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Absstract-In this paper, we establish a set of results showing 
that the vertices of any simply connected planar polyg~nd region 
can be reconstructed from a finite number of its complex mo- 
ments. These results find applications in a variety of apparently 
disparate areas such as computerized tomography and inverse 
potential theory, where in the Former, it is of iaterest to estimate 
the shape of an object from a finite number of its projections, 
whereas in the latter, the objective is to extract the shape of a 
gravitating body from measurements of its exterior logarithmic 
potentials at a finite number of points. We show that the problem 
of polygonal vertex reconstruction from moments can in fact be 
posed as an array processing problem, and taking advantage of 
this relationship, we derive and illustrate several new algorithms 
for the reconstruction of the vertices of simply connected polygons 
from moments. 

I. INTRODUCTION 

N this paper, we present novel algorithms for the recon- I struction of binary polygons from their estimated complex 
moments. We show, in fact, that this problem can be formu- 
lated as an array processing [27] problem. The applications of 
the algorithms we develop to tomography expose a seemingly 
deep connection between the fields of tomography and array 
processing. This connection implies that a host of numer- 
ical algorithms such as MUSIC [28], Min-norm [18], and 
Prony [24] are now available for application to tomographic 
reconstruction problems. 

Our algorithms are based on the idea that the vertices of a 
simply connected polygonal region in the plane are determined 
by a finite number of its moments. Davis [6] showed, using the 
Motzkin-Schoenberg (MS) formula [29], that a triangle in the 
plane is uniquely determined by its moments of up to order 3. 
In the process of proving this result, Davis generalized the MS 
formula to arbitrary n-gons, and in this paper, we make use 
of this result to generalize Davis’ triangle result to arbitrary 
simply connected polygons. In particular, we have generalized 
his result using Prony’s method [ 131 to show that the vertices 
of a simply connected n-gon are uniquely determined by its 

complex moments of up to order 2n - 3. We show that in 
tomographic terms, this implies that 2n - 2 projections from 
distinct angles suffice to uniquely determine the vertices of 
any simply connected n-gon. This result is an improvement 
on theoretical results dealing with reconstructability from few 
projections such as in [7]-[9], [16], [171, [191. 

In Section 11, we discuss the mathematical basis of recon- 
struction of polygonal regions from a finite number of complex 
moments, and in Section 111, we make explicit connection 
to and use of Prony’s method. In Section III-A, we present 
some remarks regarding the reconstructability of the interior 
of polygons from their moments and briefly point out a 
connection to inverse potential theory. In Section IV, we 
discuss the explicit connection of the polygonal reconstruction 
problem to algorithms in array processing and present several 
reconstruction algorithms, and in Section V, we discuss a novel 
application of the ideas described in this paper to the problem 
of tomographic reconstruction of polygons and illustrate our 
method with examples of polygonal reconstruction from to- 
mographic data. Finally, Section VI contains our conclusions. 

11. MATHEMATICAL BACKGROUND 
In 1977, Davis [6] showed that any triangular region in the 

plane is uniquely determined by its complex moments of up to 
order 3. This result was derived as a corollary to a little known 
result that he termed the Motzkin-Schoenberg (MS) formula. 
He had worked out an altemative proof of this formula in 
an earlier (1964) paper [5], where he also generalized this 
formula to the case of n-sided polygons. As we prove in 
the next section, this generalized formula can, in fact, be 
used to generalize Davis’ result for triangles. In particular, we 
show that the vertices of n-sided, simply connected polygonal 
regions in the plane are uniquely determined by a finite 
number of their complex moments. As we will see, this result, 
which had eluded Davis, is easily proven by transforming this 
problem into one to which Prony’s method can be applied. 
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Let T denote a hiangle in the complex plane whose vertices 
are given by zll z 2 7  and z3* If A denotes the area Of and h ( z )  
is any analytic function in the closure Of T ,  the MS formula 
[29], [5], [6] states that 
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(4) and a0 = a,. With some algebraic manipulation, it is not 
difficult to show that for j = 0, . . , n 

(12) 
i 2Aj 
#Xj-l - CYj) = By considering triangulations of n-gons, Davis [5] extended 

this formula to show that the value of the integral of the second (Zj - Z j + l ) ( Z j  - zj-1) 

derivative of any analytic function in the closure of a polygonal 
region of the complex plane depends only on the values of this 
function at the vertices of the polygonal region in question: 

where A j  is the signed area Of the 
vertices 'j-17 'j9 and 'J+l given by 

formed by the 

- Theorem 1: Let z1, 22, . . e ,  z ,  designate the vertices of a zj-1 23-1 

Z j + l  Z j + l  

polygon P. Then, we can find constants a l ,  . . ., a, depending 
on z1, z2, - e . ,  z,,, (and the way they are connected) but 
independent of h, such that for all h analytic in the closure 
of P 

A .  - i d e t  [ z j  - Zj  i] .  (13) 
' - 4  

Now, comparing (10) to (5 ) ,  and using (12), we see that 

If T 2 n and z,+l, - . -, z ,  are additional points distinct from - - 2 4  , j = O , - - . , n .  (14) 
(2, - Z,+l ) (ZJ - z3-1) 

21, . - e ,  z,, and if there are constants b l ,  -.., b, that depend 
only on zl, . . ., z ,  such that Hence, no u3 is zero unless the corresponding A, is zero. This 

can occur if and only if P is degenerate, i.e., for some j ,  the 

Note that (14) is an expression that depends explicitly on the 
(6) triangle formed by z3, and z,+1 is degenerate. 0 

3 = 1  

for all h analytic in the closure of P ,  then 

bj = aj ,  1 5 j 5 n, 
b j  = 0 ,n  + 15 j 5 T.  

