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Abstract

There is much interest in the Hierarchical Dirichlet Process Hidden Markov Model
(HDP-HMM) as a natural Bayesian nonparametric extension of the ubiquitous Hidden
Markov Model for learning from sequential and time-series data. However, in many
settings the HDP-HMM’s strict Markovian constraints are undesirable, particularly if
we wish to learn or encode non-geometric state durations. We can extend the HDP-
HMM to capture such structure by drawing upon explicit-duration semi-Markovianity,
which has been developed in the parametric setting to allow construction of highly
interpretable models that admit natural prior information on state durations.

In this thesis we introduce the explicit-duration Hierarchical Dirichlet Process Hid-
den semi-Markov Model (HDP-HSMM) and develop posterior sampling algorithms
for efficient inference. We also develop novel sampling inference for the Bayesian ver-
sion of the classical explicit-duration Hidden semi-Markov Model. We demonstrate
the utility of the HDP-HSMM and our inference methods on synthetic data as well as
experiments on a speaker diarization problem and an example of learning the patterns
in Morse code.

Thesis Supervisor: Alan S. Willsky
Title: Edwin Sibley Webster Professor of Electrical Engineering
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Chapter 1

Introduction

Given a set of sequential data in an unsupervised setting, we often aim to infer mean-

ingful states, or “topics,” present in the data along with characteristics that describe

and distinguish those states. For example, in a speaker diarization (or who-spoke-

when) problem, we are given a single audio recording of a meeting and wish to infer

the number of speakers present, when they speak, and some characteristics governing

their speech patterns [2]. In analyzing DNA sequences, we may want to identify and

segment region types using prior knowledge about region length distributions [7, 12].

Such learning problems for sequential data are pervasive, and so we would like to

build general models that are both flexible enough to be applicable to many domains

and expressive enough to encode the appropriate information.

Hidden Markov Models (HMMs) have proven to be excellent general models for

approaching such learning problems in sequential data, but they have two significant

disadvantages: (1) state duration distributions are necessarily restricted to a geomet-

ric form that is not appropriate for many real-world data, and (2) the number of

hidden states must be set a priori so that model complexity is not inferred from data

in a Bayesian way.

Recent work in Bayesian nonparametrics has addressed the latter issue. In partic-

ular, the Hierarchical Dirichlet Process HMM (HDP-HMM) has provided a powerful

framework for inferring arbitrarily large state complexity from data [14]. However,

the HDP-HMM does not address the issue of non-Markovianity in real data. The
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Markovian disadvantage is even compounded in the nonparametric setting, since non-

Markovian behavior in data can lead to the creation of unnecessary extra states and

unrealistically rapid switching dynamics [2].

One approach to avoiding the rapid-switching problem is the Sticky HDP-HMM

[2], which introduces a learned self-transition bias to discourage rapid switching. In-

deed, the Sticky model has demonstrated significant performance improvements over

the HDP-HMM for several applications. However, it shares the HDP-HMM’s restric-

tion to geometric state durations, thus limiting the model’s expressiveness regarding

duration structure. Moreover, its global self-transition bias is shared among all states,

and so it does not allow for learning state-specific duration information. The infinite

Hierarchical HMM [5] induces non-Markovian state durations at the coarser levels

of its state hierarchy, but even the coarser levels are constrained to have a sum-of-

geometrics form, and hence it can be difficult to incorporate prior information.

These potential improvements to the HDP-HMM motivate the investigation into

explicit-duration semi-Markovianity, which has a history of success in the paramet-

ric setting (e.g. [16]). In this thesis, we combine semi-Markovian ideas with the

HDP-HMM to construct a general class of models that allow for both Bayesian non-

parametric inference of state complexity as well as incorporation of general duration

distributions. In addition, the sampling techniques we develop for the Hierarchical

Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) provide new approaches

to inference in HDP-HMMs that can avoid some of the difficulties which result in slow

mixing rates.

The remainder of this thesis is organized as follows. In Chapter 2, we provide

background information relevant to this thesis. In particular, we describe HMM

modeling and the salient points of Bayesian learning and inference. We also provide

a description of explicit-duration HSMMs and existing HSMM message-passing algo-

rithms, which we use to build an efficient Bayesian inference algorithm in the sequel.

Chapter 2 also provides background on the nonparametric priors and inference tech-

niques we use to extend the classical HSMM: the Dirichlet Process, the Hierarchical

Dirichlet Process, and the Hierarchical Dirichlet Process Hidden Markov Model.
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In Chapter 3 we develop new models and inference methods. First, we develop a

Gibbs sampling algorithm for inference in Bayesian constructions of finite HSMMs.

Next, we describe the HDP-HSMM, which combines Bayesian nonparametric priors

with semi-Markovian expressiveness. Finally, we develop efficient Gibbs sampling

algorithms for inference in the HDP-HSMM, including both a collapsed sampler, in

which we analytically marginalize over the nonparametric Dirichlet Process priors,

and a practical approximate blocked sampler based on the standard weak-limit ap-

proximation to the Dirichlet Process.

Chapter 4 demonstrates the effectiveness of the HDP-HSMM on both synthetic

and real data using the blocked sampling inference algorithm. In synthetic exper-

iments, we demonstrate that our sampler mixes very quickly on data generated by

both HMMs and HSMMs and accurately learns parameter values and state cardinal-

ity. We also show that while an HDP-HMM is unable to capture the statistics of an

HSMM-generated sequence, we can build HDP-HSMMs that efficiently learn whether

data were generated by an HMM or HSMM. Next, we present an experiment on Morse

Code audio data, in which the HDP-HSMM is able to learn the correct state primi-

tives while an HDP-HMM confuses short- and long-tone states because it is unable to

incorporate duration information appropriately. Finally, we apply the HDP-HSMM

to a speaker diarization problem, for which we achieve competitive performance and

rapid mixing.

In Chapter 5 we conclude the thesis and discuss some avenues for future investi-

gation.

9
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Chapter 2

Background

2.1 Bayesian Hidden Markov Models (HMMs)

The Hidden Markov Model is a general model for sequential data. Due to its versatil-

ity and tractability, it has found wide application and is extensively treated in both

textbooks, including [1], and tutorial papers, particularly [10]. This section provides

a brief introduction to the HMM, with emphasis on the Bayesian treatment.

2.1.1 Model Specification

The core of the HMM consists of two layers: a layer of hidden state variables and a

layer of observation or emission variables. The relationships between the variables in

both layers is summarized in the graphical model in Figure 2-1. Each layer consists

of a sequence of random variables, and the indexing corresponds to the sequential

aspect of the data (e.g. time indices).

The hidden state sequence, x = (xt)
T
t=1 for some length T ∈ N, is a sequence of

random variables on a finite alphabet, i.e. xt ∈ X = [N ] , {1, 2, . . . , N}, that forms

a Markov chain:

∀t ∈ [T − 1] p(xt+1|x1, x2, . . . , xt) = p(xt+1|xt). (2.1)

Thus, if the indices are taken to be time indices, the state variable summarizes the
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. . .

x1 x2 x3 x4 xT

y1 y2 y3 y4 yT

Figure 2-1: Basic graphical model for the HMM. Parameters for the transition, emis-
sion, and initial state distributions are not shown as random variables, and thus this
diagram is more appropriate for a Frequentist framework.

relevant history of the process in the sense that the future is statistically independent

of the past given the present. It is the Markovian assumption that is at the heart of

the simplicity of inference in the HMM: if the future were to depend on more than

just the present, computations of interest would be more complex.

It is necessary to specify the conditional relationship between sequential hidden

states via a transition distribution p(xt+1|xt, π), where π represents parameters of

the conditional distribution. Since the states are taken to be discrete in an HMM

(as opposed to, for example, a linear dynamical system), the transition distribution

is usually multinomial and is often parameterized by a row-stochastic matrix π =

(πij)
N
i,j=1 where πij = p(xt+1 = j|xt = i) and N is the a priori fixed number of

possible states. The ith row gives a parameterization of the transition distribution

out of state i, and so it is natural to think of π in terms of its rows:

π =











π1

π2

...

πN











(2.2)

We also must specify an initial state distribution, p(x1|π0), where the π0 parameter

is often taken to be a vector directly encoding the initial state probabilities. We will

use the notation {πi}
N
i=0 to collect both the transition and initial state parameters

into a single set, though we will often drop the explicit index set.

The second layer of the HMM is the observation (or emission) layer, y = (yt)
T
t=1.
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However, the variables do not form a Markov chain. In fact, there are no marginal in-

dependence statements for the observation variables: the undirected graphical model

that corresponds to marginalizing out the hidden state variables is fully connected.

This result is a feature of the model: it is able to explain very complex statistical

relationships in data, at least with respect to conditional independencies. However,

the HMM requires that the observation variables be conditionally independent given

the state sequence. More precisely, it requires

∀t ∈ [T ] yt ⊥⊥ {y\t} ∪ {x\t}|xt (2.3)

where the notation (y\t) denotes the sequence excluding the tth element, and a ⊥⊥ b|c

indicates random variables a and b are independent given random variable c. Given

the corresponding state variable at the same time instant an observation is rendered

independent from all other observations and states, and in that sense the state “fully

explains” the observation.

One must specify the conditional relationship between the states and observations,

i.e. p(yt|xt, θ), where θ represents parameters of the emission distribution. These

distributions can take many forms, particularly because the observations themselves

can be taken from any (measurable) space. As a concrete example, one can take the

example that the observation space is some Euclidean space R
k for some k and the

emission distributions are multidimensional Gaussians with parameters indexed by

the state, i.e. in the usual Gaussian notation1, θ = {θi}
N
i=1 = {(µi, Σi)}

N
i=1.

