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Abstract

Imagery formed from wide-angle synthetic aperture radar (SAR) measurements has
fine cross-range resolution in principle. However, conventional SAR image formation
techniques assume isotropic scattering, which is not valid with wide-angle apertures.
Also, the spatial location of scattering centers may migrate as a function of viewing
angle across the aperture. The problem of jointly forming images and characterizing
anisotropy as well as characterizing scattering center migration in wide-angle SAR
is considered in the thesis. The approach not only compensates for anisotropy and
migration in the image formation process, but gives much more information, useful
for scene interpretation, than a simple image would.

A method based on a sparse representation of anisotropic scattering with an over-
complete basis composed of basis vectors with varying levels of angular persistence
is presented. Solved as an inverse problem, the result is a complex-valued, aspect-
dependent response for each scatterer in a scene. The non-parametric approach jointly
considers all scatterers within one system of equations. The choice of the overcom-
plete basis set incorporates prior knowledge of anisotropy, but the method is flexible
enough to admit solutions that may not match a family of parametric functions. Spar-
sity is enforced through regularization based on the `p quasi-norm, p < 1, leading to a
non-convex minimization problem. A quasi-Newton method is applied to the problem
and a novel greedy graph-structured algorithm is developed and also applied. Results
are demonstrated on synthetic examples and realistic examples with XPatch data,
including the backhoe public release dataset.
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Chapter 1

Introduction

Mathematical problems are formulated and motivated by specific classes of ap-
plications and by the methods of solution that one already knows. Throughout
this process, questions are asked: How can we extend existing mathematical
methodologies? How can we use existing methodologies in the context of a
specific physical problem to obtain a tractable formulation which addresses the
issues of interest in the more ill-defined physical problem?

— Alan S. Willsky (1982), in IEEE Control Systems Magazine

The wealth of human experience begins with our senses. Whether telescopes

for observing phenomena too far to see, microscopes for phenomena too small, or

stroboscopes for phenomena too fast, we have developed technologies to extend our

sensory capabilities. Radar, an acronym for ‘radio detection and ranging,’ which

allows observation at night-time, as it actively produces its own energy, and allows

observations through obstacles, such as clouds and foliage, and at great distances, due

to the propagation properties of electromagnetic waves, is another such technology. In

this thesis, advanced image formation techniques are developed for synthetic aperture

radar, further enriching our ability to sense.

1.1 Overview

The principles underlying radar have been known since the development of elec-

tromagnetic theory in the nineteenth century [39]. However, development of radar
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technology began in earnest in the 1920s [38]. In its basic operation, radar works by

transmitting pulses of electromagnetic radiation. If a pulse encounters an object, it

is reflected, or in radar terminology, is scattered. Scattered pulses can then be mea-

sured to detect objects and determine how far they are, based on the time difference

between transmission and reception, and the known speed of propagation. This dis-

tance is known as range, hence the phrase radio detection and ranging. Conventional

radar is limited in its ability to provide information in the direction perpendicular to

the direction of range measurements, known as the cross-range direction. Synthetic

aperture radar (SAR), first proposed in the 1950s, collects measurements that allow

the formation of ground images, range vs. cross-range.

SAR synthetically forms a long antenna, or aperture, using pulses transmitted and

received over a distance. The physical layout of the SAR imaging system uses a radar

set mounted on an aircraft in flight. As the aircraft proceeds along its flight path,

it transmits radar pulses towards the ground and receives the reflected pulses. The

length of the flight path, the length of the synthetic aperture, is inversely proportional

to resolution in the cross-range direction of formed images: the longer the aperture,

the finer the resolution. In spotlight-mode SAR, the radar is steered so that it always

looks towards a single patch on the ground from every point along its flight path.

Accurate knowledge of aircraft location is essential for SAR image formation.

