa- 
tion (inverse of covariance) matrix have been 
shown to produce accurate state estimates (Chin 
et al., 1992); in this paper similar approximations 
of the SRI matrix are shown to be equally 
effective. 

The second point of the paper is that 
time-recursion of the SRI pair can be performed 
by spatially distributed computation. For this 
purpose, we present an iterative, highly para- 
llelizable algorithm for general SRI filters. We 
show that the output of this iterative algorithm 
converges to the optimal Kalman filter estimate 
at each time step. The scope of this algorithm 
extends beyond the space-time estimation 
problems considered in the paper, in the sense 
that the algorithm requires no approximation 
nor structural constraint on any matrix. Thus, 
the algorithm can be considered as a spatially 
distributed alternative to the pipelined ap- 
proaches to SIR filter implementation on systolic 
arrays (McWhirter, 1983; Kung and Hwang, 
1991). This paper, however, focuses on applica- 
tion of the distributed algorithm to time- 
recursion of the sparsely approximated SRI pair. 
We demonstrate that the highly parallel 
structure of our iterative procedure naturally 
leads to surprisingly effective and computation- 
ally efficient algorithms for suboptimal estima- 
tion in situations in which the exact computation 
and storage of r(t) is not feasible. In particular, 
we show a reduced-order filtering technique that 
constrains the SRI matrix I’(t) to be manageably 
sparse at all times. 

2. MODEL-BASED APPROXIMATION 

To provide a more precise picture of the type 
of approximation we seek, let us consider a 
general space-time estimation problem that 
might arise in distributed parameter estimation 
problems and image processing applications. In 
particular, we wish to estimate an unknown 
random field f(s, t) over a discrete space s E ZP 
and time t E 2, where % is the set of integers, 

based on the dynamic system formulation in 
equations (6) and (7). For this work we focus on 
the case where the space-time dynamics are 
specified by a set of local interactions (e.g. a set 
of partial differential equations) and the 
observations are correspondingly local (e.g. 
point or weighted-sum observations). The state 
vector x(t) is defined to be a temporal slice of 
the random field sampled at time t and over the 
entire spatial domain consisting of n spatial sites. 
Equation (6) represents the temporal dynamics 
of this spatio-temporal field (e.g. a spatially and 
temporally discretized version of the partial 
differential equation for the field), and (7) 
specifies the local measurements of the field at 
some or all of the points in the spatial domain. 
In general the spatial domain is a K-dimensional 
rectangular grid, and the elements x(i, t), 
15 i 5 12, of the vector x(t) are the random 
variables f(s, t) ordered lexicographically ac- 
cording to the spatial coordinates 
S=(S,,Sz,.. . ,SK). Specifically, let sk = 
1,2,. . . ) nk for k = 1,2, . . . . ,K; then, we let 
x(i, t) =f(s, t) where the index i and grid 
coordinates s have one-to-one correspondence 

i =Sl + 2 (Sk - 1) ‘jj nj. 
WV 

k=2 j=l 

As we will see, for the cases of interest in this 
work (dominated by local interactions and 
observations), this lexicographical ordering of 
the spatial sites leads the key matrices- 
including A(t), C(t), and I(t)-to adopt 
predominantly diagonally banded structures. 
Organizing the matrix elements by their diagonal 
bands allows us to make a coherent presentation 
of our spatially distributed filtering algorithm, as 
we switch back and forth between matrix row 
position indexed by i and the spatial domain 

spanned by s. Note that n = dim (x) = fi nk, 
k=l 

implying a large dimension of the state vector 
and SRI pair. For example, filtering of a 
512 X 512 image sequence requires us to contend 
with vectors x(t) and z(t) of about a quarter 
million elements each and a matrix I(t) of 
square that dimension. For simplicity, let us 
assume that f(s, t) is scalar-valued for now; we 
disuss the cases where f(s, t) is a vector field in 
Section 4.2.4. 

Estimates of the random field can be obtained, 
in principle, by Kalman filtering or smoothing 
based on equations (6) and (7). With the 
typically large dimension IZ of the spatial domain 
(and of the state vector), however, exact 
recursion of the SRI pair, costing O(n’) flops for 
each r, is computationally unfeasible in practice. 
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To address this computational problem, it is 
useful to realize that each time-step of the 
Kalman filter or its SRI implementation can be 
viewed explicitly as a purely spatial processing 
problem. Specifically, the one-step-ahead predic- 
tion step in the filter corresponds to the 
estimation of a predicted field based on the 
estimate at the current time, together with a 
computation of a spatial model for the errors in 
this predicted estimate, as captured by the error 
covariance or SRI matrix. Similarly, the update 
step involves both the spatial processing of the 
new observations to update the predicted field 
together with the updating of the corresponding 
spatial model for the errors in this updated field 
estimate. 

Note that the solution of (8) can also be 
viewed as the solution of a spatial processing 
problem. In particular, let y;j be the elements of 
the matrix I(t). Then, the ith row of the matrix 
equation (8) is 

i: Yija(j, t) = Z(i) t) (11) 
j=l 

where z(i, t) and _?(i, t) are the ith elements of 
the vectors z(t) and g(t), respectively, and where 
the index i is related to the spatial coordinates s 
via (10). Also, from (9) we see that the spatial 
model for the estimation error Z(t) satisfies an 
equation exactly as in (11) but with _?(j, t) 
replaced by _Z(j, t) and z(i, t) replaced by the 
unit variance spatial white noise process 6(i, t). 

