
Multiscale Systems, Kalman 
Filters, and Riccati Equations 

Kenneth c. Chou, Member, ZEEE, Alan S. Willsky, Fellow, ZEEE, and Ramine Nikoukhah Member, ZEEE 

Abstract-In 111 we introduced a class of multiscale dynamic 
models described in terms of scale-recursive state space 
equations on a dyadic tree. An algorithm analogous to the 
Rauch-hg4triebel algorithm-onsisting of a he-to-coarse 
Kalman filter-like sweep followed by a coarse-to-he smoothing 
step-was developed In this paper we present a detailed system- 
theoretic analysis of this filter and of the new de-recursive 
Riccati equation associated with it. While this analysis is similar 
in spirit to that for standard Kalman filters, the structure 
of the dyadic tree leads to several significant Werences. In 
particular, the structure of the Kalman filter error dynamics 
leads to the formulation of an ML version of the filtering 
equation and to a corresponding smoothing algorithm based on 
triangularizing the Hamiltonian for the smoothing problem. In 
addition, the notion of stability for dynamics requires some care 
as do the concepts of reachability and observability. Using these 
system-theoretic constructs, we are then able to analyze the 
stabdity and steady-state behavior of the he-to-coarse Kalman 
filter and its Riccati equation. 

1. INTRODUC~ON 
HE use of pyramidal representations for signals and im- T ages has been and continues to be of considerable interest, 

both in research and in application. The reasons for this include 
the computational efficiencies that such representations may 
suggest (e.g., as in the use of multigrid methods for the 
solution of partial differential equations [16], [17]), the fact 
that many phenomena including those with fractal or self- 
similar features can be captured in natural and analytically 
useful ways in this setting [ll],  [12], and the development of 
the wavelet transform [13]-[15] which has sparked interest in 
developing multiresolution methods for a vast array of applica- 
tions. As described in [l], [lo], the interest in multiresolution 
representations and its apparently substantial promise provided 
motivation for the development of a framework for statistical 
modeling and optimal processing based on such pyramidal 
representations. In particular in [l] we introduced a class of 
multiscale state-space models evolving on dyadic trees (in 
which each level in the tree corresponds to a particular level 
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of resolution in signal representation), we derived an efficient 
and highly parallelizable optimal estimation algorithm on the 
dyadic tree, and we illustrated the potential of this framework 
both for problems of optimal fusion of multiresolution data and 
for the efficient solution of computationally intensive problems 
of signal and image analysis through the use of “fractal 
regularization” techniques based on our models. In [18], the 
straightforward extension of our algorithm to quadtrees is used 
to achieve computational reductions of between one and two 
orders of magnitude for a typical image processing/computer 
vision problem, while in [I91 we demonstrate that the classes 
of processes that can be captured in this setting are quite rich, 
including all Gauss-Markov processes and Gaussian-Markov 
random fields. 

All of this, we feel, not only establishes the promise of 
this new framework but also identifies additional system- 
theoretic questions of some importance. In particular, the 
optimal estimation algorithm [l] is a direct generalization 
of Kalman filtering and state-space smoothing algorithms, 
introducing a new class of scale-recursive Riccati equations. 
This suggests, among other things, the development of a 
system theory for multiresolution modeling and realization as 
well as the detailed system-theoretic analysis of the filtering 
and Riccati equations introduced in [l]. The objective of 
this paper is to tackle this latter problem, while an initial 
investigation of multiscale deterministic realization theory is 
the subject of [2]. 

In the next section we briefly review the multiscale state- 
space model and optimal estimation algorithm of [l]. The 
objective of error and stability analysis for multiscale filtering 
leads directly to a variation on this algorithm which we 
develop in Section 111. This “ML algorithm” also has a direct 
connection with the solution of the estimation problem via 
the triangularization of the smoothing Hamiltonian, which we 
describe in an appendix. In Section IV we then turn to the 
system-theoretic analysis of our models and, as we will see, the 
notions of reachability, observability, and, especially, stability 
have significant variations as compared to their counterpart for 
ordinary state-space models. These tools are then used in Sec- 
tion V where we analyze the properties of the error covariance 
for our optimal filter and the stability and asymptotic behavior 
of the filter error dynamics and our new Riccati equation. 

II. STATE-SPACE MODELS AND MULTISCALE 
ESTIMATION ON DYADIC TREES 

As illustrated in Fig. 1, the basic data structure for multires- 
olution modeling is the dyadic tree. Here each node t in the tree 
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coarse infinite tree T ,  i.e., {(m, n)I - 00 < m, n < 00). This will 
be of interest when we consider asymptotic properties such as 
stability and steady-state behavior. In any practical application, 
of course, we must deal with a compact interval of data. In this 
case, the index set of interest represents a finite version of the 
tree of Fig. 1, consisting of M + 1 levels beginning with the 
coarsest scale represented by a unique root node, denoted by 
0, and A4 subsequent levels, the finest of which has 2M nodes. 

Suppose that w(t )  and v( t )  are independent, zero-mean 
white noise processes with covariances I and R(t), respec- 

tu t p  tively. The covariance ~ ~ ( t )  = E[z(t )zT(t)]  then evolves 
according to a Lyapunov equation on the tree: 

increasing m 

T 
fW 

Fig. 1. The dyadic tree and some notation used in the paper. 

Pz(t)  = A(t)Pz(tT)AT(t) + B(t)BT(t) .  (2.4) 

If the ~ - ~ ~ o d e l  Parameters VarY in Scale only and if at Some scale 
P3~(t) = Pz(m(t)) ,  then this holds at each scale, and 

T corresponds to a pair of integers (m, n), where m denotes 
the scale corresponding to node t and n its translational offset. 
Thus, if ~ ( t )  denotes a signal defined on T ,  then the restriction 

for t = (m, n) with m fixed, corresponds to the representation 
Of a Signal (viewed as a function Of n) at the mth Scale. It 1s 
Useful to visualize T as having horizontal levels corresponding 
t0 different Scales, where increasing m corresponds to moving 
to finer resolutions. We will use the more compact notation t 
for nodes on and Will denote the scale of a Particular node 
t by m(t>. Also, as illustrated in the figure, there are natural 
shift operators on T ,  namely the unique backward shift 7 and 
two forward shifts a and p. In particular if t = (m, n),  then 

The basic picture one should have is that finer scales introduce 
additional detail into the signal representation, while coarser 
scales involve successively decimated and lower resolution 
representations (see [ 11 for further discussion and references). 

There are two alternate classes of scale-recursive linear 
dynamic models that are of interest. The first of these is the 

(2.1) 

(2.2) 

of z to any particular level, i.e., the collection of values of z ( t )  P& + 1) = A ( ~ ) P , ( ~ ) A ~ ( ~ )  + B ( ~ ) B ~ ( ~ ) .  (2.5) 

If we further specialize our model to the case in which A and 
B are constant, and if A is stable, then (2.5) admits a steady- 
state solution, to which P = ( ~ )  converges, which is the unique 
solution of the 

In [I] we also encounter the reversal of (2.1), i.e., a model 
representing z(t9) as a linear function of z(t)  and a noise that 
is uncomelated with %(t) is given by 

algebraic Lyapunov equation. 

ta = (Wl, 2n), tP = (Wl, 2#l), and t7 = (m-1, [n/2]). z(t;i;) = F( t ) z ( t )  - A-'(t)B(t)'lZt(t) 

F ( t )  = A - l ( t ) [ l -  B(t)BT(t)P,-l(t)] 

(2.6) 

(2.7) = P, (tv) AT ( t )  Pgl ( t )  

class of coarse-to-fine state space models on T a(t) = w(t) - E[w(t)lz(t)] (2.8) 

(2.9) 
a(t)  = A(t)z(tT) + B(t )w( t )  

y(t) = C(t)z(t) + v(t). 
E['lZt(t)aT(t)] = I - BT(t)P;'(t)B(t) e Q(t). 