Advances in navigation technologies and avionics over the past several years now

allow the synthesis of longer apertures than ever before, and consequently more finely

resolved images. A problem that arises with long, or wide-angle, apertures is that

dependence of scattering behavior on aspect angle, termed anisotropy, becomes promi-

nent because objects are viewed from different sides rather than from nearly the same

point of view. For example, a mirror or flat metal sheet may reflect strongly when

viewed straight on, but barely reflect at all from an oblique angle. This is in opposition

to narrow-angle imaging, where it is a fairly reasonable assumption that scattering

amplitude is constant over the aperture. Conventional SAR image formation tech-

niques implicitly make this isotropic scattering assumption. Characterized anisotropy

may be used as a feature for automatic target recognition, such as to discriminate

18



an isotropic tree trunk, reflecting the same from all directions, and the anisotropic

flat metal side of a truck. It may also be used for improved image formation. There-

fore, for effective use of data from wide-angle apertures, it is of interest to develop

data processing techniques that characterize anisotropy and account for it in image

formation.

1.2 Contributions

This thesis puts forth an inverse problem formulation utilizing an overcomplete basis

and sparsifying regularization for joint image formation and anisotropy character-

ization in wide-angle SAR. Sparsifying regularization has been applied to inverse

problems including acoustic source localization [36] and isotropic SAR imaging [10],

but has not previously been applied to the SAR anisotropy characterization prob-

lem. One general principle in previous work on the anisotropy problem has been to

divide the full wide-angle aperture into smaller subapertures and form a sequence of

subaperture images with inherently reduced cross-range resolution for use in further

processing [2, 13, 23, 50, 32, 34, 22, 41, 12]. Another general principle has been to de-

velop parametric models for angle-dependent scattering behavior [47, 54, 26, 25, 17].

The proposed methodology does not suffer a reduction in resolution because the entire

available aperture is used and is more flexible than parametric models. The proposed

framework solves for multiple spatial locations jointly, ameliorating the ill-effects of

close proximity neighboring scatterers [32].

In wide-angle imaging, besides anisotropy becoming prominent, certain scattering

mechanisms appear to migrate in their spatial location as a function of aspect angle.

This type of scattering, which has not been given much heed in past work, is well-

incorporated into the overcomplete basis formulation.

A graph-structured interpretation leading towards novel approximate algorithms

to solve the inverse problem is developed in the thesis. These algorithms, having

reduced memory requirements, may well find application in a wide variety of sparse

signal representation settings beyond the specific problem of anisotropy in SAR.

19



The interrelationship between points, as parts of larger objects, is broached in

the penultimate chapter. Through extensions to the sparsifying regularization cost

function, certain object-level preferences are encoded within the image formation

process.

Overall, this thesis aims to take the application wide-angle SAR imaging and

formulate it in the mathematics of inverse problems and sparse signal representation.

In this process, previously unaccounted for physical phenomena are dealt with, new

methods of solution are developed, and the enhancement of physically interesting or

meaningful objects is explored.

1.3 Organization of Thesis

The contribution of this thesis is situated within the SAR community; the first part

of Chapter 2 is a welcome basket of sorts — a primer on the application area. The

geometry of spotlight-mode SAR data collection is described along with different do-

mains in which measurements may be viewed. The discussion is from the perspective

of tomography, avoiding the specialized terminology of radar [42]. The point-scatterer

model of radar, a key premise in this work, is given next. Also, data collected over

wide-angle apertures are contrasted with data collected over narrow-angle apertures,

the main point being that anisotropy is prominent in wide-angle imaging. The second

part of Chapter 2 is a figurative backhoe loader. In preparation for the remainder of

the thesis, important nuggets from the related methodologies of sparse signal repre-

sentation and inverse problems are extracted. The section concludes with the pouring

of the main mathematical foundation for the thesis: a sparsifying regularization ap-

proach to solving inverse problems is discussed. The third part of Chapter 2 discusses

prior art, summarizing and discussing previous work done on the characterization of

anisotropic scattering, including parametric methods and image-domain methods.

