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In this paper we examine the problem of reconstructing a (possi-
bly dynamic) ellipsoid from its (possibly inconsistent) orthogonal
silhouette projections. We present a particularly convenient repre-
sentation of ellipsoids as elements of the vector space of symmetric
matrices. The relationship between an ellipsoid and its orthogonal
projections in this representation is linear, unlike the standard
parameterization based on semiaxis length and orientation. This
representation is used to completely and simply characterize the
solutions to the reconstruction problem. The representation also
allows the straightforward inclusion of geometric constraints on
the reconstructed ellipsoid in the form of inner and outer bounds
on recovered ellipsoid shape. The inclusion of a dynamic model
with natural behavior, such as stretching, shrinking, and rotation,
is similarly straightforward in this framework and results in the
possibility of dynamic ellipsoid estimation. For example, the linear
reconstruction of a dynamic ellipsoid from a single lower-dimen-
sional projection observed over time is possible. Numerical exam-
ples are provided to illustrate these points. © 1994 Academic Press, Inc.

1. INTRODUCTION

Ellipsoids arise in many disciplines as simple yet effec-
tive object models. Such ellipsoidal models are used both
directly to capture shape and indirectly as bounding ap-
proximations. In [1] an ellipse is used as a simple parame-
terized model in an attempt to recover object eccentricity
and orientation from low signal-to-noise ratio tomo-
graphic data. In other medical areas ellipsoids are used
to model both the shape and volume or area of anatomical
parts, such as the heart, spine, and blood vessels [2-5].
In [6, 7] the state of a system is assumed confined to an
unknown n-dimensional ellipsoid and the goal is essen-
tially to reconstruct this ellipsoid from observations of its
lower-dimensional projections. In [8] a group of closely
spaced targets in space is observed through a number of
passive sensors. The cluster of targets is modeled as an
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ellipsoid and the observations as projections of it over
time. The desire is to find the evolution of the shape of
the ellipsoid. All these problems share the common goal
of reconstructing an ellipsoid from (possibly inconsistent)
observations of its lower-dimensional silhouette or
shadow projections. In addition, many of these problems
also involve a sequential element, in that the observations
are extended in time or space.

This paper focuses on the orthogonal projection and
reconstruction of centered n-dimensional -ellipsoids,
where by ‘“‘orthogonal projection’” we mean the genera-
tion of a silhouette shape through orthographic projection.
Such silhouette projection observations arise in many
ways in object reconstruction problems. In the realm of
robotics, they can arise from repeated grasps or probes
by a gripper [9, 10]. In low dose tomography the line
integral observations may yield little more than shadow
information [11-13], thus fitting into the silhouette frame-
work above. Even when this is not the case, a preliminary
step of projection support extraction coupled with object
boundary estimation may be useful or desirable [11, 14].
This approach has proven particularly helpful in reflection
tomography arising in laser range data [15). A similar
approach involving preextraction of boundary informa-
tion was successfully used in [16, 17] in the estimation of
cardiac ejection fraction.

In Section 2 we associate a centered ellipsoid with an
underlying positive semidefinite (PSD) symmetric matrix.
This symmetric matrix becomes our representation of the
ellipsoid. While this association is not new, it has not
been used, to our knowledge, for ellipsoid reconstruction.
In Section 3 the connection between such an ellipsoid
representation and that of its orthogonal projection is ex-
amined. In particular, we show that this relationship is
linear, in contrast to that obtained for the commonly used
parameterization based on ellipsoid semiaxis length and
orientation angle. Since the set of symmetric matrices
forms a vector space, a natural isomorphism exists be-
tween ellipsoids and points or vectors in this space, as
discussed in Section 4. Next, the inverse problem of re-
constructing a centered ellipsoid from a series of its
orthogonal projections is treated in Section 5. Our repre-
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sentations allow us to cast this problem in a standard
linear estimation form and thus to provide a concise char-
acterization of its solution. The representation of ellip-
soids as symmetric matrices also provides a natural way
to include certain constraints in the problem formulation,
in the form of inner and outer bounds on recovered shape.
Such constraints can represent our prior knowledge of
possible shapes for a problem. The inclusion of a geomet-
rically natural dynamic model into the linear estimation
framework developed in Section 5 is straightforward,
allowing the possibility of dynamic ellipsoid shapes. The
generation and reconstruction from projections of such
dynamic ellipsoids are examined in Section 6. Finally
in Section 7 we provide some numerical experiments to
illustrate the developments of the paper. Our focus in
this paper is the presentation of an especially convenient
framework for ellipsoid representation and manipulation
and not on the statistical issues raised by any particular
problem, which we leave for other works.

2. SYMMETRIC MATRICES

Here we develop the tie between ellipsoids and PSD
symmetric matrices. A common way of representing an
ellipsoid is by its semiaxis lengths together with their
orientation angles with respect to the coordinate axes
[3-5, 18]. While this representation is intuitive, in that
these parameters directly capture elements of the ellipsoid
geometry, it proves inconvenient for reconstruction as it
leads to complicated nonlinear relationships between the
original ellipsoid representation and that of its projections.
Instead, we use an alternative representation of an ellip-
soid as a symmetric matrix, which then leads to a simple
linear relationship between the ellipsoid and its orthogonal
projection. Any n X n symmetric PSD matrix X can be
taken to represent an n-dimensional ellipsoid ¢ centered
on the origin, comprising the set of points given by

{z|z%u < h(u) = Vu'Xu,Vulu = l,u,zER"}. (1)
Here () = Vu"Xu is the (reduced) support function of
the ellipsoid, [7, 19]. Conversely, for any ellipsoid € cen-
tered at the origin, a unique symmetric PSD matrix can
be found such that the description (1) characterizes the
set of points of the ellipsoid. Thus, we can represent any
ellipsoid € by its corresponding PSD symmetric matrix
X. Note that the ellipsoid is degenerate (i.e. has zero
extent) in directions associated with vectors « in the null
space of X. If X is positive definite, so its inverse exists,
then an equivalent definition of the ellipsoid is given by

{z|]Z7X"'z=1,zER". (2)

The geometric properties of the ellipsoid € are reflected
in algebraic properties of the corresponding symmetric
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FIG. 1.

