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The application of multiscale and stochastic techniques to the
solution of linear inverse problems is presented. This approach
allows for explicit and easy handling of a variety of difficulties
commonly associated with problems of this type. Regularization
is accomplished via the incorporation of prior information in the
form of a multiscale stochastic model. We introduce the relative
error covariance matrix (RECM) as a tool for quantitatively eval-
uating the manner in which data contribute to the structure of a
reconstruction. In particular, the use of a scale space formulation
is ideally suited to the fusion of data from several sensors with
differing resolutions and spatial coverage (e.g., sparse or limited
availability). Moreover, the RECM both provides us with an ideal
tool for understanding and analyzing the process of multisensor
fusion and allows us to define the space-varying optimal scale
for reconstruction as a function of the nature (resolution, quality,
and coverage) of the available data. Examples of our multiscale
maximum a posteriori inversion algorithm are demonstrated us-
ing a two channel deconvolution problem formulated to illustrate
many of the features associated with more general linear inverse
problems. © 1995 Academic Press, Inc.

1. INTRODUCTION

The objective of a linear inverse problem is the recov-
ery of an underlying quantity given a collection of noisy,
linear functionals of this unknown. These problems arise
in fields as diverse as geophysical prospecting [6, 7, 26,
28, 29, 56, 60], medical imaging {5, 33, 36, 37, 51}, image
processing [41], groundwater hydrology [8-10, 46, 47], and
global ocean modeling [2, 44, 59]. For example, a com-
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mon signal and image processing problem is that of decon-
volution where one observes a signal blurred by additive
noise and seeks to recover the uncorrupted original [24, 40,
45, 50]. Alternatively, the use of computer aided tomog-
raphy, magnetic resonance imaging, and related techniques
for medical diagnoses has led to increased efforts in the
development of algorithms for the inversion of the Radon
transform [36, 37]. Finally, exploration for oil is often facil-
itated by knowledge of the electrical conductivity structure
of a rock formation [17]. The conductivity itself is ascer-
tained by establishing a magnetic field in the rock formation
and measuring the induced currents. Although this inverse
problem is not itself linear, a common approach for deter-
mining the conductivity requires the solution of a sequence
of linear inverse problems [26, 27, 54, 55].

While it is not difficult to find practical instances of linear
inverse problems, it is often quite challenging to generate
their solutions. In many instances, regularization is required
to overcome problems associated with the poor condition-
ing of the linear system relating the observations to the
underlying function [22, 25, 39]. This ill conditioning may
be caused by the spatial distribution of data to be used in
generating a reconstruction or by properties inherent in the
linear operator acting on the unknown quantity. In either
case, regularization serves to alleviate the ill posedness of
the original problem so that a unique, stable solution may
be found. Even if the problem is not ill conditioned, a
regularizer may be incorporated as a means of constraining
the reconstruction to reflect prior knowledge concerning the
behavior of this function [41]. For example, it is common
practice to regularize a problem so as to enforce a degree
of smoothness in the reconstruction [25, 31, 41]. Also, in
disciplines such as geology, the phenomena under investi-
gation are fractal in nature, in which case a prior model
with a 1/ f-type power spectrum is used as a regularizer.

In addition to the regularization issue, characteristics of
the data set available to the inversion algorithm can create
difficulties. In many inverse problems, a large quantity of
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data from a suite of sensors is available for the inversion;
however, the information conveyed by each measurement
process may be far from complete, so one is confronted
with the problem of fusing data from several sensors to
achieve the desired level of performance in the inversion.
Hence, there is a need for understanding precisely how data
contribute information to a reconstruction and the manner
in which measurements from different sources are merged
by the inversion routine. Alternatively, the availability of
the data often is limited. For example, one may be con-
strained to collecting measurements on the boundary of a
region while the quantity of interest is to be estimated over
the interior, as is the case in {5, 6, 11, 60]. Here, one re-
quires flexible inversion algorithms capable of processing
data possessing sparse or limited spatial distributions. Ad-
ditionally, one must compensate for errors present in the
data which may arise from noise in the measurement appa-
ratus, unknown quantities associated with the experimental
conditions, modeling errors induced by the simplification
of physics, and the presence of nuisance parameters in the
model. Finally, one must be concerned with the computa-
tional complexity of the inversion algorithm. Typically, the
inversion requires the solution of a large system of linear
equations so that advantage must be taken of any structure
or sparseness present in the matrices associated with the
problem.

In this paper we develop a framework for inversion based
upon a multiscale description of the data, the operators,
and the function to be reconstructed. The seminal work
on linear operators and wavelet decompositions is that of
Beylkin er al. [4]. Their results on the compression of
whole classes of linear operators in a nonstandard wavelet
representation is mathematically deep and has many prac-
tical consequences for the solution of the forward prob-
lem. In [1], Alpert et al. formulate a discrete multiresolu-
tion analysis which also performs well in terms of operator
compression. Moreover, they develop and analyze a com-
putationally efficient method for constructing and applying
the inverse of their operator. As stated, however, their al-
gorithm does not account for effects such as observation
noise. Furthermore, Alpert’s method does not allow for the
incorporation of prior knowledge into the inversion scheme
or for the processing of irregularly spaced data.

More recently, in [S7] Wang et al. develop a multiscale
deconvolution scheme and apply it to both one- and two-
dimensional problems. The algorithm in [57] employs a
wavelet representation of the data, the operator, the noise,
and the prior model. These authors focus their attention
on the recovery of a signal from a single, noise corrupted,
blurred version of the original and using their multiresolu-
tion representations for the purpose of edge detection. The
issue of multisensor data fusion is not explored by Wang et
al. Nor are these authors concerned with processing sparse
or irregularly sampled data sets. Finally, no explicit attempt
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is made in [57] to understand and quantify the manner in
which the data supports only a limited level of detail in the
reconstruction.

The inversion algorithm used here is drawn from the the-
ory of statistical estimation. Such an approach allows for
the explicit modeling of the errors in the data as sample
paths from random processes. All prior information regard-
ing the structure of the underlying function is summarized
in the form of a statistical model which also acts as a reg-
ularizer. Moreover, these techniques compute not only the
estimate of the function of interest, but also provide a built-
in performance indicator in the form of an error covariance
matrix. This matrix is central to an understanding of the
manner in which information from a set of observations is
propagated into a reconstruction.

We utilize a 1/f fractal prior model specified in the
wavelet transform domain for the purposes of regulariza-
tion. While clearly not the only multiscale model available
for this purpose, the 1/f model is useful for a number of
reasons. First, as noted in [41], this model produces the
same effects as the more traditional smoothness regulariz-
ers. Hence, its behavior and utility are well understood.
Second, a 1/f model utilizes data at different scales in an
intuitively pleasing manner. Finally, 1/ f-type processes as-
sume a particularly simple form, easily implemented in the
wavelet transform domain.

The inversion algorithms developed in this paper are
unique in their ability to overcome many of the data-
oriented difficulties associated with spatial inverse prob-
lems. Specifically, our techniques are designed for the pro-
cessing of information from a suite of sensors where the
sampling structure of each observation process may be
sparse or incomplete. In the case of standard time-series
analysis, there exist well established methods for merging
data from a variety of sources (e.g., the Kalman and mul-
tichannel Wiener filters); however, generalizations of these
ideas for processing spatial data with irregular sampling
patterns have been elusive. For exampie, traditional Fourier
techniques typically require the use of some type of space-
domain windowing or interpolation methods which tend to
cause distortion in the frequency domain. By using the
multiscale approach developed here, such preprocessing is
unnecessary, thereby avoiding both the cost of the operation
and the distortion in the transform domain.

Given this ability to merge data from a variety of sources,
we develop a quantitative theory of sensor fusion by which
we are able to understand how information from a suite of
observations is merged to form the reconstruction. It is of-
ten the case that one wishes to extract from a data set far
more information about the underlying function than is sup-
ported by the data. The insight provided by our analysis can
be used to control such signal processing greed by defin-
ing the optimal scale of reconstruction as a function of (1)
the physics relating the unknown quantity to the measure-
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ments and (2) the spatial coverage and measurement quality
of the data each observation source provides. In general,
such an approach leads to a space-varying optimal scale of
reconstruction which allows for the recovery of fine scale
detail only where the data supports it. At other spatial loca-
tions, a coarser approximation to the function is generated.
In the multisensor case, not only can a space-varying opti-
mal scale of reconstruction be defined, but at any point in
space and scale only data from those sources contributing
significant information need be processed. Thus, the com-
putational burden associated with performing the inversion
can be reduced. Also, our techniques are useful for captur-
ing the incremental benefits associated with the addition of
information from a set of observations to a reconstruction
based upon data from a different group of sensors. Finally,
we note that our use of a multiscale representation of the
operators defining the inverse problem leads to sparse lin-
ear systems in the transform domain. Hence, the work of
Beylkin er al. [4] suggests that highly efficient techniques
are available for obtaining the estimate given a set of data.