Chapter 3 lays out the blueprint and erects the framework for bringing the SAR

image formation and anisotropy characterization application together with the inverse

problem–sparsity mathematical formalism. Specifically, an overcomplete expansion
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of the point-scattering observation model is proposed, along with a discussion on the

choice of vectors for the expansion. Chapter 4 builds upon the framework of the

previous chapter, describing methods of solving the inverse problem while imposing

sparsity. First, the quasi-Newton method of [9] is applied to the problem; examples are

presented with synthetic data and with scenes containing realistic canonical scatterers.

A nonlinear least-squares method for characterizing migratory scattering is developed

and examples are given as well. Also, greedy algorithms are developed based on

a graph-structured interpretation of the overcomplete expansion. Examples with

synthetic data, with scenes composed of realistic canonical scatterers, and with a

scene containing a literal backhoe loader are given.

Chapter 5 is concerned with practical issues in the methods of solution of Chap-

ter 4, such as parameter selection, preprocessing, and performance in the presence

of noise. Extensions to the framework are proposed in Chapter 6. Specifically, vari-

ations are introduced that, in addition to sparsity in the overcomplete expansion,

put object-level preferences into the image formation and anisotropy characteriza-

tion. Also, the method of characterizing migratory scattering is generalized. The

final chapter provides a brief summary and articulates future directions of research.
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Chapter 2

Background

Bernard of Chartres used to say that we were like dwarfs on the shoulders of
giants, so that we can see more than they, and things at a greater distance, not
by virtue of any sharpness of sight on our part, or any physical distinction, but
because we are carried high and raised by their giant size.

— John of Salisbury (1159), in Metalogicon1

Both the application area and class of mathematical methodologies investigated in

this thesis are vast as general disciplines. Consequently, a deep coverage of background

material is not attempted. It is hoped that this chapter at least pecks a little hole

into that vast realm.

2.1 Spotlight-Mode Synthetic Aperture Radar

Synthetic aperture radar is often explained in specialized radar terminology such as

fast time, slow time, Doppler shifts, etc. Spotlight-mode SAR, however, also has an

interpretation as a tomographic observation process [42], and can be modeled similarly

to other imaging modalities, such as magnetic resonance imaging, acoustic microscopy,

and positron emission tomography. The rudiments of SAR observation are presented

below via the tomographic interpretation; a comprehensive non-tomographic treat-

ment may be found in [8], among many others.

1Translation from Oxford Dictionary of Quotations.
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2.1.1 Observation Geometry

As mentioned in Section 1.1, SAR uses a radar set mounted on an aircraft to col-

lect measurements. The same antenna is used for both transmission and reception

of electromagnetic pulses. From one point along the aircraft’s flight path, the radar

transmits a pulse in a certain direction, illuminating a certain portion of the ground

— the ground patch, and receives back the scattered pulse, which depends on the

characteristics of the ground patch. Pulses are similarly transmitted and received at

many points along the flight path, with the direction of illumination varying depend-

ing on the mode of operation.

SAR has distinct modes of operation: stripmap, spotlight, and scan, distinguished

by the illumination direction. In stripmap-mode, the radar antenna remains fixed

with respect to the flight path, illuminating a sequence of ground patches that form

a strip parallel to the flight path. In spotlight-mode, the focus of this thesis, the

radar antenna continually changes its look direction to always illuminate the same

ground patch. Scan-mode is a generalization with stripmap-mode and spotlight-mode

as special cases that allows the look direction and illuminated ground patch to both

vary.

The geometry of data collection in spotlight-mode SAR is illustrated in Fig. 2-

1. Coordinates on the ground plane x, range, and y, cross-range, are centered in

the ground patch. Measurements are taken at equally spaced aspect angles θ as the

aircraft traverses the flight path. The aircraft is at an altitude, and consequently

forms an elevation angle with the ground plane. The work in this thesis is concerned

with two-dimensional imaging; thus, the three-dimensional geometry is neglected.

The geometry reduces to the ground plane geometry shown in Fig. 2-2. The ground

patch, with radius L, is shaded.

2.1.2 Data Domains

The scattering from the ground patch under observation is manifested as an amplitude

scaling and phase shift that can be expressed as a complex number at each point.
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Figure 2-1: Spotlight-mode SAR observation geometry.

