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Abstract

In undirected graphical models, each node represents a random variable while
the set of edges specifies the conditional independencies of the underlying distri-
bution. When the random variables are jointly Gaussian, the models are called
Gaussian graphical models (GGMs) or Gauss Markov random fields. In this the-
sis, we address several important problems in the study of GGMs.

The first problem is to perform inference or sampling when the graph struc-
ture and model parameters are given. For inference in graphs with cycles, loopy
belief propagation (LBP) is a purely distributed algorithm, but it gives inaccurate
variance estimates in general and often diverges or has slow convergence. Previ-
ously, the hybrid feedback message passing (FMP) algorithm was developed to
enhance the convergence and accuracy, where a special protocol is used among the
nodes in a pseudo-FVS (an FVS, or feedback vertex set, is a set of nodes whose
removal breaks all cycles) while standard LBP is run on the subgraph excluding
the pseudo-FVS. In this thesis, we develop recursive FMP, a purely distributed
extension of FMP where all nodes use the same integrated message-passing pro-
tocol. In addition, we introduce the subgraph perturbation sampling algorithm,
which makes use of any pre-existing tractable inference algorithm for a subgraph
by perturbing this algorithm so as to yield asymptotically exact samples for the
intended distribution. We study the stationary version where a single fixed sub-
graph is used in all iterations, as well as the non-stationary version where tractable
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subgraphs are adaptively selected.
The second problem is to perform model learning, i.e. to recover the underlying

structure and model parameters from observations when the model is unknown.
Families of graphical models that have both large modeling capacity and efficient
inference algorithms are extremely useful. With the development of new inference
algorithms for many new applications, it is important to study the families of
models that are most suitable for these inference algorithms while having strong
expressive power in the new applications. In particular, we study the family of
GGMs with small FVSs and propose structure learning algorithms for two cases:
1) All nodes are observed, which is useful in modeling social or flight networks
where the FVS nodes often correspond to a small number of high-degree nodes, or
hubs, while the rest of the networks is modeled by a tree. 2) The FVS nodes are
latent variables, where structure learning is equivalent to decomposing an inverse
covariance matrix (exactly or approximately) into the sum of a tree-structured
matrix and a low-rank matrix. We perform experiments using synthetic data as
well as real data of flight delays to demonstrate the modeling capacity with FVSs
of various sizes.

Thesis Supervisor: Alan S. Willsky
Title: Edwin Sibley Webster Professor of Electrical Engineering and Computer
Science
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Chapter 1

Introduction

In undirected graphical models or Markov random fields (MRFs), each node represents
a random variable while the set of edges specifies the conditional independencies of the
underlying distribution. When the random variables are jointly Gaussian, the models
are called Gaussian graphical models (GGMs) or Gauss Markov random fields (GM-
RFs). GGMs, such as linear state space models, Bayesian linear regression models,
and thin-membrane/thin-plate models, have been widely used in communication, image
processing, medical diagnostics, oceanography, and gene regulatory networks [1, 2, 3, 4].

There are two fundamental problems in the study of GGMs. The first problem is
to perform inference or sampling when the graph structure and model parameters are
given. Inference refers to computing the marginal distributions or the most likely state,
while sampling refers to drawing samples from the underlying probabilistic distribution.
In some contexts, sampling is considered as a type of inference as the generated samples
are often used to approximately compute some inference results when direct inference
is prohibitively costly. In the era of big data, a central challenge in many applications
of machine learning is how to efficiently process the gigantic amount of data available
and make near real-time estimation and prediction. In the modern computational in-
frastructure (such as cloud computing), distributed and parallel algorithms are of great
importance, and they significantly outperform many traditional algorithms developed
for the traditional single-machine framework. The second problem is to perform model
learning, i.e., to recover the underlying structure and model parameters from observa-
tions when the model is unknown. Families of graphical models that have both large
modeling capacity and efficient inference algorithms are extremely useful. With the
development of new inference algorithms for many new applications, it is important to
study the family of models that are most suitable for these inference algorithms while
having strong expressive power in the new applications.

17



18 CHAPTER 1. INTRODUCTION

In this thesis, we propose (1) the recursive feedback message passing algorithm,
which is a purely distributed message-passing algorithm for inference; (2) a sampling
framework based on perturbing models on subgraphs; and (3) learning algorithms for
several different cases in learning the family of models with small feedback vertex sets.
We motivate our algorithms and provide a brief literature review in Sections 1.1–1.3.
Next, in Section 1.4, we outline the thesis organization and give a overview of the
contributions.

� 1.1 Recursive Feedback Message Passing for Distributed Inference

For GGMs of moderate size, exact inference can be solved by algorithms such as direct
matrix inversion, Cholesky factorization, and nested dissection, but these algorithms
cannot be used for large-scale problems due to the computational complexity [4, 5].

For tree-structured graphs, a message-passing algorithm called belief propagation
(BP) can give exact results in linear time. When there are cycles in the graphs, loopy
belief propagation (LBP) is often used, where the message-update protocol is the same
as BP. LBP is distributed in nature: messages from all nodes may be updated in par-
allel using only local information. However, LBP is not guaranteed to converge or give
accurate results [6, 7, 8, 9]. Some extensions to LBP include generalized belief propaga-
tion [10], tree-reweighted message passing [11], double-loop belief propagation [12], and
relaxed Gaussian belief propagation [13]. LBP in the context of quadratic minimization
has also been studied in [14, 15]. For inference in Gaussian graphical models with cycles,
LBP performs well for some graphs, but often diverges or has slow convergence. When
LBP does converge, the variance estimates are incorrect in general.

In [16] the authors have proposed the feedback message passing (FMP) algorithm.
FMP uses a different protocol among a special set of vertices called a feedback vertex set
or FVS, a set of nodes whose removal breaks all cycles in the graph. When the size of
the FVS is large, a pseudo-FVS is used instead of an FVS. By performing two rounds
of standard LBP among the non-feedback nodes and solving a small inference problem
among the feedback nodes, FMP improves the convergence and accuracy significantly
compared with running LBP on the entire graph. In addition, choosing the size of the
pseudo-FVS enables us to make the trade-off between efficiency and accuracy explicit.
FMP is partially distributed, but the algorithm in [16] still requires centralized commu-
nication among the feedback nodes. One can ask some natural questions: Is it possible
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to select the feedback nodes in a purely distributed manner? Can we further eliminate
the centralized computations among the feedback nodes in FMP without losing the
improvements on convergence and accuracy?

In Chapter 3, we propose recursive FMP, a recursive and purely distributed exten-
sion of FMP where all nodes use the same message-passing protocol. In recursive FMP,
an inference problem on the entire graph is recursively reduced to smaller subgraphs
until inference can be solved efficiently by an exact or approximate message-passing
algorithm. A purely distributed algorithm is of great importance because in many sce-
narios, such as wireless sensor networks, it is easy to implement the same protocol on
all nodes while centralized computations are often expensive or impractical. In this re-
cursive approach, there is only one active feedback node at a time, and thus centralized
communication among feedback nodes in FMP is reduced to message forwarding from
the single feedback node. While under certain conditions, essentially those that are
identical to those required for the original FMP algorithm, our recursive algorithm pro-
duces the same results but in a distributed manner. However, our distributed algorithm
is far more flexible, as the feedback nodes used by different parts of a very large graph
may be different, allowing each node in the graph to adapt and respond to those nodes
of most importance locally.

� 1.2 Sampling Gaussian Graphical Models Using Subgraph Perturbations

As a fundamental problem by itself, sampling also has the relative advantage of allowing
estimation of arbitrary statistics from the random field, rather than only the mean and
variance. Moreover, sampling is useful for statistical models in which a GGM is one
of several interacting components. In such a setting, a sampler for the GGM is an
essential piece of any Markov chain Monte-Carlo (MCMC) framework for the entire
system. Efficient sampling algorithms have been used to solve inference problems [17],
to estimate model parameters [18], and used for model determination [19].

Very efficient algorithms for both inference and sampling exist for GGMs in which the
underlying graph is a tree (i.e., it has no cycles). Such models include hierarchical hid-
den Markov models [20], linear state space models [21], and multi-scale auto-regressive
models [22]. For these models exact inference can be computed in linear time using BP
[23] (which generalizes the Kalman filter and the Rauch-Tung-Striebel smoother [21]),
and exact samples can be generated using the forward sampling method [23]. However,
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the modeling capacity of trees is limited. Graphs with cycles can more accurately model
real-world phenomena, but exact sampling is often prohibitively costly for large-scale
models with cycles.

MCMC samplers for general probabilistic models have been widely studied and can
generally be applied directly to GGMs. The most straightforward is the Gibbs sampler,
wherein a new sample for each variable is generated by conditioning on the most recent
sample of its neighbors [24]. However, the Gibbs sampler can have extremely slow
convergence even for trees, making it impractical in large networks. For this reason,
many techniques, such as reordering [25], blocking [26, 27], or collapsing [28], have been
proposed to improve Gibbs sampling. In particular, the authors of [29] have proposed a
blocked Gibbs sampler where each block includes a set of nodes whose induced subgraph
does not have cycles; in [17] a Metropolis-Hastings sampler is studied, where a set of
“control variables” are adaptively selected.

There are also sampling algorithms for GGMs that make explicit use of the joint
Gaussianity. Since inference in a GGM is equivalent to solving a linear system, sampling
algorithms are often closely related to direct or iterative linear solvers. One approach
is using the Cholesky decomposition to generate exact samples. If a sparse Cholesky
decomposition is provided directly from the problem formulation, then generating sam-
ples using that decomposition is the preferred approach. Similarly, in [30] the problem
formulation leads directly to a decomposition into sparse “filters”, which are then used,
together with random perturbations to solve linear equations that produce samples.
Once again, for problems falling into this class, using this method is unquestionably
preferred. However, for other Gaussian models for which such sparse decompositions
are not directly available, other approaches need to be considered. In particular, the
computation of the Cholesky decomposition has cubic complexity and a quadratic num-
ber of fills in general, even for sparse matrices as arise in graphical models [31]. While
this complexity is acceptable for models of moderate size, it can be prohibitively costly
for large models, e.g., those involving millions or even billions of variables.

In Chapter 4, we propose a general framework to convert iterative linear solvers
based on graphical splittings to MCMC samplers by adding a random perturbation at
each iteration. In particular, our algorithm can be thought of as a stochastic version of
graph-based solvers and, in fact, is motivated by the use of embedded trees in [32, 33]
for the computation of the mean of a GGM. That approach corresponds to decomposing
the underlying graph of the model into a tractable graph, i.e., one for which sampling
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is easy (e.g., a tree), and a “cut” matrix capturing the edges removed to form the
tractable subgraph. The subgraphs used can have any structure for which efficient
inference algorithms exist: for example, tree-structured graphs, graphs with low tree-
width, or graphs having a small FVS [16]. Much more importantly, in order to obtain a
valid sampling algorithm, we must exercise some care, not needed or considered for the
linear solvers in [32, 33], in constructing the graphical models corresponding to both the
tractable subgraph and to the set of variables involved in the cut edges.

We give general conditions under which graph-based iterative linear solvers can be
converted into samplers and we relate these conditions to the so-called P-regularity con-
dition [34]. We then provide a simple construction that produces a splitting satisfying
those conditions. Once we have such a decomposition our algorithm proceeds at each
iteration by generating a sample from the model on the subgraph and then randomly
perturbing it based on the model corresponding to the cut edges. That perturbation
obviously must admit tractable sampling itself and also must be shaped so that the re-
sulting samples of the overall model are asymptotically exact. Our construction ensures
both of these. As was demonstrated in [32, 33], using non-stationary splittings, i.e.,
different graphical decompositions in successive iterations, can lead to substantial gains
in convergence speed. We extend our subgraph perturbation algorithm from stationary
graphical splittings to non-stationary graphical splittings and give theoretical results
for convergence guarantees. We propose an algorithm to select tractable subgraphs for
stationary splittings and an adaptive method for selecting non-stationary splittings.

� 1.3 Learning Gaussian Graphical Models with Small Feedback Vertex Sets

The trade-off between the modeling capacity and the efficiency of learning and infer-
ence has been an important research problem in the study of GGMs. In general, a
larger family of graphs represents a larger collection of distributions and thus can better
approximate arbitrary empirical distributions. However, many graphs lead to compu-
tationally expensive inference and learning algorithms. Hence, it is important to study
the trade-off between modeling capacity and efficiency.

Both inference and learning are efficient for tree-structured graphs (graphs without
cycles): inference can be computed exactly in linear time (with respect to the size of the
graph) using BP [35] while the learning problem can be solved exactly in quadratic time
using the Chow-Liu algorithm [36]. Since trees have limited modeling capacity, many
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families of models beyond trees have been proposed [37, 38, 39, 40]. Thin junction
trees (graphs with low tree-width) are extensions of trees, where inference can be solved
efficiently using the junction algorithm [23]. However, learning junction trees with tree-
width greater than one is NP-complete [40] and tractable learning algorithms (e.g., [41])
often have constraints on both the tree-width and the maximum degree. Since graphs
with large-degree nodes are important in modeling applications such as social networks,
flight networks, and robotic localization, we are interested in finding a family of models
that allow arbitrarily large degrees while being tractable for learning.

Beyond thin-junction trees, the family of sparse GGMs is also widely studied [42,
43]. These models are often estimated using methods such as graphical lasso (or l-1
regularization) [44, 45]. However, a sparse GGM (e.g., a grid) does not automatically
lead to efficient algorithms for exact inference. Hence, we are interested in finding a
family of models that are not only sparse but also have guaranteed efficient inference
algorithms.

In the context of classification, the authors of [46] have proposed the tree augmented
naive Bayesian model, where the class label variable itself can be viewed as a size-one
observed FVS; however, this model does not naturally extend to include a larger FVS. In
[47], a convex optimization framework is proposed to learn GGMs with latent variables,
where conditioned on a small number of latent variables, the remaining nodes induce a
sparse graph. In our setting with latent FVSs, we further require the sparse subgraph
to have tree structure.

In Chapter 5, we study the family of GGMs with small FVSs. In [16] the authors
have presented results showing that for models with larger FVSs, approximate inference
(obtained by replacing a full FVS by a pseudo-FVS) can work very well, with empirical
evidence indicating that a pseudo-FVS of size O(log n) gives excellent results. We will
provide some additional analysis of inference for such models (including the computation
of the partition function), but the main focus is maximum likelihood (ML) learning of
models with FVSs of modest size, including identifying the nodes to include in the
FVS. In particular, we present several learning algorithms for different cases. For the
case where all of the variables are observed, we provide an efficient algorithm for exact
ML estimation, as well as an approximate and much faster greedy algorithm for this
case when the FVS is unknown and large. For a second case where the FVS nodes are
taken to be latent variables, we propose an alternating low-rank projection algorithm
for model learning and show the equivalence between the structure learning problem
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and the decomposition of an inverse covariance matrix into the sum of a tree-structured
matrix and a low-rank matrix.

� 1.4 Thesis Organization and Overview of Contributions

� 1.4.1 Chapter 2: Background

In this background chapter, we provide necessary background for the subsequent chap-
ters including the definitions, existing inference algorithms, common sampling algo-
rithms, as well as some learning algorithms. In Section 2.1, we start with preliminaries
on graphical models including basic graph theory, general graphical models, and specif-
ically Gaussian graphical models. Next in Section 2.2, we describe inference algorithms
for graphical models, including loopy belief propagation and the feedback message pass-
ing algorithm. We then summarize some common sampling algorithms such as using
the Cholesky decomposition, forward sampling, basic Gibbs sampling, and variants of
Gibbs sampling in Section 2.3. Finally in Section 2.4, we introduce preliminaries of the
learning problem, including information quantities, the maximum likelihood criterion
and the Chow-Liu algorithm.

� 1.4.2 Chapter 3: Recursive Feedback Message Passing for Distributed

Inference

The primary contributions of this chapter include: (1) We propose recursive FMP, a
purely distributed extension of FMP, where all nodes use the same message-passing
protocol. An inference problem on the entire graph is recursively reduced to those
on smaller subgraphs in a distributed manner. (2) We show that one advantage of
this recursive approach compared with FMP is that centralized communication among
feedback nodes can be turned into distributed message forwarding. (3) We characterize
this algorithm using walk-sum analysis and provide theoretical results for convergence
and accuracy. (4) We also demonstrate the performance using both simulated models
on grids and large-scale sea surface height anomaly data.

This chapter is organized as follows. After motivating the problem in Section 3.1, we
describe the recursive FMP algorithm in three separate stages in Section 3.2. Then in
Section 3.3, we summarize the recursive FMP algorithm as a single integrated protocol
without the separation of stages. Next we present and prove our theoretical results
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using walk-sum analysis in Section 3.4. Finally in Section 3.5, we demonstrate the
performance of the algorithm using simulated models on grids as well as real data for
estimating sea surface height anomaly.

� 1.4.3 Chapter 4: Sampling Gaussian Graphical Models Using Subgraph

Perturbations

The primary contributions of this chapter include: (1) We provide a general framework
for converting subgraph-based iterative solvers to samplers with convergence guarantees.
In addition, we provide a construction where the injected noise at each iteration can
be generated simply using a set of i.i.d. scalar Gaussian random variables. (2) We
extend our perturbation sampling algorithm from stationary graphical splittings to non-
stationary graphical splittings. In the previous studies on linear solvers, it has been
observed that using multiple subgraphs may give much better convergence than using
any of the individual subgraphs. We prove that if we choose from a finite collection of
P-regular graphical splittings, then the convergence is always guaranteed. (3) We study
the use of different kinds of tractable subgraphs and we also propose an algorithm to
adaptively select the subgraphs based on an auxiliary inference problem.

This chapter is organized as follows. In Section 4.2, we propose the subgraph pertur-
bation algorithm with stationary splittings, providing efficient implementation as well
as theoretical results on the convergence rate. Next in Section 4.3, we present the use of
non-stationary splittings and theoretical results on convergence. We then discuss how
to select tractable subgraphs for both the stationary and the non-stationary settings in
Section 4.4. Finally in Section 4.5, we present experimental results using simulated data
on various graph structures as well as using large-scale real data.

� 1.4.4 Chapter 5: Learning Gaussian Graphical Models with Small Feed-

back Vertex Sets

The primary contributions of this chapter include: (1) We investigate the case where
all of the variables, including any to be included in the FVS are observed. We provide
an algorithm for exact ML estimation that, regardless of the maximum degree, has
complexity O(kn2 +n2 log n) if the FVS nodes are identified in advance and polynomial
complexity if the FVS is to be learned and of bounded size. Moreover, we provide an
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approximate and much faster greedy algorithm when the FVS is unknown and large.
(2) We study a second case where the FVS nodes are taken to be latent variables. In
this case, the structure learning problem corresponds to the (exact or approximate)
decomposition of an inverse covariance matrix into the sum of a tree-structured matrix
and a low-rank matrix. We propose an algorithm that iterates between two projections,
which can also be interpreted as alternating low-rank corrections. We prove that even
though the second projection is onto a highly non-convex set, it is carried out exactly,
thanks to the properties of GGMs of this family. By carefully incorporating efficient
inference into the learning steps, we can further reduce the complexity to O(kn2 +

n2 log n) per iteration. (3) We also perform experiments using both synthetic data and
real data of flight delays to demonstrate the modeling capacity with FVSs of various
sizes. We show that empirically the family of GGMs with FVSs of size O(log n) strikes
a good balance between the modeling capacity and efficiency.

This chapter is organized as follows. In Section 5.3, we study the case where nodes
in the FVS are observed. We propose the conditioned Chow-Liu algorithm for structure
learning and prove its correctness and complexity. Next, we study the case where the
FVS nodes are latent variables and propose an alternating low-rank correction algorithm
for structure learning in Section 5.4. We then present experimental results for learning
GGMs with small FVSs, observed or latent, using both synthetic data and real data of
flight delays in Section 5.5.

� 1.4.5 Chapter 6: Conclusion

In this chapter, we highlight the important contributions of this thesis and discuss future
research directions.
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Chapter 2

Background

In this chapter, we give a brief introduction to graphical models including the defini-
tions, existing inference algorithms, common sampling algorithms, as well as well as
some learning algorithms. We outline this chapter as follows. In Section 2.1 we start
with preliminaries on graphical models including basic graph theory, general graphical
models, and specifically Gaussian graphical models. Next in Section 2.2, we describe
inference algorithms for graphical models, including loopy belief propagation and the
feedback message passing algorithm. We then summarize some common sampling al-
gorithms such as using the Cholesky decomposition, forward sampling, basic Gibbs
sampling, and variants of Gibbs sampling in Section 2.3. Finally in Section 2.4, we
introduce preliminaries of the learning problem, including information quantities, the
maximum likelihood criterion and the Chow-Liu algorithm.

� 2.1 Graphical Models

Graphical models are widely used to represent the structures of multivariate distribu-
tions using graphs [23]. The graphs used can be undirected graphs, directed graphs,
or factor graphs resulting in undirected graphical models (or Markov random fields), di-
rected graphical models (or Bayesian networks) and factor graph models. In this thesis,
we focus on undirected graphical models where the underlying undirected graphs are
used to model the conditional independencies in the distributions. In the following, we
first briefly review basic notions from graph theory; next we introduce graphical models
in a general setting; and then we describe Gaussian graphical models, the main models
used in our subsequent chapters.

27
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� 2.1.1 Notions in Graph Theory

A graph G = (V, E) consists of a set of nodes or vertices V and a set of edges E . An
edge (i, j) is a pair of distinct nodes (i, j) with i, j ∈ V. In undirected graphs, the edges
are unordered pairs, i.e., (i, j) and (j, i) denote the same edge. The neighborhood (also
called the set of neighbors) of a node i is the set N (i) = {j|(i, j) ∈ E}. Two nodes are
connected if they are neighbors. The degree of node i, denoted as deg(i), is the number
of its neighbors, which equals |N (i)|.1 In this thesis, we also refer to the size of V, or
|V|, as the size of the graph.

A graph is called a complete or fully connected graph if any two nodes are connected.
A walk w = (w0, w1, . . . , wn) or w = (w0, w1, w2, . . .) on a graph is a finite or infinite
sequence of nodes where the consecutive nodes are neighbors. The length of a walk is
the number of nodes in its sequence minus one, i.e, the length of w = (w0, w1, . . . , wn)

is n.2 A path is a walk where all nodes in the sequence are distinct. A graph is called
a connected graph if there exists a path between any pair of nodes. A cycle or loop is
a walk that starts and ends at the same node but all other nodes are distinct. The set
of The distance between two nodes (i, j) in a graph, denoted as d(i, j), is the minimum
length of all paths between i and j. The diameter of a graph is the maximum distance
between any pair of nodes in the graph.

A chain is a connected graph where two nodes have degree one and all other nodes
have degree two. A forest is a graph without cycles. If a forest is a connected graph,
it is also called a tree. In this thesis, we use the term tree-structured graphs to refer to
forests in general.

A graph G′ = (V ′ , E ′) is a subgraph of G = (V, E) if V ′ ⊂ V and E ′ ⊂ E . G′ is a
spanning subgraph of G if V ′ = V and E ′ ⊂ E . The graph G′ = (V ′ , E ′) is a subgraph
of G = (V, E) induced by V ′ if V ′ ⊂ V and that (i, j) ∈ E ′ if and only if i, j ∈ V ′and
(i, j) ∈ E . A subgraph is called a clique if it is a fully connected. A maximal clique is
a clique that is not a proper subgraph of any larger clique. A graph is called chordal
if every cycle of length at least four contains two nodes that are not adjacent in the
cycle but are connected in the graph. The treewidth of a chordal graph is the size of its
largest clique minus one. The treewidth of a non-chordal graph is minimum tree-width
of all chordal graphs of which the non-chordal graph is a subgraph. We say that set S
separates set A and set B if any path between a node in A and a node in B contains at

1We use |A| to denote the cardinality of a set A.
2In the special case of a walk with a single node, the length is zero.
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least one node in S.

� 2.1.2 Graphical Models and Exponential Families

Markov random fields (MRFs) are graphical models in which the conditional indepen-
dence structure of a set of random variables is represented by an undirected graph
[48, 23]. Each node s ∈ V corresponds to a random variable xs. For any subset A ⊂ V,
the random vector xA corresponds to the set of random variables {xs|s ∈ A} and we
will also simply write x for xV . A random vector has the Markov property with respect
to the graph if for any subsets A, B, S ⊂ V where S separates A and B in the graph,
xA and xB are independent conditioned on xS , i.e., xA ⊥ xB|xS . Figure 2.1 provides
an illustrating example of this Markov property.

S

Figure 2.1: Markov property of a graphical model: xA ⊥ xB||xS since S separates
A and B.

By the Hammersley-Clifford theorem, if the probabilistic distribution function (p.d.f.)
p(x) of a distribution is Markov with respect to graph G = (V, E) and is positive every-
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where, then p(x) can be factored according to

p(x) =
1

Z

∏
C∈C

φC(xC), (2.1)

where C is the collection of cliques and Z is the normalization factor or partition func-
tion. Each factor φC is often represented by φC(xC) = exp{ψC(xC)} and thus the
factorization of p(x) can be written as

p(x) =
1

Z
exp{

∑
C∈C

ψC(xC)}. (2.2)

A graphical model is a pairwise model if the only nonzero ψC are for cliques of size
one or two. In particular, if the underlying model is tree-structured, the p.d.f. of the
distribution can be factored according to Proposition 2.1.1.

Proposition 2.1.1 : The p.d.f. of a tree-structured model T = (V, E) can be factorized
according to either of the following two equations:

1.
p(x) = p(xr)

∏
i∈V\{r}

p(xi|xπ(i)), (2.3)

where r is an arbitrary node selected as the root and π(i) is the unique parent of
node i in the tree rooted at r.

2.
p(x) =

∏
i∈V

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
. (2.4)

� 2.1.3 Gaussian Graphical Models

An important sub-class of MRFs are Gaussian Markov random fields (GMRFs) or Gaus-
sian graphical models (GGMs), where the joint distribution is Gaussian. GGMs have
been widely used in computer vision [2], computational biology [49], medical diagnostics
[50], and communication systems [51]. GGMs are particularly important in very large
probabilistic networks involving millions of variables [4, 5].
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Using the representation of (2.2), the p.d.f. of a GGM can be written as

p(x) ∝ exp{
∑
i∈V

ψi(xi) +
∑

(i,j)∈E

ψij(xij)}, (2.5)

where

ψi(xi) = −1

2
Jiix

2
i + hixi (2.6)

ψij(xij) = −Jijxixj . (2.7)

Hence, the p.d.f. of the distribution can be parametrized by

p(x) ∝ exp{−1

2
xTJx + hTx}, (2.8)

where J is the information matrix or precision matrix and h is the potential vector.
For a valid Gaussian graphical model,the information matrix J is positive definite. The
parameters J and h are related to the mean µ and covariance matrix Σ by µ = J−1h

and Σ = J−1. We denote this distribution by either N (µ,Σ) or N−1(h, J).
The structure of the underlying graph can be constructed using the sparsity pattern

of J , i.e., there is an edge between i and j if and only if Jij 6= 0. Hence, the conditional
independence structure can be read immediately from the sparsity pattern of the infor-
mation matrix as well as that of the underlying graph (See Figure 2.2). Our starting
point will simply be the specification of h and J (and with it the graphical structure).
One setting in which such a specification arises (and which we will illustrate with our
large-scale example) is in estimation problems, that in which x represents a large ran-
dom field, which has prior distribution N−1(0, J0) according to a specified graph3 (e.g.,
the thin-membrane or the thin-plate model [1]) and where we have potentially sparse
and noisy measurements of components of x given by y = Cx + v, v ∼ N (0, R), where
C is a selection matrix (a single 1 in each row, all other row elements being 0) and R is a
(blocked) diagonal matrix. In this case, the posterior distribution p(x|y) is N−1(h, J),
where h = CTR−1y and J = J0 + CTR−1C.

In the following chapters of this thesis, we focus on GGMs to demonstrate our
inference and learning algorithms while some of the ideas can be extended to other

3Without loss of generality we can assume that the prior mean of x is 0 simply by subtracting
it from the random field and from the measurements.
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(a) (b)

Figure 2.2: Sparsity relationship between the underlying undirected graph and
the information matrix: (a) The sparsity pattern of the undirected graph; (b)
The sparsity pattern of the information matrix.

pairwise models such as the Ising models [23].

� 2.2 Inference Algorithms

The inference problems in graphical models refer to computing the marginal distribu-
tions of individual variables or the maximum likelihood state (i.e., the variable con-
figuration with the highest probability density) given model parameters. In Gaussian
graphical models, inference refers to computing (exactly or approximately) the means
µi and variances Σii for all i ∈ V given J and h. In this section, we review the message-
passing algorithm belief propagation (BP), the walk-sum analysis framework, as well as
the feedback message passing (FMP) algorithm.

� 2.2.1 Belief Propagation

BP is an efficient message-passing algorithm that gives exact inference results in linear
time for tree-structured graphs [23]. The Kalman filter for linear Gaussian estimation
and the forward-backward algorithm for hidden Markov models can be viewed as special
instances of BP. Though widely used, tree-structured models (also known as cycle-free
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graphical models) possess limited modeling capabilities, and many stochastic processes
and random fields arose in real-world applications cannot be well-modeled using cycle-
free graphs. Loopy belief propagation (LBP) is an application of the message-passing
protocol of BP on loopy graphs using the same local message update rules. Without
loss of generality, we use BP and LBP interchangeably throughout this thesis, as the
protocols are the same. Empirically, it has been observed that LBP performs reasonably
well for certain graphs with cycles [7, 52]. Indeed, the decoding method employed for
turbo codes has also been shown to be a successful instance of LBP [53]. A desirable
property of LBP is its distributed nature—as in BP, message updates in LBP only
involve local model parameters and local incoming messages, so all nodes can update
their messages in parallel.

In Gaussian graphical models, the set of messages can be represented by {∆Ji→j ∪
∆hi→j}(i,j)∈E , where ∆Ji→j and ∆hi→j are scalar values. Consider a Gaussian graphical
model: p(x) ∝ exp{−1

2x
TJx + hTx}. BP (or LBP) proceeds as follows [54]:

1. Message Passing

The messages are initialized as ∆J
(0)
i→j and ∆h

(0)
i→j , for all (i, j) ∈ E . These initial-

izations may be chosen in different ways. In this thesis we initialize all messages
with the value 0.

At each iteration t, the messages are updated based on previous messages as

∆J
(t)
i→j = −Jji(Ĵ (t−1)

i\j )−1Jij , (2.9)

∆h
(t)
i→j = −Jji(Ĵ (t−1)

i\j )−1ĥ
(t−1)
i\j , (2.10)

where

Ĵ
(t−1)
i\j = Jii +

∑
k∈N (i)\j

∆J
(t−1)
k→i , (2.11)

ĥ
(t−1)
i\j = hi +

∑
k∈N (i)\j

∆h
(t−1)
k→i . (2.12)

The fixed-point messages are denoted as ∆J∗i→j and ∆h∗i→j if the messages con-
verge.