In [l] we derive a generalization of the 
The term A(t)z( ty)  in (2.1) represents a coarse-to-fine interpo- Rauch-Tung-Striebel (RTS) smoothing algorithm 

variable at the particular scale m and location n represented optimal estimate of z(s) based on data yt at or 6Gbelow3Y 

by t. This model is the basis for multiscale modeling of node y(7) for = or a descendent of t),  and 
stochastic processes developed in [l]. In contrast, the fine-to- let f(slt+) denote the optimal estimate of z(s) based on 
coarse Kalman filtering step of our estimation algorithm falls data strictly y(7) for a strict descendent 
into the class of fine-to-coarse recursive models of the form of t). Let P(sIt) and P(slt+) be the corresponding error 
4 t )  = Ji( ta)z( ta)  + Fz(tP)z(tP) covariances. Then the coarse-to-fine Kalman filter consists 

lation* B(t)w(t) =presents the higher added consisting of a fine-to-coarse mman filtering step followed 
in going from One scale to the next$ and y(t> is the by coarse-to-fine smoothing step. k t  g(slt) denote the 

+G(ta)w(ta) + G(tP)w(tp). (2.3) Of a measurement step 

An important special case of (2.1)-(2.3) is that the system 
parameters are constant at each scale but may vary from scale 

A(m(t)) ,  etc. Such a model is useful for capturing scale- 

we focus the detailed covariance analysis and stability results 
on this case. Also, if we wish to consider representations 
of signals of unbounded extent, we must deal with the full 

g(tlt> = g(tlt+) f K(t)[y(t)  - c(t)g(tlt+)l (2*10) 

to scale, in which case we abuse notation by writing A(t )  = 

dependent effects and fractal behavior [l], [ 111. For simplicity 

K ( t )  = p(tlt+)CT(t)v-'(t) (2.11) 

v (t) = c (t)  P( t I t +) CT ( t )  R( t )  (2.12) 

P(tlt) = [I - K(t)C(t)]P(t(t+).  (2.13) 



CHOU et al.: MULTISCALE SYSTEMS 481 

a coarse-to-fine one-step prediction step 

?(t(ta) = F(ta)P(ta(ta) (2.14) 

P(tlta) = F(ta)P(talta)FT(ta) + &(ta) (2.15) 

Q(ta) = A-l(ta)B(ta)Q(ta)BT(ta)A-T(ta) (2.16) 

with analogous equations for ?(t l tP) and k(tltP) obtained by 
replacing ta with t/3 in (2.14)-(2.16), and a fusion step to 
merge these estimates to form ?(tit+): 

?(t(t+) = P(tlt+)[P-l(tlta)a(tlta) + P-'(tltp)I;(tlt/3)] 
(2.17) 

(2.18) 

This algorithm has a pyramidal structure, allowing substantial 
parallelization. Also, while the update and prediction steps are 
analogous to corresponding steps in usual Kalman filtering,' 
the fusion step has no counterpart. 

Let k S ( t )  denote the estimate of z( t )  based on all data on 
a finite subtree with root node 0 and M scales below it. Once 
the Kalman filter reaches the root node, &(O) = 2(OlO) serves 
as the initial condition for the coarse-to-fine smoothing sweep: 

P(t(t+) = [P-'(t(ta) + P-l(tltP) - PL'(t)]-'. 

? s ( t )  = 2(tlt) $. J(t)[?s(tT) - ?(tTlt)] (2.19) 

J ( t )  2 P(t I t)FT(t)P-' ( tqt)  (2.20) 

where Ps(t), the smoothing error covariance, satisfies 

Ps(t) = P(tJt)  + J(t)[Ps(tT) - P(tqt)]JT(t) .  (2.21) 

III. THE ML FILTER 
The Riccati equation (2.11)-(2.13), (2.15), and (2.18) differs 

from standard Riccati equations in two respects: 1) the explicit 
presence of the prior state covariance Pz(t) and 2) the fusion 
of two sources of information in (2.18). The latter of these 
is intrinsic to our Riccati equations and has important conse- 
quences in the stability analysis of fine-to-coarse filtering. The 
presence of Pz(t), on the other hand, points to an apparent 
complication in analyzing our filter that motivates an alternate 
filtering algorithm in which it does not appear. Specifically, 
in standard Kalman filtering analysis, the error evolves as a 
state process itself without explicitly coupling to z(t) .  This is 
not the case here because of the explicit presence of P, (t) in 
(2.18) and in the backward model parameters (2.6)-(2.9) that 
enter into the fine-to-coarse prediction step (2.15). On first 
examination, this might not appear to be a new problem, as 
backward models for standard temporal models also involve 
the state covariance. The present situation, however, is not 
as simple, thanks to the new fusion step. If we examine 
the backward model (2.6)-(2.9) and the Kalman filter (2.10), 
(2.14), (2.17), we find that the upward dynamics for the error 
z ( t )  - k(tlt) are not decoupled from o(t)  unless P;'(t) = 0. 
Thus we apparently have a significant difference in analyzing 

these error dynamics. To overcome this, we consider a slight 
variation in the algorithm. 

Specifically, we define what we will refer to as the ML 
$Eter by setting the P;'(t) terms in (2.10)-(2.18) to zero. The 
resulting filter recursions are then given by the following. 

Measurement Update: 

PML (tTl t )  = A-' ( t ) P M L  (t It) A-T ( t )  
+A-'(t)B(t)A-T(t) (3.6) 

PGi(tlt+) = PGi(tlta) + PGi(tltP) (3.8) 

The key differences, here are the absence of a P , '  (t) term 
in (3.8) (compare to (2.18)) and the changes to the prediction 
step. 

As shown in Appendix A, the ML estimate of o(t)  based 
on Yt does indeed satisfy (3.1)-(3.8), arid standard results [4] 
on the relationship between ML and Bayesian estimates yield 

q t  It) = P(t  It)P&(t ( t ) ? M L  (t It) (3.9) 

P-'(tlt) = P&(tlt) + PLl(t) .  (3.10) 

Note that this provides us with an alternative RTS-like algo- 
rithm: we apply the fine-to-coarse ML filter (3.1)-(3.8) from 
the finest scale M up to the top of the tree, i.e., through 
the computation of i ~ L ( O 1 0 ) ,  P ~ ~ ( 0 1 0 ) .  We then incorporate 
prior information at the top of the tree, using (3.9), (3.10) to 
yield SS(O) = ?(OlO) and Ps(0) = P(0)O). The downward 
smoothing sweep is then computed by adapting (2.19)-(2.21) 
[using (3.9), (3.10)] so that the ML estimator computed in the 
ML filtering sweep is used in the smoothing step. Specifically, 
as shown in [9] 

i s ( t )  = i M L ( t l t )  + J(t)[?S(tT) - ? ~ ~ ( t T l t ) ]  (3.11) 