The remainder of this paper is organized as follows. In
Section 2 we formulate the multisensor linear inverse prob-
lem and discuss its transformation to scale space. Section
3 is devoted to a presentation of the estimation—theoretic
techniques which will be used for performing the inversion
and analyzing sensor fusion. A set of examples highlight-
ing the contributions of this work are presented in Section
4. Finally, directions for future work and conclusions are
given in Section 5.

2. PROBLEM FORMULATION

2.1. The Observation Processes

In this work, it is assumed that the data upon which the
inversion is to be based, y;(x), is related to the function to be
reconstructed, g(x), via a system of linear integral equations
embedded in additive noise. Hence the observation model
to be considered is

yi{x) =/T,~(x,x’)g(x’)dx’ +n{x), i=012,...,K, (1)

where the integral kernels, 7';(x, x’), and the characteristics
of the noise processes, n;(x), are known. The variable x
could represent one, two, or three spatial dimensions. As
a first step in understanding the advantages and utility of a
multiscale, stochastic approach to the solution of systems
of equations of the form given in (1), only 1D problems are
to be considered here.

The noiseless version of (1) is known as a first kind in-
tegral equation of either the Fredholm or Volterra variety
depending upon the limits of integration. This type of struc-
ture arises frequently when considering physical systems
described by ordinary or partial differential equations [23,
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49]. Additionally, such relationships may be encountered as
a result of linearization of a second kind integral equation
(32, 34, 53]. When Ti(x,x") = Ti{x — x'), the problem of
finding g based upon y; is known as a deconvolution prob-
lem and is encountered widely in practice [24, 35, 40, 45].
Thus, the mathematical structure to be considered in this
paper is quite general and may be used to describe a wide
variety of practical problems.

A key feature of the linear integral equation modeling
structure is its flexibility. By specifying the structure of
the kernels, multisensor fusion problems can be described
wherein the data from individual sources conveys informa-
tion about g at a variety of spatial scales. For example, in
Section 4, a two channel problem is considered. The kernel
functions in this case satisfy T;(x,x') = T;(x — x') = T;(§)
for*i e { f.c} and are plotted in Fig. 1. The taller 7 kernel
gives essentially pointwise observations, thereby supplying
fine scale data for the inversion. Alternatively, the flatter
T, performs a local averaging of the function g so that y,
provides coarse scale information regarding the structure
of g.

The manner in which information from each of these data
sources is used in an inversion is affected by both its quality
and quantity. The quality of the data is determined by the
level of noise, n;, present in the signal (1), where the n; are
taken to be zero mean white Gaussian noise sources with
intensities r;. Generally, the larger the noise intensity, the
less reliable the data will be. The quantity of data refers to
the number and distribution of samples available to an algo-
rithm. In practice, a data set is composed of a finite number
of samples, yi(x;), j = 0,1,...,N;, contained in some finite

* Note that throughout this paper the subscript f is used to denote quan-
tities associated with the fine scale observation process, while the subscript
c is used for the coarse scale measurements.
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interval of the real line where we will denote by y; the N, di-
mensional vector composed of all of the data samples from
the ith observation process. Clearly, altering the number
or location of the x; changes the nature of the information
conveyed by the data, thereby impacting the way in which
a particular observation process contributes to a reconstruc-
tion. In Section 4, we illustrate several variations of data
quality and spatial distribution for the two channel problem
mentioned previously which are illustrative of physically
meaningful measurement configurations and which allow
us to demonstrate the capabilities of our formalism both
in exposing the resolution tradeoffs in multisensor fusion
and in dealing with nonuniform sampling patterns to which
standard Fourier-based deconvolution methods are inappli-
cable.

2.2. A Wavelet Representation of g(x)

A multiscale representation of g(x) is obtained via the
use a wavelet expansion. We begin with two assumptions.
First, g is taken to be “scale-limited” so that there exist
both a finest scale for the reconstruction, F,, beyond which
additional detail is either not present or cannot be resolved
given the data, and a coarsest scale, C,, of interest. Sec-
ond, we assume that g(x) is only to be recovered for x in a
closed and bounded interval of the real line. Then, with ¢(x)
and ¢(x) representing, respectively, the scaling and wavelet
functions for a compactly supported orthonormal wavelet
decomposition [15], we can represent g(x) in terms of its
approximations at any scale C, < m < F, and the detail at
successively finer scalesm < k < F, — |,

Ng(m) Fe—1Ng(k)
gl) = D glm, Woma(x) + D D vk, maln),  (2)
n=0 k=m n=0

where Y, .(x) and @n.(x) are appropriately scaled and
shifted versions of ¢(x) and p(x) (i.e., Yy ,(x) = 272 X
¢(27"x ~ n)) and where N (m) denotes the finite number of
terms in the expansion at the mth scale.

Note that if m = F,, the double summation disappears
and we have a representation for g(x) in terms of its finest
scale scaling coefficients g(F,, n). At the other extreme, we
have that with m = Cj, (2) represents g(x) in terms of its
coarsest scale scaling coefficients, g(C,, n), and its wavelet
coefficients, y(k,n), at all scales of interest, C, < k <
Fg — 1. Furthermore, we also have the scale-recursive re-
lationship for the scaling coefficients g(m, n) that arises di-
rectly from the two-scale relations [15] for ¢(x) and ¥(x),

o) =Y ln)p(2x — n)
Px) =D hin)p(2x — n),
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where I(n) and h(n) are the finite length sequences associ-
ated with this wavelet basis (that is, the so-called low and
high pass filters respectively). If we now collect all co-
efficients at individual scales into vectors, i.e., we define
g(m) (resp. y(m)) to be the vector of scaling (resp. wavelet)
coefficients of the function g(x) at scale m, we have the dis-
crete wavelet transform (DWT), as described in [4], relating
g(m + 1) to g(m) and y(m),

glm) = Lim)g(m + 1) (3)
y(m) = H(im)g(m + 1) 4)
glm + 1) = LT (m)g(m) + H” (m)y(m), (5)

where L(m) and H(m) are matrices formed from the low-
and high-pass filtering coefficients /(n) and h(n), respec-
tively. Also, since g(x) is considered only over a compact
interval, we need to deal with the edge effects in the wavelet
transform at the ends of the interval. While there are a va-
riety of ways in which to do this, such as modifying the
wavelet and scaling functions at the ends of the interval in
order to provide an orthogonal decomposition over the in-
terval [16], we have chosen here to use one of the most com-
monly used methods [4], namely that of cyclically wrapping
the interval which induces a circulant structure in L(m) and
H(m). While this does introduce some edge effects, these
are of negligible importance for the objectives and issues
we wish to emphasize and explore and for the applications
considered here (or in general, if the support of the scaling
and wavelet functions at the coarsest scale, C,, of inter-
est is small compared to the overall length of the interval.)
Further, the methods we describe can be readily adapted to
other approaches for dealing with edge effect as in [16] and
the references contained therein.

Equations (3) and (4) suggest that we may construct a
matrix? W , from L(m) and H(m) which relates the finest set
scaling coefficients, g = g(F,), to the coarsest scaling co-
efficients, g(C,), and all intervening detail coefficients y(m)
form = Cg,Cy + 1,...,Fg — 1. That is, we may write

y=Weg 6

where ¥ = [y(Fg — )7 y(Ce)g(C,)|" and #'; satis-
fies W WL = I. We refer to the vector y as the wavelet
transform of the function g(x).

Given this implementation of the DWT, the relationships
among the scale space component in the decomposition of
g are graphically represented in the form of a lattice as
shown in Fig. 2 for the case of a wavelet decomposition
with I(n) and h(n) of length 4 (such as the so-called “D4”
or Daubechies 4-tap wavelet decomposition described in

4 We choose to subscript the wavelet transform operator here as #, to
make explicit that this is the transform for g(x). We may (and in fact will)
use different wavelet transforms for the various data sets, y;.
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[15]). At the finest scale, the nodes represent the finest
set of scaling coefficients. Each node at all other scales
contains one wavelet and one scaling coefficient. Two nodes
are connected by an arc if and only if there is a linear
relationship between the contents of these nodes as dictated
by the structure of the wavelet transform matrix #',. An
ordering is assumed for the nodes of the lattice starting at
the lower left corner of the finest scale, proceeding to the
right and then continuing with the leftmost node at the next
coarsest scale, etc.

A coarse scale node is said to impact a finer scale if
there exists a strictly downward path on the lattice from
the former to the latter. We define the upward impact set
associated with the node (F,,i) (i.e. the node at scale F,
and shift i) as the set of all nodes which impact (F,, i) and
denote this set as U(F,, i) (% for “upward”). Thus in Fig. 2
the set of nodes labeled using a “0O” correspond to % for the
node given by a ““-.” Alternatively, for node (m, j) which is
not located at the finest scale, 2(m, j) (2 for “downward”)
is taken as the set of finest scale nodes which this node
ultimately impacts. Thus in Fig. 2, 2(0) is comprised of
all nodes marked with the symbol “®.”