The domain of the summation in equation (11) 
is over all the spatial sites, implying that the 
computation of %(t) from z(t) is a demanding 
task and that the white-noise-driven spatial 
model for the estimation error Z(t) has an order 
equal to the extent of the entire spatial domain 
of interest. This insight naturally suggests the 
idea of seeking a reduced-order, spatially local, 
approximate model in place of the exact I(t). 
Specifically, in such a model the support of the 
summation in (11) is reduced as 

C Yij-f(i, t) = zG, t) (12) 
jt.N; 

where JV~ is a small set of the indices for spatial 
sites local to the site i. The cardinality of the set 
Ni roughly determines the order of the model, 
which in our applications will generally be taken 
to be O(1) rather than Q(n). For example, in a 
“nearest-neighbor” (Levy et al., 1990) ap- 
proximation on a 2-D spatial domain (K = 2) as 
in (5), for each i, 4 is the index set 
corresponding to the set of coordinates 

{(s,, SZ), (s1 + 1, ST), (s1 - 1, s*), 

(s,, sz + I), (s,, 32 - 1)) (13) 

where (sr , s2) are the coordinates of site i. This 
reduced-order modeling framework is clearly 
related to the idea of specifying an approximate 
local Markov random field model (Wong, 1968) 
for a given spatial process. For this reason we 
borrow from Markov random field terminology 
and refer to the set Nj as a neighborhood. 
Without much loss of generality, we consider a 
spatially homogeneous neighborhood para- 
meterized by a single integer V, which we call the 
radius of the neighborhood, as follows: 

Definition 1 (neighborhood). Let j. be the site 
index corresponding to the spatial coordinates u, 
and s; be the spatial coordinates corresponding 
to the site index i. Then, for a given 
non-negative integer V, let the neighborhood .& 
be the set of site indices such that 

4={j,:lu-sj15v} (14) 

where ]u - s/ denotes the ‘l-norm’, i.e. 

= kg, I& - s/J. 

Thus, by specifying Y (hence the set of 
neighborhoods (4, i E [l, n]}), we can ap- 
proximate equation (8) based on the reduced- 
order approximation (12) as 

I&)%(t) = z,(t). (IS) 

In other words, I,(t) is obtained from I?(t) by 
windowing, or by setting yij = 0 for j @ 4, Vi. 
Note that the vector z(t) has been approximated 
along with I’(t) because, as we will see in the 
next section, propagation of z(t) is coupled to 
that of I’(t). 

Such reduced-order approximation of I(t) by 
I,(t) is plausible only if the system equations (6) 
and (7) specify the state in terms of a strictly 
local (distributed) set of interactions. The formal 
requirements we impose on the structure of the 
system matrices are as follows: let Oij and cij be 
the respective elements of the matrices A(f) and 
C(t) of the system equations. In addition, let 
w(t) and V(t) be the respective square root 
inverses of the noise covariances Q(f) and R(t), 
so that W’(t)W(t) = Q-‘(r) and V’(t)V(t) = 
R-‘(t), and let Wij and uij be the respective 
elements of W(t) and V(r). For the system 
matrices A(r), C(t), W(t), and V(t), we require 

that there exists an integer v << V it so that 

clij = 0, C;j = 0, Wij= 0, 

and 

uij =0 for j @ 4, Vi, (16) 
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where fl is specified by Y as in equation (14). 
This value of Y is then used to define the 
neighborhood set for reduced-order approxima- 
tion of th SRI pair as (12) and (15). Note that 
any value of Y large enough to satisfy (16) can be 
used to approximate the SRI pair. 

As exemplified in Section 4, the system 
matrices in space-time estimation problems in 
image sequence processing and computer vision 
already have spatially local structures. For 
example, in estimation of motion and depth 
fields, A(t) and C(t) commonly satisfy the 
structural constraints specified by ~52. 
Constraining the matrix structure of l%‘(t) and 
V(t) obviously limits the correlation models for 
the noise processes. This, however, does not 
mean ignoring statistical correlations between 
process elements over a long distance. Rather, 
we have constrained the order of the model used 
to capture these correlations, which certainly can 
extend over the entire spatial domain even when 
the spatial interactions are strictly local (Habibi, 
1972). This issue of model order selection, which 
certainly applies to approximation of I(t) by 
I,(t) as well, is important yet ultimately 
application-specific. We present particular nu- 
merical examples later in the paper, instead of 
pursuing a general discussion here. 

In the next section, the iterative SRI filter 
algorithm is described. We present a result 
showing that if carried to completion this 
algorithm does indeed converge to the optimal 
SRI filter. Then, in Section 4 we describe a 
constrained version of the algorithm which stops 
far short of ‘completion’ and in fact typically 
involves only a small number of iterations. For 
problems such as the space-time estimation 
applications we have mentioned, our SRI filter 
algorithm has a spatially distributed computa- 
tional structure desirable for processing variables 
supported over a large spatial domain and, in 
particular, for carrying out the computations 
necessary for propagation of the approximate 

SRI pair (zO(t), I&)) in time. Various existing 
implementations of the SRI filter algorithm, 
particularly those based on the QR factorization 
(Golub and van Loan, 1989) including systolic 
array algorithms (McWhirter, 1983; Kung and 
Hwang, 1991), do not feature such fine-grain 
parallelizability. We explicitly address the 
estimation of space-time processes and illustrate 
the effectiveness of our algorithm with several 
examples. Using the approximate SRI filter 
algorithm, near-optimal filtered estimates are 
obtained experimentally with a computational 
cost per time step that is O(n), reduced 
significantly from the theoretical cost of O(n”), 
which is prohibitively large for the typically large 

values of n encountered in distributed parameter 
estimation and computer vision problems. 
Furthermore, if the approximate filter is 
implemented in parallel, a throughput cost of 
O(1) per time step can be achieved for the 
propagation of (zJt), r,(t)). 

3. ITERATIVE SQUARE ROOT FILTERING 

In this section we describe a general iterative 
algorithm for the implementation of the SRI 
filter. This general algorithm will be used in 
Section 4 as the basis for development of an 
efficient near-optimal filter for space-time es- 
timation problems. To start, we review the steps 
of SRI filtering for the system in equations (6) 
and (7). In the SRI context the process and 
measurement noise covariances Q(t) and R(t) 
are typically specified directly in terms of their 
respective inverse square roots, B’(t) and V(t). 
The initial condition for the system, provided as 
the mean-covariance pair of x(O), is converted to 
the corresponding SRI pair, which is then 
recursively updated in time by the measurements 
y(t). The central operations in SRI filtering 
involve unitary transformations. We thus adopt a 
shorthand notation for such an operation; the 
expression (I+ + @.2 denotes that the matrix $ is 
obtained by applying a unitary transformation to 
the matrix @,. Also, let the dimension of the 
observation vector y(t) in equation (7) be m, 
which is usually O(n). The computation of the 
SRI pair at time t from the pair at time (r - 1) 
involves two steps: the prediction step, in which 
r(t - 1) and z(t - 1) are predicted ahead to time 
t, and the update step, in which the new 
measurement is used in determining I(t) and 
z(t). The prediction from time (t - 1) to time t 
through the dynamic equation (6) is accom- 
plished by the following unitary transformation, 
which nulls the lower-left n X n block in a 
2n X (2n - 1) matrix: 

r(t - 1) 0 z(t - 1) 

