
Frugal Hypothesis Testing and Classification

by

Kush R. Varshney

B.S., Electrical and Computer Engineering,
Cornell University, 2004

S.M., Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2006

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

June 2010

c© 2010 Massachusetts Institute of Technology
All Rights Reserved.

Author:

Department of Electrical Engineering and Computer Science
February 11, 2010

Certified by:

Alan S. Willsky
Edwin Sibley Webster Professor of Electrical Engineering

Thesis Supervisor

Accepted by:

Terry P. Orlando
Chair, Department Committee on Graduate Students



2



Frugal Hypothesis Testing and Classification

by Kush R. Varshney

Submitted to the Department of Electrical Engineering and Computer Science
on February 11, 2010, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

The design and analysis of decision rules using detection theory and statistical learn-
ing theory is important because decision making under uncertainty is pervasive. Three
perspectives on limiting the complexity of decision rules are considered in this the-
sis: geometric regularization, dimensionality reduction, and quantization or clustering.
Controlling complexity often reduces resource usage in decision making and improves
generalization when learning decision rules from noisy samples. A new margin-based
classifier with decision boundary surface area regularization and optimization via varia-
tional level set methods is developed. This novel classifier is termed the geometric level
set (GLS) classifier. A method for joint dimensionality reduction and margin-based
classification with optimization on the Stiefel manifold is developed. This dimension-
ality reduction approach is extended for information fusion in sensor networks. A new
distortion is proposed for the quantization or clustering of prior probabilities appearing
in the thresholds of likelihood ratio tests. This distortion is given the name mean Bayes
risk error (MBRE). The quantization framework is extended to model human decision
making and discrimination in segregated populations.
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Chapter 1

Introduction

DECISION making under uncertainty is a task faced in a variety of domains. One
specific decision-making task is to determine which of two or more alternatives

known as hypotheses or classes is exhibited in measurements. Basketball referees decide
whether a player is committing a foul [159], geologists and geophysicists decide whether
a layer of the earth’s crust is composed of sandstone or shale, communication system
receivers decide what symbol was transmitted, art connoisseurs decide who painted
a painting [100], missile defense systems decide whether a target is a warhead, and
physicians decide whether a patient has breast cancer [127]. In all of these cases and
many other such examples, the decision is based on imperfect measurements, but is also
based on a utility or loss function, and on prior information or models of the world.

The typical formulation for modeling and designing optimal decision rules appeals
to the maximization of expected utility [20, 67, 136, 162, 174], equivalently the minimiza-
tion of expected loss. The simplest loss function is the error rate. A unit cost is accrued
if the decision is for one hypothesis, but a different hypothesis is true. In practice, loss
functions may take all sorts of other factors into account. The form of decision rules is
typically a partition of the measurement domain using decision boundaries. According
to Weirich [215], maximization of expected utility is the guiding principle for decision
making even when precise probabilities or utilities are unavailable.

Proponents of frugal engineering and constraint-based innovation favor the view
that limitless material resources are not usually available, and even if they are, they
might actually be a hindrance; frugalness can often be a blessing [80]. Reporting on
cognition research, Gladwell [84] writes, “in good decision making, frugality matters.
... [E]ven the most complicated of relationships and problems ... have an identifiable
underlying pattern. ... [I]n picking up these sorts of patterns, less is more. Overloading
the decision makers with information ... makes picking up that signature harder, not
easier.”

In general, decision-making systems are limited by a scarcity of resources, whether
manifested as finite training data, time constraints, processing constraints, or mem-
ory constraints. With finite training data, the structural risk minimization principle
from statistical learning theory formalizes the idea that the complexity of decision
rules should be controlled to find an optimal complexity level that neither overfits nor
underfits [206]. Sensor networks are often used for decision making and are severely
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18 CHAPTER 1. INTRODUCTION

power-limited which means that they are also limited in computation and especially
communication [36]. Human decision makers have information processing limits as
well, known in the economics literature as bounded rationality [46, 168].

The topic covered in the thesis is frugal decision making, specifically the decision-
making tasks of hypothesis testing and classification. Three modes of frugality in deci-
sion making are studied: frugality with the surface area of decision boundaries, frugality
with the dimensionality input into decision rules, and frugality with the precision of
prior probabilities used in constructing decision rules. All three modes can be viewed
as limits on the decision boundary. Frugalness with surface area is directly expressed
in terms of the decision boundary. Frugalness with dimensionality amounts to limiting
decision boundaries to be cylinders or generalized cylinders in the domain of measure-
ments. Frugalness with prior probability precision limits the set of possible decision
boundaries to a discrete set.

Limiting the surface area of decision boundaries is applied to control complexity
and thereby improve performance in the context of the supervised learning of classifiers.
This leads to a novel margin-based classifier whose regularization term is the surface
area of the decision boundary; the new regularization term implies a new inductive
bias for learning [130]. The proposed classifier is given the name geometric level set
classifier. It is competitive in performance to classifiers from the literature and gives
the best performance on certain datasets. The training of this classifier is approached
using variational level set methods [141].

Mapping measurements to lower-dimensional features is generally termed dimen-
sionality reduction. The mapping may be either linear or nonlinear. Many approaches
to dimensionality reduction, such as principal component analysis [148, 177], do not
contain decision making in their formulation. In this thesis, dimensionality reduction
mappings are chosen specifically for supervised margin-based classification. Dimension-
ality reduction is a way to improve classification performance, and also to conserve
resource usage when taken to sensor network settings. The approach to learning both a
classifier and a dimensionality reduction mapping jointly includes optimization on the
Stiefel manifold [60, 188].

The prior probability factors into the optimal decision rule of Bayesian hypothesis
testing [221]. Quantizing or clustering this prior probability diminishes its precision.
Quantization and clustering are not usually examined in problems of decision making.
The specific problem considered in the thesis leads to a new distortion criterion, the
mean Bayes risk error. Quantization or clustering the prior probability reduces re-
source usage, and in certain setups, clustering improves decision-making performance.
This mode of frugality provides a model for human decision making, and an extension
predicts social discrimination in segregated human populations.

Examples throughout the thesis illustrate the ‘less is more’ paradigm of decision
making when decision rules are determined on the basis of a finite set of noisy data
samples. With complexity measured through a decision boundary surface area con-
straint, through reduced-dimensionality, or through the number of clusters, decision-
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making quality first improves with an increase in complexity but then gets worse with
too much complexity, implying that throwing resources at the problem is not always
advantageous.

� 1.1 Overview of Thesis Contributions and Methods

This section walks through the remaining chapters of the thesis, previewing the contri-
butions and methods of the thesis as well as giving a glimpse of its organization.

� 1.1.1 Chapter 2: Background

Preliminary material related to five mathematical topics is presented in Chapter 2.
These five topics are:

• detection theory with a focus on Bayesian hypothesis testing,

• statistical learning theory with a focus on supervised margin-based classification,

• variational level set methods,

• linear and nonlinear dimensionality reduction, and

• quantization theory and k-means clustering.

The first two of these set the stage of decision making under uncertainty, the problem
considered in the thesis. The remaining three topics enter into the thesis to support
the three modes of frugality mentioned. Variational level set methods are used to
learn classifiers with limited surface area. Dimensionality reduction is used to limit the
dimensionality of the input space for classifiers. Quantization and clustering are used
to limit the precision of prior probabilities.

The detection theory section states the hypothesis testing problem with two classes,
formulates the Bayesian objective to hypothesis testing known as the Bayes risk, and
derives the optimal decision rule that minimizes Bayes risk—the likelihood ratio test.
The section also derives properties of the complementary receiver operating character-
istic and discusses the Bayesian hypothesis testing problem with more than two classes.

The statistical learning theory section states the supervised classification problem
and discusses the structural risk minimization principle, including generalization bounds
based on Vapnik–Chervonenkis (VC) dimension and Rademacher complexity [13, 99,
206]. It also details a particular formulation for supervised classification known as
margin-based classification which includes the popular support vector machine (SVM)
[99, 176].

The section on variational level set methods describes the types of partitioning
problems that can be solved using those methods: energy minimization problems with
region-based and boundary-based terms [141]. It also discusses the gradient descent
optimization framework known as curve evolution or contour evolution, and implemen-
tation using level set functions [143].
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The dimensionality reduction section gives a general formulation for linear dimen-
sionality reduction as a constrained optimization problem on the Stiefel manifold of
matrices and discusses gradient descent-based optimization that respects the Stiefel
manifold constraint [60, 188]. Zonotopes, types of polytopes that are intimately related
to linear dimensionality reduction matrices, and their properties are discussed [37, 65].
Nonlinear dimensionality reduction, especially the Isomap method and its formulation
through a data-dependent kernel function, is also described [19, 193].

The final section of the chapter focuses on quantization theory [79]. The quanti-
zation problem is stated first; k-means clustering is a version of quantization based
on samples from a distribution rather than on the distribution itself. Optimality con-
ditions for a minimum distortion quantizer are given along with the Lloyd–Max and
k-means algorithms, which are used to find minimum distortion quantizers and cluster-
ings respectively [118, 125]. Finally, it is discussed that the distortion in quantization
is monotonically decreasing in the number of quantization levels.

� 1.1.2 Chapter 3: Surface Area of the Decision Boundary

The primary contribution of Chapter 3 is the introduction of the geometric level set
(GLS) classifier to statistical learning. Geometric approaches and analysis are closely
tied to statistical learning [92, 111, 185]. The GLS classifier takes geometric partial
differential equation ideas [142, 173] and applies them to the supervised classification
problem. A key feature of the GLS classifier is regularization through the penalization
of decision boundaries with large surface area.

The first section of the chapter formulates the optimization problem of the GLS
classifier with two classes. The objective to be minimized is composed of an empirical
risk term containing a margin-based loss function applied to the training data and a
term that is the surface area of the decision boundary weighted by a regularization
parameter. The section also details how this geometrically-regularized margin-based
loss objective can be minimized using the Euler–Lagrange descent approach known
as curve evolution or contour evolution, implemented using level set methods [141].
Examples of classifier learning are presented on illustrative datasets.

The second section extends the GLS classifier from binary classification to multicat-
egory classification. Margin-based classifiers are typically extended for multicategory
classification using the one-against-all construction [163]. The proposal in this section
is a new alternative to one-against-all that requires many fewer decision functions: log-
arithmic rather than linear in the number of classes. It is based on a binary encoding
scheme enabled by the representation of decision boundaries with signed distance func-
tions, a type of level set function [214]. An illustrative example is presented in this
section as well.

Level set methods are nearly always implemented with a pixel or voxel grid-based
representation in their incarnations as methods of solution for problems in physics and
image processing. This implementation strategy is only tractable in domains with di-
mensionality up to three or four. The third section describes a level set implementation
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amenable to higher-dimensional spaces, which are routinely encountered in decision
making, through radial basis functions [78, 216]. The decision-making performance of
the GLS classifier with radial basis function implementation is shown as a function
of the weight given to the surface area regularization term on benchmark datasets,
illustrating the structural risk minimization principle. The performance of the GLS
classifier is also compared to several popular classifiers on several benchmark datasets.
The GLS classifier is competitive with other classifiers and performs the best on one
dataset.

Statistical learning theory analysis of the new GLS classifier is presented in the
fourth section. Specifically, the VC dimension is measured empirically as a function of
the weight on the surface area regularization term [205]. Additionally, the Rademacher
complexity is characterized analytically [13, 121]. The GLS classifier is also shown to
be consistent [116]. The Rademacher complexity analysis and the consistency analysis
rely on finding the ǫ-entropy [106] of GLS classifiers, which is done in the section.

Variational level set methods are known to be fairly flexible in the types of objectives
that can be included. The inductive bias of the GLS classifier, caused by the prefer-
ence for small decision boundary surface area, is included in a straightforward manner.
Another geometric inductive bias that may be included for classification is proposed
in the fifth section of the chapter. An additional regularization term that promotes
feature subset selection is proposed. This term is small when the decision boundary
is an axis-aligned cylinder in a few dimensions of the input measurement space. This
additional regularization term is just one example of geometric preferences that can be
encoded in the variational level set framework.

� 1.1.3 Chapter 4: Dimensionality of the Classifier Input

The main contribution of Chapter 4 is the development of a method for joint dimen-
sionality reduction and margin-based classification. Dimensionality reduction of data
may be performed without having an eye toward what the final use of the reduced-
dimensional data is. However, if it is known beforehand that dimensionality reduc-
tion is to be followed by classification, then the reduced-dimensional space should be
optimized for classification. The specific classifiers considered in the chapter are non-
parametric margin-based classifiers that do not rely on strong assumptions about the
data likelihood functions, and include the GLS classifier proposed in Chapter 3 and the
SVM. The formulation is extended to sensor networks, a setting in which dimensionality
reduction has the dual advantages of improving classification performance and reducing
the amount of communication.

Decision functions of margin-based classifiers are typically defined in the input mea-
surement space of full dimensionality. The first section in this chapter formulates a clas-
sifier in which the decision function is defined in a reduced-dimensional linear subspace
of the input space. The classifier decision function and the linear subspace are learned
jointly based on the training data in order to minimize a margin-based loss objective.
The linear subspace is specified through a matrix on the Stiefel manifold, the set of
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matrices that have orthonormal columns [188]. Therefore, the training objective is a
functional of both the decision function and the dimensionality reduction matrix. The
learning is approached through coordinate descent minimization: alternating minimiza-
tions for the matrix with the decision function fixed, and for the decision function with
the matrix fixed. Some illustrative examples are shown with both the GLS classifier
and the SVM. Classification performance as a function of the reduced dimensionality is
given for several benchmark datasets with the SVM. The best classification performance
for a ten thousand-dimensional dataset is achieved by reducing to twenty dimensions
because dimensionality reduction helps prevent overfitting.

The second section considers nonlinear dimensionality reduction rather than linear
dimensionality reduction. The interest is in finding low-dimensional nonlinear mani-
folds rather than linear subspaces on which the classifier is defined. A formulation is
proposed that represents the nonlinear manifold using a data-dependent kernel func-
tion arising from Isomap, a manifold learning technique that does not have supervised
classification as its objective [19, 193]. With the kernel function representation, opti-
mization of the manifold for margin-based classification amounts to finding a matrix
on the Stiefel manifold as in the linear case. Therefore, the coordinate descent for joint
linear dimensionality reduction and margin-based classification also applies to nonlinear
dimensionality reduction. An illustrative example is shown in which nonlinear dimen-
sionality reduction is superior to linear dimensionality reduction. A comparison of
classification performance as a function of the reduced dimension between linear and
nonlinear dimensionality reduction is also given for several benchmark datasets.

Rademacher complexity and consistency are studied in the third section of the
chapter [13, 116]. As in Chapter 3, the analysis builds upon the ǫ-entropy of the set of
classifiers [106], but here with the additional factor of dimensionality reduction. This
additional factor is accounted for through an analysis of zonotopes, which are polytopes
that are convex, centrally-symmetric, and whose faces are also centrally-symmetric in all
lower dimensions [37, 65]. The mapping of a high-dimensional hypercube to a reduced-
dimensional space by a matrix on the Stiefel manifold is a zonotope.

The fourth section concentrates on the application of sensor networks. Prior work
on dimensionality reduction for classification has not studied sensor network appli-
cations [117, 150, 151, 202]. Also, prior work on sensor networks has not focused on
supervised classification, particularly in combination with dimensionality reduction
[38, 194, 203, 213]. The joint dimensionality reduction and classification formulation
has a clear interpretation in the sensor network setting. Sensor nodes take measure-
ments and perform dimensionality reduction, whereas a fusion center makes the deci-
sion. Communication emanating from sensors is of the reduced dimension rather than
the measured dimension, resulting in savings of resources. With a single sensor and
fusion center, the coordinate descent minimization procedure developed without the
sensor network application in mind is unchanged and training can be performed with
communication related to the reduced dimension rather than the full dimensionality of
the measurements. An extension is described for tree-structured multisensor fusion net-
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works in which the training involves the passing of simple messages between nodes, with
the amount of communication related to the reduced dimension rather than the input
dimension. A simple physical model of sensor networks is studied and classification per-
formance as a function of power consumption due to communication is examined. The
structural risk minimization principle appears in this setting as well, again indicating
that more resource usage does not necessarily mean better performance.

� 1.1.4 Chapter 5: Precision of the Prior Probabilities

The main contribution of Chapter 5 is the proposition of minimum mean Bayes risk er-
ror (MBRE) quantization/clustering of prior probabilities for hypothesis testing. The
decision rule that minimizes Bayes risk is the likelihood ratio test with a threshold
incorporating the costs of different types of errors and incorporating the prior proba-
bilities of the hypotheses [221]. Over a population of many objects with different prior
probabilities, keeping track of the prior probabilities of each individual object consumes
resources. Moreover, only an estimate of these prior probabilities may be observable.
Quantization or clustering the prior probabilities over the population serves to reduce
resource usage. When only an estimate of the priors is available, clustering also serves to
improve decision-making performance. Studies in psychology suggest that humans cat-
egorize objects in populations [129]; quantization and clustering are one way to model
categorization.

The first section states the problem of quantizing the prior probabilities appearing
in the threshold of the likelihood ratio test when these prior probabilities come from
a probability density function describing a population. A new distortion function for
quantization is proposed, given the name Bayes risk error. This distortion function
measures the difference in Bayes risk between a decision rule utilizing a quantized prior
probability in the threshold and one utilizing the true prior probability in the threshold.
Convexity and quasiconvexity properties, among others, are derived for the new distor-
tion function. Conditions satisfied by locally minimum MBRE quantizers are derived
and shown to be sufficient conditions [200]. Examples of MBRE-optimal quantizers
are shown under different population distributions and Bayes costs, with Gaussian like-
lihood functions. Minimum MBRE quantizers are also compared to minimum mean
absolute error quantizers in the quantization of prior probabilities for hypothesis test-
ing.

High-rate or high-resolution analysis asymptotically characterizes quantization when
the number of quantization cells is large [89]. The second section of the chapter looks
at the high-rate quantization regime for minimum MBRE quantizers. The Bayes risk
error, unlike absolute error and squared error for example, may not be expressed as
a function of the difference between the quantized and unquantized values. Many
distortion functions that model human perception are nondifference distortion functions
as well. The high-resolution quantization analysis in the section is based on a locally
quadratic approximation that draws from analysis used with perceptual distortions
[113]. The examples from the first section are analyzed in the high-rate regime.
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In contrast to having direct access to the population distribution, the third section
looks at learning about the population from a finite number of noisy measurements per
object for a finite number of objects. Imperfect observations of the hypothesis are used
to estimate the prior probabilities of an object. These estimates across the population
are then clustered using k-means with the Bayes risk error distortion. The cluster cen-
ter assigned to an object is used in the likelihood ratio test threshold. This empirical,
data-based model shows elements of overfitting and the structural risk minimization.
Beyond a certain number of clusters, decision-making performance gets worse. This is
in contrast to quantization with known population distribution, where increasing the
number of quantization levels always improves decision-making performance. Addition-
ally, the more observations per object, the better the decision-making performance and
the greater the optimal number of clusters.

Decision making by humans on populations of humans is studied in the fourth sec-
tion. Arrests by police officers, verdicts by jurors, and foul calls by referees are examples
of the type of situation under consideration. Human decision makers have information
processing limits and tend to categorize [129], a phenomenon captured by quantization
or clustering. Regardless of resource or processing limitations, clustering is the right
thing to do when noisy estimates of the prior probabilities of population members are
available to the decision maker. Humans tend not only to categorize members of a
population into groups related to how likely they are to commit a crime or foul, but
also to categorize based on social indicators such as race [122]. Separate categorization
based on race is modeled in this section by separate quantizers for different racial popu-
lations. The model predicts higher Bayes risk when the decision maker and population
member are of different races than when they are of the same race. This is due to more
quantization levels being allocated to the same race population because of differences
in the amount of inter-race and intra-race societal interaction [59]. High Bayes risk
can result from either high missed detection probability, high false alarm probability,
or both. A high false alarm probability on population members of a different race than
the decision maker occurs when the cost of a missed detection is much higher than the
cost of a false alarm. Many econometric studies indicate that human decision makers
do have a higher false alarm probability on members of a different race than mem-
bers of the same race, rather than a significantly higher missed detection probability
[8, 53, 159, 190]. The quantization model proposed in this section explains these studies
if the decision maker is precautionary, i.e. the cost of a missed detection is higher than
the cost of a false alarm for the decision maker.

� 1.1.5 Chapter 6: Conclusion

The final chapter provides a summary of the thesis contributions, in particular that the
three discussed notions of frugalness in decision making: surface area regularization,
dimensionality reduction, and quantization/clustering share the commonality that some
complexity reduction improves generalization when learning from samples and decreases
the usage of resources.
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Several directions of future research are laid out in the chapter as well. One such
direction is model selection, including determining when the GLS classifier should be
used. Another direction is extension to learning scenarios such as online learning,
semisupervised learning, and Neyman–Pearson learning. Also discussed are further
possible developments within the MBRE quantization and clustering framework, the
nonlinear dimensionality reduction framework, and in the sensor network application.
It is suggested that Markov chain Monte Carlo sampling be used to characterize the
posterior probability of GLS classifier decision rules and get a sense of classifier uncer-
tainty. Some ideas regarding broader application of methods based on variational and
geometric partial differential equations are presented.

� 1.2 Notes

Two-dimensional grid-based examples shown in Chapter 3 and Chapter 4 are imple-
mented using the Level Set Methods Toolbox for Matlab by Barış Sümengen, available
at http://barissumengen.com/level_set_methods. Mutual information estimates
used to initialize dimensionality reduction matrices in Chapter 4 are calculated using
the Kernel Density Estimation Toolbox for Matlab by Alex Ihler and Mike Mandel,
available at http://www.ics.uci.edu/~ihler/code.

Portions of the material in this thesis have been previously presented at the 2008
IEEE International Conference on Acoustics, Speech, and Signal Processing [207], the
2008 IEEE Workshop on Machine Learning for Signal Processing [209], and the 2009
International Conference on Information Fusion [210]. Additionally, portions of the ma-
terial appear in or have been submitted to the IEEE Transactions on Signal Processing
[208, 212] and the Journal of Machine Learning Research [211].

This work was supported in part by a National Science Foundation Graduate Re-
search Fellowship, by Shell International Exploration and Production, Inc., by a MURI
funded through AFOSR Grant FA9550-06-1-0324, and by a MURI funded through ARO
Grant W911NF-06-1-0076.

http://barissumengen.com/level_set_methods
http://www.ics.uci.edu/~ihler/code
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Chapter 2

Background

THIS background chapter describes several topics in applied mathematics, probabil-
ity, and statistics that form the theoretical foundation for the thesis. Five topics

are covered: detection theory, statistical learning theory, variational level set meth-
ods, dimensionality reduction, and quantization theory. The theories of detection [221],
statistical learning [206], and quantization [79] grew out of the fields of electrical en-
gineering and computer science, but are fairly abstract. Variational level set methods
were first developed to solve differential equations for applications in physics [143], and
were further developed when transferred to applications in image processing and com-
puter vision [141, 142]. Dimensionality reduction has been a part of data analysis and
statistics since their beginnings [69, 95, 96, 148], but is now becoming essential in a world
awash in data and possible in a world with abundant computational resources. Entire
courses may be devoted to each of these five topics individually; the treatment in this
chapter is limited in scope to that required for the remainder of the thesis.

Typeface is used throughout the thesis to distinguish random variables from samples,
and also to distinguish scalars, vectors, matrices, and sets. Random variables have
sans-serif typeface whereas samples have serif typeface. Vectors and matrices have bold
typeface whereas scalars do not. Vectors are in lowercase and matrices are in uppercase.
Sets are indicated through calligraphic typeface.

� 2.1 Detection Theory

Detection theory—the theory of distinguishing classes of objects or states of the world
based on noisy measurements—forms the central thread linking the entire thesis to-
gether. The focus of the thesis is on constraints introduced into decision making (for
good or for bad); the background material on detection gives the limits on the best pos-
sible performance in decision making if there are no constraints, as well as the structure
of the decision rule that achieves this best possible performance.

The optimal Bayes risk defined in Section 2.1.2 is used to define classifier consistency
later. Decision rules proposed in the thesis are shown to be consistent in Section 3.4 and
Section 4.3. The optimal Bayes risk is also used to define a novel distortion function
for quantization in Chapter 5. The likelihood ratio test, the optimal decision rule, and
its associated notion of a sufficient statistic described in Section 2.1.3 motivates the

27
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development of dimensionality reduction techniques in Chapter 4. The structure of
the likelihood ratio test is retained, but its inputs are constrained in the decision rules
of Chapter 5. The complementary receiver operating characteristic and its properties
discussed in Section 2.1.4 are used to develop properties of the distortion function
for quantization in Chapter 5. Detection with more than two classes, mentioned in
Section 2.1.5, forms a baseline for comparison to a novel multicategory classification
method proposed in Section 3.2.

� 2.1.1 Binary Hypothesis Testing Problem Statement

Consider an object that is in one of two states, the hypotheses y = −1 and y =
+1, having prior probabilities p

−
= Pr[y = −1] and p+ = Pr[y = +1] = 1 − p

−
.

In the hypothesis testing problem, the task is to determine the state of the object
using an imperfect observation x ∈ Ω ⊂ R

D, which is also known as the measurement
or input data. The measurements and the hypotheses are related by the likelihood
functions fx|y(x|y = −1) and fx|y(x|y = +1). The prior probabilities and the likelihood
functions together specify the joint probability density function of the measurements
and hypotheses fx,y (x, y).

A function ŷ(x), known as the decision rule, is designed to determine the hypothesis
from the measurement.1 It uniquely maps every possible x to either −1 or +1. Equiv-
alently, ŷ partitions the measurement space Ω into two regions: one corresponding to
ŷ = −1 and the other corresponding to ŷ = +1.

There are two types of errors, with the following probabilities:

pF = Pr[ŷ(x) = +1|y = −1],

pM = Pr[ŷ(x) = −1|y = +1],

where pF is the probability of false alarm and pM the probability of missed detection.
The complement of the probability of missed detection is the probability of detection
pD = 1 − pM .

� 2.1.2 Bayes Risk

In the Bayesian formulation to the hypothesis testing problem, the decision rule ŷ is
chosen to minimize the Bayes risk R = E[c(y = i, y ′ = j)], an expectation over a
nonnegative cost function c(i, j). This gives the following specification for the Bayes
optimal decision rule ŷ∗(x):

ŷ∗(·) = arg min
f(·)

E[c(y , f(x))], (2.1)

where the expectation is over both y and x. The optimal decision rule has Bayes risk
R(ŷ∗). The cost function values are denoted as follows: c

−−
= c(−1,−1) (the cost of a

1Note that in this thesis, only deterministic, nonrandomized decision rules are considered.
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true alarm), c
−+ = c(−1, +1) (the cost of a false alarm), c+−

= c(+1,−1) (the cost of
a missed detection), and c++ = c(+1, +1) (the cost of a detection).

The Bayes risk, which is the decision-making performance, may be expressed in
terms of the error probabilities as:

R = [c+−
− c

−−
]p

−
pF + [c

−+ − c++ ]p+pM + c
−−
p
−

+ c++p+ . (2.2)

Often, no cost is assigned to correct decisions, i.e. c
−−

= c++ = 0, which is assumed in
the remainder of this thesis. In this case, the Bayes risk simplifies to:

R(p
−

) = c+−
p
−
pF (p

−
) + c

−+ [1 − p
−

]pM (p
−

). (2.3)

In (2.3), the dependence of the Bayes risk R and error probabilities pF and pM on p
−

has
been explicitly noted. The error probabilities depend on p

−
through the decision rule

ŷ∗. The function R(p
−

) is zero at the points p
−

= 0 and p
−

= 1 and is positive-valued,
strictly concave, and continuous in the interval (0, 1) [49, 218, 221].

When measuring performance by probability of decision error, pE, both types of
errors take equal weight and c

−+ = c+−
= 1; the Bayes risk further simplifies to:

R = pE = p
−
pF + p+pM . (2.4)

� 2.1.3 Likelihood Ratio Test

The decision rule that minimizes the Bayes risk, the solution to (2.1), is now derived
following the derivation of [221].

Consider an arbitrary, fixed decision rule ŷ and its Bayes risk R = E[c(y , ŷ(x))].
Using iterated expectation, this is equivalent to

R = E [E[c(y , ŷ(x))|x = x]] (2.5)

=

∫

Ω
Ř(ŷ(x),x)fx(x)dx, (2.6)

where Ř(y,x) = E[c(y , y)|x = x]. Because fx(x) is nonnegative, the minimum of (2.5)
occurs when Ř(ŷ(x),x) is minimum at each point x ∈ Ω.

Looking at a particular point x = x̌, if the decision rule is such that ŷ(x̌) = −1,
then

Ř(−1, x̌) = c
−+ Pr[y = +1|x = x̌]. (2.7)

If the decision rule is such that ŷ(x̌) = +1, then

Ř(+1, x̌) = c+−
Pr[y = −1|x = x̌]. (2.8)

Between the two possible decision rules at x̌, the one with smaller Ř is optimal. The
overall optimal decision rule is then a comparison between (2.7) and (2.8) for all x ∈ Ω,
which can be written:

c
−+ Pr[y = +1|x = x]

ŷ∗(x)=+1

⋚
ŷ∗(x)=−1

c+−
Pr[y = −1|x = x]. (2.9)
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The decision rule (2.9) may be rearranged as

Pr[y = +1|x = x]

Pr[y = −1|x = x]

ŷ∗(x)=+1

⋚
ŷ∗(x)=−1

c+−

c
−+

. (2.10)

Applying the Bayes theorem yields the likelihood ratio test

fx|y(x|y = +1)

fx|y(x|y = −1)

ŷ∗(x)=+1

⋚
ŷ∗(x)=−1

p
−
c+−

(1 − p
−

)c
−+

. (2.11)

The function on the left side of (2.11) is known as the likelihood ratio:

Λ(x) =
fx|y(x|y = +1)

fx|y(x|y = −1)
.

The right side of (2.11) is the threshold:

η =
p
−
c
+−

(1 − p
−

)c
−+

.

The likelihood ratio test may also be expressed as follows:

ŷ∗(x) = sign(Λ(x) − η). (2.12)

This form reveals that there is a decision function ϕ(x) = Λ(x) − η whose zero level
set is a decision boundary. Whenever ϕ(x) is below zero, the decision is −1, and
whenever ϕ(x) is above zero, the decision is +1. The likelihood ratio function is a
mapping from D dimensions to one dimension. It is a scalar sufficient statistic for
detection. Regardless of D, the dimension of the observations, applying the likelihood
ratio results in dimensionality reduction that is lossless, i.e. R(ŷ∗(x)) = R(ŷ∗(Λ(x)))
where ŷ∗ takes an appropriate-dimensional argument.

� 2.1.4 Complementary Receiver Operating Characteristic

As seen in (2.11), the optimal decision rule, and consequently the two types of error
probabilities, depends on the ratio of the costs c

−+ and c+−
. Different ratios of costs

correspond to different values of the threshold η ∈ [0,∞). The threshold parameterizes
different operating points of the decision rule with different error probability pairs
(pF , pM ). The curve traced out on the pF –pM plane as η is varied from zero to infinity
is the complement of what is known as the receiver operating characteristic, which
is the curve traced out on the pF –pD plane. This complementary receiver operating
characteristic (CROC) takes values (pF = 0, pM = 1) when η → ∞ and (pF = 1, pM =
0) when η → 0. Several important properties of the CROC arising from the likelihood
ratio test are derived, again following the derivations of [221].
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The expression for the derivative dpM (η)
dη is now obtained. First, define the regions

R+ and R
−

, which are subsets of Ω, as follows:

R
−

(η) = {x|Λ(x) − η < 0} ,

R+(η) = {x|Λ(x) − η > 0} .

As an integral over the region R
−

, the probability of missed detection is:

pM (η) =

∫

R
−

(η)
fx|y(x|y = +1)dx (2.13)

=

∫

R
−

(η)
Λ(x)fx|y (x|y = −1)dx (2.14)

=

∫

Ω
step(−Λ(x) + η)Λ(x)fx|y (x|y = −1)dx (2.15)

= E [step(−Λ(x) + η)Λ(x)|y = −1] , (2.16)

where (2.14) is obtained using the definition of the likelihood ratio, (2.15) is obtained
by introducing a unit step function allowing the integration to be over the entire space,
and (2.16) is obtained via the definition of expectation. Treating the likelihood ratio
as a random variable,

pM (η) = E [step(−Λ + η)Λ|y = −1] (2.17)

= −
∫ ∞

η
ΛfΛ|y(Λ|y = −1)dΛ. (2.18)

Then, taking the derivative of (2.18) using Leibniz’ rule, the derivative of the probability
of missed detection with respect to the threshold is:

dpM

dη
= ηfΛ|y(η|y = −1). (2.19)

Note that dpM

dη is nonnegative since η and the conditional density are both nonnegative.
Thus pM (η) is a nondecreasing function.

A similar procedure may be followed to obtain the derivative dpF

dη .

pF (η) =

∫

R+ (η)
fx|y (x|y = −1)dx (2.20)

=

∫

Ω
step(Λ(x) − η)fx|y (x|y = −1)dx (2.21)

= E [step(Λ(x) − η)|y = −1] . (2.22)

Again taking the likelihood ratio to be a random variable,

pF (η) = E [step(Λ − η)|y = −1] (2.23)

=

∫ ∞

η
fΛ|y (Λ|y = −1)dΛ, (2.24)
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and differentiating yields
dpF

dη
= −fΛ|y (η|y = −1). (2.25)

Here note that dpM

dη is nonpositive and that pF (η) is nonincreasing.
Based on the derivatives of the two error probabilities with respect to the threshold,

the derivative of the CROC is simply

dpM

dpF
=
dpM

dη

dη

dpF
=
ηfΛ|y(η|y = −1)

−fΛ|y(η|y = −1)
= −η. (2.26)

Since η is always nonnegative, the derivative of the CROC is always nonpositive and
therefore the CROC is a nonincreasing function. It may additionally be shown through
an argument relying on randomized decision rules that the CROC is a convex function
[221]. In summary, the key properties discussed in this section are that the CROC is a
convex, nonincreasing function from (pF = 0, pM = 1) to (pF = 1, pM = 0); that pM(η)
is nondecreasing; and that pF (η) is nonincreasing.