'Although, as discussed in [l] this step must proceed from fine-to-coarse 
and, hence, must use the backward model (2.6) for the prediction step. J ( t )  = P M L ( t  It)APT (t)PGi (tTI t ) .  (3.13) 
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Note that one can perform exactly analogous calculations 
(without the merge step) for standard Kalman filtering prob- 
lems, although in the present context we have the additional 
motivation of obtaining a form that yields an explicit error 
dynamic equation. Also as in the standard case, the ML 
filtering equations (3.1)-(3.8) cannot be directly used at the 
initial levels of recursion-i.e., for the finest level M and 
perhaps several levels above this-until the ML covariance 
is well defined. Rather the information form of this filter 
must be used, and this is also described in Appendix A. Note 
that as one might expect and as will be used in Section V, 
obsefiability plays a central role in guaranteeing that the emor 
covariance does become well defined. Also, in Appendix B we 
present an alternate viewpoint for the derivation of RTS-like 
algorithms, namely using the Hamiltonian equations for our 
estimation problem. As discussed in [6] [7], diagonalization 
of the Hamiltonian for standard state-space models leads 
to two-filter smoothing algorithms, while triangularization 
leads to the RTS algorithm. In our case, the structure of 
the tree adds a fundamental asymmetry to the Hamiltonian, 
which precludes diagonalization, but whose triangularization 
is possible, leading to the ML form of the RTS algorithm we 
have just described. 

Finally, let us show that we can use the ML filter to obtain a 
dynamic representation for the filtering error that is decoupled 
from the state dynamics itself. Specifically, from (3.1)-(3.8) 
we can derive the following ML filter recursion 

Equation (3.17) represents the filtering error as the state 
of such a fine-to-coarse system, as in (2.3), driven by white 
process and measurement noise. It is the stability of this 
system-in the scale-varying case-that is investigated in 
Section V. 

Iv. SYSTEM-THEORETIC CONCEPTS FOR 
FINE-TO-COARSE DYNAMIC MODELS 

In this section we introduce and investigate the several 
system-theoretic concepts for dynamic systems on dyadic trees 
that are needed in Section V for the asymptotic analysis of the 
fine-to-coarse filtering algorithm. In particular, we focus here 
on the scale-varying version of the fine-to-coarse model (2.2), 
(2.3), namely 

z(t)  = F(m(t) + l )[z( ta)  + z(tP)] 

+G(m(t) + l)[w(ta) + w(tP)] (4.1) 

Y(t> = C(m(t))z(t). (4.2) 

Since we focus on deterministic properties in this section, w(t) 
should be viewed as an input, and we have eliminated the 
measurement noise from (4.2). To simplify the discussion, we 
assume the F ( m )  is invertible for all m. 

A. Reachability and Observability 
The first property we wish to investigate is reachability for 

the model (4.1), i.e., the ability to drive the system from any 
fine-scale initial condition to any coarse-scale target. Note that 

?ML(tlt) = [I - KML(t)C(t)lPML(tlt+) 
. [PG; (t I ta) A-' (ta)? (ta Ita) 

+ PG1L(tltP)A-l(tP)?(tPlP)l 
+ K M L ( t ) Y ( t ) .  (3.14) the number of descendent nodes below any node t o  grows 

geometrically with scale: there are 2M "initial conditions" 
affecting z(t0) and at a scale M levels finer than z(to). 

Also, from (2.1) Specifically, let 

A z ( t )  = A-'(ta)z(ta) - A-'(ta)B(ta)w(ta) (3.15) 

with an analogous equation with ta replaced by tP,  and thus, 
using (3.8) 

Xm, to = [zT(tOaM), zT(toPaM-'), . .*zT(toPM)IT (4.3) 

W M , t o  [WT(tO(Y)WT(tOP) * .  . wT(toaM).  * * wT(toP M T  ) ]  . 
(4.4) 

X M ,  to contains the 2M points at the Mth level down that 
influence the value of % ( t o ) .  The vector W M , ~ ~  contains 
all inputs that influence z(t0) starting from initial condition 
XM, t o ,  i.e., w(t) in the entire subtree down to M levels from 
t o .  

As always, in studying reachability, we can set XM, to = 0, 
so that 

z ( t )  = PML(tlt+)[PG1L(tlta)z(t) + P&(tltP)z(t)l 
= PML(tlt+)[PG1L(tlta)A-'(ta)z(ta) 

+ PG1L(tltP)A-l(tP)z(tP)l 
- PML(tlt+)[P~1L(tJta)A-'(ta)B(ta)w(ta) 
+ P~1L(tltP)A-'(tP)B(tP)w(tP)I (3.16) 

and thus defining Z M L ( t l t )  = z ( t )  - ? M L ( t l t ) ,  we obtain 

Z M L ( t l t )  = [I - KML(t)C(~)]PML(tlt+) 

z(to> = G W M ,  t o  (4.5) 

Q A [ Q ( o ) * ( o ) Q ( l ) * ( l ) Q ( l ) ~ ( l ) ~ ~ ~  . [P~1L(t)ta)A-'(ta)Z(talta) 
* Q(M - 2) . . Q(M - 2) . *(A4 - 1)  . 9 ( M  - l)] (4.6) 
\ .. # 

2M -'times 2Mtimes 
+ P&(tltP)A-l (tP)Z(tP)Z(tPltl)l 

+ P& (t1tP)A-l (tP)B(tP)w(tP)I 
- PML (t It+) [ PGi (t  I ta)A-' (ta)B (ta)w( ta)  

- K M L ( t ) V ( t )  (3.17) * ( i )  q5(m(to), m(t0) + i)G(m(to) + i + 1) (4.7) 
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f$(m - 1, m) 42 F(m) .  (4.9) 

Let us define the reachability Gramian as 

R(t0, M )  i? 9GT 
M-1 

i=O 

* G(m(to) + i + 1) 
x GT(m(to) + i + 1) 
* m(t0) + i). (4.10) 

Since the rank of 9 equals the rank of P G T ,  we see that we 
can reach any z(t0) from any X M ,  to if and only if R(t0, M) 
is invertible. Also we will refer to the system (4.1) as being 
uniformly reachable if there exists y, MO > 0 so that 

R(t, MO) 2 y l  for all t. (4.11) 

Note that R(t0, M) is the standard reachability gramian 
for the system 

z(m) = h F ( m  + l).(m + 1) 

+ h G ( m  + l)u(m + 1). (4.12) 

The factor of in (4.12) does not effect either reach- 
ability or uniform reachability. Thus, the usual conditions 
for temporal state-space models apply here as well. For 
example, if F and G are constant, then reachability and 
uniform reachability are equivalent to the usual condition, i.e., 
rank [GIFGI ... Fn-lG] = n. 

It is interesting to note that the structure of the tree adds 
a substantial level of asymmetry to the analysis of coarse- 
to-fine and fine-to-coarse systems. For example, for standard 
temporal systems there are two closely related notions, namely 
reachability (i.e., the ability to reach any state from any state) 
and controllability (i.e., the ability to reach zero from any 
state). If the state dynamic matrix is invertible, these are 
equivalent, and this is also true for the fine-to-coarse model 
(4.1). This is not true, however, for the coarse-to-fine model 
(e.g., (2.1) or its scale-varying specialization). In particular, 
reachability for a coarse-to-fine model involves driving a 
single initial condition .(to) to any possible value of the 2 M -  
point set of values in XM, t o .  This is an extremely strong 
condition, in contrast to the condition of controllability, i.e., 
driving z(t0) to XM, to = 0. While this is of no direct interest 
to us here (and we refer the reader to [9] for details), the dual 
of this property is. 