2.3. Transformation of the Integral Equation to Wavelet
Space

Transformation of an integral equation of the form con-
sidered in (1) to the wavelet transform domain begins with
its discretization. In practice, discretization with respect to
x is performed a priori as the data y;(x) are available only at
a finite set of points as discussed in Section 2.1. By using
a wavelet expansion of g(x), we relate the samples y;(x;) to
the finest set of scaling coefficients of g(x). Substituting (2)
with m = F, into (1) and reversing the order of integration
and summation yields the matrix-vector relation

yi=Tig +n;, 7)

where the (a, 8) element of the matrix T; is

[Tilep = / Tilxa,x")pF, p(x')dx'.

The matrices Ty and T corresponding to the two convolu-
tional kernel functions of Fig. 1 are displayed in Figs. 3a
and 3b.

FIG. 2. A sample lattice structure corresponding to a D4 wavelet
transform. The finest scale is taken as F; while the coarsest is C,.
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Equation (7) relates the finest scale scaling coefficients of
g(x) and the samples of the noise processes to the samples of
the observation process y;. For the purpose of the inversion,
we desire a relationship between the wavelet transform, vy,
of g and a multiscale representation of n; to a multiscale
representation of the data. Toward this end, we must de-
fine a discrete wavelet transform operator that transforms
the vector of sampled measurements, y;, into its wavelet
decomposition

ni=Wyi=WTHLy+Win =0y +vy, (8)
where, as before, 7; consists of a coarsest scale set of scal-
ing coefficients, y;(C;), at scale C; and a complete set of finer
scale wavelet coefficients n;(m),C; < m < F; — 1, where F;
is the finest scale of representation. Note that we can think
of this transform as a purely discrete one, taking the se-
quence of values y;(x;), j = 1,2,..., to the elements of n;.
Alternatively, since the original data are samples of (1), we
can think of the raw data as empirically obtained scaling co-
efficients at some finest scale F; in a wavelet representation
of the functions y,(x) and n;(x). In [18], Donoho provides
a rigorous discussion of the relationship between the theo-
retical scaling coefficients defined in terms of integrals of
yi{x) and wavelet functions and the samples;, however, for
the purposes of the work in this paper, such distinctions in
the interpretation of (8) are of secondary importance.

In Table 1, we have summarized the notation that we
will use. For example, for the data y;, the corresponding
wavelet transform 7n; = #';y; consists of wavelet coeffi-
cients n;(m),C; < m < F; — 1, and coarsest scale scaling
coefficients y;(C;). Also, if we form only partial wavelet
approximations from scale C; through scale m, the cor-
responding scaling coefficients (which are obtained from
yi(C;) and ni(k),C; < k < m — 1) are denoted by y;(m).
We adopt the analogous notation for the function g and
the noise n; where in general we use the letters (y, g, n) for
the original data and scaling coefficients and their Greek
counterparts (n, y,v) for the full wavelet transforms and
the wavelet coefficients.

Finally, it is often useful to work with the “stacked” sys-
tem of data y = Tg + n where y contains the information
from all sensors and is given by

y=[iy -y’
T=[117--TkI"

T T T
n=[ning - ngl".
In the transform domain, the corresponding equation is
n=00y+v )]

with 5, ®, and v defined in the obvious manner.
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FIG. 3. Grayscale plots of the convolution matrices (a) T¢ and (b) T... Darker coloring indicates larger magnitudes. The concentration of Tt near
the diagonal implies that yr = Trg + nr represents close to pointwise observation of g and therefore will convey “fine scale’ * information regarding
the structure of g. Alternatively, T, essentially conveys “coarse scale” information about g as much of the fine scale variation in g is removed under

the averaging action of this operator.

3. MULTISCALE, STATISTICAL
INVERSION ALGORITHMS

3.1. A Maximum a Posteriori Approach to Inversion

A traditional technique for solving inverse problems of
the form y = Tg+n is to choose the estimate of g according
to

§iag = arg min ||y - Tgll3- + AlILgll7, (10)

where |[x]|3 = xTAx. Equation (10) indicates that the es-
timate of g is influenced by two factors. The first term
enforces fidelity to the data where the weighting R™! is re-
lated to the quantity of noise in the data. The second term in
(10) is used to regularize the problem in the event that T is
ill-conditioned. Alternatively, this term may be viewed as a
means of requiring the reconstruction to reflect some prior
knowledge of the nature of g. In either case the regulariza-
tion or the prior knowledge is captured in the structure of
the matrix L. Typically, this matrix is chosen so that some
degree of smoothness is present in gyaq in which case L is
taken as a discrete form of an appropriate differential oper-

TABLE 1
Notation for Wavelet and Scaling Coefficient Vectors
Wavelet Wavelet Scaling
Quantity transform coefficients coefficients
Data y; m=Wy ni(m) yi(m)
Function g(x) v=W¥,g ¥(m) g(m)
Noise n, v, =W vi(m) n;(m)

ator [3, 41]. The scalar factor A is used to determine which
of the two terms in (10) exerts the most influence in the
reconstruction. Finally, the optimization problem given by
(10) admits a solution which defines £yaq in terms of the
normal equations
(TTR'T + L"L)gyaa = TTR™'y. (1
In this paper, we choose to approach the inverse problem
from a statistical, estimation—-theoretic perspective. That is,
given the observations, y;, along with probabilistic models
describing the noise processes and the function to be recon-
structed, the problem is to determine a statistically optimal
estimate for g. Mathematically, this approach leads to a set
of normal equations similar to those defined in (11) so that,
if one wishes, the reconstruction of g generated by either
method can be made the same. However, the combination
of this probabilistic approach and the use of a multiscale
framework allows for much more. The probabilistic meth-
ods generate not only an estimate of g, but also an error
covariance matrix, P, which is used to evaluate the accu-
racy of the estimator in reconstructing g. This quantitative
performance indicator plays a key role in developing a rig-
orous approach to the understanding of the ways in which
each observation process contributes information to the es-
timate of g and how data from different sources are fused.
From a statistical estimation perspective, the normal
equations are obtained by defining the reconstruction as the
maximum a posteriori (MAP) estimate of g under the con-
dition that n ~ A7(0,R)° and the assumption that g has a

5 The notation x ~ A"(m, P) indicates that the random vector x has a
Gaussian distribution with mean m and covariance matrix P.
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prior probabilistic distribution 4°(0, Py). In this work, each
n; comprising the vector n is taken to be a zero-mean, white
Gaussian random vector with intensity r;. Now, for Py posi-
tive definite, the MAP estimate is defined according to [41],

1/2

Bmap = argznin”y ~Tglz + 1Py “glli.  (12)

Thus, gmap satisfies normal equations of the form

(TTR™'T + B,"?

pal/z)élvmp =TTR 1y, (13)
Finally, defining Py and R to be the_wavelet transforms of
P and R respectively (i.e., Po = # ,Po#'} and similarly for
R) allows the normal equations to be written in the wavelet
transform domain as

OTR'O + Py 2P Y ymap = OTR 1. (14)

3.2. Multiscale Prior Models

By comparing (11) with (13), it is clear that the choice
Py = (NPLTL)7! results in gmap = BZuad- Recent work,
however, suggests that there exists a wide array of useful
prior models which are specified directly in scale space [13,
41]. In many cases, these models perform essentially the
same function as the smoothness-based regularizers; how-
ever, they also carry a variety of additional benefits:

e They are exceptionally easy to implement [58].

e They lead to scale-space algorithms which are orders
of magnitude more efficient than those estimation schemes
operating in real-space using a regularizer based upon some
differential operator [41].

e They are fractal in nature, thereby providing realistic
models for a variety of naturally occurring phenomena [58].

To motivate the particular choice of prior model, con-
sider taking Py = (\2L7TL)~" with L representing first order
differentiation. This implies that g is a Brownian motion
satisfying Lg = w with w ~ A(0,\"%]). As discussed in
[41], work by Wornell and others has demonstrated that
Brownian motions and other related fractal processes can
be closely approximated via a Karhunen-Loeve-type of ex-
pansion in the form of (2), with ¥(m,n) ~ #(0,0227#") and
independent. Here, 62 controls the overall magnitude of the
process while the parameter p determines the fractal struc-
ture of sample paths. The case u = 0 corresponds to g(x)
being white noise, while as  increases the sample paths of
g show greater long range correlation and smoothness.

In addition to defining the scale-varying probabilistic
structure of the wavelet coefficients in (2), we also must
provide a statistical model for the coarsest scale scaling co-
efficients, g(C,,n), in (2). Roughly speaking, these coarse
scale coefficients describe the DC and low-frequency struc-
ture of g(x). In the applications we consider here, we as-
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sume that we have little a priori knowledge concerning
the long-term average value of g(x). Consequently, we take
8(Cq,m) ~ N(0, pc,) where pc, is some sufficiently large
number. By choosing pc, in this manner, we avoid any bias
in the estimator of the low frequency structure of g(x).