� 2.1.5 M-ary Hypothesis Testing

The discussion thus far has focused on the case in which there are two hypotheses.
This section considers hypothesis testing problems with M > 2 hypotheses and y ∈
{1, 2, . . . ,M}. There are M prior probabilities pi = Pr[y = i] and likelihood functions
fx,y (x|y = i) for i = 1, 2, . . . ,M . The decision rule ŷ(x) is a mapping from Ω ⊂ R

D to
{1, 2, . . . ,M} and partitions Ω into M regions.

The optimization criterion for the Bayes risk optimal decision rule is the same for
M -ary hypothesis testing as for binary hypothesis testing: the expression (2.1); however
with general M , there are M2 costs cij , with i = 1, 2, . . . ,M and j = 1, 2, . . . ,M .

The M -ary Bayes optimal decision rule relies on the comparison of likelihood ra-
tio functions like the binary decision rule, but there are M − 1 such likelihood ratio
functions. These likelihood ratios are:

Λi(x) =
fx,y(x|y = i)

fx,y(x|y = 1)
, i = 2, . . . ,M (2.27)

The decision rule, derived in the same way as the binary rule (2.11), is:

ŷ(x) = arg min
i∈{1,2,...,M}







p1c1i +
M
∑

j=2

pjcijΛj(x)







. (2.28)

� 2.2 Statistical Learning Theory

Statistical learning has two main branches: generative learning and discriminative learn-
ing. Generative learning builds probabilistic models of objects or variables starting from
a parametric or nonparametric prior model that is updated using a finite data sample.
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Discriminative learning encompasses all of the methods and theory associated with de-
termining decision rules based on a finite data sample. Much of the theoretical work
is concerned with developing performance bounds, whereas the work of a more applied
nature aims to develop methods that yield small error empirically. One of the cen-
tral problems in statistical learning is supervised classification, which is described in
Section 2.2.1.

A key theoretical point from discriminative learning that recurs throughout the
thesis is the structural risk minimization principle, discussed in Section 2.2.2. When
learning from finite data, inserting constraints into decision making may be beneficial
because the constraints provide regularization and prevent overfitting. One of the ways
to measure the complexity of a classifier function class, the Rademacher complexity,
described also in Section 2.2.2, is characterized for the classifiers proposed in the thesis
in Section 3.4 and Section 4.3. The support vector machine described in Section 2.2.3 is
one example from the class of margin-based classifiers, which is described in general in
Section 2.2.4. The geometric level set classifier proposed in Chapter 3 is a new margin-
based classifier. The dimensionality reduction techniques proposed in Chapter 4 have
margin-based classification as their objective. Examples in that chapter use the support
vector machine as well as the new geometric level set classifier.

� 2.2.1 Supervised Classification Problem Statement

Supervised classification is the archetypal problem of discriminative learning. Super-
vised classification is like hypothesis testing (discussed in Section 2.1) in many respects,
but with one key difference. In hypothesis testing, the joint probability density function
of the measurements and hypotheses is available when constructing the decision rule,
but it is not available in supervised classification. Instead, a finite number of samples
from the probability distribution are given.

Specifically, the training dataset {(x1, y1), . . . , (xn, yn)} drawn according to fx,y (x, y)
is given, with measurement vectors xj ∈ Ω ⊂ R

D and class labels yj ∈ {−1, +1}. The
goal is to find the decision rule or classifier ŷ : Ω → {−1, +1} that minimizes the prob-
ability of error Pr[y 6= ŷ(x)], known as the generalization error. Note that in learning ŷ,
the true objective to be minimized is the generalization error, but a direct minimization
is not possible since the joint distribution of x and y is not available. Also note that
in the typical formulation, although not necessary, the two types of errors have equal
costs and the generalization error is equivalent to pE given in (2.4). The generalization
error of a classifier learned from n samples is denoted R(ŷ(n)).

In practice, the classifier ŷ is selected from a function class F to minimize a loss
function of the training data.2 The general form of the supervised classification problem
is an expression like the Bayes risk expression (2.1), but based on samples rather than

2In Bayesian hypothesis testing, no restriction is imposed on ŷ; it can be any function.



34 CHAPTER 2. BACKGROUND

0F1 F2 F3 F4 F5 F6

cl
as

si
fic

at
io

n 
er

ro
r

Figure 2.1. The structural risk minimization principle states that for nested function spaces F1 ⊂
F2 ⊂ · · · , the training error (blue line) tends to decrease and the complexity (black line) increases.
The generalization error (red line) is the sum of the training error and complexity term and has an
intermediate function space complexity at which it is minimum.

distributions:

ŷ(·) = arg min
f(·)∈F

1

n

n
∑

j=1

ℓ(yj , f(xj)). (2.29)

Loss functions ℓ in classification may, and in practice do, take into account factors
besides the label output provided by the decision rule.

As the cardinality of the training dataset grows, the generalization error of a con-
sistent classifier converges to R(ŷ∗), the Bayes risk of the likelihood ratio test (2.11).
Specifically, the sequence R(ŷ(n)) converges in probability to R(ŷ∗) and equivalently,
the sequence R(ŷ(n)) − R(ŷ∗) converges to zero in probability.

� 2.2.2 Structural Risk Minimization

Since the decision rule ŷ is learned based on finite training data, but is applied to and
evaluated on new unseen samples x ∼ x, it is critical to consider the phenomenon of
overfitting. A decision rule that yields perfect classifications on the training data may
or may not have small generalization error. This will depend on whether the classifi-
cation algorithm has locked on to the vagaries of the samples in the training set or on
to the regularities that reoccur in a different sample. The structural risk minimization
principle states that a classifier with good generalizability balances training error and
complexity [206]. Classifiers with too much complexity overfit the training data. Clas-
sifier complexity is a property of the function class F . The structural risk minimization
principle is illustrated schematically in Figure 2.1.

The generalization error can be bounded by the sum of the error of ŷ on the train-
ing set, and a penalty that is larger for more complex F . One such penalty is the
Vapnik–Chervonenkis (VC) dimension CVC(F) [206] and another is the Rademacher
complexity CRad

n (F) [13, 107]. The definition of VC dimension is based on the concept
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of shattering. A set F can shatter n points if it contains decision rules producing all
different combinations of labelings of the points. For example, the set of linear decision
boundaries in R

2 can shatter n = 3 points but cannot shatter n = 4 points. The VC
dimension CVC(F) is the maximum number of points F can shatter [99, 206].

The definition of Rademacher complexity is based on independent random variables
sj taking the values −1 and +1 with equal probability; these random variables are
known as Rademacher random variables. Then, with

ĈRad
n (F) =

2

n
E



sup
f∈F

∣

∣

∣

∣

∣

∣

n
∑

j=1

sjf(xj)

∣

∣

∣

∣

∣

∣



 , (2.30)

where the expectation is over the sj , the Rademacher complexity CRad
n (F) is E[ĈRad

n (F)]
with the expectation over xj .

With probability greater than or equal to 1− δ, a bound on the generalization error
utilizing the VC dimension for a specified decision rule ŷ is [99, 206]:

R(ŷ) ≤ 1

n

n
∑

j=1

I(yj 6= ŷ(xj)) +

√

CVC(F) (ln(2n/CVC(F)) + 1) − ln(4δ)

n
, (2.31)

where I is an indicator function. The first term on the right side of (2.31) is the training
error and the second term is complexity. With probability greater than or equal to 1−δ,
Bartlett and Mendelson [13] give a similar bound on the generalization error based on
Rademacher complexity:

R(ŷ) ≤ 1

n

n
∑

j=1

I(yj 6= ŷ(xj)) +
CRad

n (F)

2
+

√

− ln(δ)

2n
. (2.32)

Considering nested function spaces F1 ⊂ F2 ⊂ · · · , those with larger index are
larger sets and have higher complexity. As the training objective in (2.29) does not
change, but the constraint set gets larger with higher classifier complexity, the training
error tends to decrease with an increase in classifier complexity. Both bounds reflect the
structural risk minimization principle. As a function of increasing classifier complexity,
the training error decreases and the complexity term increases; the generalization error
is the sum of the two, and thus there exists an optimal intermediate classifier complexity
that balances the two terms and minimizes generalization error [206].

� 2.2.3 Support Vector Machine

One of the most popular classification methods used today is the support vector ma-
chine (SVM). The specification of the SVM classifier is based on the concept of margin
maximization. The SVM is derived in this section following the derivations of [99, 176]
to a large degree, starting with the SVM with linear decision boundary.
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To begin, consider a classifier with a linear decision boundary that passes through
the origin: ŷ(x) = sign(θTx). The D-dimensional parameter vector θ specifies the
decision boundary hyperplane θTx = 0. Due to the special encoding yj ∈ {−1, +1},
yjθ

Txj > 0 if a classification is correct, and yjθ
Txj < 0 if incorrect. If the classifier

is correct on all n samples in the training set,3 then there exists a γ > 0 such that
yjθ

Txj ≥ γ, for all j = 1, . . . ,n.
The value yjθ

Txj/‖θ‖ is equal to the distance from the decision boundary to the
sample xj . This distance value is known as the margin of sample xj . The SVM is
based on the idea that a classifier with good generalization has large margin. The
SVM objective is to maximize the minimum margin among the training samples while
preserving the constraint that they are all correctly classified. Mathematically, the
SVM optimization problem is:

maximize γ/‖θ‖
such that yjθ

Txj ≥ γ, j = 1, . . . ,n. (2.33)

Maximizing γ/‖θ‖ is equivalent to minimizing 1
2‖θ‖2/γ2, yielding:

minimize 1
2‖θ‖2/γ2

such that yjθ
Txj ≥ γ, j = 1, . . . ,n, (2.34)

which can also be written

minimize 1
2‖θ/γ‖2

such that yj (θ/γ)T xj ≥ 1, j = 1, . . . ,n. (2.35)

The optimization problem (2.35) contains only the ratio θ/γ, and the decision rules
ŷ based on θ/γ and on θ are equivalent. Thus, γ can be set to one without loss of
generality, resulting in:

minimize 1
2‖θ‖2

such that yjθ
Txj ≥ 1, j = 1, . . . ,n. (2.36)

The problem (2.36) is a quadratic program that may be solved efficiently to give the
linear SVM classifier ŷ(x) = sign(θTx).

The classifier function class F may be enlarged slightly to also include linear deci-
sion boundaries that do not pass through the origin via an offset parameter θ0. The
optimization problem in this case is:

minimize 1
2‖θ‖2

such that yj

(

θTxj + θ0
)

≥ 1, j = 1, . . . ,n, (2.37)

3The classifier can only be correct on all training data if the set is linearly separable. The requirement
that the classifier be correct on all training samples is relaxed later in this section.
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giving the decision rule ŷ(x) = sign(θTx + θ0).
The training dataset is not usually linearly separable in real-world problems, render-

ing the formulation (2.37) infeasible, and prompting a formulation with slack variables.
With slack variables ξj , the relaxation to (2.37) is:

minimize 1
2‖θ‖2 + 1

λ

n
∑

j=1

ξj

such that yj

(

θTxj + θ0
)

≥ 1 − ξj , j = 1, . . . ,n

ξj ≥ 0, j = 1, . . . ,n. (2.38)

The parameter λ represents the tradeoff between violating the margin constraint and
maximizing the minimum margin. A training sample xj is incorrectly classified if its
corresponding slack variable ξj is greater than one. If the slack variable is between zero
and one, then the sample is within the margin, though still correctly classified. Notably,

ξj =

{

1 − yj

(

θT xj + θ0
)

, yj

(

θTxj + θ0
)

≤ 1

0, otherwise
(2.39)

= max
{

0, 1 − yj

(

θT xj + θ0
)}

. (2.40)

Again, once the optimization is performed, the SVM classifier is ŷ(x) = sign(θTx+ θ0).
The problem (2.38) with slack variables can be dualized with variables α1, . . . ,αn

to yield the dual optimization problem [99, 176]:

maximize
n
∑

j=1

αj − 1
2

n
∑

j=1

n
∑

j′=1

αjαj′yjyj′x
T
j xj′

such that αj ≥ 0, j = 1, . . . ,n

αj ≤ 1
λ , j = 1, . . . ,n

n
∑

j=1

αjyj = 0. (2.41)

The dual formulation is also a quadratic program that can be solved efficiently. The
primal variables in terms of the dual variables are:

θ =

n
∑

j=1

αjyjxj, (2.42)

and consequently the SVM classifier is

ŷ(x) = sign





n
∑

j=1

αjyjx
T
j x + θ0



 . (2.43)
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Many datasets encountered in practice are not well-classified by linear classifiers,
and thus an extension of the SVM to nonlinear classifiers is desirable. Consider a
vector of Dnonlin nonlinear functions of the input data x denoted φ(x). Treat that
Dnonlin-dimensional space linearly, replacing x by φ(x) in (2.41), which results in:

maximize
n
∑

j=1

αj − 1
2

n
∑

j=1

n
∑

j′=1

αjαj′yjyj′φ(xj)
T φ(xj′)

such that αj ≥ 0, j = 1, . . . ,n

αj ≤ 1
λ , j = 1, . . . ,n

n
∑

j=1

αjyj = 0. (2.44)

Only the inner product φ(xj)
T φ(xj′), and not φ(xj) separately, appears in (2.44).

Kernel functions K(xj ,xj′) are a means to compute the inner product without having
to compute the full vector of nonlinear functions, thus providing computational savings.
The equivalent optimization problem with a kernel function is:

maximize

n
∑

j=1

αj − 1
2

n
∑

j=1

n
∑

j′=1

αjαj′yjyj′ K(xj ,xj′)

such that αj ≥ 0, j = 1, . . . ,n

αj ≤ 1
λ , j = 1, . . . ,n

n
∑

j=1

αjyj = 0. (2.45)

The classifier can also be expressed in terms of the kernel function in a manner like
(2.43) as:

ŷ(x) = sign





n
∑

j=1

αjyj K(x,xj) + θ0



 . (2.46)

Note that because of the kernel function, the dimensionality of the nonlinear space
Dnonlin does not play a role in (2.45) and (2.46). Consequently, even very high-
dimensional spaces of nonlinear functions may be considered. Also, kernel functions
may be specified directly without explicitly specifying the nonlinear functions φ. Cer-
tain directly-specified kernel functions correspond to implicitly infinite-dimensional vec-
tors of nonlinear functions. An example of such a kernel is the radial basis function
(RBF) kernel:

K(xj ,xj′) = exp

(

−‖xj − xj′‖2

2σ2

)

, (2.47)

with scale parameter σ.
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� 2.2.4 Margin-Based Classification

The SVM is an example of a larger category of classifiers known as margin-based clas-
sifiers. When a classifier has the form ŷ(x) = sign(ϕ(x)) and the decision function ϕ is
chosen to minimize the functional:

L(ϕ) =

n
∑

j=1

ℓ(yjϕ(xj)) + λ J(ϕ), (2.48)

it is known as a margin-based classifier. The value yϕ(x) is the margin; it represents
the distance that x is from the classifier decision boundary ϕ(x) = 0. The function ℓ
is known as a margin-based loss function. Examples of such functions are the logistic
loss function:

ℓlogistic(z) = log
(

1 + e−z
)

and the hinge loss function:

ℓhinge(z) = max{0, 1 − z}.

Also J, the second term on the right side of (2.48) with nonnegative weight λ, represents
a regularization term that penalizes the complexity of the decision function [12, 116].

To see how the SVM fits the form of margin-based classifiers, write the constrained
SVM optimization problem (2.38) in unconstrained form making use of the slack variable
expression (2.40), giving:

minimize 1
2‖θ‖2 + 1

λ

n
∑

j=1

max
{

0, 1 − yj

(

θTxj + θ0
)}

, (2.49)

and also

minimize
n
∑

j=1

max
{

0, 1 − yj

(

θTxj + θ0
)}

+ λ
2‖θ‖2. (2.50)

With ϕ(x) = θTx + θ0, ℓ being the hinge loss function, and J(ϕ) = 1
2‖θ‖2, the linear

SVM is in the form of a general margin-based classifier. The nonlinear SVM has ϕ(x) =
θT φ(x)+θ0 =

∑n
j=1 αjyjK(x,xj)+θ0. Another example of margin-based classification

is logistic regression, which uses the logistic loss function and the same regularization
term as the SVM.

� 2.3 Variational Level Set Methods

Variational methods are predicated on the belief that the state and dynamics of a phys-
ical system are the optimum of some energy function or energy functional. Variational
level set methods are concerned with finding (through optimization) the state and dy-
namics of interfaces such as the boundary between a flame and the air, or soap bubbles.
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They are not restricted, however, to only being used with physical systems and physi-
cal energies. One may define a system and appropriate energy to be optimized in any
application domain.

Section 2.3.1 details the type of energy functionals appropriate for optimization
through variational level set methods. A margin-based classifier with a new regulariza-
tion term, the surface area of the decision boundary, is proposed in Chapter 3 whose
objective fits the requirements of Section 2.3.1. Section 2.3.2 describes gradient de-
scent flow minimization of energy functionals, a procedure known as contour evolution,
and Section 2.3.3 discusses implementation of contour evolution using the level set
representation. Contour evolution implemented with level sets is derived for the new
margin-based classifier in Chapter 3.

� 2.3.1 Region-Based and Boundary-Based Functionals

Consider a bounded domain Ω ⊂ R
D containing the region R. The rest of the domain

is Ω \ R̄, where R̄ is the closure of R. The boundary between the two regions is the
contour C = ∂R. The region R may be simply connected, multiply connected, or
composed of several components. The contour C is a curve when D = 2, a surface when

D = 3, and a hypersurface in higher dimensions. Points in Ω are x =
[

x1 · · · xD

]T
.

This section describes typical energy functionals L(C) considered in variational level
set methods: region-based functionals and boundary-based functionals. The goal is to
minimize L(C).

Region-based functionals are integrals over either the region R or the region Ω \ R̄
of a function gr(x). Since R depends on C, these integrals are functions of C. The
functionals are:

L(C) =

∫

R
gr(x)dx (2.51)

and

L(C) =

∫

Ω\R̄
gr(x)dx, (2.52)

respectively. The function gr(x) depends on the application at hand. For example in
the image processing application of segmentation, it may depend on both the observed
image values and the expected statistics of the foreground and background of the image.

Boundary-based functionals are contour integrals over the boundary C of a function
gb(C(s)) where the variable s parameterizes C. The boundary-based functional is:

L(C) =

∮

C
gb(C(s))ds. (2.53)

An example of a function gb(C(s)) in image segmentation is one that is small at strong
image edges, and large at smooth, nonedge locations in the image. Overall energy func-
tional objectives for an application may contain linear combinations of (2.51), (2.52),
and (2.53).
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� 2.3.2 Contour Evolution

The objective is to minimize L(C); the approach taken in variational level set methods is
to start with some initial contour and to follow a gradient descent flow. This procedure
is known as curve evolution or contour evolution. The direction of the gradient descent
is given by the negative of the first variation of the energy functional obtained using
the calculus of variations [70], denoted − δ L

δC . The first variations of region-based and
boundary-based functionals are derived in this section; the derivations do not follow
any particular reference per se, but are an amalgam of the expositions found in [34, 50,
105, 141, 142, 146, 201, 225].

First, the first variation of the region-based functional (2.51) is found. Let gr(x) =

∇·v(x) for some vector field v(x) =
[

v1(x) · · · vD(x)
]T

. The divergence in expanded
form is:

∇ · v =
∂v1
∂x1

+ · · · +
∂vD

∂xD
, (2.54)

and the energy functional is:

L(C) =

∫

R
∇ · v(x)dx. (2.55)

By the (Gauss–Ostrogradsky) divergence theorem [68]:

L(C) =

∮

C
v(x(s)) · nds, (2.56)

where n is the outward unit normal to the contour C.
For simplicity of exposition, consider D = 2, in which case the normal vector to the

curve C is:

n =

[

dx2
ds

−dx1
ds

]

=

[

ẋ2

−ẋ1

]

. (2.57)

The notation ẋ1 = dx1
ds and ẋ2 = dx2

ds is introduced for simplicity in later manipulations.
Let I(x, ẋ) = v1(x(s))ẋ2 − v2(x(s))ẋ1. Then,

L(C) =

∮

C
I(x(s), ẋ)ds. (2.58)

The first result of the calculus of variations is the Euler–Lagrange equation stating
that if L(C) is minimum, then the first variation δ L

δC = 0 [70]. Moreover, the first
variation of L is:

[

δ L
δx1
δ L
δx2

]

=

[

∂ I
∂x1

− d
ds

∂ I
∂ẋ1

∂ I
∂x2

− d
ds

∂ I
∂ẋ2

]

. (2.59)
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The first variation expression may be manipulated as follows:
[

δ L
δx1
δ L
δx2

]

=

[

∂v1
∂x1

ẋ2 − ∂v2
∂x1

ẋ1 − d
ds {−v2(x(s))}

∂v1
∂x2

ẋ2 − ∂v2
∂x2

ẋ1 − d
ds {v1(x(s))}

]

(2.60)

=

[

∂v1
∂x1

ẋ2 − ∂v2
∂x1

ẋ1 + ∂v2
∂x1

ẋ1 + ∂v2
∂x2

ẋ2
∂v1
∂x2

ẋ2 − ∂v2
∂x2

ẋ1 − ∂v1
∂x1

ẋ1 − ∂v1
∂x2

ẋ2

]

(2.61)

=
(

∂v1
∂x1

+ ∂v2
∂x2

)

[

ẋ2

−ẋ1

]

(2.62)

which can be recognized as gr(x)n, cf. (2.54) and (2.57). The result δ L
δC = gr(x)n is

true for D > 2 as well, which can be shown by following the same steps as for D = 2.
Note that the first variation does not depend on the specific choice of the vector field
v(x), as that choice is arbitrary as long as ∇ · v(x) = gr(x). The outward normal of
the region Ω \ R̄ is negative of the outward normal of the region R. Thus, for integrals
over Ω \ R̄ (2.52), the first variation is δ L

δC = −gr(x)n.
Now the first variation of the boundary-based functional (2.53) is derived. The

approach followed is to first express the boundary-based L(C) in the same form as
(2.56). Then, the first variation of the boundary-based functional is simply stated
based on the first variation of functionals of the form (2.56), which has already been
derived in the region-based context. Expand L(C) =

∮

C gb(C(s))ds, as follows:

L(C) =

∮

C
gb(C(s))n · nds, (2.63)

which is equivalent since n ·n = 1. Using the findings from the region-based functional,
δ L
δC = (∇ · v) n, where here, v = gb(C(s))n. That is:

δ L

δC = (∇ · v)n = (∇ · (gbn)) n. (2.64)

The divergence of a vector field multiplied by a scalar field has the following equivalent
expression known as the product rule of divergence:

δ L

δC = ((∇gb) · n + gb∇ · n) n. (2.65)

The divergence of the normal is related to the mean curvature by κ = −∇ · n [141], so
the first variation for boundary-based functionals is ((∇gb) · n− gbκ) n.

The contour evolution, i.e. the gradient descent flow, is parameterized by a time
t, so that the contour evolution is C(t). With the change in the contour being in the
negative first variation direction, the partial derivatives of the contour with respect to
t have the following expressions:

Ct = −grn (2.66)

for the region-based functional (2.51), and

Ct = (gbκ− (∇gb) · n) n (2.67)

for the boundary-based functional (2.53).
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Figure 2.2. An illustration of the level set function representation of a contour with D = 2. The
contour is shown in (a), its level set function is shown by shading in (b), and as a surface plot marked
with the zero level set in (c).

� 2.3.3 Level Set Representation

In order to numerically implement contour evolution, some representation for C(t) is
required. One possible representation is through a collection of control points that lie
on the contour. Another possible representation is through a level set function ϕ(x; t).
The contour is represented as the zero level set of ϕ. Given a particular level set function
ϕ, the contour C it describes is unique.

To help understand the level set concept, an analogy with the Hawai’ian islands is
useful. The elevation of the land, both underwater and above water can be considered as
the level set function ϕ(x), and sea level as the zero level. The coastlines are the contour
C. Over time, the elevation can increase or decrease locally, changing the coastline. If
the land rises up very high, two islands can merge and if there is sinking, one island may
split into more than one island. Also, ‘almost’ islands which are peaks but not above
sea level, can rise and create new islands. Level set methods naturally handle changes
in topology to the contour C, unlike the control point representation; this property
among several others makes the level set representation the preferred representation for
contour evolution.

The level set function is a smooth, Lipschitz continuous function that satisfies the
following properties:

ϕ(x; t) < 0, x ∈ R(t), (2.68)

ϕ(x; t) = 0, x ∈ C(t), (2.69)

ϕ(x; t) > 0, x /∈ R̄(t). (2.70)

An example of a contour and its corresponding level set function are shown in Fig-
ure 2.2. Another appealing property of the level set representation is the ease with
which geometric quantities such as the normal vector n and curvature κ may be calcu-
lated. The outward unit normal to C is the normalized gradient of the level set function
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Figure 2.3. Iterations of an illustrative contour evolution proceeding from left to right. The top row
shows the contour and the bottom row shows the corresponding signed distance function.

(evaluated on C):

n =
∇ϕ
‖∇ϕ‖ . (2.71)

The curvature can also be expressed in terms of the level set function:

κ = −∇ ·
( ∇ϕ
‖∇ϕ‖

)

. (2.72)

Oftentimes, the particular level set function known as the signed distance function is
employed. The magnitude of the signed distance function at a point equals its distance
to C, and its sign indicates whether it is in R or not. The signed distance function
satisfies the additional constraint that ‖∇ϕ(x)‖ = 1 and has Lipschitz constant equal
to one. With a signed distance function, the normal simplifies to n = ∇ϕ and the
curvature to κ = −∇2ϕ. Given a level set function that is not a signed distance
function, an equivalent signed distance function with the same zero level set may be
obtained through the following Eikonal partial differential equation [192]:

ϕt(x) = sign(ϕ(x))(1 − ‖∇ϕ(x)‖), (2.73)

where ϕt is the partial derivative of ϕ with respect to time parameter t.
Contour evolutions correspond to evolutions of their level set functions. An example

of a contour evolution through the evolution of its level set function is shown in Fig-
ure 2.3. Based on the normal and curvature expressed in terms of the signed distance
function and the region-based and boundary-based gradient descent flows (2.66) and
(2.67), the gradient descent flow of the following energy functional

L(C) =

∫

R
gr(x)dx + λ

∮

C
gb(C(s))ds (2.74)
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expressed in terms of the signed distance function is:

ϕt(x) = −gr(x)∇ϕ(x) − λ
[

gb(x)∇2ϕ(x) + (∇gb(x)) · (∇ϕ(x))
]

∇ϕ(x). (2.75)

The update (2.75) does not preserve the signed distance property of the level set function
in general; the level set function must be periodically reinitialized as a signed distance
function using (2.73).

� 2.4 Dimensionality Reduction

Dimensionality reduction, the mapping of high-dimensional data to lower-dimensional
features, is an important procedure in many data analysis applications. It aids in visu-
alization and human interpretation of data, allows the identification of important data
components, reduces the computational and memory requirements of further analysis,
and can provide noise suppression.

In Section 2.4.1, the linear dimensionality reduction problem is introduced as an
optimization problem on the Stiefel manifold of matrices. The optimization framework
is used to propose a method for joint linear dimensionality reduction and margin-based
classification in Section 4.1, with an extension to sensor networks given in Section 4.4.
Section 2.4.2 describes zonotopes and their relationship to linear dimensionality re-
duction. The content of zonotopes is an important ingredient in the consistency and
complexity analysis of Section 4.3. Nonlinear dimensionality reduction and manifold
learning techniques are discussed in Section 2.4.3 and extended for margin-based clas-
sification in Section 4.2.

� 2.4.1 Linear Dimensionality Reduction and the Stiefel Manifold

Linear dimensionality reduction is the mapping of D-dimensional data to d ≤ D dimen-
sions by a linear function. It can be represented by a matrix A ∈ R

D×d with elements
aij. With a data vector x ∈ R

D, x̃ = ATx is in d dimensions. Typically, scalings of the
reduced-dimensional data are not of interest, so the set of possible matrices is limited to
those which involve orthogonal projection, i.e. to the Stiefel manifold of D×d matrices:

V(D, d) = {A ∈ R
D×d, d ≤ D|ATA = I}. (2.76)

The Stiefel manifold is the set of all linear subspaces with basis specified. Linear
dimensionality reduction involves finding a mapping A that minimizes an objective
L(A) [188]:

min L(A) such that A ∈ V(D, d), (2.77)

where L is a scalar-valued function and the optimization is constrained to the Stiefel
manifold. For some specific choices of L(A), e.g. those corresponding to the popular
linear dimensionality reduction methods principal component analysis (PCA) [95, 96,
148] and Fisher’s linear discriminant analysis (FDA) [69], this optimization problem
can be solved through eigendecomposition.
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Figure 2.4. Several zonotopes in Z(4, 2). The zonotopes in (a) and (b) are generated by random
Stiefel manifold matrices, the zonotope in (c) is content-maximizing, and the zonotope in (d) is content-
minimizing.

Several iterative gradient-based minimization algorithms exist for differentiable func-
tions L(A) [60, 124, 140]. The expression for gradient descent along geodesics of the
Stiefel manifold given by Edelman et al. [60] is as follows. Let LA denote the D × d
matrix with elements ∂ L /∂aij . The gradient is:

G = LA −ALT
A A. (2.78)

Starting at an initial A(0), a step of length τ in the direction −G to A(τ) is:

A(τ) = A(0)M(τ) + QN(τ), (2.79)

where QR is the QR decomposition of (AATG − G), and

[

M(τ)
N(τ)

]

= exp

{

τ

[

−ATG −RT

R 0

]}[

I
0

]

.

The step size τ may be optimized by a line search.

� 2.4.2 Zonotopes

Consider the D-dimensional unit hypercube, denoted Ω = [0, 1]D , and a matrix A ∈
V(D, d). The set Z = AT Ω ⊂ R

d, the orthogonal shadow cast by Ω due to the projection
A, is a zonotope, a particular type of polytope that is convex, centrally-symmetric, and
whose faces are also centrally-symmetric in all lower dimensions [37, 65]. For reference,
Figure 2.4 shows several zonotopes for D = 4 and d = 2. The matrix AT is known
as the generator of the zonotope Z; the notation Z(A) is used to denote the zonotope
generated by AT . Also, let

Z(D, d) = {Z(A)|A ∈ V(D, d)}. (2.80)

Although the relationship between zonotopes and their generators is not bijective, zono-
topes provide a good means of visualizing Stiefel manifold matrices, especially when
d = 2.
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As seen in Figure 2.4, the area (equivalently the content4 for d > 2) of zonotopes
is variable. For d = 2, the area is maximized by a regular polygon with 2D sides
having area cot(π/2D), and minimized by a square having area 1 [37]. Figure 2.4(a)
and Figure 2.4(b) show zonotopes generated by random Stiefel manifold matrices [43],
Figure 2.4(c) shows an area-maximizing zonotope generated by

AT =
1√

2α2 + 2

[

α −α −1 −1
−1 −1 α −α

]

where α =
√

2 + 1, and Figure 2.4(d) shows an area-minimizing zonotope generated by

AT =

[

1 0 0 0
0 1 0 0

]

.

As already discussed, for Z ∈ Z(D, 2),

1 ≤ V (Z) ≤ cot
(

π
2D

)

. (2.81)

For general Z(D, d), with d ≥ 2, the same lower bound is achieved when the zonotope is
a d-dimensional unit hypercube. There is no tight closed-form upper bound for V (Z),
but an upper bound is developed in [37] that is asymptotically of the correct order of
magnitude for fixed d as D goes to infinity. Specifically, for Z ∈ Z(D, d)

1 ≤ V (Z) ≤ ωd

(

ωd−1

ωd

√

D

d

)d

, (2.82)

where ωd =
√
π

d
/Γ(1 + d/2) is the content of the d-dimensional unit hypersphere.

� 2.4.3 Nonlinear Dimensionality Reduction

Section 2.4.1 is concerned with finding a d-dimensional linear subspace within a D-
dimensional space. However, it may be the case that data samples are better repre-
sented by a d-dimensional nonlinear manifold—a space that is locally but not globally
equivalent to a Euclidean space. This section deals with dimensionality reduction that
finds nonlinear manifolds [17, 85, 166, 193]. Methods for nonlinear dimensionality reduc-
tion, also known as manifold learning, have samples x1, . . . ,xn, with xj ∈ R

D, as input
and produce an embedding of those points on a manifold x̃1, . . . , x̃n, with x̃j ∈ R

d.
Manifolds are locally smooth, and thus the embedding should preserve local geometric
quantities such as the distances between neighboring points in the high-dimensional
space.

Multidimensional scaling is a technique that, given all of the pairwise distances or
dissimilarities between n samples, produces the low-dimensional Euclidean embedding
of those n samples that minimizes the error between the distances in the embedding

4The content of a polytope is also known as its volume or hypervolume.
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and those input [47]. Specifically, the input is an n × n matrix B with elements bij =
ρ(xi,xj)

2, where ρ(·, ·) is a symmetric distance or dissimilarity function, and the output
is the low-dimensional embedding x̃1, . . . , x̃n which may be expressed as a d×nmatrix X̃
with each column being one of the embedded samples. The criterion that is minimized in
finding the embedding is the Frobenius norm ‖− 1

2H(B−X̃T X̃)H‖F , where H = I−1/n
is known as the centering matrix. Left multiplication by the centering matrix makes
the mean of each column of a matrix zero. Let M = −1

2HBH with elements

mij = −1

2



ρ(xi,xj)
2 − 1

n

n
∑

i′=1

ρ(xi,xi′)
2 − 1

n

n
∑

j′=1

ρ(xj′ ,xj)
2 +

1

n2

n
∑

i′=1

n
∑

j′=1

ρ(xi′ ,xj′)
2



 .

The multidimensional scaling solution is

x̃j =







√
l1v1,j

...√
ldvd,j






, (2.83)

where vk =
[

vk,1 · · · vk,n

]T
is the eigenvector of M corresponding to the kth largest

eigenvalue lk.
The method of multidimensional scaling is agnostic to the distance or dissimilarity

ρ; the key idea of the nonlinear dimensionality reduction technique Isomap is to use
an approximation to geodesic distance along the manifold for ρ, computed in the high-
dimensional space [193]. As mentioned previously in the section, manifolds may be
approximated as Euclidean locally, but not globally. Thus geodesic distance on the
manifold from a sample may be approximated by Euclidean distance to its neighbors,
but not to samples outside its neighborhood. However, distances to samples far away
may be approximated by taking local hops from sample to neighboring sample until
reaching the far away point. The distances ρ and matrix B employed by Isomap are
computed by first constructing a neighborhood graph with the samples as the vertices.
Edges exist only between those samples that are in the same neighborhood; one way of
defining the neighborhood is through the k-nearest neighbors by Euclidean distance in
R

D. Then ρ(xi,xj) is the length of the shortest path in the graph between the vertices
corresponding to xi and xj , where the weight of an edge is the Euclidean distance
between the two samples it connects. With this definition of ρ, the Isomap embedding
is (2.83).