2. Computation of Means and Variances:
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The variances and means are computed based on the fixed-point messages as

Ĵi = Jii +
∑

k∈N (i)

∆J∗k→i (2.13)

ĥi = hi +
∑

k∈N (i)

∆h∗k→i. (2.14)

The variances and means can then be obtained by Σii = Ĵ−1
i and µi = Ĵ−1

i ĥi.

� 2.2.2 Walk-sum Analysis

Computing the means and variances of a Gaussian graphical model corresponds to
solving a set of linear equations and obtaining the diagonal elements of the inverse of J
respectively. There are many ways in which to do this – e.g., by direct solution, or using
various iterative methods. As we outline in this section, one way to interpret the exact
or approximate solution of this problem is through walk-sum analysis, which is based on
a simple power series expansion of J−1. In [54, 33] walk-sum analysis is used to interpret
the computations of means and variances formally as collecting all required “walks” in
a graph. In particular, the analysis in [54] identifies that when the required walks can
be summed in arbitrary orders, i.e., when the model is walk-summable, LBP converges
and gives the correct mean.4 One of the important benefits of walk-sum analysis is
that it allows us to understand what various algorithms compute and relate them to
the required exact computations. For example, as shown in [54], LBP collects all of the
required walks for the computation of the means (and, hence, always yields the correct
means if it converges) but only some of the walks required for variance computations
for loopy graphs (so, if it converges, its variance calculations are not correct).

Frequently it will be convenient to assume without loss of generality that the infor-
mation matrix J has been normalized such that all its diagonal elements are equal to
unity. Let R = I − J , and note that R has zero diagonal. The matrix R is called the
edge-weight matrix.5

4As will be formally defined later, walk-summability corresponds to the absolute convergence
of the series corresponding to the walk-sums needed for variance computation in a graphical
model [54].

5The matrix R, which has the same off-diagonal sparsity pattern as J , is a matrix of par-
tial correlation coefficients: Rij is the conditional correlation coefficient between xi and xj
conditioned on all of the other variables in the graph.
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In GGMs, the weight of a walk is defined as the product of the edge weights,

φ(w) =

l(w)∏
l=1

Rwl−1,wl
, (2.15)

where l(w) is the length of walk w. Also, we define the weight of a zero-length walk, i.e.,
a single node, as one. By the Neumann power series for matrix inversion, the covariance
matrix can be expressed as

Σ = J−1 = (I −R)−1 =
∞∑
l=0

Rl. (2.16)

This formal series converges (although not necessarily absolutely) if the spectral radius,
ρ(R), i.e., the magnitude of the largest eigenvalue of R, is less than 1.
Let W be a set of walks. We define the walk-sum of W as

φ(W)
∆
=
∑
w∈W

φ(w). (2.17)

We use φ(i→ j) to denote the sum of all walks from node i to node j. In particular, we
call φ(i→ i) the self-return walk-sum of node i. It is easily checked that the (i, j) entry
of Rl equals φl(i→ j), the sum of all walks of length l from node i to node j. Hence

Σij = φ(i→ j) =
∞∑
l=0

φl(i→ j). (2.18)

A Gaussian graphical model is walk-summable (WS) if for all i, j ∈ V, the walk-sum
φ(i→ j) converges for any order of the summands in (2.18) (note that the summation
in (2.18) is ordered by walk-length). In walk-summable models, φ(i→ j) is well-defined
for all i, j ∈ V. The covariances and the means can be expressed as

Σij = φ(i→ j), (2.19)

µi =
∑
j∈V

hjPij =
∑
j∈V

hjφ(i→ j). (2.20)

As shown in [54] for non-WS models, LBP may not converge and can, in fact, yield
oscillatory variance estimates that take on negative values. Here we list some useful
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results from [54] that will be used in this thesis.

Proposition 2.2.1 : The following conditions are equivalent to walk-summability:
(i)
∑

w∈Wi→j
|φ(w)| converges for all i, j ∈ V, where Wi→j is the set of walks from

i to j.
(ii) ρ(R̄) < 1, where R̄ is the matrix whose elements are the absolute values of the

corresponding elements in R.

Proposition 2.2.2 : A Gaussian graphical model is walk-summable if it is attractive, i.e.,
every edge weight Rij is nonnegative; a valid Gaussian graphical model is walk-summable
if the underlying graph is cycle-free.

Proposition 2.2.3 : For a walk-summable Gaussian graphical model, LBP converges and
gives the correct means.

Proposition 2.2.4 : In walk-summable models, the estimated variance from LBP for a
node is the sum over all backtracking walks6, which is a subset of all self-return walks
needed for computing the correct variance.

� 2.2.3 Feedback Message Passing

A feedback vertex set (FVS) is defined as a set of vertices whose removal (with the
removal of the incident edges) results in an cycle-free graph [55]. An example of a graph
and its FVS is given in Figure 2.3, where the full graph (Figure 2.3a) becomes a cycle-
free graph (Figure 2.3b) if nodes 1 and 2 are removed, and thus the set {1, 2} is an
FVS. A pseudo-FVS is a subset of an FVS that breaks not all but most crucial cycles.
Frequently we refer to an FVS as a full FVS to emphasize the distinction.

The FMP algorithm is a message-passing algorithm that can compute the means
and variances of all nodes exactly with a computational complexity of O(k2n), where k
is the size of the FVS used in the algorithm, and n is the total number of nodes. When
the size of the full FVS is too large, approximate FMP can be used, where a pseudo-FVS

6A backtracking walk of a node is a self-return walk that can be reduced consecutively to a
single node. Each reduction is to replace a subwalk of the form {i, j, i} by the single node {i}.
For example, a self-return walk of the form 12321 is backtracking, but a walk of the form 1231
is not.
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is selected instead of an FVS, and where inference in the non-cycle-free graph obtained
by removing the pseudo-FVS is carried out approximately using LBP. With a slight
abuse of terminology, in this thesis, we use FMP to refer to both FMP and approximate
FMP in [56] because the procedures are similar except for whether the feedback nodes
constitute a full FVS. In the following, we use F to denote the set of feedback nodes
and T to denote the set of non-feedback nodes. We also use T in the calligraphic font
to denote the subgraph induced by the set T , where the subgraph is cycle-free when
F is an FVS and has cycles when F is a pseudo-FVS. We also use the calligraphic T
instead of T in the superscripts to avoid confusion with matrix transposition. The FMP
algorithm works as follows.

.
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Figure 2.3: A graph with an FVS of size 2. (a) Full graph; (b) Tree-structured subgraph
after removing nodes 1 and 2

Step 1: Before running FMP, an FVS or a pseudo-FVS is selected by a greedy algorithm
to break the most crucial cycles. The selected nodes are called feedback nodes. After
graph cleaning (i.e., the process of eliminating the tree branches7), the greedy algorithm
computes the “priority score”

pi =
∑

j∈N (i)

|Jij | (2.21)

7This procedure of eliminating “tree branches” simply removes nodes and edges corresponding
to loop-free components of the current graph. One looks for nodes with only one neighbor,
eliminating it and the edge associated with it and continues removing nodes and associated
solitary edges until there are no more.
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for each node i, where the definition of the scores are motivated by the theoretical
results on the convergence and accuracy of FMP (c.f. [56]). Next the node with the
highest score is selected as a feedback node. These steps (including graph cleaning and
recomputing the priority scores) are then repeated until k feedback nodes are selected.8

We summarize the greedy selection procedure in Algorithm 2.2.1. Note that Algorithm
2.2.1 is a centralized algorithm and the information about the selected feedback nodes is
shared everywhere. After the selection, all of the priority scores are dropped and are not
used again in the subsequent steps. Without loss of generality, we re-order the nodes
so that the first k nodes are the selected feedback nodes and the remaining n− k nodes
are the non-feedback nodes. According to this ordering, the information matrix J and
the potential vector h can be partitioned as

J =

[
JF J

′
M

JM JT

]
(2.22)

h =

[
hF

hT

]
. (2.23)

Step 2: In this step, LBP is employed in the subgraph excluding the feedback nodes
to compute the partial inference results with the model parameters on the subgraph as
well as to compute the “feedback gains” using a set of auxiliary “mean” computations,
each corresponding to a feedback node. Specifically, we construct a set of additional
potential vectors {h1,h2, . . . ,hk} with

hp = JT,p, p = 1, 2, . . . , k, (2.24)

i.e., hp is the submatrix (column vector) of J with column index p and row indices
corresponding to T . Note that

hpi = Jpi for all i ∈ N (p) (2.25)

hpi = 0 for all i /∈ N (p), (2.26)

8Note that the scores in (2.21) are adjusted at each iteration to reflect that nodes already
in the FVS are removed from the graph (together with edges associated with them, as well as
nodes and edges removed in the tree-cleanup phase) are removed from the graph used in the
next stage of the selection process.
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and thus hp can be constructed locally with default value zero. In this step, the messages
from node i to its neighbor j include k + 2 values: ∆Ji→j , ∆hi→j for standard LBP
and {∆hpi→j}p=1,2,...,k for computing the feedback gains. The standard LBP messages
yield for each node i in T its “partial variance” ΣTii (if the feedback nodes form a full
FVS, then ΣTii = (J−1

T )ii) and its “partial mean” µTi (as long as the messages converge,
we have µTi = (J−1

T hT )i). Note that these results are not the true variances and means
since this step does not involve the contributions of the feedback nodes. At the same
time, LBP using the auxiliary potential vectors {h1,h2, . . . ,hk} yield a set of “feedback
gain” {gpi }p=1,2,...,k (similar to the mean computation, we have gpi = (J−1

T hp)i if the
messages converge). Figure 2.4a illustrates this procedure.

Step 3: After the messages in Step 2 converge, the feedback nodes collect the feedback
gains from their neighbors and obtain a size-k subgraph with ĴF and ĥF given by

(ĴF )pq = Jpq −
∑

j∈N (p)∩T

Jpjg
q
j , ∀p, q ∈ F (2.27)

(ĥF )p = hp −
∑

j∈N (p)∩T

Jpjµ
T
j , ∀p ∈ F. (2.28)

Then we solve a small inference problem involving only the feedback nodes and obtain
the mean vector in µF and the full covariance matrix ΣF at the feedback nodes using

ΣF = Ĵ−1
F (2.29)

µF = Ĵ−1
F ĥF . (2.30)

Figure 2.4b gives an illustration for this step.

Step 4: After the feedback nodes compute their own variances and means, their in-
ference results are used to correct the partial variances ΣTii and “partial means” µTi
computed in Step 2.

The partial variances are corrected by adding correction terms using

Σii = ΣTii +
∑
p,q∈F

gpi Σpqg
q
i , ∀i ∈ T. (2.31)

The partial means are corrected by running a second round of LBP with revised
potential vector h̃T and the same information matrix JT . The revised potential vector
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is computed as follows:

h̃i = hi −
∑

j∈N (i)∩F

Jij(µF )j , ∀i ∈ T. (2.32)

Since this revision only uses local values, it can be viewed as passing messages from the
feedback nodes to their neighbors (c.f. Figure 2.4c). Then a second round of LBP is
performed on the subgraph T with model parameters JT and h̃T . After convergence,
the final means are obtained, such that if T is a tree, this message-passing algorithm
provides the true means, namely,

µi = (J−1
T h̃T )i, ∀i ∈ T. (2.33)

An illustration of this step is shown in Figure 2.4d.
The complete message update equations (except for the selection of the feedback

nodes) of FMP is summarized in Algorithm 2.2.2. We also provide some theoretical
results in the following propositions and theorems, whose proofs can be found in [16].

Algorithm 2.2.1 Selection of the Feedback Nodes
Input: information matrix J and the maximum size k of the pseudo-FVS

Output: a pseudo-FVS F

1. Let F = ∅ and normalize J to have unit diagonal.

2. Repeat until |F | = k or the remaining graph is empty.

(a) Clean up the current graph by eliminating all the tree branches.

(b) Update the scores p(i) =
∑

j∈N (i) |Jij| on the remaining graph

(c) Put the node with the largest score into F and remove it from the
current graph.

Theorem 2.2.5 : The FMP algorithm described in Algorithm 2.2.2 results in the exact
means and exact variances for all nodes if F is an FVS.
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Algorithm 2.2.2 Feedback Message Passing Algorithm
Input: information matrix J , potential vector h and (pseudo-) feedback vertex
set F of size k

Output: mean µi and variance Σii for every node i

1. Construct k extra potential vectors: ∀p ∈ F, hp = JT,p, each corresponding
to one feedback node.

2. Perform LBP on T with JT , hT to obtain ΣTii = (J−1
T )ii and µTi = (J−1

T hT )i
for each i ∈ T . With the k extra potential vectors, calculate the feedback
gains g1

i = (J−1
T h1)i, g

2
i = (J−1

T h2)i, . . . , g
k
i = (J−1

T hk)i for i ∈ T by LBP.

3. obtain a size-k subgraph with ĴF and ĥF given by

(ĴF )pq = Jpq −
∑

j∈N (p)∩T

Jpjg
q
j , ∀p, q ∈ F, (2.34)

(ĥF )p = hp −
∑

j∈N (p)∩T

Jpjµ
T
j , ∀p ∈ F, (2.35)

and solve the inference problem on the small graph by ΣF = Ĵ−1
F and

µF = Ĵ−1
F ĥF .

4. Revise the potential vector on T using

h̃i = hi −
∑

j∈N (i)∩F

Jij(µF )j, ∀i ∈ T.

5. Another round of BP with the revised potential vector h̃T gives the exact
means for nodes on T .
Add correction terms to obtain the exact variances for nodes in T:

Σii = ΣTii +
∑
p∈F

∑
q∈F

gpi (ΣF)pqg
q
i , ∀i ∈ T.
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(a) LBP on the subgraph excluding the
feedback nodes .
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(b) Solving a small inference problem
among the feedback nodes
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(c) Feedback nodes send feedback mes-
sages back to their neighbors .
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(d) Another round of LBP among the
non-feedback nodes gives the final re-
sults

Figure 2.4: Illustration for the FMP algorithm. Shaded nodes (4, 6, and 15) are
selected feedback nodes.



Sec. 2.3. Common Sampling Algorithms 43

Theorem 2.2.6 : Consider a Gaussian graphical model with parameters J and h. If
FMP converges with a pseudo-FVS F , it gives the correct means for all nodes and the
correct variances on the pseudo-FVS. The variance of node i in T calculated by this
algorithm equals the sum of all the backtracking walks of node i within T plus all the
self-return walks of node i that visit F , so that the only walks missed in the computation
of the variance at node i are the non-backtracking walks within T .

Proposition 2.2.7 : Consider a Gaussian graphical model with graph G = (V, E) and
model parameters J and h. If the model is walk-summable, then FMP converges for any
pseudo-FVS F ⊂ V.

Proposition 2.2.8 : Consider a walk-summable Gaussian graphical model with n nodes.
Assume the information matrix J is normalized to have unit diagonal. Let εFMP denote
the error of FMP and Σ̂FMP

ii denote the estimated variance of node i. Then

εFMP =
1

n

∑
i∈V
|Σ̂FMP
ii − Σii| ≤

n− k
n

ρ̃g̃

1− ρ̃
,

where k is the number of feedback nodes, ρ̃ is the spectral radius corresponding to the
subgraph T , and g̃ denotes the girth of T , i.e., the length of the shortest cycle in T . In
particular, when k = 0, i.e., LBP is used on the entire graph, we have

εLBP =
1

n

∑
i∈V
|ΣLBP
ii − Σii| ≤

ρg

1− ρ
,

where the notation is similarly defined.

� 2.3 Common Sampling Algorithms

In this section, we summarize some commonly used sampling algorithms including us-
ing the Cholesky decomposition, forward sampling on trees (and beyond), and Gibbs
sampling (with its variants).

Sampling Using the Cholesky Decomposition The Cholesky decomposition gives a lower
triangular matrix L such that J = LLT . Let z be an n-dimensional random vector
whose entries are drawn i.i.d. from the standard Gaussian distribution N (0, 1). An
exact sample x can be obtained by computing x = (LT )−1

(
z + L−1h

)
. If such a
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decomposition is available and if L is sparse, sampling is fast even for very large models.
However, for a general sparse J , the computation of L has cubic complexity, while fill
in L can be quadratic in the size of the model. For very large models, the Cholesky
decomposition is computationally prohibitive.9

Forward Sampling for Tree-Structured Models For a tree-structured GGM, an exact
sample can be generated in linear time (with respect to the number of nodes) by first
computing the variances and means for all nodes and covariances for the edges using
BP, and then sampling the variables one by one following a root-to-leaf order where the
root node can be an arbitrary node [23].

Forward Sampling for Models with Small Feedback Vertex Sets There are other tractable
graphical models that one can consider, including models with small FVSs. In this
case, one can compute the means and covariances using the FMP algorithm that scales
quadratically in the size of the FVS and linearly in the overall size of the graph and
can then produce samples by first sampling the nodes in the FVS (perhaps using the
Cholesky decomposition, with complexity cubic in the size of the FVS) and then per-
forming forward tree sampling on the rest.

Basic Gibbs Sampling The basic Gibbs sampler generates new samples, one variable at
a time, by conditioning on the most recent values of its neighbors. In particular, in each
iteration, a sample for all n variables is drawn by performing

x
(t+1)
i ∼ N (

1

Jii

hi − ∑
j<i, j∈N (i)

Jjix
(t+1)
j −

∑
j>i, j∈N (i)

Jjix
(t)
j

 , J−1
ii ) for i = 1, 2, . . . .n.

The Gibbs sampler always converges when J � 0; however, the convergence can be very
slow for many GGMs, including many tree-structured models. More details on Gibbs
sampling can be found in [24].

Variants of Gibbs Sampling There have been many variants of the Gibbs sampler using
the ideas of reordering, coloring, blocking, and collapsing. For example, in the blocked
Gibbs sampler the set of nodes is partitioned into several disjoint subsets and each subset
is treated as a single variable. One approach is to use graph coloring, in which variables

9Sparse Cholesky decomposition can be employed to reduce the computational complexity.
However, even for sparse graphs, the number of fills in the worst case is still O(n2) and the total
computational complexity is O(n3) in general [31].
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are colored so that adjacent nodes have different colors, and then each Gibbs block is
the set of nodes in one color [57]. In [29] the authors have proposed a blocking strategy
where each block induces a tree-structured subgraph.

� 2.4 Learning Graphical Models

Learning graphical models refers to the procedure of recovering the graph structure as
well as model parameters of an unknown model given observations. In this section,
we first give a brief introduction to some useful notions in information theory that
will be use in our problem formulation or proofs. Next we introduce the maximum
likelihood criterion for structure and parameter learning and its equivalent formulation
as an optimization problem. Finally, we summarize the Chow-Liu algorithm, which has
been proposed for efficiently learning models in the family of trees.

� 2.4.1 Information Quantities

In the following we review some important information quantities with brief descriptions.
The entropy of a probabilistic distribution is defined as

Hpx(x)
∆
= −

ˆ
x
px(x) log px(x)dx. (2.36)

The conditional entropy is the expected entropy of the conditional distribution, i.e.,

Hpx,y(x|y)
∆
= −

ˆ
x,y

pxy(x,y) log px|y(x|y)dxdy. (2.37)

Themutual information of two variables or two sets of variables is a nonnegative measure
of the variables’ (or sets of variables’) mutual dependence:

Ipx,y(x;y)
∆
=

ˆ
x,y

pxy(x,y) log
px(x)py(y)

pxy(x,y)
dxdy. (2.38)

The mutual information between two sets of random variables that are jointly Gaussian
is

I(x;y) =
1

2
log

det Σx det Σy

det Σ
, (2.39)

where Σ =

[
Σx Σxy

Σyx Σy

]
is the covariance matrix. In particular, the mutual informa-
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tion between two scalar jointly Gaussian variables is I(x; y) = −1
2 log(1 − ρ2), where

ρ is the correlation coefficient. The conditional mutual information is useful to ex-
press the mutual information of two random variables (or two sets of random variables)
conditioned on a third. It is defined as follows

Ipx,y,z(x;y|z)
∆
=

ˆ
x,y,z

pxyz(x,y, z) log
pxy|z(x,y|z)

px|z(x|z)py|z(y|z)
dxdydz. (2.40)

The Kullback-Leibler divergence or K-L divergence is a non-symmetric nonnegative mea-
sure of the difference between two distributions:

DKL(px||qx)
∆
=

ˆ
x
px(x) log

px(x)

qx(x)
. (2.41)

The K-L divergence is always nonnegative. It is zero if and only if the two distributions
are the same (almost everywhere). The conditional K-L divergence between two con-
ditional distributions px|y(x|y) and qx|y(x|y) under distribution py(y) is the expected
K-L divergence defined as

DKL(px|y||qx|y|py)
∆
= Epy

[
DKL(px|y=y||qx|y=y)|y = y

]
(2.42)

= D(px|yp(y)||qx|ypy). (2.43)

When there is no confusion, we often omit the subscripts in the distributions, e.g.,
Ipx,y(x;y) written as Ip(x;y). With a slight abuse of notation, we also use p(xA) to
denote the marginal distribution of xA under the joint distribution p(x), and similarly
p(xA|xB) to denote the conditional distribution of xA given xB under the joint distri-
bution p(x).

� 2.4.2 Maximum Likelihood Estimation

Learning graphical models refers to recovering the underlying graph structures and
model parameters from observations, where the models are often known or assumed to
be in a family of models. The maximum likelihood (ML) criterion is to select the model
such that the observed data has the maximum likelihood. The estimated model using
the ML criterion is called the ML estimate. In the following, we define the ML criterion
and introduce its equivalent formulation.

Given samples {xi}si=1 independently generated from an unknown distribution q in
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the family Q, the ML estimate is defined as

qML = arg max
q∈Q

s∏
i=1

q(xi) (2.44)

= arg max
q∈Q

s∑
i=1

log q(xi). (2.45)

It has been shown that computing the ML estimate is equivalent to minimizing the
K-L divergence between the empirical distribution and the distributions in the family.
The following proposition 2.4.1 states this equivalence. The proof of this proposition
can be found in standard texts such as in [58].

Proposition 2.4.1 : Given independently generated samples {xi}si=1, the ML estimate
qML = arg maxq∈Q

∑s
i=1 log q(xi) can be computed using

qML = arg min
q∈Q

DKL(p̂||q), (2.46)

where p̂ is the empirical distribution of the samples.

For Gaussian distributions, the empirical distribution can be written as

p̂(x) = N (x; µ̂, Σ̂), (2.47)

where the empirical mean

µ̂ =
1

s

s∑
i=1

xi (2.48)

and the empirical covariance matrix

Σ̂ =
1

s

s∑
i=1

xi
(
xi
)T − µ̂µ̂T . (2.49)

For more general models, the expectation-maximization (EM) algorithm is often
used to iteratively find the ML estimate of the model parameters. The general steps of
the EM algorithm can be found in [59].
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� 2.4.3 The Chow-Liu Algorithm

For the family of tree-structured models, the ML estimate can be computed exactly
using the Chow-Liu algorithm, where the graph structure is obtained by computing the
maximum spanning tree (MST) with the weight of each edge equal to the empirical mu-
tual information (the mutual information between the two nodes of the edge computed
under the empirical distribution) and then the model parameters are computed using
information projection [36]. In Algorithm 2.4.1, we summarize the Chow-Liu algorithm
specialized for GGMs. The input is the empirical covariance matrix Σ̂ and the outputs
are ΣCL, the estimated covariance matrix that has a tree-structured inverse, and ECL,
the set of edges in the learned model. The computational complexity of Algorithm 2.4.1
is O(n2 log n), where n is the number of nodes.

Algorithm 2.4.1 The Chow-Liu Algorithm for GGMs
Input: the empirical covariance matrix Σ̂
Output: ΣCL and ECL

1. Compute the correlation coefficients ρij =
Σ̂ij√
Σ̂iiΣ̂jj

for all i, j ∈ V .

2. Find an MST (maximum weight spanning tree) of the complete graph with
weights |ρij| for edge (i, j). The edge set of the tree is denoted as ET .

3. The entries in ΣCL are computed as follows

(a) For all i ∈ V , (ΣCL)ii = Σ̂ii;

(b) for (i, j) ∈ ET , (ΣCL)ij = Σ̂ij;

(c) for (i, j) /∈ ET , (ΣCL)ij =
√

ΣiiΣjj

∏
(l,k)∈Path(i,j) ρlk, where Path(i, j) is

the set of edges on the unique path between i and j in the spanning
tree.
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Recursive Feedback Message

Passing for Distributed Inference

� 3.1 Introduction

In Section 2.2, we have described the FMP algorithm proposed in [16]. FMP uses the
standard LBP message-passing protocol among the nodes that are not in the FVS and
uses a special protocol for nodes in the FVS. The FMP algorithm gives the exact means
and variances for all nodes with a total computational complexity that is quadratic in
the size of the FVS and linear in the total number of nodes. When the size of the FVS is
large, a pseudo-FVS is used instead of a full FVS to obtain approximate inference results.
By performing two rounds of standard LBP among the non-feedback nodes and solving
a small inference problem among the feedback nodes1, FMP improves the convergence
and accuracy significantly compared with running LBP on the entire graph. In addition,
choosing the size of the pseudo-FVS enables us to make the trade-off between efficiency
and accuracy explicit.

The overall message-passing protocol of FMP is indeed distributed among the non-
feedback nodes since the messages among them are updated using only local parameters
or incoming messages from neighbors; however, centralized communication (i.e., propa-
gating information between nodes without connecting edges) among the feedback nodes
is still required when solving the smaller inference problem among these nodes. More-
over, the set of feedback nodes (either forming an FVS or a pseudo-FVS) are selected
in a centralized manner prior to running FMP (c.f. Algorithm 2.2.1 in Section 2.2).

1As mentioned in Section 2.2, nodes in the FVS or pseudo-FVS are called feedback nodes.

49
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Hence, we refer to FMP as a hybrid algorithm. One can ask some natural questions: Is
it possible to select the feedback nodes in a purely distributed manner? Can we further
eliminate the centralized communication among the feedback nodes in FMP without
losing the improvements on convergence and accuracy?

In this chapter, we propose and analyze the recursive FMP algorithm, which is a
purely distributed extension of FMP where all nodes use the same distributed message-
passing protocol in the entire procedure. In recursive FMP, an inference problem on the
entire graph is recursively (but in a distributed manner) reduced to those on smaller and
smaller subgraphs until the final inference problem can be solved efficiently by an exact
or approximate message-passing algorithm. In this algorithm, all messages are passed
between nodes with connecting edges. Furthermore, the election2 of the feedback nodes
is integrated into the distributed protocol so that each node uses incoming messages to
determine whether it itself is a feedback node. In this recursive approach, centralized
communication among feedback nodes in FMP is reduced to message forwarding3 from
the feedback nodes. Such a purely distributed algorithm is of great importance because
in many scenarios, for example wireless sensor networks, it is easy to implement the
same distributed protocol on all nodes while centralized computation is often expensive
or impractical. Moreover, this algorithm now shares with LBP the characteristic that
each node receives messages and performs computations using exactly the same protocol.
Throughout this chapter, we use the same notation for the model parameters as in
Section 2.1.3. In particular, we assume that the information matrix J is normalized
to have unit diagonal.4 In addition, without loss of generality, we assume that the
underlying graphs are connected.5

The remainder of this chapter is organized as follows. First in Section 3.2, we
describe the recursive FMP algorithm in three separate stages. Then in Section 3.3,
we summarize the recursive FMP algorithm as a single integrated protocol without the
separation of stages. Next we present and prove our theoretical results using walk-sum

2When an algorithm is distributed, the word “election” is used in place of “selection” to
emphasize the distributed nature.

3Message passing is also called message forwarding if messages are passed without being
modified.

4The information matrix J is normalized using J ← D− 1
2 JD− 1

2 , where D is a diagonal
matrix having the same diagonal as J .

5When the underlying graph of a graphical model is not connected, then the random variables
in different connected components are independent. Hence, the inference problem on the entire
graph can be solved by considering inference problems on individual connected components.
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analysis in Section 3.4. Finally in Section 3.5, we demonstrate the performance of the
algorithm using simulated models on grids as well as real data for estimating sea surface
height anomaly (SSHA).

� 3.2 Recursive FMP Described by Stages

In this section, we describe the message-passing protocol used in recursive FMP in
separate stages. In practice, all nodes use the same integrated protocol (while they may
execute different message-update rules at a particular time depending on their internal
status). However, for clarity, we present the protocol in three separate stages: 1) election
of feedback nodes; 2) initial estimation; and 3) recursive correction. For each stage, we
explain the motivation and illustrate the protocol with examples.

Overview

It is useful to understand that the FMP algorithm described in Section 2.2.3 can be
interpreted as, first organizing the nodes into two sets (feedback and non-feedback),
then performing Gaussian elimination of the non-feedback nodes (or an approximation
to it using LBP if a pseudo-FVS is used), then solving the reduced problem on the set
of feedback nodes, followed by back-substitution (accomplished via the second wave of
LBP). At a coarse level, one can think of our distributed algorithm as continuing to
perform Gaussian elimination to solve the problem on the non-feedback nodes rather
than performing this in a centralized fashion, where these nodes need to determine on the
fly which ones will begin Gaussian elimination and back-substitution and in what order.
Our fully integrated algorithm in Section 3.3 combines all of these steps together, so
that each node knows, from a combination of its own internal memory and the messages
that it receives, what role it is playing at each step of the algorithm.

In the following, we first contrast our distributed algorithm with the FMP algorithm
described in Section 2.2.3, which can be directly interpreted as having distinct stages.
Then we describe our algorithm in several stages as well (although as we discuss, even
in this staged version, several of these stages actually may run together). In doing
so, we will also need to be much more careful in describing the protocol information
that accompanies messages in each as well as the quantities stored during each stage
at each node. Ultimately, in Section 3.3, we describe an integrated algorithm without
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explicit stages, while in Section 3.4 we present theoretical results on the correctness of
our algorithm.

To begin, we briefly re-examine the hybrid FMP algorithm in Section 2.2.3 (dis-
tributed among the non-feedback nodes while centralized among the feedback nodes
both in the selection and in message passing). First, there is one parameter that needs
to be specified a priori, namely k, the maximum number of feedback nodes that are to
be included. This algorithm can be thought of as having several stages:

1. Identify feedback nodes, either for a full FVS or for a pseudo-FVS. As we discuss
in Section 2.2.3, the greedy algorithm (Algorithm 2.2.1) we suggest involves com-
puting “priority scores” for each node, choosing the node with the highest score,
recomputing scores, and continuing. For this algorithm, once the set of feedback
nodes have been computed:

(a) The scores are thrown away and have no further use.

(b) All nodes are aware of which nodes are feedback nodes and which are not.