Problem definition.

matrix X in a natural way. If A;, v; are the eigenvalues
and eigenvectors of the matrix X, then the principal axes
of the ellipsoid are in the directions given by the v, and
the corresponding semi-axes lengths are given by the
\/)T,«. Thus going back and forth from an ellipsoid to its
matrix representation is a simple matter. Further, any
linear coordinate transformation of the form 7 = Lz is
reflected by a change of the corresponding representing
matrix X to a matrix X, given by [7]

X, = LXLT. 3)

Such transformations can include, for example, rotation
and stretching. For convenience in what follows, we will
often not distinguish between the ellipsoid ¢ and the ma-
trix X that represents it. In the following we restrict con-
sideration to ellipsoids centered at the origin. Note that
there is no loss of generality in this assumption if the
center is known (as it is here) since, given a noncentered
ellipsoid, we may always translate our coordinate system
to the ellipsoid origin, thereby recovering the centered
case.

3. ELLIPSOID PROJECTION

We now consider the orthogonal projection of the -
dimensional ellipsoid 4 onto an m-dimensional subspace
& to obtain an m-dimensional shadow object, see Fig. 1
(note that both € and ¥ actually pass through the origin,
but are separated in the figure for clarity). This projected
object will itself be an m-dimensional ellipsoid € in the
subspace &. Let X be the n X n symmetric matrix repre-
senting € and let Y denote the corresponding m x m
matrix representing the ellipsoid ¢, in &. If C is a matrix
whose m columns form an orthonormal basis for the pro-
Jjection subspace &, then the transformation from the coor-
dinates z of points of the original space to their coordinates
Z in the projection is given by the relation 7 = C7z.
Applying (3) we find that the relationship between the
original ellipsoid, specified by X, and its projection, speci-
fied by Y in the projection subspace, is simply given by
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the equation?
Y = CIxC. 4)

In particular, this relationship between X and Y is linear
in the elements of the matrix X. This relationship is much
simpler than the nonlinear one existing between the com-
monly used semiaxes length and orientation parameters
of the ellipsoid and those of its projection.

Note that we could equivalently represent our projected
ellipsoid €, by the matrix Y = CYC7 rather than Y. The
latter can always be recovered from the former, since
C has full column rank. Whereas the m x m matrix Y
represents a nondegenerate ellipsoid (one with no semi-
axes of zero length) with respect to the subspace &, the
singular n X n matrix Y represents a degenerate ellipsoid
in the original space. The advantage of this alternate form
for the projection is that the relationship (4) between the
ellipsoid matrix and its projection then becomes

Y = CXC, )
where C = CCT is now a true projector onto the subspace
&, i.e., is symmetric and satisfies C? = C. A consequence
is that the projection Y is invariant under different choices
of basis C for the projection subspace ¥. In what follows
we will continue to use the representation Y because of
its more transparent connection to physically measured
quantities through (3), yet all of our results may be phrased
in terms of the coordinate independent projections Y.
Such an approach is used in [21].

Finally, the special case of 1-dimensional projections
is of interest for its connection to support measurements,
which arise in a variety of applications from the robotics
to medical imaging [10-12, 22-24]. The (reduced) support
function A(u) of an object is a scalar function of the direc-
tion specified by the vector u [19]. It gives a measure of
the extent of an object in the direction u. If the subspace
of projection ¥ is |-dimensional, then C in (4) is a unit
vector and the ellipsoid resulting from orthogonal projec-
tion is a line segment bounded by the support values A(C)
and A(—-C). Thus I-dimensional shadows or projections
correspond precisely to a pair of support observations in
opposite directions. For l-dimensional projections our
observation, as given by the right hand side of (4), reduces
to the expression for the squared support function h3(C)
of the ellipsoid % in the direction C, so that Y = h}(C).
A consequence of this relationship is that our linear ellip-
soid estimates of Section 5 based on Y suggest natural
and convenient estimation schemes involving (squared)

2 Interestingly, the result (4) is also the same algebraic relationship
as is found between the curvature Hessian of a smooth surface at a
point and that of its projection [20].
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support measurements. Of course, we may use these tech-
niques even when the underlying object is not ellipsoidal,
using the best fitting ellipsoid to obtain orientation and
eccentricity information about an object. Such connec-
tions are explored in more detail in [11, 12, 14, 18, 21].

4. MATRIX-VECTOR REPRESENTATION

While the representation of an ellipsoid as a symmetric
matrix X is convenient in that the projection relationship
(4) is linear, manipulating such quantities can be some-
what cumbersome. The most common way to recast (4)
in standard matrix-vector form results in the following
equivalent relationship [25, 26]:

vec(Y) = (CT® CT) vec(X), 6)
where vec(X) is the vector obtained by stacking the ele-
ments of X columnwise, and A @ B = [a;B] is the Kro-
necker product of A and B, formed by taking all products
of entries of A with B. While this approach does allow
easy manipulation of the underlying quantities, it suffers
from the problem that it is redundant. Not all the elements
in the vectors vec(Y) and vec(X) are independent, since
the matrix arguments are symmetric. Of course this redun-
dancy can be eliminated by using the symmetry condition
to reduce the dimension of the vectors vec(Y) and vec(X)
from their original m® and n? elements to only the
m(m + 1)/2and n(n + 1)/2 independent elements, respec-
tively [27-29]. The corresponding rows of (CT ® CT) are
eliminated as well, reducing its size. While this reduction
is conceptually straightforward and may always be done,
it destroys the special structure present in (4) and obscures
the relationships between the quantities involved.

Instead of the above approach, we obtain a matrix-
vector product which, while equivalent to (4), is raturally
induced by the properties of the set of symmetric matri-
ces. This transformation will allow us a simple character-
ization of the solvability of the inverse problem of de-
termining X from a series of observations of the form (4).
To this end, note that the set of n X n symmetric matrices
together with the inner product (A, B) = tr(A”B) defines
an n(n + 1)/2-dimensional Euclidean space.? In particu-
lar, let ¥ denote the n(n + 1)/2-dimensional such space
containing the original matrix X and let ¥ denote the
corresponding m(m + 1)/2-dimensional space containing
the projection Y, In these spaces each point represents a
symmetric matrix and conversely each symmetric matrix
corresponds o a unique point, In particular, let x and y
be the vector representations of the matrices X € ¥ and

Y This inner product induces the Frobenius norm on a matrix
(4, A = | Allp.
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Y € % with respect to corresponding orthonormal basis
sets {M "} and {M ™}, so that:

() = (X, M}") 0
(¥ =Y, M{™) @)

forl =j=nn + 1)2,1 =i=<mim + 1)/2, where (),
denotes the i-th component of the argument. We may then
view the vectors x and y as representations of the ellipsoid
and its projection, respectively. For given bases these
vectors are unique, nonredundant, and have a simple and
clear relationship to the corresponding symmetric matri-
ces. Note in particular that since the basis sets are ortho-
normal we have, e.g., for any X, X, € & that (X,, X,)
= xTx,. The basis sets {M{"} and {M{™} can be obtained,
for example, by Gram-Schmidt orthogonalization of any
spanning set of symmetric matrices. A particularly conve-
nient choice of basis set is given by what we term the
standard symmetric basis:

el ifl=(G-1DQr+2-D2+1,

l=i=sn

M =1 (ee] + eeD/V2 ©)
if1=i2n + 1 =02 —n+j,
l=si<j=n,

where ¢; is the i-th standard basis vector composed of all
zeros except for a 1 in the i-th location. In this basis each
entry of x is proportional to a single entry of the ma-
trix X.