Obviously, other choices of statistics for y(m,n) and
8(C,. n) may be appropriate in specific applications, and our
methodology can readily accommodate these. The specific
choice we have made, leading to a 1/f-like fractal model,
is particularly well adapted to the multiscale formulation
of many inverse problems. Coarse scale wavelet coeffi-
cients are assumed to have high variances so that the data
rather than prior assumptions influence most strongly the
reconstruction at these scales. Furthermore, the self-similar
scaling law in the variance of the wavelet coefficients is
well-adapted to many physical phenomena that display
fractal-like behavior. In addition, the successively decreas-
ing variances of the fine scale wavelet coefficients control
the incorporation of high frequency information into the re-
construction. For many problems, however, this represents
an eminently reasonable use of the data. As will be seen in
Section 4 for deconvolution problems, the smoothing action
of the convolutional kernels implies that the data supply pri-
marily coarse scale information regarding the structure of g,
with successively decreasing sensitivity to finer scale varia-
tions in g. The value of this fine scale sensitivity, of course,
depends not only on the sensitivity of the measurements to
fine scale fluctuations in g, but also on the expected size
of fine scale detail in relation to the corresponding scale of
noise fluctuations. The particular choice of a fractal model
provides us with one physically meaningful way in which
to specify the tradeoff and which in turn determines the
way in which the resulting estimation algorithm makes ef-
fective use of the data only over those scales where useful
information is present.

To summarize, a fractal prior model is used in this work
as a means of regularizing the linear inverse problems. Fol-
lowing the notation introduced in Section 2, the model is
defined in the wavelet transform domain as y ~ A(0, Py)
where

Py = block diag(Po(Fg — 1),..., Po(C,), Po(Cy)) (15)
(16)
(17

Po(m) = 02274y (m)

Po(Cy) = pcInyc,

with I, an n X n identity matrix. Finally, we note that
this model is but an example (albeit an important example)
of a rich class of models which may be defined in scale
space. Indeed, letting o as well as p be functions of scale
and/or position could allow for the modeling of nonstation-
ary processes possessing space-varying fractal characteris-
tics such as multifractals [19, 30]. More generally, in {12,
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13, 41, 42] the authors have developed a set of multiscale
models outside of the wavelet formalism defined on trees.
These models offer a compact and useful characterization
of many commonly occurring stochastic processes and are
well suited to highly efficient, scale-recursive estimation al-
gorithms.

3.3. The Relative Error Covariance Matrix

A key advantage of the use of statistical estimation tech-
niques is the ability to produce not only the estimate but
also an indication as to the quality of this reconstruction.
Associated with the MAP estimator is the error covariance
matrix, P, defined in the transform domain as

P=Elly - 9y - ']

and which under the Gaussian models defined in Section
3.1 takes the form
P=@ R'Oo+P") L. (18)

Taking the inverse wavelet transform of (18) gives the error
covariance matrix P associated with estimating g from data
y; and a prior model with covariance Py,

P=Ellg-8)g -8V 1=T"R'T+P;")y"". (19)
The diagonal components of P, the error variances, are
commonly used to judge the performance of the estima-
tor. Large values of these quantities indicate a high level
of uncertainty in the estimate of the corresponding com-
ponent of y while small error variances imply that greater
confidence may be placed in the estimate.

While the information contained in P is certainly impor-
tant for evaluating the absolute level of uncertainty associ-
ated with the estimator, in many cases it is more useful to
understand how data serve to reduce uncertainty relative to
some reference level. That is, we have some prior level of
confidence in our knowledge of vy and we seek to compre-
hend how the inclusion of additional data in our estimate
of y alters our uncertainty relative to this already estab-
lished level. In this section we define the relative error
covariance matrix (RECM) and demonstrate its utility as a
tool for capturing such changes in uncertainty. The analysis
of the RECM in the wavelet domain is especially interest-
ing because it allows for a localized characterization of the
manner in which data impacts a reconstruction. Hence, we
show how the RECM provides a natural means of evaluat-
ing the appropriate level of detail as a function of position
which can be supported in a reconstruction based upon a
given set of data. When multiple measurement processes
provide data, the relative error covariance matrix is useful
for determining those scales and shifts for which there ex-
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ists significant incremental benefit from-the addition of data
from a given suite of observations to an estimate based upon
information from a different set of sources. Finally, analy-
sis of the RECM leads directly to a quantitative, multiscale
theory of sensor fusion.

The definition of the relative covariance matrix is moti-
vated by the definition of the relative difference between
two scalars a and b given by

-2
a

(20)

The matrix analog to (20) to be considered in this paper is

~T/2

T(A,B) = I - P, 2

PgP, ", (21
where P4 is assumed to be positive definite. Here A and
B are index sets with A,B C {l,2,...,K}. The quantity
P, (resp. Pg) is the error covariance matrix associated with
the MAP estimate $(A) (resp. ¥(B)) where $(A) (resp. ¥(B))
is the estimate of y based upon data from all observation
processes 7; with i € A (resp. i € B). Finally, we define
the error covariance matrix associated with no observations,
P(zy, as the prior covariance matrix Py.

The definition of TI(A, B) in (21) possesses many pleas-
ing properties. First, like an error covariance matrix, it is
symmetric. Also, TI(A, B) is the wavelet transform of the
variance reduction matrix associated with P4 and Pg. That
is,

(A, B) = 1 — Py *PyP;"* = WTII(A, BYW .

Moreover, it is not difficult to show that I'T{(A, B) is normal-
ized to the extent that for A C B,

0<IlA,B) <1

We note that TI(A,B) = 0 iff Pg = P,, which indicates
no reduction in uncertainty and a complete lack of addi-
tional information from the data in B relative to that in A.
Alternatively, given some nonzero level of uncertainty in
4(A), TI(A, B) = 1 if and only if Pg = 0 which occurs if and
only if 4 = y. Thus I1(A, B) is the identity only when all
uncertainty in y has been removed.

In the event P4 is diagonal, the diagonal components
of T1I(A, B) are particularly easy to interpret. Let o;(A) be
the error variance of the ith component of vy arising from
an estimate based upon data from set A. Then the ith com-
ponent of the diagonal of TI(A, B) is just

1 — oX(B)/c*(A)

which is nothing more than the relative size difference of
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the error variance in the ith component of -y based upon data
from sets A and B. Note that the diagonal condition of P4
is met in this paper when P4 = Py, since the wavelet and
scaling coefficients in (2) are uncorrelated for the fractal
1/f priors used here as well as for many other physically
meaningful prior models. Thus, the diagonal elements of
IT({3}, B) represent the decrease in uncertainty due to the
data from set B relative to the prior model. Finally, as
T({2}, B) will be of interest frequently in the remainder of
this work, we shall abuse notation and write I1({&}, B) as
T1(B) in cases when there will be no confusion.

The quantity TI(A, B) represents a useful tool for quanti-
tatively analyzing the relationship between the characteris-
tics of the data (as defined by ® and R) and the structure of
the estimate ¥. In the examples provided in Section 4, we
utilize T1(A, B) to explore:

1. The information contributed by a single sensor relative
to that in the prior model.

2. The manner in which data from a group of sensors are
fused in forming %.

3. The incremental benefits associated with the addition
of data from the (i + 1)st sensor to an estimate based upon
the first i measurements.

4. The quality of estimates at different scales and the
scales at which active fusion takes place in that the relative
error covariance achieved using more than one sensor is
significantly increased compared to that using any single
sensor by itself.

Consider, for example, the case in which we wish to as-
sess the overall value of a set of sensors. That is, sup-
pose that A = & and B = {any set of sensors} so that
T1(A, B) = I1(B) measures the contribution of the informa-
tion provided by this set of sensors relative to that of the
prior model. We begin by defining IT;(B) as the value of
the element on the diagonal of the matrix I'(B) correspond-
ing to the wavelet coefficient at scale/shift (m,n).% As P,
is diagonal, TT}(B) is interpreted as the relative decrease
in the error variance associated with the component in the
wavelet transform of g at scale/shift (m, n). If TT1J(B) is large
then the data provide considerable information regarding
the structure of g at (m, n). In particular, this quantity pro-
vides us with a natural way in which to define the scale at
which g should be reconstructed at each location. Specifi-
cally, consider the finest scale of our representation, namely,
the scaling coefficients g(F, j). At each point j we can ex-
amine the quality of the information provided at this point
at the finest scale and at all coarser scale “ancestors” of j.
Using the terminology introduced in Section 2.2, we say
that the data support a reconstruction of g{F,, j) at scale m

S At scale m = C,. we are interested in both the wavelet and scaling

. . L . L
coefficients of g. To avoid ambiguity, we use the notation T, to refer to
the RECM information for the coarsest scaling coefficient of g at shift n.
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TABLE 2
Parameter Values for g

Property Value
Wavelet Daubechies 6-tap
Finest scale (F,) 8
Coarsest scale (C,) 3
I 20
o’ 10
Pc, 0.25

if there exists some node in the wavelet lattice of g at scale
m which satisfies the following:

1. The node impacts g(F,,j) (i.e. for some shift n,
8(Fy, j) € @(m,n)) so that (m,n) is an ancestor of (Fy, j).

2. The data provide a sufficiently large quantity of in-
formation regarding the structure of g at node (m,n) (i.e.
IT;'(B) is in some sense large).