Specifically, let us tum to the problem of determining the 
state given the knowledge of the input and output. In the 
standard temporal case, there are two notions-observability 
(i.e.. the ability to determine the initial condition) and 
reconstructibility (i.e., the ability to determine the final 
state)-which coincide if the state dynamic matrix is 
invertible. The asymmetry of the tree certainly leads to a 
substantial difference for us. For coarse-to-fine dynamics, 

observability (i.e., determining the single coarse state from 
the subtree of data beneath it) is a much weaker notion 
that reconstructibility (i.e., determining the 2M states at a 
fine scale based on the subtree of data above it). The exact 
opposite conditions hold for the fine-to-coarse model (4. l), 
(4.2) (i.e., reconstructing z(t0) based on the subtree of data 
below it is a much weaker condition than determining the 2M 
states in XM, to based on the data in the subtree above it). 
Fortunately for us, it is the weaker of these notions that we 
require here. Thus we focus on that case here and refer the 
reader to [9] for a full treatment. 

Let us define 

As always in studying reconstructibility and observability, 
superposition allows us to focus on the case when WM, to = 0 
in which case 

YM, to = X M X M ,  to (4.14) 

where the level-to-level partitioned form of X M  is 

. . .  
... ... O(1) ... O(1) 0 . . .  
... 0 O(1) . . . . . .  

0 0 . . .  0 0 ". 

0 O(2) . . '  O(2) 0 ". 
0 0 ... 0 0 . . .  0 O(2) ". 

1 1 :  O(2) 0 . . .  0 0 ". 

. . .  

. . .  

. . .  0 0 . ' .  

0 
0 

where 

O ( i )  A C(m(t0) + i)+(m(to) + i, m(t0) + M ) .  (4.16) 

That is, at level i, there are 2i measurements each of which 
provides information about the sum of a block of 2M-i  compo- 
nents of X M ,  t o .  Note that this makes clear that observability is 
indeed a very strong condition: since successively larger blocks 
of X M , ~ ~  are summed as we move up the tree, subsequent 
measurements provide no information about the differences 
among the values that have been summed. The situation for 
reconstructibility, however, is very different. Specifically, if 
W M , t o  = 0, 

.(to) = +(m(to), d t o )  + M ) l M X M , t o  (4.17) 

I M  = [IIII . .  . Ill (4.18) - 
ZMtimes 

and each I is an n x n identity matrix. 
Reconstructibility is equivalent to requiring that any vector 

in the nullspace of (4.14) is also in the nullspace of (4.17). 



Since +(ml, m2) is invertible, this is equivalent to being 
able to uniquely determine I M X M ,  i.e., the sum of the 
components of XM, t o  from YM, t o .  We then have Theorem 
4.1. 

Theorem 4.1: The system (4.1), (4.2) is reconstructible 
iff N ( X M )  C N(  I M ) ,  which is equivalent to the invertibility 
of the. reconstructibility gramian O(t0, M): 

Proofi We must show that N ( X M )  g N ( I M )  is equiv- 
alent to the invertibility of O(t0, M). Suppose first that 
O(t0, M) is not invertible. Then there exists y # 0 so 
that H M Z  = 0 where z = IGy. Since 1; is one-to-one, 
z # 0, which implies that I M Z  = I ~ l z y  # 0 contradicting 
N ( 7 - l ~ )  N( IM) .  If, on the other hand, N('HM) is not 
included in N(ZM), choose z such that X M X  = 0 and 
IMz # 0. Since mR(IG(t0))  e N ( ~ M ( t o ) ) ,  we can write 
3: = Gy + z where y # 0 and z d ( I ~ ) .  Substituting this 
into X M X  = 0 and left-multiplying by I M X G ,  we get 

A straightforward but tedious calculation [91 yields 

where is an nzn matrix. Equation (4.21) indicates that the 
column of form a block-eigenspace for 'H57-f~. Indeed, 
as discussed in detail in [9], X5'Flh.i is block diagonalized by 
the (vector) Haar transform, and (4.21) represents the coarsest 
scale component of that transform. If we now substitute (4.21) 
into (4.20) and use the fact that z d ( H ~ ) ,  we see that 
@ ( t o ) X T , ' H M @ t ( t o ) y  = o for some y # 0, implying that 
y T @ ( t o ) X L X ~ @ t ( t o ) y  = 0, contradicting the invertibility 
of O(t0, M). 0 

Also, (4.1), (4.2) is uniformly reconstructible if there exist 
S,Mo > 0 so that 

O(t,  MO) 2 SI for all t. (4.22) 

Note that O(t0, M) is the standard observability gramian for 
the system. 

1 1 
2 2 

~ ( m )  = -F(m+ l ) ~ ( m +  1) + -G(m+ l )u(m+ 1) (4.23) 

y(m) = &C(m>z(m) (4.24) 

Thus if F and C are constant, then (since F is assumed to 
be invertible) reconstructibility and uniform reconstructibility 
are equivalent to the usual condition for F and C to be an 
observable pair. 

B. Stability 
Next we examine asymptotic stability for the autonomous 

version of (4.1). Since a(t)  is influenced by a geomet- 
rically increasing number of nodes at the initial level 
and ( z ( t )  depends on {z(tcu), .(to)} or, altematively on 
{z(ta2),  z(tPa), z(tap), z(tpZ)}, etc., it is necessary to 
consider an infinite tree, with an infinite set of nodes at each 
level. Also, we adopt a change of notation to a more standard 
form by changing the sense of our index of recursion so that m 
increases as we move up the tree. In particular we arbitrarily 
choose a level of the tree to be our "initial" level, i.e., level 
0, we now index the points on this initial level as zi(0) for 
i E 2. Points at the mth level up from level 0 are denoted 
zi(m) for i E 2. The dynamical equation we then wish to 
consider is of the form 

Let Z ( m )  denote that set {zi(m),i E 2}, with p-norm 
inherited from the p-norms of its components: 

(4.26) 

Dejinition 4.1: A system is I,-exponentially stable if there 
exists 0 5 Q < 1 and C > 0 so that given any initial sequence 
Z(0) such that IlZ(O)l/, < 00 

From (4.25) we can immediately write the following. 

where the cardinality of Om,i is 2" and @(m, 0) is the 
transition matrix for F(m) .  

Theorem 4.2: The system (4.25) is Z,-exponentially stable 
if and only if 

where 0 5 y < 1 and K' is a positive constant, and 
1 1  
- + - = l .  
P Q  

(4.30) 

Proofi Let us first show necessity. Specifically, suppose 
that for any K > 0,O 5 y < 1, and M 2 0 we can find a 
vector z and an m 2 M so that 

Let z and m be such a vector and integer for some choice 
of K, 7, and M ,  and define an initial sequence as follows. Let 
po, p1, p z , .  . . be a sequence with 

W 

= 1. 
i = O  

(4.32) 

Then let 

Zi(0) = p jz ,  j 2 "  5 2 < ( j  + 1)2", 
j = 0, 1, * .  . . (4.33) 
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Note that By taking the p-norm of (4.28), using Cauchy-Schwarz and 

\ U P  

(4.38), we obtain 
(4.34) 

Thus, using (4.28), (4.31)-(4.34) 
IlZi"lP 5 Il@.(m, 0)11P2m1q 

(4.42) 
If we then assume that (4.29) holds this, together with (4.42) 

IIZ(m>II; = 2mpIl@(m, 0)ZII; 

1141:: > 2"PKPymP2-mP/Q 

yields 2-" II Z(0)  11; = 2mPKPy"P2-mP/9 

= KpympllZ(0)II;. (4.35) UP 

Hence for any K,O 5 7 < 1 and M 2 0 we can find Z(0) 

IIZ(4llP > Ky"llZ(0)IIP 

(4.43) 
and m 2 M so that 

(4.36) from which we conclude that the system is Zp-exponentially 
0 stable. 