Thus, scattering from the entire ground patch can be characterized by a complex-

valued function of two spatial variables s(x, y), which is referred to in some instances

as the scattering function and in others as the image. Due to the design of the radar

pulse and the physics of the observation process, the collection of received signals is

not s(x, y) directly. Procedures for obtaining the image from the measurements are

known as image formation. The relationship between the measurements, obtained

over a finite bandwidth of frequencies and over a range of aspect angles, and the

scattering function is given by:

r(f, θ) =

∫∫
x2+y2≤L2

s (x, y) exp

{
−j

4πf

c
(x cos θ + y sin θ)

}
dx dy. (2.1)

The set of aspect angles θ is inherently discrete, because pulses are transmitted from

a discrete set of points along the flight path. The measurements are sampled in

frequency f to allow digital processing. The collection of measurements r(f, θ) is

known as the phase history. A derivation of the relationship between the scattering

function and phase history is delayed to Sec. 2.1.3, in which a derivation is given for

the point-scatterer model. An example of a phase history is given in Fig. 2-3, which

shows |r(f, θ)| for frequencies from approximately 7 GHz to 13 GHz and aspect angles
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Figure 2-2: Ground plane geometry in spotlight-mode SAR.

from −55◦ to +55◦ for a particular scene. The shading is in decibels.

Equation (2.1) may be recognized as a Fourier-like transform. Let us investigate

this in more detail. Introducing an auxiliary variable ρ and using the sifting property

of the Dirac delta, the phase history expression is rewritten as:

r(f, θ) =

∫
|ρ|≤L

∫∫
x2+y2≤L2

δ (ρ− x cos θ − y sin θ) s (x, y) exp

{
−j

4πf

c
ρ

}
dx dy dρ. (2.2)

The projection of the scattering function in the range direction at aspect angle θ,

parameterized by ρ is:

R̂(ρ, θ) =

∫∫
x2+y2≤L2

δ (ρ− x cos θ − y sin θ) s (x, y) dx dy. (2.3)

These projections are also known as range profiles. Thus, for each aspect angle the

phase history is the one-dimensional Fourier transform of the range profile at that

angle:

r(f, θ) =

L∫
−L

R̂(ρ, θ) exp

{
−j

4πf

c
ρ

}
dρ. (2.4)

This result is a consequence of the projection slice theorem [7]. Since the measure-
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Figure 2-3: A typical wide-angle SAR phase history with large bandwidth.

ments are limited to a band in frequency, performing one-dimensional inverse trans-

forms results in range profiles convolved with the inverse transform of the rectangle

function, the periodic sinc or Dirichlet function. Also, because the measurements are

sampled, the inverse transform used is the inverse discrete Fourier transform calcu-

lated using a fast algorithm such as the fast Fourier transform (FFT). As an example,

the collection of range profile magnitudes for the phase history of Fig. 2-3 is shown

in Fig. 2-4. The shading in this figure is also in decibels.

The phase history expression (2.1) is the two-dimensional Fourier transform of

the scattering function, but in a special way. The phase history measurements for

a single aspect angle form a radial slice in the Fourier domain. The collection of all

measurements for all aspect angles traces out a keystone-shaped region in the Fourier

plane, as illustrated in Fig. 2-5. Note that the region of support shown in Fig. 2-5

does not correspond to the data of Figs. 2-3, 2-4, and 2-6. Due to the samples lying

on a polar lattice, difficulties in inverting this two-dimensional Fourier transform
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Figure 2-4: A typical wide-angle SAR range profile.

Figure 2-5: Support of measurements on Fourier plane.
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Figure 2-6: A typical conventionally-formed wide-angle SAR image.

arise. Specifically, fast algorithms applicable to Cartesian lattices do not transfer to

polar format data directly. Polar FFT algorithms generally involve interpolation and

resampling onto Cartesian grids before applying the standard FFT; the topic is still

an active area of research [3]. Polar format algorithms for conventional SAR image

formation apply the inverse FFT to interpolated, resampled phase history data [30].