Clearly, the finest level of detail supported by a data set is
the finest scale for which a node (m,n) may be found that
satisfies the above two criteria and in general is a func-
tion of position (i.e. a function of the shift j at scale F,).
The precise quantification of “sufficiently large” will de-
pend upon the particular application and on the structure of
the particular inverse problems under investigation.

In addition to its use in assessing the scale of reconstruc-
tion supported by the information from a set of sensors, if
we consider the case where neither A nor B is empty, we
find that there are several ways in which I1(A, B) may be
of use in assessing the value of fusing information from
multiple sensors and in identifying how this fusion takes
place. For example, if A C B, then Il(A, B) provides us
with a measure of the value of augmenting sensor set A
to form sensor set B. Roughly speaking, if [1(A, B) is sig-
nificantly larger than O, there is a benefit in the additional
information provided by the sensors in B — A. Moreover,
if we define IT;'(A, B) as before as the diagonal elements
of T1(A, B) corresponding to the (m, n) wavelet coefficient,
then we can use these quantities to pinpoint the scales and
locations at which this fusion has significant benefit,’ i.e.,
those scales and shifts at which active sensor fusion is tak-
ing place. Furthermore, by varying the sets A and B, we
can identify not only the optimal scale for reconstruction
at each point but can also identify which sensors are ac-
tively used to obtain that estimate. That is, for each (m, n)
we can in principal find the set A C {1,...,K} so that

7 In this case, because P4 is not in general diagonal, the diagonal ele-
ments of [1(A, B) do not have the exact interpretation as the relative size
difference of the error variance of y based upon data from A and B; how-
ever, the size of these diagonal components of TI(A, B) still lends insight
as to the scales and shifts where the observations from set B provide in-
formation not found in the data from set A.
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FIG. 4. Fractal function to be reconstructed. Approximation coeffi-
cients at scale F, = 8.

TT7(A, {1,...,K}) is small (so that sensors not in A provide
little additional information to the reconstruction of wavelet
coefficient (m, n)) and so that for any C C A, IT}(C, A) is of
significant size (so that all of the sensors actively contribute
to the reconstruction at this scale and shift).

4. EXAMPLES

The vehicle for illustrating the MAP estimator and asso-
ciated analysis techniques developed in Section 3 is a two
channel deconvolution problem configured in several ways
to illustrate a variety of different facets of our approach.

120, T T T T

Percent of total energy in operator
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The function to be reconstructed is assumed to be a 1/f
type of process defined by the parameters in Table 2 and
the particular sample path of the process used in our exam-
ples is displayed in Fig. 4.

The convolutional nature of the problem implies that
Tix,x') = Tix — x') = T{¢) for i = f,c. The two ker-
nels used in the examples here are plotted in Fig. 1 and the
operator matrices Tr and T are shown in Fig. 3. The output
of the sensor corresponding to T¢ provides relatively fine
scale information about g in comparison to that provided
by the sensor corresponding to T, since much of the fine
scale variation in g is removed under the averaging action
of this operator.

The ability of the wavelet to compress the information in
these operators is illustrated in Fig. 5. Because the wavelet
transform is orthonormal, the energy in T; and ©; is the
same for i € {f,c} (e, ||ITillr = |1®;lle where || - ||r is
the Frobenius norm); however, this energy is concentrated
in fewer entries in the wavelet domain operators than in
their space domain counterparts. To illustrate this property,
define the quantity E;(n) (resp. Z;(n)) as the energy in the
first n largest (in magnitude) components of 7; (resp. ;).
Further, assume that E£;(n) and Z;(n) are normalized by the
total energy in the respective operators. In the case of the
two operators considered here, we plot E¢(n) and Z¢(n) in
Fig. 5a and E.(n) and E.(n) in Fig. 5b. Note that as with
the operators considered by Beylkin et al. in [4], for both
operators considered here any given level of energy is con-
tained in far fewer coefficients in the transform domain than
in the physical space domain. In fact, to capture 95% of the
energy in Tt requires 2150 elements while only 712 need
be retained in Oy, a factor of three difference. In the case

120 T T T T

601 i

Percent of total energy in operator

20+ )’

10°

FIG. 5. Plots of normalized energy in the largest n component of T; and 8; as a function of n. (a) Ef(n) (solid line) and E¢(n) (dashed line). (b)
E(n) (solid line) and Z.(n) (dashed line). Note that for both the fine and coarse scale operators, energy is more concentrated in the transform domain
than in the space domain in that any given level of energy is contained in far fewer coefficients in ®; than in the corresponding T;.
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of T., roughly 14,000 components are required to retain
95% of the energy while only 149 elements are needed for
0., which is a savings of almost two orders of magnitude.
This suggests that the transform domain matrices may be
well approximated by sparse matrices obtained by setting
their negligible components to zero so that computation-
ally efficient, sparse matrix routines can be used to solve
the normal equations. We note that the use of higher order
wavelets would result in even sparser ®; and that a detailed
analysis of computationally efficient, multiscale inversion
algorithms is presented in [43].

4.1. The Full Data Case: Equal SNRs

As a first example, we consider the case where a full
set of data is available from both sensors and the signal-
to-noise ratio of each observation is the same and equal
to 1. In this work, the signal-to-noise ratio of the vector
n = O,y + v; with v; ~ A0, r%l) and y ~ A(0,Py) is
defined as

GNR2 - Power per pixel in @y _ tr(®;Py©7)
‘" Power per pixel inv; Nt

where N, is the length of the vector v and tr is the trace
operation. The noiseless and noisy data sets are shown
in Fig. 6. In Fig. 7a, g({f,c}) is graphed against g while
Figs. 7b and 7c display 2({f,c}) vs g({f}) and g({c}),
respectively. These plots demonstrate that given data of
equal quality (i.e. equal SNR’s), the MAP estimator bases
the overall reconstruction primarily on the fine scale data
source yr. In Fig. 7d, we compare two versions of ¢. The
solid line is a graph of § in which all coefficients, $(m),

-6 s 2 L L L
0 50 100 150 200 250
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are used at all scales in forming g(F,) while the dashed
line is a reconstruction in which ¥(m) for m > 4 are set to
zero. This picture indicates that y. and y¢ convey no useful
information regarding g at scales finer than 4.

Analysis of the relative error covariance matrices provide
much additional insight into the manner in which the data
are used to form 2. Due to the full data condition and the
fact that Py is a function only of scale, the RECM infor-
mation is basically a function only of scale and does not
vary considerably from shift to shift over any given scale.
Thus we define I1"(A, B) as the average value of ITJ(A, B)
taken over all shifts n at scale m. In Table 3, the values of
™ ({ £, c}), I™({f}), and [T™({c}) are given in percent for all
m defined in the wavelet transform of g. Hence the first col-
umn indicates the percent reduction in variance as a func-
tion of scale for an inversion based upon y; and y. where
this reduction is taken relative to the prior model. Similar
interpretations hold for the second and third columns. The
last column in Table 3 is the average value at each scale
of the RECM obtained when the coarse scale data, y, is
added to an inversion based upon y;. Finally, note that the
last row of this table provides the RECM information asso-
ciated with the estimates of the coarsest scaling coefficients
of g.

Comparison of the data in the first three columns indi-
cates that, given both sets of data, the bulk of the vari-
ance reduction is attributable to the information present in
ys. Moreover, the information in the observations at scales
5, 6, and 7 is negligible. In the first column of Table 3
(where both y. and ys are used in the inversion) we see a
20% and 63% variance reduction in the estimates $(4) and
¥(3) respectively, and a 98% reduction in the estimates of
the coarsest scaling coefficients g(3). In the second column

6 \ L 2 s i

FIG. 6. Data sets for use in full data reconstruction with the SNR; = SNR. = 1. (a) Noiseless (solid line) and noisy (dashed line) versions of
¥, SNR¢ = 1; (b) Noiseless (solid line) and noisy (dashed line) versions of y., SNR; = 1.
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FIG. 7. Estimates of g using various combinations of fine and coarse scale data for the equal SNR experiment. (a} g (solid line) versus g({f,c})
(dashed line), (b) g({f,c}) (solid line) versus g({f}) (dashed line), (c) §({f,c}) (solid line} versus g({c}) (dashed line), (d) g¢({f,c}) constructed using
detail at all scales (solid line) versus g({f,c}) comprised of only §(3), #(3), and %(4) (dashed line). From (b) and (c) we observe that given both sets
of equally noisy data, the estimator uses primarily the information from the process y¢. In (d), g is reconstructed ignoring any detail estimates, ¥(m),
at scales finer that 4 and compared to the estimate £ in which all available detail is used. In this case we observe that yr and y. provide little useful

information at scales 5 through 7.