Note that from this result we see that the Zp-exponential sta- 
bility of (4.25) is equivalent to the usual exponential stability 
of the system 

so that the system cannot be E,-exponentially stable. 
TO Prove Sufficiency we use two simple facts. First, (4.25) 

is exponentially stable if there exist 0 5 P < 1 and K > 0 
so that for each i 

c(m) = 2'lpF(m - l)<(m - 1). (4.44) 

(4.37) For example for p = 2, and F is constant, this reduces to all 

This follows by raising (4.37) to the pth power and summing 
over i. Secondly, for any sequence of vectors zi and any m 

. 
eigenvalues of F having magnitude less than (&/2). 

v. B O ~ S ,  sTABILI=, AND S ~ ~ Y - S T A ~  BEHAVIOR 
and j 

where Im, j = { j ,  j + 1 , .  . . , j + 2" - 1). TO show this, we 
use the fact 

(4.39) Ila + bllP 5 2'lq(Il4:: + Ilbll;)l/p 

together with induction on m. Note first that (4.38) is trivially 
true for m = 0. Suppose then that for all j (4.38) holds for 
a particular value of m. If we then sum xi over the two sets 
L,jl and Im, j2  where j ,  = j ,  + zm we get 

In this section we develop several system-theoretic results 
for our fine-to-coarse filtering algorithm, paralleling those for 
standard Kalman filtering, but with several key differences due 
to the structure of the dyadic tree. We focus in this section 
on the scale-varying case, i.e., the case in which all system 
parameters vary with scale only. In this case straightforward 
analysis of the filtering algorithm of Section I1 verifies that 
the fine-to-coarse Kalman filter parameters also depend only 
on scale, i.e. K( t )  = K(m(t)), P(tlt+) = P(m(t)lm(t)+), 
etc., resulting in the filter 

5(t( t )  = 5(tlt+) + K(m(t))[y(t) - C(m(t))?(tlt+)] (5.1) 

?(tTt) = F(m(t))?(tlt) (5.2) 

5(tlt+) = P(m(t)Im(t)+)P-l(m(t)lm(t) + 1) 

Then by substituting into (4.38) into (4.40) we get P(mlm + 1) = F(m + 1)P(m + llm + l )FT(m + 1) 
+ G(m + l)Q(m + l)GT(m + 1) (5.4) 

P-'(mlm) = 2P-l(mlm + 1) 

l l i€rm grm, Ijj/lj 
< 2("+1)1q (11 ( Xi I[ + 11 ( Xi I[) llP 

+ CT(m)R-'(m)C(m) - P,-l(m) (5.5) 

where we have combjned the update and fusion steps in (5.5). 
(4.41) Also F(m(t))  and Q(m(t)) are given by (2.7), (2.9) in the 

scale-varying case and 
- 

i € L ,  31 i€Zn, 32 

and applying (4.39), we find that (4.38) holds for m + l  as well. G(m) = A-l(m)B(m). (5.6) 



Furthermore, the remaining quantities needed in (5.1)-(5.2) are 

P-l(m(m+) = 2P-l(mlm + 1) - P,-'(m) (5.7) 

In the ML case, with P;l set to zero we obtain a further 
simplification: 

Similarly we have the following simplified form of (3.17) 
for the ML filter error: 

1 
PML(mlm+) = f M L ( m l m  + 1) (5.14) 

and (5.13), (5.14) together yield 

A. Bounds on the Error Covariance 
As is the case for standard Kalman filtering, [31, 181, reach- 

ability and reconstructibility conditions are key in deriving 
upper and lower bounds on the error covariances P(mlm) 
and P~~(mlm). The system to be analyzed is the following 
backward model, obtained directly from (2.6)-(2.9) in the 
scale-varying case: 

1 
+ZG(m(t) + l)[G(ta) + G(tp)] (5.16) 

together with the measurements (2.2). To begin, we define the 
gramians: 

M-1 - 
R(t, M )  4 2-i-'4(m(t), m(t) + i)G(m(t) + i + 1) 

i = O  

* Q(m(t) + i + l)GT(m(t) + i + 1) 
. 4T(m(t),  m(t) + 4 (5.17) 

M - 
O(t,  M )  e C2iJ(m( t )  + 2 ,  m(t) + M)CT(m(t)  + i) 

i=O 

. R-l(m(t) + i)C(m(t) + i) 
* 4(m(t) + i, m(t) + M )  (5.18) 

where the state transition matrix is given by 
(4.8)-(4.9). We also assume that A(m), A-'(m), B(m), 
P;'(m), C(m), R(m), and R-'(m) are bounded functions 
of m, implying that for any MO > 0 we can find a, P > 0 
so that 

- 
R(t, MO) 5 a1 for all t (5.19) 
O(t ,  MO) 5 PI for all t. (5.20) 
- 

Also uniform reachability corresponds to the existence of 
y, MO > 0 so that 

- 
R(t, MO) 2 71 for all t (5.21) 

while uniform reconstructibility corresponds to the existence 
of S, MO > 0 so that 

- 
O(t ,  MO) 2 S I  for all t. (5.22) 

These conditions coincide with those in Section IV-A 
with the replacement of F ( m )  by (1/2)F(m), G(m) by 
(1/2)G(m)Q1I2(m), and C(m) by R-l/'(m)C(m). To 
derive an upper bound for the optimal filter error covariance, 
the key is to make a comparison between the Riccati equation 
for our optimal filter and the Riccati equation for the standard 
Kalman filters. 

Lemm5.1 :  Let P(mlm) be the solution to the Riccati 
equation (5.4)-(5.5), and let P(mlm) satisfy the second Ric- 
cati equation 
- 
P(mlm + 1) = F(m + l )F(m + llm + l)FT(m + 1) 

+G(m + 1)Q(m + l )GT(m + 1) (5.23) 

- 
P-l(mlm) = P-l(mlm + 1) + CT(m)R-'(m)C(m). 

(5.24) 
Then 

- 
P-l(mlm) 5 P-ymlm). (5.25) 

Proofi First note that (5.5) can be rewritten as 

P-l(mlm) = P-'(mlm + 1) + CT(m)R-'(m)C(m) 
+DT(m)D(m) (5.26) 

since P(mlm + 1) 5 P'(m). Also, (5.23) and (5.24) charac- 
terize the error covariance for the optimal filter corresponding 
to the following standard filtering problem. 

z(m) = F ( m  + l)z(m + 1) + G(m + l)w(m + 1) (5.27) 

where w(m) and w(m) have covariances Q(m) and R(m), 
respectively. Equation (5.25) then follows by observing that 
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(5.26) characterizes the error covariance for the filtering prob- 
lem involving the same state equation but with augmented 
measurements 

(5.29) 

E[u(m)uT(m)] = [ f c m )  ;]. (5.30) 

0 
Theorem5.1: Suppose there exists p, 6, MO > 0 so that 

(5.20) and (5.22) are satisfied. Then there exists K > 0 
such that for all m at least MO levels from the initial level 

Proof: As we have discussed, (5.20) and (5.22) are 
equivalent to the existence of analogous uniform upper and 
lower bounds on the observability gramian for (5.27). Thus 
standard Kalman filtering results imply that there exists a 
K > 0 such that P(mlm) 5 KI or P-l(mlm) 2 K - ~ I .  