With the preceding distributions defined, we can write the joint probability of the

hidden states and observations in an HMM as

p((xt), (yt)|{πi}, θ) = p(x1|π0)

(
T−1∏

t=1

p(xt+1|xt|π)

)(
T∏

t=1

p(yt|xt|θ)

)

. (2.4)

The Bayesian and Frequentist formulations of the HMM diverge in their treatment

of the parameters {πi} and θ. A Frequentist framework would treat the parameters

1By usual Gaussian notation, we mean µ is used to represent the mean parameter and Σ the
covariance matrix parameter, i.e. N (µ,Σ).
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πi

θi
. . .

λ

α

N

N

x1 x2 x3 x4 xT

y1 y2 y3 y4 yT

Figure 2-2: Basic graphical model for the Bayesian HMM. Parameters for the tran-
sition, emission, and initial state distributions are random variables. The λ and
α symbols represent hyperparameters for the prior distributions on state-transition
parameters and emission parameters, respectively.

as deterministic quantities to be estimated while a Bayesian framework would model

them as random variables with prior distributions, which are themselves parameter-

ized by hyperparameters. This thesis is concerned with utilizing a nonparametric

Bayesian framework, and so we will use the Bayesian HMM formulation and treat

parameters as random variables.

Thus we can write the joint probability of our Bayesian HMM as

p((xt), (yt), {πi}, θ|α, λ) = p(θ|λ)p({πi}|α)p((xt), (yt)|{πi}, θ) (2.5)

=
N∏

i=1

p(θi|λ)p({πi}|α)p(x1|π0)

(
T−1∏

t=1

p(xt+1|xt|π)

) (
T∏

t=1

p(yt|xt|θ)

)

(2.6)

for some observation parameter distribution p(θi|λ) and a prior on transitions p({πi}|λ).

A graphical model is given in Figure 2-2, where parameter random variables are shown

in their own nodes. Hyperparameters are shown without nodes and assumed to be

fixed and known a priori.

2.1.2 Posterior Inference via Gibbs Sampling

So far we have specified the HMM as a restricted class of probability distributions

over sequences. From a practical standpoint, we are interested in the issues that arise

when applying the model to data, i.e. finding some representation of the posterior

14



distribution over states and parameters when conditioning on the observations:

p((xt), θ, {πi}|(yt), α, λ). (2.7)

We can perform posterior inference in the HMM with a Gibbs sampling algorithm,

which allows us to construct samples from the posterior distribution by iteratively

re-sampling some variables conditioned on their Markov blanket. We do not provide

a general background for Gibbs sampling in this thesis, but the reader can find a

thorough discussion in [1].

An iteration of our Gibbs sampler samples the following conditional random vari-

ables, which are ordered arbitrarily:

• (xt)|θ, {πi}, (yt)

• {πi}|α, θ, (xt), (yt)

• θ|λ, (xt), (yt)

For example, when we sample the conditional random variable θ|λ, (xt), (yt), that

means we update the value of θ to be a draw from its conditional distribution given the

current values of λ, (xt), yt. Sampling {πi} and θ from their conditional distributions

is a standard problem which depends on the specific model distributions chosen; such

issues are thoroughly described in, e.g., [1]. However, sampling (xt) is of particular

importance and is not a standard procedure, and so we describe it in detail in the

next section.

Block Sampling (xt)|θ, {πi}, (yt) using Message Passing

To draw a conditional sample of the entire (xt) sequence at once, we exploit the

Markov structure and use dynamic programming on the chain with the well-known

“forwards-backwards” (or “alpha-beta”) message passing algorithm for the HMM. We

15



define the messages as

αt(xt) , p(y1, . . . , yt, xt) t = 1, 2, . . . , T (2.8)

βt(xt) , p(yt+1, . . . , yT |xt) t = 1, 2, . . . , T − 1 (2.9)

βT (xT ) , 1 (2.10)

where we have dropped the notation for conditioning on parameters θ and {πi} for

convenience. The αt(xt) message is the probability of the data ending in state xt, and

the βt(xt) message is the probability of future data given a starting state of xt. We

also note that for any t we have

p(xt|y1, . . . , yT ) ∝ αt(xt)βτ (xt). (2.11)

The α and β messages can be computed recursively through an easy derivation,

which can be found in [6]:

αt(xt+1) = p(y1, . . . , yt+1, xt+1) (2.12)

= p(y1, . . . , yt|xt+1)p(yt+1|xt+1)p(xt+1) (2.13)

=
∑

xt

p(y1, . . . , yt|xt)p(xt+1|xt)p(xt)p(yt+1|xt+1) (2.14)

=
∑

xt

αt(xt)p(xt+1|xt)p(yt+1|xt+1). (2.15)

With similar manipulations, we can derive

βt(xt) =
∑

xt+1

βt(xt+1)p(xt+1|xt)p(yt+1|xt+1). (2.16)

Again, we have dropped the notation for explicitly conditioning on parameters.

We can efficiently draw (xt)|θ, {πi}, (yt) using only the β messages as follows.
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First, we note

p(x1|θ, {πi}, (yt)) ∝ p(x1|{πi})p((yt)|x1, θ, {πi}) (2.17)

= p(x1|π0)β1(x1) (2.18)

and hence we can draw x1|θ, {πi}, (yt) by drawing from the normalized element-wise

product of β1 and π0. Supposing we draw x1 = x̄1, we can write

p(x2|θ, {πi}, (yt), x1 ∝ x̄1) ∝ p(x2|{πi}, x1 = x̄1)p((y2:T )|x2, θ) (2.19)

= p(x2|x1 = x̄1, πx̄1
)β2(x2) (2.20)

and hence we can draw x2|θ, {πi}, (yt), x1 = x̄1 by drawing from the normalized

element-wise product of πx̄1
and β2. We can recurse this procedure to draw a block

sample of (xt)|θ, {πi}, (yt).

2.1.3 Summary

In this section we have described the Bayesian treatment of the well-known Hidden

Markov Model as well as the salient points of posterior inference with Gibbs sampling.

There are two main disadvantages to the HMM that this thesis seeks to address

simultaneously: the lack of explicit duration distributions and the issue of choosing the

number of states from the data. The following background sections on Hidden semi-

Markov Models and Bayesian nonparametric methods describe separate approaches

to each of these two issues.

2.2 Explicit-Duration Hidden Semi-Markov Mod-

els (HSMMs)

There are several modeling approaches to semi-Markovianity [8], but here we focus

on explicit duration semi-Markovianity; i.e., we are interested in the setting where

each state’s duration is given an explicit distribution.

17



. . .F1 F2 F3 F4

C1 C2 C3 C4

FT

CT

x1 x2 x3 x4 xT

yTy4y3y2y1

Figure 2-3: A graphical model for the HSMM with explicit counter and finish nodes.

The basic idea underlying this HSMM formalism is to augment the generative

process of a standard HMM with a random state duration time, drawn from some

state-specific distribution when the state is entered. The state remains constant until

the duration expires, at which point there is a Markov transition to a new state.

It can be cumbersome to draw the process into a proper graphical model, but one

compelling representation in [8] is to add explicit “timer” and “finish” variables, as

depicted in Figure 2-3. The (Ct) variables serve to count the remaining duration

times, and are deterministically decremented to zero. The (Ft) variables are binary-

valued, Ft = 1 if and only if there is a Markov transition at time t + 1. Hence,

Ft = 1 causes Ct+1 to be sampled from the duration distribution of xt+1, and the

subsequent values Ct+2, Ct+3, . . . count down until reaching zero, at which point the

process repeats.

An equivalent and somewhat more intuitive picture is given in Figure 2-4 (which

also appears in [8]), though the number of nodes in the model is itself random. In

this picture, we see there is a standard Markov chain on “super-state” nodes, (zs)
S
s=1,

and these super-states in turn emit random-length segments of observations, of which

we observe the first T . The symbol Di is used to denote the random length of the

observation segment of super-state i for i = 1, . . . , S. The “super-state” picture

separates the Markovian transitions from the segment durations, and is helpful in

building sampling techniques for the generalized models introduced in this thesis.

It is often taken as convention that state self-transitions should be ruled out in

an HSMM, because if a state can self-transition then the duration distribution does

not fully capture a state’s possible duration length. We adopt this convention, which

18



z1 z2 zS. . .

y1

. . . . . . . . .

yTy
D1

y
D1 + 1

y
D1 + D2

Figure 2-4: HSMM interpreted as a Markov chain on a set of super-states, (zs)
S
s=1.

The number of shaded nodes associated with each zs is random, drawn from a state-
specific duration distribution.

has a significant impact on the inference algorithms described in Section 3. When

defining an HSMM model, one must also choose whether the observation sequence

ends exactly on a segment boundary or whether the observations are censored at

the end, so that the final segment may possibly be cut off in the observations. This

censoring convention allows for slightly simpler formulae and computations, and thus

is adopted in this paper. We do, however, assume the observations begin on a segment

boundary. For more details and alternative conventions, see [4].