-W(t)A(t) W(t) 0 1 
4 * llxn 

* nxn *nxi 
0 Rt> k(r) I . (17) 

The lower-right nX(n+l) block of the 
transformed matrix yields the predicted SRI pair 
(E(t), T(t)). Here, *‘s denote generically non- 
zero blocks and their subscripts indicate the 
block sizes. The SRI pair (E(t), T(r)) is then 
updated by the observation equation (7) using 
another unitiary transformation: 

[ 
m WI I [ w 40 

V(f)W) V(t)ytt) --+ 0 *mx1 ’ 1 
(18) 
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in which the lower-left m X n block is nulled. 
The upper n rows of the transformed matrix 
yield the updated SRI pair (z(r), I’(t)). The 
filtered estimate %(t) is then obtained from this 
updated SRI pair as the solution of (8). Each of 
the stages (17), (18), (8) costs O(n3) flops in 
general, and these three stages are the 
computational bottlenecks of an SRI filter 
algorithm. (See Bierman (1977); Kaminski et al. 
(1971) for more details.) 

3.1. Unitary transformation by QR factorization 
The unitary transformations (17) and (18) are 

commonly performed with QR factorizations 
which null the selected matrix elements sequen- 
tially, in essence by a repeated application of 
Givens rotations? (Golub and van Loan, 1989). 
Let ti’s and hi’s be the elements of two full rows, 
respectively, of the left-hand side matrix in (17) 
or (18). Givens rotation 19 operates on two such 
rows so that a specific element (e.g. b,) is nulled: 

cos 8 -sin0 **a t_l to tl *a* 

sin 8 I[ cos8 . . . b-, b0 bl . . . 1 . . . t’ t;, t; ‘.’ 
= 

. . . bi: 0 b; ..* 1 
where 8 is evaluated based on to and b,,; for 
convenience we say ‘the rotation 0 is defined by 

{to, bob 
Since the purpose of the two unitary 

transformation steps is to null out the lower left 
block, every Givens rotation involved in these 
steps is ‘defined’ by a pair of elements in the 
left-most column of the matrix blocks. Let the 
left-most column of blocks in (17) and (18) be 
denoted as 

D 

[ 1 E’ 
(19) 

i.e. the matrix D plays the roles of I’(t - 1) 
and r(t), while E represents the matrices 
-W(t)A(t) and V(t)C(t), in each of the 
respective steps. The unitary transformation that 
nulls the block E in each case accomplishes the 
propagation of the SRI pair as specified in (17) 
and (18). 

In a QR factorization-based implementation 
of the unitary transformation steps, the elements 
are nulled sequentially. Below, we display the 
matrix (19) when n = 4 (for convenience we 
allow the block E to be square). In essence, the 
QR factorization nulls the elements marked by 

t A typical implementation of the QR factorization 
involves a serial application of Householder reflections which 
themselves can he considered as series of Givens rotations. 

the numbers 1 through 22 in numeric order, 
yielding an upper triangular matrix as the output: 

D 

[ 1 E= 

dl* * *’ 

7d2* * 

613d3 * 

5 12 18 d4 
. . . .._.............._.. 

4 11 17 22 

3 10 16 21 

2 9 15 20 

1 8 14 19 

k*** - 

*** 

* * 

* 

. (20) 

The elements along the main diagonal of block 
D, marked by dl, dZ, d3 and d4, are always 
involved in defining the Givens rotations. The 
QR factorization is accomplished by a sequence 
of Givens rotations defined by {d,, l}, 

id,, 21, . . . , k&, 71, {A, 81, {d2, 91, . . . , etc. 
The QR factorization completes each of the 

unitary transformations in a finite number of 
Givens rotations and allows pipelined computa- 
tion on systolic arrays (McWhirter, 1983; Kung 
and Hwang, 1991). In terms of space-time 
estimation, however, such an approach is 
computationally unattractive and often un- 
feasible, because of the structure of the 
computations required in standard QR factoriza- 
tion algorithms. In particular, the strictly ordered 
nulling procedure inherent in QR methods, 
when applied to space-time processes, yields a 
computational structure that is spatially sequen- 
tial, implying that the variables at certain spatial 
sites cannot be processed until processing at 
every other site is completed. Such an approach 
has obvious disadvantages for problems defined 
on spatial grids of even moderate size. 
Moreover, in the QR factorization-based algo- 
rithms the SRI matrices are triangular matrices 
so that the inversion in (8) is usually 
accomplished by back-substitution (Golub and 
van Loan, 1989) another spatially sequential 
procedure. For space-time problems, it is usually 
preferable to seek algorithms with spatially local 
and highly parallelizable structures. For ex- 
ample, if the matrix I’(t) is tridiagonal (or block 
tridiagonal with tridiagonal blocks, as it is for 
nearest-neighbor models over 2-D spatial doma- 
ins), equation (8) can often be efficiently solved 
using an iterative method, such as successive 
over-relaxation (SOR) (Golub and van Loan, 
1989) or multigrid (Terzopoulos, 1986) methods, 
which are highly parallelizable and spatially local 
with comparatively modest memory require- 
ments. In general such methods are effective and 
computationally efficient for inversion of a 
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sparse set of equations. This observation 
motivates the objective of Section 4 of obtaining 
a sparse approximation to systems (17), (18), (8) 
with a resulting sparse approximation to the SRI 
matrix, namely r,(t). Of course, for this 
objective to make sense, we must also use a 
spatially local and highly parallel method to 
calculate our approximate SRI matrix, which we 
develop below. 

entire submatrix E can be nulied by repeating 
the sweep. 

To describe our iterative unitary transforma- 
tion algorithm more formally, let D be an 
arbitrary n x n matrix whose elements are 
denoted as d,, and let E be a p X II matrix whose 
elements are ejj. We again consider the generic 
unitary transformation problem of nulling the 
lower submatrix E in the matrix (19) by 
application of a series of Givens rotations. 