2. Perform a first round of LBP among the non-feedback nodes. As described in
Section 2.2.3, this is done with a set of auxiliary “mean” computations, corre-
sponding to the feedback gains to be used by the feedback nodes. Explicitly, this
means that if there are k feedback nodes, all non-feedback nodes must compute
and then send k + 2 messages, the “2” corresponding to the LBP messages using
the potential vector and “J” matrix for the non-feedback part of the graph (c.f.
2.10–(2.12)) as well as a message for each of the k feedback nodes (which corre-
spond to computations analogous to the computation of means on that part of
the graph but with the non-zero potential of each initiated with non-zero values
at the immediate neighbors of each feedback node in the remaining graph). These
imply the following:

(a) Each message sent has enough protocol information to identify it—i.e., is it
one of the two messages corresponding to LBP on the non-feedback graph
or is it a message associated with the computation of the feedback gain of a
particular feedback node.

(b) Each node stores and then updates its values of these k+ 2 quantities. Note
that in this stage of the computation, the feedback nodes are inactive, i.e.,



Sec. 3.2. Recursive FMP Described by Stages 53

they do not contribute to the message passing after they provide the initial
potentials for the computation of feedback gains. All of the non-feedback
nodes are active, as they participate in the message-passing. As all nodes
are aware of the set of feedback nodes, each node knows who is active and
who is not, including which of its neighbors is active.

3. Perform exact inference on the set of feedback nodes. In general this requires dense
communication among the feedback nodes (which are typically not neighbors of
each other), but results in the mean and full covariance on the vector of variables
at the set of feedback nodes.

4. Add correction terms to the partial variances obtained in Step 2, where the cor-
rection terms are computed from the inference results in Step 3 and the feedback
gains in Step 2. This requires all of the feedback nodes communicating to all of
the nodes in T , either by direct communication or by message forwarding. The
final estimates of the means are computed by performing a second round of LBP
among the feedback nodes with a modified potential vector, where each entry of
the potential vector is modified by adding correction terms corresponding to its
neighboring feedback nodes.

As we have discussed in Section 2.2.3, if k is large enough to allow for a complete FVS to
be used, the algorithm produces exact means and variances. If k is not large enough and
if the algorithm converges (which our choice of scoring and greedy choice of feedback
nodes aims to ensure), the means are correct and the variances, while incorrect, collect
more walks than LBP on the entire graph.

Finally, we note that in describing the algorithm in Section 2.2.3, we did not em-
phasize the “status” of nodes during the steps of the algorithm, but it is worth doing so
now, as this is a much more important issue with the distributed algorithm. Specifically,
in the hybrid algorithm as the process of choosing feedback nodes begins, all nodes are
undecided, a status we denote by “U”. As feedback nodes are chosen, they switch to a
status which we denote by “F”, although we also call these nodes “inactive” as they do
not participate in the LBP operations. The remaining nodes (after all feedback nodes
are chosen) take on status “T”, which we also refer to as “active.” In this hybrid algo-
rithm each node’s status remains unchanged throughout the algorithm. In contrast, as
we will see, in our purely distributed algorithm, inactive nodes can become active (and
switch status state to “T”) as they join the LBP/Gaussian elimination stage.
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In contrast, the “staged” version of our distributed algorithm completely avoids the
non-local communication in Step 3 of the hybrid algorithm and, in addition, allows nodes
to operate with knowledge gained only through local communication. In its general
form, each node needs to have three parameters specified, whose purpose is made clear
in the following sections. Also, in its general form, each node may have a different and
dynamically evolving set of nodes that it includes in its list of feedback nodes. These
three parameters are:

• An effective diameter di for each node i, which can be interpreted as a default
estimate of the network diameter. This is used in our algorithm for “electing”
feedback nodes (Stage I), where, in essence, each node does not look beyond a
certain distance from itself. As we will see, the election of feedback nodes has
a two-layered set of iterations, where the effective diameters control the “inner”
iterations in this stage.

• A number of outer iterations li in which each node i participates in the election
of feedback nodes.

• A capacity Ki, which is the maximum number of inactive nodes that each node i
is allowed to keep track of.

For simplicity we will describe our algorithm assuming that these three parameters
are constant across nodes. As mentioned previously, the introduction of this staged
algorithm is included for expository reasons, and the integrated single-protocol algorithm
in Section 3.3 combines all of these stages. In particular, as we proceed with our “staged”
version, we will systematically describe how components of the message protocols and
especially the memory at individual nodes are added to accommodate the needs of
successive stages (again, the integrated algorithm has all of this memory structure from
the start).

The “stages” of our algorithm are the following:

Stage I A first stage of electing feedback nodes, i.e., the nodes that have status F
and are initially inactive, combining the so-called leader election algorithm [60] and the
algorithm for eliminating tree branches. As this stage proceeds, each node keeps track
of the node it has heard from that has the highest score and then identifies itself as
a feedback node if it receives messages indicating that it itself is the highest scoring
node seen in a circuit of diameter d and it is at least distance d from the end node of
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any tree branch. At the end of this stage, each node either (a) knows that it is not a
feedback node; or (b) knows that it is a feedback node and also knows and stores its
own score. At this point, this is the only memory that each node has. While there is
other information that could be gleaned by each node concerning other nodes we do
not include that in stored memory at this point, as that knowledge becomes exposed
as the subsequent stages proceed. So, in contrast to the hybrid algorithm, at this point
each node has stored only local information about its own status (feedback or not) but,
for each feedback node its priority score that was thrown away in the hybrid algorithm
is maintained. This algorithm has several important properties: For example, if the
effective diameter is sufficiently large, if a sufficient number of outer iterations is allowed,
and if the remaining graph of active nodes stays connected, then the nodes identified as
feedback nodes in this algorithm will equal those in the centralized selection algorithm.

Stage II The second stage of the distributed algorithm is roughly equivalent to Step
2 of the hybrid algorithm, and involves message passing among active nodes. The
protocol and memory for the base set of two messages corresponding to LBP on the
active nodes are exactly the same as in the hybrid algorithm, but each active node only
begins to augment the number of messages it sends and quantities it stores (in particular
to compute feedback gains) as it receives incoming messages, which carry information
about the existence of inactive nodes. The number of messages each node i sends may
be as large as Ki + 2 (plus extra information bits including the inactive node indices
and priority scores).

Stage III The third stage of recursive correction can be viewed as counterpart of Step 3
and Step 4 of the hybrid algorithm combined. However, the most important difference is
that here no centralized communication is needed, i.e., no messages between two inactive
nodes without direct links are passed and there is no solving of the inference problem
on the set of inactive nodes in a centralized manner. When some local conditions are
satisfied, an inactive node is triggered to convert to an active node, where this conversion
consists of the following steps: (a) the inactive node computes some local values that
store the current estimate of its mean and variance (which are similar to those stored
at current active nodes); (b) sends these values (in the form of a correction message) to
neighboring active nodes for forwarding; and (c) becomes an active node and follows the
protocols for active nodes from now on. At the same time, an active node in this stage
only corrects its local values upon receiving correction messages and forwards those
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messages to neighboring active nodes.

� 3.2.1 Stage I: Election of Feedback Nodes

In the first stage, the set of feedback nodes are elected in a distributed manner. The
nodes that are elected are called feedback nodes because they play a similar role as
the feedback nodes used in standard FMP (Algorithm 2.2.2). Specifically, the set of
“feedback nodes” refers to the fixed set of nodes that are elected at the end of Stage
I, while the set of “inactive” nodes refers to the set of nodes that do not participate
in message passing, which is initially simply the set of feedback nodes but may change
at each iteration as inactive nodes become active. Similarly, the set of “non-feedback”
nodes6 refers to the fixed set of nodes that are not elected at the end of Stage I, while
the term “active nodes” refers to the set of nodes that participate in message passing,
which is initially the set of non-feedback nodes but will increase as inactive nodes switch
status. We use Si to denote the status of node i, where the status can be U (undecided),
F (inactive) or T (active). Initially, all nodes have status U, but as our overall algorithm
proceeds, nodes change status from U to either F or T and in subsequent stages nodes
with status F may change to T. We use U to denote the set of nodes with status
U and NU(i) to denote the set of i’s neighbors with status U, i.e., NU(i) = {j|j ∈
N (i) and Si = U}. The symbols F , T , NF(i), and NT(i) are similarly defined. We note
that sets such as NU(i) will change from iteration to iteration. In addition, we use ET to
denote the set of edges among the active nodes, i.e., ET = {(i, j)|(i, j) ∈ E and i, j ∈ T}.

The message-passing protocol in the first stage is motivated by the greedy pseudo-
FVS selection algorithm (Algorithm 2.2.1). In the greedy algorithm, each node i has the
priority score pi =

∑
j∈N (i) |Jij | which arises from the theoretical results on convergence

[16]. The node with the highest priority score that also breaks some cycles is selected as
the first feedback node. Then the algorithm continues to select the cycle-breaking node
with the highest priority score7 among the remaining nodes until a certain number of
feedback nodes are selected.8

6These non-feedback nodes are counterparts of the nodes in the pseudo-tree in standard FMP
[16]. The subgraph induced by the non-feedback nodes may still have cycles if a pseudo-FVS is
used.

7The priority scores are now updated to exclude the contribution of the already selected
feedback node.

8As discussed in [16], the number of feedback nodes to select is determined by how much
computational resource is available.
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We first describe the well-established “Leader Election Algorithm” as well as two
extensions that (a) allow for the election of more than one leader; and (b) that take into
account that we do not wish to include as leaders nodes that are on tree branches. These
then lead to our Stage I Algorithm 3.2.4, which elects feedback nodes that are given
inactive status F. We first describe the well-established “Leader Election Algorithm”
as well as two extensions that (a) allow for the election of more than one leader; and
(b) that take into account that we don’t wish to include as leaders nodes that are on
tree branches. These then lead to our Stage I Algorithm 3.9. Throughout the following
part of this chapter, without loss of generality, we assume that the priority scores are
distinct, i.e., there are no ties.9

Leader Election Algorithm The leader election algorithm is a purely distributed algo-
rithm that elects the node with the highest priority score regardless of the graph struc-
ture (i.e., whether it breaks cycles) [60]. In this algorithm, each node i stores two scalar
values locally: MaxScore(i) and MaxId(i) representing the maximum priority score that
node i has “seen” so far and the corresponding node index. Every node has status U at
the beginning of the algorithm and will eventually change its status to F if it is elected
as the leader. At each iteration, each node i sends the current values of MaxScore(i)
and MaxId(i) to its neighbors and updates the values of MaxScore(i) and MaxId(i)

based on incoming messages. In the end, a node proclaims itself has a leader if it itself
has the highest priority score it has seen. Figure 3.1 provides an illustrating example
of the message-passing protocol. Currently, as the figure shows, node 2 thinks it itself
has the highest priority score 0.3 (since MaxScore(2) = 0.3 and MaxScore(2) = 2), but
among its neighbors, node 3 knows the highest priority score (which is 0.5 of node 8 as
MaxScore(3)=0.5 and MaxId(3) = 8). Hence, the stored values at node 2 will change
to MaxScore(2) = 0.5 and MaxId(2) = 8 at the end of this iteration. We summarize
the leader election algorithm in Algorithm 3.2.1. It has been shown that if the number
of iterations d is equal to or greater than the diameter of the graph, then after running
Algorithm 3.2.1, the node with the highest priority will be the (only) node elected [60].

Algorithm 3.2.1 can be extended to elect the nodes with the top l priority scores.
This extension can be done by repeating Algorithm 3.2.1 for l times (which also requires
resetting the locally stored values and excluding the already elected nodes from message
passing). We summarize the extended leader election algorithm in Algorithm 3.2.2.

9If there are ties of priorities scores, we can define an arbitrary tiebreaker, e.g., using node
indices.
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Figure 3.1: Illustrating example of the leader election algorithm. MaxScore(i)
and MaxId(i) represent the maximum priority score node i has “seen” so far and
the corresponding node index. These local values are shown for nodes 1, 2, 3 and
4 (corresponding to the random variables x1, x2, x3, and x4).

Algorithm 3.2.1 Message Protocol for Leader Election with General Scores
Input: priority score pi for each i ∈ V
Output: status Si for each i ∈ V
At each node i ∈ V , simultaneously,

1. Initialization: Si ← U, MaxScore(0)(i) = pi, and MaxId(0)(i) = i.

2. For t = 1, 2, . . . , d:

• Update local values using:

MaxScore(t)(i) = max
j∈N (i)∪{i}

MaxScore(t−1)(j)

MaxId(t)(i) = j∗,

where j∗ = arg maxj∈N (i)∪{i}MaxScore(t−1)(j).

3. Si ← F if i = MaxId(i).

Here we have assumed that the priority scores of the remaining nodes do not change
after some leaders are elected. However, if the scores do change (as they will in our
Stage I Algorithm 3.2.4), the algorithm can be easily modified to reset the local values
accordingly in Step 2 (a) of Algorithm 3.2.2.
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Algorithm 3.2.2 Extended Leader Election: Electing the Nodes with the Top-l
Priority Scores with General Scoring Function
Input: priority score pi for each i ∈ V
Output: Si for each i ∈ V
Initialization: status Si ← U for each i ∈ V

• Outer Iterations: repeat l times
At each node with status U,

1. MaxScore(0)(i) = pi and MaxId(0)(i) = i.

2. Inner Iterations: for t = 1, 2, . . . , d:

– Update local values using:

MaxScore(t)(i) = max
j∈NU(i)∪{i}

MaxScore(t−1)(j)

MaxId(t)(i) = j∗,

where j∗ = arg maxj∈N (i)∪{i}MaxScore(t−1)(j).

3. Si ← F if i = MaxId(i).

At each node i with status F,

1. MaxScore(0)(i) = −Min and MaxId(0)(i) = i.

2. Inner Iterations: for t = 1, 2, . . . , d:

MaxScore(t)(i) = max
j∈N (i)

MaxScore(t−1)(j)

MaxId(t)(i) = j∗,

where j∗ = arg maxj∈N (i) MaxScore(t−1)(j).

Distributed Elimination of Tree Branches We now describe a distributed algorithm that
eliminates the tree branches. The high-level idea of this algorithm is that if we remove
the degree-0 or degree-1 nodes one by one (where new degree-1 nodes may appear as
nodes are removed), then the resulting graph will not have any tree branches. In this
algorithm, all nodes are initialized with status U. At each iteration, at node i with status
U, if |NU(i)|, the size of NU(i), is less than or equal to one, then node i changes its
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Figure 3.2: Elimination of tree branches. The current status of nodes 1, 2, 3,
and 4 (corresponding to the random variables x1, x2, x3, and x4) are shown.
The status of node 2 will change to T at the end of this iteration according to
Algorithm 3.2.3.

status to T. Once a node has status T, it remains the same. Figure 3.2 provides an
illustrating example: At the current iteration, node 2 has status U while only one of its
neighbors has status U. Hence, the status of node 2 will change to T at the end of this
iteration. We summarize this distributed protocol in Algorithm 3.2.3.

The following Lemma 3.2.1 states the correctness of Algorithm 3.2.3. The proof of
Lemma 3.2.1 is provided in Appendix 3.6.

Algorithm 3.2.3 Elimination of Tree Branches
Input: the graph G(V , E)
Output: status Si for each i ∈ V
Initialization: Si ← U, for each i ∈ V
At each node i with status U, simultaneously

• For t = 1, 2, . . . , d:
Si ← T if |NU(i)| ≤ 1.

At each node i with status T,
No action.

Lemma 3.2.1 : After running Algorithm 3.2.3, all nodes that are not on the tree branches
have status U regardless of d. If d is greater than the diameter of the graph, then every
node i that is on some tree branch has status T.
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Distributed Protocol for Stage I Equipped with distributed algorithms for both leader
election and eliminating tree branches, we can of course simply alternate between these
two algorithms to elect the feedback nodes in a distributed manner. To further improve
the efficiency, we propose a message-passing protocol that combines Algorithm 3.2.2 and
Algorithm 3.2.3 by conducting the elimination of the tree branches and the election of
the leader simultaneously. In addition, this algorithm also includes the re-computation
of node scores as the sets NU(i) change from iteration to iteration.

As mentioned previously, at the beginning of the first stage, each node has status
U, meaning that it is undecided whether it is a feedback node or a tree node. During
message passing, its status may change to F (denoting the feedback nodes) or T (de-
noting the tree nodes). In this stage, the status of a node will remain the same during
this stage once it changes from U to F or from U to T. Any nodes with status U at the
end of the stage will change their status to T. We summarize this distributed protocol
in Algorithm 3.2.4.

In practice, different nodes may use different effective diameters di instead of a
uniform l. Similarly, each node i may use different li instead of a single l (in Algorithm
3.2.4). We will discuss more on these parameters in Section 3.3, where we present the
integrated distributed protocol without the separation of stages.

Note that at each outer iteration Algorithm 3.2.4 may not always elect a feedback
node. Figure 3.9 shows an illustrating example. Assume that node 2 has the highest
priority score 0.8 among all nodes and that the effective diameter d = 5. At the end of
the first outer iteration, each node i will have MaxScore(i) = 0.8 and MaxId(i) = 2, but
node 2 is not elected as as a feedback node since its status has changed to T. However,
for every two outer iterations, at least one feedback node will be elected. will be elected
so that the total number of elected feedback nodes is between

⌊
l
2

⌋
and l. We defer the

statement of this theoretical result and its proof to Section 3.4.

� 3.2.2 Stage II: Initial Estimation

At the beginning of second stage, each node knows its own status, but in general it does
not know the status of other nodes.10 Every node keeps a list of inactive nodes (called
a priority list and denoted as Li at node i) with the corresponding priority scores. As
we mentioned before, initially the set of the inactive nodes is the set of elected feedback

10Although in theory more information about the statuses of other nodes can be inferred from
the messages, here we do not collect the extra information.
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Algorithm 3.2.4 Message Protocol for Stage I: Election of Feedback Nodes
Input: graphical model with information matrix J
Output: status Si for each i ∈ V
At each node i with status U, simultaneously

1. Outer iterations: repeat for l times

(a) Compute pi =
∑

j∈NU(i) |Jij|. Set

MaxScore(i)← pi and MaxId(i)← i.

(b) Inner iterations: for t = 1, 2, . . . , di:

i. If |NU(i)| ≤ 1, then Si ← T.
ii. Update local values using:

MaxScore(t)(i) = max
j∈NU(i)∪{i}

MaxScore(t−1)(j)

MaxId(t)(i) = j∗,

where j∗ = arg maxj∈NU(i)∪{i}MaxScore(t−1)(j).
iii. Si ← F if i = MaxId(i).

(c) Si ← F if i = MaxId(i).

2. If Si = U, then Si ← T

At each node i with status T or F,
No action.

nodes and the set of the active nodes is the set of the non-feedback nodes. The nodes
in a priority list are sorted by their priority scores in descending order. Each list Li has
maximum capacity Ki and can only keep the nodes with the top-Ki priority scores if
the capacity is exceeded. In the following, for simplicity of notation, we use the notation
dLieKi to denote the truncation corresponding to keeping only the nodes with the top-
Ki priority scores in list Li. At the beginning of Stage II, at an active node i, we initiate
Li by including all neighboring inactive nodes, i.e.,

L(0)
i = dNF(i)eKi (3.1)
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as well as their corresponding scores. At an inactive node q, the list L(0)
q is initiated by

including q itself and all other neighboring inactive nodes, i.e.,

L(0)
q = d{q} ∪ NF(q)eKq (3.2)

as well as their corresponding scores. Figure 3.3 gives an example of initializing the
priority lists: node 2 has status F and among its neighbors only node 1 has status F, so
its initial priority list L(0)

2 = {2, 1} with corresponding scores 0.3 and 0.2. Node 4 has
status T and among its neighbors only node 2 has status F, so its initial priority list is
L(0)

4 = {2} with score 0.3.

2      0.3

inactive nodes     priority scores

inactive nodes     priority scores

1      0.2

2      0.3

Figure 3.3: Priority lists at the start of Stage II

In the second stage, partial estimates of the means and variances for the active
nodes, as well as the “feedback gains”11 are computed by passing messages only among
the active nodes. The partial estimates are estimates of variances and means only on
the active subgraph without considering any edges involving the inactive nodes. Hence,
the protocol for computing the partial estimates is simply standard LBP. The feedback

11The “feedback gains” here directly correspond to the feedback gains in the standard FMP
algorithm (c.f. Section 2.2.3 and [16]).
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gains are intermediate results characterizing the effect of the inactive nodes on the exact
variances and means of the active nodes. As shown in [16] and in Section 2.2.3, the
messages for computing the feedback gains are essentially LBP messages with carefully
designed new potential vectors, each corresponding to an inactive node. The major
difference from the protocol in standard FMP (Algorithm 2.2.2) is that here each active
node initially does not know which nodes are the inactive nodes and can only pass
feedback gain messages after they receive such information.12 In this stage, the inactive
nodes do not participate in message passing, but merely monitor the priority lists at
their neighbors (except under some conditions to be explained, an inactive node may
convert to an active node and then follow the message protocol for active nodes). In
the following, for clarity, we use the superscript (t) to denote the values (e.g., messages
or locally stored values) at iteration t.13

Message Protocol at an active node First, we describe the message-update rules used
at an active node. The messages being passed include standard LBP messages and
messages for computing the feedback gains.

(a) Standard LBP Messages
Each active node i sends LBP messages ∆Ji→j and ∆hi→j to each of its active

neighbor j, which corresponds to computing the partial variances and the partial means
respectively. Σii and µi are locally stored values representing the current estimates of
the variance and mean of node i respectively.

The messages are updated using

∆J
(t)
i→j = −JjiĴ (t−1)

i\j Jij (3.3)

∆h
(t)
i→j = −JjiĴ (t−1)

i\j ĥ
(t−1)
i\j , (3.4)

where

Ĵ
(t−1)
i\j = Jii +

∑
u∈NT(i)\{j}

∆J
(t−1)
u→i (3.5)

12As will be explained later, the priority list at an active node will expand or change upon
receiving feedback gain messages.

13Note that the values with different superscripts use the same storage space, i.e., they over-
write previous values.
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ĥ
(t−1)
i\j = hi +

∑
u∈NT(i)\{j}

∆h
(t−1)
u→i (3.6)

and all messages have initial value zero. The local values Σii and µi are updated using

Σ
(t)
ii =

Jii +
∑

j∈NT(i)

∆J
(t−1)
j→i

−1 (3.7)

µ
(t)
i = Σ

(t)
ii

hi +
∑

j∈NT(i)

∆h
(t−1)
j→i

 . (3.8)

Note that while we have not been explicit about this previously, each of these messages
has protocol bits indicating both the identity of the sending node as well as the fact
that it is active.

(b) Messages for Feedback Gains
At each active node i, feedback messages ∆Gi→j

∆
= {∆gqi→j}q∈Li are sent to each

active neighbor j. Each individual message ∆gqi→j can be viewed as an LBP message for
the mean (similar to ∆hi→j) but using an auxiliary potential vector hq corresponding
to the feedback node q. The entries of this auxiliary potential vector are

(hq)i =

0 ∀i /∈ N (q)

Jiq ∀i ∈ N (q).
(3.9)

Hence, hq can be constructed locally by using the default value zero for nodes that are
not neighbors of node q and use local parameters Jiq for the nodes that are. Note that
each of these messages has protocol bits indicating the corresponding inactive node as
well as its score (and also which active node is sending the message).

Note that at an active node i, the list Li may expand or change when node i receives
messages corresponding to other inactive nodes that are not its neighbors.14

At each iteration at an active node i, before sending out messages, the priority list
Li is updated using

L(t)
i =

⌈
L(t−1)
i ∪

(
∪j∈NT(i)L

(t−1)
j

)⌉Ki

. (3.10)

14Some active nodes may not be neighbors of any inactive node, so they initially do not pass
feedback gain messages until they receive them.
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Figure 3.4: Updating priority list at an active node

Figure 3.4 provides an illustrating example. At iteration t − 1, the priority lists of
nodes 1, 2 and 3 are each sorted by the priority scores. At iteration t, the priority list
at node 2 takes the union and is then truncated to satisfy the maximum capacity 4.

Then for each q ∈ L(t)
i , node i sends messages to each active neighbor j using

(
∆gqi→j

)(t)
= −Jji

(
Ĵ

(t−1)
i\j

)−1 (
ĝqi\j

)(t−1)
, (3.11)

where (
ĝqi\j

)(t−1)
= (hq)i +

∑
u∈NT(i)\{j}

(∆gqu→i)
(t−1) (3.12)

and (∆gqu→i)
(t−1)

= 0 for q /∈ L(t−1)
u , i.e., the incoming messages have default value zero.

In addition to the messages, feedback gains Gi = {gqi }q∈Li are locally stored, where
each gqi is updated using
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Figure 3.5: Updating priority list at an inactive node

(gqi )
(t)

= Σ
(t)
ii

(hq)i +
∑

j∈NT(i)

(
∆gqj→i

)(t−1)

 (3.13)

and
(

∆gqj→i

)(t−1)
= 0 for q /∈ L(t−1)

j .

Actions at an inactive node Each inactive node monitors the priority lists of its active
neighbors. At an inactive node q, its priority list Lq is updated using

L(t)
q =

⌈
L(t−1)
q ∪

(
∪j∈NT(q)L

(t−1)
j

)⌉Kq

. (3.14)

Figure 3.5 provides an illustrating example where the priority list of the inactive
node 2 expands after taking the union and is truncated to keep 4 nodes.

After the priority list Lq is updated, if it does not include q itself, i.e., q /∈ Li, then
node q converts to an active node:

Sq ← T. (3.15)
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Algorithm 3.2.5 Message Protocol for Stage II: Initial Estimation
At each active node i, simultaneously
Initialization: L(0)

i = dNF(i)eKi

At each iteration t until convergence or timeout,

1. Send LBP messages to each j ∈ NT(i):

∆J
(t)
i→j = −JjiĴ (t−1)

i\j Jij

∆h
(t)
i→j = −JjiĴ (t−1)

i\j ĥ
(t−1)
i\j ,

where Ĵ (t−1)
i\j = Jii +

∑
u∈NT(i)\{j}∆J

(t−1)
u→i and ĥ(t−1)

i\j = hi + Σu∈NT(i)\{j}∆h
(t−1)
u→i .

2. Update priority list: L(t)
i =

⌈
L(t−1)
i ∪

(
∪j∈NT(i)L

(t−1)
j

)⌉Ki

.

3. For all q ∈ L(t)
i and all j ∈ NT(i), send messages(

∆gqi→j

)(t)
= −Jji

(
Ĵ

(t−1)
i\j

)−1 (
ĝqi\j

)(t−1)
,

where
(
ĝqi\j

)(t−1)
= (hq)i +

∑
u∈NT(i)\{j} (∆gqu→i)

(t−1) and (∆gqu→i)
(t−1)

= 0 if

q /∈ L(t−1)
u .

4. Update the local values by

Σ
(t)
ii =

Jii +
∑

j∈NT(i)

∆J
(t)
j→i

−1, µ
(t)
i = Σ

(t)
ii

hi +
∑

j∈NT(i)

∆h
(t)
j→i



(gqi )
(t)

= Σ
(t)
ii

(hq)i +
∑

j∈NT(i)

(
∆gqj→i

)(t−1)

 for q ∈ L(t)
i ,

where
(

∆gqj→i

)(t−1)
= 0 for q /∈ L(t−1)

j

At each inactive node q, simultaneously
Initialization: L(0)

q = d{q} ∪ NF(q)eKq

At each iteration t until entering Stage III,

1. Update priority list L(t)
q =

⌈
L(t−1)
q ∪

(
∪u∈NT(q)L

(t−1)
u

)⌉Kq

.

2. If q /∈ L(t)
q , then Sq ← T .
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Such a conversion happens when an inactive node receives too many feedback messages
about other inactive nodes with higher scores so that it is removed from its own priority
list. We can view it as a mistakenly elected inactive node returning to the active status
when later proved under-qualified.

We summarize the whole message-passing protocol used in the second stage in Algo-
rithm 3.2.5. The iterations (as indicated by t) stop when the messages have converged15

or the maximum number of iterations allowed has reached (called timeout), which is
usually set so that LBP have converged.

� 3.2.3 Stage III: Recursive Correction

In the third stage, each of the still remaining inactive nodes “wakes up” and converts to
an active node when certain local conditions are satisfied. Before converting to an active
node, the node initiates a new kind of messages (called correction messages) which are
then passed among the active nodes to correct the partial estimates obtained in the
second stage. This roughly corresponds to Step 3 of the standard FMP algorithm,
although here it is done node-by-node as nodes wake up. At the same time, each of
the active nodes makes corrections to their locally stored values and then relays the
correction messages to neighboring active nodes without modification. In the following,
we describe the message-passing protocol at the inactive nodes and at the active nodes
respectively.

At an inactive node q: An inactive node q wakes up when both of the following condi-
tions are satisfied.

1. Node q itself has the lowest priority score in Lq.

2. The locally stored values (e.g., partial means, partial variances, and feedback
gains) at all of its active neighbors have converged.16

Figure 3.6 provides an illustrating example of the local conditions: inactive node 2 has
the lowest priority score in its own priority list. If the local values at its neighbors have
converged, node 2 will initiate the correction messages and then change its status to T.

15There are various ways to quantify convergence. We can use for example the relative changes
of the values between two recent iterations

16We let the convergence information be passed to the neighboring inactive nodes so that
they know.
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Figure 3.6: An inactive node waking up

After the conditions are satisfied, node q will do the following:

1. Delete itself from its own priority list: L(t)
q = L(t−1)

q \{q}.

2. Compute the current estimates of the variance Σ
(t)
qq , the mean µ(t)

q , and the feed-
back gains G(t)

q = {(gpq )(t)}
p∈L(t)q

using

Σ(t)
qq =

Jqq − ∑
j∈NT(q)

Jqj

(
gqj

)(t−1)

−1 (3.16)

µ(t)
q = Σ(t)

qq

hq − ∑
j∈NT(q)

Jqj (µj)
(t−1)

 (3.17)

(
gpq
)(t)

= Σ(t)
qq

(hp)q −
∑

j∈NT(q)

Jqj

(
gpj

)(t−1)

 for p ∈ L(t)
q , (3.18)

where
(
gpj

)(t−1)
= 0 if p /∈ L(t)

j .

3. Forward the correction message Cq = {q,Σqq, µq, Gq,Lq} to its active neighbors.17

4. Change status to T.

17Here we intentionally do not use superscripts to emphasize that the correction messages are
sent once after all neighboring active nodes have convergence, and these messages are not sent
again by the waking node.
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At an active node i: When an active node i receives the correction message Cq =

{q,Σqq, µq, Gq,Lq} from some neighbor, and if that correction corresponds to an inactive
node on its list, it corrects its local values accordingly and then relays the correction
messages to other active neighbors. The following steps describe the protocol.

1. If q /∈ L(t)
i , take no action.

2. If q ∈ L(t)
i , then

(a) Update its priority list by

L(t)
i =

⌈
Lq ∪ L(t−1)

i \{q}
⌉Ki

. (3.19)

(b) Update the local values by

Σ
(t)
ii = Σ

(t−1)
ii +

(
(gqi )

(t−1)
)2

Σqq (3.20)

µ
(t)
i = µ

(t−1)
i − (gqi )

(t−1)
µq (3.21)

(gpi )
(t)

= (gpi )
(t−1) − (gqi )

(t−1)
gpq for p ∈ L(t)

i . (3.22)

(c) Forward the correction message Cq to its active neighbors.