The image magnitude reconstructed from the phase history measurements of Fig. 2-3

using conventional image formation is shown in Fig. 2-6 with decibel shading.

Having discussed the observation model for SAR as well as transforms taking data

from the measured phase history domain to the range profile domain and to the image

domain, the next section makes a modeling assumption that the scattering function

is decomposable into a sum of point scatterers. By making such an assumption, the

problem moves from the uncountably infinite realm to the finite realm.
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2.1.3 Point-Scatterer Model

The scattering response of objects such as vehicles on the ground is well-approximated

by the superposition of responses from point scattering centers when using ranges of

frequencies commonly employed in SAR [31]. Therefore, under the assumption of

point scattering, the image s(x, y) is defined over a finite set of spatial locations

and the relationship between measurements and underlying image transits from an

integral, i.e. equation (2.1), to a sum, see equation (2.13). The relationship is derived

below, starting with the radar pulse.

Consider the time-limited linear frequency modulated chirp signal:

γ(t) =

ej(2πfct+αt2), −T
2
≤ t ≤ T

2

0, otherwise

, (2.5)

with carrier frequency fc and chirp rate 2α. A common pulse used in SAR for illu-

mination is cos(2πfct + αt2), |t| ≤ T
2
, which equals <{γ(t)}.

Now consider obtaining measurements from a single point scatterer located at

spatial location (x0, y0), with aspect angle fixed at θ, the center of the ground patch

(0, 0) at distance D from the radar, and the point (x0, y0) at distance D + ρ. When a

pulse is transmitted towards the ground patch, the echo emanating from a differential

area around (x0, y0) is delayed in time by 2(D+ρ)
c

, taking into account the round trip

distance traveled and the speed of propagation c. The pulse has its magnitude scaled

by |s(x0, y0)|, incurs a phase shift of ∠s(x0, y0), and has an overall attenuation by a

factor A. The received signal, r̄0(t), coming from the differential area is:

r̄0(t)

= A|s(x0, y0)| cos

(
2πfc

(
t− 2(D + ρ)

c

)
+ α

(
t− 2(D + ρ)

c

)2

+ ∠s(x0, y0)

)
dx dy

(2.6)
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over the time interval −T
2

+ 2(D+ρ)
c

≤ t ≤ T
2

+ 2(D+ρ)
c

. Defining τ = 2D
c

and manipu-

lating equation (2.6) using complex envelope analysis:

r̄0(t) = A<
{

s(x0, y0)γ

(
t− τ − 2ρ

c

)}
dx dy. (2.7)

As part of SAR processing, the received signal is downconverted from fc by first

mixing it with γ∗(t− τ), the complex conjugate of γ(t− τ), giving:

r̂0(t) = A<
{

s(x0, y0)e
j
“
2πfc(t−τ− 2ρ

c )+α(t−τ− 2ρ
c )

2
”}

e−j(2πfc(t−τ)+α(t−τ)2)dx dy (2.8)

=
A

2
s(x0, y0)e

j
“
2πfc(2t−2τ− 2ρ

c )+α(t−τ)2+α(t−τ− 2ρ
c )

2
”
dx dy

+
A

2
s(x0, y0)e

j

„
4αρ2

c2
− 2ρ

c
(2πfc+2α(t−τ))

«
dx dy.

(2.9)

The augend in equation (2.9) is centered around frequency 2fc, whereas the addend is

centered around frequency 0. In the second step of downconversion, r̂0(t) is lowpass

filtered, leaving:

r̃0(t) =
A dx dy

2
s(x0, y0)e

j

„
4αρ2

c2
− 2ρ

c
(2πfc+2α(t−τ))

«
. (2.10)

Under normal SAR operating conditions, c2 � 4αρ2, so ej 4αρ2

c2 ≈ 1. Also, the

overall attenuation along with the differentials is removed for the purposes of the

model. Thus:

r0(t) = s(x0, y0)e
−2j( 2π

c
fc+

2α(t−τ)
c )ρ. (2.11)

It should be remembered that the definition of r0(t) in equation (2.11) is over a

time interval of length T and zero outside the interval. Also, it should be noted that

in this interval of time, the spatial frequency varies from
(

2π
c
fc − αT

c

)
to
(

2π
c
fc + αT

c

)
.