3.2. An iterative unitary transformation 
As we have indicated, a standard approach to 

the computations in systems (17) and (18) uses a 
sequential application of Givens rotations to null 
out the desired elements one at a time. The basic 
idea behind our distributed and parallel algo- 
rithm is to apply a number of these rotations 
simultaneously. As we will see, an element that 
has been nulled at one step in this approach may 
become non-zero subsequently, in contrast to the 
standard QR algorithm. However, our algorithm 
has the property that the repeated iterative 
application of this procedure does in fact 
asymptotically null the desired block. To 
illustrate the basic idea, consider an alternative 
way to null the submatrix E in matrix (19)-use 
the main diagonal of the D to null every 
diagonal band in E in sequence. The elements in 
a diagonal band in E can be nulled simul- 
taneously, as the Givens rotations are applied to 
disjoint pairs of rows of matrix (19). This method 
is iterative: every diagonal band in E is 
repeatedly nulled, because in general nulling of a 
band transforms a previously nulled band 
elsewhere back to a non-zero band (whose 

Definition 2 (sweep). Consider, for each of the 
pn elements e;j of the submatrix E, a Givens 
rotation defined by {d,, eij} and applied to the jth 
row of D and ith row of E to null the element eij. 
For matrix (19) let a sweep be a serial 
application of pn such Givens rotations to the 
matrix. 

In a sweep, the elements in E can be nulled in 
any order as long as each element is nulled once. 
Also, note that the diagonal elements d,j are the 
only elements of submatrix D that participate to 
define the Givens rotations. While we have 
indicated that a sweep involves sequential 
Givens rotations, highly parallel implementa- 
tions are possible by exploiting the fact that the 
Givens rotations can be applied to disjoint sets 
of rows concurrently, since the actions of these 
rotations do not interfere with each other. 
Specifically, the set of elements {e,-:i - j = 
constant} forms a diagonal band of the submatrix 
E, and the elements in such a band can be nulled 
simultaneously as examplified in (21). This 
band-wise implementation of sweep, referred to 
as a band-sweep, plays the key role in the SRI 
filtering algorithms presented in this paper. 

elements are usually smaller in magnitude 
before). For the n = 4 case treated in (20) 
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the main diagonal marked by d’s in the upper 
block D nulls the diagonal bands numbered by 1 
through 7 in the lower block E in sequence. In 
general the ordering of the bands to be nulled 
can be arbitrary. Let us define a sweep to be a 
single round of nullings in which every element 
in E is nulled exactly once, e.g. the seven 
band-nullings in (21). As elaborated below, the 
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Definition 3 (band-sweep). A band-sweep is a 
special case of a sweep, such that the elements eij 
in a diagonal band {e,: i - j = constant} of 
submatrix E are nulled concurrently. 

One price we pay for this parallelism is that 
elements of E that are nulled at one point in a 
sweep may be made non-zero later in the sweep, 
i.e. after the element e;j is nulled, a subsequent 
Givens rotation applied on the ith row of E can 
turn eij non-zero. The following result (proved in 
the Appendix), however, assures that asymptoti- 
cally the entire submatrix E is nulled. 

Theorem 1. An iterative application of sweeps to 
the matrix (19) nulls the block E in the limit. 

In particular, iterations of the parallelizable 
band-sweeps are guaranteed to converge and are 
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applicable to optimal recursion of the SRI pair in 
a generic SRI filtering algorithm. 

Algorithm 1 (Parallel recursion of the SRI 
pair). In the unitary transformation steps (17) 
and (18), use iterations of band-sweep to null the 
respective lower-left submatrices. 

Note that band-sweeps can achieve a still 
higher level of concurrency by defining the 
diagonal band cyclically. For example, in (21) all 
the lower block elements labeled 2 ad 7 can be 
considered to be a single cyclic diagonal band 
which can be nulled simultaneously, as are those 
labeled 3 and 6 as well as 4 and 5. Such a cyclical 
computational structure might be useful for a 
space-time estimation problem with a torroidal 
spatial domain. 

In general, the number of iterations required 
for convergence of the unitary transformation 
algorithm depends on the specific values and 
structures of the constituent matrix blocks in 
(17) and (18). In SRI filters arising in space-time 
estimation problems and the approximate filters 
based on them, the structure inherent in the 
matrices of such problems allows the develop- 
ment of nulling strategies that exploit both the 
natural and imposed sparseness and bandedness 
of the matrix blocks. The end result is an 
extremely efficient unitary transformation proce- 
dure which requires only 3 or 4 sweeps for an 
adequate accuracy as demonstrated later with 
numerical examples. For the rest of the paper we 
concentrate our discussion on such space-time 
filtering problems. 

4. SPACE-TIME ESTIMATION 

The iterative unitary transformation method is 
especially suitable for the reduced-order ap- 
proximation of the space-time estimation prob- 
lems described in Section 2, as the distributed 
nature of the algorithm can take advantage of 
the sparsely banded structure of these estimation 
problems. The dynamics of such space-time 
random fields are typically specified by a set of 
local interactions among the components of the 
field, usually expressed in terms of a set of 
stochastic partial difference equations. The 
spatial locality of these interactions and the 
corresponding observations is then reflected in 
sparsely banded structures of the matrices A(t), 
W(t), C(t), and V(t) in the system equations (6) 
and (7). See Section 4.2 for illustrations of 
problems with this type of structure. 

Let us consider the SRI filter (17) (18) (8) in 
the context of such a space-time estimation 
problem. As discussed previously, the computa- 

tional cost of 0(n3) associated with exact 
implementation of each of these steps is 
impossibly large for typical values of n. We thus 
seek an approximate filtering algorithm. First, 
the SRI matrix I’(t) is sparsely approximated as 
I,(t) based on the reduced-order model 
approximation (12). As discussed previously, this 
approximation makes equation (8), or more 
precisely equation (15), a manageably sparse 
equation that can be solved efficiently by 
iterative inversion methods whose throughput 
cost can be as low as O(1) for the typically large 
values of n encountered in practice (Terz- 
opoulos, 1986). For spatial estimation problems 
of practial interest, however, we cannot calculate 
or store the matrices r(t) or r(t) and thus cannot 
directly generate the approximations to these 
matrices by simply windowing them. What we 
desire, then, is an algorithm that directly and 
efficiently propagates r,(t) itself in time. 