Isomap and other nonlinear dimensionality techniques only produce low-dimensional
embeddings of the given samples, but do not provide a function that can be applied to
a new sample x not included in the original set of samples. Bengio et al. [19] provide a
function mapping g(x) ∈ R

d that can be applied to vectors x that are not part of the
input set, but which is equivalent to the nonlinear dimensionality reduction technique
at the input samples; they also discuss the functional minimized to yield g(x). For
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Isomap, the function mapping is:

g(x) =







∑n
j=1 aj,1 K(x,xj)

...
∑n

j=1 aj,d K(x,xj)






, (2.84)

where

K(w, z) = −1

2



ρ(w, z)2 − 1

n

n
∑

j=1

ρ(w,xj)2 − 1

n

n
∑

j=1

ρ(xj , z)2 +
1

n2

n
∑

j=1

n
∑

j′=1

ρ(xj ,xj′)
2



 ,

(2.85)
and

ajk =
1√
lk
vk,j, (2.86)

with the eigenvalues and eigenvectors as before.

Defining the length n vector K̃(x) =
[

K(x,x1) · · · K(x,xn)
]T

and the n × d
matrix A with elements ajk from (2.86), the dimensionality-reduced image of the sample
x is:

x̃ = AT K̃(x). (2.87)

Since the columns of A are proportional to eigenvectors of a symmetric matrix (the
centered matrix of distances M is symmetric), they are orthogonal. The different di-
mensions in the low-dimensional space have different scale factors due to the eigenvalues
l1, . . . , ld. In certain applications, it may be the case that this scaling of the dimensions
is not important; in those cases, A ∈ V(n, d) if the dimensions are normalized to be on
the same scale.

� 2.5 Quantization Theory

Quantization arises when analog signals are represented digitally, and in other similar
scenarios. Whenever there is quantization, there is necessarily some distortion. The
simplest quantizer takes a number and maps it to the nearest value from a preselected
set of allowed numbers, e.g. rounding real numbers to the nearest integer. Quantization
theory considers the design of mappings that minimize the expected distortion that is
incurred over a probability distribution.

Section 2.5.1 posits the quantization problem for a generic setting with a generic
distortion function. The general framework is used in a specific manner for the quanti-
zation of prior probabilities for hypothesis testing in Chapter 5. The chapter proposes
a new distortion function for that problem, the Bayes risk error. Section 2.5.1 also
briefly discusses high-rate quantization; a high-rate characterization of the minimum
mean Bayes risk error (MBRE) quantizer is presented in Section 5.2. Section 2.5.2 gives
the conditions for optimality of a generic quantizer. These conditions are specialized
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to the minimum MBRE quantizer in Section 5.1. The algorithm used to design quan-
tizers, both based on probability distributions and based on samples, is discussed in
Section 2.5.3 and applied in Section 5.1 and Section 5.3. Section 2.5.4 discusses the
convergence of quantization error as a function of quantizer complexity, which is useful
in drawing conclusions in Section 5.4.

� 2.5.1 Quantization Problem Statement

Consider a scalar random variable p ∈ R whose samples are to be represented using
a small number of discrete values. In the quantization problem, the task is find a
function known as the quantizer that partitions the real line R into cells Q1, . . . ,Qk

and has representation points a1, . . . , ak such that sample p ∈ Qi is represented by ai in
a manner that minimizes an expected distortion ̺. A quantizer is a nonlinear function
qk(·) such that qk(p) = ai for p ∈ Qi, i = 1, . . . , k.

A k-point regular quantizer partitions the set of real numbers into k intervals Q1 =
(b0, b1], Q2 = (b1, b2], Q3 = (b2, b3], . . . , Qk = (bk−1, bk), with b0 = −∞ and bk = +∞,
and bi−1 < ai ≤ bi. The performance of a quantizer is measured with respect to a
given distortion criterion ρ(p, a) between the sample p and the representation point a.
A common distortion is squared error: ρ2(p, a) = |p − a|2 [75, 79]. Another common
criterion is absolute error: ρ1(p, a) = |p − a| [72, 79, 103]. A distortion function must
satisfy ρ(p, a) ≥ 0.

For a given value of k, the objective is to find the quantizer that minimizes the
expected value of the distortion over the distribution for p:

̺ = E[ρ(p, qk(p))] =

∫

ρ(p, qk(p))fp(p)dp. (2.88)

The performance of the quantizer is the expected distortion ̺, which depends on k.
High-rate quantization theory is the study of the distortion-rate function ̺(k) for large
k, especially asymptotically as k grows [79, 89]. At the limit k → ∞, the notion of
representation points p = ai, i = 1, . . . , k is replaced by the point density function λ(p).
Integrating the point density over an interval yields the fraction of the representation
points in that interval.

� 2.5.2 Optimality Conditions

For a given k, the goal is to find the quantizer that minimizes the average distortion ̺
given in (2.88). This problem does not have a closed-form solution in general. However,
there are three conditions that an optimal quantizer must satisfy. These three necessary
conditions are known as the nearest neighbor condition, the centroid condition, and the
zero probability of boundary condition, and are discussed in this section.

First consider finding the optimal quantization cells Q1, . . . ,Qk for given represen-
tation points a1, . . . , ak. There is no partition better than the one that maps points
to the closest representation point. Formally, this observation is the nearest neighbor
condition.
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Condition 2.5.1 (Nearest Neighbor). For a given set of representation points
a1, . . . , ak, the quantization cells satisfy

Qi ⊂ {p|ρ(p, ai) ≤ ρ(p, ai′) for all i′ 6= i}.

For ρ1 and ρ2, the absolute error and squared error respectively, the nearest neighbor
condition implies that the quantization cell boundaries are the midpoints between two
adjacent representation points: bi = (ai + ai+1)/2, i = 1, . . . , k − 1.

Now consider finding the optimal representation points a1, . . . , ak for a given set of
quantizer cells Q1, . . . ,Qk. The optimal representation point for a given quantization
cell is found by minimizing the conditional expected distortion. Defining the centroid
cent(Q) of a random variable p in a cell Q with respect to a distortion function ρ(·, ·)
as

cent(Q) = arg min
a

E[ρ(p, a)|p ∈ Q], (2.89)

the centroid condition that an optimal quantizer must satisfy is the following.

Condition 2.5.2 (Centroid). For a given set of quantization cells Q1, . . . ,Qk, the
representation points satisfy

ai = cent(Qi).

The third necessary condition for quantizer optimality arises when dealing with
an fp(p) having a discrete component. Consider a quantizer that satisfies the nearest
neighbor and centroid conditions, and has a cell boundary bi between two adjacent
representation points ai < ai+1, with bi ∈ Qi (and bi /∈ Qi+1). Also fp(p = bi) is an
impulse so that bi has positive probability mass. If the quantizer is modified so that
bi ∈ Qi+1, the total expected distortion overall does not change, but the centroid of
Qi is changed. Due to this phenomenon, the zero probability of boundary condition is
required.

Condition 2.5.3 (Zero Probability of Boundary). The random variable to be
quantized has zero probability of occurring at a boundary between quantization cells.

When fp(p) is absolutely continuous with respect to a Lebesgue measure, the zero
probability of boundary condition is always satisfied.

It is shown in [200] that the conditions necessary for optimality of the quantizer
are also sufficient conditions for local optimality if the following hold. The first con-
dition is that fp(p) must be positive and continuous. The second condition is that
∫

ρ(p, a)fp(p)dp must be finite for all a. The third condition is that the distortion func-
tion ρ(p, a) must satisfy some properties. It must be zero only for p = a, continuous in
p for all a, and convex in a. Further conditions on ρ and fp(p) are given in [200] for
there to be a unique locally optimal quantizer, i.e. the global optimum.
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� 2.5.3 Lloyd–Max Algorithm and k-Means Clustering

The necessary conditions given in the previous section suggest an iterative algorithm for
the design of locally optimal quantizers known as the Lloyd–Max algorithm. It alter-
nates between application of the nearest neighbor condition and the centroid condition.

Algorithm 2.5.1 (Lloyd–Max). Given the number of quantization cells k, the prob-
ability density fp(p), and the distortion ρ:

1. Choose arbitrary initial representation points a1, . . . , ak,

2. For all i = 1, . . . , k set Qi = {p|ρ(p, ai) ≤ ρ(p, ai′) for all i′ 6= i},

3. For all i = 1, . . . , k set ai = cent(Qi),

4. Repeat steps 2 and 3 until change in average distortion ̺ is negligible.

The average distortion decreases or remains the same after each execution of steps 2
and 3. The algorithm is widely used due to its simplicity, effectiveness, and convergence
properties [89]. If the three sufficient conditions of [200] are satisfied, then the Lloyd–
Max algorithm is guaranteed to converge to a local optimum. The algorithm may be
run many times with different initializations to find the global optimum. If the further
conditions for unique local optimality given in [200] hold, then the Lloyd–Max algorithm
is guaranteed to find the globally minimum quantizer.

As discussed previously in this chapter, hypothesis testing deals with the case when
the density function fx,y(x, y) is given and supervised classification deals with the case
when n samples of (x, y) are given instead. The quantization objective, optimality
conditions, and Lloyd–Max algorithm all rely on the probability density function fp(p).
Like hypothesis testing, quantization deals with the case when the distribution is given;
the case of finding data partitions when given n samples p1, . . . , pn is a learning problem
(analogous to supervised classification) known as unsupervised clustering. In particular,
the sample-based version of the quantization problem is known as k-means clustering.
The objective is to partition the n > k samples into k clusters Si and produce a
representation point for each cluster ai, i = 1, . . . , k, to minimize an average distortion.

Finding the globally optimal clustering is computationally difficult (NP-hard) [5, 55,
76], but a variation of the Lloyd–Max algorithm for a collection of samples, known as the
k-means algorithm, finds locally optimal clusterings efficiently. For the sample-based
version, the centroid is defined as:

cent(S) = arg min
a

1

|S|
∑

pj∈S
ρ(pj, a). (2.90)

The algorithm is as follows.

Algorithm 2.5.2 (k-Means). Given the number of clusters k, samples p1, . . . , pn with
n > k, and the distortion ρ:
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1. Choose arbitrary initial representation points a1, . . . , ak,

2. For all i = 1, . . . , k set Si = {pj |ρ(pj, ai) ≤ ρ(pj, ai′) for all i′ 6= i},

3. For all i = 1, . . . , k set ai = cent(Si),

4. Repeat steps 2 and 3 until there is no change in the Si.

As the number of samples n increases, the sequence of clusterings learned from data
converges to the quantizer designed from fp(p) [88, 169].

� 2.5.4 Monotonic Convergence

Let ̺∗(k) denote the expected distortion of an optimal k-point quantizer. This section
shows that ̺∗(k) monotonically converges as k increases. The argument follows the
same logic as the argument for training error in supervised classification tending to
decrease with increasing classifier complexity. The value of ̺∗(k) is:

̺∗(k) =

k
∑

i=1

∫

Q∗

i

ρ(p, a∗i )fp(p)dp.

The optimal k-point quantizer is the solution to the following problem:

minimize
k
∑

i=1

∫ bi

bi−1

ρ(p, ai)fp(p)dp

such that b0 = −∞
bk = +∞
bi−1 < ai, i = 1, . . . , k

ai ≤ bi, i = 1, . . . , k. (2.91)

Add the additional constraint bk−1 = +∞ to (2.91), forcing ak = +∞ and degeneracy
of the kth quantization cell. The optimization problem for the k-point quantizer (2.91)
with the additional constraint is equivalent to the optimization problem for the (k−1)-
point quantizer. Thus, the (k−1)-point design problem and the k-point design problem
have the same objective function, but the (k−1)-point problem has an additional con-
straint. Therefore, ̺∗(k − 1) ≥ ̺∗(k) and ̺∗(k) is a nonincreasing sequence.

Since the distortion function ρ(p, qk(p)) is greater than or equal to zero, the expected
distortion ̺ is also greater than or equal to zero. Since the sequence ̺∗(k) is nonin-
creasing and bounded from below, it converges. Expected distortion cannot get worse
when more quantization cells are employed. In typical settings, performance always
improves with an increase in the number of quantization cells.
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Chapter 3

Surface Area of the
Decision Boundary

CLASSIFIERS partition the input space of measurements using decision boundaries.
A geometric property of a decision boundary in a bounded input space that can

be measured is its surface area. The frugality pursued in this chapter is to limit the
surface area of classifier decision boundaries. Classifier decision boundaries are points
in one-dimensional input spaces and the surface area is a count of the number of points.
They are curves in two-dimensional input spaces and the surface area is the curve length.
Decision boundaries are surfaces in three-dimensional input spaces and hypersurfaces in
higher-dimensional input spaces, with appropriate notions of surface area. Being frugal
with decision boundary surface area prevents overfitting. The mathematical approach
followed is to set up a margin-based classification problem and solve it using variational
level set methods [209, 211].

Variational level set methods, pioneered by Osher and Sethian [143], have found
application in fluid mechanics, computational geometry, image processing, computer
vision, computer graphics, materials science, and numerous other fields, but have hereto-
fore found little application in statistical learning. This chapter introduces a level set
approach to the problem of supervised classification. An implicit level set representation
for classifier decision boundaries, a margin-based objective regularized by a surface area
penalty, and an Euler–Lagrange contour evolution algorithm for training are proposed.

Several well-developed techniques for supervised discriminative learning exist in the
literature, including the perceptron algorithm [164], logistic regression [61], and SVMs
[206]. All of these approaches, in their basic form, produce linear decision boundaries.
Nonlinear boundaries in the input space can be obtained by mapping the input space to
a feature space of higher (possibly infinite) dimension by taking nonlinear functions of
the input variables. As discussed in Section 2.2, learning algorithms are then applied to
the new higher-dimensional feature space by treating each dimension linearly and they
retain the efficiency of the input lower-dimensional space through the use of kernels
[176].

As an alternative to kernel methods for generalizing linear methods, the proposal in
this chapter is to find nonlinear decision boundary contours directly in the input space.

55
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An energy functional for classification is proposed that is composed of an empirical
risk term that uses a margin-based loss function and a complexity term that is the
the surface area of the decision boundary. The empirical risk term is standard in
many classification methods. What is new in this work is the measurement of decision
boundary complexity by surface area and the idea of using variational level set methods
for optimization in discriminative learning.

The connection between level set methods (particularly for image segmentation)
and classification has been noticed before, but there has been little prior work in this
area. Boczko et al. [27] only hint at the idea of using variational level set methods
for classification. Tomczyk and Szczepaniak [197] do not consider fully general input
spaces. Specifically, samples in the training and test sets must be pixels in an image
with the measurement vector containing the spatial index of the pixel along with other
variables. Cai and Sowmya [31] do consider general input spaces, but have a very
different energy functional than the proposed margin-based loss functional. Theirs is
based on counts of training samples in grid cells and is similar to the region-based
functional used in image segmentation that separates the mean values of the image
foreground and background. Their learning is also based on one-class classification
rather than standard discriminative classification, which is the framework followed in
this thesis. Yip et al. [223] use variational level set methods for density-based clustering
in general input spaces, rather than for learning classifiers.

Cremers et al. [48] dichotomize image segmentation approaches into those that use
spatially continuous representations and those that use spatially discrete representa-
tions, with level set methods being the main spatially continuous approaches. There
have been methods using discrete representations that bear some ties to the methods
introduced in this chapter. An example of a spatially discrete approach uses normalized
graph cuts [182], a technique that has been used extensively in unsupervised learning
for general features unrelated to images as well. Normalized decision boundary surface
area is implicitly penalized in this discrete setting. Geometric notions of complexity
in supervised classification tied to decision boundary surface area have been suggested
by Ho and Basu [94], but also defined in a discrete way related to graph cuts. In
contrast, the continuous formulation employed here using level sets involves very differ-
ent mathematical foundations, including explicit minimization of a criterion involving
surface area. Moreover, the continuous framework—and in particular the natural way
in which level set functions enter into the criterion—lead to new gradient descent al-
gorithms to determine optimal decision boundaries. By embedding the criterion in a
continuous setting, the surface area complexity term is defined intrinsically rather than
being defined in terms of the graph of available training samples.

There are some other methods in the literature for finding nonlinear decision bound-
aries directly in the input space related to image segmentation, but these methods use
neither contour evolution for optimization, nor the surface area of the decision bound-
ary as a complexity term, as in the level set classification method proposed in this
chapter. A connection is drawn between classification and level set image segmenta-
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tion in [180, 219], but the formulation is through decision trees, not contour evolution.
Tomczyk et al. [198] present a simulated annealing formulation given the name adap-
tive potential active hypercontours for finding nonlinear decision boundaries in both
the classification and clustering problems. Pölzlbauer et al. [154] construct nonlinear
decision boundaries in the input space from connected linear segments. In some ways,
their approach is similar to active contours methods in image segmentation such as
snakes that do not use the level set representation: changes in topology of the decision
boundary in the optimization are difficult to handle. (As mentioned in Section 2.3, the
implicit level set representation takes care of topology changes naturally.)

The theory of classification with Lipschitz functions is discussed by von Luxburg
and Bousquet [121]. As mentioned in Section 2.3, level set functions are Lipschitz
functions and the signed distance function specifically has a unit Lipschitz constant.
The Lipschitz constant is minimized in [121], whereas the Lipschitz constant is fixed
in the formulation proposed in this chapter. The von Luxburg and Bousquet [121]
formulation requires the specification of a subspace of Lipschitz functions over which to
optimize in order to prevent overfitting, but does not resolve the question of how to select
this subspace. Being frugal with the surface area of the decision boundary provides a
natural specification for subspaces of signed distance functions. The maximum allowable
surface area parameterizes nested subspaces.

The chapter is organized as follows. Section 3.1 details geometric level set clas-
sification in the binary case, describing the objective to be minimized, the contour
evolution to perform the minimization, as well as illustrative examples. Section 3.2
goes over multicategory level set classification. A level set implementation using radial
basis functions is described in Section 3.3; that implementation is used to compare the
classification test performance of geometric level set classification to the performance
of several other classifiers. Theoretical analysis of the level set classifier is provided in
Section 3.4, including characterizations of consistency and complexity. A variational
level set method for both margin-based classification and feature subset selection is
described in Section 3.5. A summary of the chapter is provided in Section 3.6.

� 3.1 Binary Classification Using Geometric Level Sets

The margin-based approach to supervised classification is theoretically well-founded
and has excellent empirical performance on a variety of datasets [176]. A margin-based
classifier with a new geometric regularization term is proposed in this section. The new
classifier is termed the geometric level set (GLS) classifier.

� 3.1.1 Classification Functional with Surface Area Regularization

Recall the margin-based classification objective (2.48) from Section 2.2:

L(ϕ) =
n
∑

j=1

ℓ(yjϕ(xj)) + λ J(ϕ), (3.1)
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where the training dataset {(x1, y1), . . . , (xn, yn)} has measurements xj ∈ Ω ⊂ R
D and

class labels yj ∈ {−1, +1}. The margin-based classifier is ŷ(x) = sign(ϕ(x)), where ϕ is
a decision function. The functional J is a regularization term and ℓ is a margin-based
loss function.

Also recall the generic form of energy functionals minimized using variational level
set methods (2.74) given in Section 2.3:

L(C) =

∫

R
−

gr(x)dx + λ

∮

C
gb(C(s))ds, (3.2)

where the contour C is the set of x ∈ Ω ⊂ R
D where the signed distance function

ϕ(x) = 0. The region R
−

is the set of x where the signed distance function is negative.
Energy functionals may also be integrals over the region R+ , the subset of Ω where the
signed distance function is positive.

The main idea of the GLS classifier is to combine margin-based classification with
variational level set methods. Toward that end, the decision function ϕ(x) is taken to
be a signed distance function defined over Ω, and C is the decision boundary. With
linear margin-based classifiers, including the original primal formulation of the SVM
(2.38), the concept of margin is proportional to Euclidean distance from the decision
boundary in the input space Ω. With kernel methods, this relationship to distance
is in the implicit feature space, but the relationship in the input space is lost; the
quantity referred to as the margin, yϕ(x), is not the same as distance from x to the
decision boundary in Ω. As discussed by Akaho [2], oftentimes it is of interest that
the definition of margin truly be distance to the decision boundary in the input space.
With the signed distance function representation, the margin yϕ(x) is equivalent to
Euclidean distance from C and hence is a satisfying nonlinear generalization to linear
margin-based methods.

Furthermore, the regularization term J(ϕ) in (3.1) is taken to be a boundary-based
energy functional. Specifically, it is proposed that the regularization term be the surface
area of the decision boundary, that is:

J(ϕ) =

∮

ϕ=0

ds. (3.3)

The training objective to be minimized for the GLS classifier is then:

L(ϕ) =

n
∑

j=1

ℓ(yjϕ(xj)) + λ

∮

C
ds, (3.4)

with ϕ(x) a signed distance function.
The expression (3.4) takes the form of a variational level set energy functional. In

particular, the surface area regularization is a boundary-based functional with gb = 1,
and the margin-based loss term can be expressed as the sum of region-based functionals
over R

−
and R+ with gr(x) incorporating ℓ(yjϕ(xj)). Therefore, the GLS classifier may

be learned from training data by contour evolution.
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� 3.1.2 Contour Evolution for Classifier Learning

As just noted, (3.4) can be minimized using contour evolution. Recall the contour
evolution level set function update equation (2.75) from Section 2.3 to minimize the
generic energy (3.2):

ϕt(x) = −gr(x)∇ϕ(x) − λ
[

gb(x)∇2ϕ(x) + (∇gb(x)) · (∇ϕ(x))
]

∇ϕ(x), (3.5)

Also recall that updating signed distance functions using (3.5) generally results in a
level set function that is not a signed distance function; to recover the signed distance
function with the same zero level set, the following update is applied:

ϕt(x) = sign(ϕ(x))(1 − ‖∇ϕ(x)‖). (3.6)

Applying (3.5) to the margin-based classification objective with decision boundary
surface area regularization, the gradient descent flow is found to be:

ϕt(x)|
x=xj

=

{

ℓ(yjϕ(xj))∇ϕ(xj) − λ∇2ϕ(xj)∇ϕ(xj), ϕ(xj) < 0

− ℓ(yjϕ(xj))∇ϕ(xj) − λ∇2ϕ(xj)∇ϕ(xj), ϕ(xj) > 0
. (3.7)

The two cases in (3.7) arise because
∑n

j=1 ℓ(yjϕ(xj)) is defined over both R
−

and
R+ . As discussed in Section 2.3, the gradient direction has opposite signs when the
region-based functional is defined over R

−
and R+ .

Maintaining the signed distance property of the level set function using (3.6) is more
important here than with functionals employed in other level set applications such as
image segmentation because (3.4) uses the magnitude of ϕ(x), not just its sign. Note
that the surface area of the decision boundary is never computed in doing the contour
evolution. Computing the value of the surface area is oftentimes intractable and only
its gradient descent flow is required.

� 3.1.3 Examples

Two synthetic examples are now presented to illustrate the GLS classifier. In both
examples, there are n = 1000 samples in the training set with D = 2. The first
example has 502 samples with label yj = −1 and 498 samples with label yj = +1 and is
separable by an elliptical decision boundary. The second example has 400 samples with
label yj = −1 and 600 samples with label yj = +1 and is not separable by a simple
shape, but has the −1 labeled samples in a strip.

In these two examples, in the other examples in the rest of the chapter, and in
the performance results of Section 3.3, the logistic loss function is used for ℓ in the
margin-based classification objective. In these two examples, the surface area penalty
has weight λ = 0.5; the value λ = 0.5 is a default parameter value that gives good
performance with a variety of datasets regardless of their dimensionality D and can be
used if one does not wish to optimize λ using cross-validation. Classification error and
classifier complexity as a function of λ are shown later in the chapter.
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Figure 3.1. Contour evolution iterations for an example training set with λ = 0.5 proceeding in raster
scan order from top left to bottom right. The magenta × markers indicate class label −1 and the black
+ markers indicate class label +1. The blue line is the decision boundary.

Contour evolution minimization requires an initial decision boundary. In the portion
of Ω where there are no training samples, the initialization used here sets the decision
boundary to be a uniform grid of small components; this small seed initialization is
common in level set methods. In the part of Ω where there are training samples,
the locations and labels of the training samples are used to set the initial decision
boundary. A positive value is assigned to the initial signed distance function in locations
of positively labeled samples and a negative value in locations of negatively labeled
samples. The initial decision boundaries for the two examples are shown in the top left
panels of Figure 3.1 and Figure 3.2.

Two intermediate iterations and the final decision boundary are also shown in Fig-
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Figure 3.2. Contour evolution iterations for an example training set with λ = 0.5 proceeding in raster
scan order from top left to bottom right. The magenta × markers indicate class label −1 and the black
+ markers indicate class label +1. The blue line is the decision boundary.

ure 3.1 and Figure 3.2. Solutions are as expected: an elliptical decision boundary and
a strip-like decision boundary have been recovered. In the final decision boundaries
of both examples, there is a small curved piece of the decision boundary in the top
right corner of Ω where there are no training samples. This piece is an artifact of the
initialization and the regularization term, and does not affect classifier performance.
(The corner piece of the decision boundary is a minimal surface, a surface of zero mean
curvature, which is a critical point of the surface area regularization functional (3.3),
but not the global minimum. It is not important, assuming that the training set is
representative.)

For a visual comparison of the effect of the surface area penalty weight, in Figure 3.3
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(a) (b)

Figure 3.3. Solution decision boundaries for an example training set with (a) λ = 0.005 and (b)
λ = 0.05. The magenta × markers indicate class label −1 and the black + markers indicate class label
+1. The blue line is the decision boundary.

the solution decision boundaries of the GLS classifier are shown for two other values of
λ, 0.005 and 0.05, with the dataset used in the example of Figure 3.2. As can be seen in
comparing this figure with the bottom right panel of Figure 3.2, the smaller the value
of λ, the longer and more tortuous the decision boundary. Small values of λ, which
correspond to large decision boundary surface areas, may lead to overfitting.

This section has described the basic method for nonlinear margin-based binary
classification based on variational level set methods and illustrated its operation on two
synthetic datasets. The following sections build upon this core binary GLS classifier
in several directions, including multicategory classification, theoretical analysis, and
joint feature subset selection. Classification performance on several benchmark datasets
along with comparison to other methods is also given.

� 3.2 Multicategory Classification Using Geometric Level Sets

Many interesting applications of classification contain more than two classes. For the
multicategory classification problem with M > 2 classes, binary margin-based classifi-
cation methods are typically extended using the one-against-all construction [97]. The
one-against-all scheme represents the classifier with M decision functions that each
distinguish one class from all of the other classes. In this section, a more frugal rep-
resentation of multicategory margin-based classification is proposed that uses ⌈log2M⌉
decision functions. A collection of log2M level set functions can implicitly specify M re-
gions using a binary encoding akin to a Venn diagram [214]. This proposed logarithmic
multicategory classification is new, as there does not seem to be any M -ary classifier
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representation in the statistical learning literature utilizing as few as ⌈log2M⌉ decision
functions. Methods that combine binary classifier outputs using error-correcting codes
make use of a logarithmic number of binary classifiers with a larger multiplicative con-
stant, such as ⌈10 logM⌉ or ⌈15 logM⌉ [4, 163]. The M -ary Bayesian hypothesis testing
decision rule (2.28) discussed in Section 2.1.5 employs M − 1 decision functions. The
GLS classifier is extended for multicategory problems in this section.1

� 3.2.1 Multicategory Margin-Based Functional and Contour Evolutions

The classification problem considered in Section 3.1 has binary-valued class labels,
whereas the class labels in this section take one of M values. As in the binary case, n
training samples are given with measurement vectors xj ∈ Ω ⊂ R

D. For the multicat-
egory case, the class labels are yj ∈ {1, . . . ,M}. The classifier ŷ(x) is a mapping from
Ω to {1, . . . ,M}.

As in Section 3.1, a margin-based objective regularized by the surface area of the
decision boundaries is proposed, with training through variational level set methods.
The decision boundaries are represented using m = ⌈log2M⌉ signed distance func-
tions ϕ(1)(x), . . . ,ϕ(m)(x). These signed distance functions can represent 2m regions
R1,R2, . . . ,R2m through a binary encoding scheme [214]. The regions are defined as
follows:

ϕ(1)(x) < 0, . . . , ϕ(m−1)(x) < 0, ϕ(m) < 0, x ∈ R1,

ϕ(1)(x) < 0, . . . , ϕ(m−1)(x) < 0, ϕ(m) > 0, x ∈ R2,

...

ϕ(1)(x) > 0, . . . , ϕ(m−1)(x) > 0, ϕ(m) > 0, x ∈ R2m .

As discussed in [228, 229], the same margin-based loss functions used in the binary
case, such as the hinge loss and logistic loss, may be used in defining multicategory
margin-based classification objectives. In binary classification, the special encoding
y ∈ {−1, +1} allows yϕ(x) to be the argument to the margin-based loss function,
because multiplication by the class label value makes yϕ(x) positive for correct classi-
fications and negative for incorrect classifications, and preserves the magnitude as the
distance to the decision boundary. The argument to the margin-based loss function
for multicategory classification, with the proposed representation using a logarithmic
number of signed distance functions, must be specified with care. It is proposed that
the argument to the margin-based loss function be through functions ψy(x), which are

1It is certainly possible to use one-against-all with the binary GLS classifier. In fact, there are M -ary
level set methods that use M level set functions [144, 171], but they are less frugal than the approach
followed in this section.
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also specified through a binary encoding:

ψ1(x) = max
{

+ϕ(1)(x), . . . , +ϕ(m−1)(x), +ϕ(m)(x)
}

,

ψ2(x) = max
{

+ϕ(1)(x), . . . , +ϕ(m−1)(x),−ϕ(m)(x)
}

,

...

ψ2m(x) = max
{

−ϕ(1)(x), . . . ,−ϕ(m−1)(x),−ϕ(m)(x)
}

.

To extend the GLS classifier to the multicategory case, the surface area regulariza-
tion term must also be specified. The full set of decision boundaries is the union of the
zero level sets of ϕ(1)(x), . . . ,ϕ(m)(x). By the inclusion-exclusion principle, the surface
area of the full set of decision boundaries can be approximated by the sum of the surface
areas of the zero level sets of the m signed distance functions. This approximation is
quite good in practice because the zero level sets of different signed distance functions
rarely intersect.

Combining the multicategory margin and surface area regularization, the M -ary
GLS classification energy functional that is proposed is:

L(ϕ(1), . . . ,ϕ(m)) =

n
∑

j=1

ℓ(ψyj
(xj)) +

λ

m

m
∑

k=1

∮

ϕ(k)=0

ds. (3.8)

The gradient descent flows for the m signed distance functions are

ϕ
(1)
t (x)

∣

∣

∣

x=xj

=

{

ℓ(ψyj
(xj))∇ϕ(1)(xj) − λ

m∇2ϕ(1)(xj)∇ϕ(1)(xj), ϕ(1)(xj) < 0

− ℓ(ψyj
(xj))∇ϕ(1)(xj) − λ

m∇2ϕ(1)(xj)∇ϕ(1)(xj), ϕ(1)(xj) > 0

...

ϕ
(m)
t (x)

∣

∣

∣

x=xj

=

{

ℓ(ψyj
(xj))∇ϕ(m)(xj) − λ

m∇2ϕ(m)(xj)∇ϕ(m)(xj), ϕ(m)(xj) < 0

− ℓ(ψyj
(xj))∇ϕ(m)(xj) − λ

m∇2ϕ(m)(xj)∇ϕ(m)(xj), ϕ(m)(xj) > 0
.

In the case M = 2 and m = 1, the energy functional and gradient flow revert back
to binary level set classification described in Section 3.1. The proposed multicategory
classifier is different from one-against-all both because it treats all M classes simultane-
ously in the objective and because the decision regions are represented by a logarithmic
rather than linear number of decision functions. Zou et al. [228] also treat all M classes
simultaneously in the objective, but their multicategory kernel machines use M decision
functions.

� 3.2.2 Example

An example showing multicategory level set classification with M = 4 and D = 2 is
now given. The dataset has 250 samples for each of the four class labels yj = 1, yj = 2,
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Figure 3.4. Contour evolution iterations for multicategory classification with λ = 0.5 proceeding in
raster scan order from top left to bottom right. The red × markers indicate class label 1, the black
+ markers indicate class label 2, the blue △ markers indicate class label 3, and the yellow ▽ markers
indicate class label 4. The magenta and cyan lines are the zero level sets of the m = 2 signed distance
functions and together make up the decision boundary.

yj = 3, and yj = 4. The classes are not perfectly separable by simple boundaries. With
four classes, there are m = 2 signed distance functions.

Figure 3.4 shows the evolution of the two contours, the magenta and cyan curves.
The same type of initialization described in Section 3.1.3 is employed; here the small
seeds in the part of Ω not containing samples are offset from each other for the two
different signed distance functions. The final decision region for class y = 1, R1, is the
portion of Ω inside both the magenta and cyan curves, and coincides with the training
samples having class label 1. The final R2 is the region inside the magenta curve but
outside the cyan curve; the final R3 is the region inside the cyan curve but outside the
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magenta curve, and the final R4 is outside both curves. The final decision boundaries
are fairly smooth and partition the space with small training error.

� 3.3 Geometric Level Set Classifier Implementation and Performance

The level set representation of classifier decision boundaries, the surface area regu-
larization term, and the logarithmic multicategory classification scheme are not only
interesting theoretically, but also practically. In this section, the classification per-
formance of the GLS classifier is compared with many classifiers used in practice on
several binary and multicategory datasets from the UCI Repository [10], and found to
be competitive.

Level set methods are usually implemented on a discretized grid, i.e., the values
of the level set function are maintained and updated on a grid. In physics and image
processing applications, it nearly always suffices to work in two- or three-dimensional
spaces. In classification problems, however, the input data space can be high-dimensional.
Implementation of level set methods for large input space dimension becomes cumber-
some due to the need to store and update a grid of that large dimension. One way to
address this practical limitation is to represent the level set function by a superposition
of RBFs instead of on a grid [35, 78, 186]. This implementation strategy is followed in
obtaining classification results.