It is possible to perform efficient message-passing inference along an HSMM state

chain (conditioned on parameters and observations) in a way similar to the standard

alpha-beta dynamic programming algorithm for standard HMMs. The “backwards”

messages are crucial in the development of efficient sampling inference in Section 3 be-

cause the message values can be used to efficiently compute the posterior information

necessary to block-sample the hidden state sequence (xt), and so we briefly describe

the relevant part of the existing HSMM message-passing algorithm. As derived in [8],

we can define and compute the backwards message from t to t + 1 as follows:

19



βt(i) , p(yt+1:T |xt = i, Ft = 1) (2.21)

=
∑

j

β∗
t (j)p(xt+1 = j|xt = i) (2.22)

β∗
t (i) , p(yt+1:T |xt+1 = i, Ft = 1) (2.23)

=
T−t∑

d=1

βt+d(i) p(Dt+1 = d|xt+1 = i)
︸ ︷︷ ︸

duration prior term

· p(yt+1:t+d|xt+1 = i,Dt+1 = d)
︸ ︷︷ ︸

likelihood term

(2.24)

+ p(Dt+1 > T − t|xt+1 = i)p(yt+1:T |xt+1 = i,Dt+1 > T − t)
︸ ︷︷ ︸

censoring term

(2.25)

βT (i) , 1 (2.26)

where we have split the messages into β and β∗ components for convenience and used

yk1:k2
to denote (yk1

, . . . , yk2
). Also note that we have used Dt+1 to represent the

duration of the segment beginning at time t+1. The conditioning on the parameters

of the distributions is suppressed from the notation. This backwards message-passing

recursion is similar to that of the HMM, and we will find that we can use the values

of p(yt+1:T |xt = i, Ft = 1) for each possible state i in the efficient forward-sampling

algorithm of Section 3.

The Ft = 1 condition indicates a new segment begins at t + 1, and so to compute

the message from t+1 to t we sum over all possible lengths d for the segment beginning

at t+1, using the backwards message at t+d to provide aggregate future information

given a boundary just after t + d. The final additive term in the expression for β∗
t (i)

is described in [4]; it constitutes the contribution of state segments that run off the

end of the provided observations, as per the censoring assumption, and depends on

the survival function of the duration distribution.

This message passing algorithm will be a subroutine in our Gibbs sampling al-

gorithm; more specifically, it will be a step in block-resampling the state sequence

(xt) from its posterior distribution. Though a very similar technique is used in HMM

Gibbs samplers, it is important to note the significant differences in computational

20



cost between the HMM and HSMM message computations. The greater expressiv-

ity of the HSMM model necessarily increases the computational cost of the message

passing algorithm: the above message passing requires O(T 2N + TN2) basic opera-

tions for a chain of length T and state cardinality N , while the corresponding HMM

message passing algorithm requires only O(TN2). However, if we truncate possible

segment lengths included in the inference messages to some maximum dmax, we can in-

stead express the asymptotic message passing cost as O(TdmaxN
2). Such truncations

are often natural because both the duration prior term and the segment likelihood

term contribute to the product rapidly vanishing with sufficiently large d. Though

the increased complexity of message-passing over an HMM significantly increases the

cost per iteration of sampling inference for a global model, the cost is offset because

HSMM samplers often need far fewer total iterations to converge (see Section 3).

Bayesian inference in an HDP-HSMM via Gibbs sampling is a novel contribution

of this thesis, and it is discussed in Section 3.1.

2.3 The Dirichlet Process

The Dirichlet Process is a random process that has found considerable use as a prior

in Bayesian nonparametrics. It is an extension of the Dirichlet distribution to general

measurable spaces, and it possesses several desirable properties. In particular, it

describes a distribution over infinitely many “clusters” or “topics,” allowing us to

infer and mix over arbitrary degrees of model complexity that grow with the amount

of data.

In this section, we define the Dirichlet Process, outline its properties, and describe

statistical inference procedures based on sampling. We also describe the prototypical

Dirichlet Process Mixture Model.

2.3.1 Defining the Dirichlet Process

Definition (Implicit) Let (Ω,B) be a measurable space, H be a probability mea-

sure on that space, and α0 be a positive real number. A Dirichlet Process (DP) is
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the distribution of a random probability measure G over (Ω,B) if and only if for any

finite (disjoint) partition (A1, . . . , Ar) of Ω we have

(G(A1), . . . , G(Ar)) ∼ Dir(α0H(A1), . . . , α0H(Ar)) (2.27)

where Dir denotes the standard Dirichlet distribution. We write G ∼ DP (α0, H) and

call α0 the concentration parameter and H the base measure [13].

Note that the preceding definition is implicit rather than constructive. However,

it implies the following properties:

Property 1. E[G(A)] = H(A) ∀A ∈ B. This property follows immediately from

the expectation properties of the standard Dirichlet distribution.

Property 2. If we have samples {θi}
N
i=1 drawn according to

G|H,α0 ∼ DP(H,α0) (2.28)

θi|G ∼ G i = 1, . . . , N, (2.29)

i.e., we draw a random probability measure G from a Dirichlet Process and then draw

samples {θi} from G, then we have

(G(A1), . . . , G(Ar))|θ1, . . . , θn ∼ Dir(α0H(A1) + N1, . . . , α0H(Ar) + Nr) (2.30)

for any partition, where Nk counts the number of samples that fall into partition

element k. This property follows from the standard Dirichlet conjugacy [13].

Property 3. Since each Ak partition element can be arbitrarily small around some

θi that falls into it, we note that the posterior must have atoms at the observed {θi}

values. Furthermore, by conjugacy it still respects the same finite partition Dirichlet
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property as in the definition, and so the posterior is also a DP:

G|{θi}, α0, H ∼ DP

(

α0 +
∑

k

nk,
1

α + N

(

α0H +
∑

i

δθi

))

(2.31)

where δθi
represents an atom at θi.

Property 4.

lim
N→∞

E [G(T )|{θi}, α0, H] =
∑

k

πkδθ̄k
(T ) (2.32)

where {θ̄k} are the distinct values of {θi} and πk , limN→∞
Nk

N
. This property follows

from noting that, due to Property 3, the atomic empirical measure component grows

in total mass compared to the base measure in the posterior parameter, and since the

expectation of a DP is equivalent in measure to its parameter (i.e., if G ∼ DP(H,α0)

then E[G(A)] = H(A) for any measurable A), we have that the expectation of the

posterior must go to the empirical distribution in the limit.

Property 5. G ∼ DP (α0, H) is discrete almost surely. This result is stated without

justification here, but it is described in [13].

These properties, which are derived directly from the implicit definition, already

illuminate several desirable properties about the DP: namely, its relationship to the

standard Dirichlet distribution (but with more general conjugacy), its consistency in

the sense that it is clear how the posterior converges to the empirical distribution,

and the fact that draws from a DP are discrete with probability 1. Furthermore, we

can also see the reinforcement property in which more common samples increasingly

dominate the posterior. However, while several properties are apparent, the preceding

definition is implicit and does not inform us how to construct a sample G distributed

according to G|H,α0 ∼ DP(H,α0).

There is a constructive definition of the Dirichlet Process, which is equivalent with

probability 1, referred to as the stick breaking construction. First, we define a stick
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breaking process with parameter α0 as

ρk|α0 ∼ Beta(1, α0) k = 1, 2, . . . (2.33)

βk , ρk

k−1∏

ℓ=1

(1 − ρℓ). (2.34)

For a definition of the Beta distribution, see [1]. To describe this process we write

simply β ∼ GEM(α0). The preceding is referred to as a stick breaking process because

it can be visualized as breaking a stick of unit length into pieces, with each piece a

Beta(1, α0) proportion of the remaining length. We can then use these weights to

construct G ∼ DP(H,α0) [3]:

θk|H ∼ H k = 1, 2, . . . (2.35)

G ,

∞∑

k=1

βkδθk
(2.36)

where δθk
represents an atom at θk. To summarize, we have the following definition:

Definition (Stick Breaking) Let (ω,B) be a measurable space, H be a probability

measure on that space, and α0 be a positive real number. A Dirichlet Process is the

distribution of a random probability measure G constructed as

β|α0 ∼ GEM(α0) (2.37)

θk|H ∼ H k = 1, 2, . . . (2.38)

G ,

∞∑

k=1

βkδθk
. (2.39)

The stick breaking construction of a Dirichlet Process draw provides an alternative

parameterization of the DP in terms of unique atom components. This parameteri-

zation can be useful not only to explicitly construct a measure drawn from a DP, but

also in the design of sampling procedures which marginalize over G, as we discuss in

the next section.
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2.3.2 Drawing Samples from a DP-distributed Measure

We can draw samples from a measure G distributed according to the Dirichlet Process

without instantiating the measure itself. That is, we can generate samples {θi}
N
i=1

that are distributed as

G|H,α0 ∼ DP(H,α0) (2.40)

θi|G ∼ G i = 1, . . . , N (2.41)

where we effectively marginalize out G. Using the posterior properties described

previously, we can consider the predictive distributions on samples when we integrate

out the measure G [13]:

P(θN+1 ∈ A|θ1, . . . , θN) = E [G(A)|θ1, . . . , θN ] (2.42)

=
1

α0 + N

(

α0H(A) +
N∑

i=1

δθi∈A

)

(2.43)

The final line describes a Polya urn scheme [13] and thus allows us to draw samples

from a Dirichlet process. First, we draw θ1|H ∼ H. To draw θi+1|θ1, . . . , θi, H,

we choose to sample a new value with probability α0

α0+i
, in which case we draw

θi+1|θ1, . . . , θi, H ∼ H, or we choose to set θi+1 = θj for all j = 1, . . . , i with equal

probability 1
α0+i

. This Polya urn procedure will generate samples as if they were

drawn from a measure drawn from a Dirichlet Process, but clearly we do not need to

directly instantiate all or part of the (infinite) measure.