4.1. A reduced-order filtering algorithm 
Suppose that at some point in time we do have 

a sparse approximation to r(t) or r(t). In this 
case, notice that all the matrix blocks involved in 
the left-hand sides of (17) or (18) also have 
sparsely banded structures, as A(t), W(t), C(t), 
and V(t) are assumed to have the sparse 
structures described previously. This insight 
leads to the idea of incorporating another level 
of approximation into the SRI filter algorithm, 
beyond that associated with (12). In particular, 
the sparseness and special structure of the matrix 
blocks in (17) and (18) are exploited to perform 
the associated iterative unitary transformations 
in an approximate and highly efficient manner, 
producing sparsely banded approximations to 
I’(t) and r(t) directly and recursively in time. 
The basic idea behind this second level of 
approximation is to use the band-sweep algo- 
rithm described in association with Algorithm 1, 
but only to make partial sweeps which are 
matched to and consistent with the desired 
banded structure of the matrices that are to be 
maintained in the approximate filter. Specifically, 
since the matrix blocks at each stage of the 
algorithm are sparsely banded to begin with, we 
may be able to efficiently constrain each of these 
blocks to have a certain sparsely banded 
structure throughout the duration of the 
iterations and thus decrease overall throughput 
cost. That is, we limit the extent of each 
band-sweep to a finite and typically small 
number of bands, thus reducing dramatically the 
number of elements which are to be nulled in 
each cycle. In the space-time problems we have 
examined and will illustrate in Section 4.2, the 
computational cost of each iteration of the 
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approximated band-sweep is usually O(1) per 
spatial site as a result. 

Our approximation of the full SRI filtering 
algorithm is characterized by two types of 
neighborhood sets, which are used to constrain 
the structures of both the matrix blocks and the 
algorithm itself. The first type of neighborhood 
corresponds to the spatial model we wish to use 
to describe the statistics of the error field; it 
corresponds to the set of neighborhoods Ji 
which specify the desired order of the approxim- 
ate error field models in (12). Therefore, these 
neighborhoods serve to focus modeling re- 
sources. These neighborhoods in turn imply that 
only certain elements of r,(t) are allowed to be 
non-zero, resulting in a sparsely banded 
approximation to the SRI matrix. Thus, we can 
identify the neighborhood set (4, i E [l, n]} as a 
constraint on matrix structure. The second type 
of neighborhoods used by our approximate 
filtering algorithm are strongly linked to the first 
type .$ but are basically algorithmic in nature. 
Specifically, consider the neighborhoods J& 
specified by the radius p (cf. Definiton 1) as 

& = {j.: (u - s;l5 p}. (22) 

They correspond to the reduced subset of bands 
of the band-sweep algorithm which will be nulled 
at each stage of the approximate algorithm, and 
thus reflects a focusing of computational 
resources. This viewpoint provides us with a 
rational way of understanding how our computa- 
tional and modeling resources are linked. 
Naturally, the computational resource must be at 
least as large as the support of the desired 
model. That is, we must have .&; 2 4, or p 2 Y, 
for time-recursion of the reduced-order model. 
Experiments showing the effects of varying 
choices of p and Y will be presented in Section 
4.2. 

Definition 4 (partial band-sweep). A partial 
band-sweep is an approximate band-sweep in 
which all the participating matrix blocks are 
windowed by the neighborhood set {.&}. That is, 
in each submatrix, the (i, j)th elements for j @ .& 
are treated as zeros throughout the band-sweep 
iterations. 

In spite of our generic notation ‘a1 + aZ’ for 
the exact unitary transformation, we denote an 
approximate unitary transformation performed 
with this partial band-sweep operation by the 

expression @I - & %. In general a matrix 
block windowed by the neighborhood set {pi} 
has only O(F~) diagonal bands. In a partial 

band-sweep, only the elements in these diagonal 
bands ever participate in computation and need 
to be stored, the rest being treated as being 
identically zero. Thus, for a small p, performing 
such a partial band-sweep leads to a high 
throughput rate when implemented in parallel. 
With this motivation we have the following 
algorithm. 

Algorithm 2 (Reduced-order space-time SRI 
filter). Let (z,(t& ra(to)) be a given initial 
reduced-order approximated SRI pair. Specify 
the radii p and v, such that p 2 v, to determine 
the neighborhood sets {.&} and {y}, 
respectively, hence defining the extent of the 
parital sweep and subsequent windowing opera- 
tion. Also, specify the number of sweeps to be 
performed for each unitary transformation step. 
Repeat the following steps for t = (to + l), (t,, + 
2), (to + 3) . . . : 

1. Prediction step. Iterations of partial band- 
sweeps are applied to approximate the unitary 
transformation of the exact prediction step (17) 

r,(t-1) 0 z& - 1) 
-W(t)A(t) W(t) 0 1 

“4 -4 *nxn *nxn *nx1 

E 1 (23) 
nxn C(t) C(r) . 

The lower-left block E,~,, on the right-hand side 
denotes a generic small, but non-zero, matrix in 
this position resulting from use of the approxim- 
ate band-sweep-based unitary transformation. 
2. Prediction windowing step. The matrix T,(t) 
on the right-hand side of (23) is now further 
windowed by (4) to obtain pa(t). This 
windowing assures that T,(t) will have the same 
band structure as r,(t - 1). The approximate 
predicted SRI pair is then given by (Z,(t), Ta(t)). 
3. Update step. Iterations of partial band-sweeps 
are again applied to approximate the unitary 
transformation of the exact update step (18) 

[ 
C(t) C(t) 

V(t)C(t) V@)Y@) I 

.Ac 

-[ 
rb(t) z&) 

%xn *mXI I 
. (24) 

Again, the lower-left block emxn on the right- 
hand side denotes a generic small, but non-zero, 
matrix in this position again resulting from use of 
the approximate band-sweep-based unitary 
transformation. 
4. Update windowing step. The matrix r,(t) on 
the right-hand side of (24) is now further 
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windowed by {Ni} to obtain I,(t). Again, this 
windowing assures that I,(t) will have the same 
band structure as T,(t), thus maintaining this 
structure throughout the calculations. The 
resulting, approximate updated SRI pair is then 

given by (z&), I,(t)). 
5. Inversion step. If needed, the updated 
estimate f&(t) may be obtained by solving (by an 
efficient iterative method such as multigrid and 
SOR) the sparse and spatially local set of 
equations r,(t)%Jt) = z,(t). 

In the above algorithm, a fixed number of 
iterations (of partial band-sweeps) is used in 
each of the approximate unitary transformation 
steps. Alternatively, the iterations can be 
allowed to continue to converge within a given 
numerical tolerance level. In all of the 
space-time estimation problems we have ex- 
amined, however, only a very small number (i.e. 
less than 5) of band-sweeps per unitary 
transformation step are necessary for reasonably 
accurate approximations. Such estimation prob- 
lems are discussed below. 