Now the matrix relating x and y is easily obtained from
{4) and the deﬁnitions_ (7) and (8). In particular, if we
denote this matrix by C, it is straightforward to show that

(C); =M™, C"™M" C) (10)
forl =j<nn+ 12,1 =i<mim+ 1)/2, where (-);
denotes the ij-th component of the argument. We may
now represent our original relation (4) equivalently as:

y = Cx, (1
where the vectors y and x have natural interpretations as
symmetric matrices. Finally, note that if we had used
the projector form (5) rather than (4) for our projection
definition, the resulting matrix C would itself also be a
projector [21].

5. RECONSTRUCTION

Now we are in a position to consider the inverse prob-
lem of reconstructing an ellipsoid % from observation of
a set of its (possibly inconsistent or noisy) orthogonal
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projections onto the subspaces ¥;. From the discussion
in Section 2, we may represent the desired ellipsoid by
the symmetric matrix X and its projections onto the sub-
spaces ¥, by the corresponding symmetric matrices Y;.
If C; are matrices whose columns form orthonormal bases
for the subspaces of projection &¥; (assumed known), then
the relationship between the ellipsoid matrix X and its
projections Y; is given by (4). Our problem then is to
determine the n X n positive semi-definite, symmetric
matrix X, given observations of the form:

Y, = CIXC; (12)
for 1 = i = g, where the matrices C; have orthonormal
columns.

Now we may use the relation (11) to express each of

the observations as

yi = Cx (13)
where, as for (11), x is the representation of the X, y; is the
representation of ¥;, and C, is the matrix representation of
the operator CT(-)C; as defined in (10). Stacking up the
individual observation vectors y, into a single vector, we
obtain the overall relation:

Vi G
2 G
= . x
Yq o
or
y = Cux, (14)

where y and C are defined in the natural way from the
stacked observations. Thus, without a semidefiniteness
constraint on the reconstruction, the problem of recov-
ering the original ellipsoid ¢ is equivalent to finding the
unknown vector x representing the desired ellipsoid, given
the observations y and the projection geometry specified
in C. The formulation (14) is a standard one in linear
estimation. In general, however, a semi-definiteness con-
straint is needed on the matrix represented by x; such
issues are discussed in more detail in the next section.
The reader should note that our assumed observations
are the projected ellipsoids € , or equivalently the matri-
ces Y;. Thus, the above formulation has an implicit step
of ellipsoid extraction from the projections. For many
situations this assumption should not pose a significant
difficulty. Much work exists, for example, on extracting
ellipses from planar data [30-36]. For the case of 1-dimen-
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sional projections in particular, fitting the ellipse corre-
sponds to nothing more than extracting the region of sup-
port of a line segment. Finally, we may always view a
projection of any dimensionality as a group of (noisy) 1-
dimensional projections instead of a single higher dimen-
sional one, thus reducing the problem to the [-dimensional
case. This insight essentially reduces the observation
problem to one of boundary point determination. In par-
ticular, we could perform the preliminary step of ex-
tracting the observed ellipsoids from each projection by
using this technique of fitting (lower dimensional) ellip-
soids to their 1-dimensional support data. We could also
directly use all such sets of 1-dimensional observations
from all projections simultaneously to directly estimate
the desired ellipsoid. Note that whatever method is used
to extract the ellipsoid observations from raw data, any
noise in the data will manifest itself as perturbations in
the parameters of the corresponding observed projected
ellipsoid. Since the focus of the present paper is not ellip-
soid extraction, however, we will simply assume that we
are given a set of such ellipsoid observations (which thus
correspond to PSD matrices).

5.1. Unconstrained Reconstruction

In this section we consider the solution of (12) without a
PSD constraint on the resulting answer. First, we consider
reconstruction from a consistent or noise-free set of obser-
vations. In this case, a PSD solution exactly matching the
data always exists and thus the constraint is not needed.
The formulation of (14) allows us to easily characterize
the unique solutions of (12) in such a case. In particular,
the inverse problem (12) has a unique solution if and only
if the matrix C of (14) has rank equal to n(n + 1)/2 (i.e.
full column rank). This solution, if it exists, is given by

x = Cly, (15)
where C! is any left inverse of C.

We can now use this result to obtain conditions for
reconstruction of € that are stated directly in terms of the
projection subspaces ¥;. For example, if the projection
subspaces are restricted to be hyperplanes (so that m =
n — 1), then three distinct such projections are necessary
and sufficient to uniquely recover €. Such results are
obtained by using the definition (10) of C coupled with a
counting argument on the number of independent rows
of C. Other statements of this kind are, of course, possi-
ble, as discussed in [21]. The linear projection relationship
(12) and isomorphic relationship between symmetric ma-
trices and their representations makes such calculations
straightforward, if tedious.

Inconsistent observations. Now consider the case of
performing reconstruction based on a set of inconsistent
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observations of the form:

Y, = CEXC, + W,, (16)
where the W, are symmetric perturbations from ideal val-
ues. Such observations will in general result in an incon-
sistent set of equations of the form (14). In this case we
may seek, for example, the unconstrained linear least
squared error (LS) solution to the set. This estimate X ¢
is obtained as the solution of:

g
Xig = arg;ninz Y, - CIXC|} (17
=1

The corresponding vector x ¢ representing the solution
matrix is the solution to:

min||y — Cx|3 (18)

The solution is obtained by choosing Ct = C*, the Moore-
Penrose inverse of C, in (15). Thus x; g = C*y is the
desired LS estimate without a semi-definiteness con-
straint on the solution.