(7) 
(8) 

Two observations are in order about the implications of 
this result. First, we can prove the following result for simply 
connected polygons using the same line of reasoning as Davis 

Lemma 1: Let P be a simply connected polygonal region. 
The coefficients ( u j  ] in (5) are all nonzero if and only if P 
is nondegenerate. 

Proof: Using Green's theorem in the complex plane and 
the Cauchy-Riemann equations for analytic functions [ 5 ] ,  [4], 
the integral in (5) can be rewritten as 

VI. 

where i = a, dP denotes the boundary of P, and Z denotes 
the complex conjugate of z .  The assumption that P is a simply 
connected polygon implies that the boundary of P consists 
of n straight lines, which we call sl, s2, ..., s,, where s j  

connects the vertices z j  and ++I. For convenience, we assume 
that the vertices z j  of P are arranged in the counterclockwise 
direction in the order of increasing index, and we extend the 
indexing of the zj cyclically so that zo = z,, z1 = z,+l, and 
so on. Hence, splitting the right-hand side of (9) into a sum of 
terms over the sides and using the expression for the equation 
of a line in the complex plane [4], [ 5 ] ,  we can write 

vertices and on the order in which these vertices are connected 
since (14) requires that we explicitly order the z3. If we limit 
ourselves to convex objects, then there is in essence a unique 
ordering of the vertices except for an inconsequential cyclic 
permutation. However, as we discuss further in Section 111-A, 
in general, there may be several nontrivially distinct ways in 
which the vertices may be connected in order to form simply 
connected polygons, and (14) depends on the specific choice 
of ordering corresponding to the polygon P. 

A second observation is that the formula (5) is a minimal 
representation of the integral of h over P in terms of discrete 
values of h. Specifically, the left-hand side of (5) depends 
only on the values of h at the vertices of P and how they are 
connected; what values h takes at other points in the complex 
plane are completely irrelevant in this regard. Furthermore, 
since each of the aj is nonzero, the representation (5) for 
arbitrary h(z) 's  cannot be reduced to one involving h(z )  at 
fewer points. 

With these results as a foundation, we now develop the 
connection between complex moments and vertices. To begin, 
define the geometric moments of a function f over a compact 
domain 0 as 

Let us also define the simple complex moments (s-complex 
moments) as' 

'These moments are also referred to as harmonic moments in the mathe- 
matics literature. 
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where z = z + iy. The relationship between the s-complex 
and geometric moments is simply established by expanding 
(x + iy)? 

Ck = U:/J(l")  (17) 

where the vectors ux: contain binomial coefficients and powers 
of i = J--T as follows: 

T 
/J") = [ P k O ,  pk- l , l r  ' ' ' 7 P l , L - l ,  P O , k ]  . (18) 

Now, consider Theorem 1 and let i) h(z)  = zk  and ii) 
f(x,y) be the indicator function over a simply connected 
polygonal region P of the plane. Then, this theorem states 
that for any nondegenerate, simply connected, n-gon P in the 
plane, we have 

where the aj are as defined in (14). The left-hand side of this 
identity can be written as 

/ l ( z k ) " d x d y  = k(k - 1 )  /l zk-'dxdy 

= k ( k  - 1 ) C k - 2  (20) 

where the ck here are the s-complex moments of the under- 
lying binary polygonal region. 

Defining the numbers 7-k = k(k - l ) C k - Z ,  which we 
term weighted complex moments (w-complex moments), with 
TO = 7 1  = 0 ,  we have 

n 

r k  = 1 a ~ z ; .  (21) 
J=1 

Equation (21) is, for every k, a direct relationship between the 
w-complex moments and the vertices of P .  We next show that 
the vertices of P may be uniquely recovered from knowledge 
of a sufficient number of the 7-k. 

111. VERTICES FROM COMPLEX 
MOMENTS VIA PRONY'S METHOD 

Assume that the rb-gon P is simply connected and nonde- 
generate, and let us consider (21) for k = 0,1 ,  - . , 2 n  - 1 .  
Written in vector form, we have 

1 
z2 

z2n-1 
2 

... 

... 

. . .  

where the obvious associations have been made in the last 
identity. We will use Prony's method [ 131 here to show that the 
vertices { z j  ) can be computed from the w-complex moment 
vector 7 z n  given by (23). Davis [6] showed this result for 
n = 3 (the triangular case) using algebraic manipulations. By 

identifying and exploiting the relationship of the moment-to- 
vertices problem with very similar problems in signal and array 
processing, we directly obtain both the generalization of this 
result using Prony's method as well as a number of algorithms 
for the solution of the problem. 

Define the polynomial P ( z )  as 
n n 

P ( z )  = n ( z  - z 3 )  = zn + &z7L-J  (24) 
3=l j=1 

and consider its associated coefficient vector p ( n )  = 
[p , ,p , - l , .  , p l I T .  We show that the coefficients of P ( z )  
can be uniquely determined from 7 z n .  To this end, form the 
2n x 2n matrix K2n from p ( n )  as follows: 

O]. (25) 
Pl 1 

Pn . . .  Pl 1 

... 
. .  . .  Kz, = ... . .  