4.2. Numerical results 
The main purpose of the numerical examples 

presented here is to examine accuracy of various 
approximations, rather than to record the 
real-time computational speeds. All computa- 
tions are performed serially on general-purpose 
workstations by setting the spatial dimension n 
manageably small. 

4.2.1. Partial band-sweep. We first examine 
the impact of different choices of the neighbor- 
hoods on partial band-sweep in a general unitary 
transformation problem. Specifically, given a 
fixed model constraint &, we examine how well 
the statement in Theorem 1 is satisfied when a 
variety of computational constraints Jui are 
applied for approximation. The approximating 
parameters in the partial band-sweep algorithm 
are the size of the neighborhood Jui, which is 
given by the integer CL, and the number of 
iterations of the sweeps. Consider a space-time 
SRI filtering problem defined over a 1-D spatial 
domain (i.e. K = 1) and a nearest-neighbor 
reduced-order modeling approximation (i.e. & is 
specified by Y = 1). Note that, under the 1-D 
nearest-neighbor approximation, all the matrix 
blocks in the unitary transformation steps (17) 
(18) of the filter are windowed to be tridiagonal. 
A key unitary transformation problem is to null 
the lower block E in matrix (19) as 

KM1 
and to compute the tridiagonally approximated 
(windowed) matrix 0, of the resulting n X n 

upper submatrix 0. The computation of D itself 
is approximated by partial band-sweeps defined 
by the neighborhood &!i of various sizes which 
are in turn specified by the parameter 15 p 5 
n - 1. 

We conduct a numerical experiment in which 
the blocks D and E are randomly generated as 
25 X 25 tridiagonal matrices. Let D(1, p) denote 
the block D after the Ith iteration of the partial 
band-sweep specified by the parameter CL, and 
let D,(I, p) be the tridiagonal matrix formed 
from the tridiagonal part of the matrix D(l, CL). 
Since p = 24 corresponds to the full band-sweep, 
DJm, 24) is the matrix we seek to approximate 
by the partial sweeps, i.e. 0, = DO(m, 24). For 
each ~=1,2,..., 24 we have computed the 
normalized error 

IID=(~, P) - D,(cQ, 24)11 

II w=, 24) II ’ 
(25) 

after evaluating the matrix D,(m, 24) to 
convergence. 

This numerical experiment has been repeated 
with 10 distinct pairs of D and E. For each of the 
partial band-sweeps p = 1,2,3,5,7 and 24, the 
worst case error, i.e. the maximum values of the 
error (25) in the 10 tries, is plotted against the 
number of iterations 1 in Fig. 1. The figure 
indicates the speed of convergence, as the error 
curves level off in roughly 4 iterations. For the 
full band-sweep (p = 24) the maximum normal- 
ized error after 8 iterations is only 0.0001. The 
errors for the partial band-sweeps decrease with 
increasing p for a small value of p and then 
saturate for p 17. That is, the gain in accuracy 
diminishes quickly as I_L increases. For the partial 
band-sweep p = 7, the maximum error after 8 
iterations is only 0.0048. These results demon- 
strate that a partial band-sweep characterized by 
small neighborhoods can approximate the exact 
band-sweep accurately (for the purpose of 
computing windowed transformed matrix blocks) 
and converge in a very small number of 
iterations. 

4.2.2. Estimation over 1-D space. We now 
apply the partial band-sweeps examined above 
to a space-time estimation problem. Consider 
estimation of a temporally evolving random field 
f(s, t) over a 1-D space, whose dynamics are 
governed by a discrete heat equatio!.r (Myint-U, 
1980) driven by white noise w(s, t) with 
variance 4 

f(S, t) - f(& t - 1) 
= a[f(s + 1, t) - 2f(s, t) +f(s - 1, t)] + w(s, t), 

based on a noisy measurement g(s, t) =f(s, t) + 
u(s, t) where u(s, t) is as white noise with 
variance r. This estimation problem can be 
formulated in the state-space format (6), (7) 
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1 

J 
0 I 2 3 4 5 6 7 8 

Fig. 1. The errors in iterative unitary transformations using partial band-sweeps described in Section 4.2.1. 
The five dotted lines from top to bottom correspond to the partial band-sweeps p = 1,2,3,5 and 7, 

respectively. The solid line is the error for the full band-sweep (CL = 24). 

using the following sparsely banded matrices and 
observation vector: 

A(t) = 

(1-a) a 

a (l-2a) a 

a’ (62) a 

a U-4 

go9 t) 
d2, t) 

y(t) = . I:1 3 

d4 9 

C(t)=Z, W(t)=&, V(t)=$Z. 
G r 

A random field and its noisy observations are 

created using the parameters n = 25, II = 0.4, 
q = 0.1 and r = 1. The filtered estimates S(t) are 
computed with the optimal Kalman filter, and 
they are compared with the approximate 
estimates f&,(t) computed by Algorithm 2 using 
the same approximation parameters Y and p’s as 
those examined in Section 4.2.1. In particular, 
the approximate SRI matrix r,(t) is tridiagonal 
because v = 1 specifies the nearest-neighbor 
reduced-order model. Various approximate esti- 
mates corresponding to the partial band-sweeps 
p = 1,2,3,5, and 7 are computed using only 3 
iterations for each unitary transformation in (17) 
and (18). Averaged over 25 repeated experi- 
ments, the temporal means and deviations of the 
relative approximation error 

Approximation enor - heat equation 

II%&) - 3t)Il 
Ilfw)ll 

(26) 

TV - band-swesp radius 

Fig. 2. Relative temporal approximation error over the first 10 time frames for p = 1,2, 3,5 and 7. The error 
bars show the standard deviations over 25 experiments. 
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are computed over the first time frames for each 
CL and are plotted in Fig. 2. For EL = 7, the 
average approximation error is less than l%, 
exemplifying the accuracy of the proposed 
approximate SRI filter algorithm with respect to 
the optimal Kalman filter. Similar sets of 
experiments conducted with larger Y’S have not 
decreased the error significantly, suggesting that 
the nearest-neighbor approximation is quite 
adequate for this particular estimation problem. 