� 3.3.1 Radial Basis Function Level Set Method

There have been many developments in level set methods since the original work of
Osher and Sethian [143]. One development in particular is to represent the level set
function by a superposition of RBFs instead of on a grid [35, 78, 186]. Grid-based repre-
sentation of the level set function is not amenable to classification in high-dimensional
input spaces because the memory and computational requirements are exponential in
the dimension of the input space. A nonparametric RBF representation, however, is
tractable for classification. An RBF level set method is used in this section to minimize
the energy functionals (3.4) and (3.8) for binary and multicategory margin-based clas-
sification. The method is most similar to that described by Gelas et al. [78] for image
processing.

The starting point of the RBF level set approach is describing the level set function
ϕ(x) via a strictly positive definite2 RBF K(·) as follows:

ϕ(x) =

n
∑

j=1

αj K (‖x − xj‖) . (3.9)

The zero level set of ϕ(x) defined in this way is the contour C. For the classification

2A more complete discussion including conditionally positive definite RBFs would add a polynomial
term to (3.9), to span the null space of the RBF [216].
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problem, the centers xj are taken to be the data vectors of the training set.3 Then,
constructing an n × n matrix H with elements hjk = K (‖xj − xk‖), and letting α be
the vector of coefficients in (3.9):







ϕ(x1)
...

ϕ(xn)






= Hα.

To minimize an energy functional of C, the level set optimization is over the coeffi-
cients α with H fixed. In order to perform contour evolution with the RBF represen-
tation, a time parameter t is introduced like in Section 2.3, giving:

H
dα

dt
=







ϕt(x)|
x=x1

...
ϕt(x)|

x=xn






. (3.10)

For the binary margin-based classification problem with surface area regularization, the
gradient flow (3.7) is substituted into the right side of (3.10). For the multicategory
classification problem, there are m level set functions as discussed in Section 3.2 and
each one has a gradient flow to be substituted into an expression like (3.10).

The iteration for the contour evolution indexed by i is then:

α(i+ 1) = α(i) − τH−1







ϕt(x; i)|
x=x1

...
ϕt(x; i)|

x=xn






, (3.11)

where τ is a small step size and ϕ(x; i) comes from α(i). The vector α is normalized
according to the ℓ1-norm after every iteration. The RBF-represented level set function
is not a signed distance function. However, as discussed by Gelas et al. [78], normalizing
the coefficient vector α with respect to the ℓ1-norm after every iteration of (3.11) has
a similar effect as reinitializing the level set function as a signed distance function. The
Lipschitz constant of the level set function is constrained by this normalization, which
is important because the magnitude of the level set function appears in the argument
of the margin-based loss function.

The RBF level set approach is similar to the SVM with RBF kernel discussed in
Section 2.2.3 in the sense that the decision function is represented by a linear combina-
tion of RBFs. However, the SVM and other kernel methods in the literature minimize
a reproducing kernel Hilbert space squared norm for regularization, whereas the GLS
classifier minimizes decision boundary surface area for regularization. The regulariza-
tion term and consequently inductive bias of the GLS classifier is new and different

3It is not required that the RBFs be collocated with the training samples, or even that the number
of RBFs be as many as the number of training samples. An extension would consider optimizing the
number and placement of the RBFs to further reduce complexity. This direction is considered in [186].
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Figure 3.5. Contour evolution iterations with RBF implementation and λ = 0.5 for example training
set proceeding in raster scan order from top left to bottom right. The magenta × markers indicate
class label −1 and the black + markers indicate class label +1. The blue line is the decision boundary.

compared to existing kernel methods. The solution decision boundary is the zero level
set of a function of the form given in (3.9). Of course this representation does not
capture all possible functions, but, given that a number of RBFs equal to the number
of training samples is used, the granularity of this representation is well-matched to the
data. This is similar to the situation found in other contexts such as kernel machines
using RBFs.

The initialization for the decision boundary used here has α = n(H−1y)/‖H−1y‖1,
where y is a vector of the n class labels in the training set. Figure 3.5 shows this initial-
ization and following RBF-implemented contour evolution on the elliptically-separable
dataset presented in Section 3.1.3. The initial decision boundary is tortuous. It is
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smoothed out by the surface area penalty during the course of the contour evolution,
thereby improving the generalization of the learned classifier as desired. To initialize
the m vectors α in M -ary classification, m vectors of length n containing positive and
negative ones constructed from the binary encoding are used instead of y.

� 3.3.2 Classification Results

Classification performance results on benchmark datasets from the UCI Machine Learn-
ing Repository [10] are given for the GLS classifier and compared to the performance
of several other classifiers, with the conclusion that GLS classification is a competitive
technique. Tenfold cross-validation classification error performance with RBF level set
implementation is presented on four binary datasets: Pima Indians Diabetes (n = 768,
D = 8), Wisconsin Diagnostic Breast Cancer (n = 569, D = 30), BUPA Liver Disor-
ders (n = 345, D = 6) and Johns Hopkins University Ionosphere (n = 351, D = 34),
and four multicategory datasets: Wine Recognition (n = 178, M = 3, D = 13), Iris
(n = 150, M = 3, D = 4), Glass Identification (n = 214, M = 6, D = 9), and Image
Segmentation (n = 2310, M = 7, D = 19). For the binary datasets, there is m = 1
level set function, for the wine and iris datasets m = 2 level set functions, and for the
glass and segmentation datasets m = 3 level set functions.

Before training the classifier, the data is scaled and shifted so that each of the input
dimensions has zero mean and unit variance. The RBF:

K(‖x − xj‖) = e−‖x−xj‖2

is used along with the logistic loss function, τ = 1/m, and the initialization α =
n(H−1y)/‖H−1y‖1. The step size τ is scaled by the number of level set functions for
reasons of stability.

First, classification error is examined as a function of the regularization weight of the
surface area penalty λ. Figure 3.6 shows the tenfold cross-validation training and test
errors for the Pima and WDBC datasets; other datasets yield similar plots. The plots
show evidence of the structural risk minimization principle described in Section 2.2.2.4

For small λ (corresponding to large surface area), the model class is too complex and
although the training error is zero, the test error is not minimal due to overfitting.
For large λ, the model class is not complex enough; the training error is large and the
test error is not minimal due to underfitting. There is an intermediate value of λ that
achieves the minimal test error. However, the test error is fairly insensitive to the value
of λ. The test error does not change much over the plotted range.

Table 3.1 and Figure 3.7 report the tenfold cross-validation test error (as a percent-
age) on the eight datasets and compare the performance to nine other classifiers.5 On

4The horizontal axis in Figure 3.6 is shown with increasing λ from left to right and thus decreasing
complexity, which is opposite of the horizontal axis in Figure 2.1 with increasing complexity from left
to right.

5For lower-dimensional datasets (up to about D = 12), it is possible to use optimal dyadic decision
trees [24, 180]. The results using such trees are not significantly better than those obtained using
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Figure 3.6. Tenfold cross-validation training error (blue line) and test error (red line) for the (a)
Pima, and (b) WDBC datasets as a function of the regularization parameter λ on a logarithmic scale.

Dataset (M , D) NB BN kNN C4.4 C4.5 NBT SVM RBN LLS GLS

Pima (2, 8) 23.69 25.64 27.86 27.33 26.17 25.64 22.66 24.60 29.94 25.94

WDBC (2, 30) 7.02 4.92 3.68 7.20 6.85 7.21 2.28 5.79 6.50 4.04

Liver (2, 6) 44.61 43.75 41.75 31.01 31.29 33.87 41.72 35.65 37.39 37.61

Ionos. (2, 34) 17.38 10.54 17.38 8.54 8.54 10.27 11.40 7.38 13.11 13.67

Wine (3, 13) 3.37 1.11 5.00 6.14 6.14 3.37 1.67 1.70 5.03 3.92

Iris (3, 4) 4.00 7.33 4.67 4.00 4.00 6.00 4.00 4.67 3.33 6.00

Glass (6, 9) 50.52 25.24 29.89 33.68 34.13 24.78 42.49 34.50 38.77 36.95

Segm. (7, 19) 18.93 9.60 5.20 4.27 4.27 5.67 8.07 13.07 14.40 4.03

Table 3.1. Tenfold cross-validation error percentage of GLS classifier with RBF level set implemen-
tation on several datasets compared to error percentages of various other classifiers reported in [31].
The other classifiers are: näıve Bayes classifier (NB), Bayes net classifier (BN), k-nearest neighbor with
inverse distance weighting (kNN), C4.4 decision tree (C4.4), C4.5 decision tree (C4.5), näıve Bayes
tree classifier (NBT), SVM with polynomial kernel (SVM), radial basis function network (RBN), and
learning level set classifier (LLS) of Cai and Sowmya [31].

each of the ten folds, λ is set using cross-validation. Specifically, fivefold cross-validation
is performed on the nine tenths of the full dataset that is the training data for that fold.
The value of λ is selected from the set of values {0.2, 0.4, 0.8, 1.6, 3.2} to minimize the
fivefold cross-validation test error. The performance results of the nine other classifiers
are as given by Cai and Sowmya [31], who report the same tenfold cross-validation test
error as that given for the GLS classifier. Details about parameter settings for the other
nine classifiers may be found in [31].

The GLS classifier outperforms each of the other classifiers at least once among the

the C4.4 and C4.5 decision trees (which could be applied to all of the datasets without concern for
dimensionality).
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Figure 3.7. Tenfold cross-validation error percentage of GLS classifier with RBF level set implemen-
tation (red line) on several datasets compared to error percentages of various other classifiers (blue
bars) reported in [31]. The other classifiers are: näıve Bayes classifier (NB), Bayes net classifier (BN),
k-nearest neighbor with inverse distance weighting (kNN), C4.4 decision tree (C4.4), C4.5 decision tree
(C4.5), näıve Bayes tree classifier (NBT), SVM with polynomial kernel (SVM), radial basis function
network (RBN), and learning level set classifier (LLS) of Cai and Sowmya [31].
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four binary datasets, and is generally competitive overall. The GLS classifier is also
competitive on the multicategory datasets. In fact, it gives the smallest error among
all of the classifiers on the segmentation dataset. The proposed classifier is competitive
for datasets of both small and large dimensionality D; there is no apparent relationship
between D and the performance of the GLS classifier in comparison to other methods.

� 3.4 Complexity and Consistency Analysis

In this section, the GLS classifier proposed in this chapter is characterized in terms
of complexity, both VC dimension [206] and Rademacher complexity [13, 107], as well
as consistency. VC dimension is examined through the empirical procedure described
in [205]. The main tool used in the characterization of Rademacher complexity and
consistency is ǫ-entropy [106]. An expression for the ǫ-entropy of the set of geometric
level set classifiers is derived and then Rademacher consistency and complexity results
from learning theory that are based on it are applied. The main findings are that
GLS classifiers are consistent, and that complexity is monotonically related to decision
boundary surface area frugality, and thus the surface area regularization term can be
used to control underfitting and overfitting.

� 3.4.1 Empirical Vapnik–Chervonenkis Dimension

The VC dimension CVC(F), the maximum number of points that F can shatter as
described in Section 2.2.2, is difficult to specify analytically except in special cases
such as classifiers with linear decision boundaries. However, Vapnik et al. [205] have
outlined a procedure for empirically measuring the VC dimension of a classifier based
on classification error on uniformly drawn samples xj with class labels yj ∈ {−1, +1}
assigned randomly with equal probability. The empirically measured VC dimension
ĈVC is given below for the GLS classifier as a function of the surface area regularization
parameter λ.

The GLS classifier that is considered is defined in D = 2 dimensions. Starting from
the same small seed decision boundary initialialization as in Figure 3.1 and Figure 3.2,
contour evolution is performed to minimize the margin-based energy functional (3.4) on
twenty-five randomly generated training sets with 3000 samples having label yj = −1
and 3000 samples having label yj = +1. Carrying this out for fifty different values of
the regularization weight λ, estimating the VC dimension using the calculation of [205],
and averaging over the twenty-five trials gives a plot of estimated VC dimension ĈVC

as a function of λ. The training sets are uniformly random, as that provides the worst
case for shattering; other application-specific data distributions could be considered for
complexity analysis as well.

The relationship between ĈVC and λ, shown in Figure 3.8 is essentially monotonic.
Figure 3.9 shows the decision boundaries for different values of λ corresponding to one
instance of the random training set. The smoother, less tortuous contours corresponding
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Figure 3.8. Estimated VC dimension as a function of the surface area regularization weight on a
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Figure 3.9. Classifiers learned from one instance of a random training set for different values of λ
used to estimate VC dimension by the procedure of [205]: (a) λ = 0.05, (b) λ = 0.1, (c) λ = 0.2, (d)
λ = 0.4, (e) λ = 0.8, (f) λ = 1.6, (g) λ = 3.2, and (h) λ = 6.4. Note that these decision boundaries are
not iterations of a contour evolution, but final boundaries for different values of λ.
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to the larger values of λ can shatter fewer points.6 Figure 3.8 shows empirically that the
complexity of the GLS classifier measured by VC dimension can be directly controlled
using the weight on the surface area regularization term. The VC dimension behavior as
a function of λ combined with the VC generalization bound (2.31) given in Section 2.2.2
matches well with the behavior of test error as a function of λ seen in Figure 3.6.

� 3.4.2 Rademacher Complexity

As discussed in Section 2.2.2, the VC dimension is one way to quantify the complexity
of a classifier, and another is through the Rademacher complexity ĈRad

n (F) defined
in (2.30). An analytical bound for ĈRad

n is developed in this section. Like ĈVC, it is
found that the bound for ĈRad

n decreases with λ and correspondingly increases with a
constraint on the decision boundary surface area.

In characterizing ĈRad
n (F), F is taken to be the set of signed distance functions

on Ω and Fs to be the subset of signed distance functions whose zero level sets have
surface area less than s, that is

∮

C ds < s. Such a constraint is related to the regular-
ized margin-based loss expression L(ϕ) given in (3.4) through the method of Lagrange
multipliers, with λ inversely related to s. In classification, it is always possible to scale
and shift the data and this is often done in practice. Without losing much generality
and dispensing with some bookkeeping, consider signed distance functions defined on
the unit hypercube: Ω = [0, 1]D .

It is shown in [121] that the Rademacher average of an arbitrary function class Fs

satisfies:

ĈRad
n (Fs) ≤ 2ǫ+

4
√

2√
n

∫ ∞

ǫ
4

√

Hρ∞,ǫ′(Fs)dǫ′, (3.12)

where Hρ∞,ǫ(Fs) is the ǫ-entropy of Fs with respect to the metric

ρ∞(ϕ1,ϕ2) = sup |ϕ1(x) − ϕ2(x)|.

The ǫ-covering number Nρ∞,ǫ(Fs) of a metric space is the minimal number of sets
with radius not exceeding ǫ required to cover that space; the ǫ-entropy is the base-two
logarithm of the ǫ-covering number [106].

Given the Rademacher generalization bound (2.32) presented in Section 2.2.2 and
the Rademacher complexity term (3.12), an expression for Hρ∞,ǫ(Fs) must be found to
characterize the prevention of overfitting by being frugal with the decision boundary
surface area. The ǫ-covering number and ǫ-entropy are useful values in characterizing
learning [12, 108, 116, 121, 189, 220]. Calculations of ǫ-entropy for various classes of func-
tions and various classes of sets are provided in [57, 58, 106] and other works, but the
ǫ-entropy of the class of signed distance functions with a constraint on the surface area
of the zero level set does not appear in the literature. The second and third examples
in Section 2 of [106] are related, and the general approach taken here for obtaining the
ǫ-entropy of GLS classifiers is similar to those two examples.

6See Figure 3.3 as well for decision boundaries corresponding to different values of λ.
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Figure 3.10. Illustration of ǫ-corridors with D = 1. A one-dimensional signed distance function in
Ω = [0, 1] is shown in (a), marked with its zero level set. The ǫ-corridor with ǫ = 1/12 that contains
the signed distance function is shown in (b), shaded in gray. The ǫ-corridor of (b), whose center line
has three zero crossings is shown in (c), again shaded in gray, along with an ǫ-corridor whose center
line has two zero crossings, shaded in green, and an ǫ-corridor whose center line has one zero crossing,
shaded in red.

The exposition begins with the D = 1 case and then comes to general D. Fig-
ure 3.10(a) shows a signed distance function over the unit interval. Due to the ‖∇ϕ‖ = 1
constraint, its slope is either −1 or +1 almost everywhere. The slope changes sign ex-
actly once between two consecutive points in the zero level set. The signed distance
function takes values in the range between positive and negative one.7 As mentioned at
the beginning of the chapter, the surface area is the number of points in the zero level
set in the D = 1 context, for example three in Figure 3.10(a).

Sets known as ǫ-corridors are used in finding Hρ∞,ǫ(Fs). They are particular balls
of radius ǫ measured using ρ∞ in the space of signed distance functions. This corridor
terminology is the same as in [106], but the definition here is slightly different. An
ǫ-corridor is a strip of height 2ǫ for all x. Define ν = ⌈1/ǫ⌉. At x = 0, the bottom
and top of a corridor are at 2iǫ and 2(i + 1)ǫ respectively for some integer i, where
−ν ≤ 2i < ν. The slope of the corridor is either −1 or +1 for all x and the slope can
only change at values of x that are multiples of ǫ. Additionally, the center line of the
ǫ-corridor is a signed distance function, changing slope halfway between consecutive
points in its zero level set and only there. The ǫ-corridor in which the signed distance
function of Figure 3.10(a) falls is indicated in Figure 3.10(b). Other ǫ-corridors are
shown in Figure 3.10(c).

By construction, each signed distance function is a member of exactly one ǫ-corridor.
This is because since at x = 0 the bottom and top of ǫ-corridors are at consecutive
integer multiples of 2ǫ and since the center line of the corridor is a signed distance
function, each signed distance function starts in one ǫ-corridor at x = 0 and does not

7There are several ways to define the signed distance function in the two degenerate cases R
−

= Ω
and R

−

= ∅, including the assignments −∞ and +∞, or −1 and +1 [50]. For the purposes of this
section, it suffices to say that a unique function for the R

−

= Ω case and a unique function for the
R

−

= ∅ case has been chosen.
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escape from it in the interval (0, 1]. Also, an ǫ-corridor whose center line has s points in
its zero level set contains only signed distance functions with at least s points in their
zero level sets.

Theorem 3.4.1. The ǫ-entropy of the set of signed distance functions defined over
Ω = [0, 1] with zero level set having less than s points is:

Hρ∞,ǫ(Fs) = log2

(

s
∑

k=1

(

ν − 1

k − 1

)

)

+ 1.

Proof. Since ǫ-corridors only change slope at multiples of ǫ, the abscissa can be divided
into ν pieces. (Each piece has width ǫ except the last one if 1/ǫ is not an integer.)
In each of the ν subintervals, the center line of a corridor is either wholly positive or
wholly negative. Enumerating the full set of ǫ-corridors is equivalent to enumerating
binary strings of length ν. Thus, without a constraint s, there are 2ν ǫ-corridors. Since,
by construction, ǫ-corridors tile the space of signed distance functions, Nρ∞,ǫ(F) = 2ν .

With the s constraint on ǫ-corridors, the enumeration is equivalent to twice the
number of compositions of the positive integer ν by a sum of s or less positive integers.
Twice because for every composition, there is one version in which the first subinterval
of the corridor center is positive and one version in which it is negative. As an example,
the red corridor in Figure 3.10(c) can be composed with two positive integers (5 + 7),
the green corridor by three (7 + 4 + 1), and the gray corridor by four (1 + 4 + 4 + 3).
The number of compositions of ν by k positive integers is

(ν−1
k−1

)

. Note that the zero-
crossings are unordered for this enumeration and that the set Fs includes all of the
signed distance functions with surface area smaller than s as well. Therefore:

Nρ∞,ǫ(Fs) = 2

s
∑

k=1

(

ν − 1

k − 1

)

.

The result then follows because Hρ∞,ǫ(Fs) = log2Nρ∞,ǫ(Fs). �

The combinatorial formula in Theorem 3.4.1 is difficult to work with, so a highly
accurate approximation is given as Theorem 3.4.2.

Theorem 3.4.2. The ǫ-entropy of the set of signed distance functions defined over
Ω = [0, 1] with zero level set having less than s points is:

Hρ∞,ǫ(Fs) ≈ ν + log2 Φ

(

2s− ν√
ν − 1

)

,

where Φ is the standard Gaussian cumulative distribution function.

Proof. The result follows from the de Moivre–Laplace theorem and continuity cor-
rection, which are used to approximate the binomial distribution with the Gaussian
distribution. �
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Since Φ is a cumulative distribution function taking values in the range zero to one,
log2 Φ is nonpositive. The surface area constraint only serves to reduce the ǫ-entropy.

The ǫ-entropy calculation has been for the D = 1 case thus far. Moving to the case
with general D, recall that Ω = [0, 1]D. Once again, ǫ-corridors are constructed that
tile the space of signed distance functions. In the one-dimensional case, the ultimate
object of interest for enumeration is a string of length ν with binary labels. In the
two-dimensional case, the corresponding object is a ν-by-ν grid of ǫ-by-ǫ squares with
binary labels, and in general a D-dimensional Cartesian grid of hypercubes with content
ǫD, ν on each side. The surface area of the zero level set is the number of interior faces
in the Cartesian grid whose adjoining hypercubes have different binary labels.

Theorem 3.4.3. The ǫ-entropy of the set of signed distance functions defined over
Ω = [0, 1]D with zero level set having surface area less than s is:

Hρ∞,ǫ(Fs) ≈ νD + log2 Φ

(

2s−D (ν − 1) νD−1 − 1
√

D (ν − 1) νD−1

)

,

where Φ is the standard Gaussian cumulative distribution function.

Proof. In the one-dimensional case, it is easy to see that the number of segments is
ν and the number of interior faces is ν − 1. For a general D-dimensional Cartesian
grid with ν hypercubes on each side, the number of hypercubes is νD and the number
of interior faces is D(ν − 1)νD−1. The result follows by substituting νD for ν and
D(ν − 1)νD−1 for ν − 1 in the appropriate places in Theorem 3.4.2. �

Theorem 3.4.2 is a special case of Theorem 3.4.3 with D = 1. It is common to
find the dimension of the space D in the exponent of ǫ−1 in ǫ-entropy calculations as is
found here.

The expression for the ǫ-entropy of signed distance functions with surface area con-
straint can be used along with the Rademacher complexity expression (3.12) to char-
acterize GLS classifier complexity. With Ω = [0, 1]D , the upper limit of the integral
in (3.12) is one rather than infinity because ǫ cannot be greater than one. The right
side of (3.12) is plotted as a function of the surface area constraint s in Figure 3.11 for
three values of D, and fixed ǫ and n. As the value of s increases, decision boundaries
with more surface area are available. Decision boundaries with large surface area are
more complex than smoother decision boundaries with small surface area. Hence the
complexity term increases as a function of s. Consequently, the surface area penalty
can be used to control the complexity of the classifier, and prevent underfitting and
overfitting. The same relationship between the empirical VC dimension and the surface
area penalty appears in 3.4.1.

� 3.4.3 Consistency

As mentioned in Section 2.2.1, R(ŷ(n)), the generalization error of a classifier learned
using a training set of size n drawn from fx,y(x, y), converges in the limit as n goes
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Figure 3.11. Rademacher complexity as a function of the surface area constraint s for signed distance
functions on Ω = [0, 1]D with (a) D = 2, (b) D = 3, and (c) D = 4. The values of ǫ and n are fixed at
0.01 and 1000 respectively.

to infinity to the Bayes optimal probability of error R(ŷ∗) if the classifier is consis-
tent. This convergence for classifier consistency is in probability, as R(ŷ(n)) is a random
variable due to the stochastic nature of the training set. The learned GLS classifier
ŷ(n)(x) = sign(ϕ(n)(x)) minimizes an energy functional composed of both margin-based
loss and surface area regularization, and consequently the properties of R(ŷ(n)) are af-
fected by both the margin-based loss function ℓ and by the surface area regularization
term or surface area constrained function class Fs. Lin [116], Steinwart [189], and
Bartlett et al. [12] have given conditions on the loss function necessary for a margin-
based classifier to be consistent. Lin [116] calls a loss function that meets the necessary
conditions Fisher-consistent. Common margin-based loss functions including the logis-
tic loss function are Fisher-consistent.8 Fisher consistency of the loss function is not
enough, however, to imply consistency of the classifier overall. The regularization term
must also be analyzed; since the regularization term based on decision boundary surface
area introduced in this chapter is new, so is the following analysis.

Theorem 4.1 of [116], which is based on ǫ-entropy, is adapted to show consistency
of the GLS classifier. The analysis is based on the method of sieves, where sieves Fn

are an increasing sequence of subspaces of a function space F . For the case considered
here, F is the set of signed distance functions on Ω and the sieves, Fs(n), are subsets of
signed distance functions whose zero level sets have surface area less than s(n). In the
following, the function s(n) is increasing in n and thus the conclusions of the theorem
provide asymptotic results on consistency as the strength of the regularization term
decreases as more training samples are made available. The sieve estimate is:

ϕ(n) = arg min
ϕ∈Fs(n)

n
∑

j=1

ℓ(yjϕ(xj)). (3.13)

8The conditions on ℓ for Fisher consistency are mainly related to incorrect classifications incurring
more loss than correct classifications.
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Theorem 3.4.4. Let ℓ be a Fisher-consistent loss function in (3.13); let

ϕ̃ = arg min
ϕ∈F

E[ℓ(yϕ(x))],

where F is the space of signed distance functions on [0, 1]D; and let Fs(n) be a sequence

of sieves. Then9 for sieve estimate ϕ(n):

R(ŷ(n)) − R(ŷ∗) = OP

(

max

{

n−τ , inf
ϕ∈Fs(n)

∫

(ϕ(x) − ϕ̃(x))2fx(x)dx

})

,

where

τ =











1
3 , D = 1
1
4 − log log n

2 log n , D = 2
1

2D , D ≥ 3

.

Proof. The result is a direct application of Theorem 4.1 of [116], which is in turn an
application of Theorem 1 of [181]. In order to apply this theorem, two things must be
noted. First, that signed distance functions on [0, 1]D are bounded in the L∞ norm.
As noted previously in the section, signed distance functions take values between −1
and +1 for D = 1. In general, they take values between −

√
D and +

√
D, and thus

are bounded. Second, that there exists a B such that Hρ∞,ǫ(Fs) ≤ Bǫ−D. Based on
Theorem 3.4.3, Hρ∞,ǫ(Fs) ≤ νD because the logarithm of the cumulative distribution
function is nonpositive. Since ν = ⌈1/ǫ⌉, if 1/ǫ is an integer, then Hρ∞,ǫ(Fs) ≤ ǫ−D

and otherwise there exists a B such that Hρ∞,ǫ(Fs) ≤ Bǫ−D. �

Clearly n−τ goes to zero as n goes to infinity. Also, infϕ∈Fs(n)

∫

(ϕ(x)−ϕ̃(x))2fx(x)dx
goes to zero when s(n) is large enough so that the surface area constraint is no longer
applicable.10 Thus, level set classifiers are consistent.

� 3.5 Feature Subset Selection Using Geometric Level Sets

An advantage of using variational level set methods for supervised classification is that
they allow for the inclusion of geometric preferences and priors for the decision boundary
in the input space, which are more difficult to include in kernel methods for example.
Being frugal with the decision boundary surface area is one such geometric preference.
In this section, an additional such preference is considered which incorporates local
feature relevance [52] and promotes feature subset selection in a manner similar to the
ℓ1 feature selection of [137]. The decision boundary adapts the surface area frugality
to the relevance of different input space dimensions for classification.

9The notation an = OP (bn) means that the random variable an = bncn, where cn is a random
variable bounded in probability [204]. Thus, if bn converges to zero, then an converges to zero in
probability.

10For a given ǫ, there is a maximum possible surface area; the constraint is no longer applicable when
the constraint is larger than this maximum possible surface area.
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(a) (b)

Figure 3.12. Decision boundary in three-dimensional space that (a) uses all input variables, and (b)
selects the two variables x2 and x3 for classification. Note that the decision boundary contours are
shown, not the signed distance function.

� 3.5.1 Variational Level Set Formulation

In input spaces where some of the dimensions are irrelevant or not informative for clas-
sification, feature subset selection is important to prevent overfitting [137]. The idea is
to learn classifiers which only make use of the relevant dimensions. As described in Sec-
tion 2.2.3, margin-based classifiers with linear decision boundaries in a D-dimensional
space have decision function ϕ(x) = θTx + θ0, where θ is a length D vector of coef-
ficients. Feature subset selection can be formulated through the preference that θ be
sparse, that is have few nonzero elements. An ℓ1-norm penalty is well known for pro-
ducing sparse solutions as well as being tractable [40, 196]. The idea of ℓ1-based feature
subset selection for linear decision boundaries is extended here to decision boundaries
represented by level set functions.

First, note that a classifier that ignores a particular measurement dimension has a
decision boundary that is constant and does not change as a function of that unused
dimension. As seen in Figure 3.12, such a decision boundary is a generalized cylinder
parallel to the unused dimension axis. The partial derivative of the level set function
with respect to the unused variable is zero for all x ∈ Ω. The magnitude of the partial
derivative is used by Domeniconi et al. [52] to locally indicate feature relevance.

If the partial derivative ϕxk
(x) is zero for all x ∈ Ω, then the scalar quantity

∫

Ω |ϕxk
(x)| dx equals zero. Consequently, a length D vector:







∫

Ω |ϕx1(x)| dx
...

∫

Ω |ϕxD
(x)| dx







may be constructed, which should be sparse for feature subset selection.
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Figure 3.13. Contour evolution with the surface area penalty and one of the partial derivative terms
for feature subset selection. The evolution from the initial contour to the final contour is shown from
left to right. For this illustration, the energy functional contains no empirical risk term. The final
contour is a cylinder.

Applying the ℓ1-norm to this vector and appending it to (3.4), gives the following
energy functional:

L(ϕ) =

n
∑

j=1

ℓ(yjϕ(xj)) + λ1

∮

C
ds + λ2

D
∑

k=1

∫

Ω
|ϕxk

(x)| dx, (3.14)

where λ2 is the weight given to the feature subset selection term. The ℓ1 regularization
further restricts the model class Fs. The gradient descent flow for the ℓ1 term is

ϕt(x) = −λ2

(

D
∑

k=1

|ϕxk
(x)|

)

∇ϕ(x). (3.15)

Thus, contour evolution to minimize (3.14) may be used for feature subset selection
integrated with classifier training in the same way as, for example, ℓ1-regularized logistic
regression for linear decision boundaries [137]. Figure 3.13 shows contour evolution from
an initial contour with the energy functional containing one of the D partial derivative
feature subset selection terms and containing no empirical risk term. The final contour
is a cylinder, as in Figure 3.12(b). In practice, the empirical risk term guides which
dimension or dimensions are selected.

� 3.5.2 Example

GLS classifiers trained with the additional feature subset selection term are now shown
on the same dataset given in the second example of Section 3.1.3. With λ1 = 0.5,
the final decision boundaries for four different values of λ2 are shown in Figure 3.14.
The final decision boundary in Figure 3.14(a) is with λ2 = 0 and is thus the same as
the final decision boundary in the second example of Section 3.1.3. For larger values
of λ2, the decision boundaries increasingly make the horizontal dimension irrelevant
for classification. The data guides which of the two dimensions to make irrelevant, as
regularization terms for both the horizontal and vertical dimensions are included in the
objective functional (3.14).
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(a) (b)

(c) (d)

Figure 3.14. Final decision boundaries with feature subset selection term weighted by (a) λ2 = 0, (b)
λ2 = 3, (c) λ2 = 5, and (d) λ2 = 7. The magenta × markers indicate class label −1 and the black +
markers indicate class label +1. The blue line is the decision boundary.

The variational level set formulation is flexible in allowing the inclusion of various
geometric priors defined in the input space. The energy functional of feature relevance
measured using the partial derivative of the signed distance function is one example.
Others may be included as desired.
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� 3.6 Chapter Summary

Level set methods are powerful computational techniques that have not yet been widely
adopted in statistical learning. This chapter contributes to opening a conduit between
the application area of learning and the computational technique of level set methods.
Toward that end, a nonlinear, nonparametric classifier based on variational level set
methods has been developed that minimizes margin-based empirical risk in both the
binary and multicategory cases, and is regularized by a geometric complexity penalty
novel to classification. This approach with decision boundary surface area frugality is
an alternative to kernel machines for learning nonlinear decision boundaries in the input
space and is in some ways a more natural generalization of linear methods.

A multicategory level set classification procedure has been described with a loga-
rithmic number of decision functions, rather than the linear number that is typical in
classification and decision making, through a binary encoding made possible by the
level set representation. A characterization of Vapnik–Chervonenkis and Rademacher
complexities, and consistency results have been provided. The variational level set for-
mulation is flexible in allowing the inclusion of various geometric priors defined in the
input space. One example is the energy functional of feature relevance measured using
the partial derivative of the signed distance function proposed for ℓ1-regularized feature
subset selection.

It is a known fact that with finite training data, no one classification method is
best for all datasets. Performance of classifiers may vary quite a bit depending on the
data characteristics because of differing inductive biases. The classifier presented in
this chapter provides a new option when choosing a classifier. The results on stan-
dard datasets indicate that the GLS classifier is competitive with other state-of-the-art
classifiers.
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Chapter 4

Dimensionality of the
Classifier Input

DECISION rules in hypothesis testing are simplified through sufficient statistics such
as the likelihood ratio. Calculation of a sufficient statistic losslessly reduces the di-

mensionality of high-dimensional measurements before applying a decision rule defined
in the reduced-dimensional space. Decision rules that are learned in most supervised
classification methods, in contrast, are defined in the full high-dimensional input space
rather than in a reduced-dimensional space. The frugality pursued in this chapter is to
limit the dimensionality of the space in which classification decision boundaries are de-
fined. A method for simultaneously learning both a dimensionality reduction mapping,
represented by a matrix on the Stiefel manifold, and a margin-based classifier defined
in the reduced-dimensional space is proposed [210, 212]. Not only does dimensionality
reduction simplify decision rules, but it also decreases generalization error by preventing
overfitting [25, 131, 206, 230].