(where only ys is used to determine %), similar RECM data
are present. From column three of Table 3 (where only y.
is used), we conclude that the noisy, coarse scale data is
useful only in reducing the variance for the components of
v at scale 3. Lastly, column four shows that the addition
of the coarse scale data to an estimate based upon y¢ only
provides incremental benefit in the estimates of g(3).
From this analysis, we observe that there is no sensor
fusion taking place in an estimate based upon both y; and
yc. That is, under this particular full-data, equal SNR sce-
nario, the information in y. is largely ignored in construct-
ing 2({f,c}). The data in Table 3 also imply that there is a
limit to the level of detail supported in a reconstruction of

g based upon y;. In fact, the values of I1™ are considerably
smaller at the finer scales (5, 6, and 7) than at the coarser
scales (3 and 4). From this, we conclude: that neither set of
data alone or together provides sufficient information for
the reconstruction of detail in g finer than that found at
scale 4.

We note that the information provided by the relative
error covariance matrices is consistent with the actual es-
timates graphed in Fig. 7 where we saw that §({f,c}) es-
sentially is the same as g({c}), and that g({f,c}) does in
fact contain little detail at scales finer than four. The use
of the RECM is significant because it allows for the for-
mulation of these conclusions before any data are obtained.
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TABLE 3
Percent Relative Error Variance Reduction for Full Data
Inversion with SNR; = SNR, = 1

100 x 1™ 100 x IT" 100 x " 100 x IT"
Scale m ({f. e urb ceh (e
7 0.0048 0.0047 0.0001 0.0001
6 0.0622 0.0600 0.0020 0.0023
5 1.2246 1.1785 0.0475 0.0496
4 19.0872 18.4934 0.9166 0.7705
3 62.7417 60.5813 10.9863 5.7320
3 98.1754 96.7171 90.8045 45.8975

Note. Comparison of the first through third columns indicates that the fine
scale data provide most of the variance reduction. The fourth column dem-
onstrates that the incremental information provided by the coarse scale ob-
servation process is seen primarily in the estimates of the coarsest scaling
coefficients.

Thus, the RECM represents a useful tool for the design and
evaluation of experiments where multiple sensors are to be
used in the recovery of some underlying quantity. In this
example, one would conclude that the coarse scale sensor
is of little or no use in the recovery of g and that additional
observation processes are required to resolve very fine scale
structure in g.

Additionally, the relative error covariance matrix analysis
can be used to evaluate a particular parameterization of g.
Given the structure of the observation processes, we see that
g is overparameterized as the data provide little useful fine
scale information relative to that found in the prior model.
Any attempt to recover these components of g is effectively
a waste of time and computational resources. Rather, the
RECM suggests that a more parsimonious description of g
is warranted and even indicates how such a model should
be constructed based upon the information available in the
data. That is, given the structure of the observation pro-
cesses, the original parameterization of g involving 256
degrees of freedom is clearly excessive. Rather, the data
dictate that at most only 32 parameters (the coarse scaling
coefficients and the detail coefficients at scales 3 and 4) can
be accurately recovered.

4.2. The Full Data Case: Unequal SNRs

As a second example, consider the case where again full
data are provided for both observation processes, but the
level of noise in ys is much greater than that of y.. Here we
take the SNR, = 4 while SNR; = 1. Inversion problems
with these characteristics arise quite frequently in practice.
For example, in geophysical prospecting the fine scale pro-
cess may arise from an electrical measurement using high
frequency electromagnetic fields to probe the structure of
the earth. These fields tend to suffer attenuation due to
the lossy characteristics of the medium, giving rise to low
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signal-to-noise ratios. Alternatively, the coarse scale obser-
vation processes are associated with low frequency obser-
vations for which either attenuation is small or energy is
high, resulting in a higher SNR. The function g to be re-
covered is the same as in the first example and the estimates
themselves are shown in Fig. 8. As in the previous case, it
is clear just from these plots that very fine scale detail is
not supported by these data sets; however, it is less obvious
as to the manner in which data from each set contribute to
the overall reconstruction.

Consider the RECM information in Table 4. As with
the previous case, the structure of the prior model and the
measurement processes imply that little is lost in examin-
ing averages of RECM components over all shifts at a given
scale. From the data in the last row of Table 4 it is clear
that for the coarsest scaling coefficients both y¢ and y. pro-
vide comparable and close to full information relative to
that of the prior model. For the estimates of the wavelet
coefficients at scales 3 and 4, we see a significant amount
of sensor fusion taking place. In particular, at scale 3, the
use of y¢ (resp. y) alone provides a variance reduction of
about 60% (resp. 59%); however, given both sets of data,
this statistic jumps to 75%. Thus, the ability to resolve the
wavelet coeflicients of g at scale 3 is significantly improved
when both set of data are available to the inversion than is
the case when either acts alone. A similar argument holds
for the information contained in the observations regarding
the structure of g at scale 4. Table 4 indicates that fusion
also occurs at scale five although the data at this scale are
obviously less reliable than at the coarser scale. It is clear
that neither data source provides significant information at
the finest scales, 6 and 7.

TABLE 4

Percent Relative Error Variance Reduction for Full Data
Inversion with SNR; = 1 and SNR, = 4

100 x IT" 100 x I1™ 100 x IT" 100 x IT"
Scale m (fich «h {ch (Y eh
7 0.0057 0.0047 0.0010 0.0011
6 0.0871 0.0600 0.0267 0.0279
5 1.7835 1.1785 0.6457 0.6431
4 25.3244 18.4934 10.1778 8.7822
3 75.9424 60.5813 59.1247 39.6413
3 99.4718 96.7171 98.9946 84.8110

Note. Unlike the first example, the high quality, coarse scale data now
provide significant information for the inversion. From the first three col-
umns, the bold faced values indicate where active sensor fusion is taking
place. Specifically, at scales 3 and 4 the percent of variance reduction is
significantly higher given both sets of data than is the case when either y; or
y. is used alone. The fourth column shows that the incremental information
provided by the coarse scale observation process is seen at the coarsest two
scales.
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Unlike the full-data, equal SNR example in Section 4.1,
the RECM here provides significant information not read-
ily obtained by examination of the estimates alone. Specif-
ically, we are able to pinpoint exactly where in scale space
active sensor fusion is occurring and quantify its magni-
tude. Moreover, our analysis is of great use in capturing
the effects of noise on the level of detail supported by a
given source of data. Comparing the results of this experi-
ment with those of the preceding section, we see from the
fourth columns of Tables 3 and 4 that the higher SNR, al-
ters where in scale space y. contributes information relative
to that found in yf. In Section 4.1, the coarse scale process
contributes only to the estimates of the coarsest scaling co-
efficients, while in this case y. provides additional informa-
tion regarding g(3) and the wavelet coefficients at scale 3
(and to a lesser extent the wavelet coefficients at scale 4).

4.3. The Incomplete Data Case: Boundary Measurements

A common characteristic of linear inverse problems is
the desire to estimate g over some closed and bounded re-
gion based upon measurements, some of which are available
only at or near the boundary of this region [5, 14, 20, 21,
33, 38]). Such a situation may arise, for example, in a geo-
physical setting. Here one may be interested in ascertaining
the conductivity structure or acoustic properties of a rock
formation given electromagnetic data which provide fine
scale information only near a few boreholes, together with
coarser resolution sonic data (e.g., from ground-penetrating
radar or surface seismic surveys) which in contrast have
full coverages over the entire interwell region. This type of
observation configuration leads to both theoretical as well
as computational difficulties. From a theoretical perspec-
tive, problems of this class tend to be extremely ill-posed
in that solutions to these inverse problems are very sensitive
to perturbations in the data. Upon linearization, these theo-
retical difficulties are reflected in discretized linear systems
with very high condition numbers so that regularization is
required. Additionally, as discussed in Section 1 for prob-
lems with a convolutional structure, the sparse and “gappy”
distribution of data points makes the use of Fourier-based
techniques probiematic.

In contrast, the multiscale, statistical MAP inversion al-
gorithm we have described is ideally suited to handling such
problems. To illustrate this, we consider a variation on the
two channel deconvolution problem with SNR; = SNR, =
3; however, we assume that y; is available only near both
ends of the interval. In this case, the data sets are shown
in Fig. 9. In solving the inverse problems, regularization
is provided by the prior model as discussed in Section 3.2.
Moreover, this sampling structure is handled quite easily
using wavelet transforms. Specifically, we split y; into its
left and right components, yr; and yf,, and treat each sep-
arately. In effect, this is equivalent to windowing yr and
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applying # ¢ individually to each windowed version of the
data. We note that unlike Fourier techniques where space-
domain windowing can cause significant distortion of the
signal in the frequency domain, no significant distortion is
present here.?