At the end of the third stage, all nodes are active and all local values are updated to
account for the inference results for the entire graph. We obtain the variance i and
mean µi for all i ∈ V.

In Algorithm 3.2.6, we summarize the whole protocol used in this stage. We provide
an illustrating example of running recursive FMP on a 4-by-4 grid in Figure 3.7. The
theoretical results on the correctness of the whole recursive FMP algorithm are post-
poned to Section 3.4. Those results show that this algorithm gives the same result as the
FMP algorithm in Section 2.2.3 under certain conditions. However, we emphasize that
our distributed algorithm allows much more flexibility, as different parts of the graph
may use different subsets of feedback nodes and that nodes can dynamically change
the set of feedback nodes to which they will pay attention. Our integrated protocol
in the next section will make this clear, and we demonstrate the performance of this
distributed algorithm for a very large graph in Section 3.5.
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Algorithm 3.2.6 Message Protocol for Stage III: Recursive Correction
At an inactive node q:
At each iteration t, when the following two conditions are satisfied: 1) q itself has the

lowest priority score in Lq; and 2) local values at its active neighbors have converged,
then

1. L(t)
q = L(t−1)

q \{q}.

2. Compute the current estimates of the variance, the mean, and the feedback gains
at q using

Σ(t)
qq =

Jqq − ∑
j∈NT(q)

Jqj

(
gqj

)(t−1)

−1

µ(t)
q = Σ(t)

qq

hq − ∑
j∈NT(q)

Jqjµ
(t−1)
j


(
gpq
)(t)

= Σ(t)
qq

(hp)q −
∑

j∈NT(q)

Jqj

(
gpj

)(t−1)

 for p ∈ L(t)
q ,

where
(
gpj

)(t−1)
= 0 if p /∈ (Lj)(t−1).

3. Send correction message Cq including Σqq, µq, and g
p
q , ∀p ∈ Lq to active neighbors.

4. Sq ← T

At an active node i:
When correction messages corresponding to node q are received, then

1. Update the priority list by L(t)
i =

⌈
Lq ∪ L(t−1)

i \{q}
⌉Ki

.

2. Update the local values by

Σ
(t)
ii = Σ

(t−1)
ii +

(
(gqi )

(t−1)
)2

Σqq

µ
(t)
i = µ

(t−1)
i − (gqi )

(t−1)
µq

(gpi )
(t)

= (gpi )
(t−1) − (gqi )

(t−1)
gpq , for p ∈ L

(t)
i .

3. Forward the correction message Cq to other active neighbors.
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(a) Stage II: nodes 4, 6, and 15 have
been elected as inactive nodes. Mes-
sages are passed among other nodes.
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(b) Stage III: node 4 has become active
again. Correction messages from node
4 are being forwarded to other active
nodes.
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(c) Stage III: node 15 has become active
again. Correction messages from node
15 are being forwarded to other active
nodes.

.
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(d) Stage III: all nodes are active nodes
now. Final correction messages from
node 6 are being forwarded.

Figure 3.7: Stage II (a) and Stage III (b–d) of recursive FMP. Shaded nodes
represent elected inactive nodes. Solid lines with arrows denote the edges where
messages are being passed.
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� 3.3 Recursive FMP: Integrated Message-Passing Protocol

In Section 3.2, we have described the recursive FMP algorithm in three separate stages
(election of feedback nodes, initial estimation, and recursive correction), where we as-
sume that all nodes move to the next stage at the same time. However, this requires a
global communication protocol to signal when all the nodes are ready to move to the
next stage. Instead, we can avoid this completely in an integrated protocol in which
some nodes may move to the next stage earlier than others.

Specifically, in Stage I, once a node converts to status T or F, it does not have to
wait and can in fact immediately move to Stage II. This “early” stage transition not only
removes the need to synchronize the stages of all nodes, but also starts LBP message
passing earlier so that we can reach some local convergence faster than if we let the nodes
with status T just wait and stay in Stage I. Similarly in Stage II, some inactive nodes
can wake up before LBP on the entire active graph converges, which is beneficial when
different regions on the graph have different convergence rates or the active subgraph
has several connected components. Furthermore, when the algorithm parameters di, li
and Ki are different at different nodes i ∈ V, an integrated protocol is not only more
efficient (by reducing the waiting time) but also is more natural to think about.

In Figure 3.8 we show the flowchart of our integrated protocol without the global
separation of stages. We use the following color and shape scheme to indicate compo-
nents with different categories of functionality. The two yellow rectangles with rounded
corners (A1 and C9) are the start unit and end unit of the algorithm at each node
respectively. The diamond-shaped components in light blue (A4, A7, A8, A10, B5, B10,
B11, C5, and C8) are decision units where the next steps depend on whether the test-
ing conditions are satisfied. The yellow rectangles with angular corners (A5, B3, and
C7) are where messages are passed to or from neighbors. The rectangles in red with
angular corners (B1, B6, and C3) are where node status changes. The green rectangular
components (A6, B4, B9, and C4) denote “clock sync”, which are used to indicate how
the operations at different nodes are synchronized. Only for the purpose of understand-
ing the synchronization, we can interprete the flowchart as whenever the “clock sync”
is passed through, we increment one time unit while other operations are completed
“instantaneously”. Of course in practice, we only require that all operations between
two “clock sync” are completed within one time unit. The components A1–A10 can be
viewed as procedures in Stage I; the components B1–B11 can be viewed as procedures
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Figure 3.8: Recursive FMP as an integrated protocol
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in Stage II; and the components C1–C9 can be viewed as procedures in Stage III.
Finally, we note that at each node i the memory cost is O(Ki) and the communi-

cation cost per time unit is O(Ki) for each outgoing link from i and O(Kj) for each
incoming link from node i’s neighbor j.

� 3.4 Theoretical Results

In this section, we present and prove some theoretical results on the convergence and
accuracy of recursive FMP. The theoretical results are easier to state and comprehend
under the framework with separate stages in Section 3.2. However, our conclusions still
apply in the integrated framework in Section 3.3. First in Proposition 3.4.2, we state the
conditions under which recursive FMP elects the same feedback nodes as the centralized
greedy algorithm (Algorithm 2.2.1). Then we present Proposition 3.4.5 which states that
if the elected feedback nodes form a full FVS, then under milder conditions the inference
results obtained by recursive FMP are exact. Next in Proposition 3.4.8, we provide a new
walk-sum interpretation of the correction messages, which further leads to a walk-sum
decomposition of the final inference results. Finally, we conclude that even when the
set of the elected FVS is not a full FVS, under some conditions the inference results by
recursive FMP are still consistent with running the hybrid FMP algorithm (Algorithm
2.2.2) with the same set of feedback nodes.

While these results make clear the precise connection to the much more centralized
FMP algorithm developed previously and reviewed in Section 2.2.3, it is crucial to
note that for large graphs, the conditions in the following results—e.g., conditions on
the effective diameters and capacities of nodes—may not hold, and, in fact, we may
not want them to hold. In that very important sense, the recursive FMP algorithm is
fundamentally a richer and, as we demonstrate via examples in Section 3.5, an extremely
effective algorithm, truly generalizing LBP and applicable to very large graphs.

For a fixed graph G = (V, E) and any set A ⊂ V, we use GA to denote the subgraph
induced by the set A and we use d(GA) to denote the diameter of the graph GA. We
reiterate that throughout this section, F denotes the set of elected feedback nodes at
the end of Stage I and T equals V\F .

Assumption 3.4.1 : 1. All nodes use the same li = l.

2. GT is connected.



Sec. 3.4. Theoretical Results 77

3. For every i ∈ V, di ≥ d(GT ) + |F |.

4. There are no ties in priority scores or ties are broken by a fixed rule.

Proposition 3.4.2 : Under Assumption 3.4.1, there exists an integer k0 between
⌊
l
2

⌋
and

l such that the set of feedback nodes elected by recursive FMP is the same set obtained
by running the centralized selection algorithm (Algorithm 2.2.1) with k0 iterations.

Proof. The set T can be partitioned into two sets as

T = Ta ∪ Tb, (3.23)

where Ta denotes the set of nodes marked as status T when they were on some tree
branches (c.f. Step 1(b)i in Algorithm 3.2.4) and Tb denotes the set of nodes converted
to status T from U at the end of the algorithm (c.f. Step 2 in Algorithm 3.2.4). In
order to distinguish the node status at different outer iterations, we use U (m) to denote
the set of nodes with status U at the end of the m-th outer iteration (i.e., right after
running Step 1(c) in Algorithm 3.2.4) for m = 0, 1, 2, . . . , l. In particular,

U (l) = Tb (3.24)

U (0) = V. (3.25)

Furthermore, since nodes with status T or F never convert back to have status U again,
we have

V = U (0) ⊃ U (1) ⊃ U (2) ⊃ · · · ⊃ U (l) = Tb. (3.26)

First, we prove that the subgraph GU(l) is connected. Let

Ta = T (1) ∪ T (2) ∪ · · · ∪ T (l), (3.27)

where T (m) denotes the set of nodes converted to status T in the m-th outer iteration,
i.e., all nodes in T (m) is on some tree branch of GU(m−1) . Then we have

U (0) ⊃ U (1)∪T (1) ⊃ U (2)∪T (2)∪T (1) ⊃ · · · ⊃ U (m)∪
(
∪ms=1T

(s)
)
· · · ⊃ U (l)∪

(
∪ls=1T

(s)
)

(3.28)
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In particular, for m = 0, 1 . . . , l − 1, we have

U (m) ∪
(
∪ms=1T

(s)
)
⊃ U (l) ∪

(
∪ls=1T

(s)
)

(3.29)

and thus

U (m) ⊃ U (l) ∪
(
∪ls=m+1T

(s)
)
. (3.30)

According to Lemma 3.4.3 to follow, for m = 0, 1, . . . l − 1, we have that nodes in
T (m+1) are on tree branches of GU(l)∪(∪ls=m+1T

(s)) because nodes in T (m+1) are on tree

branches of GU(m) by definition and U (m) ⊃ U (l) ∪
(
∪ls=m+1T

(s)
)
⊃ T (m+1). Hence, we

can clean T (1), T (2),. . ., T (l) in order from the connected graph GT , or GU(l)∪(∪ls=1T
(s))

(where the clean-up of T (s) is from GU(l)∪(∪ls=m+1T
(s))). Hence, all nodes in Ta = ∪ls=1T

(s)

are on tree branches of GT . In addition, we have that GU(l)∪(∪ls=m+1T
(s))) is connected for

each m = 0, 1, . . . , l because the elimination of tree branches does not break a connected
graph (c.f. Lemma 3.4.3 to follow). In particular, GU(l) is connected.

Second, we prove that GU(m) is connected for all m = 0, 1, . . . , l. We use F (m) to
denote the set of feedback nodes elected in the m-th outer iteration (c.f. Step 1(c) of
Algorithm 3.2.4) for m = 1, 2, . . . l. Then we have U (m−1) = U (m) ∪ T (m) ∪ F (m). By
Step 1(c) in Algorithm 3.2.4, GF (m) cannot have any edges because otherwise different
nodes in F (m) cannot be elected in the same outer iteration since we assume no ties in
priority scores or fixed tie-breaker. Hence, any node in F (m) is connected to at least
two nodes in U (m) ∪ T (m) because otherwise they will have status T by Step 1(b)i in
Algorithm 3.2.4. In particular, F (l) is connected to U (l) ∪ T (l). Since we have proved
that GU(l)∪T (l) is connected, we have that the subgraph GU(l−1) is also connected from
U (l) = U (l) ∪ T (l) ∪ F (l). By repeating this process, we have that U (m) is connected for
each m = 0, 1, . . . , l.

Third, we prove that di ≥ d(GU(m)) for all m = 0, 1, . . . , l and all i ∈ V . We have
that

U (m) = U (l) ∪
(
∪(l)
s=m+1T

(s)
)
∪
(
∪(l)
s=m+1F

(s)
)

(3.31)

by definition. Since GU(m) is connected and G
U(l)∪

(
∪(l)s=m+1T

(s)
) is connected, we have

that
d(GU(m)) ≤ d(G

U(l)∪
(
∪(l)s=m+1T

(s)
)) + | ∪(l)

s=m+1 F
(s)|. (3.32)
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Since T (1), T (2), . . ., T (m) are tree branches of T = U (l) ∪
(
∪(l)
s=1T

(s)
)
, we have that

d(G
U(l)∪

(
∪(l)s=m+1T

(s)
)) ≤ d(GT ) (3.33)

because the elimination of tree branches does not increase the diameter (c.f. Lemma
3.4.3).

Hence, for all m = 0, 1, . . . , l,

d(GU(m)) ≤ d(GT ) + | ∪(l)
s=m+1 F

(s)| (3.34)

≤ d(GT ) + |F |. (3.35)

Since by Assumption 3.4.1 di ≥ d(GT ) + |F | for all i ∈ V, we have that di ≥ d(GU(m))

for all i ∈ V and all m = 0, 1, . . . , l.

Fourth, we prove that when GU(0) has cycles the first feedback node is elected in at most

two outer iterations and it is the same node as chosen in the centralized algorithm. In
the first outer iteration of Algorithm 3.2.4, since di ≥ d(GU(0)), all nodes on the tree
branches of GU(0) are marked as status T. Let i∗ be the node having the highest priority
score in U (0). There are two cases:

1) If i∗ /∈ T (1), i.e., node i∗ is not on any tree branch of GU(0) , then i∗ (and only
i∗) will be the first elected feedback node, which is exactly the same node as selected in
the centralized algorithm by performing graph cleaning following by choosing the node
with the highest score.

2) If i∗ ∈ T (1), i.e., node i∗ is on some tree branch of GU(0) , then no node will
be elected in the first outer iteration because for each node i ∈ U (0)\T (1), we have
Maxid(i) = i∗ since the elimination of i∗ occurs after or at the same time as pi∗ is
passed to neighbors. In this case, no feedback node is elected, i.e., |F (1)| = 0 and thus
U (1) does not have any tree branches (since previous tree branches T (1) are removed and
no new tree branches are created when F (1) = ∅.) Hence, the second outer iteration is
equivalent to electing the node with the highest score on GU(1) , which is again the same
node as chosen using the centralized algorithm.

We can repeat the same analysis for the following outer iterations and conclude
that every additional feedback node (before the remaining graph with status U becomes
cycle-free) is elected in at most two outer iterations, and the sequence of elected nodes is
the same as using the centralized selection algorithm. Therefore, there exists an integer
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k0 between
⌊
l
2

⌋
and l such that the set of elected feedback nodes are the same as the

set obtained by running the centralized selection algorithm (Algorithm 2.2.1) with k0

iterations.

Lemma 3.4.3 : 1. If a node i is on a tree branch of the graph G = (V, E) and G′ =

(V ′ , E ′) is a subgraph of G such that i ∈ V ′ , then node i is also on a tree branch
of the subgraph G′.

2. The elimination of a tree branch does not break a connected graph.

3. The elimination of a tree branch does not increase the graph diameter.

4. If both GA and GA∪B are connected, then d(GA∪B) ≤ d(GA) + |B|.

The proof of Lemma 3.4.3 is provided in Appendix 3.6. We give a concrete example
of the case where one feedback node is elected in two consecutive outer iterations in
Figure 3.9.

The following Proposition 3.4.5 states the exactness of recursive FMP when the set
of feedback nodes F is a full FVS.

Assumption 3.4.4 : 1. F is a full FVS.

2. |F | ≤ Ki, ∀i ∈ V.

3. The number of maximum allowed iterations for LBP in Stage II, i.e., the timeout,
is at least maxC∈C d(GC), where C is the set of all connected components of GT .

Now we introduce some additional notation that is used in the following part of this
section. In this proof, we use the following notation for submatrices. For any sets of
nodes A and B, we use JAB to denote the submatrix of the information matrix J taking
the rows in A and columns in B and hA to denote the subvector with entries in set A.
As an abbreviation, we use JA for JAA. In addition, we use Fm to denote the set of
feedback nodes with the top-(|F | −m) priority scores for m = 0, 1, 2, . . . , |F | (i.e., the
set obtained by removing the nodes with the lowest m priority scores from F ) and let
Tm = V\Fm. In particular, F = F0 and T = T0 = V\F . For all i ∈ V, let Li denote the
priority list at node i at the end of Stage II (i.e., after running LBP).
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(a) Before an outer iteration

(b) After an outer iteration

Figure 3.9: An example of electing the feedback nodes. (a) Assume that node 2
has the highest priority score 0.8 and that d = 5. (b) At the end of the outer
iteration, each node i stores MaxScore(i) = 0.8 and MaxId(i) = 2, but node 2 is
not elected as as a feedback node since it has status T.

Proposition 3.4.5 : Under Assumption 3.4.4, recursive FMP converges and computes
the exact means and exact variances for all nodes.

Proof. In this proof, we first analyze the local mean and variance estimates at the end
of Stage II regardless of whether GT is connected. Next, we analyze the local estimates
after receiving correction messages, where we need to look at several cases.

Local Values at the End of Stage II Note that the priority lists at all the active nodes
are initially empty and the lists increase when the information about more and more
feedback nodes is received with the LBP messages. Eventually, nodes in the same
connected components of GT have the same priority lists, which are subsets of F0. Since
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Ki ≥ |F0| for all i ∈ V, no feedback node will become active before the end of Stage II
(which may happen as in (3.15) when the maximum capacity is exceeded). Hence, in
Stage II, no node changes its status. Hence, the LBP messages are only passed among
each connected component of GT0 .

First, we give closed-form expressions for the local values (i.e., µi, Σii, g
q
i , ∀q ∈ Li)

at each active node at the end of Stage II. To distinguish the local values at different
time steps, we use the following notation to represent the local values at each i ∈ T0 at
the end of Stage II:

1. Vector µT0 for the means, where each entry µT0i equals the local mean estimate
“µi”;

2. The vector Diag(ΣT0) taking the diagonal of ΣT0 , where each diagonal entry ΣT0ii

equals the local variance estimate “Σii”;

3. Vectors gT0,q for all q ∈ F , where each entry gT0,qi equals the local value “gqi ” for
q ∈ Li and gT0,qi = 0 for q /∈ Li.

Because F0 = F is a full FVS, GT0 is a tree-structured graph and thus LBP on GT0
converges within maxC∈C d(GC) iterations and gives exact inference results on GT0 , i.e.,

µT0 = J−1
T0

hT0 (3.36)

ΣT0ii = (J−1
T0

)ii for all i ∈ T0. (3.37)

Equations 3.36 and 3.37 are true even when GT0 is not connected because in this case
LBP on GT0 is equivalent to LBP on each connected component of GT0 .

In addition, from the definition of the auxiliary potential vector hq (c.f. (3.9)) and
our convention of using default value zero for gT0,qi when i /∈ Li, regardless of whether
GT0 is connected and whether Li are the same for all i, we always have

gT0,q = J−1
T0
JT0,q, for all q ∈ F0. (3.38)

Updated Local Values After Receiving Correction Messages Corresponding to Each Feed-

back Node As mentioned previously, it is possible that Li are different at different node
i depending on the graph topology. We first study the case where it is guaranteed to
have Li = F0 for all i ∈ V and show that the local mean and variance estimates are
eventually the exact inference results. Then we analyze the case where it is possible to
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Figure 3.10: An example where GT is connected but Li ( F

have different priority lists at the end of Stage II and show that the inference results are
still exact. Note that even when GT is connected, it is still possible to have Li ( F0,
which occurs when some feedback node q has no active neighbors. For example, in
Figure 3.10, GT is connected but all neighbors of node 1 have status F and thus 1 /∈ Li
for any active node i. The scenario in Figure 3.10 is possible when the feedback nodes
1, 2, 3, and 4 are elected in order when they have the top-4 priority scores.

Case 1: GT0 is connected and each node i ∈ F0 is connected to at least one node in T 0

From the local update equations (3.10) and (3.14), we can see that the information
about all the feedback nodes is passed to all nodes with the LBP messages at the end
of Stage II and thus Li = F0 for all i ∈ V.

Note that it is possible to have multiple different correction messages being for-
warded at the same time. Now we establish that the correction messages are initiated in
ascending order of their corresponding priority scores and that for any node i ∈ V, the
nodes in Li are removed in ascending order of the corresponding priority scores regard-
less of which feedback node is closer to i on the graph. This is because a feedback node
q wakes up (and initiates its correction message) only when all nodes in Lq with lower
priority scores are removed, which are only triggered by the corresponding correction
messages. Hence, those correction messages are initiated and have reached q’s active
neighbors before node q wakes up. So those correction messages would reach any other
nodes before q’s correction messages do.

In the following, for m = 1, 2, . . . , |F0|, we use the vector µTm to denote the local
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means at nodes in Tm after receiving m correction messages (i.e., those corresponding to
the feedback nodes with lowest-m priority scores). Note that the entries in µTm are not
necessarily local means at the same time, but are defined as the local values right after
receiving the same number of correction messages. Similarly, we use Diag (ΣTm) and
gTm,q to denote the local variances and local feedback gains after receiving m correction
messages.

Let q be the feedback node with the lowest priority score. We can re-write the
update equations (3.16) and (3.17) (which compute the local values at q when node q
wakes up) as

ΣT1qq =
(
Jqq − JT0,qg

q
T0

)−1
(3.39)

µT1q = ΣT1qq
(
hq − JT0,qµT0

)
, (3.40)

where µT0 = J−1
T0

hT0 and gT0,q = J−1
T0
JT0,q, for all q ∈ F0 computed exactly by LBP in

Stage II.
According to Lemma 3.4.6 to follow, these update equations exactly give

ΣT1qq =
(
J−1
T1

)
qq

(3.41)

µT1q = J−1
T1

hT1 . (3.42)

The update equations (3.20) and (3.65) at the active nodes (which make corrections
to the local values after receiving correction messages corresponding to node q) can be
re-written as

Diag (ΣT1T0) = Diag
(
ΣT0 + gT0,qΣT1qqg

T0,q) (3.43)

µT1T0 = µT0 − µT1q gT0,q. (3.44)

According to Lemma 3.4.6, these update equations exactly give
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Diag (ΣT1T0) = Diag
((

J−1
T1

)
T0

)
(3.45)

µT1T0 =
(
J−1
T1

hT1

)
T0
. (3.46)

Combining equations (3.41), (3.42), (3.45) and (3.46), we have that

µT1 = J−1
T1

hT1 (3.47)

Diag(ΣT1) = Diag(J−1
T1

). (3.48)

The newly computed feedback gains at node q using equation (3.18) (when node q
wakes up) can be re-written as

gT1,pqq = ΣT1qq

(
Jpq − J

′
T0,qg

T0,p
)
,∀p ∈ Lq\{q}. (3.49)

For each p ∈ Lq\{q}, viewing gT1,p as µ in Lemma 3.4.6 and JT1,p as h in Lemma
3.4.6, we have that

gT1,pqq =
(
J−1
T1
JT1,p

)
qq
. (3.50)

The feedback gains at nodes in T0 are then updated using (3.22), which can be
re-written as

gT1,pT0
= gT0,p − gT1,pqq gT0,q. (3.51)

From (3.38), LBP in Stage II gives

gT0,p = J−1
T0
JT0,p,∀p ∈ Lq\{q} (3.52)

gT0,q = J−1
T0
JT0,q. (3.53)

Substituting (3.52) and (3.53) into (3.51), we can obtain

gT1,pT0
= J−1

T0
JT0,p − gT1,pqq J−1

T0
JT0,q (3.54)

= J−1
T0

(
JT0,p −

(
gT1,pqq

)
JT0,q

)
. (3.55)
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By viewing JT1,p here as h in Lemma 3.4.6, and gT1,p as µ in Lemma 3.4.6, we have
that

gT1,pT0
=
(
J−1
T1
JT1,p

)
T0
. (3.56)

Combining (3.51) and (3.56), we can obtain

gT1,p = J−1
T1
JT1,p for all p ∈ Lq\{q}. (3.57)

Therefore, we have that

µT1 = J−1
T1

hT1 (3.58)

Diag(ΣT1) = Diag(J−1
T1

) (3.59)

gT1,p = J−1
T1
JT1,p for all p ∈ F\{q}, (3.60)

where we have the same mathematical structure as in (3.36), (3.37) and (3.38). Also,
GT1 is still connected and all nodes in F1 = F\{q} are connected to at least one node
in T1 (because F1 ⊂ F0 and T1 ⊃ T0). Hence, we can repeat the same process for
m = 2, 3, . . . , |F |, all in Case 1 and eventually obtain the exact inference results

µT|F | = J−1h (3.61)

Diag(ΣT|F |) = Diag(J−1). (3.62)

Case 2: the active subgraph GT0 is not connected, or GT0 is connected but some node

in F0 is not connected to any node in T0 In this case, it is possible that Li ( F for
some i. At each connected component of GT0 , the correction messages are still initiated
in ascending order of the corresponding priority scores (of nodes in Li while possibly
skipping some feedback nodes in F ).

We use Ci to denote all the nodes in the same connected component as node i. In
order for the same analysis in Case 1 to apply, we only need to show that the “imaginary”
correction messages corresponding to a node q /∈ Li (i.e., imagining q is put in Li by
an oracle) equal zero. Since the maximum allowed number of iterations is at least
maxC∈C d(GC), the only case where q ∈ F but q /∈ Li is when node q has no edge
connected to any node in Ci, i.e., JCi,q = 0. Thus, from (3.38), we have that gT0,q = 0.
Hence, the local values at node i do not change after adding these “imaginary” correction
messages corresponding to q /∈ Li from the update equations (3.20), (3.21) and (3.22).
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We can repeat the same analysis whenever a feedback node is skipped and conclude that
the same steps of Case 1 still apply.

Therefore, we have completed the proof of Proposition 3.4.5.

Lemma 3.4.6 : Let J =

[
J11 J

′
M

JM JT

]
be an invertible matrix and h =

[
h1

hT

]
, where

J11 and h1 are scalars, JM is an n-by-n matrix, and JM and hT are n-dimensional

vectors. We denote Σ = J−1=

[
Σ11 Σ

′
M

ΣM ΣT

]
, µ =

[
µ1

µT

]
= J−1h, g = J−1

T JM ,

µT = J−1
T hT , and ΣT = J−1

T . We have that

Σ11 =
(
J11 − J

′
Mg
)−1

(3.63)

µ1 = Σ11

(
h1 − J

′
Mµ

T
)

(3.64)

and

µT = J−1
T (hT − µ1JM ) (3.65)

ΣT = ΣT + g1Σ11g
′
1. (3.66)

The proof of Lemma 3.4.6 is provided in Appendix 3.6.

Assumption 3.4.7 : 1. |F | ≤ Ki for all i ∈ V;

2. JT , the model on the subgraph GT is walk-summable;

3. The maximum number of iterations is sufficiently large to allow LBP in Stage II
to converge.

Now we define some new notation for the reminder of this section. For i ∈ T , we
use L(0)

i = {i1, i2, . . . , i|L(0)i |
} to denote the priority list at i at the end of Stage II (i.e.,

after LBP), where the elements are in the ascending order of the corresponding priority
scores. We use L(m)

i to denote the set obtained by removing the nodes with the lowest-m
priority scores from L(0)

i . For q ∈ F , we use L(0)
q to denote its priority list at node q just
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after it becomes an active node and similarly use L(m)
q to denote the set obtained by

removing the nodes with the lowest-m priority scores from L(0)
q . In particular, L(0)

i = Li
if i ∈ T and L(0)

i ( Li if i ∈ F (since i ∈ Li but i /∈ L(0)
i ).

The following Proposition 3.4.8 gives new walk-sum interpretations of some inter-
mediate results and correction terms in the recursive FMP algorithm.

Proposition 3.4.8 : Under Assumption 3.4.7 we have the following conclusions regard-
less of whether F is a full FVS or a pseudo FVS:

1. Recursive FMP converges.

2. At the end of Stage II, the local variance estimate at a node i ∈ T equals the sum
of all backtracking self-return walks of i within GV\L(0)i

.

3. Just after a node q ∈ F coverts to an active node, the computed local variance
equals the sum of all self-return walks of q within the subgraph GV\L(0)q

.

4. At any active node i (including those converted from an inactive node), after
receiving a correction message corresponding to node q, the variance correction
term in (3.20) equals the sum of all self-return walks of i within GV\L(m∗)i

that

visit node q at least once, where m∗ is the node such that {q} = L(m∗−1)\L(m∗),
i.e., L(m∗)

i is the priority list at node i right after the local correction.

Proof. In this proof, when not otherwise stated, the notation follows that in the proof
of Proposition 3.4.5.

First we prove Conclusion 1: Since the model on the subgraph GT , i.e., JT , is walk-
summable, according to Proposition 2.2.3, LBP on GT converges and gives correct means
(for arbitrary potential vectors including the auxiliary ones for computing the feedback
gains) for that subgraph, i.e., after convergence we have that

µT0 = J−1
T0

hT0 (3.67)

gT0,p = J−1
T0
JT0,p∀p ∈ F. (3.68)

Note that by the convention as in the proof of Proposition 3.4.5, gT0,pi = 0 when p /∈
L(0)
i . Also, by the same analysis as in the proof of Proposition 3.4.5, no feedback node

will become active before the end of Stage II (which may happen in (3.15) when the
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maximum capacity is exceeded). Since LBP in Stage II is the only iterative procedure
in the recursive FMP, we have that recursive FMP converges under Assumption 3.4.7.

From Proposition 2.2.4, we also have that at the end of Stage II, the local variance
estimate at a node i ∈ T equals the sum of all backtracking self-return walks of i within
GV\L(0)i

.

To prove Conclusions 3 and 4, we consider two cases.

Case 1: GT0 is connected and each node i ∈ F0 is connected to at least one node in T0

Using the same analysis as in the proof of Proposition 3.4.5, we have that Li = F for all
i ∈ V and the feedback nodes are removed from Li in ascending order of their priority
scores.

When the first feedback node q wakes up, the equation to compute the local variance
(i.e., (3.16)) is the same as Step 3 of the hybrid FMP constrained on GT1 with a single
feedback node q (c.f. (2.27) and (2.29)). Hence, ΣT1qq is the exact inference result within
GT1 according to Theorem 2.2.6. From (2.18), we have that the newly computed local
variance ΣT1qq equals the sum of all the self-return walks from q to q within GT1 = GV\L(0)q

.
After an active node i receives the correction message corresponding to q, the vari-

ance correction term in the update equation (3.20) is the same as the correction term in
the hybrid FMP algorithm (c.f. (2.31)) constrained to GT1 with a single feedback node
q. According to Theorem 2.2.6, the updated local variance equals the sum of all the
backtracking walks of node i within GT0 plus all the self-return walks of node i within
GT1 that visit node q. From Conclusion 1, we have that the correction term equals the
sum of all self-return walks of i within GT1 = GV\L(0)i

that visit node q at least once.