To correspond to an ellipsoid, the matrix X, represented
by the vector x, must be positive semi-definite. The LS
estimate given by x ¢ = C*y has no such constraint to
guarantee this PSD property of the solution. If, however,
a PSD matrix is obtained as the LS estimate without such
a constraint, then clearly it is also the LS estimate subject
to such a constraint. For many problems the observations
are clean enough that the PSD nature of the solution is
maintained anyway and no further effort is needed. In
fact, it is possible to state sufficient conditions for this to
be true, in the form of bounds on the allowed perturbations
W, in the ideal observations as a function of the singular
values of the matrices C and X. In particular, if the under-
lying matrix X is a PSD matrix, the LS estimate will also
be PSD if the following condition is satisfied [21]:

q
T minl©) \ 21 IWlE = Apin(X),

where A;.( - ) denotes the minimum eigenvalue of the ar-
gument, o ;.- ) the minimum singular value, and the W,
are the differences in the observations from their ideal
values as given by (4).

Let us interpret this condition in terms of the underlying
geometric quantities. In general, we would like to have
the quantities A;,(X) and o ,;;(C) large and the quantities
W, small. The term under the square root involving the
W, can be taken as a measure of the overall *‘noise power”’
in the observations. Recalling the tie between an ellipsoid
¢ and the eigenvalues of the corresponding PSD symmet-

(19)
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ric matrix X representing it, the term A (X) can be seen
to be the squared length of the smallest semiaxis of the
ellipsoid. This length might be thought of as a measure
of the closeness of the ellipsoid to degeneracy. Finally
the term o,,;,(C) reflects the nearness to singularity of the
matrix C. If this quantity is small, the columns of C are
nearly dependent. Since C captures the effect of observa-
tion geometry, such a situation reflects the fact that our
observations are nearly linearly dependent, as might hap-
pen if we were to use a set of projections on subspaces
very close to each other (see, e.g., [37] for more detail
on the nearness of subspaces). In summary, if the smallest
aspect of the underlying ellipsoid is large relative to the
perturbations in the ideal observations, and if our set of
observations are well placed, we should be able to use
the unconstrained LS estimate without the necessity of
a PSD constraint on the solution.

Before proceeding, note that we may also interpret a set
of inconsistent observations (16) in a stochastic setting,
obtaining a Bayesian or maximum-likelihood estimate for
the matrix X. The linearity of the observation equation
greatly facilitates such an approach. In particular, if we
choose to model the noise in the observations W, as being
jointly Gaussian random variables in each entry,* then
the linearity of the problem ensures that the noise in the
elements of y will also be Gaussian processes (not inde-
pendent in general). Thus it is a straightforward matter
to obtain statistically optimal (unconstrained) estimates.
In general, the noise model and thus cost function we
would use would depend, e.g., on the previous processing
step which extracted the observed ellipsoid observations.
Note that recursive implementations of both the LS and
statistical solutions are also straightforward using the for-
mulation given in (16). In the present paper our interest
is in development of the matrix based ellipsoid reconstruc-
tion framework and not on such statistical issues. As a
result, we take a deterministic view and treat any devia-
tions W, of the actual observations from ideal values as
unknown perturbations, though such stochastic interpre-
tations are easily accommodated.

5.2. Constrained Reconstruction

While in many instances an unconstrained, LS-type
solution as presented in (17) is adequate, there may be
situations when, due to incomplete, noisy observations,
this estimate is not positive semidefinite. In addition, there
may be situations where, because of prior information,
we wish to impose constraints on the reconstructed ellip-
soid in the form of bounds on its shape. Such bounds might
reflect our prior knowledge of the minimum or maximum
breadth or of the orientation of an object we wish to

* Note, however, that to correspond to observations of ellipsoids the
matrices Y; themselves must be PSD.
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estimate. Our formulation of the ellipsoid recovery prob-
lem as one of symmetric matrix estimation suggests a
natural notion of solution bound and allows us to apply
existing methods and algorithms for such constrained ma-
trix problems here.

To this end, consider the requirement that the recon-
structed ellipsoid matrix X lie in the matrix interval given
by X = X = X. By such matrix inequalities we mean that
the matrices (X — X) and (X — X) are positive semi-
definite. In particular, the PSD constraint is recovered if
we choose X = 0and X = = - /. Such semi-definite interval
matrix constraints, in turn, serve to naturally capture geo-
metric constraints on the underlying ellipsoid. Specifically
any ellipsoid satisfying such a condition will be contained
within the outer extreme ellipsoid corresponding to X and
will contain the inner extreme ellipsoid associated with
X. The planar case is illustrated in Fig. 2, where the
allowed area is the white region and some elements on
the boundary of the interval set are shown as ellipses
touching the boundary of one extreme or the other. This
geometric interpretation follows from the definition of an
ellipsoid given in (2) and the positive semi-definiteness of
the quantities (X — X) and (X — X) [21].

Now consider the special case of the constraint set
obtained when the extreme matrices are given by a scalar
times the identity, so that X = o/ and X = al. The
corresponding extreme ellipsoids then become nested
spheres. This case corresponds to putting simple eigen-
value constraints on the reconstructed matrix X. Such
constraints are nondirectional, since they do not favor one
ellipsoid orientation over another. This fact is reflected in
the central symmetry of the extreme ellipsoids. If & = 0
and we let @ — >« we again recover the PSD constraint.
Since the inner bound is just the origin, note that the
(possibly degenerate) ellipsoids corresponding to such a
set of PSD matrices may be little more than a line. As
expected, these ellipsoids, containing the origin, exist at
the boundary of the set, corresponding to singular matri-
ces X.

The algebraic problem of reconstructing a symmetric
matrix under such semidefinite interval constraints as we

FIG. 2. Illustration of interval matrix geometry.
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have been discussing is treated in detail in [21], where
algorithms yielding a solution to the problem are given.
The set of PSD matrices X = 0 forms a convex cone, so
that the sets (X — X) = 0 and (X — X) = 0 are simply
shifted and perhaps flipped versions of this PSD cone.
When these constraints are active in a problem (i.e. affect
its solution), then the solution matrix must lie on the
boundary of the cone constraint set. The algorithms de-
scribed in [21] iteratively form polygonal approximations
to the constraint cone which are increasingly refined in
the vicinity of the solution point. These polygonal approx-
imations, obtained as the intersection of half-spaces, are
defined by sets of linear inequalities and, in the limit,
exactly capture the local constraint cone shape. These
inequalities may be viewed as defining an infinite-dimen-
sional linear programming problem in the limiting case.
A pseudocode version of such an algorithm is given in
the Appendix. In general these algorithms are not finite,
but they do converge quickly. Reconstructions using such
algorithms are demonstrated in Section 7. The special case
of constrained reconstructions based on support function
observations is discussed in [21].