We now proceed as in Prony's method [ 131. Specifically, from 
the definition of P(,z), it follows that 

K ~ n 7 2 n  = Kznvznan = 0. (26) 

The identity Kzn7zn = 0 can be rewritten as 

r ro T~ ... Tn-1 1 r 1 

H n p  = -hn. (28) 

To show that we can uniquely recover p(") from this last 
identity, we must now show that H,, is invertible. 

L e m a  2: The n x ri, matrix Hn is invertible if and only 
if the corresponding simply connected polygon P is a nonde- 
generate n-gon. 

Proofi The result is arrived at by noticing that H, can 
be decomposed as 

Hn = Vndiag(an)VT (29) 

where Vn is the Vandermonde matrix of the vertices { z j }  

defined as follows: 

The matrix Vn has determinant 

det(Vn) = n ( z i  - z J )  (31) 
i > j  

which vanishes if and only if P is degenerate. Furthermore, 
as a consequence of Lemma 1, the elements of the vector a, 
are all nonzero unless P is degenerate. Hence, this Lemma is 

As a consequence of this lemma, the coefficients of P ( z )  
established. 0 

can then be uniquely determined through 

p(n )  = -H,-lhn. (32) 



Given these coefficients, on solving the polynomial equation 
P ( z )  = 0, the vertices of P may be recovered. In summary, 
we have shown the following result. 

Proposition 1 :  Let P denote a nondegenerate, simply con- 
nected, n-sided polygonal region in the plane. The vertices of 
P are uniquely determined by its w-complex moments T k  up 
through order 2n - 1. 

Several useful corollaries follow from Proposition 1. Recall 
that the w-complex moments ~k are related to the s-complex 
moments Ck as 7-k = IC(k - 1 ) c k - 2 .  Hence, we have the 
following corollary. 

Corollary 1 : The vertices of a nondegenerate, simply con- 
nected n-gon P in the plane are uniquely determined by its 
s-complex moments of up to order 2n - 3, i.e., c k ,  k = 
0 , 1 , . - - , 2 n  - 3. 

In addition, from (17), the following corollary holds. 
Corollary 2: The vertices of a nondegenerate, simply con- 

nected n-gon P in the plane are determined by its geometric 
moments of up to order 2n - 3, i.e., ~ ( ~ 1 ,  /c = 0,1, . . ,2n - 3. 

A. Remarks 
Proposition 1 and its corollaries imply that the vertices of 

P can be extracted from a finite number of moments. This 
result, however, does not tell us what the interior of P looks 
like. According to Proposition 1, from the set of moments, we 
can decipher the locations of the vertices of P. Furthermore, 
from (23), we can also determine the coefficients al ,  . . e, a, 
(this follows since the upper n rows of V2, form the invertible 
matrix V,). Thus, according to Theorem 1, we can evaluate 
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Fig. 1 .  Three distinct regions corresponding to the same vertices. 

survey of this problem from the point of view of inverse 
potential theory can be found in [31].* 

In certain special cases, however, the w-complex moments 
do uniquely specify the underlying polygon. For example, if 
the z j  form the set of vertices of a convex object, then there is 
obviously a unique way in which the z3 can be connected in 
order to delineate a simply connected polygon. For nonconvex 
P, however, the situation is more complex since as illustrated 
in Fig. 1 for four-sided figures, there is more than one way to 
connect the vertices. However, there are only a finite number 
of such possibilities that lead to distinct, simply connected 
polygons. The question, then, is whether the finite number of 
distinct simply connected polygons with vertices z1, . . e ,  z, 
can be uniquely distinguished from the knowledge of a l ,  . . ., 
a,. As shown in [30], this is not the case in general but, as 
we now show, is true for large classes of nonconvex objects 
including those in Fig. 1. In particular, we have the following 
propsition. 

Proposition 2: Consider n distinct points z 1 ,  2 2 ,  . * ., z, 
in the complex plane. Let P and P’ be simply connected, 
nondegenerate, n-gons generated by connecting these vertices 
in two distinct ways. If P and P’ have at least one side in 
common, then for some 1 5 j 5 n (33) 

for any analytic function h(z) ,  including zk for any nonneg- 
ative integer IC. Hence, from knowledge of 71, -.., 72,-1, 

we can determine all of the w-complex moments of P. 
Nevertheless, it is a remarkable fact that this information is 
not sufficient to uniquely specify P in general. In particular, a 
somewhat more general problem was formally posed in 1975 
by Shapiro in [2]: “Let DI and DZ be simply connected 
compact sets such that 

Must we have D1 = D 2 ? ”  The answer is yes if the inter- 
section of the closures of D1 and D 2  is empty or consists 
of only one point, but in general, the answers is, in fact, 
negative. In 1978, a counterexample to the general case 
was provided by Sakai in [26], where he constructed simple 
domains bound by a finite number of piecewise circular 
arcs. Polygonal counterexamples were later constructed by 
Gabrielov, Strakhov, and Brodsky and were published in 
the latter two authors’ paper [30]. These authors arrived at 
this question from considering the more general problem of 
uniqueness of the shape and density of plane gravitating bodies 
as determined from their exterior logarithmic potential. A good 

where aj (P) and aj (P’) are, respectively, defined by 

with h denoting any analytic function in the closure of P U P’. 
Proof: We prove this result by contradiction. Assume 

that P and P’ have at least one side in common. Without loss 
of generality, let us say this is the side give by connecting 
the vertices z3 and zj+l of P for some 1 5 j 5 n. Now, if 
a j ( P )  = a3(P’) ,  it follows from (14) that 