Since gT0,p = J−1
T0
JT0,p,∀p ∈ F from (3.68) and the update equations for the feedback

gains (c.f. (3.18) and (3.22)) only involve quantities that are computed exactly by
LBP (means computed from various potential vector and ΣT1qq ), we have that gT1,p =

J−1
T1
JT1,p∀p ∈ F1.
Similar to the proof of Proposition 3.4.5, GT1 is still connected and all nodes in F1

are connected to at least one node in T1. Hence, we can repeat the same process all in
Case 1 and eventually obtain Conclusion 3 and 4.

Case 2: the active subgraph GT0 is not connected, or GT0 is connected but some node

in F0 is not connected to any node in T0 Again, we can follow the same analysis
as in the proof of Proposition 2.2.3 to show that the “imaginary” correction messages
corresponding to a node q /∈ Li are all zero. In order for Conclusion 3 and 4 to stand,
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we only need to show that the corresponding “imaginary” walk-sums are also zero. This
is because no walk from node i can visit a feedback node q when q /∈ Li (which can only
happen when q is not connected to Ci, the connected component of GT0 containing node
i) and thus the corresponding walk-sum is zero.

Therefore, we have proved the four conclusions in Proposition 3.4.8.

Theorem 3.4.9 : Under Assumption 3.4.7, recursive FMP gives the same inference
results as the hybrid FMP algorithm (Algorithm 2.2.2) with the same F , i.e., it gives the
correct means for all nodes and the correct variances for nodes in F and the calculated
variance of node i in T equals the sum of all the backtracking walks of node i within T
plus all the self-return walks of node i that visit F .

Proof. For the means, the same analysis as in the proof of Proposition 3.4.5 still applies.
This is because after convergence, LBP in Stage II gives the correct mean and feedback
gain estimates and all the update equations for the means only involve the values that
are computed exactly. Hence, the computed means are exact for all nodes in the whole
graph after convergence.

In the rest of this proof, we use φ(i
GA→ i) to denote the self-return walk-sum for node

i within the subgraph GA and use φq(i
GA→ i) to denote the self-return walk-sum for node

i within GA that visit node q at least once. In addition, φ(i
bk, GA−→ i) denotes the sum

of all the backtracking self-return walks within GA and φq(i
bk, GA−→ i) denotes the sum

of all the backtracking self-return walks within GA that visit node q at least once.
Now we prove the statements for the variances. For any node q ∈ F , when it first

becomes an active node, the newly computed local variance estimate equals

φ(q
G
V\L(0)q−−−−−−→ q) (3.69)

according to Proposition 3.4.8. After adding all the correction terms for the variance,
the final variance estimate Σ∗qq satisfies

Σ∗qq = φ(q
G
V\L(0)q−−−−−−→ q) +

|L(0)q |∑
s=1

φqs(q
G
V\L(s)q−−−−−−→ q), (3.70)
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where {qs} = L(s−1)
q \L(s)

q . The right hand side of (3.70) is exactly a decomposition of
all self-return walks from of q in the entire graph. Hence, the final variance estimate
Σ∗qq is the exact variance on the entire graph according to (2.18).

For a node i ∈ T , at the end of Stage II, according to Proposition 3.4.8, the local
variance estimate obtained at the end of Stage II equals

φ(i
bk, G

V\L(0)
i−−−−−−−−−→ i). (3.71)

Hence, according to Proposition 3.4.8, the final variance estimate Σ∗ii satisfies

Σ∗ii = φ(i
bk, G

V\L(0)
i−−−−−−−−−→ i) +

|L(0)i |∑
s=1

φis(i
G
V\L(s)

i−−−−−−→ i), (3.72)

where {is} = L(s−1)
i \L(s)

i .
Using the same analysis as in the proofs of Proposition 3.4.8, when L(0)

i ( Li ( F

the feedback nodes in F\Li do not contribute to the walk-sums. Hence, (3.72) can be
re-written as

Σ∗ii = φ(i
bk, GT−−−−−−→ i) +

|F |∑
s=1

φfs(i
GTs−−−−→ i), (3.73)

where {fs} = Fs−1\Fs. The term
∑|F |

s=1 φfs(i
GTs−−−−→ i) is exactly a decomposition of

the sum of all walks within the whole graph G that visit F .
Therefore, the calculated variance of node i in T equals the sum of all the back-

tracking walks of node i within T plus all the self-return walks of node i that visit F .
We have thus proved Theorem 3.4.9.

� 3.5 Experimental Results

In this section, we demonstrate the performance of recursive FMP using simulated
models on grids of various sizes as well as a large-scale GGM for estimating sea surface
height anomaly (SSHA).
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Simulated Grids of Various Sizes

In this motivating experiment, we consider GGMs defined on grids of size s× s, where
s = 4, 6, 8, . . . , 18, 20. For each size, we simulate 50 models with randomly generated
parameters. Specifically, the information matrix J and potential vector h are randomly
generated as follows: the entries of h are generated i.i.d. from a uniform distribution
U [−1, 1]; the sparsity pattern of J is determined by the graph structure and the non-
zero entries of J are also generated i.i.d. from U [−1, 1] with a multiple of the identity
matrix added to ensure J � 0. We solve the inference problems (i.e., computing the
variances and means) using LBP and recursive FMP with various parameter settings.
The parameters in recursive FMP include di, the effective diameter; li, the number
of outer iterations in Stage I, and Ki, the maximum capacity of the priority list. In
this experiment, we use uniform parameters for all nodes, i.e., di = d, li = l, and
Ki = K for all i ∈ V. In addition, we let l = K for all algorithm settings and let
the maximum number of iterations (timeout) be twice the effective diameter. Since
the model sizes are moderate, we can compute the exact solution for comparison. In
particular, for each algorithm setting and each grid size, we compute the average error
of variances, i.e., 1

n

∑
i∈V |Σii − Σapprox

ii |, where Σii denotes the exact variance of node i
and Σapprox

ii denote the approximate variance of node i computed by certain algorithm.
Furthermore, for each size, the final results are averaged over the 50 sets of randomly
constructed model parameters.

Our experimental results are presented in Figure 3.11, where the horizontal axis
represents the size of the grids and the vertical axis represents the logarithm of the
average error of variances. As shown in the plots, LBP has the worst performance
among all algorithm settings for all grid sizes. If we run recursive FMP with fixed
K = 2 and fixed d = 3 for all sizes, we obtain significant improvement in average error
over LBP for all sizes. If we let K grow logarithmically with respect to the total number
of nodes (i.e., K =

⌈
log(s2)

⌉
) while using fixed effective diameter d = 3, then we obtain

further improvement on average error, but the error reduction is not very significant
compared with using fixed K = 2, indicating that the increased list capacity is not fully
utilized due to the fixed d. Finally, when we keep the relationship between K and s as
K =

⌈
log(s2)

⌉
while also make d grow linearly with respect to s (in particular, d = 2s),18

then we can obtain further significant improvement compared with using K =
⌈
log(s2)

⌉
18For grids of size s× s, the diameter of the graph grows linearly with respect to s.
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Figure 3.11: Recursive FMP with different parameters performed on grids of
various sizes

and d = 3.19 Note that the size of a full FVS for grids of size s × s is O(s2), which
grows much faster with s than either of our choices of K. Compared with running
the hybrid FMP algorithm with a pseudo-FVS of size K, here in the recursive FMP
algorithm, different nodes have different local lists of feedback nodes, which provide
stronger local influence as they break more cycles in local regions. Our experimental
results here provide insight on the trade-off between memory/communication capacity
and inference accuracy. From Figure 3.11, we can also see that our algorithm is more
effective for larger graphs since the error of LBP grow much faster with the grid size.

19Note computations in Stage II scale linearly with d.
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Sea Surface Height Anomaly Data

In this experiment, we use sea surface height anomaly data, which is measured rel-
ative to seasonal, space-variant mean-sea level (the dataset is publicly available at
http://podaac.jpl.nasa.gov/dataset/). The raw data is preprocessed to have measure-
ments at 915× 1080 different locations with latitudes between ±82◦ and a full 360◦ of
longitude.

We construct a grid of 988,200 nodes and connect the eastmost and westmost nodes
at the same latitudes because they are geographical neighbors. We then remove the
nodes that have invalid measurements (most of which correspond to land areas) and
obtain the final graph structure shown in Figure 3.12a. Using this underlying structure,
we build a GGM using the thin-membrane model [1]. We run recursive FMP with
uniform di = 200 and Ki = li = 15. Our distributed algorithm converges with the
specified parameters in a few seconds and the final estimates are plotted in Figure
3.12b.

� 3.6 Appendix for Chapter 3

Proof of Lemma 3.2.1

Lemma 3.2.1 : After running Algorithm 3.2.3, all nodes that are not on the tree branches
have status U regardless of d. If d is greater than the diameter of the graph, then every
node i that is on some tree branch has status T.

Proof. Consider the change of status to T as node elimination. Then NU(i) equals the
set of node i’s neighbors that are still on the graph. So, any node that changes status to
T is on a tree branch by definition of graph cleaning. Hence, after running Algorithm
3.2.3, all nodes that are not on the tree branches have status U regardless of d.

In the first iteration of Algorithm 3.2.3, all leaf nodes (nodes that have degree zero
or one) are eliminated. In the second iteration, every node on some tree branches that
is within distance one to its nearest leaf node is eliminated. Repeating this analysis,
we can show that every node on some tree branch is eliminated after d iterations if d
is greater than its distance to its nearest leaf node, which is at most the diameter of
the graph. Hence, after running Algorithm 3.2.3, if d is greater than the diameter of
the graph, then every node i that is on some tree branch has status T. We have thus
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(b) Estimated SSHA with d = 200 and li = Ki = 15 for all i.

Figure 3.12: Estimating SSHA using recursive FMP
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completed the proof.

Proof of Lemma 3.4.3

Lemma 3.4.3 : 1. If a node i is on a tree branch of the graph G = (V, E) and G′ =

(V ′ , E ′) is a subgraph of G such that i ∈ V ′ , then node i is also on a tree branch
of the subgraph G′.

2. The elimination of a tree branch does not break a connected graph.

3. The elimination of a tree branch does not increase the graph diameter.

4. If both GA and GA∪B are connected, then d(GA∪B) ≤ d(GA) + |B|.

1. Let i1, i2, . . . il be a sequence of nodes eliminated in the clean-up procedure on
graph G where il = i. We follow the same sequence and remove those nodes from
graph G′where we skip all is /∈ V

′ for s = 1, 2, . . . , l. Since E ′ ⊂ E , we have that
each node removal is a valid step of graph clean-up in G′ as well. Hence, i is also
on a tree branch of G′ .

2. Let G = (V, E) be a connected graph and {i1, i2, . . . il} be any sequence of node
removal in a graph clean-up procedure, which requires that the degree of i1 in G
must be one or zero. Since G is connected, the degree of i1 in G is one. If GV\{i1}
is disconnected, then i1 is connected to only one of the connected components of
GV\{i1} and thus G is disconnected, which is a contradiction. Hence, GV\{i1} must
be a connected graph. We can repeat the same analysis for other nodes in the
sequence in order and conclude that the elimination of a tree branch does not
break a connected graph.

3. Let G = (V, E) be a graph and {i1, i2, . . . il} be any sequence of node removal in
a graph clean-up procedure. If G is disconnected, we have d(G) = ∞ and thus
the conclusion is trivially true. When G is connected, let i∗ be the single node
that is connected to i1. Any path between two nodes different from i1 does not
pass through i1 because otherwise i∗ will be included twice in the sequence which
is contradictory to the definition of path. Hence, after the removal of i1, the
distance between any pair of nodes different from i1 remains the same (while in
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the new graph, when computing the graph diameter, we do not need to consider
the distance between i1 and another node as i1 has been removed). Hence, we
have that the diameter of the graph does not increase after removing i1. By
repeating the same analysis for other nodes in the sequence in order, we conclude
that the elimination of a tree branch does not increase the graph diameter.

4. For any graph G∗ = (V∗, E∗) and any two nodes i, j ∈ V∗, we use dG∗(i, j) to
denote the distance between node i and node j within graph G∗.
First, we prove the conclusion for the case where B has a single node b1 /∈ A. For
any i1, i2 ∈ A, we have that dGA∪B (i1, i2) ≤ dGA(i1, i2) ≤ d(GA) because there are
no fewer choices of paths between i1 and i2 on GA∪B than on GA. Since GA∪B is
connected, we can choose i∗ ∈ A to be a node that is directly connected to b1. So,
for any i1 ∈ A, dGA∪B (i1, b1) ≤ dGA(i1, i

∗) + 1 ≤ d(GA) + 1. Hence, when |B| = 1,
we have d(GA∪B) ≤ d(GA) + |B|.
Second, when |B| has multiple nodes, since GA∪B is connected there is at least
one node b1 that is directly connected to A and thus by the previous case, GA∪{b1}
is connected and thus d(GA∪{b1}) ≤ d(GA) + 1. Similarly, d(GA∪{b1}∪{b2}) ≤
d(GA∪{b1}) + 1 ≤ d(GA) + 2. We can repeat the same analysis can conclude
that d(GA∪B) ≤ d(GA) + |B|.

We have completed the proof of Lemma 3.4.3.

Proof of Lemma 3.4.6

Lemma 3.4.6 : Let J =

[
J11 J

′
M

JM JT

]
be an invertible matrix and h =

[
h1

hT

]
, where

J11 and h1 are scalars, JM is an n-by-n matrix, and JM and hT are n-dimensional

vectors. We denote Σ = J−1=

[
Σ11 Σ

′
M

ΣM ΣT

]
, µ =

[
µ1

µT

]
= J−1h, g = J−1

T JM ,

µT = J−1
T hT , and ΣT = J−1

T . We have that

Σ11 =
(
J11 − J

′
Mg
)−1

(3.74)

µ1 = Σ11

(
h1 − J

′
Mµ

T
)

(3.75)
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and

µT = J−1
T (hT − µ1JM ) (3.76)

ΣT = ΣT + g1Σ11g
′
1. (3.77)

By taking the Schur complement of block JT in J , we have

Σ−1
11 = J11 − J

′
MJ
−1
T JM . (3.78)

Since g = J−1
T JM , we get

Σ11 =
(
J11 − J

′
Mg
)−1

. (3.79)

Using the matrix inversion lemma, we have

ΣT = J−1
T +

(
J−1
T JM

) (
J11 − J

′
MJ
−1
T JM

)−1 (
J−1
T JM

)′
. (3.80)

Substituting g = J−1
T JM , J−1

T = ΣT and (3.79) into 3.80, we have

ΣT = ΣT + g1Σ11g
′
1. (3.81)

From the definition of Σ, we have[
J11 J

′
M

JM JT

][
Σ11 Σ

′
M

ΣM ΣT

]
=

[
1 01×n

0n×1 In×n

]
, (3.82)

where 0n×1 is the all-zero matrix of dimension n×1, 01×n is the all-zero matrix of dimen-
sion 1×n, and In×n is the identity matrix of dimension n×n. By matrix multiplication,
we have

JMΣ11 + JTΣM = 0 (3.83)

and thus

ΣM = −
(
J−1
T JM

)
Σ11. (3.84)

From the definition of µ, we have[
µ1

µT

]
=

[
Σ11 Σ

′
M

ΣM ΣT

][
h1

hT

]
(3.85)
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and thus
µ1 = Σ11h1 + Σ

′
MhT . (3.86)

Substituting (3.84) into (3.86), we have

µ1 = Σ11h1 − Σ11J
′
M

(
J−1
T hT

)
(3.87)

= Σ11

(
h1 − J

′
Mµ

T
)
, (3.88)

where µT = J−1
T hT .

Again by the definition of µ, we have[
J11 J

′
M

JM JT

][
µ1

µT

]
=

[
h1

hT

]
(3.89)

and thus
JMµ1 + JTµT = hT , (3.90)

which gives
µT = J−1

T (hT − µ1JM ) . (3.91)

Therefore, we have completed the proof of Lemma 3.4.6.
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Chapter 4

Sampling Gaussian Graphical

Models Using Subgraph

Perturbations

� 4.1 Introduction

In this chapter, we propose a general framework to convert iterative linear solvers based
on graphical splittings to MCMC samplers by adding a random perturbation at each
iteration. In particular, the algorithm can be thought of as a stochastic version of graph-
based solvers and, in fact, is motivated by the use of embedded trees in [32, 33] for the
computation of the mean of a GGMs. That approach corresponds to decomposing the
graph of the model into a tractable graph1, i.e., one for which sampling is easy (e.g., a
tree), and a “cut” matrix capturing the edges removed to form the tractable subgraph.
The subgraphs used can have any structure for which efficient inference algorithms exist:
for example, tree-structured, low tree-width, or having a small FVS [16]. Much more
importantly, in order to obtain a valid sampling algorithm, we must exercise some care,
not needed or considered for the linear solvers in [32, 33], in constructing the graphical
models corresponding to both the tractable subgraph and to the set of variables involved
in the cut edges.

We give general conditions under which graph-based iterative linear solvers can be
converted into samplers and we relate these conditions to the so-called P-regularity con-
dition [34]. We then provide a simple construction that produces a splitting satisfying

1Here the subgraph is a spanning subgraph, i.e., one that includes all of the vertices and a
subset of all edges.

101



102 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

those conditions. Once we have such a decomposition our algorithm proceeds at each
iteration by generating a sample from the model on the subgraph and then randomly
perturbing it based on the model corresponding to the cut edges. That perturbation
obviously must admit tractable sampling itself and also must be shaped so that the re-
sulting samples of the overall model are asymptotically exact. Our construction ensures
both of these. As was demonstrated in [32, 33], using non-stationary splittings, i.e.,
different graphical decompositions in successive iterations, can lead to substantial gains
in convergence speed. We extend our subgraph perturbation algorithm from stationary
graphical splittings to non-stationary graphical splittings and give theoretical results
for convergence guarantees. We propose an algorithm to select tractable subgraphs for
stationary splittings and an adaptive method for selecting non-stationary splittings.

The authors of [61] have proposed a sampling framework that generalizes and accel-
erates the Gibbs sampler. Previous work in [62] has shown that the Gibbs sampler is a
stochastic version of the Gauss-Seidel iteration for solving learning systems. The sam-
pling algorithm in [61] adds additional noises corresponding to the first or second order
Chebyshev coefficients to accelerate the Gibbs sampler. While the idea of converting
a linear solver to a sampler is also discussed in [61], their work is different from ours
because their algorithm does not consider graph structures in constructing the matrix
splitting that is used (i.e., the sparsity pattern of the base matrix remains the same
without considering any tractable subgraphs). Moreover, when multiple matrix split-
tings are used, the different splittings in [61] have differences only in the Chebyshev
coefficients while in our work, different matrix splittings correspond to different graph
structures.

Formally, the sampling problem considered in this chapter is to efficiently generate
samples from a GGM with underlying distribution N−1(h, J) with given model param-
eters h and J . We consider iterative samplers that produce a sequence of samples x(t)

for t = 1, 2, . . .. An iterative sampling algorithm is correct if the samples converge in
distribution to the target distribution N (µ,Σ) where µ = J−1h and Σ = J−1. If the
process to generate this sequence is Gaussian, then the marginal distribution of each
iteration is fully described by its mean µ(t) and covariance matrix Σ(t). In this case, the
convergence of the sampler is equivalent to µ(t) → µ and Σ(t) → Σ as t→∞.

As we are especially interested in fast convergence to the target distribution, we
need a clear notion of convergence rate. In the study of MCMC samplers, convergence
rate is often measured by the total variation of the sample distribution from the target
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distribution [24]. In this chapter, for convenience, we instead use the Euclidean norm
(denoted by || · ||) of the difference of the means and the Frobenius norm (denoted
by || · ||F ) of the difference of the covariance matrices to measure the deviation of the
sample distribution from the target distribution. It can be shown that for non-degenerate
Gaussian models, the convergence in total variation is equivalent to the convergence in
the model parameters. In particular, we define convergence rate for the mean as

τµ = − ln lim sup
t→∞

‖µ(t+1) − µ‖
‖µ(t) − µ‖

, (4.1)

and convergence rate for the covariance as

τΣ = −1

2
ln lim sup

t→∞

‖Σ(t+1) − Σ‖F
‖Σ(t) − Σ‖F

. (4.2)

� 4.2 Sampling by Subgraph Perturbations with Stationary Graphical Split-

tings

In this section, we introduce our subgraph perturbation sampling framework using sta-
tionary (fixed) splittings. First, we describe the general framework with an arbitrary
graphical splitting followed by theoretical results on convergence. We then describe a
local construction of the splitting that builds up the decomposition as a sum of rank-
one terms corresponding to each of the edges removed from the tractable graph. The
construction of this splitting is simple to perform at run time, leads to very efficient
sampling of the perturbation term required in the sampling algorithm, and ensures
convergence.

� 4.2.1 General Algorithm

Our sampling framework relies on a graph-based matrix splitting. Given the information
matrix J with underlying graph G = (V, E), consider the splitting

J = JT −K, (4.3)

where JT has sparsity corresponding to a tractable subgraph GT = (V, ET ) with ET ⊂ E ,
and K has sparsity corresponding to the graph with edge set E\ET (See Figure 4.1).
Throughout this chapter, we assume that the splittings we consider are all graphical
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splittings, i.e., both JT and K are symmetric matrices corresponding to undirected
graphs.

In [32] this type of splitting (although crucially without one of the further assump-
tions we will make) was proposed for the computation of the mean (but not covariance
or samples). In particular, when JT is non-singular the mean is computed using the
iterative equation

µ(t+1) = J−1
T

(
Kµ(t) + h

)
(4.4)

with the fixed-point solution µ = J−1h. Note that the sequence in (4.4) converges if and
only if ρ(J−1

T K) < 1. For this to be efficient, the computation on the right-hand side
of (4.4) would need to be far simpler than solving for the mean directly, using the full
matrix J . The approach in [32] took JT to have tree structure (so that the computation
in (4.4) has linear complexity), although in principle it is possible to choose JT to have
other graph structures (e.g., as in [63]) that lead to tractable computations. Moreover,
while the approach is not limited to the following, the original idea in [32] and especially
in [33] is simply to “cut” edges from the graph, so that JT is obtained from J simply by
zeroing out the elements corresponding to the cut edges, and −K is the matrix whose
only nonzero elements are the values corresponding to those cut edges.

The high-level idea of our sampling algorithm is to further inject noise into (4.4), so
that the iterative linear solver becomes a stochastic process whose stationary distribution
is the target distribution N−1(h, J). However, the simple idea of constructing K by
copying the elements of J corresponding to cut edges may not be feasible for our sampling
algorithm. Rather, we need to ensure that K is chosen so that JT +K � 0. Assuming
that we have a splitting that satisfies this condition, our iterative sampling algorithm is
given by:

x(t+1) = J−1
T

(
Kx(t) + h + e(t+1)

)
, (4.5)

where the perturbation e(t+1) is a Gaussian random vector, independent of all other
variables, with zero mean and covariance JT + K. The general sampling framework is
summarized in Algorithm 4.2.1.

In the next subsection we provide theoretical results showing that convergence of
the iteration in (4.4) for a graphical splitting is equivalent to the condition JT +K � 0,
which in turn implies that the sampling method in (4.5) is well-defined. We also show
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Figure 4.1: Decomposition of a grid: The grid shown in (a) can be decomposed
into a spanning tree (b) and a graph consisting of the missing edges (c)

that in this case, the sample distribution indeed converges to the correct distribution. In
the last part of this section, we provide a straightforward “local” edge-by-edge method
for constructing such a splitting that also directly yields an efficient generation of the
perturbation e(t+1).
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Algorithm 4.2.1 Sampling by Subgraph Perturbations with Stationary Split-
tings
Input: J , h, and subgraph structure T
Output: samples with the asymptotic distribution N−1(h, J)

1. Form JT and K.

2. Draw an initial sample x(0) from a Gaussian distribution.

3. At each iteration:

(a) Generate an independent sample e(t+1) with zero mean and covari-
ance matrix JT +K.

(b) Compute x(t+1) using the equation

x(t+1) = J−1
T

(
h +Kx(t) + e(t+1)

)
.

� 4.2.2 Correctness and Convergence

In this subsection, we present theoretical results for the general subgraph perturbation
framework. Proposition 4.2.1 and Theorem 4.2.3 establish the correctness of Algorithm
4.2.1 as well as a convergence guarantee. Proposition 4.2.4 and Corollary 4.2.5 give
bounds on the convergence rate.

In general, a matrix splitting A = M − N is called a P-regular splitting if M is
non-singular and MT +N is positive definite [34]. The P-regularity condition has been
proposed in the study of iterative linear solvers as a condition for convergence [34, 64].
In our graphical splitting J = JT −K, since JT is symmetric, the P-regular condition
JTT + K � 0 is precisely the condition that the added noise term in our perturbation
framework is valid, i.e., that it corresponds to a random variable with positive definite
covariance. Therefore, our sampling framework provides a new interpretation of the P-
regularity condition—for graphical splittings as in (4.3), convergence of iterative solvers
as in (4.4) is equivalent to the noise in e(t+1) being valid. It has been shown in [32]
that the necessary and sufficient condition for the embedded tree algorithm to converge
with any initial point is ρ(J−1

T K) < 1. In Proposition 4.2.1 we prove that this condition
is equivalent to the graphical splitting being P-regular, which further guarantees the
validity of the added noise in (4.5).
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Proposition 4.2.1 : Assuming J � 0 and that J = JT −K is a graphical splitting, the
condition ρ(J−1

T K) < 1 is satisfied if and only if the splitting is P-regular, i.e., the added
noise in Algorithm 4.2.1 has a valid covariance matrix JT +K � 0.

The proof of Proposition 4.2.1 is included in Appendix 4.6. The following Lemma
4.2.2 is used in the proof of Theorem 4.2.3, which is our main result in this section. The
proof of Lemma 4.2.2 is also deferred to Appendix 4.6.

Lemma 4.2.2 : Let A and B be square matrices. If 1) A is invertible; 2) A + B is
symmetric and invertible, then Σ = (A + B)−1 is a solution of the equation AΣAT =

BΣBT +AT −B.

The following Theorem 4.2.3 states that for graphical splittings, a convergent linear
solver can be converted to a convergent sampler with the same convergence rate.

Theorem 4.2.3 : For a valid GGM with information matrix J � 0, let J = JT −K be
a graphical splitting. If the corresponding linear solver converges, i.e., ρ(J−1

T K) < 1,
then the sample distribution generated by Algorithm 4.2.1 is guaranteed to converge to
the target distribution and the asymptotic convergence rates τµ for the mean and τΣ for
the covariance are both equal to − ln ρ(J−1

T K).

Proof. From Proposition 4.2.1, we have that JT +K � 0, i.e., the covariance matrix of
the added noise is valid. It can be shown that with the initial sample distribution being
Gaussian, the iterations in Algorithm 4.2.1 generate a sequence of Gaussian samples,
with x(t) having mean µ(t) and covariance matrix Σ(t). From Step 3(b) in Algorithm
4.2.1, we have

µ(t+1) = E
[
x(t+1)

]
= E

[
J−1
T (h + e(t+1) +Kx(t))

]
(4.6)

= J−1
T (h +Kµ(t)). (4.7)

Since ρ(J−1
T K) < 1, the mean µ(t+1) converges to the unique fixed-point µ̂ satisfying

µ̂ = J−1
T (h +Kµ̂) . (4.8)

So µ̂ = (JT − K)−1h = J−1h, and thus µ(t) converges to the exact mean µ = J−1h

with convergence rate τµ = − ln ρ(J−1
T K).
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Now we consider the convergence of the covariance matrix. From Step 3(b) in
Algorithm 4.2.1, we have

Σ(t+1) = Cov
{
x(t+1)

}
(4.9)

= Cov
{
J−1
T (h + e(t+1) +Kx(t))

}
(4.10)

= J−1
T

(
JT +K +KΣ(t)K

)
J−1
T (4.11)

= (J−1
T K)Σ(t)(J−1

T K)T + J−1
T (JT +K)J−1

T . (4.12)

This equation can be rewritten in vector form as

vec(Σ(t+1)) =
[
(J−1
T K)⊗ (J−1

T K)
]

vec(Σ(t)) (4.13)

+vec(J−1
T (JT +K)J−1

T ),

where vec(·) denotes the column vector obtained by stacking all the columns in its
argument and A⊗B denotes the Kronecker product of matrices A and B, i.e.,

A⊗B =


a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 , (4.14)

where A is an m-by-n matrix [aij ]m×n. From [65], ρ
(
(J−1
T K)⊗ (J−1

T K)
)
, the spectral

radius of the matrix (J−1
T K) ⊗ (J−1

T K), is ρ2(J−1
T K) < 1. Hence the iterative equa-

tion (4.13) is guaranteed to converge to a unique fixed-point, denoted by vec(Σ̂), with
asymptotic convergence rate − ln ρ2(J−1

T K) in the Euclidean norm. Hence equation
(4.12) converges to a unique fixed-point matrix Σ̂. By Lemma 4.2.2, the fixed-point
solution Σ̂ = (JT − K)−1 = J−1 is exactly the target covariance matrix. Hence, the
convergence rate τΣ = −1

2 ln ρ2(J−1
T K) = − ln ρ(J−1

T K) since ∀A, ||vec(A)|| = ||A||F .
This completes the proof of Theorem 4.2.3.

We have shown in Theorem 4.2.3 that the convergence rates for both the mean
and the covariance are − ln ρ(J−1

T K). Naturally, we want to choose a splitting with a
small ρ(J−1

T K). This spectral radius is a highly nonlinear function of both JT and K,
and it is useful to have bounds that are simple (and monotonic) functions of K or JT
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alone. The following Proposition 4.2.4 is adapted from Theorem 3 in [32]. For a valid
distribution with J � 0, the condition of K � 0 in Proposition 4.2.4 is sufficient to
ensure JT + K � 0, which guarantees the convergence of Algorithm 4.2.1. In the next
subsection, we provide a local implementation of Algorithm 4.2.1 where the condition
K � 0 is satisfied.

Proposition 4.2.4 : Consider a graphical splitting J = JT −K with J � 0. If K � 0,
then

λmax(K)

λmax(K) + λmax(J)
≤ ρ(J−1

T K) ≤ λmax(K)

λmax(K) + λmin(J)
< 1, (4.15)

where λmax(·) and λmin(·) denote the maximum and the minimum eigenvalues respec-
tively.

Proof. Use Theorem 2.2 in [66] and let µ = 1.

A simpler (and looser) bound that is much easier to compute (and hence can be
used in choosing K) is given in the following Corollary 4.2.5. We define the weight of
the i-th row of K are wi(K) =

∑
j |Kij | and let w(K) = maxiwi(K).

Corollary 4.2.5 : In the same setting as in Proposition 4.2.4, we have ρ(J−1
T K) ≤

w(K)
w(K)+λmin(J) .