6. DYNAMIC PROBLEMS

In this section we treat the problem of generating and
estimating a dynamically evolving ellipsoid. These issues
are a direct extension of our work on the static case in
Section 2. We demonstrate a particular symmetric evolu-
tion equation and show how we may tailor the geometric
characteristics of the ellipsoid evolution through choice
of the dynamic matrix. This connection, based on our
representation of the ellipsoid as a symmetric matrix to-
gether with the relation (3), is particularly simpie. Our
isomorphism between symmetric matrices and vectors
then allows us to easily represent this evolution in a stan-
dard state-space form. Following this examination of the
generation problem, we treat the inverse problem of esti-
mating a dynamic ellipsoid from observations of its pro-
jections. Such dynamic ellipsoid problems appear, for
example, in regard to tracking beating hearts in a series
of images [16, 17, 38], following moving clouds of particles
[6], and even in the tracking of blood vessel cross-sections
[3, 4], where the ellipse evolution is spatial. Taken to-
gether, our framework provides both a simple evolution
mechanism, with direct control of geometrically meaning-
ful quantities of interest, coupled with a linear observation
equation through (4). These characteristics stand in con-
trast to dynamic formulations based on parameterizations
of the underlying ellipsoid in terms of orientation and
axis-length, which result in nonlinear observation equa-
tions [3-5, 18] and, further, do not generalize easily to
dimensions greater than 3.
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6.1. Generation

We may animate an ellipsoid by imposing a dynamic
relationship on its set of parameters. In particular, evolu-
tion of the elements of the representing matrix X will yield
a corresponding dynamically evolving ellipsoid. We need
only ensure that the resulting series of matrices X, have
the desired geometric behavior and remain symmetric and
positive semidefinite. We thus seek an evolution structure
on X, that is simple to implement, easy to understand,
yields interesting dynamical behavior, yet maintains sym-
metry and positive semidefiniteness. It is especially sim-
ple to obtain such desired behavior given this symmetric
matrix ellipsoid representation.

Dynamic model. Because of its simplicity and the re-
lationship (3), we use the following linear dynamic model
to capture ellipsoid evolution, coupled with our projection
relation (4) for observations:

Xio1 = A[X, A, + B,
Yk = CZXkCI\ + Wk’

(20)

where the driving matrix B, and the observation noise
matrix W, are assumed symmetric to maintain symmetry
of the matrix state X, and observation Y,. In particular,
note that the case of l-dimensional projections corre-
sponds to observations of the squared support function.

Positive semi-definiteness of X, for all k is assured if
X, is positive semidefinite and the matrices B, are also.
One possibility is to generate the B, as the square of a
matrix, B, = DID, where D, is an arbitrary matrix of
proper dimensions. This approach will assure that B, and
hence X, remain PSD, but the entries of X, are now not
simple functions of the elements comprising D,, as they
involve products between terms. In a stochastic setting,
then, since the entries of X, are nonlinear functions of
the random variables comprising D, , simple choices for
the distribution of D, may not translate into simple distri-
butions of X,..> In contrast, directly choosing the indepen-
dent entries of B, as independent random processes yields
linear relationships between these quantities, but then the
positive semi-definiteness of X, is difficult to guarantee,
though it is likely if the drive is ‘‘small,’” as discussed in
connection with (19). Again, since our primary focus in
this work is not statistical, we avoid this difficulty in what
follows by simply assuming that B, is a known determinis-
tic PSD driving matrix. We leave statistical developments
of the framework for other work, e.g., asin [16, 17} where

5 It is interesting to note however that if the elements of D, are chosen
from independent Gaussian distributions the resulting B, will be Wishart
[39], which is well understood (though it seems X, will still not be in
general). We thank a reviewer for bringing this to our attention.
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a dynamic equation is coupled with an observation noise
model in a statistical setting to generate estimates of car-
diac ejection fraction.

Because the form of both the dynamic and observation
equation in (20) are identical to (4), we may immediately
express them as the following equivalent vector equation
using the relationship (11):

Koy = Apx + by @1
yi = Coxg + wy,

where the vectors x;, y;. b, and w, are the representa-
tions of the corresponding matrices in (20) with respect
to consistent symmetric basis sets, while A,, and C, are
matrix representations of the operators AJ(-)A, and C]
(-)C, with respect to the same basis sets. Thus, instead
of the direct equations (20), we may equivalently generate
the matrices X, using the standard state space equations
of (21). Note again that the entries of b, and w; are linear
combinations of the respective entries of B, and W, so
that, in particular, Gaussian entries in B; and W, give rise
to Gaussian entries in b, and w;.

The form (21) is convenient because of the great amount
of existing work on such equations. In particular, the
observability and controllability of the underlying ellip-
soid X follows immediately from the properties of the
matrices A, and C, together with standard results of linear
system theory [40]. An example of the tie between such
algebraic properties and the geometric properties of the
underlying ellipsoid problem will be seen below when
we consider a particular class of dynamic matrices A,.
Finally, we note that the symmetry in the problem may
be exploited to obtain a square root algorithm for the
evolution of (20), as discussed in [21]. Such algorithms
are often used because of their speed and numerical relia-
bility.

Shaping parameters. Let us investigate how the
choice of the dynamic matrices in (20) affects the shape
of the corresponding ellipsoid. For ease of visualization
we consider the planar case, though the same arguments
hold in arbitrary dimensions. Geometrically, we may
think of changing the ellipsoid by applying a linear trans-
formation to the underlying coordinate system, for exam-
ple scaling, stretching, and rotation transformations. The
relationship (3) then describes how this transformation
will affect the underlying ellipsoid matrix. We may apply
such transformations over time by simply choosing 4, in
the dynamic relationship (20) as the transpose of the de-
sired transformation.