2The authors would like to thank C. Bishop of the SUNY Stony Brook 
Math Department and hf. P. Etingof of Yale Math Department for pointing 
out these references. 
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where d - 1  is the j - lth vertex of P'. Simplifying (38) 
yields 

- - - 

(39) 
zj-1 - z j  

zj-1 - z j  

z'j-1 - zj 

z;-l - z j  . 
- - 

It is easy to check that (39) implies that the vertices z3,  z3-1, 

and z;-l must be collinear. This is a contradiction to the 
0 

Note, for example, that in the case of four-sided nonconvex 
figures as in Fig. 1, there are only three distinct polygons with 
the given set of vertices, and each pair of these has a side 
in common. Thus, in this case, we deduce that knowledge of 
T ~ ,  - ., 77, which uniquely determine 21, . . ., 24, and al, . . ., 
u4. also uniquely specifies the polygon P. Furthermore, as the 
example in 1301 shows, the cases in which nonuniqueness arise 
are extremely ~ o m p l e x . ~  Indeed, as Proposition 2 makes clear, 
the only case in which this might happen is if two simply 
connected polygons with the same vertices 21, e ,  z,, have 
no edge in common. Thus, for our purposes, we assume that 
21, . . e, zn define a finite set of possible polygons with distinct 
sets of coefficients ul, . e . ,  a,. 

assumption that P and P' are both nondegenerate. 

IV. CONNECTIONS TO ARRAY PROCESSING 
Array processing has been a very active field of research 

in the past two decades that has been motivated by applica- 
tions in sonar, radar, oceanography, seismology, and speech 
processing, to name a few. The data to be analyzed in a 
standard array processing application [27], [25] consist of a 
sum of complex exponentials in additive white noise. This 
formulation corresponds to the problem of localizing several 
radiating sources by observation of their signals at spatially 
separated sensors. More formally, the general problem is that 
of estimating the unknowns b, and z3 from the measured 
signals yk given as follows: 

n 

yk = CbJz:+vk,  k = o , ' " , N -  1 (40) 
J=1 

where 
zJ unknown source 
b, unknown complex amplitude 
'uk (complex) white noise. 

In standard array processing problems, the sources zJ are 
complex exponentials of the form exp( -i4J), but general 
formulations where z, is not restricted to this form have also 
been studied [14], [27]. 

Now, assume that noisy estimates ?,k of the w-complex 
moments of a simply connected n-gon are given: 

n 

j = 1  

where Wk denote the errors incurred in the estimation of the 
7k. By comparing this measurement equation to (40), we 
can see that they have exactly the same form, whereby a 

31n fact, the simply connected nonconvex object with the smallest number 
of sides not uniquely determined by zJ and U ,  has 22 sides [30] 

vertex of the polygon can be interpreted as a radiating source 
whose corresponding (complex) amplitude shows how it is 
connected to the other vertices of the polygon. The general 
formulation of the array processing problem is therefore nearly 
the same as the formulation of the reconstruction problem of 
binary polygonal objects from noisy measurements of their w- 
complex moments. The main difference is that the coefficients 
u3 are not independent variables but are, in fact, deterministic 
functions of zj  and the order in which they are connected. 
Nevertheless, if we treat the a, as independent unknowns, we 
can directly apply array processing methods and then check 
to see if the u3 so determined are in fact consistent with one 
of the finite number of poiygons with vertices given by the 
extracted values z3. 

In the remainder of this section, we discuss the direct 
application of some array processing algorithms to the polygon 
reconstruction problem from moments. An exhaustive study 
of all available algorithms and their relative performance is 
beyond the scope of this paper, and therefore, we present only 
one such general approach and some of its variants to illustrate 
the main concepts. The algorithms we consider are directly 
based on a generalization of Prony's method. In this context, 
we discuss the ordinary least squares Prony (OLSP), the total 
least squares Prony (TLSP), and the weighted least squares 
Prony (WLSP) techniques. 

- 

A. Least Squares Prony Techniques 
We wish to estimate the parameters uj and the vertices 

zj corresponding to an n-sided polygonal region from noisy 
estimates of the first N (2 2n) w-complex moments of P, 
i.e., (41) for k = 0, .-., N - 1, where we assume that Wk 
are (complex) Gaussian measurement errors (with possibly 
different variances for different k), which are uncorrelated 
across different k, and that the real and imaginary parts of 
Wk are also uncorrelated. 

Note that in Section 111, we showed that 2n-2 (i.e., N = 2n 
in (46)) w-complex moments are necessary to uniquely recover 
the vertices of P. Here, we allow the possibility that N > 2n 
so that we may achieve some sensitivity reduction to errors in 
the ?k, Collecting the measurements in (41) into vector form, 
we have 

1 . . .  

. .  . .  
FN-1 

(42) 
(43) 

Applying the N x N matrix K N  to both sides of (43) yields 

h 

IN = VNa, + WN. 

KN?N = KN W N ,  (44) 

which can in tum be rewritten as 
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Quation (46) forms the basis of the least squares Prony 
technique. From this equation, the parameter vector $") is 
estimated, and subsequently, estiFates of zj  are produced by 
solving the polynomial equation P ( z )  = 0, whose coefficients 
are the elements of gn).  