However, the Polya urn process is not used in practice because it exhibits very

slow mixing rates in typical models. This issue is a consequence of the fact that there

may be repeated values in the {θi}, leading to fewer conditional independencies in

the model.

We can derive another sampling scheme that avoids the repeated-value problem

by following the stick breaking construction’s parameterization of the Dirichlet Pro-

cess. In particular, we examine predictive distributions for both a label sequence,

25



{zi}
N
i=1, and a sequence of distinct atom locations, {θ̄k}

∞
k=1. We equivalently write

our sampling scheme for {θi}
N
i=1 as:

β|α0 ∼ GEM(α0) (2.44)

θ̄k|H ∼ H k = 1, 2, . . . (2.45)

zi|β ∼ β i = 1, 2, . . . , N (2.46)

θi , θzi
i = 1, 2, . . . , N (2.47)

where we have interpreted β to be a measure over the natural numbers.

If we examine the predictive distribution on the labels {zi}, marginalizing out β,

we arrive at a description of the Chinese Restaurant Process (CRP) [13]. First, we set

z1 = 1, representing the first customer sitting at its own table, in the language of the

CRP. When the (i+1)th customer enters the restaurant (equivalently, when we want

to draw zi+1|z1, . . . , zi), it sits at a table proportional to the number of customers

already at that table or starts its own table with probability α0

α0+i
. That is, if the first

i customers occupy K tables labeled as 1, 2, . . . , K, then

p(zi+1 = k) =







Nk

α0+i
k = 1, 2, . . . , K

α0

α0+i
k = K + 1

(2.48)

where Nk denotes the number of customers at table k, i.e. Nk =
∑i

j=1 1[zj = k].

Each table is served a dish sampled i.i.d. from the prior, i.e. θ̄i|H ∼ H, and all

customers at the table share the dish.

The Chinese Restaurant Process seems very similar to the Polya urn process, but

since we separate the labels from the parameter values, we have2 that θi ⊥⊥ θj if

zi 6= zj. In terms of sampling inference, this parameterization allows us to re-sample

entire tables (or components) at a time by re-sampling θ̄i variables, whereas with the

Polya urn procedure the θi for each data point had to be moved independently.

2For this independence statement we also need H such that θi 6= θj a.s. for i 6= j, i.e. that
independent draws from H yield distinct values with probability 1.
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G|α0, H ∼ DP(H,α0)

Ω

Ω

Ω

yi|θi ∼ f(θi)
N

α0 G

(a) (b) (c)

θi|G ∼ Gθi

yi

H(λ)

N

Figure 2-5: Dirichlet Process Mixture Model: (a) graphical model, where the obser-
vation nodes are shaded; (b) depiction of sampled objects in the DPMM; (c) corre-
sponding generative process.

2.3.3 The Dirichlet Process Mixture Model

We can construct a DP Mixture Model (DPMM) much as we construct a standard

Dirichlet mixture model [1], except if we use the Dirichlet process as the prior over

both component labels and parameter values we can describe an arbitrary, potentially

infinite number of components.

We can write the generative process for the standard DPMM as

G|H,α0 ∼ DP(H,α0) (2.49)

θi|G ∼ G i = 1, 2, . . . , N (2.50)

yi|θi ∼ f(θi) i = 1, 2, . . . , N (2.51)

where f is a class of observation distributions parameterized by θ. The graphical

model for the DPMM is given in Figure 2-5(a). For concreteness, we may consider f

to be the class of scalar, unit-variance normal distributions with a mean parameter,

i.e. f(θi) = N (θi, 1). The measure H could then be chosen to be the conjugate prior,

also a normal distribution, with hyperparameters λ = (µ0, σ
2
0). Possible samples from

this setting are sketched in Figure 2-5(b).

We may also write the DPMM generative process in the stick breaking form,
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keeping track of the label random variables {zk}:

β|α0 ∼ GEM(α0) (2.52)

θk|H ∼ H k = 1, 2, . . . (2.53)

zi|β ∼ β i = 1, 2, . . . , N (2.54)

yi|zi, {θk} ∼ f(θzi
). i = 1, 2, . . . , N (2.55)

A graphical model is given in Figure 2-6.

To perform posterior inference in the model given a set of observations {yi}
N
i=1, we

are most interested in conditionally sampling the label sequence {zi}. If we choose our

observation distribution f and the prior over its parameters H to be a conjugate pair,

we can generally represent the posterior of {θk}
K
k=1|{yi}

N
i=1, {zi}

N
i=1, H in closed form,

where K counts the number of unique labels in {zi} (i.e., the number of components

present in our model for a fixed {zi}). Hence, our primary goal is to be able to

re-sample {zi}|{yi}, H, α0, marginalizing out the {θk} parameters.

We can create a Gibbs sampler to draw such samples by following the Chinese

Restaurant Process. We iteratively draw zi|{z\i}, {yi}, H, α0, where {z\i} denotes all

other labels, i.e. {zj : j 6= i}. To re-sample the ith label, we exploit the exchange-

ability of the process and consider zi to be the last customer to enter the restaurant.

We then draw its label according to

p(zi = k) ∝







Nkf̂(yi|{yj : zj = k}) k = 1, 2, . . . , K

α0 k = K + 1

(2.56)

where K counts the number of unique labels in {z\i} and f̂(yi|{yj : zj = k}) repre-

sents the predictive likelihood of yi given the other observation values with label k,

integrating out the table’s parameter θk. This process both instantiates and deletes

mixture components (“tables”) and allows us to draw posterior samples of {zi}.
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α0

yi

λβ

zi θk

∞

Figure 2-6: Alternative graphical model for the DPMM, corresponding to the stick
breaking parameterization. The observation nodes are again shaded.

2.4 The Hierarchical Dirichlet Process

The Hierarchical Dirichlet Process (HDP) is a hierarchical extension of the Dirichlet

Process which constructs a set of dependent DPs. Specifically, the dependent DPs

share atom locations and have similar, but not identical, weights on their correspond-

ing atoms. As described in this section, such a set of Dirichlet Processes allows us to

build a Bayesian nonparametric extension of the Hidden Markov Model with the same

desirable model-order inference properties as seen in the Dirichlet Process Mixture

Model.

2.4.1 Defining the Hierarchical Dirichlet Process

Definition Let H be a probability measure over a space (Ω,B) and α0 and γ be

positive real number. We say the set of probability measure {Gj}
J
j=1 are distributed

according to the Hierarchical Dirichlet Process if

G0|H,α0 ∼ DP(H,α0) (2.57)

Gj|G0, γ ∼ DP(G0, γ) j = 1, 2, . . . , J (2.58)

(2.59)

for some positive integer J which is fixed a priori.

Note that by Property 1 of the Dirichlet Process, we have E[Gj(A)|G0] = G0(A)

for j = 1, 2, . . . , J for all A ∈ B. Hence, G0 can be interpreted as the “average”
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distribution shared by the dependent DPs. The γ parameter is an additional concen-

tration parameter, which controls the dispersion of the dependent DPs around their

mean. Furthermore, note that since G0 is discrete with probability 1, Gj is discrete

with the same set of atoms.

There is also a stick breaking representation of the Hierarchical Dirichlet Process:

Definition (Stick Breaking) We say {Gj}
J
j=1 are distributed according to a Hi-

erarchical Dirichlet Process with base measure H and positive real concentration

parameters α0 and γ if

β|α0 ∼ GEM(α0) (2.60)

θ̄k|H ∼ H k = 1, 2, . . . (2.61)

G0 ,

∞∑

k=1

βkδθ̄k
(2.62)

(2.63)

π̃j|γ ∼ GEM(γ) j = 1, 2, . . . , J (2.64)

θji|G0 ∼ G0 i = 1, 2, . . . , Nj (2.65)

Gj ,

∞∑

i=1

π̃jiδθij
. (2.66)

Here, we have used the notation θ̄k to identify the distinct atom locations; the θji are

non-distinct with positive probability, since they are drawn from a discrete measure.

Similarly, note that we use π̃ji to note that these are the weights corresponding to

the non-distinct atom locations θji; the total mass at that location may be a sum of

several π̃ji.

2.4.2 The Hierarchical Dirichlet Process Mixture Model

In this section, we briefly describe a mixture model based on the Hierarchical Dirichlet

Process. The Hierarchical Dirichlet Process Mixture Model (HDPMM) expresses

a set of J separate mixture models which share properties according to the HDP.
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γ
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J

G0|H,α0 ∼ DP(H,α0)

Gj |G0, γ ∼ DP(G0, γ)

θji

yji

θji|Gj ∼ Gj

yji|θji ∼ f(θji)

Figure 2-7: The Hierarchical Dirichlet Process Mixture Model: (a) graphical model;
(b) depiction of sampled objects; (c) generative process.

Specifically, each mixture model is parameterized by one of the dependent Dirichlet

Processes, and so the models share mixture components and are encouraged to have

similar weights.

One parameterization of the HDPMM is summarized in Figure 2-7. However,

the parameterization that is most tractable for inference follows the stick breaking

construction but eliminates the redundancy in the parameters:

β|α0 ∼ DP(β, α0) (2.67)

πj|β, γ ∼ DP(β, γ) j = 1, 2, . . . , J (2.68)

zji|πj ∼ πj i = 1, 2, . . . , Nj (2.69)

θk|H ∼ H k = 1, 2, . . . (2.70)

yji|{θk}, zji ∼ f(θzji
) (2.71)

This third parameterization of the HDP is equivalent [3] to the other parameteri-

zations, and recovers the distinct values3 of the {θk} parameters while providing a

label sequence {zji} that is convenient for resampling. A graphical model for this

parameterization of the mixture model is given in Figure 2-8.