4.2.3. Estimation over 2-D space. When the 
spatial domain is multidimensional (K > l), the 
matrices A(t), C(t), W(t), V(t), and r,(t) have 
slightly more complex structures than simple 
banded matrices. Nevertheless, they are still 
sparsely banded matrices for the cases of interest 
here, so that Algorithm 2 can offer a high level 
of parallelism in computation. For example, as 
we have just seen, the nearest-neighbor ap- 
proximation Y = 1 in the 1-D space case means 
just to window the SRI matrix I’(t) to form the 
tridiagonal approximation r,(t). When the 
spatial domain is 2-D, Y = 1 leads to r,(t) which 
has a nested block tridiagonal structure, i.e. a 
block tridiagonal structure in which the central 
blocks themselves are tridiagonal while the first 
off-diagonal blocks are diagonal. Thus, F,(t) has 
a total of 5 diagonal bands. In general, for a 2-D 
space estimation problem, the reduced-order 
modeling approximation specified by a given v 
yields an approximated SRI matrix with 
2v(v + 1) + 1 diagonal bands. We illustrate, with 
a numerical example, efficiency and accuracy of 
the proposed algorithm for filtering over such a 
spatial domain. 

Consider space-time interpolation of 
f(s,, s2, t) based on the smoothness models 

f(s,, s2, r) -f(s,, s2, t - 1) = w(sl, s2, t) (27) 

f(s,, s21 t> -f(s, - 1, $2, t) = h(Sl, %r t) (28) 

ftS,,S2,f)-f(SI,S2-l,t)=S2(S1,S2,t) (29) 

and noisy measurements g(s,, s2, t) = f(sl, s2, t) 

+ 4slr s2, t), where w(sI, s2, t), v(s,, s2, t), 
v(s1,s2, t), 6,(sl, s2, t) and S(s,,s2, t) are white 
noise processes with variances of 9, r, 1 and 1, 
respectively. The models (27), (28) and (29) 
impose both temporal and spatial smoothness on 
the reconstructed field, respectively. The prob- 
lem can be expressed as an estimation problem 
based on the dynamic system (6) and (7) using 
the matrices and observation vector 

A(t) = I, W(t) = -!-I, 
G 

,e)=[““l. C@)=[J. (30) 

r 1_, 1 

V(t)= vr I 
i 1 , 

I 

where the components y,(i, t) of the vector y,(t) 
are the measurements g(s,, s2, t) ordered lexi- 
cographically as in equation (lo), and S1 and S2 
are bidiagonal matrices representing the spatial 
differencing operations along the two spatial 
axes as described in equations (28) and (29), 
respectively. An interesting aspect of this 
formulation is that the temporal smoothness 
equation (27) is treated as system dynamics 
while the spatial smoothness equations (28) and 
(29) are relegated to the observation equation 
(7), a common practice in visual reconstruction 
(Szeliski, 1989; Chin et al., 1992). 

A complete space-time interpolation is pos- 
sible using two Kalman filters running causally 
and acausally in time. Here, we examine the 
causal filter for q = 0.01 and r = 0.25, by 
comparing the estimates from the optimal 
Kalman filtering algorithm and Algorithm 2 
using various partial band-sweeps. The dimen- 
sion of the spatial domain is 16 X 16, so that 
IZ = 256. Note that the exact optimal estimate 
can be computed because of the relatively small 
value of II. For the reduced-order model 
approximation, we let v = 2. We consider three 
different partial band-sweeps specified by I_L = 
2,3, 4. A noise-corrupted surface has been 
reconstructed using the three approximate SRI 
filters as well as the optimal filter. Figure 3 shows 
the surfaces estimated by the approximate filter 
using the partial band-sweep specified by p = 4. 
Normalized estimation errors 

II%(t) - x(t)II 
Ilx(t)II ’ (31) 

where x(t) is the true surface, are also plotted in 
Fig. 4 for all the estimates for the first eight time 
frames. These four error curves, which are 
nearly indistinguishable, show that all three 
approximate filters have performed virtually 
identically to the optimal filter for this problem. 

4.2.4. Vector field. Finally, let us consider the 
case where the field variables f(s, t) are vectors. 
We focus on the specific problem of estimating 
motion vectors from image sequences and let 
each f(s, t) be a planar motion vector with two 
velocity components. Having two (instead of 
one) unknowns at each spatial site leads to 
corresponding expansions of the SRI filtering 
equations; however, the basic form of these 
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Fig. 3. Reconstructed surfaces at t = 2,4 and 6 (top) and the actual surface (bottom). 

equations remains the same. For example, we 
can simply treat each ‘element’ of the state 
vector x(t) to be a two-dimensional column 
vector, while each ‘element’ of such matrices as 
A(t) and I(t) is now treated as a 2 X 2 matrix. 
Algorithm 2 applies to such a vector field 
estimation problem equally well, after some 
straightforward adjustments for the increase in 
dimensionality. In particular, while in the scalar 
estimation cases each Givens rotation step 
performs nulling of a single scalar, in the vector 
case the same step must accomplish complete 
nulling of a higher dimensional ‘element’. We 
implement each of these steps using a composite 
of Givens rotations; if, for example, the 
‘element’ consists of 4 scalars, an aggregate of 4 
Givens rotations is used to null it. To illustrate 
how to null one 2 X 2 ‘element’ against another 
let 

and consider using a unitary operation to null e 
against d in the matrix 

d 

e 1 E 

This task can be accomplished by a two-step 
process: first use d to null the first row [er e2] of 
e; then, use d again to null the second row 
[e3 e4]. Each of these steps can be performed by 
essentially a sequence of two Givens rotations. 
Specifically, let 

d; d; 

[ 1 dj d; = 
e; e; 

Cl Sl 

[ 1 1 

-S1 Cl 

d, dz 
X d3 d4 

el e2 

0.26 ( 
Estimation error -- surface interpolation 

I 

0.12 - 

0.1 
I 2 3 4 5 6 1 8 

t 
Fig. 4. Normalized estimation errors for the first eight time frames for the optimal filter and approximate 

filters with p = 2,3 and 4. The four error curves are virtually indistinguishable. 
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where ck = cos & and Sk = sin 6$ for k = 1, 2. 
The desired sequence of two rotations f3,, e2 can 
be obtained from the two equations ei = 0 and 
e; = 0. In practice, it tends to be easier to solve 
for the ck’s and Sk’s directly, aided by the 
trigonometric identity c: + si = 1. Efficient im- 
plementation of the Givens rotations themselves 
is beyond the scope of this paper. References on 
this general topic include (Gotze and Schwiegel- 
shohn, 1991; Golub and van Loan, 1989). 