As mentioned in Section 2.4, many methods for linear dimensionality reduction can
be posed as optimization problems on the Stiefel or Grassmann manifold with different
objectives [188]. In a similar manner to how the SVM with linear decision boundary can
be extended to a classifier with nonlinear decision boundary through the use of kernels,
linear dimensionality reduction methods that are optimization problems on the Stiefel
or Grassmann manifold can be extended as nonlinear dimensionality reduction methods
using kernels [15, 128, 176, 177]. In this chapter, an optimization problem on the Stiefel
manifold is proposed whose objective is that of margin-based classification and an iter-
ative coordinate descent algorithm for its solution is developed. The proposed objective
and coordinate descent are extended for distributed dimensionality reduction in sensor
networks. In that resource-constrained setting, not only does dimensionality reduction
improve classifier generalization, but also reduces the amount of communication by
sensor nodes.

The most popular method of dimensionality reduction for data analysis is PCA
[95, 96, 148]. PCA (and its nonlinear extension using kernels [177]) only makes use of
the measurement vectors, not the class labels, in finding a dimensionality reduction
mapping. Popular nonlinear dimensionality reduction methods such as Isomap [193],

85
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locally linear embedding [166], and Laplacian eigenmaps [17] also do not make use of
class labels.1 If the dimensionality reduction is to be done in the context of supervised
classification, the class labels should also be used. Several supervised dimensionality
reduction methods exist in the literature. These methods can be grouped into three
broad categories: those that separate likelihood functions according to some distance or
divergence, those that try to match the probability of the labels given the measurements
with the probability of the labels given the dimensionality-reduced measurements, and
those that attempt to minimize a specific classification or regression objective.

FDA is a supervised linear dimensionality reduction method that assumes that the
likelihood functions are Gaussian with the same covariance and different means [69]. It
(and its nonlinear extension using kernels [15, 128]) returns a matrix on the Stiefel mani-
fold that maximally separates (in Euclidean distance) the clusters of the different labels
[188]. The method of Lotlikar and Kothari [119] also assumes Gaussian likelihoods
with the same covariance and different means, but with an even stronger assumption
that the covariance matrix is a scalar multiple of the identity. The probability of er-
ror is explicitly minimized using gradient descent; the gradient updates do not enforce
the Stiefel manifold constraint, but the Gram-Schmidt orthonormalization procedure is
performed after every step to obtain a matrix that does meet the constraint. With a
weaker assumption only that the likelihood functions are Gaussian, but without restric-
tion on the covariances, other methods maximize Bhattacharyya divergence or Chernoff
divergence, which are surrogates for minimizing the probability of error [195].

The method of Patrick and Fischer [147], like FDA, maximally separates the clusters
of the different labels but does not make the strong Gaussian assumption. Instead, it
performs kernel density estimation of the likelihoods and separates those estimates.
The optimization is gradient ascent and orthonormalization is performed after every
step. Similarly, information preserving component analysis also performs kernel density
estimation and maximizes Hellinger distance, another surrogate for minimizing the
probability of error, with optimization through gradient ascent and the Stiefel manifold
constraint maintained in the gradient steps [33]. Other approaches with information-
theoretic criteria include [135, 160, 199].

Like [33, 147], the method of Sajama and Orlitsky [170] also estimates probability
density functions for use in the criterion for dimensionality reduction. The particu-
lar criterion, however, is based on the idea that the dimensionality reduction mapping
should be such that the conditional probability of the class labels in the supervised
classification problem given the input high-dimensional measurements equals the con-
ditional probability of the class labels given the reduced-dimensional features. The same
criterion appears in [73, 74, 114, 115] and many references given in [42]. These papers
describe various methods of finding dimensionality reduction mappings to optimize the

1Incidentally, the nonlinear dimensionality reduction methods Isomap, locally linear embedding, and
Laplacian eigenmaps can be expressed in terms of kernels in a manner similar to kernel PCA, as shown
by Bengio et al. [19]. The expression of Isomap in terms of a kernel function is given at the end of
Section 2.4.3.
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criterion with different assumptions.
Some supervised dimensionality reduction methods explicitly optimize a classifica-

tion or regression objective. The support vector singular value decomposition ma-
chine has a joint objective for dimensionality reduction and classification with the
hinge loss function [150]. However, the matrix it produces is not guaranteed to be
on the Stiefel manifold, and the space in which the classifier is defined is not exactly
the dimensionality-reduced image of the high-dimensional space. It also changes the
regularization term from what is used in the standard SVM formulation. Maximum
margin discriminant analysis is another method based on the SVM; it finds the reduced-
dimensional features one by one instead of giving the mappings for all of the reduced
dimensions at once and it does not simultaneously give a classifier [202]. The method
of [117, 188] is based on the nearest neighbor classifier. A linear regression objective
and a regression parameter/Stiefel manifold coordinate descent algorithm is developed
in [151].

The objective function and optimization procedure proposed in this chapter have
some similarities to many of the methods discussed, but also some key differences.
First of all, no explicit assumption is made on the statistics of likelihood functions,
and indeed no assumptions are explicitly used, e.g., no assumption of Gaussianity is
employed.2 Moreover, the method proposed in the chapter does not require nor involve
estimation of the probability density functions under the two hypotheses nor of the
likelihood ratio. The direct interest is only in learning decision boundaries and using
margin-based loss functions to guide both this learning and the optimization over the
Stiefel manifold to determine the reduced-dimensional space in which decision making is
to be performed. Density estimation is a harder problem than finding classifier decision
boundaries and it is well known that when learning from finite data, it is best to only
solve the problem of interest and nothing more. Similarly, the desideratum that the
conditional distributions of the class labels given the high-dimensional and reduced-
dimensional measurements match is more stringent than wanting good classification
performance in the reduced-dimensional space.

Rather than nearest neighbor classification or linear regression, the objective in
the proposed method is margin-based classification. The proposed method finds all
reduced-dimensional features in a joint manner, and gives both the dimensionality re-
duction mapping and the classifier as output. Unlike in [150], the classifier is defined
exactly without approximation in the reduced-dimensional space that is found. Addi-
tionally, the regularization term and consequently inductive bias of the classifier is left
unchanged.

The preceding represent the major conceptual differences between the framework
developed in this chapter and that considered in previous work. Coordinate descent
optimization procedures are used in this work, which are also employed in other works,
e.g. [150, 151], but the setting in which these are used is new. The proposed frame-

2Note that there is an intimate relationship between margin-based loss functions used in this chapter
and statistical divergences [139].
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work also allows the development of some new theoretical results on consistency and
Rademacher complexity. Moreover, the framework allows a natural generalization to
distributed dimensionality reduction for classification in sensor networks, a problem
that has not been considered previously.

This work fits into the general category of the supervised learning of frugal data
representations. Examples from this category include supervised learning of undirected
graphical models [172], sparse signal representations [98, 123], directed topic models
[26, 109], quantizer codebooks [110], and dimensionality reduction mappings, which is
the topic of this chapter.

The chapter is organized as follows. Section 4.1 combines the ideas of margin-based
classification and optimization on the Stiefel manifold to give a joint linear dimension-
ality reduction and classification objective as well as an iterative algorithm. Illustrative
examples and results on several datasets are also given in this section. Section 4.2
extends the linear approach of Section 4.1 to nonlinear dimensionality reduction for
margin-based classification through the use of kernel functions. In Section 4.3, an anal-
ysis of Rademacher complexity and consistency is provided. Section 4.4 shows how the
formulation can be extended to multisensor data fusion networks, discusses a physical
model of wireless sensor networks, and gives experimental results of classification per-
formance as a function of transmission power consumed in the network. Section 4.5 is
a brief summary of the chapter.

� 4.1 Linear Dimensionality Reduction for Margin-Based Classification

Decision functions of margin-based classifiers, including the SVM and the GLS clas-
sifier proposed in Chapter 3, are defined on the full-dimensional input measurement
space. In this section, the input measurement vectors are linearly mapped to a reduced-
dimensional space over which the decision function is defined. The linear mapping,
represented by a matrix on the Stiefel manifold, and the decision function are both
optimized to obtain a classifier with small regularized margin-based training loss.

� 4.1.1 Joint Objective Functional

Recall the binary margin-based objective functional

L(ϕ) =
n
∑

j=1

ℓ(yjϕ(xj)) + λ J(ϕ), (4.1)

presented in Section 2.2, where xj ∈ Ω ⊂ R
D. The proposal in this section is to formu-

late a joint linear dimensionality reduction and classification minimization problem by
extending the margin-based functional (4.1).

The decision function ϕ is defined in the reduced-dimensional space Z = AT Ω ⊂ R
d,

where d ≤ D and A is a linear dimensionality reduction matrix on the Stiefel manifold.
Aside from including A in the argument of the decision function, the classification ob-
jective is left unchanged. In particular, the regularization term J is not altered, thereby
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allowing any regularized margin-based classifier to be extended for dimensionality re-
duction. The margin-based classification objective is extended to include a D×d matrix
A as follows:

L(ϕ,A) =
n
∑

j=1

ℓ(yjϕ(AT xj)) + λ J(ϕ), (4.2)

with the constraint A ∈ V(D, d). With the definition x̃ = ATx, the objective function
is also

L(ϕ,A) =

n
∑

j=1

ℓ(yjϕ(x̃j)) + λ J(ϕ). (4.3)

With different loss functions ℓ and different regularization terms J, various margin-
based classifiers can thus be extended for joint linear dimensionality reduction. Once
ϕ and A are found, the classifier is ŷ(x) = sign

(

ϕ
(

ATx
))

.
The joint linear dimensionality reduction and classification framework is applicable

to the multicategory GLS classifier proposed in Section 3.2 as well. The objective
functional in the multicategory case is

L(ϕ(1), . . . ,ϕ(m),A) =
n
∑

j=1

ℓ(ψyj
(AT xj)) +

λ

m

m
∑

k=1

∮

ϕ(k)=0

ds. (4.4)

� 4.1.2 Coordinate Descent Minimization

The option pursued for performing the minimization of L(ϕ,A) given in (4.2) is coor-
dinate descent: alternating minimizations with fixed A and with fixed ϕ. The problem
is conceptually similar to level set image segmentation along with pose estimation for a
shape prior [165], especially when the classifier is the GLS classifier. When A is fixed,
optimization for ϕ is a standard margin-based classification problem in the reduced-
dimensional space. If the margin-based classifier is the SVM, then this optimization
step may be performed by quadratic programming techniques, as mentioned in Sec-
tion 2.2.3. If the margin-based classifier is the GLS classifier, then this optimization
step may be performed by contour evolution, as detailed in Chapter 3.

When ϕ is fixed, the problem at hand is to minimize a function of A lying on the
Stiefel manifold, a problem touched on in Section 2.4.1. The function

L(A) =
n
∑

j=1

ℓ(yjϕ(AT xj))

is differentiable with respect to A for differentiable loss functions. The first derivative
is:

LA =

n
∑

j=1

yj ℓ
′(yjϕ(AT xj))xj

[

ϕx̃1(AT xj) · · · ϕx̃d
(ATxj)

]

. (4.5)
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Note that xj is a D×1 vector and that
[

ϕx̃1(AT xj) · · · ϕx̃d
(ATxj)

]

is a 1×d vector,
where ϕx̃k

(·) is the partial derivative of the decision function with respect to dimension
x̃k in the reduced-dimensional space. For the logistic loss function:

ℓ′logistic(z) = − e−z

1 + e−z

and for the hinge loss function:

ℓ′hinge(z) = − step(1 − z),

where step(·) is the Heaviside step function. In order to minimize the margin-based loss
with respect to A, gradient descent along Stiefel manifold geodesics is performed, which
involves applying (2.78) and (2.79) given in Section 2.4.1 with the matrix derivative
(4.5).

Similarly for the multicategory GLS classifier, the matrix derivative is:

LA =
n
∑

j=1

ℓ′(ψyj
(ATxj))xj

[

ψyj ,x̃1(ATxj) · · · ψyj ,x̃d
(ATxj)

]

, (4.6)

where ψyj ,x̃k
is the partial derivative of ψyj

with respect to dimension x̃k in the reduced
d-dimensional space. The matrix derivative (4.6) is substituted into (2.78) and (2.79)
in this case as well to perform gradient descent along Stiefel manifold geodesics.

� 4.1.3 Examples

A binary example is now presented in which the input dimensionality is D = 8. The
first two dimensions of the data, x1 and x2, are informative for classification and the
remaining six are completely irrelevant. The first two dimensions of the data are the
same as in the first example of Section 3.1.3, separable by an ellipse. The values in the
other six dimensions are independent samples from an identical Gaussian distribution
without regard for class label. Linear dimensionality reduction to d = 2 dimensions is
sought.

The desiderata for this example are that the correct two-dimensional projection is
identified and, assuming that it is, that the decision boundary is essentially elliptical. If
the correct projection is identified, then the last six rows of the A matrix will be small
compared to the first two rows, and the corresponding zonotope will be nearly square.
Since rotations and reflections of the reduced-dimensional space are inconsequential,
it is not necessary that the first two rows of A be the identity matrix, nor that the
orientation of the zonotope Z(A) line up with the coordinate axes. The two likelihood
functions have the same mean and are not Gaussian, and thus not very amenable to
FDA. The matrices obtained using PCA and FDA are given in Table 4.1 and visual-
ized in Figure 4.1 using Z(A). Neither PCA nor FDA is successful at recovering the
informative subspace: the x1–x2 plane.
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PCA FDA
2

6

6

6

6

6

6

6

6

6

6

4

0.9942 −0.0027
−0.0055 0.0836

0.0006 −0.1572
−0.0905 0.3921
−0.0188 −0.5629

0.0346 0.1785
−0.0343 −0.1310
−0.0260 −0.6699

3

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

4

−0.0366 0.4280
−0.0285 −0.1829
−0.0639 0.1498

0.0171 −0.0587
−0.2199 0.7443
−0.0219 0.1451

0.8840 0.0175
0.4040 0.4268

3

7

7

7

7

7

7

7

7

7

7

5

Table 4.1. Dimensionality reduction matrices produced by PCA and FDA.

x̃1

x̃
2

x̃1

x̃
2

(a) (b)

Figure 4.1. PCA and FDA projections. Magenta × markers indicate label −1. Black + markers
indicate label +1. The green line outlines the zonotope Z(A) from (a) PCA, and (b) FDA solutions.

The classification–linear dimensionality reduction coordinate descent is run on the
example dataset as well. The expression (4.2) is minimized to find both an A matrix
and decision boundary using two different margin-based classifiers: the SVM with RBF
kernel and the GLS classifier of Chapter 3 with the logistic loss function. In order to
show the robustness of the coordinate descent, a poor random initialization is used for
A.

The top left panel of Figure 4.2 shows the decision boundary resulting from the
first optimization for ϕ using the GLS classifier with the random initialization for A,
before the first gradient descent step on the Stiefel manifold. As the coordinate descent
progresses, the zonotope becomes more like a square, i.e., A aligns with the x1–x2 plane,
and the decision boundary becomes more like an ellipse. The bottom right panel of
Figure 4.2 shows the final learned classifier and linear dimensionality reduction matrix.
Figure 4.3 shows the coordinate descent with the SVM. Here also, the zonotope becomes
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x̃1

x̃
2

x̃1

x̃
2

x̃1

x̃
2

x̃1

x̃
2

Figure 4.2. Joint linear dimensionality reduction and margin-based classification coordinate descent
with the GLS classifier proceeding in raster scan order from top left to bottom right. The magenta ×
markers indicate class label −1 and the black + markers indicate class label +1. The blue line is the
decision boundary. The green line outlines the zonotope Z(A).

more like a square and the decision boundary becomes more like an ellipse throughout
the minimization.

The random initial A matrix and the final A matrix solutions for the GLS classifier
and the SVM are given in Table 4.2. Conforming to the expected behavior, the final
decision boundary is almost an ellipse and the final A has very little energy in the
bottom six rows with both margin-based classifiers. As this example indicates, the
procedure is capable of making quite large changes to A.

As a second example, the dataset used in Section 3.1 and Section 3.5 is considered,
in which the samples labeled −1 are in a strip parallel to the x1 axis. Here the dimen-
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x̃1

x̃
2

x̃1

x̃
2

x̃1

x̃
2

x̃1

x̃
2

Figure 4.3. Joint linear dimensionality reduction and margin-based classification coordinate descent
with the SVM classifier proceeding in raster scan order from top left to bottom right. The magenta ×
markers indicate class label −1 and the black + markers indicate class label +1. The blue line is the
decision boundary. The green line outlines the zonotope Z(A).

sionality reduction is from D = 2 to d = 1 dimensions. As noted in Section 3.5, the
vertical dimension x2 is useful for classifying this dataset and the horizontal dimension

is not. Therefore, the expected solution for A is either
[

0 1
]T

or
[

0 −1
]T

.
The margin-based classifier used in this example is the GLS classifier. The initial

and final A matrices are given in Table 4.3 and the initial and final signed distance
functions are shown in Figure 4.4. The final recovered A matrix is as expected with
nearly all of the energy in the second input variable. The final signed distance function
in Figure 4.4(b) partitions the x̃1 = ATx axis as expected: it is negative in the strip
where there are negatively labeled samples and positive elsewhere. (Remnants of the



94 CHAPTER 4. DIMENSIONALITY OF THE CLASSIFIER INPUT

Random Coordinate Descent Coordinate Descent
Initialization with GLS with SVM

2

6

6

6

6

6

6

6

6

6

6

4

0.0274 −0.4639
0.4275 0.2572
0.4848 0.1231

−0.0644 0.4170
0.0138 0.3373
0.5523 0.2793
0.1333 0.0283
0.5043 −0.5805
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7

7

7

7

7

7

7

7

7

7
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2

6

6

6

6

6

6

6

6

6

6

4

0.3386 −0.9355
0.9401 0.3406
0.0118 −0.0110
0.0103 −0.0196
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−0.0172 0.0181
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0.3155 −0.9425
0.9446 0.3098
0.0334 0.0936
0.0037 0.0356
0.0061 −0.0318

−0.0716 0.0121
−0.0411 −0.0410
−0.0151 −0.0537
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7

7

7

7

7

5

Table 4.2. Dimensionality reduction matrices in coordinate descent minimization.

Initial Final
»

0.2425
0.9701

– »

−0.0180
0.9998

–

Table 4.3. Initial and final dimensionality reduction matrices in coordinate descent minimization of
joint dimensionality reduction and GLS classification.

initialization remain at the edges of the domain where there are no data samples.) In
the two examples of this section, it happens that the expected solutions for A are zero
in a subset of the input variables for illustratory reasons. However, the real power of
matrix optimization on the Stiefel manifold is that other linear combinations of input
variables can be obtained.

� 4.1.4 Classification Error for Different Reduced Dimensions

Experimental classification results are presented on several datasets from the UCI Ma-
chine Learning Repository [10]. The joint linear dimensionality reduction and margin-
based classification method proposed earlier in this section is run for different values
of the reduced dimension d, showing that performing dimensionality reduction does in
fact improve classification performance in comparison to not performing dimensionality
reduction. The margin-based classifier that is used is the SVM with RBF kernel and
default parameter settings from the Matlab bioinformatics toolbox.

Training error and test error as a function of the reduced dimension are investigated
for five different datasets from varied application domains: Wisconsin diagnostic breast
cancer (D = 30), ionosphere (D = 34), sonar (D = 60), arrhythmia (D = 274 after pre-
processing to remove dimensions containing missing values), and arcene (D = 10000).
On the first four datasets, tenfold cross-validation training and test errors are examined.
The arcene dataset has separate training and validation sets, which are used.

For the initialization of A, estimates of the mutual informations between the label
y and individual data dimensions xk, k = 1, . . . ,D, are used. The first column of A is
taken to be the canonical unit vector corresponding to the dimension with the largest
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Figure 4.4. Joint linear dimensionality reduction and GLS classification. The magenta × markers
indicate class label −1 and the black + markers indicate class label +1. The maroon line is the signed
distance function whose zero level set forms the decision boundary. The dashed green line delimits
the zonotope generated by AT . The initial and final dimensionality reduction projection and signed
distance function are in (a) and (b) respectively.

mutual information. The second column of A is taken to be the canonical unit vector
corresponding to the dimension with the second largest mutual information, and so on.
The last, i.e. dth, column of A is taken to be zero in the rows already containing ones
in the first (d−1) columns, and nonzero in the remaining rows with values proportional
to the mutual informations of the remaining dimensions. Kernel density estimation is
used in estimating mutual information.

The tenfold cross-validation training error is shown with a blue line and the ten-
fold cross-validation test error is shown with a red line for the first four datasets in
Figure 4.5. Figure 4.6 gives the training and test performance for the arcene dataset.
For the Wisconsin diagnostic breast cancer, ionosphere, and sonar datasets, classifica-
tion performance is shown for all possible reduced dimensions. For the arrhythmia and
arcene datasets, reduced dimensions up to d = 50 and d = 100 are shown, respectively.

The first thing to notice in the plots is that the training error quickly converges
to zero with an increase in the reduced dimension d. The margin-based classifier with
linear dimensionality reduction perfectly separates the training set when the reduced
dimension is sufficiently large. However, this perfect separation does not carry over to
the test error—the error of most interest. In all of the datasets, the test error first
decreases as the reduced dimension is increased, but then starts increasing. There is
an intermediate optimal value for the reduced dimension. For the five datasets, these
values are d = 3, d = 9, d = 16, d = 10, and d = 20, respectively. This test error
behavior is evidence of overfitting if d is too large. Dimensionality reduction improves
classification performance on unseen samples by preventing overfitting. Remarkably,
even the ten thousand-dimensional measurements in the arcene dataset can be linearly
reduced to twenty dimensions.

The classification error as a function of d using the proposed joint linear dimen-
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Figure 4.5. Tenfold cross-validation training error (blue line) and test error (red line) on (a) Wisconsin
diagnostic breast cancer, (b) ionosphere, (c) sonar, and (d) arrhythmia datasets.

sionality reduction and margin-based classification method matches the structural risk
minimization principle. Rademacher complexity analysis supporting these empirical
findings is presented in Section 4.3. If generalization error is the only criterion, then
any popular model selection method from the statistical learning literature, including
those based on cross-validation, bootstrapping, and information criteria, can be used to
find a good value for the reduced dimension d. However, other criteria besides general-
ization error become important in various settings, including sensor networks discussed
in Section 4.4.

Test error using the joint linear dimensionality reduction and margin-based classifi-
cation method may be compared to the test error when dimensionality is first reduced
using PCA or FDA followed by classification using the same classifier, the SVM with
RBF kernel and default settings. This comparison is given for the ionosphere and sonar
datasets in Figure 4.7. The minimum test error is achieved by the joint minimization.
This is to be expected, as the dimensionality reduction is matched to the classifier when
the joint objective is optimized.
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Figure 4.6. Training error (blue line) and test error (red line) on arcene dataset.
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Figure 4.7. Tenfold cross-validation test error on (a) ionosphere and (b) sonar datasets with PCA (yel-
low line), FDA (orange line), and joint linear dimensionality reduction and margin-based classification
(red line).

� 4.2 Nonlinear Dimensionality Reduction for Margin-Based Classification

This section extends Section 4.1 to nonlinear dimensionality reduction. As discussed
at the beginning of the chapter, several methods exist in the literature for nonlinear
dimensionality reduction in the unsupervised setting, also known as manifold learning,
including Isomap [193], locally linear embedding [166], and Laplacian eigenmaps [17].
Methods such as [86] utilize a variational energy minimization formulation and an im-
plicit representation of the low-dimensional manifold, like variational level set methods,
but also in the unsupervised setting.

The use of kernel functions allows the extension of linear dimensionality reduction
methods to nonlinear dimensionality reduction [176], as has been done for PCA [177] and
FDA [15, 128]. Bengio et al. [19] have shown that Isomap, locally linear embedding, and
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Laplacian eigenmaps are versions of kernel PCA for different data-dependent kernels.
The approach followed in this section is to take the data-dependent kernel for Isomap
[19], and use it in the context of the joint dimensionality reduction and margin-based
classification problem instead of the PCA problem.

� 4.2.1 Kernel-Based Nonlinear Formulation

Recall from Section 2.4.3 the data-dependent kernel function corresponding to the man-
ifold learning technique Isomap:

K(w, z) = −1

2



ρ(w, z)2 − 1

n

n
∑

j=1

ρ(w,xj)
2 − 1

n

n
∑

j=1

ρ(xj , z)2 +
1

n2

n
∑

j=1

n
∑

j′=1

ρ(xj ,xj′)
2



 ,

(4.7)
where x1, . . . ,xn ∈ R

D are the given data samples, and w and z are general points in
R

D. The distance ρ is an approximation to geodesic distance on the manifold calculated
by means of a Euclidean k-nearest neighbor graph of the given data samples. The
distance from a point not among the set of data samples to another sample is simply
calculated by first finding the k-nearest neighbors in the dataset of that point. Then
the distance is the minimum, among the neighbors, of the sum of the distance between
the point and the neighbor, and the graph-based geodesic distance from the neighbor
to the other sample.

Also recall the definition K̃(x) =
[

K(x,x1) · · · K(x,xn)
]T

. The dimensionality-

reduced mapping of the sample x is x̃ = AT K̃(x), where A is an n × d matrix with
orthogonal columns. In applications such as supervised classification where the scal-
ing of the different dimensions on the reduced-dimensional manifold is not important,
A can be taken to be a member of V(n, d). Note that by using this nonlinear kernel
function representation, the matrix A has n rows as opposed to D rows in the linear
dimensionality reduction case. If n is greater than D, it is possible to use this formula-
tion for dimensionality expansion rather than dimensionality reduction, but that is not
pursued here.

For the purposes of margin-based classification, a joint objective similar to the
linear dimensionality reduction functional (4.2) is proposed for nonlinear dimensionality
reduction as follows.

L(ϕ,A) =

n
∑

j=1

ℓ(yjϕ(AT K̃(xj))) + λ J(ϕ), (4.8)

with the constraint A ∈ V(n, d). As in the linear dimensionality reduction case, the
decision function ϕ is defined in the reduced d-dimensional space. The kernel functions
K̃ remain fixed throughout. A coordinate descent minimization procedure is followed as
for linear dimensionality reduction. Since K̃(x) is fixed, the optimization is no different
than in the linear case.
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Figure 4.8. The (a) swiss roll dataset, (b) its Isomap embedding, (c) joint linear dimensionality
reduction and SVM classification solution, and (d) joint nonlinear dimensionality reduction and SVM
classification solution. The magenta × markers indicate class label −1 and the black + markers indicate
class label +1. The blue line is the decision boundary. The green line outlines the zonotope Z(A) in
(c).

Belkin et al. [18] have proposed a statistical learning methodology involving man-
ifold regularization that is applicable to supervised margin-based classification. The
manifold regularization in that framework exploits the concentration of samples in a
high-dimensional space on a low-dimensional manifold, but does not provide a map-
ping or embedding to the low-dimensional manifold. The decision function ϕ is defined
in the D-dimensional space rather than in the reduced d-dimensional space as in the
method proposed in this section. In fact, the manifold regularization term proposed in
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Figure 4.9. Joint (a) linear and (b) nonlinear dimensionality reduction and SVM classification so-
lutions for the ionosphere dataset. The magenta × markers indicate class label −1 and the black +
markers indicate class label +1. The blue line is the decision boundary.

[18] parallels the feature subset selection term proposed in Section 3.5.

� 4.2.2 Examples

Examples of nonlinear dimensionality reduction for margin-based classification are pre-
sented on one synthetic dataset and two real-world datasets. The synthetic dataset, a
modification of the swiss roll dataset presented in [193], consists of a two-dimensional
manifold embedded in three dimensions. The other two examples are the 34-dimensional
ionosphere dataset and 60-dimensional sonar dataset from the UCI Repository [10]. For
all three, the dimensionality is reduced nonlinearly to d = 2.

The first n = 1000 samples of the swiss roll dataset from [193] are taken as the
xj ∈ R

3, with the dimensions normalized to have unit variance and zero mean. These
samples lie on a two-dimensional plane that has been rolled into a spiral in the three-
dimensional space. The class labels are assigned so that yj = −1 on one side of a
diagonal line on that two-dimensional plane and yj = +1 on the other side. The
dataset is shown in Figure 4.8(a). The Isomap embedding of the points without regard
to class label is shown in Figure 4.8(b).

Joint dimensionality reduction and margin-based classification is run on the dataset
with the SVM with RBF kernel. The solution obtained with linear dimensionality re-
duction is given in Figure 4.8(c) whereas the solution with nonlinear dimensionality
reduction is given in Figure 4.8(d). The example has been constructed so that it is not
very suitable to linear dimensionality reduction to d = 2 dimensions, but is suited to
nonlinear dimensionality reduction. The classifier with the linear mapping misclassifies
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Figure 4.10. Joint (a) linear and (b) nonlinear dimensionality reduction and SVM classification
solutions for the sonar dataset. The magenta × markers indicate class label −1 and the black +
markers indicate class label +1. The blue line is the decision boundary.

many samples, but the classifier with nonlinear mapping does not. This dataset is an
instance where nonlinear dimensionality reduction is vastly superior to linear dimen-
sionality reduction. Importantly, nonlinear dimensionality reduction for margin-based
classification with the Isomap kernel does not produce the same embedding as the
Isomap algorithm itself.

Figure 4.9 and Figure 4.10 show solutions to joint margin-based classification with
both linear and nonlinear dimensionality reduction on the ionosphere and sonar datasets
respectively. With these real-world datasets, the first thing to notice is that the linear
and nonlinear mappings are different from each other. With the ionosphere dataset for
example, the linear mapping has the +1 labeled samples surrounding the −1 labeled
samples on three sides. The nonlinear mapping, in contrast, has wrapped the space
so that the +1 labeled samples are on one or two sides of the −1 labeled samples.
The linear and nonlinear mappings with the sonar datasets are also different from each
other.

However, with the real-world datasets, it is not clear whether the linear or nonlinear
dimensionality reduction is superior for use alongside the nonlinear kernel SVM classifier
or other nonlinear margin-based classifiers. Since real-world datasets are neither arbi-
trary nor adversarial to linear dimensionality reduction, but have structure associated
with them, linear dimensionality reduction with nonlinear margin-based classification
may provide a good balance for generalization. An investigation of classification error as
a function of nonlinearly reduced dimension and a comparison to linear dimensionality
reduction is given next.
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Figure 4.11. Tenfold cross-validation training error (blue line) and test error (red line) on (a) Wis-
consin diagnostic breast cancer, (b) ionosphere, (c) sonar, and (d) arrhythmia datasets with nonlinear
Isomap kernel.

� 4.2.3 Classification Error for Different Reduced Dimensions

Training and test error as a function of the reduced dimension d is presented for the
same five datasets considered in Section 4.1.4: Wisconsin diagnostic breast cancer,
ionosphere, sonar, arrhythmia, and arcene. Also as in that section, the margin-based
classifier is the SVM with RBF kernel and default parameters from the Matlab bioin-
formatics toolbox. The same mutual information-based initialization for A is used as
well.

The approximation to geodesic distance used in the Isomap kernel is calculated
using a k-nearest neighbor graph. The value of k has not been found to have much of
an effect on training and test error. Tenfold cross-validation errors for the first four
datasets with k = 7 neighbors in the graph are plotted in Figure 4.11. Figure 4.12 gives
the training and test performance for the arcene dataset with k = 11 neighbors in the
graph. Smaller values of k with the arcene dataset produce a graph with more than one
connected component, which is not desirable. Training error tends to decrease with d,
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Figure 4.12. Training error (blue line) and test error (red line) on arcene dataset with nonlinear
Isomap kernel.

whereas test error tends to first decrease and then increase. These plots indicate that
the structural risk minimization principle and overfitting are in play with nonlinear
dimensionality reduction just as they are with linear dimensionality reduction.

A comparison of test error when using nonlinear dimensionality reduction and when
using linear dimensionality reduction is also provided. Figure 4.13 plots tenfold cross-
validation test error as a function of d for the first four datasets with the red line being
the test error for nonlinear dimensionality reduction and the magenta line being the
test error for linear dimensionality reduction. This figure shows the same values as
Figure 4.5 and Figure 4.11, but on the same axis for easy comparison. The test errors
are compared for the arcene dataset in Figure 4.14. The values in this figure also appear
in Figure 4.6 and Figure 4.12.

Nonlinear dimensionality reduction has smaller test error than linear dimensionality
reduction for larger d. However, linear dimensionality reduction has smaller minimum
test error. At optimal reduced dimensionality, linear dimensionality reduction is better
on these real-world datasets, but overfits more when d is large. Linear dimensionality
reduction with a nonlinear margin-based classifier seems to be well-suited for small
classification generalization error.

� 4.3 Complexity and Consistency Analysis

This section provides a theoretical characterization of the Rademacher complexity of
dimensionality-reduced GLS classifiers that minimize the functional (4.2). It also shows
that dimensionality-reduced GLS classifiers are consistent. The main tool used in both
analyses is the ǫ-entropy of the function class that contains the decision function ϕ [106].
The analysis mirrors that given in Chapter 3, but with the additional ingredient of the
dimensionality reduction mapping, which necessitates the use of zonotope content in
calculating ǫ-entropy.
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Figure 4.13. Comparison of tenfold cross-validation test error with nonlinear (red line) and linear
(magenta line) dimensionality reduction on (a) Wisconsin diagnostic breast cancer, (b) ionosphere, (c)
sonar, and (d) arrhythmia datasets.

� 4.3.1 Epsilon Entropy

As discussed in Chapter 3, scaling and shifting of the data is often performed in clas-
sification, and as in that chapter, the domain of the unreduced measurement vectors
is taken to be the unit hypercube, that is x ∈ Ω = [0, 1]D . The reduced-dimensional
domain is then the zonotope Z = AT Ω ⊂ R

d, where A is on the Stiefel manifold. The
set of signed distance functions ϕ defined on Ω is denoted FΩ and the set defined on
Z is denoted FZ . The surface area constraint included in the analysis of Chapter 3 is
not included in the analysis in this chapter for simplicity, but could be included in a
straightforward manner.

For GLS classification without dimensionality reduction, it is shown in Section 3.4
that

Hρ∞,ǫ(FΩ) ≤ νD, (4.9)

where ν = ⌈1/ǫ⌉. This result follows from the fact that νD D-dimensional hypercubes
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Figure 4.14. Comparison of test error with nonlinear (red line) and linear (magenta line) dimension-
ality reduction on arcene dataset.

with side of length ǫ fit as a Cartesian grid into Ω = [0, 1]D . To find an expression for
the ǫ-entropy of the dimensionality-reduced GLS classifier, analysis of the same type
applies. Consequently, the number of d-dimensional hypercubes with side of length ǫ
that fit into Z must be determined.