1 )  OLSP and WLSP: The ordinary least squares Prony 
(OLSP) method consists of computing the least squares 
estimate of p(") from- (46) by computing the generalized 
inverse of the matrix H N  as follows: 

(47) 

where the superscript denotes Hermitian p s p o s e .  With 
these estimated coefficients, the polynomial Pols(z) = 0 is 
formed and factored to get OLSP estimates 2j of the vertic_es. 
Having computed these estimates, we can form the matrix VN 
as defined in (23) and can then estimate the vector a, as 

The weighted least-squares Prony (WLSP) solution can 
also be considered. In_this formulation, the inverse of the 
covariance matrix for hN is used as a weighting factor. The 
resulting solution has the form 

(49) 

where C denotes the inverse of the covariance matrix for ;N. 
2) TLSP: Equation (46) is an overdetermined system of 

linear equations of the form Ax = b for the unknown x = ~ ( " 1 .  
The OLS procedure for estimating the desired parameters 
is appropriate when only the vector b is noisy. In fact, the 
OLS estimate coincides with the maximum likelihood (ML) 
estimate if the noise is taken to be Gaussian and white. In 
more general instances such as that of (46), both matrices A 
and b are cormpted by noise. For these cases, a more general 
fitting scheme called the total least squares (TLS) has been 
devised [lo], [15], [27], which can, in essence, be interpreted 
statistically as a regularized version of the OLS solution. In 
particular, Ztls = (AHA-~ki , l ) - lAHb, where cmin denotes 
the minimum singular value of the concatenated matrix [A, b]. 
Applying this in our context, we find that the TLS estimate 
of p(") is then given by 

A h  

where omia is the smallest singular value of [ H N ,  - h ~ ] .  
Given this estimate, the TLS estimates for the vertices of 
the underlxing n-gon are obtained as roots of the polynomial 
equation Ptls(z) = 0. Subsequently, TLS estimates of the 
vector aN can be obtained as 

w_here-aLi, is the smallest singular value of the matrix 
[ V N  I I N  1. 

v. AN &'PLICATION TO TOMOGRAPHIC 
RECONSTRUCTION OF POLYGONS 

A novel application of the concepts and algorithms dis- 
cussed above can be found in the field of tomQgraphic recon- 
struction. By invoking a fundamental property of the Radon 
transform, we have shown [20], [23], [21] that the moments of 
an image can be recovered from its noisy projections. Hence, 
if the underlying image is assumed to consist of a simply 
connected polygonal region and a finite number of its (possibly 
noisy) projections are given, we can estimate the geometric 
(and hence complex) moments of the underlying polygon. If 
a sufficient number of these projections are available, then 
enough complex moments may be estimated to warrant a 
reconstruction of the underlying object via the algorithms dis- 
cussed in this paper. To be more concrete, the Radon transform 
g( t ,  e )  of a square-integrable function f(z, y) defined over a 
compact region of the plane 0 is given by 

g( t ,  6 )  = /S,f(.'y)S(t - U * [z, YIT)d.dY (52) 

where w = [cos(O), sin(O)] and S(-) denotes the Dirac delta 
function (see Fig. 2). The function g(t ,  0) is square integrable 
[ 113 with finite support and is defined for each pair (t, e)  as 
the integral of f over a line at angle 0 + 4 with the z axis and 
at radial distance t away from the origin. An elementary result 
[ 111, which follows from the definition of the Radon transform, 
states that if F ( t )  is any square-integrable function, then the 
following relation holds true: 

where T denotes the maximal support value of the set 0 in 
the direction 6 defined by T = maxo(xcos(8) + ysin(8)). 
By considering F ( t )  = e-it, the celebrated projection slice 
theorem. [12] is obtained. By letting F ( t )  = tk  and expanding 
the right-hand side of (53) using the binomial theorem, we 
obtain 

T 
H ( k ) ( e )  = S_, g(t, e )  t k  d t  

which shows that the kth-order geometric moment of the 
projection at angle 0 is a linear combination of the kth- 
order geometric moments of the image. Furthermore, we have 
proved the following proposition [21], [23], [201: 

Proposition 3: Given line integral projections of f(z, y) at 
m different angles e3 in [0, T), one can uniquely determine the 
first m moment vectors p( j ) ,  o 5 j < m of f (x ,y) .  This can 
be done using only the first m geometric moments H(')((Bj), 
0 5 k < m of the projections. Furthermore, moments of 
f ( z ,  9) of higher order cannot be uniquely determined from 
m projections. 

As a consequence*of this result, and assuming projections 
corrupted by Gaussian white noise, it is a simple matter to 
compute ML estimates of the geometric moments of the image 
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jections via moment estimation together with the application 
of standard array processing algorithms discussed in Section 
IV. In particular, we apply the least squares algorithms to 
the reconstruction of a triangle and a quadrilateral from ML 
estimates of w-complex moments obtained from projections. 
The prototypical triangle has been chosen as one with the 
following vertices: 

1.  (55) 
-0.4655 0.0082 -0.3283 
0.2201 0.4599 -0.1809 v =  [ 

The data y(tz, e,) = g(ta ,  e,) + ez, were collected in the form 
of m = 20 projections with n = 500 samples per projection at 

as follows: 
X a signal-to-noise ratio of 23.9 dB, where the SNR is defined 

Fig. 2. Radon transform. 