Consider the following family of transformations of the
underlying space:
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. {coS(cb) —sin(d>)] [a 0 ] [T 0]
7 Lsin¢)  coste)f Lo t/allo - .
[cosw) —sin(y) ]
X z.
sin(ys) cos(yr)

This transformation can capture any linear transformation
of the plane (to see this note that the SVD of an arbitrary
matrix may always be putinto this form). It rotates objects
by ¢, magnifies them by a factor of 7, stretches them in
the z, direction by « and shrinks them in the z, direction
by 1/«, and then rotates them by the angle ¢. This trans-
formation was used in a static setting with y = 0 in [1]
to capture a rich class of object profiles. In particular, it
was used in the estimation of object size, eccentricity,
and orientation. The generalization to higher dimensions
is straightforward, with the scaling term replaced by a
multiple of the identity, the stretching term becoming a
diagonal matrix of determinant 1, and the rotations be-
coming orthogonal matrices.

The effect on an ellipsoid of applying such a transforma-
tion to the coordinate system is given in (3). In particular,
we may impose this class of transformations dynamically
if we choose our matrices A, as follows:

_[ cos(y,) sin(nbk)] [Tk 0] [ak 0 ]
7 L —sin@)  coswpl Lo 7 L0 1/
x[ cos(dy) sin(cbk)]
~sin(¢,) cos(¢,)

Different choices of the parameters of these A, will result
in the application of the corresponding transformations
to the ellipse at time point k. For example, suppose we
used an A, with e, = 1,7, = 1, ¢ = 0, and ¢, = #/8.
The resulting ellipse will not change its shape but only
rotate by /8 radians every step. We show every other
step of such a simulation, yielding a tumbling ellipse in
Fig. 3.5

An interesting subclass of these transformations is ob-
tained by considering only those that preserve the volume
of the ellipse. In cell tracking applications such a con-
straint might reflect incompressibility or conservation of
mass of a cell undergoing deformational forces in a partic-
ular direction. Since the volume of an ellipsoid is a con-
stant times the square root of the determinant of its defin-
ing matrix X [41], any transformation preserving the
determinant of X achieves the desired goal. For the class
of dynamic matrices under consideration, this restriction

¢ Note that all ellipses are actually at the origin, but have been sepa-
rated in the figure for clarity. We will display such evolving ellipses this
way in what follows.
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FIG. 3. Rotating ellipse.

corresponds to requiring that the scaling term 7 be set to
1. An example of such a case with oy = 4, Y, = 0, ¢, =
w/8, and 7, = 1 is given in Fig. 4, where we have shown
every other step of the sequence. This choice of parame-
ters corresponds to compressing along the first coordinate
axis by a factor of § and stretching along the second coordi-
nate axes by # in addition to rotation by #/8 at each step
(the envelope of ellipses traced out in this fashion itself
appears to be an ellipse).

6.2. Estimation

In this section we consider the problem of estimating
the state of the dynamically evolving ellipsoid (20). First,
we recast this problem in terms of the formulation given
in (14), obtaining a batch method of solution. Some com-
ments on the connection between geometry and solvabil-
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FIG. 4. Deforming ellipse.
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ity are made. The inclusion of constraints, including a
PSD constraint, for this case is straightforward from our
work so far. We then briefly point out the possibility of
recursive solutions to the problem.

Batch methods. Certainly one way of solving the
problem of estimating the state of the ellipsoid in (20) is
to stack up our observations y, using the form of the
equations given in (21), lumping the dynamics and known
input into the output matrices and observations, respec-
tively. Doing this operation yields a batch formulation
of the problem. In particular, we obtain the following
equivalent linear equation for the initial state:

y = Cxo + w, (24)
where the matrices y and C are now given by
Co
Ci4,
c=| GAA4 (25)
CrAr—l A_OJ
Yo
34
Y=1.
Yr
0
Ciby
C-‘r(br—l + Ar—lbr—z + (dr—l Cre dl)bo)

and the observation perturbation vector w is given by

To find a unique LS estimate of the initial state X, requires
that the matrix C given in (25) have fuil column rank. In
this case, the unconstrained LS estimate of the initial
ellipsoid state is given by £, = C*y, where C* is again
the Moore-Penrose inverse of C. The corresponding un-
constrained LS estimate at any other time is obtained by
using this estimate of the initial state as an initial condition
to the equation (20) or (21).

The solution C*y provides an answer to the uncon-
strained problem. It is a simple matter to obtain con-



RECONSTRUCTING ELLIPSOIDS FROM PROJECTIONS

strained (e.g., PSD) estimates of the initial state, given
our previous development. We need only combine the
constrained reconstruction methods discussed in Section
5.2 with the formulation of (24). If the A, are invertible,
as they will be for any reasonable choice of parameters
in (23), then constrained reconstructions at other times
may be found by simply writing (24) in terms of the state
at the desired point in time rather than x,. The solutions
of such problems are straightforward, given our previous
development.

Naturally, stochastic interpretations and recursive so-
lutions of the state estimation problem represented by
(20) are also possible, leading in a straightforward way to
statistically optimal shape estimates. In particular, re-
cursive solutions to the unconstrained problem obtained
through Kalman filtering [42] are simple to implement
using the formulation of (21), as is done in [16, 17]. At
present, however, we know of no optimal recursive solu-
tion to the problem of estimating a constrained initial
matrix for the system (20). Recall though that if the uncon-
strained estimate lies within the constraint set, then it
must also be the optimal constrained estimate. Of course,
we may take the ad hoc approach of projecting the uncon-
strained estimate onto the constraint set when such an
estimate is desired. Such a procedure is suboptimal but
may yield reasonable results for many cases.

Observability. The existence of a unique solution to
(24) (or a time shifted version of it if our interest is at
other than & = 0) requires full rank of the matrix C in
(25). This matrix will be recognized as the observability
matrix of the linear dynamical system given by (20). Thus
our rank requirement for solution of (24) is really nothing
more than a statement of observability of the correspond-
ing dynamical system (20). Such observability is straight-
forward to check for a given problem using (25) and often
reflects geometric properties of the problem.

For example, suppose our lower-dimensional views are
fixed so that C, = C (nonsquare) and that we choose the
dynamic matrices A, in (23) such that ¢ = & = 0 and
a = 0, corresponding to uniform shrinking of the ellipsoid
with no rotation or stretching. The corresponding matri-
ces A, of (21) then become A, = 7/, where [ is the identity.
The observability matrix C for this case is given by

C

7C
72C

7 IC

L J

which is clearly rank deficient. Thus we cannot recon-
struct an ellipsoid that is uniformly shrinking from a sin-

133

gle, fixed lower-dimensional viewpoint. The geometrical
difficulty is that we get no information about the ellipsoid
perpendicular to the projection subspace. The presence
of a rotation or stretching term would yield such informa-
tion, as would changing our view point by allowing C, to
be a rotation matrix.