The number of small hypercubes that fit inside Z is related to its content V (Z).
Based on the zonotope content inequality (2.82) given in Section 2.4, it is found that

Hρ∞,ǫ(FZ) ≤ V (Z)νd ≤ ωd

(

ωd−1

ωd

√

D

d

)d

νd, (4.10)

where ωd is the content of the d-dimensional unit hypersphere. For fixed reduced
dimension d, Hρ∞,ǫ(FZ) increases as a function of the measurement dimension D, i.e.,
the classifier function class is richer for larger measurement dimension with the same
reduced-dimension. Importantly, Hρ∞,ǫ(FZ) increases as a function of d for fixed D.

The function class FZ , and consequently Hρ∞,ǫ(FZ) is tied to the specific margin-
based classification method employed. The GLS classifier has been selected in order to
make concrete statements. Similar analysis may be performed for other margin-based
classifiers such as the kernel SVM.

� 4.3.2 Rademacher Complexity

It has been seen empirically that training error decreases as a function of d, but that
test error (a surrogate for generalization error) first decreases and then increases. The
generalization bound (2.32) discussed in Section 2.2.2 suggests that this increase in
test error is due to overfitting caused by high complexity of the classifier function class
FZ when d is large. As discussed in [25, 131, 230], dimensionality reduction reduces
classifier complexity and thus prevents overfitting. Here, the Rademacher complexity
term CRad

n (FZ) is analytically characterized for the joint dimensionality reduction and
margin-based classification method proposed in this chapter.
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Figure 4.15. Rademacher complexity as a function of the reduced dimension d for D = 5 (blue line),
D = 10 (green line), D = 15 (red line), and D = 20 (cyan line) for ǫ = 0.01 and n = 1000.

As also noted in Section 3.4.2, von Luxburg and Bousquet [121] show that the
Rademacher complexity of a function class FZ satisfies:

ĈRad
n (FZ) ≤ 2ǫ+

4
√

2√
n

∫ ∞

ǫ
4

√

Hρ∞,ǫ′(FZ)dǫ′. (4.11)

Substituting the Hρ∞,ǫ(FZ) expression (4.10) into (4.11), it is found that for a fixed
measurement dimension D, the more the dimensionality is reduced, that is the smaller
the value of d, the smaller the Rademacher complexity. This is shown in Figure 4.15,
a plot of the complexity value as a function of d for different values of D. Although
larger measurement dimension D does result in larger complexity, the effect is minor in
comparison to the effect of d.

Since training error increases as d decreases, and the generalization error is related to
the sum of the Rademacher complexity and the training error: the more the dimension
is reduced, the more that overfitting is prevented. However, if the dimension is reduced
too much, the classifier ends up underfitting the data; the training error component
of the generalization error becomes large. There is an optimal reduced dimension that
balances the training error and the complexity components of the generalization er-
ror. This theoretical conclusion of having an intermediate reduced dimension at which
generalization error is minimized agrees with the empirical findings of Section 4.1.4.

� 4.3.3 Consistency

As discussed in Section 2.2.1, with a training dataset of cardinality n drawn from
fx,y (x, y), a consistent classifier is one whose generalization error converges in the limit
as n goes to infinity to the probability of error of the Bayes optimal decision rule.
For consistency to be at all meaningful, it is assumed in this analysis that there is a
reduced-dimensional statistic x̃ = ATx so that the optimal Bayes decision rule based
on this statistic achieves the same performance as the optimal decision rule based on
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the complete data x. I.e., it is assumed that there exists at least one A∗ ∈ V(D, d) such
that R(ŷ∗(A∗T x)) = R(ŷ∗(x)), where ŷ∗ takes the appropriate-dimensional argument,
and d is known.3

The question is whether for a sequence of classifiers learned from training data
ŷ(n)(x) = sign(ϕ(n)(A(n)T x)), where

(A(n),ϕ(n)) = arg min
A∈V(D,d)

min
ϕ∈FZ(A)

n
∑

j=1

ℓ(yjϕ(AT xj)),

does R(ŷ(n)) − R(ŷ∗) converge in probability to zero. The answer follows the same
development as in Section 3.4.3.

First, the margin-based loss function ℓ must be a Fisher-consistent loss function
[116]. Given that ℓ is Fisher-consistent, Theorem 4.1 of [116] is applied to show consis-
tency. Noting that signed distance functions on Z are bounded in the L∞ norm, and
that there exists a constant B > 0 such that Hρ∞,ǫ(FZ) ≤ Bǫ−d, which follows from
(4.10), applying the theorem yields

R(ŷ(n)) − R(ŷ∗) = OP (n−τ ), (4.12)

where

τ =











1
3 , d = 1
1
4 − log log n

2 log n , d = 2
1
2d , d ≥ 3

.

The dimensionality reduction and classification method is consistent: R(ŷ(n)) − R(ŷ∗)
goes to zero as n goes to infinity because n−τ goes to zero.

� 4.4 Application to Sensor Networks

The problem of distributed detection has been an object of study during the last thirty
years [38, 194, 203, 213], but the majority of the work has focused on the situation when
either the joint probability distribution of the measurements and labels or the like-
lihood functions of the measurements given the labels are assumed known. Recently,
there has been some work on supervised classification for distributed settings when only
training samples, not the distributions, are available [138, 157, 158]. Sensor networks
are systems used for distributed detection and data fusion that operate with severe
resource limitations; consequently, minimizing complexity in terms of communication
and computation is critical [36]. A current interest is in deploying sensor networks with
nodes that take measurements using many heterogeneous modalities such as acoustic,
infrared, seismic, and video [226, 227]. The sensors measure high-dimensional data, but

3Consistency statements similar to the one presented here may be made for cases when such an
A∗ ∈ V(D, d) does not exist; then convergence of R(ŷ(n)) is to the probability of error of the Bayes
optimal decision rule in the best linear subspace of dimension d.
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it is not known in advance which dimensions or combination of dimensions are most
useful for the detection or classification task. Resources can be conserved if sensors do
not transmit irrelevant or redundant data. The transmission of irrelevant and redun-
dant data can be avoided through dimensionality reduction [210, 212]. Previous work
on the linear dimensionality reduction of sensor measurements in distributed settings,
including [77, 167, 175] and references therein, have estimation rather than detection or
classification as the objective.

A classification paradigm that intelligently reduces the dimensionality of measure-
ments locally at sensors before transmitting them is critical in sensor network settings.
In this section, it is shown how the dimensionality reduction of heterogeneous data
specifically for margin-based classification may be distributed in a tree-structured mul-
tisensor data fusion network with a fusion center via individual Stiefel manifold matrices
at each sensor. The coordinate descent learning algorithm proposed in this chapter is
amenable to distributed implementation. In particular, the coordinate descent pro-
cedure is extended so that it can be implemented in tree-structured sensor networks
through a message-passing approach with the amount of communication related to the
reduced dimension rather than the full measurement dimension.

Multisensor networks lead to issues that do not typically arise in statistical learning,
where generalization error is the only criterion. In sensor networks, resource usage
presents an additional criterion to be considered, and the architecture of the network
presents additional design freedom. In wireless sensor networks, the distance between
nodes affects energy usage in communication, and must therefore be considered in
selecting network architecture. Classification results are given for different network
architectures and these issues are touched on empirically.

For ease of exposition, the discussion begins by first considering a setup with a single
sensor, and then comes to the general setting with m sensors networked according to a
tree graph with a fusion center at the root of the tree. Also for simplicity of exposition, it
is assumed that the fusion center does not take measurements, that it is not also a sensor;
this assumption is by no means necessary. Additionally, only binary classification and
linear dimensionality reduction is described, but multicategory classification and the
nonlinear extension developed in Section 4.2 may be used in the sensor network setting
as well. It is assumed, as in [138, 157, 158], that the class labels of the training set are
available at the fusion center.

� 4.4.1 Network with Fusion Center and Single Sensor

Consider a network with a single sensor and a fusion center. The sensor measures
data vector x ∈ R

D and reduces its dimensionality using A. The sensor transmits
x̃s→fc = ATx ∈ R

d to the fusion center, which applies decision rule sign(ϕ(x̃s→fc))
to obtain a classification for x. Clearly in its operational phase, the dimensionality
reduction reduces the amount of transmission required from the sensor to the fusion
center.

Moreover, the communication required in training depends on the reduced dimension
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d rather than the dimension of the measurements D. The coordinate descent procedure
described in Section 4.1.2 is naturally implemented in this distributed setting. With A
fixed, the optimization for ϕ occurs at the fusion center. The information needed by
the fusion center to perform the optimization for ϕ are the x̃s→fc,j , the dimensionality-
reduced training examples. With ϕ fixed, the optimization for A occurs at the sensor.
Looking at the expression for the matrix derivative LA (4.5), it is seen that the informa-
tion required by the sensor from the fusion center to optimize A includes only the scalar

value yj ℓ
′(yjϕ(x̃s→fc,j)) and the column vector

[

ϕx̃1(x̃s→fc,j) · · · ϕx̃d
(x̃s→fc,j)

]T
, de-

noted in this section as ϕ̃′
fc→s,j ∈ R

d, for j = 1, . . . ,n.
Thus the alternating minimizations of the coordinate descent are accompanied by

the alternating communication of messages x̃s→fc,j and ϕ̃′
fc→s,j. The more computa-

tionally demanding optimization for ϕ (the application of a margin-based classification
algorithm) takes place at the fusion center. A computationally simple Stiefel manifold
gradient update occurs at the sensor. This scheme extends to the more interesting case
of multisensor networks, as described next.

� 4.4.2 Multisensor Networks

Now consider networks with m sensors connected in a tree topology with the fusion cen-
ter at the root. Denote the χfc children of the fusion center as child1(fc), . . . , childχfc

(fc).
Denote the χi children of sensor i as child1(i), . . . , childχi

(i). Denote the parent of sen-
sor i as parent(i). Training data vector xi,j ∈ R

Di is measured by sensor i. The sensor
receives dimensionality-reduced measurements from its children, combines them with
its own measurements, and transmits a dimensionality-reduced version of this combi-
nation to its parent. Mathematically, the transmission from sensor i to its parent is:

x̃i→parent(i),j = AT
i











xi,j

x̃child1(i)→i,j
...

x̃childχi
(i)→i,j











, (4.13)

where Ai ∈ V
(

Di +
∑χi

k=1 dchildk(i), di

)

.
As an extension to the margin-based classification and linear dimensionality reduc-

tion objective (4.2), the following objective is proposed for sensor networks:

L(ϕ,A1, . . . ,Am) =

n
∑

j=1

ℓ






yjϕ













x̃child1(fc)→fc,j
...

x̃childχfc
(fc)→fc,j


















+ λ J(ϕ). (4.14)

Just as in the single sensor network in which the fusion center needed to receive the
message x̃s→fc,j from its child in order to optimize ϕ, in the multisensor network the
fusion center needs to receive the messages x̃child1(fc)→fc,j, . . . , x̃childχfc

(fc)→fc,j from all
of its children in order to optimize ϕ. The messages coming from the children of the
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fusion center are themselves simple linear functions of the messages coming from their
children, as given in (4.13). The same holds down the tree to the leaf sensors. Thus, to
gather the information required by the fusion center to optimize ϕ, a message-passing
sweep occurs from the leaf nodes in the tree up to the root.

For fixed ϕ and optimization of the Ai, there is also message passing, this time
sweeping back from the fusion center toward the leaves that generalizes what occurs
in the single sensor network. Before finding the partial derivative of L(ϕ,A1, . . . ,Am)
with respect to Ai, further notation is first introduced. Slice Ai into blocks as follows:

Ai =











Ai,self

Ai,child1

...
Ai,childχi











,

where Ai,self ∈ R
Di×di and Ai,childk

∈ R
dchildk(i)×di . Also,

ϕ̃′
fc→childk(fc),j =



























ϕx̃Pk−1
κ=1 dchildκ(fc)+1













x̃child1(fc)→fc,j
...

x̃childχfc
(fc)→fc,j













...

ϕx̃Pk
κ=1 dchildκ(fc)













x̃child1(fc)→fc,j
...

x̃childχfc
(fc)→fc,j







































is the slice of the decision function gradient corresponding to the dimensions transmitted
by childk(fc) to the fusion center. Additionally, let:

ϕ̃′
i→childk(i),j = Ai,childk

ϕ̃′
parent(i)→i,j . (4.15)

Then, the matrix partial derivative of the objective function (4.14) with respect to
Ai is:

LAi
=

n
∑

j=1

yj ℓ
′






yjϕ













x̃child1(fc)→fc,j
...

x̃childχfc
(fc)→fc,j





























xi,j

x̃child1(i)→i,j
...

x̃childχi
(i)→i,j











ϕ̃′T
parent(i)→i,j. (4.16)

Like in the single sensor network, the information required at sensor i to optimize Ai

that it does not already have consists of a scalar and a vector. The scalar value yj ℓ
′(yjϕ)

is common throughout the network. The vector message ϕ̃′
parent(i)→i,j has length di and

is received from parent(i). As seen in (4.15), the message a sensor passes onto its child
is a simple linear function of the message received from its parent. To optimize all of
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the Ai, a message-passing sweep starting from the fusion center and going down to
the leaves is required. Simple gradient descent along Stiefel manifold geodesics is then
performed locally at each sensor. Overall, the coordinate descent training proceeds
along with the passing of messages x̃i→parent(i),j and ϕ̃′

i→childk(i),j , which are functions

of incoming messages as seen in (4.13) and (4.15).
The data vector that is received by the fusion center is reduced from

∑m
i=1Di

dimensions to
∑χfc

k=1 dchildk(fc) dimensions. The fact that the composition of linear di-
mensionality reduction by two matrices on the Stiefel manifold can be represented
by a single matrix on the Stiefel manifold leads to the observation that the dimen-
sionality reduction performed by the sensor network has an equivalent matrix A ∈
V
(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

. However, A has further constraints than just the Stiefel
manifold constraint due to the topology of the network. For example, the equivalent A
of the network in which the fusion center has two child sensors must be block-diagonal
with two blocks.

Thus in the tree-structured sensor network, there is an equivalent matrix A ∈
T
(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

⊂ V
(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

, where T is a subset de-
termined by the tree topology. The consistency analysis of Section 4.3.3 holds un-
der the assumption that there exists an A∗ ∈ T

(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

such that

R(ŷ∗(A∗T x)) = R(ŷ∗(x)).
The constrained set of dimensionality reduction matrices T may have a smaller

maximum zonotope content V (Z) than the full Stiefel manifold, which would in turn
mean a smaller Rademacher complexity. The fusion center receives the χfc-ary Cartesian
product of dimensionality-reduced data from its children. The content of the Cartesian
product is the product of the individual contents, and thus:

V (Z) ≤
χfc
∏

k=1

ωdchildk(fc)

(

ωdchildk(fc)−1

ωdchildk(fc)

√

Dk

dchildk(fc)

)dchildk(fc)

,

which is less than or equal to the bound (2.82) for Z
(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

. A
more refined upper bound may be developed based on the specifics of the tree topology.

The tree-structured network has smaller Rademacher complexity due to further con-
straints to the classifier function space resulting from the network structure. However,
similar to D having a minor effect on complexity seen in Figure 4.15, this smaller com-
plexity for T

(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

is not much less than the complexity for the
system without network constraints V

(
∑m

i=1Di,
∑χfc

k=1 dchildk(fc)

)

. The network con-
straints, however, may increase the training error. The generalization error, being
composed of both the training error and the complexity, increases with network con-
straints due to increases in training error that are not offset by decreases in complexity,
resulting in worse classification performance. However, for sensor networks, the perfor-
mance criterion of interest is generally a combination of generalization error and power
expenditure in communication. This idea is illustrated in the remainder of this section.
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� 4.4.3 Physical Network Model

In Section 4.4.2, dimensionality reduction for margin-based classification in sensor net-
works is described abstractly, without considering the physical implementation or spe-
cific tree topologies. A model of a wireless sensor network is presented here, which is
then used in Section 4.4.4 to report classification error as a function of transmission
power expended by the network.

Consider m sensors and a fusion center in the plane that communicate wirelessly.
The distance between sensor i and its parent is ri↔parent(i), and the power required for
communication from i to its parent is dir

2
i↔parent(i), where as before, di is the reduced

dimension output by the sensor. The model arises by the common assumption of signal
attenuation according to the square of the distance.4 The total transmission power used
by the network is then:

transmission power =

m
∑

i=1

dir
2
i↔parent(i). (4.17)

Consider three network structures: parallel architecture, serial or tandem architec-
ture, and binary tree architecture. In the parallel architecture, all m sensors are direct
children of the fusion center. In the serial architecture, the fusion center has a single
child, which in turn has a single child, and so on. In the binary tree architecture, the
fusion center has two children, each of whom have two children on down the tree. When
the number of sensors is such that a perfect binary tree is not produced, i.e., m + 2 is
not a power of two, the bottom level of the tree remains partially filled.

The sensor and fusion center locations are modeled as follows. The fusion center is
fixed at the center of a circle with unit area and the m sensor locations are uniformly
distributed over that circle. Given the sensor node locations and desired network topol-
ogy, it is assumed that parent-child links and corresponding ri↔parent(i) are chosen to
minimize (4.17). There is only one parallel network, so optimization is not required. Ex-
act minimization of (4.17) for the other architectures may not be tractable in deployed
ad hoc wireless sensor networks because it involves solving a version of the traveling
salesman problem for the serial architecture and a version of the minimum spanning
tree problem for the binary tree architecture. Nevertheless, it is assumed that the min-
imization has been performed in the following results; this assumption is commented
upon later. For the parallel architecture, the distances are [22]:

r
(parallel)
i↔fc =

Γ
(

i+ 1
2

)

Γ (m+ 1)√
πΓ(i)Γ

(

m+ 3
2

) , (4.18)

where sensor i is the ith closest sensor to the fusion center. There is no closed form
expression for the ri↔parent(i) in the serial or binary tree architectures, but this quantity
can be estimated through Monte Carlo simulation.

4The model rα
i↔parent(i) for values of α other than two could also be considered.
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To fully specify the network, the reduced dimensions of the sensors di must also be
set. The choice made is to set di proportional to the number of descendants of sensor
i plus one for itself. This choice implies that all di are equal in the parallel network,
and that di is proportional to m − i + 1 in the serial network so that the number of
dimensions passed up the chain to the fusion center increases the closer one gets to the
fusion center. As seen in Section 4.4.4, with this choice of di, all three topologies have
essentially the same classification performance. This is not, however, generally true
for different di assignments; for example, if all di are taken to be equal in the serial
network, the classification performance is quite poor.

� 4.4.4 Classification Error for Different Networks

Given the sensor network model of Section 4.4.3, classification performance is inves-
tigated for the three different network architectures with different amounts of trans-
mission power. The phenomenon of overfitting seen in the centralized case has an
important counterpart and implication for wireless sensor networks: increasing the to-
tal allowed transmission power—manifested either by increases in the number of sensors
or increases in the number of transmitted dimensions per sensor—does not necessarily
result in improved classification performance. The examples in this section illustrate
several tradeoffs and suggest further lines of research.

Different transmission powers are obtained by varying the number of sensors and
scaling the di values. Data coming from a sensor network is emulated by slicing the
dimensions of the ionosphere and sonar datasets and assigning the different dimensions
to different sensors. With Di = 5 for all sensors in the network, the dimensions are
assigned in the order given in the UCI Repository, so the first sensor ‘measures’ the first
five dimensions listed, the second sensor ‘measures’ dimensions six through ten, and so
on. The dimensions are not ordered according to relevance for classification in any way.

Results for the ionosphere dataset are plotted in Figure 4.16. Figure 4.16(a) shows
tenfold cross-validation training and test error obtained from the algorithm described
in Section 4.4.2 with the parallel network as a function of transmission power. Each
training and test error pair corresponds to a different value of m = 1, 2, . . . , 6 and
di = 1, 2, . . . , 5. In Section 4.1.4, classification performance is plotted as a function of
the reduced dimension, but here the horizontal axis is transmission power, taking the
distance between sensor nodes into account. As in Section 4.1.4, the phenomenon of
overfitting is quite apparent.

In Figure 4.16(b), classification error is plotted as a function of transmission power
for the serial architecture. The points in the plot are for different numbers of sensors
m = 1, 2, . . . , 6 and different scalings of the reduced dimension di = (m− i+ 1), 2(m−
i+1), . . . , 5(m−i+1). The classification error values in Figure 4.16(b) are quite similar
to the ones for the parallel case.5 The plot for the parallel architecture appearing to
be a horizontally compressed version of the serial architecture plot indicates that to

5In fact, they are the same for the five pairs of points when m = 1 because the parallel and serial
networks are the same when there is a single sensor.
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Figure 4.16. Tenfold cross-validation training error (blue triangle markers) and test error (red circle
markers) on ionosphere dataset for (a) parallel, (b) serial, and (c) binary tree network architectures.
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Figure 4.17. Tenfold cross-validation training error (blue triangle markers) and test error (red circle
markers) on sonar dataset for (a) parallel, (b) serial, and (c) binary tree network architectures.

achieve those similar classification performances, more transmission power is required
by the serial architecture. Although the distances between parents and children tends
to be smaller in the serial architecture, the chosen di are larger closer to the fusion
center leading to higher transmission power.

The binary tree architecture’s classification error plot is given in Figure 4.16(c).
The training and test error values are similar to the other two architectures.6 The
transmission power needed to achieve the given classification errors is similar to that
of the parallel architecture and less than the serial architecture. Among the three
architectures with the di assigned as described in Section 4.4.3, all have approximately
the same classification performance, but the serial network uses more power.

The same experiments are repeated for the sonar dataset with plots given in Fig-
ure 4.17. For this dataset, the number of sensors m varies from one to eleven. The
same trends can be observed as in the ionosphere dataset. All three network topologies
produce similar classification errors, but the serial network uses more power.

Some overall observations for wireless sensor networks are the following. There
exist some optimal parameters of the network with a finite number of sensors and some

6The binary tree is the same as the parallel network for m = 1, 2 and the serial network for m = 1.
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dimensionality reduction. For a fixed number of samples n, one may be tempted to
think that deploying more sensors always helps classification performance since the
total number of measured dimensions increases, but this is not always true due to
overfitting. That a small number of sensors, which perform dimensionality reduction,
yield optimal classification performance is good from the perspective of resource usage.
Among different possible choices of network architectures, three particular choices have
been compared. Others are certainly possible, including the investigated topologies
but with different di proportions. For the chosen di proportions, all three network
topologies have essentially the same classification performance, but this is not true for
other choices.

In this empirical investigation of classification performance versus resource usage,
the main observation is that the two are not at odds. The decrease of resource usage is
coincident with the prevention of overfitting, which leads to improved classification per-
formance. Oftentimes there is a tradeoff between resource usage and performance, but
that is not the case in the overfitting regime. Additionally, among the network architec-
tures compared, the parallel and binary tree architectures use less power in communica-
tion than the serial architecture for equivalent classification performance. The plotted
transmission power values, however, are based on choosing the parent-child links to
exactly minimize (4.17); in practice, this minimization will only be approximate for the
binary tree architecture and will require a certain amount of communication overhead.
Therefore, the parallel architecture, which requires no optimization, is recommended
for this application. This new distributed dimensionality reduction formulation and
empirical study suggests a direction for future research, namely the problem of finding
the number of sensors, the network structure, and the set of di that optimize general-
ization error in classification for a given transmission power budget and given number
of training samples n.

� 4.5 Chapter Summary

In this chapter, a formulation for linear and nonlinear dimensionality reduction driven
by the objective of margin-based classification has been presented. An optimization
approach has been developed that involves alternation between two minimizations: one
to update a classifier decision function and the other to update a matrix on the Stiefel
manifold. The phenomenon of overfitting has been examined both analytically and
empirically: analytically through the Rademacher complexity, and empirically through
experiments on several real-world datasets, illustrating that dimensionality reduction is
an important component in improving classification accuracy. The consistency of the
dimensionality-reduced classifier has also been analytically characterized. It has been
described how the proposed optimization scheme can be distributed in a network con-
taining a single sensor through a message-passing approach, with the classifier decision
function updated at the fusion center and the dimensionality reduction matrix updated
at the sensor. Additionally, the formulation has been extended to tree-structured fusion
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networks.
Papers such as [138, 158] have advocated nonparametric learning, of which margin-

based classification is a subset, for inference in distributed settings such as wireless
sensor networks. Reducing the amount of communication is an important considera-
tion is these settings, which has been addressed in this chapter through a joint linear
dimensionality reduction and margin-based classification method applicable to networks
in which sensors measure more than one variable. Reducing communication is often as-
sociated with a degradation in performance, but in this application it is not the case
in the regime when dimensionality reduction prevents overfitting. Thus, dimensional-
ity reduction is important for two distinct reasons: reducing the amount of resources
consumed, and obtaining good generalization.



Chapter 5

Precision of the Prior Probabilities

THE optimal decision rule in Bayesian hypothesis testing is the likelihood ratio test
with threshold set according to the prior probabilities of the hypotheses along with

the costs of false alarm and missed detection. Many times, hypothesis testing arises
when identifiable objects with precisely specified prior probabilities are measured to
determine their state. For each object in the population, the Bayes optimal procedure
sets the threshold based precisely on the prior probabilities of the object. The frugality
pursued in this chapter is to limit the precision of the prior probabilities and therefore of
the threshold in the likelihood ratio test. The precision is limited through quantization
or clustering optimized for a novel distortion criterion, the mean Bayes risk error [207,
208].

Frugality in prior probability precision is motivated by scenarios in which the deci-
sion maker has finite memory or limited information processing resources. The decision
maker maps the true prior probability vector of each object in the population to one
of a few representation points, which requires less memory than storing the true prior
probabilities. Then, when performing the likelihood ratio test, the representation point
corresponding to the true prior of the measured object is used in the threshold.

Although not the only such scenario, one example is human decision making. Specif-
ically, consider a referee deciding whether a player has committed a foul using his or her
noisy observation as well as prior experience. Players commit fouls at different rates.
It is this rate which is the prior probability for the ‘foul committed’ hypothesis. If the
referee tunes the prior probability to the particular player on whose action the deci-
sion is to be made, decision-making performance is improved. Human decision makers,
however, are limited in their information processing capability and tend to categorize
objects [129]. Consequently, the referee is limited and categorizes players into a small
number of levels, with associated representative prior probabilities, exactly the scenario
described above.

This chapter, unlike Chapter 3 and Chapter 4 which focus on supervised classifica-
tion, deals with decision making with a known likelihood ratio function. The population
of objects is represented by a probability density function of prior probabilities. The
design of the mapping from prior probability vectors in the population to representative
probability vectors is approached through quantization when this probability density
function is given and through k-means clustering when only samples from it are avail-

117
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able. Mean Bayes risk error (MBRE) is defined as a fidelity criterion and conditions
are derived for a minimum MBRE quantizer. In the quantization problem, with known
population probability distribution, increasing the number of quantization levels always
results in improved detection performance. The best detection performance is achieved
with an infinite number of quantization levels, which is equivalent to not quantizing.
Clustering, however, is not always suboptimal; with access only to samples, there is an
intermediate number of clusters that optimizes detection performance. This behavior
is akin to overfitting and the structural risk minimization principle seen in Chapter 3
and Chapter 4.

Previous work that combines detection and quantization looks at the quantization
of the measurements, not the prior probabilities, and also only approximates the Bayes
risk function instead of working with it directly, e.g. [90, 102, 155] and references cited
in [90]. In such work, there is a communication constraint between the sensor and the
decision maker, but the decision maker has unconstrained processing capability. The
work here deals with the opposite case, where there is no communication constraint
between the sensor and the decision maker, but the decision maker is constrained. A
brief look at imperfect priors appears in [93], but optimal quantization is not considered.
It is shown in [83, 104] that small deviations from the true prior yield small deviations
in the Bayes risk. There does not seem to be any previous work that has looked at
the quantization, clustering, or categorization of prior probabilities or the threshold in
likelihood ratio tests.

The chapter is organized in the following manner. Section 5.1 defines the problem
of quantizing prior probabilities along with the Bayes risk error distortion. Optimality
conditions are derived and some examples of MBRE-optimal quantizers are given along
with their performance in the low-rate quantization regime. Section 5.2 discusses the
high-rate quantization regime and gives distortion–rate functions. Section 5.3 discusses
the clustering problem and presents examples that show that frugality in the precision
of prior probabilities may be advantageous in terms of detection performance. Certain
human decision-making tasks, as mentioned previously, may be modeled by quantized
prior hypothesis testing due to certain features of human information processing. In
Section 5.4, human decision making is analyzed in detail for segregated populations,
revealing a mathematical model of social discrimination. A brief summary of the chapter
appears in Section 5.5.

� 5.1 Quantization of Prior Probabilities for Hypothesis Testing

Many different distortion criteria can be used in quantization, including absolute error
and squared error. When it is prior probabilities in a detection problem that are being
quantized, the distortion function should take the Bayes risk into account. In this
section, such a distortion function is proposed, some of its properties are derived, and
quantizer optimality conditions with this distortion function are also derived. Examples
with comparison to absolute error quantization are presented as well.
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� 5.1.1 Bayes Risk Error Distortion

Recall from Section 2.1 the Bayes optimal decision rule, the likelihood ratio test

fx|y(x|y = +1)

fx|y(x|y = −1)

ŷ(x)=+1

⋚
ŷ(x)=−1

p
−
c+−

(1 − p
−

)c
−+

. (5.1)

with Bayes risk performance

R(p
−

) = c+−
p
−
pF (p

−
) + c

−+ [1 − p
−

]pM (p
−

), (5.2)

where

pF = Pr[ŷ(x) = +1|y = −1],

pM = Pr[ŷ(x) = −1|y = +1].

In (5.2), the error probabilities pF and pM depend on p
−

through ŷ(·), given in (5.1).
R(p

−
) is zero at the points p

−
= 0 and p

−
= 1 and is positive-valued, strictly concave,

and continuous in the interval (0, 1) [49, 218, 221].
Recall from Section 2.5 that a quantizer for a scalar random variable p

−
∈ [0, 1]

with probability density function fp
−

(p
−

) is a function qk(p
−

) chosen to minimize the
expected distortion

̺ = E[ρ(p
−

, qk(p
−

))] =

∫ 1

0
ρ(p

−
, qk(p

−
))fp

−

(p
−

)dp
−

, (5.3)

where ρ is a distortion function. In the decision-making setup considered, a quantized
version of the prior probability is used in the likelihood ratio test threshold rather than
the true prior probability. The decision rule considered is

fx|y(x|y = +1)

fx|y(x|y = −1)

ŷ(x)=+1

⋚
ŷ(x)=−1

qk(p
−

)c+−

(1 − qk(p
−

))c
−+

. (5.4)

There is mismatch when the true prior probability is p
−

, but some other value a is
substituted for p

−
in the threshold in (5.1), i.e.,

fx|y(x|y = +1)

fx|y(x|y = −1)

ŷ(x)=+1

⋚
ŷ(x)=−1

ac+−

(1 − a)c
−+

. (5.5)

This is the case in (5.4), where a = qk(p
−

). The Bayes risk when there is mismatch is

R̃(p
−

, a) = c+−
p
−
pF (a) + c

−+ [1 − p
−

]pM (a). (5.6)

R̃(p
−

, a) is a linear function of p
−

with slope (c+−
pF (a) − c

−+pM (a)) and intercept

c
−+pM (a). Note that R̃(p

−
, a) is tangent to R(p

−
) at a and that R̃(p

−
, p

−
) = R(p

−
).

Based on the mismatched Bayes risk, a distortion function can be defined that is
appropriate for the quantization of prior probabilities in hypothesis testing.
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Definition 5.1.1. Let Bayes risk error ρB(p
−

, a) be the difference between the mis-

matched Bayes risk function R̃(p
−

, a) and the Bayes risk function R(p
−

):

ρB(p
−

, a) = R̃(p
−

, a) − R(p
−

)

= c+−
p
−
pF (a) + c

−+ [1 − p
−

]pM (a) − c+−
p
−
pF (p

−
) − c

−+ [1 − p
−

]pM (p
−

).
(5.7)

A few properties of ρB(p
−

, a) are derived that are used in stating quantizer opti-
mality conditions in Section 5.1.2.

Theorem 5.1.1. The Bayes risk error ρB(p
−

, a) is nonnegative and only equal to zero
when p

−
= a.

Proof. R(p
−

) is a continuous and strictly concave function, and lines R̃(p
−

, a) are tan-

gent to R(p
−

). Therefore, R̃(p
−

, a) ≥ R(p
−

) for all p
−

and a, with equality only when
p
−

= a. Consequently, ρB(p
−

, a) is nonnegative and only equal to zero when p
−

= a. �

Theorem 5.1.2. The Bayes risk error ρB(p
−

, a), as a function of p
−

∈ (0, 1), is
continuous and strictly convex for all a.

Proof. The Bayes risk error ρB(p
−

, a) is the difference of a continuous linear function
and a continuous strictly concave function. Therefore, it is continuous and strictly
convex. �

Properties of ρB(p
−

, a) as a function of a involve the complementary receiver oper-
ating characteristic (CROC) described in Section 2.1.4. The CROC is traced out as the
threshold in the likelihood ratio test is varied. Equivalently, the CROC is traced out as
a is varied in the likelihood ratio test (5.5), which is the parameterization considered
in the following.

Lemma 5.1.1. There exists a unique point a† on the CROC of a deterministic likelihood
ratio test at which dpM

dpF
= −1. Also,

{

−∞ < dpM

dpF
< −1, a > a†,

−1 < dpM

dpF
< 0, a < a†.

Proof. As discussed in Section 2.1.4, the CROC at its endpoints takes values (pF =
0, pM = 1) when a = 1 and (pF = 1, pM = 0) when a = 0. Therefore, the CROC has
average slope −1. The CROC is a strictly convex function for deterministic likelihood
ratio tests, as also discussed in Section 2.1.4. The result follows from the mean value
theorem and strict convexity. �

Lemma 5.1.2. For the CROC of a deterministic likelihood ratio test and positive con-
stants β and γ,

{

β dpF

da + γ dpM

da > 0, γ
β

dpM

dpF
< −1,

β dpF

da + γ dpM

da < 0, γ
β

dpM

dpF
> −1.
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Proof. If γ
β

dpM

dpF
< −1, then γdpM

da
da

βdpF
< −1 by the chain rule of differentiation. A

property shown in Section 2.1.4 is that dpF

da < 0 and dpM

da > 0 for all a ∈ (0, 1). Thus,

by rearranging terms in the inequality, it is found that γ dpM

da > −β dpF

da . Consequently

β dpF

da + γ dpM

da > 0. The opposite case is shown in the same manner. �

Theorem 5.1.3. The Bayes risk error ρB(p
−

, a), as a function of a ∈ (0, 1) for all p
−
,

has exactly one stationary point that is a minimum.