Proof. Since K � 0, we have λmax(K) = ρ(K). By Corollary 8.1.18 in [67], we have
that ρ(K) ≤ ρ(K), where K takes the entry-wise absolute values of K. By Corollary
8.1.22 in [67], ρ(K̄) ≤ maxi ΣjK̄ij , so λmax(K) = ρ(K) ≤ ρ(K) ≤ w(K). This corollary
thus follows from Proposition 4.2.4.

� 4.2.3 Efficient Local Implementation

Given a graphical splitting J = JT − K, Algorithm 4.2.1 requires generating noise
vectors e(t) with zero mean and covariance JT + K � 0. Depending on the splitting,
these random noise vectors may be difficult to generate. In this subsection, given a
tractable subgraph T , we provide a method to construct the splitting matrices JT andK
specifically so that the noise vectors e(t) can be constructed efficiently and to guarantee
convergence. Moreover, our construction is entirely local with respect to the graph. In
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this subsection, we focus on the construction of the splitting with a given subgraph and
postpone the selection of subgraphs to Section 4.4.

Let ET denote the set of edges in the subgraph T . We construct K to be sparse
with respect to the subgraph with edge set E\ET as follows. For each (i, j) ∈ E\ET ,

let K(i,j) =

[
|Jij | −Jij
−Jij |Jij |

]
, and let

[
K(i,j)

]
n×n be the n-by-n matrix zero-padded

from K(i,j), i.e., the principal submatrix corresponding to rows (and columns) i and j
of
[
K(i,j)

]
n×n equals K(i,j) while other entries are zero. It can be easily verified that[

K(i,j)
]
n×n � 0. We define K to be the sum of these rank-one matrices as

K =
∑

(i,j)∈E\ET

[
K(i,j)

]
n×n

. (4.16)

The matrix JT is then obtained by

JT = J +K. (4.17)

Note that JT is sparse with respect to T . Moreover, K is positive semi-definite and JT
is positive definite (since J is positive definite for a valid model).

At iteration t + 1 of the algorithm, rather than generating the noise vector e(t+1)

directly, instead we generate a noise vector ẽ(t+1) to be Gaussian with zero mean and co-
variance K, then let x(t+1) be a sample from the Gaussian distribution with information
matrix JT and potential vector Kx(t) + h + ẽ(t+1). Hence we have

x(t+1) = J−1
T (Kx(t) + h + ẽ(t+1)) + n(t+1), (4.18)

where n(t+1) is Gaussian with zero mean and covariance J−1
T . The above procedure is

equivalent to Algorithm 4.2.1 since ẽ(t+1) + JTn
(t+1) is equal in distribution to e(t+1),

whose covariance matrix is JT +K. Note that n(t+1) can be generated efficiently thanks
to the assumption that JT is tractable (e.g., if it is tree-structured, the sample can be
generated by forward sampling). Furthermore, the structure of K allows ẽ(t+1) to be
computed efficiently and locally: For each (i, j) ∈ E\ET , let ẽ(i,j) be a two-dimensional
vector sampled from a zero-mean Gaussian distribution with covariance matrix K(i,j).
Moreover, note that since each of the matrices K(i,j) is rank-one, we can generate each
of the ẽ(i,j) using an independent scalar sample drawn from the standard Gaussian
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distribution N (0, 1) and then multiplying this by the vector [1, -sgn(Jij)]
T
√
|Jij |.We

then obtain ẽ(t+1) by computing

ẽ(t+1) =
∑

(i,j)∈E\ET

[
ẽ(i,j)

]
n
, (4.19)

where
[
ẽ(i,j)

]
n
is the n-dimensional vector zero-padded from ẽ(i,j), i.e., the i-th and j-th

entries of
[
ẽ(i,j)

]
n
take the two entries of ẽ(i,j)and all other entries of

[
ẽ(i,j)

]
n
are zero.

We have that JT + K � 0 from our construction, so this constitutes a P-regular
graphical splitting. Hence according to Proposition 4.2.1 and Theorem 4.2.3, the sample
distribution converges to the target distribution. This local implementation is summa-
rized in Algorithm 4.2.2. The computational complexity of one iteration is CT +O(|EK |),
where CT is the complexity of drawing a sample from the tractable subgraph T and
|EK | = |E| − |ET | is the number of edges missing from JT .

Algorithm 4.2.2 Sampling by Subgraph Perturbations with Local Implementa-
tion
Input: J , h, and T
Output: samples with the asymptotic distribution N−1(h, J)

1. Construct JT and K using (4.16) and (4.17).

2. Draw an initial sample x(0) from a Gaussian distribution.

3. At each iteration:

(a) Generate an independent sample ẽ(t+1) using (4.19).

(b) Generate a sample x(t+1) from N−1(h +Kx(t) + ẽ(t+1), JT ).

� 4.3 Sampling by Subgraph Perturbations with Non-Stationary Graphical

Splittings

In the previous section, we have introduced the subgraph perturbation algorithm with
stationary splittings. It is natural to extend Algorithm 4.2.1 to using multiple subgraphs
for different iterations (i.e., J = JTt − Kt at iteration t), which we refer to as non-
stationary graphical splittings. Using non-stationary graphical splittings for sampling
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is related to using non-stationary graphical splittings for inference (i.e., for computation
of the mean) [32, 33], but the additional constraint JTt + Kt � 0 is needed to ensure
that the added noise at each iteration is valid. In this section, we first summarize our
sampling algorithm using non-stationary graphical splittings in Algorithm 4.3.1 and then
present theoretical results on convergence. The results in this section provide theoretical
foundations for the adaptive selection of the splittings, which will be studied in Section
4.4.

Algorithm 4.3.1 Sampling by Subgraph Perturbations with Non-Stationary
Splittings
Input: J , h
Output: samples with the asymptotic distribution N−1(h, J)

1. Draw an initial sample x(0) from a Gaussian distribution.

2. At each iteration t for t = 1, 2, 3, . . .

(a) Form a graphical splitting J = JTt −Kt, where JTt +Kt � 0.

(b) Generate an independent sample e(t+1) with zero mean and covari-
ance matrix JTt +Kt.

(c) Compute x(t+1) using the equation

x(t+1) = J−1
Tt

(
h +Ktx

(t) + e(t+1)
)
.

The authors in [32] have studied the use of periodic splittings (i.e., using the set
of splittings {J = JTt −Kt}Pt=1 in a periodic manner) for inference as a special case of
using an arbitrary sequence of splittings. In this case, the average convergence rate is
− 1
P

∑P
t=1 ln ρ(J−1

Tt
Kt). While a non-trivial sufficient condition guaranteeing convergence

for a general P is difficult to find, the authors have given a sufficient condition for the
case P = 2. In [33] the inference problem for a GGM is solved by adaptively selecting
the next graphical splitting given the current error residual. The authors have proven
that if a GGM is walk-summable (c.f. [33]), then their algorithm converges to the correct
solution for an arbitrary sequence of splittings where the diagonal of each of the K’s is
fixed to be zero.

In order for our non-stationary perturbation sampler to proceed, the noise covariance



Sec. 4.3. Sampling by Subgraph Perturbations with Non-Stationary Graphical Splittings 113

matrix at each iteration needs to be positive semidefinite (which is equivalent to the P-
regularity condition according to Proposition 4.2.1). Because of this extra constraint,
the conclusions for inference using non-stationary splittings do not directly apply to
sampling. In the following Theorem 4.3.1, we prove that as long as we have the condition
in the theorem, namely that each element in the set of splittings would produce by itself
a convergent stationary perturbation sampler, the use of any arbitrary sequence from
this set (including, of course, periodic selection) also leads to a convergent algorithm.

Theorem 4.3.1 : Consider a finite collection of graphical splittings S = {J = JTi −
Ki}Ni=1. The non-stationary subgraph perturbation sampling algorithm (Algorithm 4.3.1)
converges to the target distribution with an arbitrary sequence of splittings chosen from
S if and only if the stationary sampling algorithm (Algorithm 4.2.1) converges to the
target distribution with each of the splittings in the sequence.

We now state several lemmas prior to proving Theorem 4.3.1. The proofs for these
lemmas are provided in Appendix 4.6.

Lemma 4.3.2 : If J � 0 and the graphical splitting J = JT −K is P-regular, then there
exists ε > 0 such that J −

(
J−1
T K

)T
J
(
J−1
T K

)
� εJ .

Lemma 4.3.3 : For a positive definite matrix J , we define the induced matrix norm
||A||J→J as ||A||J→J = maxu6=0

||Au||J
||u||J , where the vector norm ||u||J is defined by ||u||J =

uTJu.

For a P-regular graphical splitting J = JT−K, Lemma 4.3.3 states that ||J−1
T K||J→J <

1. In general it is not true that ||KJ−1
T ||J→J < 1; however, the following Lemma 4.3.4

establishes that under mild conditions there exists an integer p such that the J-induced
norm of the product

∏p
i=1KiJ

−1

Ti
is less than 1

2 .

Lemma 4.3.4 : Consider J � 0 and a sequence of P-regular graphical splittings {J =

JTut − Kut}∞t=1. If the splittings are chosen from a finite number of distinct graphical
splittings {J = JTi −Ki}Ni=1, then there exists a positive integer p depending only on J
such that

||
p+m−1∏
i=m

(
KuiJ

−1
Tui

)
||J→J <

1

2
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for any positive integer m.

Proof of Theorem 4.3.1

Proof. The necessity is easy to prove since for Algorithm 4.3.1 to proceed, the noise at
each iteration needs to be valid, which implies the convergence with each of the splittings
according to Proposition 4.2.1.

Now we prove the sufficiency. Similarly as in the proof of Theorem 4.2.3, we use
µ(t) and Σ(t) to represent the mean and covariance matrix of the sample distribution at
iteration t. From Step 2 of Algorithm 4.3.1, we can prove that

µ(t+1) − µ = J−1
Tt
Kt

(
µ(t) − µ

)
(4.20)

and
Σ(t+1) − Σ =

(
J−1
Tt
Kt

) (
Σ(t) − Σ

) (
J−1
Tt
Kt

)T
. (4.21)

From Lemma 4.3.3, we have that ||J−1
Tt
Kt||J→J < 1. Since S is a finite collection of

splittings, let σmax = maxi∈S ||J−1
Ti
Ki||J→J<1. Hence

||µ(t) − µ||J = ||
t∏
i=1

(
J−1
Ti
Ki

)(
µ(0) − µ

)
||J (4.22)

≤
t∏
i=1

||J−1
Ti
Ki||J→J ||µ(0) − µ||J (4.23)

≤ σtmax||µ(0) − µ||J . (4.24)

Similarly,

||Σ(t) − Σ||J→J =

∥∥∥∥∥∥
(

t∏
i=1

(
J−1
Ti
Ki

))(
Σ(0) − Σ

)( t∏
i=1

(
J−1
Ti
Ki

))T∥∥∥∥∥∥
J→J

(4.25)

≤

∥∥∥∥∥
t∏
i=1

(
J−1
Ti
Ki

)∥∥∥∥∥
J→J

∥∥∥Σ(0) − Σ
∥∥∥
J→J

∥∥∥∥∥
t∏
i=1

(
KiJ

−1
Ti

)∥∥∥∥∥
J→J

(4.26)

Let p be the integer in Lemma 4.3.4. Then when t > p, we have that
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||Σ(t) − Σ||J→J ≤ σtmax

∥∥∥Σ(0) − Σ
∥∥∥
J→J

C, (4.27)

where C = max{δmax, δ
p−1
max,

1
2} ≥ 0 and δmax = maxi∈S ||KiJ

−1
Ti
||J→J .

For a positive definite symmetric matrix J of finite dimension, there exist 0 <

D1 ≤ D2 such that D1||v||2 ≤ ||v||J ≤ D2||v||2 for any vector v and 0 < C1 ≤ C2

such that C1||A||F ≤ ||A||J→J ≤ C2||A||F for any matrix A. Hence, we have that
||µ(t)−µ||2 ≤ D2

D1
σtmax||µ(0)−µ||2 and ||Σ(t)−Σ||F ≤ C2C

C1
σtmax||Σ(t)−Σ||F . Therefore,

Algorithm 4.3.1 converges using this sequence of splittings. This concludes the proof of
Theorem 4.3.1.

Alternative Proof of Corollary 1 in [33]

One of the main results in [33] states that if the graphical model is walk-summable
then the embedded tree algorithm converges to the correct mean using any sequence
of graphical splittings {J = JTt −Kt} where each JTt corresponds to a tree-structured
graph and each Kt corresponds to the cut edges and has zero diagonal. The original
proof in [33] uses walk-sum diagrams. Here we give an alternative proof using results
presented in this section.2

Proof. Consider the splittings used in [33], where Kt has zero diagonal and the nonzero
off-diagonal entries of Kt take the opposite values of the corresponding entries in J . We
define J∗t = JTt + Kt and thus the entries in J∗t have the same absolute values as the
corresponding entries in J . Since J is walk-summable, we have that J∗t is also walk-
summable by the definition of walk-summability (c.f. [54]). Since walk-summability
implies the validity of a model, we have that J∗t � 0. By Lemma 4.3.3, we have that
||J−1

Tt
Kt||J→J < 1 for all t. Since there are a finite number of different splittings in

this setting, we can show the convergence using the same arguments as in the proof of
Theorem 4.3.1.

2Note that our sampling algorithm requires additional constraints to ensure the validity of
the added noise. It is coincidental that the results in this chapter lead to an alternative proof
of one of the main results in [33].
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� 4.4 The Selection of Tractable Subgraphs

In this section, we discuss the selection of tractable subgraphs. First, we discuss how
to choose graph structures for stationary splittings; then, we propose an algorithm to
adaptively select tractable subgraphs for non-stationary splittings.

� 4.4.1 Select Subgraph Structures for Stationary Splittings

Using Tree-Structured Subgraphs

From the inequalities in Corollary 4.2.5, a heuristic is to choose K with small absolute
edge weights and at the same time ensure the rest of the graph is tree-structured. Hence,
the tree-structured subgraph is encouraged to contain strong edges. An effective method
is to find the maximum spanning tree (MST) with edge weights wij being the absolute
values of the normalized edge weights in J , i.e., wij = |Jij |/

√
JiiJjj . The idea of using

an MST has been discussed in the support graph preconditioner literature [68] as well
as in the studies of the embedded tree algorithm for inference [33]. An MST can be
constructed using Kruskal’s algorithm in O(m log n) time, where m is the number of
edges. This selection procedure is summarized in Algorithm 4.4.1.

Algorithm 4.4.1 Selecting a Tree-Structured Subgraph
Input: J � 0
Output: a tree-structured subgraph T

1. Compute the normalized edge weights wij = |Jij| /
√
JiiJjj for all (i, j) ∈ E.

2. Compute the maximum spanning tree T using edge weights wij.

In our perturbation sampling framework, the tractable subgraphs can be structures
beyond trees. Here we also suggest several other tractable graph structures with existing
efficient inference and sampling algorithms.

Using Subgraphs with Low Tree-width

Graphical models with low tree-width have efficient inference and sampling algorithms
and have been widely studied. We can compute a low tree-width approximation JT to
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J using algorithms such as those in [69, 70, 40].

Using Subgraphs with Small FVSs

As mentioned in Section ??, an FVS is a set of nodes whose removal results in a cycle-
free graph and a pseudo-FVS is a set of nodes that breaks most, but not all, of the
cycles in the graph. The FMP algorithm described in Section ?? provides a tractable
inference algorithm for graphical models with small FVSs. This allows us to consider
a graph with a small FVS as the tractable subgraph in the framework developed in
this chapter. We can first use Algorithm 2.2.1 to select a set of nodes F constituting a
pseudo-FVS for the full graph. Then we compute a MST among the other nodes. We
choose our subgraph to be the combination of nodes F (with all incident edges) as well
as the MST of the remaining graph. Note that even though F is a pseudo-FVS of the
original graph, it is a true FVS of the subgraph, and therefore the algorithm from [16]
and Section ?? provides exact inference. Using this technique, there is a trade-off in
choosing the size of F : a larger set F means more computation per iteration but faster
convergence.

Using Spectrally Sparsified Subgraphs

Many widely used GGMs such as thin-membrane or thin-plate models have diagonally
dominant information matrices. Some recent studies have shown that the graph Lapla-
cian of a dense graph can be well-approximated by the graph Laplacian of graphs with
nearly-linear number of edges [71]. These spectrally sparsified graphs have efficient
inference and sampling algorithms and can also be used as tractable subgraphs.

� 4.4.2 Adaptive Selection of Graph Structures for Non-Stationary Split-

tings

In this subsection, we propose an algorithm to adaptively select the structure of the
subgraphs for non-stationary splittings. We explain our algorithm assuming that each
subgraph is tree-structured, but this algorithm can be extended to other tractable sub-
graphs such as those mentioned in the previous subsection.

From Algorithm 4.3.1, it can be shown that

µ− µ(t+1) = (J−1 − J−1
Tt

)
(
h− Jµ(t)

)
, (4.28)
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which characterizes the residual error for the mean. Similarly, for the sample covariance,
we have

Σ− Σ(t+1) =
(
J−1 − J−1

Tt

) (
J − JΣ(t)J

) (
J−1 − J−1

Tt

)T
. (4.29)

In [33] the authors have proposed an adaptive method using the walk-sum analysis
framework: at each iteration t + 1, choose the MST Tt in (4.28) with weights δ(t)

u,v for
edge (u, v), where

δ(t)
u,v =

(
|h(t)
u |+ |h(t)

v |
) |Ju,v|

1− |Ju,v|
(4.30)

and h(t) = h−Jµ(t).3 This adaptive method significantly improves the speed of conver-
gence for inference compared with using stationary splittings. In our case of sampling,
both the error for the mean and the error for the covariance matrix need to be con-
sidered. However, a similar relaxation for the covariance matrix based on (4.29) is too
computationally costly. Hence, we resort to an auxiliary inference problem with the
same information matrix J and the potential vector h∗ being the all-one vector. At
each iteration of our sampling algorithm, we use the subgraph adaptively selected based
on the auxiliary inference algorithm (i.e., choosing the MST with weight as in (4.30)
but using the potential vector h∗).

� 4.5 Experimental Results

In this section, we present experimental results using our perturbation sampling algo-
rithms with both stationary graphical splittings and non-stationary graphical splittings.
In the first two sets of experiments, we use simulated models on grids of various sizes;
in the third example, we use standard test data of a power network of moderate size;
finally, we present results using a large-scale real example for sea surface temperature
estimation.

� 4.5.1 Motivating Example: 3× 10 Grids

In this motivating example, we consider a simple 3 × 10 grid (Figure 4.2a). In the
simulated models, the model parameters J and h are randomly generated as follows:

3Note that here the matrix J is normalized to have unit diagonal.
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the entries of the potential vector h are generated i.i.d. from a uniform distribution
U [−1, 1]; the sparsity pattern of J is determined by the graph structure and the non-
zero entries of J are also generated i.i.d. from U [−1, 1] with a multiple of the identity
matrix added to ensure J � 0. We compare several sampling algorithms, namely basic
Gibbs sampling, chessboard (red-black) blocked Gibbs sampling (Figure 4.2b), forest
Gibbs sampling (Figure 4.2c, c.f. [29]), and our algorithm using a stationary splitting
(Figure 4.2d) selected with Algorithm 4.4.1 (listed as “1-Tree Perturbation” in Table
4.1). We randomly generate 100 sets of model parameters and compute the asymptotic
convergence rates. The average numbers of iterations (to reduce the covariance error in
half), i.e., the average log2 τΣ, are shown in Table 4.1.

We also study the convergence rates using non-stationary splittings. For each gener-
ated model, we run Algorithm 4.3.1 for 20 iterations and obtain 20 tree-structured sub-
graphs adaptively selected using (4.30). Figure 4.3 shows the first four tree-structured
subgraphs adaptively selected on one of the generated models. We summarize the
asymptotic convergence rates in Table 4.2 for the following six cases: 1) the single
tree that gives the best convergence among the 20 trees4; 2) the worst single tree of the
20 trees; 3) alternating between the best pair of trees (by an exhaustive search among
all pairs of the 20 trees); 4) alternating between the worst pair of trees; 5) using the
first two adaptively selected trees (and alternating between them); and 6) using adap-
tively selected trees at each of the 20 iterations. From the results, we can see that using
different subgraph structures give significantly different performances. On average, the
best single tree can reduce the residual covariance error in half in 6 iterations while the
worst single tree takes 88 iterations. The best combination of two trees gives the best
convergence rate, but is included only as a benchmark, as exhaustive search is not com-
putationally feasible in practice. Using the sequence of adaptively selected trees gives
the second best performance while having much less computational complexity. The
sampling algorithm with non-stationary graphical splittings outperforms its stationary
counterpart even using the best single tree, which demonstrates the advantages of using
non-stationary graphical splittings for sampling.

4The number of all spanning trees of a grid is very large (there are more than 9.41 × 109

spanning trees even for this small 3×10 grid, computed using recursive equations in [72]), which
makes it intractable to do exhaustive search among all spanning trees. In addition, for a fair
comparison with the adaptive method, the single tree is chosen from the 20 adaptively selected
trees.
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(a) (b)

(c) (d)

Figure 4.2: Sampling from a 3× 10 grid using basic Gibbs sampling, chessboard
(red-black) Gibbs sampling, forest Gibbs sampling, and our subgraph perturba-
tion sampling using a stationary splitting. a) Graph structure of the 3× 10 grid;
b) Chessboard (red-black) blocked Gibbs sampling: the set of black nodes and
the set of white nodes form two blocks; c) Forest Gibbs sampling: the set of
black nodes and the set of white nodes form two separate trees. At each itera-
tion of the forest Gibbs sampling, conditioned on one block, the other block is
sampled by forward sampling; d) Subgraph perturbation sampling using a fixed
tree-structured subgraph: the thicker red edges are edges in the tree-structured
subgraph while the thinner blue edges are edges in the cut matrix.

(a) First tree (b) Second tree

(c) Third tree (d) Fourth tree

Figure 4.3: Sampling from a 3× 10 grid using non-stationary splittings. (a)–(d)
show the first four trees adaptively selected using (4.30) on one run.
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Average number of iteration (to reduce
the covariance error in half)

Gibbs 42.842
Chessboard Gibbs 42.842

Forest Gibbs 18.846
1-Tree Perturbation 5.967

Table 4.1: Convergence rates of various sampling algorithms

Average number of iteration (to
reduce the covariance error in

half)
Best single tree of the first 20 trees 5.4365
Worst single tree of the first 20 trees 87.397
Best pair of trees of the first 20 trees 3.6513
Worst pair of trees of the first 20 trees 87.397

The first two trees adaptively selected trees 5.5236
All of the 20 adaptively selected trees 4.9719

Table 4.2: Convergence rates of subgraph perturbation using non-stationary
graphical splittings

� 4.5.2 Using Subgraphs Beyond Trees

In this experiment, we study the convergence rates using different subgraph structures
on grids of various sizes. For each given structure, we randomly generate model pa-
rameters using the same method as in Subsection 4.5.1. We compute the numbers of
iterations needed to achieve an approximating error of ε = 10−5, i.e., the minimum t

such that
∥∥Σ(t) − Σ

∥∥
F
≤ ε. We run the subgraph perturbation algorithm on l-by-l grids

with l ranging from 3 to 30. For each grid, two different subgraphs are used: one is
a tree-structured subgraph, the other is a subgraph with an FVS of size

⌈
log l2

⌉
. For

each size, we repeat the algorithm for 100 sets of random model parameters and the
results shown are averaged over the 100 runs. Since the sizes of the simulated models are
moderate, we are able to compute and compare with the exact solutions. As we can see
from Figure 4.4, our subgraph perturbation algorithm outperforms the Gibbs sampler
and the use of subgraphs with small FVSs gives further improvement on convergence
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Figure 4.4: The performance of subgraph perturbation sampling using various
kinds of subgraphs on grids of size 3-by-3 to 30-by-30. The tractable subgraphs
used include tree-structured graphs and graphs with small FVSs.

� 4.5.3 Power System Network: Standard Test Matrix 494 BUS

In this subsection, we use standard test data from the Harwell-Boeing Sparse Matrix
Collection, which includes standard test matrices arising from a wide variety of scientific
and engineering disciplines. We use the test matrix corresponding to a moderately sized
(494 nodes) power system network6. We first add a multiple of the identity matrix to
make the matrix positive definite and then normalize the matrix to have unit diagonal.
Note that a diagonally dominant covariance matrix is easy to sample from (consider
the extreme case of a diagonal matrix, which corresponds to independent Gaussian

5Note that more computation is involved at each iteration using FMP, but the complexity
grows slowly if, as in this example, we use FVSs of sizes that are logarithmic in the size of the
overall graph.

6The test matrix can be obtained from http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/psadmit/494_bus.html.
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Number of iterations (to
reduce the covariance error in

half)
Gibbs sampling (Gibbs) 32653

Subgraph perturbation with a tree
(Embedded Tree)

3491

Subgraph perturbation sampling with a
1-FVS subgraph (1-FVS)

3452

Subgraph perturbation sampling with a
3-FVS subgraph (3-FVS)

2500

Subgraph perturbation sampling with a
5-FVS subgraph (5-FVS)

1944

Table 4.3: Convergence rates using a single tree and subgraphs with FVS of
various sizes

variables) even with the basic Gibbs sampler, but they do not represent many real
applications. Hence, in order to study the models that are challenging for the Gibbs
sampler or other common algorithms (which is the scenario that we focus on in this
chapter), we add just enough diagonal loading to make the matrix positive definite. We
compare the performances of Gibbs sampling, subgraph perturbation sampling using a
tree-structured subgraph and using subgraphs with FVSs of sizes one, three and five. In
this experiment, we focus on stationary splittings since we are interested in comparing
the performances using different types of subgraphs. The experimental results are shown
in Table 4.3 and Figure 4.5. As these results show, for this problem using a single tree
subgraph reduces the number of iterations needed to achieve 50% error reduction by
almost an order of magnitude, and using a very small size-5 FVS cuts the number down
significantly further.

� 4.5.4 Large-Scale Real Example: Sea Surface Temperature

We also run the algorithm on a large-scale GGM built to estimate the sea surface
temperature (the dataset is publicly available at http://podaac.jpl.nasa.gov/dataset/).
The data are preprocessed to have raw measurements at 720× 1440 different locations.
We construct a grid of 1,036,800 nodes with additional edges connecting the eastmost
and westmost nodes at the same latitudes since they are neighbors geographically. We
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Figure 4.5: Perturbation sampling using various subgraph structures on a power
system network. The normalized error of the sample covariance is defined as
the ratio between the sample covariance error at each iteration and the initial
covariance error.

then remove the nodes that have invalid measurements (most of which correspond to
land areas). We construct a GGM with this underlying structure using the thin-plate
model [1]. Note that because of the significant number of observations, the information
matrix for this model is far better conditioned than the one in the preceding section,
implying that far fewer iterations are needed to reach approximate convergence. The
structure of the resulting model is shown in Figure 4.6a and the tractable subgraph used
for our perturbation sampling algorithm is shown in Figure 4.6b (for clarity, we plot a
much coarser version and omit the edges connecting the eastmost and westmost nodes).
A sample from the posterior distribution after 200 iterations is shown in Figure 4.6c.
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(b) The spanning tree used as a tractable subgraph

(c) Sea surface temperature in degrees (Celsius)

Figure 4.6: Perturbation sampling from a GGM for sea surface temperature esti-
mation
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� 4.6 Appendix for Chapter 4

Proof of Proposition 4.2.1

Proposition 4.2.1 : Assuming J � 0 and that J = JT −K is a graphical splitting, the
condition ρ(J−1

T K) < 1 is satisfied if and only if the splitting is P-regular, i.e., the added
noise in Algorithm 4.2.1 has a valid covariance matrix JT +K � 0.

Proof. We first prove the sufficiency. If JT +K � 0, then 2JT −J � 0 and thus JT � 0.
Hence, J−1

T � 0 has a unique positive definite square root J−
1
2

T � 0. Then we have

0 ≺ J−
1
2

T JJ
− 1

2
T = J

− 1
2

T (JT −K) J
− 1

2
T = I − J−

1
2

T KJ
− 1

2
T . (4.31)

Hence, λi
(
J
− 1

2
T KJ

− 1
2

T

)
< 1, for all i, where λi(·) denotes the i-th eigenvalue of the

argument. From the condition JT +K � 0, we have that

I + J
− 1

2
T KJ

− 1
2

T = J
− 1

2
T (JT +K) J

− 1
2

T � 0, (4.32)

and thus λi(J
− 1

2
T KJ

− 1
2

T ) > −1, for all i. Because J−1
T K = J

− 1
2

T

(
J
− 1

2
T KJ

− 1
2

T

)
J

1
2
T , we

have that J−1
T K has the same eigenvalues as J−

1
2

T KJ
− 1

2
T . Therefore,

∣∣λi (J−1
T K

)∣∣ < 1

for all i and thus ρ(J−1
T K) < 1.

We now prove the necessity. If ρ(J−1
T K) < 1, then I − J−1

T K = J−1
T J has positive

eigenvalues. Since J � 0, J has a unique positive definite square root J−
1
2 � 0, and

thus
0 ≺ J

1
2J−1

T J
1
2 = J

1
2
(
J−1
T J

)
J−

1
2 . (4.33)

So we have J−1
T � 0. Hence JT � 0 has a unique positive definite square root J

1
2
T � 0.

So J−
1
2

T KJ
− 1

2
T has the same eigenvalues as J−1

T K since J−
1
2

T KJ
− 1

2
T = J

1
2
T

(
J−1
T K

)
J
− 1

2
T ,

and thus ρ(J
− 1

2
T KJ

− 1
2

T ) < 1. Hence, I + J
− 1

2
T KJ

− 1
2

T � 0, so

JT +K = J
1
2
T

(
I + J

− 1
2

T KJ
− 1

2
T

)
J

1
2
T � 0. (4.34)

Therefore, J = JT −K is a P-regular splitting.
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Proof of Lemma 4.2.2

Lemma 4.2.2 : Let A and B be square matrices. If 1) A is invertible; 2) A + B is
symmetric and invertible, then Σ = (A + B)−1 is a solution of the equation AΣAT =

BΣBT +AT −B.

Proof. It is equivalent to showing

A(A+B)−1AT = B(A+B)−1BT +AT −B. (4.35)

To do so, consider

LHS = ((A+B)−B) (A+B)−1AT (4.36)

=AT −B(A+B)−1AT (4.37)

=AT −B(A+B)−1
(
(AT +BT )−BT

)
(4.38)

=AT −B(A+B)−1(A+B)T +B(A+B)−1BT (4.39)
(a)
=AT −B +B(A+B)−1BT (4.40)

=RHS, (4.41)

where (a) is due to the assumption that A+B is symmetric.

Proof of Lemma 4.3.2

Lemma 4.3.2 : If J � 0 and the graphical splitting J = JT −K is P-regular, then there
exists ε > 0 such that J −

(
J−1
T K

)T
J
(
J−1
T K

)
� εJ .