7. EXPERIMENTS

In this section we present the results of several simula-
tions to demonstrate the developments of the paper. We
limit ourselves to planar examples and I-dimensional
(support-type) observations here for ease of visualization,
though the demonstrated procedures and methods are
valid in arbitrary dimensions. Our goal in these experi-
ments is not to form statistically optimal estimates (which
we leave to other works) but simply to demonstrate the
potential use of the developments of the paper. In particu-
lar, we have not matched our estimators to the perturba-
tions (i.e., noise model) applied to the ideal observations
in any of the experiments, but rather taken a deterministic
perspective and minimized the sum of the squared residu-
als to obtain an unweighted LS estimate.

First, we examine the case of reconstructing a static
ellipse from a series of its perturbed projections. We com-
pare unconstrained to matrix-interval-constrained (and in
particular PSD-constrained) reconstructions, showing
how the addition of constraints, reflecting prior knowl-
edge, may aid a reconstruction. In particular, we demon-
strate how such algebraic constraints manifest themselves
geometrically. Next, we examine the reconstruction of
dynamic ellipses. The class of dynamic matrices defined
in (23) is used. We show reconstructions demonstrating
how knowledge of the evolution of an ellipse (in the form
of the dynamic equation in (20)) allows us to reconstruct
it from knowledge of only a single spatial projection over
time.

Assumptions. In the numerical experiments of this
section it is assumed that the center of the ellipse is known
and that all data has been translated to the origin, as
throughout this section. For convenience all examples
use 2-dimensional ellipsoids (ellipses) and 1-dimensional
(scalar) projection observations. Recall that our observa-
tions are taken to be the projected ellipses themselves,
as represented by Y, of (20). As discussed in Section 3,
such 1-dimensional ellipse projections are closely related
to the support or extent h(C) of the ellipse in the direction
C. In particular, our ellipse projections Y, equal the
squared ellipse support length 4*C,). Thus we are effec-
tively demonstrating the reconstruction of ellipses from
support data in this I-dimensional case. Though we will
take as our observations the values Y,, in keeping with
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the model (20), for ease of visualization in what follows
we will actually plot the equivalent perturbed support
values \/Yk , corresponding to the noisy projection extent.

To correspond to a lower-dimensional ellipse observa-
tion in the 1-dimensional case, each (scalar) Y, must be
nonnegative. To guarantee this in our experiments, we
arbitrarily choose our corresponding observation pertur-
bations W, from one-sided log-normal distributions [43].
In particular, each ideal observation C]X,C, is corrupted
by samples of a zero-mean log-normal distribution of a
specified variance (which will depend on the experiment).
This distribution is chosen for each ideal sample so that
its left support point is at —CJX,C,, thus ensuring that
Y, will be nonnegative for any level of noise variance.
We use this model as a convenient way to perturb the
ideal samples while keeping them nonnegative and intend
no, necessarily practical, statistical interpretation to be
drawn from it.

7.1. Static Ellipse Reconstruction

The underlying ellipse used throughout this section is
shown in Fig. 5. Its semiaxes are of lengths | and 2,
with the major axis inclined at 7/4 radians to the first
coordinate axis. The corresponding matrix X is given by:

¥ 1 [5 3]

203 s
We will reconstruct this ellipse based on observation of
a series of its perturbed projections Y,. We use 5 equally
spaced projections (support samples squared) of the el-

lipse (26) taken over 0 to #. In particular, the associated
observation matrices C, are given by C, = [cos(8)),

(26)
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sin(4,)17 where 8, = (k — 1)7r/5. We examine both a small
and large perturbation case.

Small perturbation case. For this experiment we add
zero-mean log-normal noise of variance .3 (described
above) to the ideal observations CTXC,; defined in (12) to
obtain a ‘‘signal-to-noise ratio’” (SNR) of about 5. The
SNR in this case is defined to beVI[CIXC)%/(o Vn),
where n is the total number of observations and o is the
standard deviation of applied noise. The corresponding
perturbed support observations are shown together with
the underlying ellipse in Fig. 6. Since the axis lengths are
2 and 1, the level of observation corruption is relatively
low in this example.

In Fig. 7 three different reconstructions are shown. In
the upper left of the figure the unconstrained LS solution
obtain by using (15) is shown. The upper right shows
the corresponding PSD-constrained reconstruction. This
reconstruction is identical to that obtained without the
PSD constraint, showing that for this small perturbation
case the PSD constraints were not active, The bottom-
right plot shows inner and outer bounds of an interval-
constrained reconstruction (the outer bounding ellipse
leaves the plot area). The constraints are arbitrary and
only meant to show how such constraints may be in-
cluded. The corresponding reconstruction is shown in the
lower left hand corner. This estimate is also identical to
the unconstrained one in this instance, again demonstra-
ting that in this slightly perturbed case the unconstrained,
linear estimate performs adequately. If we had no direc-
tional information as to the orientation of the ellipse we
could replace the elliptical bounds by circles, with no
such inherent directional bias. Recall that such circular
constraints correspond to eigenvalue constraints on the
reconstructed matrix.

2k 4
1+ 4
ol ]
2} o ]
2 ) T 2
FIG. 6. Perturbed observations and true ellipse (SNR = 5).
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Large perturbation case. Now we repeat the experi-
ment, but with a larger perturbation to our ideal observa-
tions. This time we add zero-mean log-normal noise of
variance 9 to the 5 ideal projection observations, for an
SNR of about 1. In Fig. 8 the resulting noisy support
data are shown. The amount of perturbation to the ideal
observations is quite large this time, being on the order
of the semi-axis lengths.

In Fig. 9 the same three reconstructions provided before
are shown. In the upper left of the figure the unconstrained
LS solution is displayed. The unconstrained estimated
matrix for this example is not positive semidefinite, having

T

2t -

FIG. 8. Noisy observations and true ellipse (SNR = 1).

- Reconstruction, -- True - Bounds, -~ True

FIG. 9. Reconstructions.

eigenvalues at —2.5 and 19.2. The corresponding shape
really does not make sense to draw and certainly does
not resemble an ellipse. The curve that is displayed is
actually a hyperbola (a different conic section), obtained
because we used the ellipse definition given in (2) to pro-
duce these plots. The upper-right plot shows the corre-
sponding PSD-constrained reconstruction. This time the
PSD reconstruction yields the degenerate ellipse given
by a line, corresponding to the fact that the constrained
solution must lie on the boundary of the PSD set and thus
posess a zero eigenvalue and semiaxis. While yielding a
PSD matrix, the effect is not particularly appealing geo-
metrically. Again, the bottom-right plot shows the inner
and outer bounds for an interval constrained reconstruc-
tion. The corresponding reconstruction is shown in the
lower-left hand corner. This estimate appears to be the
best, demonstrating the beneficial effect of accurate prior
knowledge.