(56) 

with d = 711 x I I  denoting the total number of samples of 
the function g( t ,  e ) ,  and where u2 denotes the variance of the 
white noise sequence ea,. 

In all our simulations, the reconstruction error is measured 
in terms of the percent Hausdorff distance [3] between the 
estimate and the true polygon. The Hausdorff metric is a 
proper notion of “distance” between two nonempty compact 
sets and it is defined as follows. Let d(p*,  S) denote the 
minimum distance between the point p* and the compact set S: 
d(p* ,  S) = inf{llp* -pll I p E S}. Define the €-neighborhood 
of the set S as S(‘) = {p I d ( p , S )  5 E}. Now given two 
nonempty compact sets S1 and Sa, the Hausdorff distance 
between them is defined as 

Ca,j g 2 ( t t ,  ‘ , ) /d  SNR = 101oglo 
u2 

I 
1 2 3 4 5 6 

ovpm 

Fig. 3. Overlayed performance curves at SNR=23.9 dB. 

f ( z , y )  from noisy measurements of its projections. In fact, 
this process is a straightforward linear estimation problem 
as outlined in 1211, [23]. Once we have these estimates of 
the geometric moments of an image, the ML estimates of its 
complex moments are computed directly from (17). If the 
function f ( ~ , y )  is taken to be the indicator function of a 
simply connected polygon, what we have just described, along 
with the results and algorithms outlined in the earlier parts of 
this paper, allow the reconstruction of polygonal regions from 
a finite number of their (noisy) Radon transform projections. 
In fact, it has long been of interest to know [7]-[9], [ 161, [ 171, 
[ 191 how many projections suffice to uniquely determine a 
simply connected n-gon in the plane. To this end, we have the 
following corollary which follows directly from Propositions 
3 and 1. 

Corollary 3: Exactly 2n - 2 projections are sufficient to 
uniquely determine the vertices of a plane, simply connected, 
n-sided polygonal region. 

A. Numerical Examples 
In this section, we present some simulations to illustrate 

the reconstruction of polygonal objects from their noisy pro- 

‘H(S1,S2) = inf{c I SI c St) and S 2  c Si‘)}. (57) 

In essence, the Hausdorff metric is a measure of the largest 
distance by which the sets SI and S2 differ. The percent Haus- 
$0“ distance between the true object S and the reconstruction 
S is now defined as 

(58) 
‘H(s^, S )  
‘H(0, S) ’ Percent Error = 100% x ~ 

where 0 denotes the set composed of the single point at the 
origin so that if S contains the origin, ‘H(0, S) is the maximal 
distance of a point in the set to the origin and thus a measure 
of the set’s size. 

Fig. 3 shows the performance curves for the three algo- 
rithms: OLSP, TLSP, and WLSP. These curves show average 
performance obtained by generating 100 runs of a Monte- 
Carlo simulation versus the number of moments used over 
the minimum necessary (i.e., the overfit parameter). Recall 
that according to Proposition 1, w-complex moments of up to 
order 5 are needed (at minimum) to reconstruct the triangle. 
Hence, an overfit parameter value of 2 corresponds to using 
estimated w-complex moments of up to order 7. 

Note that overall, the TLSP algorithm performs best for 
overfit parameter values between 0 and 6. The WLSP algo- 
rithm performs essentially the same for values of the overfit 
parameter larger than 2. This is due to the fact that as higher 
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OLSP OVerffGo 

W P  OverfftO TLSP OVerffGO 

-0.4 -02 0 0.2 -0.4 42 0 0.2 

Fig. 4. 
structed. Overfit=O. 

Sample reconstructions at SNR=23.9 dB solid: actual, cirlces: recon- 

order moments are considered, these are weighed according 
to their inverse estimation error variances, and as shown in 
[21], the variance of the ML moment estimates obtained from 
projection data increases with moment order. 

The graphs show that the overfit parameter value of 4 in the 
TLSP algorithm provides, on average, the best reconstructions. 
Note that the incorporation of even more moments does not 
improve the reconstruction error due to the fact that because of 
the increasing uncertainty in the estimates of these moments, 
at some point, their use results in diminishing retums. 

Figs. 4-7 show sample reconstructions for all the afore- 
mentioned algorithms for values 0, 2, 4, and 6 of the overfit 
parameter. An important point to note here is that while 
percent Hausdorff error is a useful metric for comparing 
different algorithms, as in Fig. 3, an object and an estimate can 
have significant percent error difference, whereas visually, the 
estimate may appear nearly perfect (e.g., compare OLSP with 
an overfit of 2 in Fig. 5 to the 10% error associated with it in 
Fig. 3). Thus, it is typically useful to display both performance 
curves as in Fig. 3 and sample reconstructions as in Figs. 4-7. 

The quadrilateral to be reconstructed was chosen as the 
polygon P’ shown in Fig. 1. Projections from 20 equally 
spaced angles in [ O , T )  were taken with lo00 samples per 
view at a signal to noise ratio of 65.2 dB. Reconstruction of the 
underlying polygon are shown with overfit parameter values of 
0 in Fig. 8. The corresponding estimated coefficients a; using 
OLS are: a1 = -0.0053 - 0.58682, a:! = -0.0308 + 1.02712, 
a3 = 0.4020 - 0.24223, a4 = -0.3659 - 0.19813, whereas the 
corresponding estimated coefficients using TLS and the actual 
values of these parameters can be seen in Table I. 