Thus taking samples in time is tantamount to acquiring measurements over a fre-

quency band. The quantity ρ, the offset in the distance to the radar due to the

point (x0, y0) being offset from the center of the ground patch, is directly related by

trigonometry to x0, y0, and θ by ρ = x0 cos θ + y0 sin θ. Thus the expression giving
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the measurement of a single point scatterer is:

r0(f, θ) = s (x0, y0) exp

{
−j

4πf

c
(x0 cos θ + y0 sin θ)

}
. (2.12)

Then, by superposition, if a scene contains Ns point scattering centers, the total

measured phase history is:

r(f, θ) =
Ns∑
p=1

s (xp, yp) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
. (2.13)

The point-scatterer model has been derived; the steps leading to the integral equa-

tion (2.1) are very similar. The measurement model does not yet include anisotropy;

the model is broadened in the next section. However, before continuing to the next

section, the range profile of point scattering centers is discussed.

To begin the discussion, let frequency be continuous and of infinite bandwidth.

With a single point scatterer of unit amplitude, r(f, θ) = e−j 4πf
c

(x0 cos θ+y0 sin θ). As

a common transform pair it is known that F−1 {e−jωρ0} = δ (ρ− ρ0). Thus taking

ω = 4πf
c

, the range profile for a point scatterer is:

R̂0(ρ, θ) = δ(ρ− x0 cos θ − y0 sin θ), (2.14)

which can also be seen by setting s(x, y) = δ(x0, y0) in equation (2.3). The range

profile is non-zero at a sinusoid:

ρ(θ) = x0 cos θ + y0 sin θ. (2.15)

For this reason, the range profile domain is known as the sinogram domain in other

tomographic applications. It is also known as the Radon transform domain [7]. It

should be noted that in applications other than SAR, data are primarily real and

positive. The sinusoidal result may also be obtained directly from the observation

geometry. With samples and bandlimited frequency, instead of the pure Dirac delta,

the range profile samples a periodic sinc function with its main lobe centered at the
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(a) (b)

Figure 2-7: Measurements in Fourier plane under (a) narrow-angle imaging, and (b)
wide-angle imaging.

same point. With large enough bandwidth, the sidelobes are nearly indiscernible.

2.1.4 Wide-Angle Imaging and Anisotropy

Typical parameters for a SAR system given in [8] include an aperture covering 1.12◦

of aspect. In wide-angle SAR, however, the range of aspect angles is twenty or one

hundred times as large. Imaging over wide-angle apertures has many effects, including

measurements covering an annular region of the frequency plane, measurements ex-

hibiting anisotropy, and scattering centers migrating in spatial location as a function

of aspect angle.

Although not the main focus of the thesis, an issue that arises in wide-angle

imaging relates to the region in the Fourier domain covered by the measurements.

As seen in Fig. 2-7, when a narrow angle is used, the support in the Fourier plane

is nearly rectangular, but for the same bandwidth, when a wide angle is subtended,

the region of support is more clearly annular. As discussed in Sec. 2.1.2, conventional

polar format image formation algorithms perform the inverse Fourier transform on

the frequency domain samples by interpolating the samples onto a rectangular grid

and then performing the inverse transform. Because the bounding rectangle is nearly

filled in the narrow-angle case, interpolation is valid. However, in the wide-angle

case, the bounding rectangle is sparsely populated and thus interpolation error may
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be significant, especially in the top and bottom right corners and central left portion

of the bounding rectangle. The main consequence of wide-angle data collection and

the focus of this thesis, anisotropy, is covered next.

In the exposition of Sec. 2.1.2 and Sec. 2.1.3, an implicit assumption is made that

the scattering function s(x, y) is not dependent on aspect angle. As introduced in

Sec. 1.1, the assumption is not valid in wide-angle imaging. In fact, scattering behav-

iors are dependent both on the aspect angle and the frequencies in the radar pulse.