7.2. Dynamic Ellipse Reconstruction

Here we demonstrate the reconstruction of a dynamic
ellipse from corrupted lower-dimensional projection data.
The generation of such an ellipse was discussed in Section
6.1, where a particular class of dynamic matrices was
defined and demonstrated. For this example we have arbi-
trarily chosen a constant dynamic matrix A, = A with
the parameters defined in Section 6.1 chosen as 7 = .8,
a=.9,¢ =0,and ¢ = #/15. We use a periodic driving
term B, in (20). This drive is shown in Fig. 10 through
half of its cycle (recall that all ellipses in the following
are actually centered at the origin, but are displayed
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FIG. 10. Driving term for the dynamic ellipse.

shifted for clarity). The initial condition for the simulation
is given by the matrix X in (26). The corresponding ellipse
state for this choice of drive and dynamic matrix is shown
for every other time point in Fig. 11. One can imagine
such constructions as providing a model for a beating
heart, for example. Such a model (actually based on peri-
odic A, rather than B,) is used in [16, 17] to estimate
ejection fraction from a series of noisy projection images
of the heart.

At each time point the ellipse is projected onto the first
coordinate axis, yielding a corresponding output matrix
in equation (20) of C, = [1 0]". Zero-mean log-normal
noise of variance 4 is then added to each of the resulting
ideal projections C1X,C, (support measurements squared)
to yield our corrupted observations, as discussed earlier.
The average SNR for this case, defined as the average of
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FIG. 11. Ellipse state.
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FIG. 12.

Dynamic reconstruction of ellipses of Fig. 11 together with
noisy observations.

the (scalar) observations at all times C/X,C, divided by
the standard deviation of the noise, is about 1. Using
these corrupted observations, the original ellipse is recon-
structed using a least squares criterion. This reconstruc-
tion is shown in Fig. 12 at every other time point as a
solid line. The true ellipses are shown as dotted lines.
Also shown in the figure as solid vertical lines are the
support measurements corresponding to the noisy obser-
vations used in the reconstruction. As can be seen from
the figure, despite measurements that are quite corrupted
the estimate tracks the dynamic ellipse after about seven
time steps. Note that no single frame of data, even if it
were ideal, contains enough information to be able to
reconstruct the ellipse. The dynamic equation allows us
to integrate the data from multiple frames and hence re-
solve the inherent ambiguity.

In the above example we assume that we have perfect
knowledge of the dynamics and drive and the reconstruc-
tions seem quite good. For interest, in Fig. 13 we show
the effect of adding N(0, .06) noise to the independent
elements of our assumed dynamic matrix and drive terms
during the reconstruction, resuiting in an average error
in these matrices of about 10%. This mimics the effect of
imperfect knowledge of the dynamics and drive on the
reconstruction. The errors in our knowledge of the param-
eter matrices defining the dynamics is quite substantial,
yet the reconstruction still appears quite good, suggesting
the robustness of the approach in a stochastic setting.
Clearly, any detailed such sensitivity analysis will depend
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on the specific problem context and its goals (e.g.., see
[16, 17] for such a treatment).

8. CONCLUSIONS

In this paper we have examined the problem of recon-
structing an ellipsoid from its projections. We presented
an approach based on a representation of ellipsoids as
elements of the vector space of symmetric matrices. This
representation led in turn to a particularly simple relation-
ship between an ellipsoid and its orthogonal silhouette
projection. This approach allowed us to simply and pre-
cisely characterize the solutions of the associated recon-
struction problem. The inclusion of constraints in the form
of bounds on the reconstructed ellipse is straightforward
in our framework, leading to semidefinite interval con-
strained symmetric matrix estimation problems. Inclusion
of a dynamic element with natural geometric interpreta-
tions is similarly easy, leading to the possibility of dy-
namic shape generation and estimation. Examples of the
above points were illustrated through numerical exam-
ples. Application of this framework to problems of statisti-
cal estimation is straightforward given our development
and is left for future work.

APPENDIX: CONSTRAINED RECONSTRUCTION
ALGORITHM

Here we present an outline for an algorithm to compute:

q
min >, ||Y; - CXC|}} @7
XEX i=}
where
X={XX=zXx=X} (28)

defines the matrix interval set as described in Section 5.
As shown in [21], the set )Z is the intersection of two
cones and can be represented as the intersection of an
infinite number of halfspaces:

X= () AN N.X)NHS(-N, ~(N, ) (29)

NePsD!!

where HS(N, d) denotes the closed halfspace {X|(X,
N) = d} of normal N and distance d from the origin and
PSD'" denotes the set or rank 1 PSD matrices. Thus the
normals to the bounding halfspaces are obtained from the
rank 1 PSD matrices and the distances of these halfspaces
from the origin are found from the bounding matrices
X and X. With this notation the algorithm is as follows:
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ALGORITHM 1 (successive halfspace).

Step 1. Choose an initial approximating set of rank 1
PSD normals {N},. Set k = 0.

Step 2. Solve the following to obtain X(k):

g
X(k) = argmin ) |Y; — CIXCJ% (30)
XEX& i=1
where
Xo= () AN N, X)NHS(-N, —(N, ).

NE{N}

Step 3. For the lower bound X, find all eigenvalues
A; and corresponding eigenvectors v; of [X(k) — X] such
that A, = 0.

Step 4. For the upper bound X, find all eigenvalues
Xj ang corresponding eigenvectors U; of _[/? — X(k)] such
that \; = 0. If there are no such A; or A; the solution is
optimal: STOP.

Step 5. Update the approximating set )Z . by aug-
menting the associated set {NV;}, with rank 1 normals corre-
sponding to the forbidden eigenvectors found in Steps 3
and 4: {N},,, = {N} U {vp/} U {o3]}

Step 6. Set k = k + 1. Goto Step 2.
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This algorithm iteratively refines its polygonal approxima-
tion to the constraint set by adding supporting hyper-
planes in the vicinity of the solution. Note that (30) can
be formulated as a standard linear inequality constrained

le

ast square problem {44] using the vector space formula-

tions of Section 4.

10.

13.
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