Proof. Combining the first cases of Lemma 5.1.1 and Lemma 5.1.2, there exists an a⋆

such that for all a > a⋆, the slope of βpF (a)+γpM(a) is positive. Combining the second
cases of Lemma 5.1.1 and Lemma 5.1.2, for all a < a⋆, the slope of βpF (a) + γpM (a)
is negative. Therefore, βpF (a) + γpM (a) has exactly one stationary point a⋆ in (0, 1),
which is a minimum.

As a function of a, the Bayes risk error (5.7) is of the form βpF (a) + γpM (a) + C,
where C is a constant that does not depend on a. Hence, it also has exactly one
stationary point in (0, 1), which is a minimum. �

Corollary 5.1.1. The Bayes risk error ρB(p
−

, a), as a function of a ∈ (0, 1) for all
p
−
, is quasiconvex.

� 5.1.2 Minimum Mean Bayes Risk Error Quantization

The conditions necessary for the optimality of a quantizer, discussed in Section 2.5.2, are
derived when the distortion function is Bayes risk error. Recall that a k-point quantizer
for fp

−

(p
−

) partitions the interval [0, 1] into k cells Q1, Q2, Q3, . . . , Qk. For each of
these quantization cells Qi, there is a representation point ai to which elements are
mapped. For regular quantizers, the regions are subintervals Q1 = [0, b1], Q2 = (b1, b2],
Q3 = (b2, b3], . . . , Qk = (bk−1, 1] and the representation points ai are elements of Qi.

1

The nearest neighbor and centroid conditions are developed for MBRE in the following.

Nearest Neighbor Condition

With the representation points ai fixed, an expression for the interval boundaries bi is
derived. Given any p

−
∈ [ai, ai+1], if R̃(p

−
, ai) < R̃(p

−
, ai+1) then Bayes risk error is

minimized if p
−

is represented by ai, and if R̃(p
−

, ai) > R̃(p
−

, ai+1) then Bayes risk
error is minimized if p

−
is represented by ai+1. The boundary point bi ∈ [ai, ai+1] is the

abscissa of the point at which the lines R̃(p
−

, ai) and R̃(p
−

, ai+1) intersect. The idea is
illustrated graphically in Figure 5.1.

1Due to the strict convexity of ρB(p
−

, a) in p
−

for all a, as shown in Theorem 5.1.2, quantizers that
satisfy the necessary conditions for MBRE optimality are regular, see [79, Lemma 6.2.1]. Therefore,
only regular quantizers are considered.
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p
−

R̃
(p

−

,a
)

ai ai+1bi

Figure 5.1. The intersection of the lines R̃(p
−

, ai) (magenta line) and R̃(p
−

, ai+1) (cyan line), both
tangent to R(p

−

) (black line), is the optimal interval boundary bi.

By manipulating the slopes and intercepts of R̃(p
−

, ai) and R̃(p
−

, ai+1), the point
of intersection is found to be:

bi =
c
−+ (pM (ai+1) − pM (ai))

c
−+ (pM (ai+1) − pM (ai)) − c+−

(pF (ai+1) − pF (ai))
. (5.8)

Centroid Condition

With the quantization cells fixed, the MBRE is to be minimized over the ai. Here, the
MBRE is expressed as the sum of integrals over quantization cells:

̺B =

k
∑

i=1

∫ bi

bi−1

[

R̃(p
−

, ai) − R(p
−

)
]

fp
−

(p
−

)dp
−

. (5.9)

Because the cells are fixed, the minimization may be performed for each interval sepa-
rately.

Define conditional means IF
i =

∫ bi

bi−1
p
−
fp

−

(p
−

)dp
−

and IM
i =

∫ bi

bi−1
[1−p

−
]fp

−

(p
−

)dp
−

.
Then:

ai = arg min
a

{

c+−
IF
i pF (a) + c

−+I
M
i pM (a)

}

. (5.10)

Since βpF (a) + γpM (a) has exactly one stationary point, which is a minimum (cf.
Theorem 5.1.3), equation (5.10) is uniquely minimized by setting its derivative equal
to zero. Thus, ai is the solution to:

c+−
IF
i

dpF (a)
da

∣

∣

∣

ai

+ c
−+I

M
i

dpM (a)
da

∣

∣

∣

ai

= 0. (5.11)

Commonly, differentiation of the two error probabilities is tractable; they are themselves
integrals of the likelihood functions and the differentiation is with respect to some
function of the limits of integration.
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Lloyd–Max Algorithm

Algorithm 2.5.1, discussed in Section 2.5.3, which alternates between the nearest neigh-
bor and centroid conditions, may be used to find minimum MBRE quantizers. Trushkin
[200] shows that the conditions necessary for optimality of the quantizer are also suf-
ficient conditions for local optimality if the following hold. The first condition is that
fp

−

(p
−

) must be positive and continuous in (0, 1). The second condition is that

∫ 1

0
ρ(p

−
, a)fp

−

(p
−

)dp
−

must be finite for all a. The first and second conditions are met by common distributions
such as the beta distribution [66].

The third condition is that the distortion function ρ(p
−

, a) satisfy three properties.
First, it must be zero only for p

−
= a, which is shown for ρB(p

−
, a) in Theorem 5.1.1.

Second, it must be continuous in p
−

for all a, which is shown for ρB(p
−

, a) in The-
orem 5.1.2. The third of the properties, as listed by Trushkin [200], is that ρ(p

−
, a)

must be convex in a. Convexity in a, does not hold for Bayes risk error in general, but
the convexity is only used by Trushkin [200] to show that a unique minimum exists; in
fact, quasiconvexity is enough. As shown in Theorem 5.1.3 and mentioned in Corol-
lary 5.1.1, ρB(p

−
, a) has a unique stationary point that is a minimum and is quasiconvex

in a. Therefore, the analysis of [200] applies to Bayes risk error distortion. Thus, if
fp

−

(p
−

) satisfies the first and second conditions, then the algorithm is guaranteed to
converge to a local optimum. The algorithm may be run many times with different
initializations to find the global optimum.

Further conditions on ρ(p
−

, a) and fp
−

(p
−

) are given in [200] for there to be a unique
locally optimal quantizer, i.e. the global optimum. If these further conditions for unique
local optimality hold, then Algorithm 2.5.1 is guaranteed to find the globally minimum
MBRE quantizer.

� 5.1.3 Examples

A few examples are presented that show minimum MBRE quantizers of prior proba-
bilities. The examples have scalar measurements x with Gaussian likelihood functions
under the two hypotheses with the same variance σ2 and different means. The likelihood
functions are:

fx |y(x|y = −1) = N (x; 0,σ2) =
1

σ
√

2π
e−x2/2σ2

,

fx |y(x|y = +1) = N (x;µ,σ2) =
1

σ
√

2π
e−(x−µ)2/2σ2

. (5.12)



124 CHAPTER 5. PRECISION OF THE PRIOR PROBABILITIES

2 4 6 8
0

0.02

0.04

0.06

0.08

0.1

0.12

k

̺
B

(k
)

2 4 6 8
10

−3

10
−2

10
−1

k

̺
B

(k
)

(a) (b)

Figure 5.2. Mean Bayes risk error for MBRE-optimal quantizer (blue line) and MAE-optimal quantizer
(green line) on (a) linear scale, and (b) logarithmic scale with uniform p

−

and c
+−

= 1, c
−+

= 1.

The mean under hypothesis y = −1 is zero and the mean under hypothesis y = +1 is
µ. The two error probabilities are:

pF (a) = Q

(

µ

2σ
+
σ

µ
ln

(

c+−
a

c
−+(1 − a)

))

,

pM (a) = Q

(

µ

2σ
− σ

µ
ln

(

c+−
a

c
−+(1 − a)

))

, (5.13)

where

Q(z) =
1√
2π

∫ ∞

z
e−x2/2dx.

Finding the centroid condition, the derivatives of the error probabilities are:

dpF

da

∣

∣

∣

∣

ai

= − 1√
2π

σ

µ

1

ai(1 − ai)
e
− 1

2

„

µ

2σ
+ σ

µ
ln

„

c+−
ai

c
−+(1−ai)

««2

, (5.14)

dpM

da

∣

∣

∣

∣

ai

= +
1√
2π

σ

µ

1

ai(1 − ai)
e
− 1

2

„

µ

2σ
−σ

µ
ln

„

c+−
ai

c
−+(1−ai)

««2

. (5.15)

By substituting these derivatives into (5.11) and simplifying, the following expression
is obtained for the representation points:

ai =
IF
i

IF
i + IM

i

. (5.16)

Examples with different distributions fp
−

(p
−

), and different costs c+−
and c

−+ are

now presented. All of the examples have µ = 1 and σ2 = 1. As a point of reference, a
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Figure 5.3. (a)–(b) MBRE-optimal, and (c)–(d) MAE-optimal quantizers for k = 4, 5 with uniform
p
−

and c
+−

= 1, c
−+

= 1.

comparison is made to quantizers designed under absolute error [103], i.e. ρ1(p
−

, a) =
|p

−
− a|, an objective that does not account for Bayesian hypothesis testing.
The first example has p

−
uniformly distributed over [0, 1] so that all prior probabili-

ties are equally likely in the population, and the Bayes costs c+−
and c

−+ both equal to
one. The MBRE of the MBRE-optimal quantizer and of a quantizer designed to mini-
mize mean absolute error (MAE) with respect to fp

−

(p
−

) is plotted in Figure 5.2. The
plots show MBRE on both linear and logarithmic scales as a function of the number
of quantization levels k. The blue line is the MBRE-optimal quantizer and the green
line is the MAE-optimal quantizer. The performance of both quantizers is similar, but
the MBRE-optimal quantizer always performs better or equally. Each increment of k
is associated with a large reduction in Bayes risk. There is a very large performance
improvement from k = 1 to k = 2.

The plots in Figure 5.3 show R̃(p
−

, qk(p
−

)) with cyan lines for the MBRE- and
MAE-optimal quantizers. The markers are the representation points and the vertical
lines indicate the quantization cell boundaries. The black line is R(p

−
), the Bayes
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Figure 5.4. Mean Bayes risk error for MBRE-optimal quantizer (blue line) and MAE-optimal quantizer
(green line) on (a) linear scale, and (b) logarithmic scale with uniform p

−

and c
+−

= 1, c
−+

= 4.

risk with unquantized prior probabilities. The MAE-optimal quantizer for the uniform
distribution has quantization cells of equal width and representation points in their
centers. The representation points for the MBRE-optimal quantizer are closer to p

−
= 1

2
than the uniform quantizer. This is because the area under the Bayes risk function is
concentrated in the center.

Similar plots to those in the first example are given for a second example with
unequal Bayes costs in Figure 5.4 and Figure 5.5. This example is also with a uniform
population distribution, and has costs c+−

= 1 and c
−+ = 4. The unequal costs skew the

Bayes risk function and consequently the representation point locations. The difference
in performance between the MBRE-optimal and MAE-optimal quantizers is greater in
this example because the MAE criterion does not incorporate the Bayes costs, which
factor into MBRE calculation. It can be clearly seen in Figure 5.5 that the area between
the cyan lines and black lines is greater for the MAE-optimal quantizers than for the
MBRE-optimal quantizers.

The third example examines a nonuniform distribution for p
−

, in particular the
beta(5,2) distribution. The probability density function is shown in Figure 5.6. The
MBRE of the MBRE-optimal and MAE-optimal quantizers is in Figure 5.7. There are
also large improvements in performance with an increase in k here. The representation
points ai are most densely distributed where fp

−

(p
−

) has mass. In particular, more
representation points are in the right half of the domain than in the left, as seen in
Figure 5.8.

� 5.2 High-Rate Quantization Analysis

In this section, minimum MBRE quantization is studied asymptotically from the per-
spective of high-rate quantization theory [89]. Li et al. [113] propose a high-rate quan-
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Figure 5.5. (a)–(b) MBRE-optimal, and (c)–(d) MAE-optimal quantizers for k = 4, 5 with uniform
p
−

and c
+−

= 1, c
−+

= 4.

tization analysis based on a locally quadratic approximation. That locally quadratic
analysis is applied to Bayes risk error distortion in what follows.

� 5.2.1 Locally Quadratic Approximation

In high-rate quantization, the objective is to characterize the expected error ̺ as a
function of the number of quantization levels k for large k. The expected error is the
MBRE for the purposes here. The quantizer point density λ(p

−
) is obtained as part of

the analysis. Recall from Section 2.5 that integrating a quantizer point density over an
interval yields the fraction of the representation points ai that are in that interval as k
goes to infinity.

The Bayes risk error distortion function has a positive second derivative in p
−

due
to strict convexity shown in Theorem 5.1.2, and has a continuous third derivative for
many families of likelihood functions. The third derivative of ρB(p

−
, a) with respect to
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Figure 5.6. The beta(5,2) probability density function.
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Figure 5.7. Mean Bayes risk error for MBRE-optimal quantizer (blue line) and MAE-optimal quantizer
(green line) on (a) linear scale, and (b) logarithmic scale with beta(5,2) p

−

and c
+−

= 1, c
−+

= 1.

p
−

is

∂3ρB

∂p3
−

= −c+−
p
−

d3pF

dp3
−

− 3c+−

d2pF

dp2
−

− c
−+(1 − p

−
)
d3pM

dp3
−

+ 3c
−+

d2pM

dp2
−

, (5.17)

when the constituent derivatives exist. When this third derivative (5.17) exists and
is continuous, ρB(p

−
, a) is locally quadratic in the sense of [113], and the high-rate

quantization analysis of Li et al. [113] may be applied.
For large k, let

B(p
−

) = −c+−
p
−

2

d2pF

dp2
−

− c+−

dpF

dp
−

− c
−+(1 − p

−
)

2

d2pM

dp2
−

+ c
−+

dpM

dp
−

. (5.18)
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Figure 5.8. (a)–(b) MBRE-optimal, and (c)–(d) MAE-optimal quantizers for k = 4, 5 with beta(5,2)
p
−

and c
+−

= 1, c
−+

= 1.

Then ρB(p
−

, ai) is approximated by the following second order Taylor expansion:

ρB(p
−

, ai) ≈ B(ai)
(

p
−
− ai

)2
, p

−
∈ Qi. (5.19)

Under the assumption made in all studies of asymptotic quantization that fp
−

(·) is
sufficiently smooth to be effectively constant over small bounded sets, substituting
(5.19) into the quantization objective (5.9) yields the following approximation to the
MBRE:

̺B ≈
k
∑

i=1

fp
−

(ai)B(ai)

∫ bi

bi−1

(

p
−
− ai

)2
dp

−
. (5.20)

Additionally, the MBRE is asymptotically greater than and approximately equal
to the following lower bound, derived in [113] by relationships involving normalized
moments of inertia of intervals Qi and by Hölder’s inequality:

̺B ≤ 1

12k2

∫ 1

0
B(p

−
)fp

−

(p
−

)λ(p
−

)−2dp
−

, (5.21)
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where the optimal quantizer point density for the Bayes risk error is:

λB(p
−

) =

(

B(p
−

)fp
−

(p
−

)
)1/3

∫ 1
0

(

B(p
−

)fp
−

(p
−

)
)1/3

dp
−

. (5.22)

Substituting (5.22) into (5.21) yields

̺B ≤ 1

12k2
‖B(p

−
)fp

−

(p
−

)‖1/3. (5.23)

� 5.2.2 Examples

The examples of Section 5.1.3 are continued here. The likelihood functions are univari-
ate Gaussians with the same variance and the difference of the means being one. The
function B(p

−
) requires the first and second derivatives of the false alarm and missed

detection probabilities. The first derivatives are given in (5.14) and (5.15). The second
derivatives are as follows.

d2pF

dp2
−

=

− 1√
8π

σ
µ

1
p2
−

(1−p
−

)2
e
− 1

8µ2σ2

„

µ2+2σ2 ln

„

c+−
p
−

c
−+(1−p

−
)

««2
[

−3 + 4p
−
− 2σ2

µ2 ln
(

c+−
p
−

c
−+(1−p

−
)

)]

,

(5.24)

and

d2pM

dp2
−

=

+ 1√
8π

σ
µ

1
p2
−

(1−p
−

)2
e
− 1

8µ2σ2

„

µ2−2σ2 ln

„

c+−
p
−

c
−+(1−p

−
)

««2
[

−1 + 4p
−
− 2σ2

µ2 ln
(

c+−
p
−

c
−+(1−p

−
)

)]

.

(5.25)

By inspection, the third derivatives are continuous and thus for the Gaussian likelihood
examples, ρB(p

−
, a) is locally quadratic. An expression for B(p0), and consequently for

λB(p
−

) and the right side of (5.23), is obtained by substituting the first derivatives and
second derivatives into (5.18).

A comparison to absolute error quantization is given here as well. The optimal
quantizer point density for MAE is [87]:

λ1(p
−

) =
fp

−

(p
−

)1/2

∫ 1
0 fp

−

(p
−

)1/2dp
−

. (5.26)

Using this point density in (5.21) instead of λB(p
−

) gives the asymptotic MBRE of the
MAE-optimal quantizer.
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Figure 5.9. High-rate approximation to mean Bayes risk error for MBRE-optimal quantizer (blue line)
and MAE-optimal quantizer (green line) on (a) linear scale, and (b) logarithmic scale with uniform p

−

and c
+−

= 1, c
−+

= 1.

As in Section 5.1.3, the first example has a uniform population distribution and
equal Bayes costs. In Figure 5.9, the right side of (5.21) is plotted as a function of k
for both the MBRE-optimal λB(p

−
) and the MAE-optimal λ1(p

−
). The horizontal axis

is on a logarithmic scale. The quantity log2(k) is generally known as the rate of the
quantizer. With this terminology, the plots in Figure 5.9 are known as distortion–rate
functions. The vertical axis is given on both linear and logarithmic scales. On the
logarithmic scale, there is a constant gap between the distortion–rate functions of the
MBRE-optimal and MAE-optimal quantizer. This difference is:

rateMBRE(̺B) − rateMAE(̺B) =
1

2
log2

(

‖fp
−

(p
−

)B(p
−

)‖1/3

‖fp
−

(p
−

)‖1/2

∫ 1
0 B(p

−
)dp

−

)

.

The closer the ratio inside the logarithm is to one, the closer the MBRE- and MAE-
optimal quantizers. The quantizer point densities are shown in Figure 5.10. As also
seen in Figure 5.3, the representation points of the MBRE-optimal quantizer are more
concentrated around p

−
= 1

2 than of the MAE-optimal quantizer because of the shape
of the Bayes risk function.

The second example has c+−
= 1 and c

−+ = 4, also with uniformly distributed p
−

.
Figure 5.11 shows the distortion–rate functions for this case. The gap is much larger
in this example because as mentioned previously, the MAE criterion does not take the
Bayes costs into account. The difference between the optimal quantizer point densities
is quite pronounced in this example, as seen in Figure 5.12. Whereas the MAE-optimal
quantizer has representation points uniformly distributed, the MBRE-optimal quantizer
has much greater representation point density for p

−
> 1

2 due to the cost of a false alarm
being greater than the cost of a missed detection.

With a beta(5,2) distribution for fp
−

(p
−

) and equal Bayes costs, the gap is more
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Figure 5.10. (a) MBRE, and (b) MAE quantizer point density with uniform p
−

and c
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= 1, c
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= 1.
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Figure 5.11. High-rate approximation to mean Bayes risk error for MBRE-optimal quantizer (blue
line) and MAE-optimal quantizer (green line) on (a) linear scale, and (b) logarithmic scale with uniform
p
−

and c
+−

= 1, c
−+

= 4.

similar to the first example which also has equal Bayes costs, as seen in Figure 5.13.
As expected, the quantizer point densities, shown in Figure 5.14, tend to match the
beta(5,2) distribution. When using quantized priors in setting the threshold in a likeli-
hood ratio test, the asymptotic analysis reveals that the detection performance reduc-
tion due to quantization approaches zero exponentially in the rate. The MAE-optimal
quantizer is not bad for the MBRE distortion criterion when the Bayes costs are equal,
but suffers when the Bayes costs are unequal.
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Figure 5.12. (a) MBRE, and (b) MAE quantizer point density with uniform p
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= 4.
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Figure 5.13. High-rate approximation to mean Bayes risk error for MBRE-optimal quantizer (blue
line) and MAE-optimal quantizer (green line) on (a) linear scale, and (b) logarithmic scale with beta(5,2)
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−

and c
+−

= 1, c
−+

= 1.

� 5.3 Detection Performance with Empirical Priors

The analysis and conclusions of Section 5.1 and Section 5.2 are in the case that fp
−

(p
−

)
is known. This section deals with the case when this population distribution is not
known. The k-means algorithm, Algorithm 2.5.2 presented in Section 2.5.3, can be
applied to data to find representation points and limit the precision of prior proba-
bilities for hypothesis testing. In contrast to the previous two sections, limiting the
precision may prove beneficial in the same manner that frugality improves performance
in situations of finite data encountered in Chapter 3 and Chapter 4.
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Figure 5.14. (a) MBRE, and (b) MAE quantizer point density with beta(5,2) p
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and c
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= 1,
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= 1.

� 5.3.1 k-Means Clustering of Prior Probabilities

Recall k-means clustering from Section 2.5.3. Given n > k samples p
−1, . . . , p

−n, k-
means clustering partitions the samples into k clusters each with a representation point
or cluster center ai, i = 1, . . . , k. The sequence of k-means clusterings from samples of
fp

−

(p
−

) converges as n grows to the quantizer designed using fp
−

(p
−

) as long as the
distortion function meets certain conditions [88, 169]. The Bayes risk error ρB(p

−
, a)

meets the conditions on the distortion function given in [169] except for convexity in
a. However, as in the sufficiency of the Lloyd–Max conditions, the quasiconvexity of
the Bayes risk error is enough. This sort of consistency is important to note, but the
interest in this section is to focus on the finite data regime.

It is easy to imagine systems in which constrained decision makers do not have
access to the full population distribution fp

−

(p
−

), but only to training data related to
that distribution. In the particular setup considered in this section, the decision maker
does not have direct access to samples p

−1, . . . , p
−n, but to estimates of those samples

p̂
−1, . . . , p̂

−n obtained in the following manner. For each sample p
−j, which corresponds

to one object in the population, the decision maker observes mj samples of the random
variable �j . The random variable �j has mean 0 with probability p

−j and mean 1 with
probability (1−p

−j); the distribution besides the mean is the same. A simple unbiased,
consistent estimate2 is

p̂
−j = 1 − 1

mj

mj
∑

i=1

υj,i. (5.27)

The n samples p̂
−1, . . . , p̂

−n are then clustered to minimize MBRE. Likelihood ratio
tests involving object j use a threshold set according to the cluster center to which p̂

−j

is assigned.

2The estimate (5.27) is the maximum likelihood estimate in the case that �j is Bernoulli.
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Figure 5.15. Mean Bayes risk error for MBRE-optimal quantizer (blue line) and empirical MBRE-
optimal k-means clustering (red line) on (a) linear scale, and (b) logarithmic scale with m = 100,
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, and c
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= 1, c
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= 4.

The proposed model of samples may be understood by considering what data could
be available to the decision maker when learning about the population. Populations
contain a finite number of objects, which is why the finite number n is included in
the model. In training, the decision maker can only observe each object a finite num-
ber of times. This number of times could be object-dependent, which motivates the
parameter mj. When the decision maker is learning about the population, perfect mea-
surements of the object state or hypothesis yj,i ∈ {−1, +1} may not be available. These
measurements will generally be noisy. The variables υj,i can capture any noise in the
measurements. The remainder of the section illustrates the implications of this model
through example.

� 5.3.2 Example

The example presented here is a continuation of the example in Section 5.1.3 and Sec-
tion 5.2.2 in which the population distribution is uniform over [0, 1] and the Bayes costs
are c+−

= 1 and c
−+ = 4. The likelihood functions fx |y(x|y = −1) and fx |y(x|y = +1)

are Gaussian with means zero and one, and the same variance. The noisy measure-
ments in training, the �j , are a mixture of two Gaussians with means zero and one,
and the same variance. The mixture weights are p

−j and (1 − p
−j). Thus the noisy

measurements used by the decision maker in learning about the population are of the
same type as used when doing the hypothesis test. The number of observations per
object, mj , is taken to be the same value m across all n objects in the population.

The MBRE of the empirical formulation is plotted as a function of the number of
clusters k in Figure 5.15 for m = 100, and in Figure 5.16 for m = 200. Zoomed in
portions of the plots appear in Figure 5.17. The red lines are the MBRE values of the
empirical formulation and the blue lines are the MBRE values of the MBRE-optimal
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quantizer designed using known fp
−

(p
−

). The blue lines here are identical to the blue
lines in Figure 5.4.

Several interesting observations may be made about these empirical results. First,
the empirical MBRE is greater than the optimal quantizer MBRE. Also, whereas the
optimal quantizer MBRE goes to zero as k goes to infinity, the empirical MBRE does not
go to zero. In fact, there is an intermediate value of k at which the MBRE is minimized:
k = 14 for m = 100 and k = 15 for m = 200. This is most obviously seen in the zoomed
in plots shown in Figure 5.17. This phenomenon parallels overfitting and the structural
risk minimization principle observed in Chapter 3 and Chapter 4. Frugality through
limited prior probability precision improves decision-making performance in the setup
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of this section.
It is also seen that the MBRE with m = 200 is less than the MBRE with m = 100:

more training helps. More subtly, the optimal k is greater for m = 200 than the optimal
k for m = 100. This observation may be reinforced by examining other values of m as
well. For m = 50, k = 9 is optimal; k = 14 for m = 100 and k = 15 for m = 200 are
optimal as already noted; k = 17 is optimal for m = 400. More training also implies that
more clusters should be used. Since the estimate p̂

−j gets closer to p
−j as m increases,

less regularization in the form of clustering is needed. This behavior also occurs in
supervised classification—less regularization is required when more labeled training
samples are available, which is noted in the consistency analysis of Section 3.4.3. The
empirical formulation of this section exhibits many of the behaviors associated with
overfitting in statistical learning.

� 5.4 Application to Human Decision Making

This section considers the situation in which the decision maker is a human and the
objects in the population whose state is to be determined are also humans. For example,
as mentioned at the beginning of the chapter, the decision maker and population could
be a sports referee and players. The fraction of plays in which player j does not
commit a foul is p

−j . The population of players is characterized by the distribution
fp

−

(p
−

). Human decision makers categorize into a small number of categories; it has
been observed that people can only carry around seven, plus or minus two, categories
without getting confused [129]. Thus decisions by humans on large populations of
humans that they know may be modeled using the formulation developed in this chapter.

Human decision making is often studied in microeconomics. The decision maker
is assumed to be rational so that he or she optimizes decision-making performance.
Models of decision making in economics have recently started considering bounded ra-
tionality [46, 161, 168, 215], including the bounded rationality of memory constraints
or information processing constraints [54, 132]. Frugality in prior probability precision
described in this chapter can be viewed as a form of bounded rationality. There are two
models of bounded rationality, termed truly bounded rationality and costly rationality
[161]. In the truly bounded rationality model, the decision maker is not aware of his
or her limitation, whereas in the costly rationality model, the decision maker is aware
of the limitation and finds an optimal strategy under the limitation. The quantized
prior hypothesis testing model developed in this chapter falls under costly rationality
because the quantization or clustering is optimized for decision-making performance
through the minimization of MBRE. It may be viewed as an example of categorical and
coarse thinking [72, 134] and case-based decision theory [82].

Racial bias in decision making has been observed in society, including in foul calls
by National Basketball Association (NBA) referees [159], arrests for minor offences by
police [53], searches of stopped vehicles by police [8], and hiring by human resources
professionals [190]. Specifically, a decision maker of one race has different decision-
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making performance on members of the same race and members of another race. Social
cognition theory describes a form of categorization different from the categorization due
to limited information processing capability: people tend to automatically categorize
others according to race and may use different decision rules for different racial groups
[122]. Segregation in social life leads to more interactions within a race than interactions
between members of different races, cf. [59] and references therein, which may have an
effect on decision making, as human decision makers are not able to completely discount
their social interactions in determining how to deploy their limited decision-making
resources [72].

Becker [16] discusses two types of racial discrimination: ‘a taste for discrimination’
and statistical discrimination. Taste-based discrimination is what is usually thought of
as discrimination—the explicit preference by a decision maker for or against a group.
Statistical discrimination, in contrast, is not based on preferences but arises due to
bounded rationality. The model of decision making with frugality in prior probability
precision proposed in this chapter is extended in this section to include social factors,
leading to a model that generates racial bias without appealing to ‘a taste for discrim-
ination’ or to different fp

−

(p
−

) among different racial groups. The modeled racial bias
occurs only because of prior probability precision frugality, automatic categorization by
race, and segregation.

Fryer and Jackson [72] discuss how human decision makers use categorization for
information processing, how categories are trained, how decisions for members of a
minority group are less accurate, and how this may lead to discrimination against
minority groups even without malevolent intent. The same conclusion is reached in this
section by analyzing the proposed minimum MBRE quantization model. The work in
this section, like [72], falls under information-based discrimination [9, 21] as quantization
reduces information. Unlike other studies of information-based discrimination, it is
assumed here that different populations have the same distribution fp

−

(p
−

), the same
likelihood functions fx|y(x|y), and that there are no dynamic effects. Phelps [152]
assumes that the two populations are not identical and that there is a different amount
of noise in measuring different populations. In [1, 120], the different populations have
the same fp

−

(p
−

), but different estimator performances. Discrimination is explained in
[9, 44, 187] by a dynamic process in which the minority group does not invest in human
capital because it is not valued by the decision maker.

Dow [54] looks at a sequential decision-making scenario, in which the human decision
maker is deciding whether to purchase an object from one vendor or another. He or
she first observes the price of the first vendor, but does not purchase. Then, he or
she observes the price of the second vendor, compares the two prices, and purchases
from the lower-priced vendor. However, due to bounded rationality, the decision maker
only remembers a quantized version of the first price when making the comparison.
The problem setup in that work is different than the scenario discussed here, but the
analysis is of a similar flavor.

Mullainathan [133] also considers a sequential scenario and is concerned with learn-
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ing beliefs from data. (Decision making is not a part of the framework.) In a sequence
of observations, the decision maker perfectly knows the state of an object. If a rational
decision maker keeps making observations for a long time, the empirical frequencies of
the observations converge to the true probabilities. The model in [133], however, inserts
bounded rationality into the learning process. Quantization cells partition p

−
∈ [0, 1];

sequential updates to the probabilities are based not on likelihoods from data, but on
quantized versions of likelihoods from data. The quantization cells and representation
points are maximum a posteriori given the data. Because decision making is not a part
of the work, the optimization criterion is not correctly matched; general learning and
learning for a particular purpose such as decision making are not always equivalent.

Foster and Vohra [71] discuss calibrated forecasting in which the goal is to learn prior
probabilities in a game-theoretic setting. Their method requires discretizing p

−
∈ [0, 1]

but does not appeal to quantization theory. Also, observations are not corrupted by
noise.

� 5.4.1 Two Population Model

Consider two populations b and w with identical population distributions fp
−

(p
−

) and
identical measurement models for Bayesian hypothesis testing fx|y (x|y = −1) and
fx|y(x|y = +1). A rational decision maker who is frugal with prior probability pre-
cision ought to ignore the population labels b and w because they are irrelevant for
the hypothesis testing task. However, due to automatic categorization resulting from
social cognition, the decision maker quantizes the two populations separately. The total
quota on representation points, kt, is split into some number of points for population
b and some number for population w, denoted kb and kw respectively. The separate
quantizers may then be denoted qkb

(·) and qkw
(·).

The definition of MBRE is extended to two populations as follows.

̺
(2)
B =

mb

mb +mw
E[R̃(p

−
, qkb

(p
−

))] +
mw

mb +mw
E[R̃(p

−
, qkw

(p
−

))] − E[R(p
−

)], (5.28)

where mb is the number of population b members with whom the decision maker socially
interacts, and mw is the number of population w members with whom the decision
maker socially interacts. In order to find the optimal allocation of the total quota of

representation points kt = kb + kw, ̺
(2)
B is minimized for all kt − 1 possible allocations

and the best one is chosen; more sophisticated algorithms developed for bit allocation
to subbands in transform coding may also be used [183].

Fryer and Jackson [72] have previously suggested that it is better to allocate more
representation points to the majority population than to the minority population. With

two separate quantizers and a single size constraint, optimizing ̺
(2)
B over qkb

(·) and
qkw

(·) yields the same result. Due to the monotonicity result in Section 2.5.4 that more
quantization levels implies smaller MBRE, the MBRE of population b is smaller than
the MBRE of population w if mb > mw and the MBRE of population w is smaller than
the MBRE of population b if mw > mb. An example of optimal allocation as a function
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Figure 5.18. Optimal allocation of quantizer sizes to population b (black line) and population w (cyan
line) for kt = 7 as a function of mw/(mb + mw) with beta(5,2) p

−
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= 1, c
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of mw/(mb + mw) for kt = 7 is shown in Figure 5.18 with the beta(5,2)-distributed
p
−

example from previous sections. The empirical formulation presented in Section 5.3
also suggests the same thing. It is seen in that section that the greater the number
of training samples m per member of the population, the smaller the MBRE and the
greater the optimal k.

Due to segregation in social interactions, it is expected that decision makers from
population w have a greater mw/(mb+mw) value than decision makers from population
b. The model predicts that decision makers from population w have worse expected
Bayes risk than decision makers from population b when dealing with population b.
Symmetrically, the model predicts that decision makers from population b have worse
expected Bayes risk than decision makers from population w when dealing with popu-
lation w. The model predictions are seen experimentally. A large body of literature in
face recognition shows the predicted bias effect; specifically, both pF and pM increase
when trying to recognize members of the opposite population [126]. Bias in favor of the
population of which the decision maker is a member is verified in face recognition by
controlled laboratory experimentation. A difficulty in interpreting natural experiments
examined through econometric studies, however, is that the ground truth is not known.