The estimates of g are displayed in Fig. 10. We see that
over the middle of the interval g({f, c}) is roughly the same
as g({c}), while at either end information from y; is used
almost exclusively in the inversion. Additionally, Fig. 10
shows that given only ys, the estimator does make an at-
tempt to recover g over the interior of the interval, but such
an estimate is increasingly in error the farther one proceeds
toward the middle.

In Fig. 1la-11d, the diagonal components of II(B) are
plotted for B C {{f},{c},{f.c}} and for scales’ 3 and
4. We observe that for scale-shift pairs (m,n) interior to
the boundary region in which fine scale data are available,
[T {{f}) is essentially zero, indicating the almost complete
lack of information in y¢ about g over these shifts. How-
ever, for pairs (m, n) corresponding to locations near either
boundary, the story is different. Here, information in ys
almost completely dominates that in y., as was the case
in the first example. In Fig. 11d, the utility of adding y.
to an estimate based upon y; is illustrated by displaying
M3 ({f}.{f.c}). Again the contribution of the coarse scale
data is greatest away from the end of the interval. In Figs.
11a and 11b, we observed the presence of active sensor fu-
sion over selected shifts at this scale. That is, for certain
n and for j € {3,4},IT({f,c}) is significantly larger than
both TTa({c}) and TTn({ f1). Thus, the RECM is able to lo-
calize both in scale and in shift the precise locations where
the presence of both data sets yields significantly more in-
formation than either alone. Finally, for scales other than
3 and 4, the two observation sources provide little if any
significant information for the reconstruction of g.

Unlike the previous examples where both data sets were
available over the entire interval, for the case considered
here we are quite justified in defining the shift-varying op-
timal scale of reconstruction given both y. and y;. As de-
scribed in Section 3.3, we say that a data set A supports
a reconstruction of g(F,, n) to scale m if there exists some
node (m,n) such that (1) g(F,, j) € D(m,n) and (2) IT;(A)
is sufficiently large. The finest level of detail supported in a
reconstruction at shift j, which we denote by m*(j), is the
finest scale for which a node may be found that satisfies the

8 The only distortion is caused by the edge effects arising from the
circulant implementation of the wavelet transform as discussed in Section
2.2 and, as we have discussed, these effects are generally negligible or can
be overcome completely through the use of modified wavelet transforms
obtained over compact intervals.

9 The unusual activity at the right hand edge of these plots is an artifact
of the circulant implementations of the H and G filters as discussed in
Section 3.3.
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FIG. 8. Estimates of g using various combinations of fine and coarse scale data for the unequal SNR experiment. (a) g (solid line) versus g({f,c})
(dashed line), (b} #({f,c}) (solid line) versus g({f}) (dashed line), (c) &({f.c}) (solid line) versus g({c}) (dashed line), (d) g({f,c}) constructed using
detail at all scales (solid line) versus g({f,c}) comprised of only g(3), #(3), and %(4) (dashed line). From (b) and (c) we observe that some form of
active sensor fusion is taking place, as the estimate obtained with both sets of data is clearly different from that obtained when either data set is used
alone. In (d), g is reconstructed ignoring any detail estimates, ¥(m), at scales finer than 4 and is compared to the estimate £ in which all available detail
is used, from which we observe that y¢ and y. provide little useful information at scales 5 through 7.

above two conditions. For the problems considered here,
the diagonal structure of Py implies that 0 < I17(4) < |
so that determining whether IT7(A) is “sufficiently large” is
accomplished by comparing this quantity to some thresh-
old, 7, between zero and one. This procedure for deter-
mining the optimal scale of reconstruction implies that we
need consider only those nodes in the wavelet lattice of g
for which TI*(A) > 7. Hence, we are led to define ¥., a
truncated version of ¥, as

0 MrA)=r

[#lonny otherwise, (22)

[¥+lomm = {

where [$]inn is the component in the vector ¥ at scale
m and shift n. Defining ¥, in this way ensures that g, =
#T%, is in fact the reconstruction of g which at each shift
J contains detail information at scales no finer than m* ().

In Fig. 12, we plot the finest scale supported in a re-
construction of g using the noisy data sets of Fig. 9 for
7 = 0.45. Here we see that near the boundaries the pres-
ence of the fine scale data allows for higher resolution in
the reconstruction of g, while in the middle of the interval
we must settle for a coarser estimate. From Fig. 13 we
see that there is little difference between the optimal esti-
mate, £, and its truncated version, £o4s, except that go4s
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FIG. 9. Data sets for use in reconstruction with the SNRy = SNR. = 3 and y available only near the end of the interval. (a) Noiseless (solid line)
and noisy (dashed line) versions of yr, SNR¢ = 3; (b) noiseless (solid line) and noisy (dashed line) versions of y., SNR. = 3.

is composed of only 24 nonzero wavelet coefficients for a
decrease in model complexity of about 90%. This provides
further evidence that the RECM is the right tool for pre-
cisely evaluating the manner in which the data contributed
information to the reconstruction of g. Finally, in Fig. 14,
the finest scale supported in a reconstruction as a function
of both position and threshold is displayed. Here, the hori-
zontal axis represents the shift, n, at the finest scale, F, = 7,
the vertical axis is the value of 7, and the grey tones rep-
resent the finest scale of resolution supported by the data

0.6f .

o4} ) 1

0.2} , .

0.4+ 1

-0.6

2 N A n

50 100 150 200 250

at shift n using threshold 7 with darker shades indicating
finer scales. Increasing 7 implies that we require more in-
formation from the data to say that the observations support
reconstruction at finer scales. Hence, for the problems here,
with 7 greater than about 0.7, we conclude only the coars-
est information in g may be recovered given the data. For
7 less than 0.7 the situation is much the same, as was seen
in the analysis of Fig. 12 with fine scale detail recoverable
near the boundaries and a coarse reconstruction near the
middle where only y, is present.

0.8 1

0.4 - ! 4

0.2 4 \
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1 I x L 2
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FIG. 10. Estimates of g using various combinations of yr and y. for the case where SNRt = SNR; = 3 and yr is available only near the edges of
the interval. (a) #({f, c}) (solid line) versus g({f}) (dashed line), (b} g({f, c}) (solid line) versus g({c}) (dashed line). We see that at the boundaries the
estimate obtain with both y. and yr essentially makes use only of yr. Over the center of the interval where yr is absent, £({f, c}) follows g({c}) closely.



MULTISCALE APPROACH TO SENSOR FUSION

Y T

- -

!
0.6F '

o2 ! /

0.8¢

0.6f

0.4r

0.2r

0 2 4 6 8 10 12 14 16

FIG. 11.

b

0.21

n 1 a

1 2 3 4 5 6
Shift, n

~F
(-]

Relative error covariance information for the case of SNR¢ = SNR; = 3 with yr available only near the ends of the interval. (a) Solid lines

= Hz({f. ¢}), dashed lines = ﬂ,j.({f}). dot-dashed lines = I'lz({c}); (b) solid lines = I'I_g({f, c}), dashed lines = TT2({f}), dot-dashed lines = M3({c}); {c)
solid lines = TTA({f, c}), dashed lines = ITA({f}), dot-dashed lines = MA({c}); (d) TIM{f}, {f.c}). For scales 3 and 4, (a}(c) indicate that at the ends
of the interval the variance reduction given both yr and yc is equal to that given only yr. Alternatively, y. impacts the RECM data primarily in the
middle of the interval. In (a}-{c), there is some active sensor fusion taking place as there exist shifts at these scales for which N3({f. c}) dominates both

2({ f}) and Hﬁ({c}). From (d), it is observed that y. has significant impact relative to y¢ in lowering the variance of the coarsest scaling coefficient

estimates at shifts away from either end of the interval.

4.4. The Incomplete Data Case: Coarse Scale Data
Sampled Coarsely

In the preceding example, the coarse scale data not only
had complete coverage over the entire interval of interest,
but they also were available at the finest scale of resolution,
i.e., a coarse measurement y. was available for every shift,
n, at the finest scale of our representation. What is more
realistic in practice, of course, is to have coarse-resolution
data available at a sampling interval commensurate with
the resolution of the data. In this last example, we demon-

strate that our methodology can be directly applied to such
problems as well. In particular, we consider basically the
same measurement configuration as in Sections 4.1 and 4.2
except that in this case the coarse-resolution measurement
process, Y., is available only on a sparsely sampled grid cov-
ering the interval of interest. In particular, for this example
we assume that the measurements y, are available on a grid
that is decimated by a factor of 8 compared to that used in
the previous section. For this exercise, we also assume that
we have fine scale data over the entire interval and at the
original, finer sampling rate, and we also take SNRy = 1
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FIG. 12. The space-varying, optimal scale of reconstruction for 7 =
0.45 given (1) the complete set of data y. and (2) the fine scale data y¢
near either end of the interval.

and SNR, = 4. Note that the difference in sampling grids
for our two measurement sets is of no consequence for the
applicability of our methodology, as we simply use DWTs
appropriate to each. The substantive difference, of course,
is that the smaller number of measurement points in y. has
fewer scales of decomposition, but this is automatically ac-
commodated in our formulation.