However, we are not yet finished, as we must decide on 
how the estimated vertices 21, 22, 23, and 24 should be 
connected. To decide how to do this, for either the TLSP 
or OLSP estimates, we use the estimated vertex locations 
in order to compute the coefficients U, via (14) for each 
configuration and compare these values with the corresponding 
estimated coefficients given above. The choice of configuration 

OLSP overfft2 True 
I 1 

439 

Fig. 5. 
structed. Overfit=2. 

Sample reconstructions at SNR=23.9 dB solid: actual, circles: recon- 

I I 
-0.4 -0.2 0 0.2 -0.4 -0.2 0 0.2 

WLSP o v e m t 4  TLSP overfit4 

I I 
4.4 -02 0 0 2  -0.4 42 0 0.2 

Fig. 6. 
structed. Overfit=4. 

Sample reconstructions at SNR=23.9 dB solid actual, circles: recon- 

is then made according to which of the coefficient sets found 
using (14) most closely approximates the estimated coefficient 
set. Let us carry out this procedure for the TLS estimated 
vertices of the quadrilateral using overfit parameter of 0. 
For convenience, referring to Fig. 1, we shall denote the 
configurations in which the vertices can be connected as P, 
P’, and P” respectively, so that the correct configuration is P’. 
The estimated coefficients using TLS, and the corresponding 
coefficients computed using (14), are shown in Table I along 
with the E’ norm of their difference defined by 

l1 Difference in u3’s = 
4 

I(o,(estimated) - a,(from (14))Il. 

(59) 
As can be seen from Table I, as measured by the El norm, the 

estimated coefficients are closest to the coefficients obtained 

j=1 
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True 

- 
4.4 42 0 0.2 

OLSP wwffG6 

0 

4.2 fizl 4-4 4.2 0 0.2 

W P  ovrffG6 TLSP -6 

Fig. 7. Sample reconstructions at SNR=23.9 dB solid actual, circles: recon- 
structed. Ovefit=6. 

TABLE I 
ESTIMATED, COMPUTED. AND ACTUAL COEFFICIENTS uJ FOR VERTICES OF 

QUADRILATERAL RECONSTRUCTED USING TLS WITH OVERFIT PARAMETER OF 0 

True OLSP OVerffGO 

WLSP OVerRto 

?----I 
TLSP OVeAbo 

2m 

Fig. 8. Sample reconstructions at SNR=65.2 dB solid actual, circles: recon- 
structions. Overtit=O. 

when the estimated vertices are connected according to config- 
uration P’. Hence, our algorithm has correctly identified the 
underlying configuration. 

With an overfit parameter of 1, the reconstructions shown 
in Fig. 9 are obtained. The corresponding values of the 
coefficients u3 are the same (to within as the pre- 
vious case where an overfit parameter of 0 was used. The 
reconstructions using an overfit parameter of 2 are shown 
in Fig. 10, where the estimated a3 parameters using OLS 

OLSP overffG1 True 

-1 pq 
-2a 0 2 -3 0 2 

WLSP -1 TLSP overtiti 

Fig. 9. Sample reconstructions at SNR=65.2 dB solid actual, circles: recon- 
structions. Overlit=l. 

TrUe OLSP overffG2 

Fig. 10. Sample reconstructions at SNR45.2 dB solid actual, circles: 
reconstructions. Overfit=2. 

TABLE II 
ESTIMATED AND COMPUTED COEFFICIENTS U, FOR VERTICES OF 

QUADRILATERAL RECONSTRUCTED USING TLS WITH OVERFIT PARAMETER OF 2 

are a1 = -0.0053 - 0.58682’, a:, = -0.0308 + 1.02712, 
u3 == 0.4020-0.24222, a4 = -0.3659-0.19812. The estimates 
of these parameters using TLS are shown in Table 11. 

Let us use these last set of estimated coefficients along with 
the estimated vertices using TLS, with overfit parameter of 2, 
to decide how the estimated vertices are to be connected. We 
again show the values of the coefficients obtained from (14) 
and the values of the total difference of these coefficients with 
the estimated coefficients in Table 11. In this case, the algorithm 
has again correctly chosen configuration Y’ as the solution 
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but note that the value of the l1 difference of the coefficients 
for configurations P and P’ are much closer than when an 
overfit parameter value of 0 was used. It is interesting to note 
that the use of higher order moments (i.e. overfit parameter 
> O), which are noisier than the estimates of the lower order 
moments, worsens the estimate of the concave vertex of the 
underlying object more than the others. 