Proof. Since J � 0, there exists some δh ≥ δl > 0 such that δhI � J � δlI. Hence,
to prove Lemma 4.3.2, it is sufficient to show that there exists ε̃ > 0 such that J −(
J−1
T K

)T
J
(
J−1
T K

)
≥ ε̃I, which is equivalent to showing that J−

(
J−1
T K

)T
J
(
J−1
T K

)
�

0.
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J −
(
J−1
T K

)T
J
(
J−1
T K

)
� 0 (4.42)

⇔J −
(
I − J−1

T J
)T
J
(
I − J−1

T J
)
� 0 (4.43)

⇔J −
(
J + JJ−1

T JJ−1
T J − 2JJ−1

T J
)
� 0 (4.44)

⇔2JJ−1
T J − JJ−1

T JJ−1
T � 0 (4.45)

(a)⇔
(
J−1JT

)T (
2JJ−1

T J − JJ−1
T JJ−1

T J
) (
J−1JT

)
� 0 (4.46)

⇔2JT − J � 0 (4.47)

⇔JT +K � 0, (4.48)

where (a) is due to that J and JT are both non-singular since J � 0 and JT =
J+(JT +K)

2 � 0.

Proof of Lemma 4.3.3

Lemma 4.3.3 : If J � 0 and J = JT − K is a P-regular graphical splitting, then
||J−1

T K||J→J < 1.

Proof. For any u 6= 0, we have that

(
J−1
T Ku

)T
J
(
J−1
T Ku

)
(4.49)

=uT
((
J−1
T K

)T
J
(
J−1
T K

))
u (4.50)

=uT
((
J−1
T K

)T
J
(
J−1
T K

)
− J

)
u+ uTJu (4.51)

From Lemma 4.3.2, there exist ε > 0 such that
(
J−1
T K

)T
J
(
J−1
T K

)
� (1 − ε)J .

Hence, we have
(
J−1
T Ku

)T
J
(
J−1
T Ku

)
� (1 − ε)uTJu, i.e., ||J−1

T Ku||J � (1 − ε)||u||J .

Thus for any u 6= 0, (J−1
T Ku)

T
J(J−1

T Ku)
uT Ju

≤ (1− ε) < 1. Hence, by the definition of the
J-induced norm, we have that ||J−1

T K||J→J < 1.
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Proof of Lemma 4.3.4

Lemma 4.3.4 : Consider J � 0 and a sequence of P-regular graphical splittings {J =

JTut − Kut}∞t=1. If the splittings are chosen from a finite number of distinct graphical
splittings {J = JTi −Ki}Ni=1, then there exists a positive integer p depending only on J
such that

||
p+m−1∏
i=m

(
KuiJ

−1
Tui

)
||J→J <

1

2
(4.52)

for any positive integer m.

Proof. Since the sequence is arbitrary, without loss of generality, we only need to prove
for m = 1. Since || · ||J→J is an induced norm, there exists 0 < C1 ≤ C2 depending only
on J such that C1||A||F ≤ ||A||J→J ≤ C2||A||F for any square matrix A. From Lemma
4.3.3, ||J−1

Ti
Ki||J→J < 1 for all i. Since there are finitely many distinct splittings, there

exists 0 ≤ σmax < 1 such that ||J−1
Ti
Ki||J→J ≤ σmax < 1 for all i. For induced norms, it

can be shown that ||AB||J→J ≤ ||A||J→J ||B||J→J . Hence, there exists integer p depend-
ing only on J such that ||

∏1
i=p J

−1
Tui
Kui ||J→J ≤

∏1
i=p ||J

−1
Tui
Kui || ≤ σpmax ≤ C1

2C2
. Since

the Frobenius norm is invariant to transposition, we have that ||
∏p
i=1

(
J−1
Tui
Kui

)T
||F =

||
∏1
i=p J

−1
Tui
Kui ||F , and thus

||
p∏
i=1

(
KuiJ

−1
Tui

)
||J→J ≤ C2||

p∏
i=1

(
KuiJ

−1
Tui

)
||F (4.53)

= C2||
1∏
i=p

(
J−1
Tui
Kui

)
||F (4.54)

≤ C2

C1
||

1∏
i=p

(
J−1
Tui
Kui

)
||J→J (4.55)

≤ C2

C1

C1

2C2
(4.56)

=
1

2
. (4.57)

This completes the proof.
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Chapter 5

Learning Gaussian Graphical Models

with Small Feedback Vertex Sets

� 5.1 Introduction

As mentioned in Section 2.2.3, given a GGM with underlying distributionN−1(h, J) and
with an FVS of size k, the marginal means and variances can be calculated exactly with
computational complexity O(k2n) using the FMP algorithm proposed in [16], where
standard BP is employed twice on the cycle-free subgraph among the non-feedback
nodes while a special message-passing protocol is used for the FVS nodes. If we are not
explicitly given an FVS, though the problem of finding an FVS of minimal size is NP-
complete, the authors of [73] have proposed an efficient algorithm with computational
complexity O(min{m log n, n2}), where m is the number of edges, that yields an FVS
at most twice the minimum size (thus the inference complexity is increased only by
a constant factor). As we will see, the complexity of such algorithms is manageable.
Moreover, as our experiments will demonstrate, for many problems, quite modestly sized
FVSs suffice.1

In this chapter, we study the family of GGMs with small FVSs. First in Section
5.2, we will provide some additional analysis of inference (i.e., the computation of the
partition function) for such models, but the main focus in this chapter is ML learning of
models with FVSs of modest size, including identifying the nodes to include in the FVS.
Next in Section 5.3, we investigate the scenario where all of the variables, including
any to be included in the FVS are observed. We provide an algorithm for exact ML

1For models with larger FVSs, approximate inference (obtained by replacing a full FVS by a
pseudo-FVS) can work very well, with empirical evidence indicating that a pseudo-FVS of size
O(log n) gives excellent results.

131
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estimation that, regardless of the maximum degree, has complexity O(kn2 + n2 log n)

if the FVS nodes are identified in advance and polynomial complexity if the FVS is to
be learned and of bounded size. Moreover, we provide an approximate and much faster
greedy algorithm when the FVS is unknown. In Section 5.4, we study the scenario
where the FVS nodes are taken to be latent variables. The structure learning problem
now corresponds to the (exact or approximate) decomposition of an inverse covariance
matrix into the sum of a tree-structured matrix and a low-rank matrix. We propose
an algorithm that iterates between two projections, which can also be interpreted as
alternating low-rank corrections. We prove that even though the second projection
is onto a highly non-convex set, it is carried out exactly, thanks to the properties of
GGMs of this family. We also introduce an accelerated version that can further reduce
the computational complexity to O(kn2 + n2 log n) per iteration. Finally in Section
5.5, we perform experiments using both synthetic data and real data of flight delays to
demonstrate the modeling capacity with FVSs of various sizes.

An important point to note is that the computational complexity of these inference
and learning algorithms depends simply on the FVS size k and the number of nodes n.
There is no loss in generality in assuming that the size-k FVS F is fully connected and
that each of the feedback nodes has edges to every non-feedback node. In particular,
after re-ordering the nodes so that the elements of F are the first k nodes (T = V\F

denotes the set of non-feedback nodes of size n−k), we have that J =

[
JF JTM

JM JT

]
� 0,

where JT � 0 corresponds to a tree-structured subgraph among the non-feedback nodes,
JF � 0 corresponds to a complete graph among the feedback nodes, and all entries of
JM may be non-zero as long as JT − JMJ−1

F JTM � 0 to ensure J � 0. Similarly, the

covariance matrix is denoted as Σ =

[
ΣF ΣT

M

ΣM ΣT

]
= J−1 � 0. We refer to the family

of such models with a given FVS F as QF . Note that in general a graph does not have
a unique FVS and QF include all graphs that have F as one FVS. We refer to the class
of models with some FVS of size at most k as Qk. The family of graphs with FVSs of
size k includes all graphs where there exists an FVS of size k.

� 5.2 Computing the Partition Function of GGMs with Small FVSs

In graphical models, the computation of the partition function (c.f. Section 2.1 for def-
inition) plays an important role in many problems [74]. Previously, various algorithms,
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such as tree decomposition [74], variational methods [75], and Langevin Importance
sampling [76], have been used to compute the partition function. In this section, we
provide a new message-passing algorithm to compute det J , the determinant of J , and
hence the partition function of such a model, with computational complexity O(k2n).

The high-level idea of our algorithm is to factorize the determinant of the whole
model into the product of (a) the determinant of the tree-structured subgraph T ex-
cluding the FVS; and (b) the determinant of the subgraph F̂ including only the FVS
nodes but with modified structure and parameters.2 Factor (a) can be computed using
a tree decomposition method to be described in Lemma 5.2.2; and factor (b) is obtained
by computing the determinant of F̂ directly, where the structure and parameters of
F̂ are obtained using the FMP algorithm. In fact, the first round of LBP in FMP
can be used to compute factor (a) and to obtain F̂ simultaneously. This algorithm is
summarized in Algorithm 5.2.1.

Proposition 5.2.1 states the correctness and the computational complexity of Al-
gorithm 5.2.1. The proof of Proposition 5.2.1 is deferred after we introduce Lemma
5.2.2.

Proposition 5.2.1 : Algorithm 5.2.1 computes det J exactly and the computational com-
plexity is O(k2n).

The following Lemma 5.2.2 provides a factorization of the determinant of a tree-
structured model, where the quantities in each factor can be computed using BP. The
proof of Lemma 5.2.2 is provided in Appendix 5.7.

Lemma 5.2.2 : If the information matrix J � 0 has tree structure T = (V, E), then we
have

det (J)−1 =
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
, (5.1)

where P = J−1.

2In fact, subgraph T corresponds to the submatrix JT and subgraph F̂ corresponds to
JF − JT

MJ
−1
T JM , the Schur complement of JT in J .
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Algorithm 5.2.1 Computing the Partition Function When an FVS Is Given

Input: an FVS F of size k and an n × n information matrix J =

[
JF JTM
JM JT

]
,

where JT has tree structure T with edge set ET .
Output: det J

1. Run standard Gaussian BP on T with information matrix JT to obtain
P Tii =

(
J−1
T

)
ii
for all i ∈ T , P Tij = (J−1

T )ij for all (i, j) ∈ ET , and (gp)i =

(J−1
T hp)i for all i ∈ T and p ∈ F , where hp is the column of JM corresponding

to node p.

2. Compute ĴF with(
ĴF

)
pq

= Jpq −
∑

j∈N (p)∩T

Jpjg
q
j , ∀ p, q ∈ F

3. Compute det ĴF

4. Output

det J =

 ∏
(i,j)∈ET

P Tii P
T
jj −

(
P Tij
)2

P Tii P
T
jj

∏
i∈V

P Tii

−1

det ĴF .

Proof of Proposition 5.2.1

Proof. First, we show that ĴF computed in Step 2 of Algorithm 5.2.1 equals JF −
JTMJ

−1
T JM . We have[

g1 g2 · · · gk
]

= J−1
T

[
h1 h2 · · · hk

]
= J−1

T JM (5.2)

from the definition in Step 1. From Step 2, we find that

ĴF = JF −
[
g1 g2 · · · gk

]T
JT

[
g1 g2 · · · gk

]
(5.3)

= JF −
(
J−1
T JM

)T
JT
(
J−1
T JM

)
(5.4)

= JF − JTMJ−1
T JM . (5.5)



Sec. 5.3. Learning GGMs with Observed FVSs 135

Hence,

det J = det

([
I −JTMJ

−1
T

0 I

])
det

([
JF JTM

JM JT

])
det

([
I 0

−J−1
T JM I

])
(5.6)

= det

([
I −JTMJ

−1
T

0 I

][
JF JTM

JM JT

][
I 0

−J−1
T JM I

])
(5.7)

= det

[
JF − JTMJ

−1
T JM 0

0 JT

]
(5.8)

=
(

det ĴF

)
× (det JT ) , (5.9)

According to Lemma 5.2.2, we have

det (JT )−1 =
∏
i∈V

P Tii
∏

(i,j)∈ET

P Tii P
T
jj −

(
P Tij

)2

P Tii P
T
jj

, (5.10)

which establishes the correctness of Algorithm 5.2.1.
Now we calculate the computational complexity. The first step of Algorithm 5.2.1

has complexity O(n − k) using BP. Step 2 takes O
(
k2(n− k)

)
and the complexity of

Step 3 is O(k3). Finally the complexity of Step 4 is O(n) since T is a tree. The total
computational complexity is thus O(k2n). This completes the proof of Proposition 5.2.1.

Note that if the FVS is not given in advance, we can use the factor-2 approximate al-
gorithm in [73] to obtain an FVS of size at most twice the minimum size with complexity
O(min{m log n, n2}), similarly as how we use the FMP algorithm for inference.

� 5.3 Learning GGMs with Observed FVSs

In this section, we study the problem of recovering a GGM from i.i.d. samples, where
all nodes including the feedback nodes in F are observed. The empirical distribution

p̂(xF ,xT ) is parametrized by the empirical covariance matrix Σ̂ =

[
Σ̂F Σ̂T

M

Σ̂M Σ̂T

]
. We

propose learning algorithms for the following two case: 1) When an FVS of size k
is given, we propose the conditioned Chow-Liu algorithm, which computes the exact
ML estimate efficiently; 2) When no FVS is given a priori, we propose both an exact
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algorithm and a greedy approximate algorithm for computing the ML estimate. In the
following analysis, with a slight abuse of notation, we use q(xA) to denote the marginal
distribution of xA under a distribution q(xV) for any subset A ⊂ V.

� 5.3.1 Case 1: An FVS of Size k Is Given.

According to Proposition 2.4.1 in Section 2.4, the ML learning problem is equivalent to
minimizing the K-L divergence between the empirical distribution and distributions in
the family considered. When a size-k FVS F is given, we have

pML(xF ,xT ) = arg min
q(xF ,xT )∈QF

DKL(p̂(xF ,xT )||q(xF ,xT )). (5.11)

The following Lemma 5.3.1 gives a closed-form expression of the K-L divergence
between two Gaussian distributions. Lemma 5.3.1 is a well-known result and its proof
can be found in texts such as [58].

Lemma 5.3.1 : For two n-dimensional Gaussian distributions p̂(x) = N (x; µ̂, Σ̂) and
q(x) = N (x;µ,Σ), we have

D(p̂||q) =
1

2

(
Tr(Σ−1Σ̂) + (µ− µ̂)TΣ−1 (µ− µ̂)− n ln det

(
Σ−1Σ̂

))
. (5.12)

An immediate implication of Lemma 5.3.1 is that when learning GGMs we always
have that µML = µ̂ if there is no other constraint on the mean. Therefore, in the fol-
lowing analysis of this chapter, without loss of generality, we assume both the empirical
mean and the estimated mean are zero.

The optimization problem of (5.11) is defined on a highly non-convex set QF with
combinatorial structure: indeed, there are (n− k)n−k−2 possible spanning trees among
the subgraph induced by the non-feedback nodes. However, we are still able to solve
Problem (5.11) exactly using the conditioned Chow-Liu algorithm described in Algo-
rithm 5.3.1.3 The intuition behind this algorithm is that even though the entire graph

3Note that the conditioned Chow-Liu algorithm here is different from other variations of the
Chow-Liu algorithm such as in [77] where the extensions are to enforce the inclusion or exclusion
of a set of edges.
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is not tree-structured, the subgraph induced by the non-feedback nodes (which corre-
sponds to the distribution of the non-feedback nodes conditioned on the feedback nodes)
has tree structure, and thus we can find the best tree among the non-feedback nodes
using the Chow-Liu algorithm applied on the conditional distribution. To obtain a con-
cise expression, we also exploit a property of Gaussian distributions: the conditional
information matrix (the information matrix of the conditional distribution) is simply a
submatrix of the whole information matrix and does not depend on the values of the
conditioned variables. Hence, the integration over all variable values is not necessary in
computing the conditional mutual information.

In Step 1 of Algorithm 5.3.1, we compute the conditional covariance matrix using the
Schur complement, and then in Step 2 we use the Chow-Liu algorithm to obtain the best
approximate ΣCL (whose inverse is tree-structured). In Step 3, we match exactly the
covariance matrix among the feedback nodes and the cross-covariance matrix between
the feedback nodes and the non-feedback nodes. For the covariance matrix among the
non-feedback nodes, we add the matrix subtracted in Step 1 back to ΣCL. We denote
the output covariance matrix of Algorithm 5.3.1 as CCL(Σ̂).

Algorithm 5.3.1 The Conditioned Chow-Liu Algorithm
Input: Σ̂ � 0 and an FVS F
Output: EML and ΣML

1. Compute the conditional covariance matrix Σ̂T |F = Σ̂T −
Σ̂M Σ̂−1

F Σ̂T
M .

2. Let ΣCL = CL(Σ̂T |F ) and ECL = CLE(Σ̂T |F ).

3. EML = ECL and ΣML =

[
Σ̂F Σ̂T

M

Σ̂M ΣCL + Σ̂M Σ̂−1
F Σ̂T

M

]
.

The following Proposition 5.3.2 states the correctness and the complexity of Algo-
rithm 5.3.1. The proof of Proposition 5.3.2 is provided after we states Lemma 5.3.3.

Proposition 5.3.2 : Algorithm 5.3.1 computes the ML estimate ΣML with edge set EML

exactly with computational complexity O(kn2 + n2 log n).

We use QF,T to denote the family of distributions with a given FVS F and a fixed
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tree structure T with edge set ET among the non-feedback nodes. The following Lemma
5.3.3 gives a closed-form solution that minimizes the K-L divergence in QF,T .

Lemma 5.3.3 :

min
q∈QF,T

DKL(p̂||q) = −Hp̂(x)+Hp̂(xF )+
∑
i∈V\F

Hp̂(xi|xF )−
∑

(i,j)∈ET

Ip̂(xi;xj |xF ), (5.13)

where the minimum K-L divergence is obtained if and only if: 1) q(xF ) = p̂(xF ); 2)
q(xi, xj |xF , ) = p̂(xi, xj |xF ) for any (i, j) ∈ ET .

The proof of Lemma 5.3.3 is included in Appendix 5.7.

Proof of Proposition 5.3.2

Proof. According to Lemma 5.3.3, the optimal solution of Problem (5.11) is given by
the left hand side (LHS) of (5.13) if we fix the FVS F and the tree structure T . When
we further optimize over all possible spanning trees among the non-feedback nodes,
the optimal set of edges among the non-feedback nodes can be obtained by finding the
maximum spanning tree of the subgraph induced by T with Ip̂(xi;xj |xF ) ≥ 0 being the
edge weight between i and j because all other terms in the LHS of (5.13) are invariant
to the selection of trees.4

For Gaussian distributions, the conditional mutual information is only a function of
the conditional covariance matrix Σ̂T |F = Σ̂T − Σ̂M Σ̂−1

F Σ̂T
M . Hence, finding the optimal

edge set of the tree part is equivalent to running the Chow-Liu algorithm with the input
being the covariance matrix Σ̂T |F . Let ECL = CLE(Σ̂T |F ) and ΣCL = CL(Σ̂T |F ) and
denote the optimal covariance matrix as

ΣML =

[
ΣML
F

(
ΣML
M

)T
ΣML
M ΣML

T

]
. (5.14)

According to Lemma 5.3.3, we must have ΣML
F = Σ̂F . Since T is a spanning tree

among nodes in T , Lemma 5.3.3 implies that for all i ∈ T , q(xF , xi) = p̂(xF , xi). Hence
we also have that ΣML

M = Σ̂M . Furthermore, the corresponding conditional covariance

4In fact, we have given an algorithm to learn general models (not only for GGMs, but also
for other models, e.g., discrete ones) defined on graphs with a given FVS F . However, we do
not explore the general setting in this chapter.
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matrix ΣML
T |F of ΣML must equal ΣCL, i.e.,

ΣML
T |F = ΣML

T − ΣML
M

(
ΣML
F

)−1 (
ΣML
M

)T
= ΣCL. (5.15)

Therefore, we can obtain

ΣML
T = CL(Σ̂T |F ) + Σ̂M Σ̂−1

F Σ̂T
M . (5.16)

We also have that EML = ECL since EML is defined to be the set of edges among the
feedback nodes.

Now we analyze the computational complexity of Algorithm 5.3.1. The matrix Σ̂T |F

is computed with complexity O(kn2). Computing the maximum weight spanning tree
has complexity O(n2 log n) using Kruskal’s algorithm (the amortized complexity can
be further reduced, but it is not the focus of this chapter). Other operations have
complexity O(n2). Hence, the total complexity of Algorithm 5.3.1 is O(kn2 + n2 log n).
We have thus completed the proof of Proposition 5.3.2.

In many situations, computing the information matrix JML = Σ−1
ML is also useful. A

straightforward method is to use direct matrix inversion, but the computational com-
plexity is O(n3). In the following part of this subsection, we describe an algorithm that
can make use of the intermediate results in Algorithm 5.3.1 to compute JML with com-
plexity O(k2n), which is a significant reduction when k is small. Before we introduce
the algorithm we first state Lemma 5.3.4, which provides an algorithm to compute the
inverse of a given covariance matrix in linear time when the underlying model has a
known tree structure. The proof of Lemma 5.3.4 is deferred to Appendix 5.7.

Lemma 5.3.4 : If Σ � 0 is given and we know that its inverse J = Σ−1 is sparse with
respect to a tree T = (V, E), then the non-zero entries of J can be computed using (5.17)
in time O(n).

Jij =


(1− deg(i)) Σ−1

ii +
∑

j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1
i = j ∈ V

Σij

Σ2
ij−ΣiiΣjj

(i, j) ∈ E

0 otherwise.

(5.17)
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Our efficient algorithm to compute JML = (ΣML)−1 is summarized in Algorithm
5.3.2.

Algorithm 5.3.2 Compute JML = (ΣML)−1 After Running Algorithm 5.3.1
Input: ΣML and intermediate results in Algorithm 5.3.1
Output: JML = (ΣML)−1

1. Compute JML
T using (5.17) with ΣCL as the input covariance matrix and ET

as the tree structure.

2. Compute JML
M = −JML

T ΣML
M Σ−1

F using sparse matrix multiplication.

3. Compute
(
ΣML
F

)−1
(
I +

((
ΣML
M

)T
JML
T

) (
ΣML
M

(
ΣML
F

)))
following the order

specified by the parentheses using sparse matrix multiplication.

The following Proposition 5.3.5 states the correctness and the computational com-
plexity of Algorithm 5.3.2. Its proof is provided after we introduce Lemma 5.3.6.

Proposition 5.3.5 : The non-zero entries of JML
∆
= Σ−1

ML can be computed with extra
complexity O(k2n) using Algorithm 5.3.2 after we run Algorithm 5.3.1.

Lemma 5.3.6 : (The Matrix Inversion Lemmas)

If

[
A B

C D

]
is invertible, we have

[
A B

C D

]−1

=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
(5.18)

or[
A B

C D

]−1

=

[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]
,

(5.19)

which implies that

(
A−BD−1C

)−1
= A−1 +A−1B(D − CA−1B)−1CA−1. (5.20)
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The proof of Lemma 5.3.6 can be find in standard texts such as [67].

Proof of Proposition 5.3.5

Proof. According to the proof of Algorithm 5.3.1, we have that JML
T =

(
CL(Σ̂T |F )

)−1

has tree structure T . Hence, according to Lemma 5.3.4, the non-zero entries of JML
T can

be computed with complexity O(n− k) using (5.17).
From (5.19) in Lemma 5.3.6, we have

JML
M = −JML

T ΣML
M

(
ΣML
F

)−1
, (5.21)

which can be computed with complexity O(k2n) by matrix multiplication in the “regular
order”.5 Note that JML

T ΣML
M is computed in O(kn) since JML

T only has O(n) non-zero
entries.

Again, from (5.19), we have

JML
F =

(
ΣML
F

)−1
(
I +

((
ΣML
M

)T
JML
T

) (
ΣML
M

(
ΣML
F

)))
, (5.22)

which has complexity O(k2n) following the order specified by the parentheses. Note
that

(
PML
M

)T
JML
T is computed in O(kn) because JML

T only has O(n) non-zero entries.
Therefore, we only need an extra complexity of O(k2n) to compute all the non-zero
entries of JML. This completes the proof of Proposition 5.3.5.

� 5.3.2 Case 2: The FVS Is to Be Learned

Structure learning becomes more computationally involved when the FVS is unknown.
In this subsection, we present both exact and approximate algorithms for learning mod-
els when an FVS of size no larger than k is to be learned.

For a fixed empirical distribution p̂(xF ,xT ), we define d(F ), a set function of the
FVS F , as the minimum value of (5.11), i.e.,

d(F ) = min
q(xF ,xT )∈QF

DKL(p̂(xF ,xT )||q(xF ,xT )). (5.23)

5In this example, “regular order” means first computing the inverse of ΣML
F and then following

the left-to-right order for matrix multiplication.
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Hence, obtaining the ML estimate in this case is equivalent to solving

min
|F |≤k

d(F ). (5.24)

For any given F , the value of d(F ) can be computed using Algorithm 5.3.1 and then
using (5.13) in Lemma 5.3.3. The ML estimate in this case, i.e., the solution of (5.24)

can be computed exactly by enumerating all possible
(
n

k

)
FVSs of size k to find the

F that minimizes d(F ). Hence, the exact solution can be obtained with complexity
O(nk+2k), which is polynomial in n for fixed k. However, as our empirical results
suggest, choosing k = O(log(n)) works well, leading to quasi-polynomial complexity
even for this exact algorithm. That observation notwithstanding, the following greedy
algorithm (Algorithm 5.3.3), which, at each iteration, selects the single best node to
add to the current set of feedback nodes, has polynomial complexity for arbitrarily large
FVSs. As we will demonstrate in Section 5.5, this greedy algorithm works extremely
well in practice.

Algorithm 5.3.3 Selecting an FVS by a Greedy Approach
Initialization: F0 = ∅
For t = 1 to k,

k∗t = arg min
k∈V \Ft−1

d(Ft−1 ∪ {k}),

Ft = Ft−1 ∪ {k∗t }.

� 5.4 Learning GGMs with Latent FVSs

In this section, we study the structure learning problem when the feedback nodes are

latent variables. Since the information matrix of the entire model is J =

[
JF JTM

JM JT

]
,

the marginal distribution of observed variables (the non-feedback nodes) has information
matrix ĴT = Σ̂−1

T = JT − JMJ−1
F JTM by taking the Schur complement. If the exact ĴT

is known, the learning problem is equivalent to decomposing a given inverse covariance
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matrix ĴT into the sum of a tree-structured matrix JT and a rank-k matrix−JMJ−1
F JTM .6

In general, the observations are noisy and we use the ML criterion:

qML(xF ,xT ) = arg min
q(xF ,xT )∈QF

DKL(p̂(xT )||q(xT )), (5.25)

where the optimization is over all nodes (latent and observed) while the K-L divergence
in the objective function is defined on the marginal distribution of the observed nodes
only. In the following part of this section, we propose the latent Chow-Liu algorithm to
solve (5.25) in Section 5.4.1 and also provide its accelerated version in Section 5.4.2.

� 5.4.1 The Latent Chow-Liu Algorithm

In this subsection, we propose the latent Chow-Liu algorithm, an alternating projec-
tion algorithm that has a similar structure to the EM algorithm and can be viewed as
an instance of the majorization-minimization algorithm [78]. The general form of the
algorithm is summarized in Algorithm 5.4.1.

Algorithm 5.4.1 Alternating Projection

1. Propose an initial distribution q(0)(xF ,xT ) ∈ QF

2. Alternate between projections P1 and P2

(a) P1: Project to the empirical distribution:

p̂(t)(xF ,xT ) = p̂(xT )q(t)(xF |xT ).

(b) P2: Project to the best fitting structure on all variables:

q(t+1)(xF ,xT ) = arg min
q(xF ,xT )∈QF

D(p̂(t)(xF ,xT )||q(xF ,xT )).

In the first projection P1, we obtain a distribution (on both observed and latent
variables) whose marginal (on the observed variables) matches exactly the empirical

6It is easy to see that different models having the same JMJ−1
F JM cannot be distinguished

using the samples, and thus without loss of generality we can assume JF is normalized to be
the identify matrix in the final solution.
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distribution while maintaining the conditional distribution (of the latent variables given
the observed ones). In the second projection P2, we compute a distribution (on all
variables) in the family considered that is the closest to the distribution obtained in the
first projection. We find that among various EM type algorithms, this formulation is
the most revealing for our problems because it clearly relates the second projection to
the scenario where an FVS F is both observed and known (Section 5.3.1). Therefore,
we are able to compute the second projection exactly even though the graph structure is
unknown (which allows any tree structure among the observed nodes). Note that when
the feedback nodes are latent, we do not need to select the FVS since it is simply the
set of latent nodes. This is the source of the simplification when we use latent nodes for
the FVS: We have no search of sets of observed variables to include in the FVS.

The following Lemma 5.4.1 states that the K-L divergence decreases monotonically
using Algorithm 5.4.1 and also provides conditions for stationary points. The proof of
Lemma 5.4.1 is included in Appendix 5.7.

Lemma 5.4.1 : In Algorithm 5.4.1, if Step 2(a) and Step 2(b) can be computed exactly,
then we have that

D(p̂(xT )||q(t+1)(xT )) ≤ D(p̂(xT )||q(t)(xT )), (5.26)

where the equality is satisfied if and only if

p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xT ). (5.27)

In Algorithm 5.4.2, we summarize the latent Chow-Liu algorithm specialized for our
family of GGMs, where both projections have exact closed-form solutions and exhibit
complementary structure—one using the covariance and the other using the information
parametrization. In projection P1, three blocks of the information matrix remain the
same; In projection P2, three blocks of the covariance matrix remain the same.

As a rule of thumb, we often use the spanning tree obtained by the standard Chow-
Liu algorithm as an initial tree among the observed nodes. But note that P2 involves
solving a combinatorial problem exactly, so the algorithm is able to jump among different
graph structures which reduces the chance of getting stuck at a bad local minimum and
gives us much more flexibility in initializing graph structures. In the experiments, we
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Algorithm 5.4.2 The Latent Chow-Liu Algorithm
Input: the empirical covariance matrix Σ̂T

Output: information matrix J =

[
JF JTM
JM JT

]
, where JT is tree-structured

1. Initialization: J (0) =

 J
(0)
F

(
J

(0)
M

)T
J

(0)
M J

(0)
T

.
2. Repeat for t = 1, 2, 3, . . .

(a) P1: Project to the empirical distribution:

Ĵ (t) =

 J
(t)
F (J

(t)
M )T

J
(t)
M

(
Σ̂T

)−1

+ J
(t)
M (J

(t)
F )−1(J

(t)
M )T

.
Define Σ̂(t) =

(
Ĵ (t)
)−1

.

(b) P2: Project to the best fitting structure:

Σ(t+1) =

 Σ̂
(t)
F

(
Σ̂

(t)
M

)T
Σ̂

(t)
M CL(Σ̂

(t)
T |F ) + Σ̂

(t)
M

(
Σ̂

(t)
F

)−1 (
Σ̂

(t)
M

)T


= CCL(Σ̂(t)),

where Σ̂
(t)
T |F = Σ̂

(t)
T − Σ̂

(t)
M

(
Σ̂

(t)
F

)−1 (
Σ̂

(t)
M

)T
.