� 5.4.2 Nature of Discrimination Due To Bayes Costs

Since ground truth is not available in econometric studies, it is not clear how to interpret
a finding that referees from population w call more fouls on players from population b
and that referees from population b call more fouls on players from population w. This
phenomenon cannot simply be explained by a larger probability of error. The false
alarm probability and the missed detection probability must be disentangled and the
Bayes costs must be examined in detail.

In most decision-making scenarios, one of the hypotheses leads to no action and is
the default. For example, the hypothesis ‘not a crime’ or ‘not a foul’ is the default and
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associated with hypothesis y = −1. It is shown here that the Bayes costs of the decision
maker must be such that the ratio c

−+/c+−
is large in order to explain the empirical

observations in [8, 53, 159, 190].
Using basketball fouls as the running example, the measurable quantity in an econo-

metrics study is the probability that a foul is called. This rate of fouls is:

Pr[ŷ(x) = +1] = p
−
pF + (1 − p

−
)(1 − pM ). (5.29)

Looking at the average performance of a referee over the b and w populations, the
expected foul rates on population b and population w can be compared. Let ŷb denote
the decision rule with priors quantized using kb quantization levels, and ŷw denote the
decision rule with priors quantized using kw quantization levels. If

∆ = E [Pr[ŷb = +1] − Pr[ŷw = +1]] (5.30)

is greater than zero, then the referee calls more fouls on population b. If ∆ is less
than zero, then the referee calls more fouls on population w. The ∆ expression may be
written as:

∆(c+−
, c

−+) = E[p
−
pF (qkb

(p
−

)) − [1 − p
−

]pM (qkb
(p

−
))]

− E[p
−
pF (qkw

(p
−

)) − [1 − p
−

]pM (qkw
(p

−
))]. (5.31)

The dependence of ∆ on c+−
and c

−+ is explicit on the left side of (5.31) and is implicit
in the false alarm and missed detection probabilities on the right side. The value of ∆
also depends on the population distribution fp

−

(p
−

), the values of kw and kb, and the
measurement model.

Fixing fp
−

(p
−

), kw, kb, and the measurement model, regions of the plane spanned by
c+−

and c
−+ can be determined in which a referee calls more fouls on population b and

in which a referee calls more fouls on population w. This is shown in Figure 5.19. For
the uniform population distribution, the two regions are divided by the line c

−+ = c+−
.

For the beta(5,2) distribution, the dividing line is c
−+ = αc+−

, where α > 1. For
any population and measurement model, there is one half-plane in which a referee
calls more fouls on population b players. In the other half-plane, the referee calls
more fouls on population w players. To reiterate, just because the Bayes risk for foul-
calling on population b players is greater than that for population w players, it does
not automatically imply that the foul call rate for population b is higher. The high
Bayes risk could well be the result of a preponderance of missed foul calls. The choice
of Bayes costs with c

−+ greater than c+−
implies that a referee can tolerate more false

alarms than missed detections. This assignment of costs has been termed precautionary
in some contexts. Interpreting Figure 5.19, a referee with kw > kb that calls more fouls
on population b players is precautionary. A referee with kw < kb that calls more fouls
on population w players is also precautionary.

Econometric studies often give differences of differences to show racial bias. The
first difference is the difference in foul call rate between population b and population w,
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Figure 5.19. Dividing line between Bayes cost region in which referee calls more fouls on population
b and region in which referee calls more fouls on population w. A referee with kb < kw calls more fouls
on population b in the upper left region and more fouls on population w in the lower right region, which
correspond to precautionary and anti-precautionary cost settings respectively. The opposite is true for
kw < kb. The population distribution is (a) uniform, and (b) beta(5,2).

which is ∆. The second difference is the difference in ∆ between referees belonging to
population b and referees belonging to population w. Denote the foul call rate difference
of a referee who is a member of population b by ∆b and the foul call rate difference of
a referee who is a member of population w by ∆w. Then the difference of differences
is ∆w − ∆b. Figure 5.20 plots the difference of differences as a function of the ratio
c
−+/c+−

for two different population distributions, the uniform distribution and the
beta(5,2) distribution. The right side of each plot is the precautionary regime, in which
population w referees call more fouls on population b players than population b referees.
For the particular examples, if c

−+/c+−
= 10, then the population w referee has a foul

call rate 0.0132 greater than the population b referee on population b players for the
beta(5,2) distribution and 0.0142 greater for the uniform distribution. The left side of
each plot is the anti-precautionary regime, in which population w referees call fewer
fouls on population b players than population b referees. For the particular examples,
if c

−+/c+−
= 0.1, then the population w referee has a foul call rate 0.0013 less than the

population b referee on population b players for the beta(5,2) distribution and 0.0142 less
for the uniform distribution. In these examples, the population w referee has kw = 4,
kb = 3, and the population b referee has kw = 3, kb = 4.3

Differences of differences calculated in econometric studies are equivalent to the
difference between the ∆ for population w decision makers and the ∆ for population b
decision makers. It has been found that the addition of police officers of a given race is

3There is no requirement for the population w referee to have kw > kb and the population b referee
to have kw < kb. It is only required that the kw of the population w referee be greater than the kw of
the population b referee (assuming the same kt). A plot qualitatively similar to Figure 5.20 is obtained
if the population w referee has kw = 5, kb = 2, and the population b referee has kw = 4, kb = 3.
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Figure 5.20. Difference of differences in foul calling as a function of the Bayes cost ratio. The
population w referee has kw = 4, kb = 3 and the population b referee has kw = 3, kb = 4. The
population distribution is (a) uniform, and (b) beta(5,2).

associated with an increase in the number of arrests of suspects of a different race but has
little impact on same-race arrests. There are similar own-race bias effects in the decision
by police to search a vehicle during a traffic stop [8], in the decision of human resource
professionals to not hire [190], and in the decision of NBA referees to call a foul [159].
The rate of searching, the rate of not hiring, and the rate of foul calling are all greater
when the decision maker is of a different race than the driver, applicant, and player,
respectively. These studies are consistent with model predictions if decision makers are
precautionary. Situations in which the model proposed in this section suggests decision
makers are anti-precautionary have also been observed occasionally, for example [11]
which deals with Canadian juries and is an example in which population members of
the same race as the decision maker have less desirable decisions. The proposed model
generates the interesting phenomenon that the cost function of the decision maker has
a fundamental effect on the nature of racial discrimination. The Bayes costs of human
decision makers are revealed in their bias.

� 5.5 Chapter Summary

Bayesian hypothesis testing is examined when there is a distribution of prior prob-
abilities, but the decision maker may only use a quantized version of the true prior
probability in designing a decision rule. Considering the problem of finding the optimal
quantizer for this purpose, a new distortion criterion is defined based on the Bayes
risk function. For this criterion, the mean Bayes risk error, conditions that an opti-
mal quantizer satisfies are determined. A high-rate approximation to the distortion
is also worked through. Previous, though significantly different, work on quantization
for hypothesis testing is unable to directly minimize the Bayes risk, as is accomplished
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in this work. This formulation of hypothesis testing is also examined when empirical
data samples related to the distribution of prior probabilities are given instead of the
distribution itself. Overfitting is observed with empirical data, and clustering the prior
probabilities aids detection performance.

The mathematical theory of quantized prior hypothesis testing formulated here leads
to a generative model of discriminative behavior when combined with theories of social
cognition and facts about social segregation. This biased decision making arises despite
having identical distributions for different populations and despite no malicious intent
on the part of the decision maker. Precautionary settings of Bayes costs lead to a
higher probability of declaring the positive hypothesis for the opposite race, whereas
the opposite setting of costs leads to a higher probability of declaring the positive
hypothesis for the own race. Such a phenomenon of precaution fundamentally altering
the nature of discrimination seems not to have been described before.



Chapter 6

Conclusion

SEVERAL aspects of frugal decision making are studied in the preceding chapters,
namely margin-based classification with decision boundary surface area regulariza-

tion, dimensionality reduction for margin-based classification, and the quantization or
clustering of priors for Bayesian hypothesis testing. These contributions of the thesis
are summarized in this chapter. The chapter also documents directions for further
research suggested by the work described in the thesis.

� 6.1 Summary of Contributions

The thesis examines rules for detection that are limited in complexity. One novel
measure of complexity that is investigated is the surface area of the decision boundary.
Another novel way to limit complexity that is proposed is through the quantization of
prior probabilities appearing in the threshold of the likelihood ratio test. In addition
to these two new perspectives on complexity control in decision making, dimensionality
reduction for classification is studied as well. Dimensionality reduction specifically
within a margin-based classification objective has not received attention before, and
neither has distributed dimensionality reduction for classification in sensor networks,
as studied in the thesis.

More specifically, a new classifier is developed, the geometric level set (GLS) clas-
sifier. A method for joint dimensionality reduction and margin-based classification via
optimization on the Stiefel manifold is developed. Also developed is a new distortion
criterion for quantization, the mean Bayes risk error (MBRE). Two application areas,
sensor networks and human decision making in segregated populations, are looked at
in greater depth and lead to extensions of the formulations.

Lehman [112] lists life in the age of the genome, wisdom in the age of digital in-
formation, and sustainability in the age of global development as significant research
challenges. The work in this thesis contributes to the second of these challenges through
the theme of frugality in the age of excess. The essence of wisdom is captured by the
generalizability of a decision rule. Generalization is improved by controlling the com-
plexity of a decision rule learned from noisy samples of information. This improvement
is illustrated on datasets throughout the thesis, whether the complexity is measured
by surface area, dimensionality, or number of clusters. An added benefit of limiting
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the complexity of a decision rule is the accompanying reduction of physical costs and
resource usage that often occurs.

� 6.1.1 Geometric Level Set Classifier

Supervised classification is an important learning problem that occurs in many applica-
tion domains. Many approaches to the problem have been developed, including decision
trees, k-nearest neighbor classifiers, and neural networks [56]. Nonparametric methods
based on margin-based loss functions including logistic regression and the support vec-
tor machine (SVM) are quite popular [99, 176]. No one classifier is always superior
[222]; classifier performance is dataset-dependent and thus developing new classifiers is
useful.

Viewed from a regularization perspective, existing margin-based classifiers includ-
ing the SVM often have a squared Hilbert space norm as the regularizer [99], which
penalizes properties of the entire decision function. The GLS classifier is proposed as
an alternative margin-based classifier in which the regularization term looks at only the
zero level set of the decision function. The zero level set is the decision boundary and
the only part of the decision function that affects classification performance. Specifi-
cally, the regularization term of the GLS classifier is the surface area of the zero level set
of the decision function, which promotes smooth decision boundaries when minimized.
This geometric regularization term for margin-based classification has not appeared in
the statistical learning literature before. This sort of geometric regularization opens
up possibilities for other decision boundary preferences to be encoded in the classifica-
tion objective. One of these possibilities for feature subset selection is described in the
thesis.

Unlike SVM training [99], GLS classifier training cannot be expressed in a quadratic
programming or other convex optimization form. However, GLS classifier training is
ideally suited to variational level set methods [141]. The training is carried out with
contour evolution, an Euler–Lagrange descent procedure that is not typically used in
statistical learning. In contrast to kernel methods, the GLS classifier with level set
formulation finds nonlinear decision boundaries directly in the input space and respects
distance relationships in the input space [2]. The level set formulation also enables a
new multicategory classification approach in which the number of decision functions is
the logarithm of the number of classes. As shown in the thesis, there are real-world
datasets for which the GLS classifier outperforms several popular classifiers from the
literature.

A new classifier requires new statistical learning theory analysis. The VC dimension
of the GLS classifier is measured empirically in the thesis for use in generalization
bounds [205]. Also for use in generalization bounds, the ǫ-entropy [106] of the GLS
classifier is calculated and used to analytically characterize its Rademacher complexity
[13]. Additionally, the GLS classifier is shown to be consistent as the number of training
samples goes to infinity as long as the margin-based loss function is Fisher-consistent
[116].
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� 6.1.2 Joint Dimensionality Reduction and Margin-Based Classification

Dimensionality reduction is useful to eliminate irrelevant and redundant dimensions of
data [149]. However, irrelevance and redundancy cannot be defined without context, as
the final use of the data determines what is irrelevant and redundant. When this final
use is known, the mapping to a reduced-dimensional space should be optimized for that
purpose [188]. Thus when the reduced-dimensional data is to be used for supervised
classification, the reduced-dimensional space and the classifier should be learned jointly.

Among existing supervised dimensionality reduction methods for classification, many
are founded on strong assumptions about the data generating process such as Gaus-
sianity [15, 69, 119, 128, 195]. Other methods have objectives beyond explicit classifica-
tion performance, specifically that likelihood functions conditioned on full-dimensional
data match those conditioned on reduced-dimensional data [42, 74, 170]. Dimension-
ality reduction within a nonparametric classification framework has not received as
much attention [150, 151, 202]. In the thesis, a formulation is proposed for learning
a nonparametric margin-based classifier defined in a reduced-dimensional space along
with learning the reduced-dimensional space. When the reduced-dimensional space is
a linear subspace, the objective for margin-based classification is extended to include a
dimensionality reduction matrix constrained to the Stiefel manifold that multiplies data
vectors within the argument of the decision function. As shown on several datasets,
linear dimensionality reduction improves classification performance by supressing noise
in the data and preventing overfitting.

Optimization in the proposed formulation is approached through coordinate descent
with alternating minimizations for the classifier decision function and the dimension-
ality reduction matrix. Optimization for the dimensionality reduction matrix with a
fixed decision function involves gradient descent along Stiefel manifold geodesics [60],
whereas optimization for the decision function with a fixed matrix is performed in the
typical manner for the margin-based classifier, such as quadratic programming tech-
niques for the SVM and contour evolution for the GLS classifier. Analyses of consis-
tency and Rademacher complexity are provided for joint dimensionality reduction and
GLS classification. Like those for the GLS classifier without dimensionality reduction,
the analyses are based on ǫ-entropy [106]. Calculation of ǫ-entropy with dimensionality
reduction involves the additional ingredient of zonotope content [37, 65].

For certain data distributions, limiting the reduced-dimensional space to be linear is
restrictive. An extension is provided in the thesis that allows the reduced-dimensional
space to be a nonlinear manifold. For nonlinear dimensionality reduction, the Stiefel
manifold-constrained matrix multiplies the vector-valued result of a data-dependent
nonlinear kernel function [19], also within the argument of the decision function. How-
ever, results with several real-world datasets seem to indicate that linear dimensionality
reduction is sufficient for optimal classification performance; the added power of non-
linear dimensionality reduction is not necessary.

Networks of power-limited sensor nodes are deployed for tasks such as environmen-
tal monitoring and surveillance. The sensors often measure vector-valued data and a
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fusion center node in the network often performs detection or classification [226, 227].
Limits on battery power translate into limits on communication; communication may
be reduced if the dimensionality of measurements is reduced locally at sensors prior
to transmission. The coordinate descent alternating minimizations for joint dimension-
ality reduction and margin-based classification are structured in a way that permits
processing to be distributed between the fusion center and sensor nodes. Messages
communicated between nodes in both training and operation are vectors of the reduced
dimension rather than the full measurement dimension. The thesis shows how the
distributed supervised dimensionality reduction is applicable to tree-structured, fusion
center-rooted sensor networks with data fusion at intermediate layers of the tree. Joint
dimensionality reduction and margin-based classification both reduces communication
and improves classification performance in sensor networks.

� 6.1.3 Minimum Mean Bayes Risk Error Distortion

The likelihood ratio test threshold of a Bayesian detector is based on the class prior
probabilities of the measured object [221]. A population of many objects with different
prior probabilities may confound or overwhelm a detector that is unable to precisely
adapt the threshold for each object due to processing limitations. The prior probabilities
of the many objects are set based on noisy observations in several scenarios, in which
case some form of regularization may be beneficial. Quantization or clustering of the
prior probabilities across the population of objects serves to reduce information storage
and recall requirements, and also provides a form of regularization. This mode of
complexity control in decision making has not been studied before.

Several distortion criteria exist for quantization and clustering [79]. As also noted
with dimensionality reduction, if the final use of complexity-reduced data is known,
then the complexity reduction mapping should be optimized for that final use. MBRE,
a new distortion criterion for quantization and clustering, is proposed in the thesis. This
distortion criterion arises directly from the Bayes risk of a likelihood ratio test detection
rule, and is thus matched to the decision-making application of interest. It is shown
in examples containing prior probabilities estimated from observations with additive
Gaussian noise that MBRE-optimal clustering improves decision-making performance.

Several properties of the novel MBRE distortion criterion are derived in the thesis.
Specifically, it is shown that Bayes risk error is continuous and strictly convex as a
function of the unquantized variable and quasiconvex as a function of the quantized
variable. The properties are then used in deriving quantizer optimality conditions
and showing that the conditions are both necessary and sufficient [200]. Quantization
analysis in the high-resolution limit is also provided in the thesis [113], and is of the
same nature as consistency analysis for classification.

The final contribution of the thesis is a model of decision making on the actions of
humans by humans. The model is an extension of the quantization/clustering frame-
work that includes more than one population type or race, with decision makers having
more training or experience with members within their own population type. The model
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predicts discrimination against population members who are of a different type than the
decision maker. Significantly more false alarms on members of other population types
are noted in empirical studies of society [8, 53, 159, 190]. This finding is reproduced by
optimal decision making with quantization when the cost of missed detections is higher
than the cost of false alarms in the Bayes risk of the hypothesis test.

� 6.2 Recommendations for Future Research

The contributions summarized in the first half of this chapter are not only worthwhile
intrinsically, but also because they illuminate avenues for further research. Several
directions for future work are described in this section. Some are obvious extensions
and questions that arise in previous chapters; others are farther afield.

� 6.2.1 Model Selection

Two model selection questions are not fully resolved in the thesis: how should the
complexity level of the decision rule be set, and when should the GLS classifier be used
instead of other classifiers from the literature. These are both operationally important
questions.

Selecting Complexity Level

As seen throughout the thesis and articulated by the structural risk minimization prin-
ciple, there is an intermediate decision rule complexity at which generalization error
is minimized. The question of how to best set the GLS regularization parameter, the
reduced dimension, or the number of clusters based on the available training data is
not answered in the thesis (except by cross-validation for the GLS regularization pa-
rameter) and is an interesting direction for future work. This complexity level choice
may be confounded by resource usage constraints, for example in sensor networks.

Similar to other classifiers, the generalization bounds obtained using Rademacher
complexity for the GLS classifier and for the GLS classifier with dimensionality reduc-
tion are not tight, and not useful in setting the regularization parameter or number of
dimensions. Methods based on cross-validation, bootstrapping, and information criteria
may be used [3, 62, 178]. An interesting way forward is through Bayesian nonparametric
methods, such as automatic relevance determination in dimensionality reduction [23]
and the Dirichlet process mixture model in clustering [64]. In fact, Canini [32] has
shown that the Dirichlet process mixture is a rational model for the categorization per-
formed by humans. It has also been used in the economics literature to model human
decision making and choice [30].

Selecting the GLS Classifier

As seen in the table of results, Table 3.1 in Section 3.3, the relative performance of
different classifiers is dataset-dependent. A classifier may work well on some datasets
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and poorly on others. These differences are because different classifiers make different
implicit or explicit assumptions on how to generalize from the finite samples of the
training set. The question then is which classifier should be used for a given dataset.

Several geometric and topological properties that delineate domains of classifier
competence have been catalogued [14, 94]. Different regions of data complexity space
correspond to the types of datasets for which different classifiers work well or poorly.
This line of work also includes classification with feature selection or dimensionality
reduction [156]. It would be interesting to determine the dataset properties for which
the GLS classifier, including with dimensionality reduction, is preferred.

� 6.2.2 Extensions to Other Learning Scenarios

There are several other statistical learning scenarios besides the batch supervised classi-
fication problem considered in Chapter 3 and Chapter 4, including active learning [45],
reinforcement learning [101], and sequential supervised learning [51]. An interesting
future research path is to extend the GLS classifier to three other learning scenarios:
online learning, semisupervised learning, and Neyman–Pearson learning.

Online Learning

The GLS classifier, both with and without joint dimensionality reduction, is optimized
in a gradient descent manner. As described in the thesis, the gradient descent is a
batch operation for all training samples at once. An alternative to batch training
is online training [28], which is closely related to adaptive filtering [217]. In online
learning, gradient updates are based on single training samples. Modification of GLS
classification to online learning should be straightforward, but stochastic approximation
analysis of the dynamics and convergence may be more involved.

Online learning makes computation manageable in large-scale problems with very
large training sets. It is also useful in tracking data distributions that are not stationary.
For example, in classifying internet traffic, the joint distribution of measurements and
class labels changes over time and also has periodicity by the time of day, day of
week, and seasonally. A geological example is in classifying the type of rock from
measurements in wells—rock properties change with depth under the surface of the
earth. In fact, variational level set methods are regularly used for tracking deformable
objects in time sequences [145, 191].

An online learning paradigm may also be useful in the geological example if training
the system prior to deployment under the earth is inexpensive compared to training
during deployment. This is more apt to occur when also considering dimensionality
reduction. The training data available before deployment may not have the same dis-
tribution as the data encountered when deployed, but may provide a good initialization.
The same scenario applies elsewhere, such as in deep space exploration and in wireless
sensor networks.
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Semisupervised Learning

Semisupervised learning is important because obtaining measurement vectors for train-
ing is often inexpensive, but obtaining labels for those vectors is costly [39]. As discussed
in the thesis, the variational level set framework of the GLS classifier is amenable to
the inclusion of additional geometric regularization terms in the objective. The semisu-
pervised learning approach of Belkin et al. [18] with manifold regularization has in its
objective a margin-based loss term, a regularization term on the decision function de-
fined in the ambient space, and a regularization term related to the intrinsic geometry
of the distribution of the measurements. This geometric third term is based on the
training samples, but does not utilize the class labels. It seems quite likely that a close
variant of the third term in [18] could be adopted in a variational level set formulation
to extend GLS classification for semisupervised learning.

Neyman–Pearson Learning

False alarms and missed detections often have different consequences. In certain decision-
making scenarios, it is more natural to specify a maximum false alarm rate rather than
the cost ratio c

−+/c+−
. A fairly new paradigm when the decision rule is to be learned

from training data for this case is Neyman–Pearson classification [179]. Statistical learn-
ing bounds have been developed for this scenario, including ones based on Rademacher
complexity [91]. However, practical classification methods are not as developed. In
future work, it would be interesting to modify the GLS classifier for Neyman–Pearson
classification.

� 6.2.3 Quantization/Clustering of Prior Probabilities

The minimum mean Bayes risk error quantization and clustering framework of Chap-
ter 5 suggests some directions for future work.

Statistical Learning Theory Analysis

In Section 5.3, the decision maker learns about the prior probabilities in the population
from a finite number of noisy measurements. Further work includes rigorously showing
decision-making consistency with this setup. Several ingredients for this are discussed
in the thesis, including the consistency of the estimator that yields a prior probability
estimate for a single object from m noisy measurements as m grows, the convergence
of the clustering to the quantizer as the number of objects n grows [169], and the high-
resolution analysis showing that the excess Bayes risk goes to zero as k, the number of
quantization levels, grows. Another statistical learning theory analysis of interest for
future work is to develop generalization bounds as a function of finite m, n, and k.
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Min-Max Representation Point

For the quantizer with k = 1, an alternative to the MBRE-optimal representation point

a∗MBRE = arg min
a

{∫

R̃(p
−

, a)fp
−

(p
−

)dp
−

}

(6.1)

is the min-max hypothesis testing representation point [221]:

a∗min-max = arg min
a

{

max
p
−

R̃(p
−

, a)

}

. (6.2)

The two representation points a∗MBRE and a∗min-max are only equivalent in special cases.
A distribution on the prior probabilities is needed to specify a∗MBRE, but not to specify
a∗min-max. An interesting future direction is to extend the min-max idea to k > 1. This
would involve finding a covering consisting of k sets of the form Qi = {p

−
|R̃(p

−
, ai) ≤ ̺},

where all p
−

in Qi map to ai and the radius ̺ is the same for all Qi.

� 6.2.4 Posterior Probability and Confidence

It is useful for a classification algorithm to provide the posterior probability fy |x(y|x = x)
in addition to just the decision boundary in many decision-making tasks, including those
in which several different classifiers are to be combined and in those where the costs c+−

and c
−+ are unequal. The posterior probability is also useful in showing where in the

measurement space the classification is more or less uncertain and to provide confidence
intervals.

The margin-based classifier ŷ(x) = sign(ϕ(x)) does not provide this posterior prob-
ability. Platt [153] suggests that a sigmoid function of the decision function ϕ may be
used as a surrogate for the posterior probability:

fy |'(y = +1|' = ϕ) =
1

1 + exp(Aϕ+B)
, (6.3)

where A and B are constants to be fit using the training data. This form (6.3) is
supported by the theoretical foundations of logistic regression as well. However, this
surrogate based on the margin can be quite poor. As an example, consider the dataset
and SVM decision function shown in Figure 6.1. The decision boundary in the upper
left part of the domain is more uncertain than the decision boundary in the lower
right, but since the decision function in both parts is essentially the same, the posterior
probability using (6.3) is also incorrectly the same.

Future work suggested by this issue is to use a Monte Carlo approach to sample
from fy |x(y|x = x). Markov chain Monte Carlo curve sampling, a recently developed
approach to image segmentation, may be adapted for this purpose [41, 63]. Given many
samples from the posterior distribution, level sets of the histogram may then be used
to show confidences. These different level sets may also be used as decision boundaries
for classification with c+−

6= c
−+ .
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Figure 6.1. Illustration that the decision function ϕ of a margin-based classifier may not be a good
surrogate for the posterior probability. (a) The magenta × markers indicate class label −1 and the
black + markers indicate class label +1. The blue line is the decision boundary of the SVM with radial
basis function kernel. (b) The decision function ϕ(x) of the SVM.

� 6.2.5 Nonlinear Dimensionality Reduction

The classification results with nonlinear dimensionality reduction presented in Sec-
tion 4.2 utilize the SVM with radial basis function kernel. This nonlinear dimensionality
reduction with nonlinear classification does not perform as well as linear dimensional-
ity reduction, which may be due to too much freedom in both nonlinearities. Braun
et al. [29] have studied this issue and found that the use of linear decision boundaries
with nonlinear dimensionality reduction is often sufficient. It would be interesting to
systematically study the proposed joint nonlinear dimensionality reduction framework
with simpler margin-based classifiers having linear or quadratic decision boundaries.

Additionally, the data-dependent Isomap kernel requires an n × d dimensionality
reduction matrix, where n is the number of training samples. If n is large, it is pos-
sible to use the Landmark Isomap idea, which uses a subsampling of the training set
in representing the nonlinear manifold [184]. It would be interesting to systematically
investigate the effect of subsampling on classification performance. With labeled sam-
ples, it is also possible to subsample different classes differently and affect false alarm
and missed detection rates differently.

� 6.2.6 Sensor Networks

The distributed setting of the sensor network application discussed in the context of su-
pervised dimensionality reduction and information fusion provides problems for further
study.
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General Message-Passing Approach

The dimensionality reduction extension for sensor networks in Section 4.4 focuses on
the margin-based classification objective. The optimization reveals an efficient message-
passing structure. Objectives other than margin-based classification can also be consid-
ered within the sensor network structure, for example independent component analysis.
It would be interesting to develop a general message-passing approach for optimizing
dimensionality reduction functions f(ATx) in distributed sensor fusion settings. It
would also be interesting to investigate the behavior of the message passing in network
structures that are not trees, to see if the computations converge, and if so, converge
to correct solutions.

Network Architecture Optimization

The plots of classification performance as a function of transmission power for wireless
sensor networks given in Section 4.4.4 are for three specific choices of network archi-
tecture: serial, parallel, and binary tree, with the reduced dimensionality at a node
proportional to the number of descendents plus one. The problem of determining the
reduced dimensionality at each sensor as well as the network structure that minimizes
generalization error for given training measurements and a given transmission power
budget is an interesting research direction. Prior work on sensor network architecture
optimization has tended to focus on detection scenarios with known probability distri-
butions [7]; the statistical learning formulation with associated overfitting effects has
not been the focus.

� 6.2.7 PDE Methods

Variational and geometric partial differential equation (PDE) methods abound in the
field of image processing. Level set image segmentation is one such example, which
is adapted in the development of the GLS classifier in Chapter 3. A future research
direction is to examine PDE-based methods for other image processing tasks includ-
ing inpainting and interpolation, denoising, deblurring and deconvolution, contrast en-
hancement, anisotropic diffusion, warping, and blending [142, 173] to see if there are
statistical learning problems for which they may be adapted. Such an inquiry may be
quite fruitful. Image processing methods generally assume that data samples lie on a
pixel or voxel grid, but as in developing the GLS classifier, this should not be a major
hurdle.

It is mentioned at the beginning of Chapter 3 that spatially continuous and spatially
discrete representations lead to different types of segmentation approaches. There have
been recent attempts to reconcile the different approaches by extending the definitions
of PDE methods to graphs, including papers by Zhou and Schölkopf [224] and Gilboa
and Osher [81]. These works have also bridged image processing and statistical learn-
ing. In future work, it would be interesting to develop a discrete formulation for GLS
classification based on these new formulations of PDEs on graphs.
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Pixels are the data for PDE methods in image processing, whereas training samples
in Euclidean space are the data for the GLS classifier. An interesting direction is to
look at running variational PDE methods with the data being probability distribution
sample points on manifolds defined by information geometry [6]. Problems of interpo-
lating a probability distribution between given probability distributions, and denoising
a collection of empirical probability distributions do occasionally arise. The blurring
and deblurring of probability distributions could arise in multiscale and multiresolution
models. It does not seem as though there has been work along these lines.
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[24] Gilles Blanchard, Christin Schäfer, Yves Rozenholc, and Klaus-Robert Müller.
Optimal dyadic decision trees. Machine Learning, 66(2–3):209–241, March 2007.
69

[25] Gilles Blanchard and Laurent Zwald. Finite-dimensional projection for classifica-
tion and statistical learning. IEEE Transactions on Information Theory, 54(9):
4169–4182, September 2008. 85, 105

[26] David M. Blei and Jon D. McAuliffe. Supervised topic models. In John C. Platt,
Daphne Koller, Yoram Singer, and Sam T. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 121–128, Cambridge, Massachusetts,
2008. MIT Press. 88

[27] Erik M. Boczko, Todd R. Young, Minhui Xie, and Di Wu. Comparison of binary
classification based on signed distance functions with support vector machines.
In Proceedings of the Ohio Collaborative Conference on Bioinformatics, Athens,
Ohio, June 2006. 56
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supported radial basis functions based collocation method for level-set evolution
in image segmentation. IEEE Transactions on Image Processing, 16(7):1873–1887,
July 2007. 21, 66, 67

[79] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, 1992. 20, 27, 50, 121, 148

[80] Michael Gibbert, Martin Hoegl, and Liisa Välikangas. In praise of resource con-
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Schuurmans, Yoshua Bengio, and Léon Bottou, editors, Advances in Neural In-
formation Processing Systems 21. MIT Press, Cambridge, Massachusetts, 2009.
88

[110] Svetlana Lazebnik and Maxim Raginsky. Supervised learning of quantizer code-
books by information loss minimization. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31(7):1294–1309, July 2009. 88



166 BIBLIOGRAPHY

[111] Guy Lebanon. Riemannian Geometry and Statistical Machine Learning. PhD
thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania, January 2005. 20

[112] Jeffrey Sean Lehman. An Optimistic Heart: What Great Universities Give Their
Students ... and the World. Cornell University, Ithaca, New York, 2008. 145

[113] Jia Li, Navin Chaddha, and Robert M. Gray. Asymptotic performance of vector
quantizers with a perceptual distortion measure. IEEE Transactions on Informa-
tion Theory, 45(4):1082–1091, May 1999. 23, 126, 128, 129, 148

[114] Ker-Chau Li. Sliced inverse regression for dimension reduction. Journal of the
American Statistical Association, 86(414):316–327, June 1991. 86

[115] Ker-Chau Li. On principal Hessian directions for data visualization and dimen-
sion reduction: Another application of Stein’s lemma. Journal of the American
Statistical Association, 87(420):1025–1039, December 1992. 86

[116] Yi Lin. A note on margin-based loss functions in classification. Statistics &
Probability Letters, 68(1):73–82, June 2004. 21, 22, 39, 74, 78, 79, 107, 146

[117] Xiuwen Liu, Anuj Srivastava, and Kyle Gallivan. Optimal linear representations
of images for object recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(5):662–666, May 2004. 22, 87

[118] Stuart P. Lloyd. Least squares quantization in PCM. IEEE Transactions on
Information Theory, IT-28(2):129–137, March 1982. 20

[119] Rohit Lotlikar and Ravi Kothari. Adaptive linear dimensionality reduction for
classification. Pattern Recognition, 33(2):185–194, February 2000. 86, 147

[120] Shelly J. Lundberg and Richard Startz. Private discrimination and social inter-
vention in competitive labor market. The American Economic Review, 73(3):
340–347, June 1983. 138

[121] Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with
Lipschitz functions. Journal of Machine Learning Research, 5:669–695, June 2004.
21, 57, 74, 106

[122] C. Neil Macrae and Galen V. Bodenhausen. Social cognition: Thinking categori-
cally about others. Annual Review of Psychology, 51:93–120, February 2000. 24,
138

[123] Julien Mairal, Francis Bach, Jean Ponce, Guillermo Sapiro, and Andrew Zisser-
man. Discriminative learned dictionaries for local image analysis. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Anchorage, Alaska, June 2008. 88



BIBLIOGRAPHY 167

[124] Jonathan H. Manton. Optimization algorithms exploiting unitary constraints.
IEEE Transactions on Signal Processing, 50(3):635–650, March 2002. 46

[125] Joel Max. Quantizing for minimum distortion. IRE Transactions on Information
Theory, 6(1):7–12, March 1960. 20

[126] Christian A. Meissner and John C. Brigham. Thirty years of investigating the
own-race bias in memory for faces: A meta-analytic review. Psychology, Public
Policy, and Law, 7(1):3–35, January 2001. 140

[127] Diana L. Miglioretti, Rebecca Smith-Bindman, Linn Abraham, R. James Brenner,
Patricia A. Carney, Erin J. Aiello Bowles, Diana S. M. Buist, and Joann G.
Elmore. Radiologist characteristics associated with interpretive performance of
diagnostic mammography. Journal of the National Cancer Institute, 99(24):1854–
1863, December 2007. 17
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