The scattering function should be written explicitly as s(x, y, f, θ) to capture the

dependencies. In conventional image formation techniques, the failure to model fre-

quency dependence and angle dependence results in an averaging over those variables,

leading to inaccurate scattering estimates. In wide-angle imaging, angle-dependence

is more prominent than frequency-dependence, so it is the focus of the research.

Methodologies developed for the characterization of angular anisotropy ought to be

useful for characterizing frequency dependence as well. In this work, it is assumed

that the scattering function is not dependent on frequency. With anisotropy, phase

history is modeled as:

r (f, θ) =
Ns∑
p=1

s (xp, yp, θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
. (2.16)

In the range profile domain, the amplitudes of the sinusoids vary with s(θ). Sinusoidal

segments with varying amplitude are visible in Fig. 2-4.

One other effect that is prominent in wide-angle imaging much more so than in

narrow-angle imaging is that certain scattering mechanisms migrate as a function

of aspect angle. That is to say that a scattering center appears to be in different

spatial locations depending on the viewing direction. For example, consider a circular

cylinder — the point of reflection is on the surface closest to the radar and changes

as the aspect angle changes. The location can be parameterized as a function of θ

around the center of the cylinder (xc, yc) using the radius of the cylinder R0. The
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sinusoid equation changes in the following manner:

ρ(θ) = (xc −R0 cos θ) cos θ + (yc −R0 sin θ) sin θ = xc cos θ + yc sin θ −R0. (2.17)

A generalization for any migration that can be parameterized around a center is:

ρ(θ) = xc cos θ + yc sin θ −R(θ). (2.18)

In discussing stationary scattering centers, the spatial location (xp, yp) and the

scattering center p are synonymous. However, care must be taken when discussing

migratory scattering centers — some invariant location (x̄p, ȳp) is needed to discuss

the function s(x̄p, ȳp, θ) for example. This invariant spatial location (x̄p, ȳp) is taken

to be the location the scattering center appears at when θ = 0. When θ = 0,

x̄ = xc − R(0) and ȳ = yc. This leads to the following expression for phase history

with migratory point scatterers:

r (f, θ) =
Ns∑
p=1

s (x̄p, ȳp, θ) exp

{
−j

4πf

c
((x̄p + Rp(0)) cos θ + ȳp sin θ −Rp(θ))

}
.

(2.19)

2.2 Inverse Problems and Sparse Signal Represen-

tation

The field of inverse problems concerns itself with the study of operators that are

fairly simply defined in the forward direction, but difficult to invert. Meanwhile,

through sparse signal representation, an attempt is made to decompose complicated

signals into a few signals from a collection in a parsimonious way. In general, in both

of these fields, signals may be infinite and continuous, but for the purposes of this

thesis, dealing with finite duration, discrete-time signals is sufficient. Also, operators

and ways to combine signals from a collection is restricted to linear operations, also

discrete and finite. Even under these restrictions, inverse problems and sparse signal
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representation are rich areas. Some of that richness is recounted in this section.

2.2.1 Ill-Posed Inverse Problems and Regularization

In inverse problems, one has observations, possibly noisy, and attempts to discover

the cause of those observations. In mathematical notation, r = Φ(a) + n is to be

solved, where a is the unknown, r is the observed data, Φ is the observation process,

and n is noise. Now, under the restriction that Φ is a linear operator, a ∈ CM , and

n, r ∈ CN , the problem is:

r = Φa + n,Φ ∈ CN×M . (2.20)

Inverse problems are ill-posed if no solution a exists, if the solution is not unique,

or if the solution does not depend continuously on the data [28]. The condition

number of a matrix κ indicates how difficult it is to invert: the identity matrix has

κ = 1 and singular matrices have infinite κ. Inverse problems with ill-conditioned

matrices, i.e. those with large condition number, have a noise amplification effect.

Small example operators Φ are displayed in Table 2.1, illustrating ill-posedness and

ill-conditioning. A well-posed example is also shown for reference.