VI. CONCLUSION 
In this paper, we have presented algorithms for the recon- 

struction of binary polygonal shapes from noisy measurements 
of their moments. The mathematical basis of these algorithms 
is the Motzkin-Schoenberg formula, and Prony’s method. The 
contributions we have made in this paper can be grouped 
into two categories. From a mathematical standpoint, we have 
improved a result due to Davis which states that the vertices 
of a triangle are uniquely determined by its w- (or s-)complex 
moments of up to order 5 (or 3). Our generalization states that 
the vertices of any nondegenerate, simply connected, n-sided 
polygon can be determined from its w- (or s-)complex mo- 
ments up to order 2n - l (or 2n - 3). We have also shown that 
this number of moments is sufficient in some cases to uniquely 
specify the interior of the polygon. Meanwhile, we note that 
the problem of obtaining the interior of a polygon from a given 
set of vertices can be computationally expensive when a large 
number of vertices are given. That is to say, given the vertices, 
there may, in general, exist many simply connected polygons 
with these prescribed vertices. The problem of eficiently 
finding the n-gon that best fits the data is, in its own right, 
an interesting exercise in computational geometry. Although 
we do not claim to have a practical solution to this problem 
at this time, we can envision a “coarse-to-fine” approach, 
whereby a reconstruction with few vertices is first obtained so 
that the interior is found with relatively little computational 
effort. Next, a larger number of vertices are estimated from 
the data and the previous reconstruction is used to guide how 
these vertices should be connected. In this way, we can hope 
to reduce the computational complexity of the overall polygon 
reconstruction problem. On the other hand, there are numerous 
problems in which polygons with only a small number of 
sides are to be reconstructed-because perhaps the object 
has such a structure or because only a coarse object shape 
with few sides can be reliably estimated from the data. In 
such instances, the computational complexity of finding the 
interior from the estimated vertices is not significant, and the 
algorithms presented in this paper may be used as a standalone 
solution for polygonal object reconstruction. However, more 
work needs to be done to extend the practical utility of our 
approach to the general case. 

From an estimation-theoretic viewpoint, we have estab- 
lished an explicit connection between the field of array signal 
processing and the problem of tomographic reconstruction 
of binary polygonal objects. We believe that the connection 
between tomographic reconstruction and array processing is 
a deep one, and the moment-based polygonal reconstruction 
represents one of several instantiations of that connection. 
Another such connection can be found in [ l ]  in which an 

analogy is made between a straight line in an image and a 
planar propagating wavefront impinging on an array of sensors 
to obtain an array processing formulation for the detection of 
line parameters within an image, replacing the now classical 
Hough transform approach to the same problem. Still another 
can be seen directly from the geometry of the Radon transform. 
In particular, a well-known fact is that the set of points (t,  0) 
for which the value of g( t ,d )  is influenced by the value of 
f ( z ,  y) at a given point, say, (20, yo), forms a sinusoid 

(60) 

and, in fact, for this reason, a 2-D display of the Radon 
transform is known as a sinogram. Furthermore, one of the 
key steps in standard tomographic reconstruction, namely, 
backprojection, simply corresponds to a type of beamforming 
or triangulation. For these reasons, we believe that there is 
much yet to be done in exploiting the connections between 
tomography and array processing, and this paper represents 
one step in that direction. 

On the other hand, it is equally important to point out 
that there are distinctive features of the tomography problem 
that may lead to interesting adaptations and modifications 
of standard array processing techniques. In particular, al- 
though in this paper, we demonstrate that standard array 
processing methods can be applied to the moment-to-polygon 
tomographic reconstruction problem, there are at least three 
significant differences between tomography and the array 
processing problem that we do not take advantage of here but 
may lead to variations on array processing algorithms with 
enhanced performance for polygonal reconstruction. 

The first we have already mentioned, namely, the fact that 
the coefficients u3 in (41) are deterministic functions of the 
vertices 21, 222, -.., z,, and the order in which they are con- 
nected. Making optimal use of this information would involve 
solving a highly nonlinear estimation problem. One suboptimal 
use of this relationship is illustrated in Section V in which 
we use the estimated a3 for each of several possible ways in 
which to connect the z3 in order to decide which of these ways 
is correct. Second, as we have discussed, in the tomographic 
problem, if we have m projections, we can directly produce 
estimates of the full set of kth-order geometric moments p ( k )  
for each k < m and not just the complex moment n, which 
is a (complex) linear combination of the elements of p(’). 
Thus, in using only the Q in our reconstruction, we are not 
using all of the information extracted from the projections. 
Although we do not pursue them here, there are at least two 
distinct ways in which the full set of tomographic information 
can be used in conjunction with the algorithms described 
here. First, we can use the p ( k )  in the process of deciding 
among the several possible ways to connect the estimated 
vertices since the full set of geometric moments (rather than 
complex moments) do uniquely determine the polygon P. 
Alternatively, in [22] and [21], we describe iterative algorithms 
for tomographic reconstruction which require prior estimates 
of object support. For example, in [22], we consider maximum 
likelihood estimation of the vertices directly from the original 
projection data. This is a highly nonconvex optimization 
problem requiring a good initial guess in order to work well. 

t = zo cos(0) + yo sin(@) 
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The method described here can provide such a guess. Finally, 
as we have noted and as is shown in [21] and [23], the error 
variances in the ML estimates of the moments ?k are a strong 
function of IC and, in fact, increase without bound as a function 
of the order of these moments [23]. This is in stark contrast to 
the constant variance assumption typically made for the sensor 
measurements in standard array processing problems [ 181, 
[14], [27], [25]. Hence, we may expect that the performance 
of the tomographic reconstruction algorithm described in this 
sectiofi may not be consistent with the performance of the 
Corresponding algorithms when applied to a standard array 
processing scenario. As we have seen from the experiments 
of Section V-A, the direct use of the Prony algorithm yields 
satisfactory results only at relatively high SNR’s and for 
relatively small number of sides. This is due, in large part, to 
the increasing error variance in the estimated moments. This, 
in fact, suggests a line of further investigation in order to 
adapt standard array processing methods to account for the 
variation in noise power found in moments estimated from 
tomographic data. 
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