0 
We can easily apply the previous ideas to derive an upper 

bound for P ~ ~ ( m 1 m )  as well: Specifically note that the 
identical idea used in Lemma 5.1 yields an analogous result 
for the ML Riccati equation (5.11) and (5.12), i.e., 

P-l(mlm) 5 P&mlm) (5.31) 

where P(mlm) is the solution of a-Riccati equation as in 
(5.23) and (5.24), but with F and Q replaced by A-' and 
I, respectively. Since (5.20) and (5.22) are equivalent to 
analogous conditions on the usual observability gramian for 
the pair (R-1/2(m)C(m), A-'(m)), we obtain an upper 
bound on i)(mlm), which, with (5.31), yields the following 
theorem. 

Theorem 5.2: Suppose that there exists p, 6, MO > 0 so 
that (5.20) and (5.22) are satisfied. Then there exists IC' > 0 
such that for all m at least MO levels from the initial level 

We now turn to the lower bound for P(m1m). We begin 

Lemma 5.2: Let 

P(mlm) 5 K I .  

Lemma 5.1 then yields the desired result. 

PML(mlm) 5 K ' I .  

with the following lemma. 

- A 1  S(mlm) = -(P-l(mlm) - CT(m>R--l(m) 
2 

Proof: Straightforward calculations using (5.4), (5.5), 
(5.32), and (5.33) yield 

- 
S(mlm) = P-l(mlm + 1) 

= [T-'(mlm + 1) + G(m + 1) 
. Q(m + l )GT(m + 1)I-l. (5.36) 

Also, by substituting (5.32) into (5.33) and collecting terms 
we obtain 
- 
S(mlm + 1)  = 2F-T(m + l)S(m + llm + 1)  

. F-ym + 1)  + F-T(m + l)CT(m) 
* R-l(m)C(m)F-l(m + 1)  
- F - y m  + l)P,-l(m)F-l(m + 1).  (5.37) 

- Now we prove by induction that for all mS*(mlm) 2 
S(mlm). Obviously, S*(OlO) 2 S(Ol0). As an induction 
hypothesis we assume S*(i  + lli + 1) 2 s(i + 1Ji + 1). From 
(5.37), (5.34), and the fact that F-T(m+l)P;l(m)F-l(m+ 
1) 2 0, we get that 

s*-l(+ + 1 )  5 3-1(+) .  (5.38) 

Combining (5.35), (5.36) and (5.38) yields S*(ili) 2 S(i1Z). 0 
Theorem 5.3: Suppose that there exists a, y, MO > 0 so 

that (5.19) and (5.21) are satisfied. Then there exists L > 0 
such that for all m at least MO levels from the initial level 

Proof: From standard Kalman filtering results we know 
that the solution to the standard Riccati equation (5.34), 
(5.35) satisfies S*(mlm) 5 NI. For some N > 0 if the 
pair (QT/2(m)GT(m), F T ( m > )  is bounded and uniformly 
observable. By standard duality results and the boundedness 
of F, however, this is equivalent to- the boundedness and 
uniform reachability of (F(m),  G(m)Q1/2(m)), which in turn 
are equivalent to (5.19) and (5.21). Then from Lemma 5.2 we 
conclude that s(mlm) 5 NI, and (5.32) together with the 

0 
Using analogous arguments we can derive a lower bound 

- for P ~ ~ ( m l m ) .  Note that with the following definitions for 
S and (5.34), (5.35) where the matrices F and Q are replaced 
with the matrices A-l and I ,  respectively, Lemma 5.2 still 

P(mlm) 2 LI. 

boundedness assumption yields the desired result. 

C ( m )  + P;'(m)) (5.32) applies. 

- 
- S(mlm) A(P,;',(mlm) - CT(m)R-'(m)C(m)) (5.39) S(mlm + 1) !? F T ( m  + l)P-'(m + llm + 1) 2 

.F-l(m + 1). (5.33) 
- Consider also the Riccati equation S(mlm+ 1) 2 AT(m+ 1)PGi (m+ 1 Im+ 1)A(m+ 1) (5.40) 

Using the same argument as in the proof of Theorem 5.3 we S*(mlm + 1) = 2F-T(m + 1)S*(m + llm + 1) 
' F-'(m + 1)  + F-T(m + l )CT(m) find that 
. R-l(m)C(m)F-l(m + 1 )  (5.34) 1 

~(PGi(mlm) - CT(m)R-'(m)C(m)) 5 N I  (5.41) 
S*-l(mlm) = S*-l(mlm + 1)  

Y 

+G(m + l ) ~ ( m  + l ) G ~ ( m  + 1)  (5.35) 

- where S(Ol0) = S*(OlO). Then for all m, S*(mlm) 2. 
S(mlm). 

for N > 0, and the boundedness assumption then yields 
Theorem 5.4: Suppose that there exists a, y, MO > 0 so 

that (5.19) and (5.21) are satisfied. Then there exists L' > 0 
such that for all m P ~ ~ ( m l m )  2 L'I. 
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B. Filter Stability 

We first analyze the ML filter error dynamics (5.10). Using 
(5.19, we examine the asymptotic stability of the autonomous 
error dynamics 

C(t> = PIML(m(t)Im(t))P~1L(m(t)Im(t) + 1) 
.A-'(m(t) + 1)[C(ta) + E ( @ ) ] .  (5.42) 

Theorem 5.5: Suppose that (5.19)-(5.22) are satisfied. 
Then, the ML error dynamics (5.10), or equivalently (5.42) 
are Z2-exponentially stable. 

Proof: Based on Section IV-B, we wish to show that the 
following system is stable: 

z(m) = PML(mlm)P&mlm + -1) 

. hA- ' (m  + l)z(m + 1). (5.43) 

The analysis follows the line of reasoning used in [3]. Specif- 
ically, thanks to Theorem 5.2 and 5.4, we can define the 
following Lyapunov function 

V(z(m) ,  m) 2 zT(m)P&(mlm)z(m). (5.44) 

2(m) &A-'(m + l)z(m + 1). (5.45) 

Let us also define the following quantity. 

Substituting (5.12) into (5.44), using (5.43, and performing 
some algebra (see [9]) yields 

. (hz(m, - i") Jz 
- zT ( m)CT (m)R-' (m)C( m)z( m) . (5.46) 

Stability follows from (5.46) since 
(R-'12(m)C(m), A-'(m)) is uniformly observable. 0 

The full estimation error, after incorporating prior statistics, 
is given by 

Wit) = P(m(t)Im(t))(P~1L(m(t)Im(t))~Mr,(tlt) 
+P,-l(m(t))x(t)). (5.47) 

Thus Z ( t l t )  is a linear combination of the states of two 
upward-evolving systems, one for Z:ML(t l t )  and one for 
P;'(m(t))x(t). Note that since P(mlm) 5 P ~ ~ ( m l m )  

IIP(m(t)Im(t))P~1L(m(t)lm(t))~:ML(tlt)ll I Ilh4L(tlt)ll 
(5.48) 

and we already have the stability of the Z M L ( t l t )  dynam- 
ics from Theorem 5.5. Next, note that the covariance of 
P;'(m(t))x(t) is simply P;'(m(t)). By uniform reachability 
P;'(m(t)) is bounded above. Thus, since P(m(t)(m(t)) is 
bounded, the contribution to the error of the second term in 
(5.47) is bounded. 