3Here we have assumed that H is such that two independent draws are distinct almost surely.
This assumption is standard and allows for this convenient reparameterization.
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α0

λ

β

θk

∞

J

Nj

yji

zji

γ πj

Figure 2-8: A graphical model for the stick breaking parameterization of the Hierar-
chical Dirichlet Process Mixture Model with unique atom locations.

To perform posterior inference in this mixture model, there are several sampling

schemes based on a generalization of the Chinese Restaurant Process, the Chinese

Restaurant Franchise. A thorough discussion of these schemes can be found in [14].

2.5 The Hierarchical Dirichlet Process Hidden Markov

Model

The HDP-HMM [14] provides a natural Bayesian nonparametric treatment of the clas-

sical Hidden Markov Model approach to sequential statistical modeling. The model

employs an HDP prior over an infinite state space, which enables both inference of

state complexity and Bayesian mixing over models of varying complexity. Thus the

HDP-HMM subsumes the usual model selection problem, replacing other techniques

for choosing a fixed number of HMM states such as cross-validation procedures, which

can be computationally expensive and restrictive. Furthermore, the HDP-HMM in-

herits many of the desirable properties of the HDP prior, especially the ability to

encourage model parsimony while allowing complexity to grow with the number of

observations. We provide a brief overview of the HDP-HMM model and relevant

inference techniques, which we extend to develop the HDP-HSMM.
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Figure 2-9: Graphical model for the HDP-HMM.

The generative HDP-HMM model (Figure 2-9) can be summarized as:

β|γ ∼ GEM(γ) (2.72)

πj|β, α ∼ DP(α, β) j = 1, 2, . . . (2.73)

θj|H,λ ∼ H(λ) j = 1, 2, . . . (2.74)

xt|{πj}
∞
j=1, xt−1 ∼ πxt−1

t = 1, . . . , T (2.75)

yt|{θj}
∞
j=1, xt ∼ f(θxt

) t = 1, . . . , T (2.76)

where GEM denotes a stick breaking process [11]. We define πx0
, π0 to be a separate

distribution.

The variable sequence (xt) represents the hidden state sequence, and (yt) repre-

sents the observation sequence drawn from the observation distribution class f . The

set of state-specific observation distribution parameters is represented by {θj}, which

are draws from the prior H parameterized by λ. The HDP plays the role of a prior over

infinite transition matrices: each πj is a DP draw and is interpreted as the transition

distribution from state j, i.e. the jth row of the transition matrix. The πj are linked

by being DP draws parameterized by the same discrete measure β, thus E[πj] = β

and the transition distributions tend to have their mass concentrated around a typical

set of states, providing the desired bias towards re-entering and re-using a consistent

set of states.

The Chinese Restaurant Franchise sampling methods provide us with effective ap-
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proximate inference for the full infinite-dimensional HDP, but they have a particular

weakness in the context of the HDP-HMM: each state transition must be re-sampled

individually, and strong correlations within the state sequence significantly reduce

mixing rates for such operations [3]. As a result, finite approximations to the HDP

have been studied for the purpose of providing alternative approximate inference

schemes. Of particular note is the popular weak limit approximation, used in [2],

which has been shown to reduce mixing times for HDP-HMM inference while sacri-

ficing little of the “tail” of the infinite transition matrix. In this thesis, we describe

how the HDP-HSMM with geometric durations can provide an HDP-HMM sampling

inference algorithm that maintains the “full” infinite-dimensional sampling process

while mitigating the detrimental mixing effects due to the strong correlations in the

state sequence, thus providing a novel alternative to existing HDP-HMM sampling

methods.
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Chapter 3

New Models and Inference

Methods

In this chapter we develop new models and sampling inference methods that extend

the Bayesian nonparametric approaches to sequential data modeling.

First, we develop a blocked Gibbs sampling scheme for finite Bayesian Hidden

semi-Markov Models; Bayesian inference in such models has not been developed pre-

viously. We show that a naive application of HMM sampling techniques is not possible

for the HSMM because the standard prior distributions are no longer conjugate, and

we develop an auxiliary variable Gibbs sampler that effectively recovers conjugacy

and provides very efficient, accurate inference. Our algorithm is of interest not only

to provide Bayesian sampling inference for the finite HSMM, but also to serve as a

sampler in the weak-limit approximation to the nonparametric extensions.

Next, we define the nonparametric Hierarchical Dirichlet Process Hidden semi-

Markov Model (HDP-HSMM) and develop a Gibbs sampling algorithm based on the

Chinese Restaurant Franchise sampling techniques used for posterior inference in the

HDP-HMM. As in the finite case, issues of conjugacy require careful treatment, and

we show how to employ latent history sampling [9] to provide clean and efficient

Gibbs sampling updates. Finally, we describe a more efficient approximate sampling

inference scheme for the HDP-HSMM based on a common finite approximation to

the HDP, which connects the sampling inference techniques for finite HSMMs to the
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Bayesian nonparametric theory.

The inference algorithms developed in this chapter not only provide for efficient

inference in the HDP-HSMM and Bayesian HSMM, but also contribute a new proce-

dure for inference in HDP-HMMs.

3.1 Sampling Inference in Finite Bayesian HSMMs

In this section, we develop a sampling algorithm to perform Bayesian inference in

finite HSMMs. The existing literature on HSMMs deals primarily with Frequentist

formulations, in which parameter learning is performed by applications of the Ex-

pectation Maximization algorithm [1]. Our sampling algorithm for finite HSMMs

contributes a Bayesian alternative to existing methods.

3.1.1 Outline of Gibbs Sampler

To perform posterior inference in a finite Bayesian Hidden semi-Markov model (as

defined in Section 2.2), we can construct a Gibbs sampler resembling the sampler

described for finite HMMs in Section 2.1.2.

Our goal is to construct a particle representation of the posterior

p((xt), θ, {πi}, {ωi}|(yt), α, λ) (3.1)

by drawing samples from the distribution. This posterior is comparable to the pos-

terior we sought in the Bayesian HMM formulation of Eq. 2.7, but note that in the

HSMM case we include the duration distribution parameters, {ωi}. We can construct

these samples by following a Gibbs sampling algorithm in which we iteratively sample
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from the distributions of the conditional random variables:

(xt)|θ, {πi}, {ωi}, (yt) (3.2)

{πi}|α, (xt) (3.3)

{ωi}|(xt), η (3.4)

θ|λ, (xt), (yt) (3.5)

where η represents the hyperparameters for the priors over the duration parameters

{ωi}.

Sampling θ or {ωi} from their respective conditional distributions can be easily

reduced to standard problems depending on the particular priors chosen, and further

discussion for common cases can be found in [1]. However, sampling (xt)|θ, {πi}, (yt)

and {πi}|α, (xt) in a Hidden semi-Markov Model has not been previously developed.

In the following sections, we develop (1) an algorithm for block-sampling the state

sequence (xt) from its conditional distribution by employing the HSMM message-

passing scheme of Section 2.2 and (2) an auxiliary variable sampler to provide easily

resampling of {πi} from its conditional distribution.

3.1.2 Blocked Conditional Sampling of (xt) with Message Pass-

ing

To block sample (xt)|θ, {πi}, {ωi}, (yt) in an HSMM we can extend the standard block

state sampling scheme for an HMM, as described in Section 2.1.2. The key challenge

is that to block sample the states in an HSMM we must also be able to sample the

posterior duration variables.

If we compute the backwards messages β and β∗ described in Section 2.2, then we

can easily draw a posterior sample for the first state according to:

p(x1 = i|y1:T ) ∝ p(x1 = i)p(y1:T |x1 = i, F0 = 1) (3.6)

= p(x1 = i)β∗
0(i) (3.7)

37



where we have used the assumption that the observation sequence begins on a segment

boundary (F0 = 1) and suppressed notation for conditioning on parameters. This first

step is directly analogous to the first step of sampling (xt) for an HMM.

We can also use the messages to efficiently draw a sample from the posterior dura-

tion distribution for the sampled initial state. Conditioning on the initial state draw,

x̄1, we can draw a sample of D1|y1:T , x1 = x̄1 (suppressing notation for conditioning

on parameters), the posterior duration of the first state is:

p(D1 = d|y1:T , x1 = x̄1, F0 = 1) =
P(D1 = d, y1:t|x1 = x̄1, F0)

p(y1:t|x1 = x̄1, F0)
(2)

=
P(D1 = d|x1 = x̄1, F0)p(y1:d|D1 = d,Q1, F0)p(yd+1:t|D1 = d, x1 = x̄1, F0)

p(y1:t|x1 = x̄1, F0)
(3.8)

=
p(D1 = d)p(y1:d|D1 = d, x1 = x̄1, F0 = 1)βd(x̄1)

β∗
0(x̄1)

. (3.9)

We can repeat the process by then considering xD1+1 to be our new initial state with

initial distribution given by p(xD1+1 = i|x1 = x̄1), analogous to the HMM case.

3.1.3 Conditional Sampling of {πi} with Auxiliary Variables

In the standard construction of an HSMM, as described in Section 2.2, self-transitions

are ruled out. However, in the Bayesian setting, this restriction means that the

Dirichlet distribution is not a conjugate prior for the transition parameters, {πi}, as

it is in the Bayesian HMM construction.