In Fig. 15, g¢({c}) and g({f, c}) are compared for this ex-
ample as well as for the corresponding case in which a full
set of coarse-resolution data (at SNR. = 4) is available on
the original, dense sampling grid (i.e., the case considered
in Section 4.2). Although not exact matches, the loss of
information incurred by the sparse availability of y. obvi-
ously is not severe. The RECM data for this experiment are

0.6 1

0.4 ~ 1

0.2r E

L L L L n

50 100 150 200 250

FIG. 13. Plot of g (solid line) versus go4s5 (dashed line).

MILLER AND WILLSKY

Threshold tau

50 100 150 200 250
Shift n at scale 7
FIG. 14. Space-varying optimal scale of reconstruction as a function
of 7. The horizontal axis represents the shift n at the finest scale, Fp, = 8,
the vertical axis is the value of 7, and the grey tones represent the finest
scale of resolution supported by the data at shift n using threshold 7.
Darker colors indicate finer scales.

provided in Table 5. It is useful to compare this information
with the corresponding results for the example considered
in Section 4.2 where we had the same SNR structure but
full data for both y, and y;. At fine scales, the story for this
case is much the same as in that previous example with the
data providing little useful information at scales 5 and finer.
At scales 3 and 4 a comparison of Tables S and 4 indicates
that the sparse availability of y. is reflected in smaller val-
ues of I1"({c}) and MI"({f, c}). From the first columns of
these tables we see that the presence of both y. and yf re-
sults in comparable ability to recover detail at these coarser
scales regardless of whether the coarse resolution data are
available at a high or low sampling rate. When y. is the
only source of information, the relative reduction in vari-
ance drops rather sharply for the sparse data scenario as is
seen by examining the third column of Tables 5 and 4.
Roughly speaking, what these results show is that hav-
ing either densely or sparsely sampled coarse-resolution
data results in the same resolution at which reconstruction
can be performed, but the additional data points from the
densely sampled strategy obviously allow for more averag-
ing thereby leading to increased variance reduction, as seen
in Table 4. That is, if we have several essentially redun-
dant measurements at an SNR of 4, their combined effect is
to enhance the apparent SNR as compared to the coarsely
sampled case. In this sense, a fairer comparison is that
between the example introduced in this section, with high
quality but sparsely sampled coarse resolution data, and the
example considered in Section 4.1, which involved lower
quality but densely sampled coarse resolution data (in both
cases full-coverage, densely sampled fine scale data with
SNR¢ = 1 are available). In particular, by examining the
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FIG. 15. Estimates of g using various combinations of data sets for the decimated data experiments. (a) g({ f, c}) for full data case (solid line} and
case where y, is available on a sparse grid (dashed line), (b) §({c}) for full data case (solid line) and case where y. is available on a sparse grid (dashed

line).

values of IT"({c}) in Tables 5 and 3, we see that the value
of the high SNR, sparse data set y. is about equal to that of
the low SNR, full data set as measured by the information
in the RECM. In other words, the primary benefit of the
densely sampled, coarse resolution data is to improve the
variance reduction at coarse scales in the case where the
SNR was low, but not to change the resolution at which
the data provide information to a reconstruction. Thus, we
conclude that in exploring the tradeoff which exists between
the number of observation points required in an inversion
and the SNR of the measurements, one should sample the
coarse scale process at a rate commensurate with the level
of noise in the data.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an approach to the so-
lution of linear inverse problems based upon techniques
drawn from the fields of multiscale modeling, wavelet trans-
forms, and statistical estimation. We begin with a system
of noisy, linear integral equations describing the relation-
ship between several sets of observed data, y;, and the func-
tion to be estimated, g. This formulation is particularly use-
ful in describing the situation where there exists a suite of
measurements, each of which conveys information about
the behavior of g on different scales. After discretization,
wavelet methods are used to transform the problem from
real-space to scale-space. A maximum a posteriori esti-
mator serves as the inversion algorithm and produces an
estimate not of g, but of its wavelet transform . Regular-
ization is achieved via a statistical model of y which also
provides a means of capturing any available prior informa-
tion regarding the structure of g. The structure of this model
allows us considerable flexibility in capturing the statistical

structure of g, including the incorporation of scale-varying
statistics. To illustrate our methods, we have used one of
many possible statistical models, namely one that has the
1/ f-like fractal structure that is often posited as a mean-
ingful model for natural phenomena. Moreover, this model
leads to regularization that is quite similar in nature to tra-
ditional, smoothness-based regularization approaches.

Our approach makes extensive use of scale-space in the
analysis of linear inverse problems. By introducing the no-
tion of a relative error covariance matrix, we have devel-
oped a quantitative tool for understanding quite precisely
the various ways in which data from a multitude of sensors
contribute to the final reconstruction of g. We demonstrate
a method for determining the optimal level of detail to in-

TABLE 5
Percent Relative Error Variance Reduction for the Inversion
with SNR; = SNR, = 4, and y. Sparsely Sampled

n- n" n" n~
Scale m (f. eh rh ch ({fIf ech
7 0.0049 0.0047 0.0002 0.0002
6 0.0618 0.0600 0.00t6 0.0020
5 1.2653 1.1785 0.0857 0.0919
4 19.6851 18.4934 1.8335 1.5399
3 64.4081 60.5813 18.9536 10.0784
3 98.5868 96.7171 94.4320 58.5045

Note. Here the sparse availability of y. serves to offset the information
content generated by its high SNR. The overall utility of the coarse data set
here is about the same as was the case in the densely sampled, low SNR
experiment. Based upon the data in the first three columns, we do see some
degree of active sensor fusion taking place for the coarsest scaling and wav-
elet coefficients; however, the value of y. alone is practically nil at scales
finer than 3.
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clude in the estimate of g as a function of spatial location.
The RECM explicitly provides a means of capturing the
way in which this level is affected by changes in levels of
uncertainty in the different sources of data and the sampling
structure defining how the data is distributed in space. Also,
the incremental benefits associated with the addition of data
from another sensor are readily explored using the RECM.
Finally, we have shown the use of this quantity in describing
the process of multisensor data fusion in a wavelet setting.
The RECM analysis can be of great use in the design of
inversion experiments. Because the relative error covari-
ance matrix is not a function of the data, one can evaluate
and therefore alter the experimental configuration prior to
actually collecting data. Moreover, having settled on the
characteristics of the data sources, the RECM can be used to
understand precisely where in a parameterization of g (i.e.,
for which degrees of freedom) the data contribute useful
and significant information. Indeed, the relative error co-
variance provides a useful method for pruning a multiscale
model of g in response to the information present in the
data.
The vehicle for demonstrating our techniques has been
a two-channel deconvolution problem configured to mir-
ror many of the characteristics associated with more gen-
eral linear inverse problems. In addition to performing the
RECM analysis, our examples highlight the ability of a
wavelet-based approach to handle non-full data sets. Specif-
ically, we have considered the case where one source of
information was available only near the boundaries of the
interval. Additionally, we show how wavelet techniques are
a natural means for coping with a sparsely sampled data set.
We note that the general methodologies presented here
are not restricted to the 1D deconvolution problems. Our
techniques can be used without alteration for one-dimen-
sional problems involving non-convolutional kernels. In-
deed, in [43] we consider a non-convolutional inverse con-
ductivity problem similar to those found in geophysical
exploration. Also, the extension of our approach to mul-
tidimensional inversions can be accomplished quite easily
and should be of great use in the analysis and solution of
2D and 3D problems which typically exhibit more severe
forms of all the difficulties found in the 1D case.
Although not considered extensively in this work, the
multiscale, statistically based inversion algorithms admit
highly efficient implementations. As demonstrated by the
convolution kernels in Section 4 and as discussed by Beylkin
et al. in [4], wavelet transforms of many operator matrices,
®, contain very few significant elements so that zeroing
the remainder leads to highly efficient algorithms for ap-
plying © to arbitrary vectors. These sparseness results im-
ply that the least-squares problems defined by the wavelet-
transformed normal equations also have a sparse structure.
Thus computationally efficient, iterative algorithms such as
LSQR [48] can be used to determine ¥. In [43], we utilize
the theory of partial orthogonalization [52] in the develop-
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ment of a modified form of LSQR. Our algorithm is de-
signed for the efficient and stable computation of $ as well
as arbitrary elements in the error covariance and relative
error covariance matrices.

Finally, in this paper we have presented a batch-style in-
version routine in which the normal equations are formu-
lated and solved to estimate the entire wavelet transform
of g all at once. A natural extension of this “static” MAP
estimator is a scale recursive inversion routine that gen-
erates §(m) recursively starting at the coarsest scale and
adding detail only where such information is supported by
the data. We note that such algorithms do in fact exist for
those problems in which one directly observes g (or coarse
scale versions of g) in additive noise [12, 13, 41]; however,
extension of this work to arbitrary linear inverse problems
requires the development of a more general class of multi-
scale models which allow for observations in the form of
linear functionals of g.
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