C. Steady-State Filter 

In this section we focus on the constant parameter case and 
analyze the asymptotic properties of the filter. Specifically, 
we have the following theorem. 
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Theorem 5.6: Consider the following system defined on a 
tree. 

x(t)  = Ax(t7) + Bw(t) (5.49) 

y(t) = Cx(t)  + u( t )  (5.50) 

with independent white noises w and U having covariances I 
and R, respectively. Suppose that (A ,  B) is a reachable pair 
and that (C, A)  is observable. Then, the error covariance for 
the ML estimator, P ~ ~ ( m l m ) ,  converges as m + -cm to 
P,, which is the unique positive definite solution to 
- 

where 

K,  = F,CTR-l. (5.52) 

Moreover, the autonomous dynamics of the steady-state ML 
filter, i.e, 

1 
2 

e ( t )  = - ( I  - K,C)A-l(e(ta) + e(@)) (5.53) 

are 12-stable, i.e., (1/2)(I  - K,C)A-' has eigenvalues less 
than f i / 2  in magnitude. 

Proof: The convergence of P:~,(m(m) will be estab- 
lished if we can show that 1) P ~ ~ ( m l m )  is monotone- 
nonincreasing as m + -cc and 2) P~~(mlm) is bounded 
below. The second of these conditions comes directly from 
the assumptions of reachability and observability. The mono- 
tonicity of PM~(mlm) follows from an argument analogous 
to that used in the standard case (see [9]. Let P ,  denote the 
limit. It is straightforward to see that P ,  must satisfy (5.51), 
which is the steady-state version of the constant-coefficient 
ML Riccati equation (5.1 l), (5.12). Furthermore, by Theorem 
5.4, P ,  must be positive definite. 

We next show that if P ,  is any positive definite solution 
to (5.51), then each eigenvalue of ( f i /2)(I  - K,C)A-' 
has magnitude less than one, where K ,  is given by (5.52). 
The approach is a variation of the proof for the standard 
Riccati equations [8]. Specifically, suppose that there exists 
an eigenvalue with 1x1 2 1. Then letting x be the associated 
eigenvector of [ ( &/2) (I - K,  C) A-llT, some algebra using 
(5.5 1) yields 

xHF,x = l ~ l ~ ~ ~ ~ , ~  + I X ~ ~ ~ ~ B B ~ ~  + x H ~ , ~ ~ z ~ .  
(5.54) 

Since p, > 0 and 1x1 > 1, we conclude from (5.54) that 
x H B  = 0 and xHK,  = 0, the latter of which implies 
xHA-l = &XHx. These in turn imply that (A-I, B) is not 
a reachable pair which contradicts the assumption that (A, B) 
is reachable. 

Finally, suppose PI and P 2  are both positive definite and 
satisfy (5.51) and (5.52). Using (5.51) and (5.52) for both PI 

I 
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and P2 then yields fine-to-coarse dynamic models which we then used to analyze 
the asymptotic stability of the multiscale Kalman filter error 
dynamics and the steady-state convergence of the Riccati 
equation in the constant parameter case. As we have seen, the 
structure of the dyadic tree leads to differences in these system- 

' ($(' - ,C)A-l) + ' (5.55) theoretic concepts and results as compared to their counterparts 

for standard state-space models. 
As we discuss in [I], multiresolution methods of signal and 

image analysis are of considerable interest in research and 
in numerous applications. One of our objectives in [l], the 

theory [2] is to demonstrate that there is a substantial role 

Jz p1 - p2 = -(I- K ~ c ) A - ~ ( P ~  - pZ) 
2 

- K 2 ) ~  , o. (5.56) present paper, and our paper on multiresolution realization 

Since ( & / 2 ) ( 1 -  K1C)A-1 has eigenvalues within the unit 
circle, standard system theory yields PI - P2 2 0. Reversing 

0 
Let us comment on the asymptotic behavior of the Bayesian 

(5.57) 

Since the original state process is defined evolving from 
coarse-to-fine while the recursion of the ML filter is in the 
opposite direction, we need to be a bit careful about defining 
exactly what we mean by the asymptotic behavior of (5.57). 
Specifically, what we mean here is its asymptotic behavior at a 
finite value of m as both the bottom and top levels of the tree 
recede. Note that while the convergence of P,(m) depends 
upon the stability of A, the convergence of P;l(m) does not. 
Specifically, since (A, B) is reachable, it is easily seen (e.g., 
by examining the Riccati equation for P; (m) obtained from 
(2.5)) that P;l(m) does converge as m increases.' Thus, if 
we let S, denote that limiting value, then P(mlm) converges 

indices yields PZ - PI 2 0, proving uniqueness. 

error covariance P(mlm), which is given by 

P(mlm) = [P&(mlm) + P;1(m)]-! 

to [Pi1 + s p .  

VI. CONCLUSION 
In this paper we have analyzed in detail the new class 

of multiscale filtering and smoothing algorithms developed 
in [l], based on dynamic models defined on dyadic trees 
in which each level in the tree corresponds to a different 
resolution of signal representation. In particular, this frame- 
work leads to an extremely efficient and highly parallelizable 
scale-recursive optimal estimation algorithm generalizing the 
Rauch-Tung-Striebel smoothing algorithm to the dyadic tree. 
This algorithm involves a variation on the Kalman filtering 
algorithm in that, in addition to the usual measurement update 
and (fine-to-coarse) prediction steps, there is also a data fusion 
step. This in turn leads to a new Riccati equation. As we 
have seen, the presence of the data fusion step leads to 
a complication in filter and Riccati equation analysis, and 
this motivated the derivation in this paper of an alternative 
ML algorithm which leads in tum to a variation on the 
RTS procedure corresponding to the triangularization of the 
Hamiltonian desciiption of the optimal smoother. 

This paper focuses on the development of system-theoretic 
concepts of reachability, reconytructibility, and stability for 

ZThe two extreme cases are: A stable, so that PF1 ( m )  -+ Pp1 where P= 
is the positive-definite solution of the algebra Lyapunov equation, and A-' 
stable, so that P;'(m) + 0. 

for the systems and control community in this field. Indeed 
it is our opinion that there are a broad range of opportunities 
for further work in both theory and application (including, 
for example, exploring the relationship between the methods 
and framework described here and well-known singular and 
regular perturbation methods of multiple time scale analysis), 
and it is our hope that our work will help to stimulate activity 
in this fascinating and important area. 