To observe the loss of conjugacy, note that we can summarize the relevant portion

of the generative model as

πj|β ∼ Dir(β1, . . . , αβL) j = 1, . . . , L

xt|{πj}, xt−1 ∼ π̄xt−1
t = 2, . . . , T

where π̄j represents πj with the jth component removed and renormalized appropri-
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ately, i.e.:

π̄ji ∝ πji(1 − δij)

L∑

i=1

π̄ji = 1

with δij = 1 if i = j and δij = 0 otherwise. The deterministic transformation from

πj to π̄j eliminates self-transitions. Note that we have suppressed the observation

parameter set, duration parameter set, and observation sequence sampling for sim-

plicity.

Consider the distribution of π1|(xt), β:

p(π1|(xt), β) ∝ p(π1|β)p((xt)|π1)

∝ πβ1−1
11 πβ2−1

12 · · ·πβL−1
1L

(
π12

1 − π11

)n12
(

π13

1 − π11

)n13

· · ·

(
π1L

1 − π11

)n1L

where nij are the number of transitions from state i to state j in the state sequence

(xt). Essentially, because of the extra 1
1−π11

terms from the likelihood without self-

transitions, we cannot reduce this expression to the Dirichlet form over the compo-

nents of π1.

However, we can introduce auxiliary variables to recover conjugacy. For notational

convenience, we consider the simplified model:

π|β ∼ Dir(β)

zi|π̄ ∼ π̄ i = 1, . . . , n

yi|zi ∼ f(zi) i = 1, . . . , n

where π̄ is formed by removing the first component of π and re-normalizing. Here,

the {zi} directly represent the multinomial transitions of the state sequence (xt), and

the {yi} embody the effect of the observation sequence (yt). See the graphical model

in Figure 3-1 for a depiction of the relationship between the variables.

We wish to draw samples from π, {zi}|{yi} by iterating Gibbs sampling steps
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ρi

n

Figure 3-1: Simplified depiction of the relationship between the auxiliary variables
and the rest of the model.

between drawing {zi}|π, {yi} and π|{zi}, but as before the latter step is difficult

because we do not have a conjugate Dirichlet distribution over π:

p(π|{zi}) ∝ πβ1−1
1 πβ2−1

2 · · ·πβL−1
L

(
π2

1 − π1

)n2
(

π3

1 − π1

)n3

· · ·

(
πL

1 − π1

)nL

However, we can introduce the auxiliary variables {ρi}
n
i=1, where each ρi is inde-

pendently drawn from a geometric distribution supported on {0, 1, . . .} with success

parameter 1 − π1, i.e. ρi ∼ Geo(1 − π1). Thus our posterior becomes:

p(π|{zi}, {ρi}) ∝ p(π)p({zi}|π)p({ρi}|{πi})

∝ πβ1−1
1 πβ2−1

2 · · ·πβL−1
L

(
π2

1 − π1

)n2
(

π3

1 − π1

)n3

· · ·

(
πL

1 − π1

)nL

(
n∏

i=1

πρi

1 (1 − π1)

)

= π
β1+

P

i ρi−1

1 πβ2+n2−1
2 · · ·πβL+nL−1

L

∝ Dir(β1 +
∑

i

ρi, β2 + n2, . . . , βL + nL)

and so, noting that n =
∑

i ni, we recover conjugacy.

Intuitively, we are able to fill in the data to include self-transitions because before

each transition is sampled, we must sample and reject Geo(1 − π1) self-transitions.

Note that this procedure depends on the fact that, by construction, the {ρi} are

conditionally independent of the data, {yi}, given {zi}.

We can easily extend these auxiliary variables to the HSMM, and once we have
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Figure 3-2: Graphical model for the weak-limit approximation including auxiliary
variables.

completed the data with the auxiliary variables, we are once again in the conjugate

setting and can use standard sampling methods. A graphical model for a finite HSMM

including the auxiliary variables is shown in Figure 3-2. Note that each ρti depends

on the state label xt. Also note that Figure 3-2 draws the parameters β and {πi}

as coupled according to the weak limit approximation, which will be discussed in

Section 3.2.3.

3.2 The Hierarchical Dirichlet Process Hidden Semi-

Markov Model

In this section we introduce the Hierarchical Dirichlet Process Hidden semi-Markov

Model (HDP-HSMM), the nonparametric extension of the finite HSMM, and develop

efficient inference techniques.
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First, we define the generative process of the HDP-HSMM, which augments the

HDP-HMM generative process with general state duration distributions, just as the

finite HSMM generative process augments that of the finite HMM. Next, we develop

collapsed Gibbs inference algorithm for the HDP-HSMM, which can be viewed as an

extension to the direct assignment Chinese Restaurant Franchise sampler of the HDP-

HMM (Section 2.5). We must again consider the challenges posed by a loss of prior

conjugacy, analogous to those described in Section 3.1.3 but this time in the setting

where the infinite transition parameters of the DP are marginalized, in accord with

the CRF. Finally, we describe an approximate, finite sampler for the HDP-HSMM

based on the standard weak-limit approximation.

3.2.1 Model Definition

The generative process of the HDP-HSMM is similar to that of the HDP-HMM, with

some extra work to include duration distributions:

β|γ ∼ GEM(γ) (3.10)

πj|β, α ∼ DP(α, β) j = 1, 2, . . . (3.11)

θj|H,λ ∼ H(λ) j = 1, 2, . . . (3.12)

ωj|Ω ∼ Ω j = 1, 2, . . . (3.13)

τ := 0, s := 1, while τ < T do:

zs|{πj}
∞
j=1, zs−1 ∼ π̃zs−1

(3.14)

Ds|ω ∼ D(ωzs
) (3.15)

ys = yτ+1:τ+Ds+1|{θj}
∞
j=1, zs, Ds

iid
∼ F (θzs

) (3.16)

τ := τ + Ds (3.17)

s := s + 1 (3.18)

where we have used (zs) as a super-state sequence indexed by s and {ωj}
∞
j=1 to rep-

resent the parameters for the duration distributions of each of the states, with D
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Figure 3-3: A graphical model for the HDP-HSMM in which the number of nodes is
random. We will call (zs)

S
s=1 the super-state sequence, (xt)

T
t=1 the label sequence, and

(yt)
T
t=1 the observation sequence. The (Ds) variables are the random durations (or

segment lengths), and here they control the “fan-out” from their respective super-
states.

representing the class of duration distributions. At the end of the process, we cen-

sor the observations to have length T exactly, cutting off any excess observations if

necessary, so as to generate y1:T . It is also convenient to refer to xt as the label of

observation yt; it identifies to which super-state the observation belongs. We refer

to the sequence (xt) as the label sequence, and note that the label sequence contains

the same information as the pair ((zs), (Ds)), the super-state and duration sequences.

Note also that we have previously referred to (xt) as a state sequence, while we now

distinguish it as a label sequence and refer to (zs) as the super-state sequence. A

graphical model is given in Figure 3-3.

Note, most importantly, that we draw zs|{πj}, zs−1 from π̃zs−1
, which we use to

denote the conditional measure constructed from πj by removing the atom corre-

sponding to zs−1 and re-normalizing appropriately. This part of the construction,

which is valid with probability 1, effectively rules out self-transitions.

If D, the duration distribution class, is geometric, we effectively recover the HDP-

HMM (just as we would recover a standard HMM from an HSMM with geometric

43



duration distributions) but the resulting inference procedure remains distinct from

the HDP-HMM. Thus the HDP-HSMM sampling inference methods described in the

next section provide a novel alternative to existing HDP-HMM samplers with some

potentially significant advantages.

3.2.2 Sampling Inference via Direct Assignments

In this section, we develop an HDP-HSMM direct assignment sampler based on the

direct assignment Chinese Restaurant Franchise sampler for the HDP-HMM. This

Gibbs sampling algorithm provides a method for inference in the HDP-HSMM while

marginalizing over the infinite-dimensional Hierarchical Dirichlet Process prior.

To create a direct assignment sampler based on the HDP-HMM direct assignment

sampler of [14], we can leverage the viewpoint of an HSMM as an HMM on super-

state segments and split the sampling update into two steps. First, conditioning on

a segmentation (which defines super-state boundaries but not labels), we can view

blocks of observations as atomic with a single predictive likelihood score for the entire

block. We can then run an HDP-HMM direct assignment sampler on the super-state

chain with the caveat that we have outlawed self-transitions. Second, given a super-

state sequence we can efficiently re-sample the segmentation boundaries.

To deal with the outlawed self-transition caveat, we must first note that it elimi-

nates exchangeability and hence the Dirichlet Processes’s (DP’s) convenient posterior

properties. The result that the posterior for a Dirichlet Process is also a DP, param-

eterized by the base measure combined with atoms at observation values, does not

apply when we only observe a subset of the draws.

However, we can rule out self-transitions in the super-state sequence while main-

taining a complete sample of transitions by running a rejection sampler. The re-

jections serve a similar purpose to the auxiliary variables we introduced for pur-

poses of inference in the finite HSMM in Section 3.1. However, we do not construct

the same auxiliary variables in this sampler because we do not explicitly represent

transition probabilities; instead, we effectively marginalize over them with the Chi-

nese Restaurant Franchise. To sample the auxiliary self-transition counts, we sample
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super-state transitions without any constraints, and we reject any samples that result

in self-transitions while counting the number of such rejections for each state. These

“dummy” self-transitions, which are not represented in the super-state sequence and

hence are independent of the observations, allow us to sample posterior super-state

transitions according to the standard HDP direct assignment sampler. This technique

is an instance of latent history sampling, as described in [9].