Define J (t+1) =
(
Σ(t+1)

)−1
.

will demonstrate that Algorithm 5.4.2 is not sensitive to the initial graph structure.
The two projections in Algorithm 5.4.2 can also be interpreted as alternating low-

rank corrections: indeed,

In P1 : Ĵ (t) =

 0 0

0
(

Σ̂T

)−1

+

[
J

(t)
F

J
(t)
M

](
J

(t)
F

)−1
[
J

(t)
F

(
J

(t)
M

)T ]
, (5.28)
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and in P2 : Σ(t+1) =

[
0 0

0 CL(Σ̂T |F )

]
+

[
Σ̂

(t)
F

Σ̂
(t)
M

](
Σ̂

(t)
F

)−1
[

Σ̂
(t)
F

(
Σ̂

(t)
M

)T ]
,

(5.29)

where the second terms of both expressions are of low rank when the size of the latent
FVS is small. This formulation is the most intuitive and simple, but a naive implemen-
tation of Algorithm 5.4.2 has complexity O(n3) per iteration, where the bottleneck is
inverting full matrices Ĵ (t) and Σ(t+1). In Section 5.4.2 to follow, we introduce an accel-
erated version of Algorithm 5.4.2 that can reduce the overall computational complexity
to O(kn2 + n2 log n).

The following Proposition 5.4.2 states the correctness of Algorithm 5.4.2.

Proposition 5.4.2 : Using Algorithm 5.4.2, the objective function of (5.25) decreases
with the number of iterations, i.e.,

DKL(N (0, Σ̂T )||N (0,Σ
(t+1)
T )) ≤ N (0, Σ̂T )||N (0,Σ

(t)
T )), (5.30)

where the equality is obtained if and only if

Σ̂(t) = Σ̂(t+1). (5.31)

Proof of Proposition 5.4.2

Proof. Let p̂(xT ) = N (0, Σ̂T ), p(t)(xF ,xT ) = N (0,Σ(t)). Then,

p̂(xT ) =
1√

det
(

2πΣ̂T

) exp{−1

2
xTT Σ̂−1

T xT }, (5.32)

p(t)(xF |xT ) =
1√

det

(
2π
(
J

(t)

F

)−1
) exp{−1

2

(
xF −

(
J

(t)
F

)−1
J

(t)
M xT

)T
J

(t)
F

(
xF −

(
J

(t)
F

)−1
J

(t)
M xT

)T
}. (5.33)



Sec. 5.4. Learning GGMs with Latent FVSs 147

Applying Algorithm 5.4.1, we have

p̂(t)(xF ,xT ) = p̂(xT )q(t)(xF |xT )

∝ exp{−1

2

[
xF

xT

]T  J
(t)
F

(
J

(t)
M

)T
J

(t)
M Σ̂−1

T + J
(t)
M (J

(t)
F )−1(J

(t)
M )T

[ xF

xT

]
}, (5.34)

which gives the same expression as in P1 of Algorithm 5.4.2.
The next projection

q(t+1)(xF ,xT ) = arg min
q(xF ,xT )∈QF

D(p̂(t)(xF ,xT )||q(xF ,xT )) (5.35)

has same form as the ML learning problem of (5.11) in Section 5.3.1, and therefore can
be computed exactly using Algorithm 5.3.1.

According to Lemma 5.4.1, we then see that

DKL(N (0, Σ̂T )||N (0,Σ
(t+1)
T )) ≤ N (0, Σ̂T )||N (0,Σ

(t)
T )) (5.36)

and Σ̂(t) = Σ̂(t+1) is the necessary and sufficient condition for stationary points.

� 5.4.2 The Accelerated Latent Chow-Liu Algorithm

In this subsection, we describe the accelerated latent Chow-Liu algorithm, which gives
the same results as Algorithm 5.4.2 but has significant speedup. The key idea of this
accelerated version is to carefully incorporate the inference algorithms into the projection
steps, so that we are able to further exploit the power of the models and reduce the
per-iteration complexity to O(kn2 + n2 log n), which is the same as the complexity of
the conditioned Chow-Liu algorithm alone. This accelerated version is summarized in
Algorithm 5.4.3.

The following Proposition 5.4.3 states the correctness and the computational com-
plexity of Algorithm 5.4.3.

Proposition 5.4.3 : Algorithm 5.4.3 has computational complexity O(kn2+n2 log n) and
gives the same results as Algorithm 5.4.2.
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Algorithm 5.4.3 The Accelerated Latent Chow-Liu algorithm
Input: the empirical covariance matrix Σ̂T

Output: information matrix J =

[
JF JTM
JM JT

]

1. Initialization: J (0) =

 J
(0)
F

(
J

(0)
M

)T
J

(0)
M J

(0)
T

.
2. Repeat

(a) AP1: Compute

Σ̂
(t)
F =

(
J

(t)
F

)−1

+
(
Y (t)

)T
Σ̂TY

(t)

Σ̂
(t)
T = Σ̂T

Σ̂
(t)
M = −Σ̂TY

(t),

where Y (t) = Ĵ
(t)
M

(
J

(t)
F

)−1

and Σ̂(t) =

 Σ̂
(t)
F

(
Σ̂

(t)
M

)T
Σ̂

(t)
M Σ̂T

.
(b) AP2: Compute Σ(t+1) and J (t+1)=

(
Σ(t+1)

)−1 from Σ̂(t) using Algo-
rithm 5.3.1 and Algorithm 5.3.2 to obtain:

J (t+1) =

 J
(t+1)
F

(
J

(t+1)
M

)T
J

(t+1)
M J

(t+1)
T

 ,
Σ(t+1) =

 Σ
(t+1)
F

(
Σ

(t+1)
M

)T
Σ

(t+1)
M Σ

(t+1)
T

 .

Proof. In P1 of Algorithm 5.4.2, we have

Ĵ (t) =

 J
(t)
F (J

(t)
M )T

J
(t)
M

(
Σ̂T

)−1
+ J

(t)
M (J

(t)
F )−1(J

(t)
M )T

 . (5.37)

Without explicitly computing Ĵ (t), we can directly compute Σ̂(t) =
(
Ĵ (t)
)−1

as follows.
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Let A = J
(t)
F , B = (J

(t)
M )T , C = Ĵ

(t)
M , and D =

(
Σ̂T

)−1
+ J

(t)
M (J

(t)
F )−1(J

(t)
M )T ).

From (5.19) in Lemma 5.3.6, we have

Σ̂
(t)
F =

(
J

(t)
F

)−1
+
(
J

(t)
F

)−1 (
J

(t)
M

)T
(D − CA−1B)−1Ĵ

(t)
M

(
J

(t)
F

)−1
, (5.38)

Σ̂
(t)
T = (D − CA−1B)−1 = Σ̂T , (5.39)

and
Σ̂

(t)
F =

(
J

(t)
F

)−1
+
(
J

(t)
F

)−1 (
J

(t)
M

)T
Σ̂T Ĵ

(t)
M

(
J

(t)
F

)−1
. (5.40)

Again, from (5.19) in Lemma 5.3.6, we have that

Σ̂
(t)
M = −Σ̂TJ

(t)
M

(
J

(t)
F

)−1
. (5.41)

The equations (5.39)–(5.41) are the same as the equations in AP1 in Algorithm
5.4.3, and thus give the same results as P1 in Algorithm 5.4.2. It can be checked
that the matrix multiplications in equations (5.39), (5.40), and (5.41) have a combined
complexity of O(kn2).

AP2 in Algorithm 5.4.3 can be computed with complexity O(n2k + n2 log n) from
Proposition 5.3.2. Since AP2 in Algorithm 5.4.3 is the same as P2 in Algorithm 5.4.2,
they give exactly the same results.

Therefore, Algorithm 5.4.3 gives the same results as Algorithm 5.4.2 and the com-
plexity of Algorithm 5.4.3 is O(n2k + n2 log n) per iteration. We have thus completed
the proof for Proposition 5.4.3.

� 5.5 Experiments

In this section, we present experimental results for learning GGMs with small FVSs,
observed or latent, using both synthetic data and real data of flight delays.

� 5.5.1 Fractional Brownian Motion: Latent FVS

We consider a fractional Brownian motion (FBM) with Hurst parameterH = 0.2 defined
on the time interval (0, 1]. The covariance function is Σ(t1, t2) = 1

2(|t1|2H + |t2|2H −
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|t1 − t2|2H). Figure 5.1 shows the covariance matrices of approximate models using
spanning trees (learned by the Chow-Liu algorithm), latent trees (learned by the CLRG
and NJ algorithms in [79]) and our latent FVS model (learned by Algorithm 5.4.2) using
64 time samples (nodes). We can see that in the spanning tree the correlation decays
quickly (in fact exponentially) with distance, which models the FBM poorly. The latent
trees that are learned exhibit blocky artifacts and have little or no improvement over the
spanning tree measured in the K-L divergence. In Figure 5.2, we plot the K-L divergence
(between the true model and the learned models using Algorithm 5.4.2) versus the size
of the latent FVSs for models with 32, 64, 128, and 256 time samples respectively. For
these models, we need about 1, 3, 5, and 7 feedback nodes respectively to reduce the
K-L divergence to 25% of that achieved by the best spanning tree model. Hence, we
speculate that empirically k = O(log n) is a proper choice of the size of the latent FVS.
We also study the sensitivity of Algorithm 5.4.2 to the initial graph structure. In our
experiments, for different initial structures, Algorithm 5.4.2 converges to the same graph
structures (that give the K-L divergence as shown in Figure 5.2) within three iterations.

� 5.5.2 Performance of the Greedy Algorithm: Observed FVS

In this experiment, we examine the performance of the greedy algorithm (Algorithm
5.3.3) when the FVS nodes are not latent, i.e., they are observed. For each run, we
construct a GGM that has 20 nodes and an FVS of size three as the true model. We
first generate a random spanning tree among the non-feedback nodes. Then the corre-
sponding information matrix J is also randomly generated: non-zero entries of J are
drawn i.i.d. from the uniform distribution U [−1, 1] with a multiple of the identity ma-
trix added to ensure J � 0. From each generated GGM, we draw 1000 samples and
use Algorithm 5.3.3 to learn the model. For the 100 runs that we have performed, we
recover the true graph structures successfully. Figure 5.3 shows the graphs (and the
K-L divergence) obtained using the greedy algorithm for a typical run. We can see that
we have the most divergence reduction (from 12.7651 to 1.3832) when the first feedback
node is selected (See Figure 5.3b and Figure 5.3c). When the size of the FVS increases
to three (Figure 5.3e), the graph structure is recovered correctly.
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FBM true model: KL=0 Best Spanning Tree: KL=4.055 CLRG: KL=4.007 NJ: KL=8.974 1−FVS: KL=1.881

(a)

FBM true model: KL=0 Best Spanning Tree: KL=4.055 CLRG: KL=4.007 NJ: KL=8.974 1−FVS: KL=1.881

(b)

FBM true model: KL=0 Best Spanning Tree: KL=4.055 CLRG: KL=4.007 NJ: KL=8.974 1−FVS: KL=1.881

(c)

FBM true model: KL=0 Best Spanning Tree: KL=4.055 CLRG: KL=4.007 NJ: KL=8.974 1−FVS: KL=1.881

(d)

FBM true model: KL=0 Best Spanning Tree: KL=4.055 CLRG: KL=4.007 NJ: KL=8.974 1−FVS: KL=1.881

(e)

Figure 5.1: Covariance matrix obtained using various algorithms and structures.
(a) The true model (FBM with 64 time samples); (b) The best spanning tree;
(c) The latent tree learned using the CLRG algorithm in [79]; (d) The latent tree
learned using the NJ algorithm in [79]; (e) The model with a size-one latent FVS
learned using Algorithm 5.4.2. The gray scale is normalized for visual clarity.

� 5.5.3 Flight Delay Model: Observed FVS

In this experiment, we model the relationships among airports for flight delays us-
ing models with observed FVSs (non-latent FVSs). The raw dataset comes from the
Research and Innovative Technology Administration of the Bureau of Transportation
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(d) 256 nodes

Figure 5.2: The relationship between the K-L divergence and the latent FVS size.
All models are learned using Algorithm 5.4.2 with 40 iterations.

Statistics.7 It contains flight information in the U.S. from 1987 to 2008 including in-
formation such as scheduled departure time, scheduled arrival time, departure delay,
arrival delay, cancellation, and reasons for cancellation for all domestic flights in the
U.S. We want to model how the flight delays at different airports are related to each
other using GGMs. First, we compute the average departure delay for each day and
each airport (of the top 200 busiest airports) using data from the year 2008. Note that
the average departure delay does not directly indicate whether an airport is one of the
major airports that has heavy traffic. It is interesting to see whether major airports (es-
pecially those notorious for delays) correspond to feedback nodes in the learned models.

7The data we used in this experiment can be obtained at http://www.transtats.bts.gov/
OT_Delay/OT_DelayCause1.asp
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(e) KL=0.0048

Figure 5.3: Learning a GGM using Algorithm 5.3.3. The thicker blue lines repre-
sent the edges among the non-feedback nodes and the thinner red lines represent
other edges. (a) True model; (b) Tree-structured model (0-FVS) learned from
samples; (c) 1-FVS model; (d) 2-FVS model; (e) 3-FVS model.
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Figure 5.4a shows the best tree-structured graph obtained by the Chow-Liu algorithms
(with input being the covariance matrix of the average delay). Figure 5.4b, Figure 5.5a,
and Figure 5.5b show the GGMs learned using Algorithm 5.3.3 with FVSs of sizes 1,
3, and 10 respectively. It is interesting that the first node selected is Nashville (BNA),
which is not one of the top “hubs” of the air system. The reason is that much of the
statistical relationships related to those hubs are approximated well, when we consider
a 1-FVS approximation, by a spanning tree (excluding BNA) and it is the breaking
of the cycles involving BNA that provide the most reduction in K-L divergence over a
spanning tree. Starting with the next node selected in our greedy algorithm, we begin to
see hubs being chosen. In particular, the first ten airports selected in order are: BNA,
Chicago, Atlanta, Oakland, Newark, Dallas, San Francisco, Seattle, Washington DC,
Salt Lake City. Several major airports on the coasts (e.g., Los Angeles and JFK) are
not selected, as their influence on delays at other domestic airports is well-captured with
a tree structure.

� 5.6 Future Directions

Our experimental results demonstrate the potential of these algorithms, and, as in the
work [16], suggests that choosing FVSs of size O(log n) works well, leading to algorithms
which can be scaled to large problems. Providing theoretical guarantees for this scaling
(e.g., by specifying classes of models for which such a size FVS provides asymptotically
accurate models) is thus a compelling open problem. In addition, incorporating com-
plexity into the FVS-order problem (e.g., as in AIC or BIC) is another direction worthy
of consideration.
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(a) Spanning Tree

(b) 1-FVS GGM

Figure 5.4: GGMs with FVSs of sizes 0 and 1 for modeling flight delays. The red
dots denote the selected feedback nodes and the blue lines represent the edges
among the non-feedback nodes (other edges involving the feedback nodes are
omitted for clarity).
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(a) 3-FVS GGM

(b) 10-FVS GGM

Figure 5.5: GGMs with FVSs of sizes 3 and 10 for modeling flight delays. The
red dots denote the selected feedback nodes and the blue lines represent the edges
among the non-feedback nodes (other edges involving the feedback nodes are
omitted for clarity).
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� 5.7 Appendix for Chapter 5

Proof of Lemma 5.2.2

Lemma 5.2.2 : If the information matrix J � 0 has tree structure T = (V, E), then we
have

det (J)−1 =
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
, (5.42)

where P = J−1.

Proof. Without loss of generality, we assume the means are zero. For any tree-structured
distribution p(x) with underlying tree T , we have the following factorization according
to Proposition 2.1.1.

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈ET

p(xi, xj)

p(xi)p(xj)
. (5.43)

For a GGM of n nodes, the joint distribution, the singleton marginal distributions,
and the pairwise marginal distributions can be expressed as follows.

p(x) =
1

(2π)
n
2 (det J)−

1
2

exp{−1

2
xTJx} (5.44)

p(xi) =
1

(2π)
1
2Pii

1
2

exp{−1

2
xTP−1

ii x} (5.45)

p(xi, xj) =
1

2π

(
det

[
Pii Pij

Pji Pjj

]) 1
2

exp{−1

2
xT

[
Pii Pij

Pji Pjj

]−1

x}. (5.46)

Matching the normalization factors using (5.43), we obtain

det (J)−1 =
∏
i∈V

Pii
∏

(i,j)∈E

det

[
Pii Pij

Pji Pjj

]
PiiPjj

(5.47)

=
∏
i∈V

Pii
∏

(i,j)∈E

PiiPjj − P 2
ij

PiiPjj
. (5.48)
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This completes the proof of Lemma 5.2.2.

Proof of Lemma 5.3.3

Lemma 5.3.3 :

min
q∈QF,T

DKL(p̂||q) = −Hp̂(x)+Hp̂(xF )+
∑
i∈V\F

Hp̂(xi|xF )−
∑

(i,j)∈ET

Ip̂(xi;xj |xF ), (5.49)

where the minimum K-L divergence is obtained if and only if: 1) q(xF ) = p̂(xF ); 2)
q(xi, xj |xF , ) = p̂(xi, xj |xF ) for any (i, j) ∈ ET .

Proof. With fixed F and T ,

DKL(p̂||q) =

ˆ
p̂(x) log

p̂(x)

q(x)
dx (5.50)

= −Hp̂(x)−
ˆ
p̂(x) log q(x)dx (5.51)

= −Hp̂(x)−
ˆ
p̂(x) log (q(xF )q(xT |xF )) dx (5.52)

(a)
= −Hp̂(x)−

ˆ
p̂(x) log

q(xF )q(xr|xF )
∏

i∈V\F\r

q(xi|xF ,xπ(i))

 dx (5.53)

= −Hp̂(x)−
ˆ
p̂(xF ) log q(xF )dxF −

ˆ
p̂(xF ,xr) log q(xr|xF )dxFdxr

−
∑

i∈V\F\r

ˆ
p̂(xF ,xπ(i),xi) log q(xi|xF ,xπ(i))dxFdxπ(i)dxi (5.54)

(b)
= −Hp̂(x) +Hp̂(xF ) +D(p̂F ||qF ) +Hp̂(xr|xF ) +D(p̂r|F ||qr|F |p̂F )

+
∑

i∈V \F\r

Hp̂(xi|xF,π(i)) +D(p̂i|F,r||qi|F,r|p̂F,r) (5.55)

(c)

≥ −Hp̂(x) +Hp̂(xF ) +Hp̂(xr|xF ) +
∑

i∈V \F\r

Hp̂(xi|xF,π(i)), (5.56)

where (a) is obtained by using Factorization 1 in Proposition 2.1.1 with an arbitrary root
node r; (b) can be directly verified using the definition of the information quantities, and
the equality in (c) is satisfied when qF = p̂F , qr|F = p̂r|F , and qi|F,π(i) = p̂i|F,π(i), ∀i ∈
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T\r, or equivalently when

q(xF ) = p̂(xF ) (5.57)

q(xi, xj |xF ) = p̂(xi, xj |xF ), ∀(i, j) ∈ ET . (5.58)

Next, we derive another expression for (5.56). By substituting (5.58) into Factor-
ization s of Proposition 2.1.1, we have

q∗(x) = p̂(xF )
∏
i∈T

p̂(xi|xF )
∏

(i,j)∈ET

p̂(xi,xj |xF )

p̂(xi|xF )p̂(xj |xF )
. (5.59)

Hence,

min
q∈QF,T

D(p̂||q) = D(p̂||q∗)

−Hp̂(x) +Hp̂(xF ) +
∑
i∈V \F

Hp̂(xi|xF ) (5.60)

+
∑

(i,j)∈ET

ˆ
p̂F,i,j(xF ,xi,xj) log

p̂(xi,xj |xF )

p̂(xi|xF )p̂(xj |xF )
dxFdxidxj (5.61)

= Hp̂(x) +Hp̂(xF ) +
∑
i∈V \F

Hp̂(xi|xF ) (5.62)

−
∑

(i,j)∈ET

ˆ
p̂F,i,j(xF ,xi,xj) log

p̂(xi|xF )p̂(xj |xF )

p̂(xi,xj |xF )
dxFdxidxj (5.63)

= −Hp̂(x) +H(p̂F ) +
∑
i∈V\F

H(p̂i|F |xF )−
∑

(i,j)∈ET

Ip̂(xi;xj |xF ). (5.64)

This completes the proof of Lemma 5.3.3.

Proof of Lemma 5.3.4

Lemma 5.3.4 : If Σ � 0 is given and we know that its inverse J = Σ−1 is sparse with
respect to a tree T = (V, E), then the non-zero entries of J can be computed using (5.65)
in time O(n).
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Jij =


(1− deg(i)) Σ−1

ii +
∑

j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1
i = j ∈ V

Σij

Σ2
ij−ΣiiΣjj

(i, j) ∈ E

0 otherwise.

(5.65)

Proof. Since Σ � 0, we can construct a Gaussian distribution p(x) with zero mean and
covariance matrix Σ. The distribution is tree-structured because J = Σ−1 has tree
structure T . Hence, we have the following factorization according to Proposition 2.1.1.

p(x) =
∏
i∈V

p(xi)
∏

(i,j)∈E

p(xi, xj)

p(xi)p(xj)
, (5.66)

where

p(x) =
1

(2π)
n
2 (det J)−

1
2

exp{−1

2
xTJx} (5.67)

p(xi) =
1

(2π)
1
2Pii

1
2

exp{−1

2
xTΣ−1

ii x} (5.68)

p(xi, xj) =
1

2π

(
det

[
Σii Σij

Σji Σjj

]) 1
2

exp{−1

2
xT

[
Σii Σij

Σji Σjj

]−1

x}. (5.69)

By matching the quadratic coefficients in the exponents, we have that

Jii = Σ−1
ii +

∑
j∈N (i)

[ Σii Σji

Σij Σjj

]−1


11

− Σ−1
ii

 (5.70)

= (1− deg(i)) Σ−1
ii +

∑
j∈N (i)

(
Σii − ΣijΣ

−1
jj Σji

)−1
(5.71)

and for (i, j) ∈ E ,

Jij =

[ Σii Σij

Σji Σjj

]−1


12

(5.72)

=
Σij

Σ2
ij − ΣiiΣjj

(5.73)
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The complexity of computing Jij for each (i, j) ∈ E is O(1) and the complexity of
computing each Jii is O(deg i). Since Σi∈V deg(i) equals twice the number of edges,
which is O(n), the total computational complexity is O(n). This completes the proof
of Lemma 5.3.4.

Proof of Lemma 5.4.1

Lemma 5.4.1 : In Algorithm 5.4.1, if Step 2(a) and Step 2(b) can be computed ex-
actly, then we have that D(p̂(xT )||q(t+1)(xT )) ≤ D(p̂(xT )||q(t)(xT )), where the equality
is satisfied if and only if p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xT ).

Proof. For any t,

D(p̂(t)(xT ,xF )||q(t)(xF ,xT )) (5.74)

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )q(t)(xF |xT )

q(t)(xF ,xT )
dxFdxT (5.75)

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )

q(t)(xT )
dxFdxT (5.76)

=

ˆ
xT

p̂(xT ) log
p̂(xT )

q(t)(xT )
dxT (5.77)

=D(p̂(t)(xT )||q(t)(xT )) (5.78)

By the definition of q(t+1) in step (b), we have

D(p̂(xT ,xF )||q(t+1)(xF ,xT )) ≤ D(p̂(t)(xT ,xF )||q(t)(xF ,xT )). (5.79)

Therefore,

D(p̂(xT )||q(t)(xT )) (5.80)
(a)
=D(p̂(t)(xT ,xF )||q(t)(xF ,xT )) (5.81)
(b)

≥D(p̂(t)(xT ,xF )||q(t+1)(xF ,xT )) (5.82)
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=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )q(t)(xF |xT )

q(t+1)(xF ,xT )
dxFdxT (5.83)

=

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
p̂(xT )

q(t+1)(xT )
dxFdxT

+

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
q(t)(xF |xT )

q(t+1)(xF |xT )
dxFdxT (5.84)

=

ˆ
xT

p̂(xT ) log
p̂(xT )

q(t+1)(xT )
dxFdxT

+

ˆ
xT ,xF

p̂(xT )q(t)(xF |xT ) log
q(t)(xF |xT )p̂(xT )

q(t+1)(xF |xT )p̂(xT )
dxFdxT (5.85)

=D(p̂(xT )||q(t+1)(xT )) +

ˆ
xT ,xF

p̂(t)(xF ,xT ) log
p̂(t)(xF ,xT )

p̂(t+1)(xF ,xT )
dxFdxT (5.86)

=D(p̂(xT )||q(t+1)(xT )) +D(p̂(t)(xF ,xT )||p̂(t+1)(xF ,xT )) (5.87)
(c)

≥D(p̂(xT )||q(t+1)(xT )), (5.88)

where (a) is due to (5.78), (b) is due to (5.79), and (c) is due to that

D(p̂(t)(xF ,xT )||p̂(t+1)(xF ,xT )) ≥ 0. (5.89)

Therefore, we always have D(p̂(xT )||q(t)) ≥ D(p̂(xT )||q(t+1)).
A necessary condition for the objective function to remain the same is that

D(p̂(t)(xF ,xT )||p̂(t+1)(xF ,xT )) = 0, (5.90)

which is equivalent to p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xF ).
When p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xF ), under non-degenerate cases, we have

q(t)(xF ,xT ) = q(t+1)(xF ,xT ) (5.91)

according to P2 of Algorithm 5.4.1 and thus a stationary point is reached.
Therefore, p̂(t)(xF ,xT ) = p̂(t+1)(xF ,xF ) is a necessary and sufficient condition for

the objective function to remain the same. This completes the proof for Lemma 5.4.1.



Chapter 6

Conclusion

The central theme of this thesis is providing efficient solutions to some challenging
problems in probabilistic graphical models which characterize the interactions among
random variables. In this chapter, we conclude this thesis by summarizing the main
contributions and suggesting some future research directions.

� 6.1 Summary of Contributions

Recursive Feedback Message Passing for Distributed Inference

Inference problems for graphical models have become more and more challenging with
the increasing popularity of very large-scale models. In particular, a purely distributed
algorithm is of great importance since centralized computations are often inefficient,
expensive, or impractical. In Chapter 3, we have proposed such a distributed algorithm
called recursive FMP to perform inference in GGMs. Recursive FMP extends the pre-
viously developed hybrid FMP algorithm by eliminating the centralized communication
and computation among the feedback nodes. In recursive FMP, nodes identify their
own status (e.g., whether they behave like feedback nodes) in a distributed manner. We
have shown that in recursive FMP the accuracy of the inference results are consistent
with hybrid FMP while allowing much more flexibility, as different parts of the graph
may use different subsets of feedback nodes. Furthermore, we have analyzed the results
obtained by recursive FMP using the walk-sum framework and provided new walk-sum
interpretations for the intermediate results and the added correction terms.
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Sampling Gaussian Graphical Models Using Subgraph Perturbations

Efficient sampling from GGMs has become very useful not only in modeling large-scale
phenomena with underlying Gaussianity, but also in statistical models where a GGM
is one of several interacting components. In Chapter 4, we have proposed a general
framework for converting subgraph-based iterative solvers to samplers with convergence
guarantees. In particular, we have provided a construction where the injected noise
at each iteration can be generated simply using a set of i.i.d. scalar Gaussian random
variables. Moreover, we have also extended the perturbation sampling algorithm from
stationary graphical splittings to non-stationary graphical splittings since using multiple
subgraphs often gives much better convergence than using any of the individual sub-
graphs. Furthermore, we have studied the use of different kinds of tractable subgraphs
and provided an algorithm to adaptively select the subgraphs based on an auxiliary
inference problem.

Learning Gaussian Graphical Models with Small Feedback Vertex Sets

In general, a larger family of graphs represent a larger collection of distributions (and
thus can better approximate arbitrary empirical distributions), but often lead to com-
putationally expensive inference and learning algorithms. Hence, it is important to
study the trade-off between modeling capacity and efficiency. In Chapter 5, we have
studied the family of GGMs with small FVSs and presented several learning algorithms
for different cases. For the case where all of the variables are observed, including any
to be included in the FVS, we provided an efficient algorithm for exact ML estimation.
In addition, we have given an approximate and much faster greedy algorithm for this
case when the FVS is unknown and large. For a second case where the FVS nodes are
taken to be latent variables, we showed the equivalence between the structure learning
problem and the (exact or approximate) decomposition of an inverse covariance ma-
trix into the sum of a tree-structured matrix and a low-rank matrix. For this case, we
proposed an alternating low-rank projection algorithm for model learning and proved
that even though the projections are onto a highly non-convex set, they are carried out
exactly, thanks to the properties of GGMs of this family. Furthermore, we performed
experiments using both synthetic data and real data of flight delays to demonstrate the
modeling capacity with FVSs of various sizes.
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� 6.2 Future Research Directions

Recursive Feedback Message Passing for Distributed Inference

The theoretical results we have presented in Chapter 3 have assumed that the local
capacity and the effective diameters are sufficiently large. However, in practice, the
local capacity and the effective diameters are often small due to the constraints on local
resources and computational power. It is of interest to seek additional theoretical results
on the convergence and accuracy in such cases. This is a challenging problem because
of the complex and heterogeneous message behaviors. Moreover, the algorithms and
analysis in Chapter 3 are presented assuming the underlying distributions are Gaussian.
In many applications of interest, the random variables of interest are non-Gaussian
(e.g., in Ising models). In such a setting, the idea of using a special message-passing
protocol for a special set of nodes can still apply, leading to a hybrid message-passing
algorithm similar to standard FMP. However, it is still an open problem to develop a
purely distributed algorithm where all node use the same integrated protocol.

Sampling Gaussian Graphical Models Using Subgraph Perturbations

In Chapter 4, we have discussed the use of different families of tractable subgraphs.
Using subgraphs in a richer family (e.g., the family of graphs with small FVSs compared
with the family of tree-structured graphs) increases the computational complexity per
iteration while reducing the number of iterations required for convergence. It is of
interest to obtain more theoretical results on this trade-off, which may lead to new
adaptive selection criteria that can choose graphs across different model families.

Learning Gaussian Graphical Models with Small Feedback Vertex Sets

In Chapter 5, our experimental results have demonstrated the potential of the pro-
posed learning algorithms, and, as in the work [16], suggests that choosing FVSs of
size O(log n) works well, leading to algorithms which can be scaled to large problems.
Providing theoretical guarantees for this scaling (e.g., by specifying classes of models for
which such a size FVS provides asymptotically accurate models) is a compelling open
problem. In addition, incorporating complexity into the FVS-order problem (e.g., as in
AIC or BIC) is another direction worthy of consideration.
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