Modifying the algorithm as above, we have 
calculated motion vector fields from an image 
sequence. The estimation problem is formulated 
based on the image brightness conservation 
approach studied by Horn and Schunck (1981) in 
conjunction with the space-time smoothness 
models (27), (28) and (29) presented in Section 
4.2.3. Specifically, by assuming brightness con- 
servation, we can obtain a relationship between 
the two-dimensional motion vector f(s L, s2, t) 
the spatio-temporal gradients of the image 
brightness (intensity) 4 as 

x.f(s,, S2Y t), (32) 

which we write as g(s,, s2, t) = h(s,, s2, t)f(sl, 
s2, t) by letting g(s,, s2, t) and h(s,, s2, t) be the 
scalar on the left-hand side and the first vector 

on the right-hand side of (32), respectively. 
Because of non-ideal conditions (e.g. measure- 
ment noise) in practice, this brightness conserva- 
tion is not expected to be satisfied exactly at 
every site. Thus, we assume a more appropriate 
relationship 

As,, s2,o = h(Sl, sz, tlfh, S2? t) + +I, s2, t) 

(33) 

where the white noise u(sl, s2, t) represents the 
uncertainty in the brightness conservation with 
respect to the particular measurements of the 
brightness gradients. (The brightness gradients 
are actually computed from the measurements of 
4(s1, s2, t) by finite differencing.) The observa- 
tion equation (33) is complemented by the 
smoothness models (27), (28) and (29) which are 
necessary for the motion estimation problem to 
be well-posed (Horn and Schunck, 1981; Chin et 

al., 1994). The system matrices for (33), (27), 
(28) and (29) are, therefore, essentially vector- 
field versions of (30), except that C(t) is now a 
time-varying matrix given by H(t) 

C(t) = s1 

[ 1 (34) 

s2 

where H(t) is a block-diagonal matrix whose 
diagonal blocks are h(s,, s2, t). The time-varying 
nature of the system necessitates a completely 
‘on-line’ implementation of the corresponding 
Kalman filter. 

Fig. 5. Four images from the sequence used in the motion vector computation experiment. Frames 0 and 7 
(top row) as well as 14 and 21 (bottom row) are shown. 
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Fig. 6. An optical flow field computed by processing 10 frames of images with the reduced-order SRI filter 
(left) and the corresponding true flow (right). Every other flow vector is shown for clarity. 

Algorithm 2 has been applied to an image 
sequence (Fig. 5) describing a simulated fluid 
flow to yield the estimated flow field shown in 
Fig. 6, indicating adequate performance of the 
filtering algorithm. Details of this particular 
motion estimation problem can be found in 
(Chin et al., 1994). From a computational 
perspective, the small image frame size (64 X 48) 
used in this simulation is still large enough to 
make an exact, optimal implementation of the 
Kalman filter impractical. Algorithm 2, however, 
enables computation of near-optimal estimates. 
The estimated flow field in Fig. 6 is obtained by 
using a spatially distributed computational 
structure over small neighborhoods defined by 
Y = p = 2 and performing only three partial 
band-sweeps per unitary transformation. To 
invert equation (15) 100 iterations of the 
standard Jacobi iterations (Golub and van Loan, 
1989) are used. 

5. CONCLUSION 

The two main developments of this paper are 
a novel approach to the unitary transformations 
in square root filtering, in which the computation 
can be performed in a finely distributed manner, 
and an approximation technique for large 
dimensional space-time SRI filtering problems 
based on the new unitary transformation. The 
proposed approximate SRI filter has two levels 
of approximations characterized by two neigh- 
borhood sets. The computational efficiency and 
near-optimality of the filter have been demonstr- 
ated numerically. Systematic selection of the 
approximation parameters, such as the neigh- 
borhood sets and the number of iterations, to 
approximate an arbitrary space-time problem to 
a given, desired accuracy is an obvious direction 
for further research. 

Actual parallel hardware implementation of 
the reduced-order filter (Algorithm 2) also 

remains as future work. A design based on a 
layered data mesh, in which the SRI pair and 
system parameters are stored and band-sweeps 
are performed, has been explored in (Chin et al., 
1993) for specific space-time problems. 

The development of this paper was premised 
on the use of local interaction models (e.g. 
partial differential equation models) coupled 
with local observations of these phenomena. 
While many space-time estimation problems fit 
these requirements, there are also non-locally 
specified problems (e.g. tomographic measure- 
ments used in medicine, geophysics, and 
oceanography) of practical importance. An 
interesting and open question is how to 
efficiently approximate and propagate the SRI 
pair for such non-local cases. 
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APPENDIX A 

Proof of Theorem 1 
Let D(k) and E(k) be the blocks D and E, respectively, of 

matrix (19) after the kth application of the Givens rotation. 
Also, let dij(k) and eii(k) be the elements of D(k) and E(k), 
respectively. A umtary transformation like the Givens 
rotation preserves the 2-norm of the operand vector (Horn 
and Johnson, 1985); thus, when a Givens rotation is applied 
to the lth row of D(k) and ith row of E(k) we have 

d${k + 1) + e$(k + 1) = d;(k) + e;(k), W.1) 

for j=l,..., n. Equivalently, the sum of the squares 

of the elements of matrix (19) stays constant, i.e. 

where the subscript F denotes the Frobenius norm (Golub 
and van Loan, 1989). 

Let us consider the sequence {di:(k)}rzO for an arbitrary 
j=l >...I n. Since 

equation (A.2) implies that the sequence is bounded from 
above by c. Also, in a sweep, an element in the column j of 
the block E(k) can be nulled only against the element djj(k). 
That is, when I= j in (A.l), the Givens rotation makes 
e$(k + 1) zero, or 

di(k + 1) = d;(k) + e:(k). G4.3) 

This implies that the sequence {d,:jk)}rso is a non-decreasing 
sequence for each j. Now, since the sequence is both 
upper-bounded and non-decreasing, it must converge. From 
(A.3), a necessary condition for the sequence to converge for 
each j must be !F_eij(k) = 0, Vi. This is because every 

element eij is nulled once in an iteration of sweep, i.e. each 
element is nulled once every (pn)th application of Givens 
rotation on the average. Thus, we have !l_ Ill?(k) 11 = 0, and 
the block E must be nulled in the limit. 