APPENDIX A 

To verify that the ML estimate for z(t)  given Yt does 
indeed satisfy (3.1)-(3.8), note first that ? ~ ~ ( t T l t )  is the 
ML estimate based on Yt together with one additional "mea- 
surement," namely the dynamical relation (2. l) between x ( t )  
and x(t7). Using results on recursive ML estimation [4], 
? . ~ ~ ( t T l t )  is, equivalently, the ML estimate of z(t7) given 
the "measurement" 

where the estimation error 2 . ~ ~ ( t l t )  is zero-mean, independent 
of w(t ) ,  and with covariance P ~ ~ ( t l t ) .  Equations (3.5)-(3.6) 
follow directly from this. The fusion step [(3.7), (3.8)] then 
follows from standard results [4] on the fusion of ML estimates 
based on disjoint data sets with independent noises, since 
Z M L ( t ( t a )  is the ML estimate based on yt, together with 
(2.1) evaluated at ta, while ? ~ ~ ( t l t P )  is based on y t p  and 
(2.1) evaluated at tP. The update step (3.1)-(3.4 follows 
from the standard result on incorporating a new, independent 
measurement. 

Also, straightforward calculations using (3.1H3.10) lead to 
an information filter version of the ML algorithm. Specifically, 
let S denote the inverse covariance and z the state of the 
information filter, i.e., 

.2(tlt+) = S( t l t+)? .~~( t l t+) ,  etc.. (A.3) 

Then we have the following algorithm 

2(tlt) = ;@It+) + CT(t)R-'( t)y(t)  (A.4) 
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2(tlt+) = i(t1ta) + i(tltP) 

S(tlt) = s(tlt+) + cT(t)R-l( t )C(t)  

(A.6) 

( ~ . 7 )  

with respect to the state x, the noise w, and the Lagrange 
multiplier A T .  

As in the standard case, after we set to zero the derivatives 
of H with respect to x, w, and A, we find that we can eliminate 
w by expressing it as a function of A, yielding the following 
optimal smoothing equations for m(t) = 1, . . . , M :  

J ( t )  = { I  - B(t)[BT(t)S(t(t)B(t) + 11-1 
*BT ( t )S(  t 1 t )  } A (  t )  (A.8) 

A ( t )  = AT[A(ta) + A(tp)] - CTR-lC2,(t) + C'R-ly(t) 
S( tT1t) = JT( t )S ( t  I t )A( t )  (A.9) (B.2) 

S(tjt+) = S(t1ta) + S(tltP). (A. 10) 
k s ( t )  = A2,(t?) + BBTA(t) 03.3) 

and the boundary conditions3 

2,(0) = [pz(o) + c T R - ~ c I - ~  

Note the simple form of the fusion step (AS), (A.lO), 
emphasizing that the independent sets of information are 
being combined. Also this algorithm is well defined when 
S is singular, i.e., when insufficient information has been 
collected for x to be estimable. In particular, initialization of 
the algorithm is given by 

.{AT[A(Oa) + A(OP)] + CTR-'y(0)} (B.4) 

A( t )  = 0, m(t) = M + 1. 03.5) i(tlt+) = 0, S(t(t+) = 0 

(A.11) Note that, as in the standard case, the dual dynamics for 

case, thanks to the asymmetry of the tree, the dual dynamics 
(B.2) are in the form of fine-to-coarse dynamics which merge 
values as we progress up the tree. Also, by organizing the 
dynamics (B.2), (B.3) we can obtain the Hamiltonian form of 
the dynamics for m(t) = 1 , .  . . , M ;  

A ~ ] , + O , ~ ] t , + O p ~ ] t p =  [ 0 ] (€3.6) 

for all t such that m(t) = M. 

ing step 
In addition, f d e r  algebra yields the corresponding smooth- Nn in the direction to the x-dynamics. In this 

&(t) = J(t)&(tT) + J(t)A-'(t)B(t)BT(t)&(tlt) (A.12) 

Ps(t) = J(t)P,(tT)JT(t) + J(t)A-l(t)B(t)BT(t)JT(t)  

0 (A. 13) 
where this is initialized at the top of the tree with 

&(O) = Ps(O)2(0lO) (A. 14) CTR-'y(t) 

P,(O) = [S(OlO) + P&3(0)]-1. (A. 15) 

APPENDIX B 

In this appendix we introduce and analyze the Hamiltonian 
form of the smoothing equations on the tree. For simplicity 
we focus on the constant parameter case. The extension to 
the general case is straightforward. Specifically, consider the 
model (2.1), (2.2) defined on an M-level tree with a single 
root node 0, with A, B, C constant and where w and w are 
white-noise processes with variances I and R respectively. The 
Hamiltonian form of the smoothing equations can be derived 
either using the complementary model construction (e.g., as in 
[6]) or, as we do here, by computing the x(t)-trajectory that 
has maximum posterior probability. Specifically, with x(0)  
having prior mean of 0 and prior covariance of Pz(0), by 
straightforward adaptation of standard results we find that the 
optimal smoothed estimate 2s ( t )  is obtained by minimizing 

where A, O,, Op can be determined from (B.2) and (B.3). 
While the dynamics strongly resemble the standard Hamil- 

tonian equations, there is a substantial difference due to the 
fact that the number of points double as we move from one 
level to the next finer level, i.e., (B.6) involves one node t 
but two nodes, ta and tP, at the next level. This asymmetry 
in the number of variables in (B.6) makes it impossible to 
"diagonalize" the Hamiltonian, i.e., to decouple the dynamics 
and boundary conditions into separate upward and downward 
dynamics driven by y(t), and thus there is no two-filter 
algorithm as in [6] and [7]. We can, however, triangularize 
these dynamics and boundary conditions to obtain an RTS 

Specifically, drawing inspiration from [6] and [7], consider 
algorithm. 

a t-varying transformation 

Tm = ['; i ] .  
+ C ; w T ( t ) w ( t )  

+ - 1 xT (O>P,-l(O) x (0) 

+ CA' ( t ) ( x ( t )  - Ax(t7)  - Bw( t ) )  

(B.l) where we wish to transform the Hamiltonian dynamics and 
boundary conditions into a form in which there is an upward 
recursion for xu followed by a downward recursion for 2,. 
Note that we are free to multiply (B.6) on the left by an 

t # O  

2 

3Note that, as is p i c a l l y  dode in the standard case, we have added an 
t#O (A4 + 1)st level to A(t) to simplify the fonn of the boundary condition. 
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invertible matrix, Sm(+ Thus, we wish to transform the 
dynamics 

where, the desired forms of the various matrices are as follows: 

(B.lO) 

(B.ll) 

and after some algebra [9] we find L1 = L3 = 0, LZ = L4 = 
-A,N = -BBT, 

P,-l = P&(mlm + 1) (B. 14) 

with the boundary condition P i 1  = 0, 

rm = P & ( ~ I ~ )  (B.15) 

and Fm = -JT(m) and Gm = AJ-l(m), where J is defined 
in Section II. 

Equations (B.9)-(B. 13) yield a fine-to-coarse filtering re- 
cursion given by 

z”(t) = JT(m( t )  + l)[z”(ta) + z”(t/?)] + CTR-ly(t), 
m(t) = 0, ... , M - 1 (B.16) 

with initial conditions 

~ “ ( t )  = CTR-’y(t), m(t) = M .  (B.17) 

Also, using the boundary conditions at t = 0 yields the initial 
condition 

~ J O )  = [ro + P ; ~ ( O ) ] - ~ Z ~ ( O )  (B.18) 

for the downward recursion, which we obtain directly from 
(B.9HB. 13): 

?$(t) = J(m(t))?,(t) + J(m(t))A-lBBTz”(t). (B.19) 

Finally, comparing (B.16)-(B.19) to (A.4)-(A. 14), we see that 
this triangularization yields the information filter form of the 
ML RTS algorithm. 
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