Hence, to perform sampling inference in the HDP-HSMM we iterate between two

steps. In the first step, we fix the segmentation and re-sample the super-state labels

(zs) according to an HDP-HMM direct assignment sampler. That is, we fix the

duration times (Ds) and view the segments of observations associated to each super-

state (yts:t′s
) as atomic, scoring the predictive likelihood for each segment according to

the product of the predictive likelihoods of all its observations. To deal with the caveat

that we do not allow self-transitions, we also keep counts of rejected self-transitions.

We refer to this step as “the HDP-HMM sampling step.”

In the second step, we fix the super-state sequence (zs) and wish to re-sample

the segmentation, i.e. the sequence (Ds). We can equivalently re-sample the label

sequence (xt) to get the durations, so long as we enforce that the sequence of labels

matches the same super-state sequence as conditioned on in (zs). We refer to this

step as “the segment sampling step” or “the label sampling step.”

We can re-sample the label sequence while matching the super-state sequence

by constructing a finite HSMM and using the messages-backward, sample-forward

posterior sampling technique described in Section 3.1. First, we sample the posterior

observation and duration parameters for each unique super-state: {θi}
S
i=1 and {ωi}

S
i=1,

respectively. Then, we construct an S-state finite HSMM on states (xt)
T
1 with a

transition matrix with 1s along its first superdiagonal and 0s elsewhere:

(A∗)ij =







1 j = i + 1

0 otherwise

for i, j = 1, 2, . . . , S.

We also identify the observation distribution of the finite HSMM’s state s ∈ {1, . . . , S}
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to be f(θzs
) and the duration distribution of state s to be D(ωzs

). This construction,

along with sampling x1 deterministically as z1, forces the sampled label sequence to

follow the super-state sequence.

However, the construction is not quite complete because the label sequence may

not match the T observations exactly to the S instantiated super-states; instead, we

may either not assign observations to all the S super-states, or require more than S

labels (or segments) in our label sequence.

For the first case, if we sample a label sequence in which we do not use all the

super-states, i.e. the label sequence ends with xT = S ′ < S, we simply consider the

unused states to have no observations assigned to them, and thus we eliminate their

explicit representation in the next iteration of the HDP-HMM sampling step. The

states without observations assigned during the label sampling step are merged with

the “new table” event for the HDP-HMM sampling step, just as in the standard CRF

procedure when an instantiated table loses its last customer.

For the second case, we must provide for sampling a label sequence in which we use

more than S labels, where S is the number of super-states with observations assigned.

To allow sampling of a label sequence with more than S labels, our finite HSMM

requires more than S states. Indeed, we must extend the finite HSMM described

previously to a representation with T states to be able to encode a label sequence

with up to T different labels (or, equivalently, T different segments). Only the first

S ≤ T super-states have observations assigned to them, and so the remaining T − S

states have observation and duration parameters instantiated from their respective

priors. We similarly revise our definition of the deterministic transition matrix A∗:

(A∗)ij =







1 j = i + 1

0 otherwise

for i, j = 1, 2, . . . , T .

Both of the above cases provide necessary behavior: they ensure the sampler can

increase and decrease the total number of segments, and hence it can mix from, e.g.,

a one-segment initialization to a many-segment sample.The two sampling steps are
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summarized in Figure 3-4.

It is interesting to consider how this sampling algorithm differs from the stan-

dard HDP-HMM procedure when geometric duration distributions are used. From a

generative standpoint the model classes are identical, but in the HDP-HSMM Gibbs

sampling algorithm the CRF steps re-sample super-states at each step, which cor-

responds to moving an entire block of observation labels. The CRF is slow to mix

for the HDP-HMM exactly because adjacent observation labels are highly correlated

with one another, and hence sampling new values for adjacent labels one-by-one re-

quires many proposals and rejections. Our HDP-HSMM Gibbs sampling algorithm

mitigates this effect by moving entire blocks of labels in single moves, thus effectively

achieving efficient block-move proposals while remaining in the simple Gibbs sam-

pling framework. Thus the HDP-HSMM sampling method can be useful not only for

the case of non-geometric duration distributions, but also as an HDP-HMM sampler

to avoid the usual mixing issues.

3.2.3 Sampling Inference with a Weak Limit Approximation

The weak-limit sampler for an HDP-HMM [2] constructs a finite approximation to

the HDP transitions prior with finite L-dimensional Dirichlet distributions, motivated

by the fact that the infinite limit of such a construction converges in distribution to

a true HDP:

β|γ ∼ Dir(γ/L, . . . , γ/L) (3.19)

πj|α, β ∼ Dir(αβ1, . . . , αβL) j = 1, . . . , L (3.20)

where we again interpret πj as the transition distribution for state j and β as the

distribution which ties state distributions together and encourages shared sparsity.

Practically, the weak limit approximation enables the instantiation of the transition

matrix in a finite form, and thus allows block sampling of the entire label sequence

at once, resulting in greatly accelerated mixing.

We can employ the same technique to create a finite HSMM that approximates
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alently, the label sequence (xt), which is not shown.
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(b) The segment sampling step, where A∗, {ωi}, and {θi}
encode the requirement that the label sequence (xt) fol-
lows the conditioned super-state sequence (zs), which is
not shown. Note that (xt)|A

∗, {ωi} forms a semi-Markov
chain, though it is (inaccurately) drawn as a Markov chain
for simplicity.

Figure 3-4: An illustration of the two sampling steps in the HDP-HSMM direct
assignment sampler.
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the HDP-HSMM in the weak-limit sense, and hence employ the inference algorithm

for finite HSMMs described in Section 3.1. A graphical model for a weak-limit ap-

proximate model is given in Figure 3-2. This approximation technique results in much

more efficient inference, and hence it is the technique we employ for the experiments

in the sequel.
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Chapter 4

Experiments

In this chapter, we apply our HDP-HSMM weak-limit sampling algorithm to both

synthetic and real data. These experiments demonstrate the utility of the HDP-

HSMM and the inference methods developed in this thesis, particularly compared to

the standard HDP-HMM.

First, we evaluate HDP-HSMM inference on synthetic data generated from finite

HSMMs and HMMs. We show that the HDP-HSMM applied to HSMM data can

efficiently learn the correct model, including the correct number of states and state

labels, while the HDP-HMM is unable to capture non-geometric duration statistics

well. Furthermore, we apply HDP-HSMM inference to data generated by an HMM

and demonstrate that, when equipped with a duration distribution class that includes

geometric durations, the HDP-HSMM can also efficiently learn an HMM model when

appropriate with little loss in efficiency.

Next, we compare the HDP-HSMM with the HDP-HMM on a problem of learning

the patterns in Morse Code from an audio recording of the alphabet. This experiment

provides a straightforward example of a case in which the HDP-HMM is unable

to effectively model the duration statistics of data and hence unable to learn the

appropriate state description, while the HDP-HSMM exploits duration information

to learn the correct states.

Finally, we apply HDP-HSMM inference to a speech-processing problem using a

standard dataset. This experiment shows the real-world effectiveness of the HDP-
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HSMM and highlights the mixing-time gains that our HDP-HSMM inference algo-

rithm can provide.

4.1 Synthetic Data

We evaluated the HDP-HSMM model and inference techniques by generating observa-

tions from both HSMMs and HMMs and comparing performance to the HDP-HMM.

The models learn many parameters including observation, duration, and transition

parameters for each state. We generally present the normalized Hamming error of the

sampled state sequences as a summary metric, since it involves all learned parameters

(e.g., if parameters are learned poorly, the inferred state sequence performance will

suffer). In these plots, the blue line indicates the median error across 25 independent

Gibbs sampling runs, while the red lines indicate 10th and 90th percentile errors.

Figure 4-1 summarizes the results of applying both an HDP-HSMM and an HDP-

HMM to data generated from an HSMM with four states and Poisson durations. The

observations for each state are mixtures of 2-dimensional Gaussians with significant

overlap, with parameters for each state sampled i.i.d. from a Normal Inverse-Wishart

(NIW) prior. In the 25 Gibbs sampling runs for each model, we applied 5 chains

to each of 5 generated observation sequences. All priors were selected to be non-

informative.

The HDP-HMM is unable to capture the non-Markovian duration statistics and so

its state sampling error remains high, while the HDP-HSMM equipped with Poisson

duration distributions is able to effectively capture the correct temporal model and

thus effectively separate the states and significantly reduce posterior uncertainty.

The HDP-HMM also frequently fails to identify the true number of states, while the

posterior samples for the HDP-HSMM concentrate on the true number. Figure 4-2

shows the number of states inferred by each model across the 25 runs.

By setting the class of duration distributions to be a strict superclass of the

geometric distribution, we can allow an HDP-HSMM model to learn an HMM from

data when appropriate. One such distribution class is the class of negative binomial
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Figure 4-1: State-sequence Hamming error of the HDP-HMM and Poisson-HDP-
HSMM applied to data from a Poisson-HSMM.
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Figure 4-2: Number of states inferred by the HDP-HMM and Poisson-HDP-HSMM
applied to data from a four-state Poisson-HSMM.
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Figure 4-3: Plots of the Negative Binomial PMF for three values of the parameter
pair (r, p).

distributions, denoted NegBin(r, p), the discrete analog of the Gamma distribution,

which covers the class of geometric distributions when r = 1. The probability mass

function (PMF) for the Negative Binomial is given by

p(k|r, p) =

(
k + r − 1

r − 1

)

(1 − p)rpk k = 0, 1, 2, . . . (4.1)

Plots of the PMF for various choices of the parameters r and p are given in Figure 4-3.

By placing a (non-conjugate) prior over r that includes r = 1 in its support, we

allow the model to learn geometric durations as well as significantly non-geometric

distributions with modes away from zero.

Figure 4-4 shows a negative binomial HDP-HSMM learning an HMM model from

data generated from an HMM with four states. The observation distribution for each
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Figure 4-4: The HDP-HSMM and HDP-HMM applied to data from an HMM.

state is a 10-dimensional Gaussian, again with parameters sampled i.i.d. from a NIW

prior. The prior over r was set to be uniform on {1, 2, . . . , 6}, and all other priors were

chosen to be similarly non-informative. The sampler chains quickly concentrated at

r = 1 for all state duration distributions. There is only a slight loss in mixing time

for the negative binomial HDP-HSMM compared to the HDP-HMM on this data.

The lower 90th-percentile error for the HDP-HSMM is attributed to the fact that

our HDP-HSMM inference scheme resamples states in segment blocks and thus is less

likely to explore newly instantiated states. This experiment demonstrates that with

the appropriate choice of duration distribution the HDP-HSMM can effectively learn

an HMM model when appropriate.

4.2 Learning Morse Code

As an example of duration information disambiguating states, we also applied both

an HDP-HSMM and an HDP-HMM to spectrogram data from audio of the Morse

code alphabet (see Figure 4-6). The data can clearly be partitioned into “tone” and

“silence” clusters without inspecting any temporal structure, but only by incorpo-

rating duration information can we disambiguate the “short tone” and “long tone”

states and thus correctly learn the state representation of Morse code.

In the HDP-HSMM we employ a delayed geometric duration distribution, in which
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Figure 4-5: Plots of the delayed geometric PMF for three values of the parameter
pair (w, p).

a state’s duration is chosen by first waiting some w samples and then sampling a ge-

ometric. Both the wait w and geometric parameter p are learned from data, with

a uniform prior over the set {0, 1, . . . , 20} for w and a Beta(1, 1) uniform prior over

p. This duration distribution class is also a superset of the class of geometric distri-

butions, since the wait parameter w can be learned to be 0. Plots of the PMF for

various choices of the parameters w and p are shown in Figure 4-5

We applied both the HDP-HSMM and HDP-HMM to the spectrogram data and

found that both quickly concentrate at single explanations: the HDP-HMM finds only

two states while the HDP-HSMM correctly disambiguates three, shown in Figure 4-7.

The two “tone” states learned by the HDP-HSMM have w parameters that closely

capture the near-deterministic pulse widths, with p learned to be near 1. The “si-

lence” segments are better explained as one state with more variation in its duration
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Figure 4-6: A spectrogram segment of Morse code audio.

(a) HMM state labeling.

(b) HSMM state labeling.

Figure 4-7: Each model applied to Morse code data.

statistics. Hence, the HDP-HSMM correctly uncovers the Morse Code alphabet as a

natural explanation for the statistics of the audio data.

On the other hand, the HDP-HMM only learns “silence” and “tone” states; it is

unable to separate the two types of tone states because they are only disambiguated

by duration information. The HDP-HMM is constrained to geometric state durations,

and since the geometric PMF is a strictly decreasing function over the support, any

state that places significant probability on the long-tone duration places even higher

probability on the short-tone duration, and so the two cannot be separated. Hence

the HDP-HMM’s inability to identify the Morse Code dynamics is a direct result

of its strict Markovian restriction to geometric durations. Incorporating a duration

distribution class that is able to learn both geometric and non-geometric durations

allows us to learn a much more desirable model for the data.
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4.3 Speaker Diarization

We also applied our model to a speaker diarization, or who-spoke-when, problem.

Given a single, un-labeled audio recording of an unknown number of people speaking

in a meeting, the task is to identify the number of speakers and segment the audio

according to when each participant speaks. This problem is a natural fit for our

Bayesian nonparametric HDP-HSMM because we wish to infer the number of speakers

(state cardinality), and using non-geometric duration distributions not only allows us

to rule out undesirably short speech segments but also provides accelerated mixing.

The NIST Rich Transcriptions Database is a standard dataset for the speaker di-

arization problem. It consists of audio recordings for each of 21 meetings with various

numbers of participants. In working with this dataset, our focus is to demonstrate

how the differences in the HDP-HSMM sampling algorithm manifest themselves on

real data; state-of-the-art performance on this dataset has already been demonstrated

by the Sticky HDP-HMM [2].

We first preprocessed the audio data into Mel Frequency Cepstral Coefficients

(MFCCs) [15], the standard real-valued feature vector for the speaker diarization

problem. We computed the largest 19 MFCCs over 30ms windows spaced every 10ms

as our feature vectors, and reduced the dimensionality from 19 to 4 by projecting onto

the first four principle components. We used mixtures of multivariate Gaussians as

observation distributions, and we placed a Gaussian prior on the mean parameter and

independent (non-conjugate) Inverse-Wishart prior on the covariance. The prior hy-

perparameters were set according to aggregate empirical statistics. We also smoothed

and subsampled the data so as to make each discrete state correspond to 100ms of

real time, resulting in observation sequences of length approximately 8000–10000. For

duration distributions, we chose to again employ the delayed geometric distribution

with the prior on each state’s wait parameter as uniform over {40, 41, . . . , 60}. In this

way we not only impose a minimum duration to avoid rapid state switching or learn-

ing in-speaker dynamics, but also force the state sampler to make minimum “block”

moves of nontrivial size so as to speed mixing.
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Figure 4-8: Relatively fast mixing of an HDP-HSMM sampler. Compare to Figure
3.19(b) of [3].

Our observation setup closely follows that of [2], but an important distinction is

that each discrete state of [2] corresponds to 500ms of real time, while each discrete

state in our setup corresponds to 100ms of real time. The 500ms time scale allows

durations to better fit a geometric distribution, and hence we chose a finer scaling

to emphasize non-geometric behavior. Also, [2] uses the full 19-dimensional features

as observations, but in our experiments we found the full dimensionality did not

significantly affect performance while it did slightly increase computation time per

sampling iteration.

Figure 4-8 shows the progression of nine different HDP-HSMM chains on the

NIST 20051102-1323 meeting over a small number of iterations. Within two hundred

iterations, most chains have achieved approximately 0.4 normalized Hamming error

or less, while it takes between 5000 and 30000 iterations for the Sticky HDP-HMM

sampler to mix to the same performance on the same meeting, as shown in Figure

3.19(b) of [3]. This reduction in the number of iterations for the sampler to “burn

in” more than makes up for the greater computation time per iteration.

We ran 9 chains on each of the 21 meetings to 750 iterations, and Figure 4-9

summarizes the normalized Hamming distance performance for the final sample of

the median chain for each meeting. Note that the normalized Hamming error metric
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is particularly harsh for this problem, since any speakers that are split or merged incur

a high penalty despite the accuracy of segmentation boundaries. The performance

is varied; for some meetings an excellent segmentation with normalized Hamming

error around 0.2 is very rapidly identified, while for other meetings the chains are

slow to mix. The meetings that mixed slowly, such as that shown in Figure 4-8, were

generally the same meetings that proved difficult for inference with the HDP-HMM

as well [3]. See Figure 4-11 for example sample paths of prototypical low-error and

high-error meetings.

Finally, Figure 4-10 summarizes the number of inferred speakers compared to the

true number of speakers, where we count speakers whose speech totals at least 5% of

the total meeting time. For each number of true speakers on the vertical axis, each

cell in the row is drawn with brightness proportional the relative frequency of that

number of inferred speakers. The dataset contained meetings with 2, 3, 4, 5, 6, and

7 speakers, and the figure is extended to an 8 × 8 square to show the frequency of

the inferred number of speakers for each true number of speakers. There is a clear

concentration along the diagonal of the figure, which shows that the HDP-HSMM

is able to effectively infer the number of speakers in the meeting by learning the

appropriate number of states to model the statistics of the data.

Overall, this experiment demonstrates that the HDP-HSMM is readily applicable

to complex real-world data, and furthermore that the significant mixing speedup in

terms of number of iterations can provide a significant computational benefit in some

cases.
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Figure 4-10: Frequency of Inferred Number of Speakers
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(a) Good-performance meeting
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(b) Poor-performance meeting

Figure 4-11: Prototypical sampler trajectories for good- and poor-performance meet-
ings.
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Chapter 5

Contributions and Future

Directions

In this thesis we have developed the HDP-HSMM as a flexible model for capturing the

statistics of non-Markovian data while providing the same Bayesian nonparametric

advantages of the HDP-HMM. We have also developed efficient Bayesian inference al-

gorithms for both the finite HSMM and the HDP-HSMM. Furthermore, the sampling

algorithms developed here for the HDP-HSMM not only provide fast-mixing inference

for the HDP-HSMM, but also produce new algorithms for the original HDP-HMM

that warrant further study. The models and algorithms of this thesis enable more

thorough analysis and unsupervised pattern discovery in data with rich sequential or

temporal structure.

Studying the HDP-HSMM has also suggested several directions for future research.

In particular, the HSMM formalism can allow for more expressive observation dis-

tributions for each state; within one state segment, data need not be generated by

independent draws at each step, but rather the model can provide for in-state dynam-

ics structure. This hierarchical structure is very natural in many settings, and can

allow, for example, learning a speaker segmentation in which each speaker’s dynamics

are modeled with an HMM while speaker-switching structure follows a semi-Markov

model. Efficient sampling algorithms can be made possible by employing a combina-

tion of HMM and HSMM message-passing inference. This richer class of models can
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provide further flexibility and expressiveness.

In summary, the HDP-HSMM provides a powerful Bayesian nonparametric mod-

eling framework as well as an extensible platform for future hierarchical models.
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