Type Exemplar κ Notes
well-posed

[
0.6 0
0 0.4

]
1.5 Φ−1 =

[
1.67 0
0 1.5

]
no solution

[
1 0
0 0

]
∞ r =

[
1

0.01

]
has no corresponding a

solution not unique
[
1 0 1
0 1 1

]
1.73

r =
[
1
1

]
has infinite solutions: a =

[
0
0
1

]
,

a =
[

1
1
0

]
, a =

[
0.5
0.5
0.5

]
, . . .

ill-conditioned
[
0.01 1
0 0.01

]
104 for a =

[
1
1

]
, Φ−1 (Φa) =

[
1
1

]
, but

Φ−1
(
Φa +

[
0.001
0.001

])
=
[−8.9

1.1

]
Table 2.1: Ill-posed and ill-conditioned problems.

If M = N and Φ is nonsingular, then the matrix inverse Φ−1 exists and may be

used to obtain a solution a = Φ−1r. If Φ does not have an inverse, then generalized

inverses, such as Φ† = (ΦHΦ)−1ΦH , which satisfy Φ†r = a and exist for all matrices,

can be used [40, 44]. The vector Φ†r is the minimum norm least-squares solution.

36



Although the generalized inverse specifies a unique estimate for a from Φ and a

noisy version of r, this estimate may not be meaningful or may be inappropriate for the

application at hand, e.g. a different choice of solution from infinite possibilities may

be better for a certain application. Regularization — the inclusion of prior knowledge

to stabilize the solution in the presence of noise and to give meaningful and reasonable

estimates — is used to deal with issues of ill-posedness when estimating a from r. A

regularization approach to solving inverse problems constructs a cost function of the

form:

J (a) = J1 (a) + αJ2 (a) , (2.21)

where J1 is a data fidelity term, often ‖r−Φa‖2
2; J2 is a regularization term; and α

is a regularization parameter, which trades off data fidelity and regularization. The a

that minimizes the cost function is the desired solution to the inverse problem. When

α = 0, the solution reduces back to least-squares.

In one approach to regularization developed by Tikhonov, the regularization term

is quadratic, i.e. J2(a) = ‖a‖2
2 [53]. This method and other quadratic regulariza-

tion methods are tractable and have closed form solutions. The solutions resulting

from quadratic regularization are ‘smooth,’ i.e. the elements of a vary smoothly. As

different applications have different goals and different prior information, quadratic

regularization may or may not be the preferred method of solution. A regularization

term giving preference to sparse solutions is described in Sec. 2.2.3. Ill-posed inverse

problems abound in the field of mathematical physics, including problems dealing

with the propagation of electromagnetic waves [51].

2.2.2 Sparse Signal Representation

The main idea behind sparse signal representation is that given a class of signals

of dimension N , if one takes a collection of M > N signals that span the class, it

should be possible to represent any signal as a linear combination of a few members

of the collection. In other words, any given signal should be representable using only

a sparse subset of the full collection. The collection is more than a basis, and is
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termed an overcomplete basis or dictionary. The elements are known as basis vectors

or atoms. An in-depth coverage of sparse signal representation may be found in [19];

a similar, but condensed exposition is given in this section.

From linear algebra, it is known that the signal representation problem with over-

complete basis has infinite solutions. Let us define a precise notion of sparsity before

proceeding on to a discussion of obtaining the optimally sparse solution. The `p-norm,

‖ · ‖p, is defined as follows:

‖a‖p = p

√√√√ M∑
i=1

|(a)i|p, (2.22)

where (a)i indicates the ith entry of a. The `p-norm is a true norm for p ≥ 1, but fails

to satisfy the triangle inequality for 0 ≤ p < 1, becoming a quasi-norm. When p = 0,

the quasi-norm counts the number of non-zero elements in a vector. An optimally

sparse solution is a solution which has the smallest `0-norm among all solutions. In

other words, the sparsest coefficient vector a∗ is optimal for the following problem:

minimize ‖a‖0 (2.23)

subject to r = Φa,

where r is the signal that is to be represented and the columns of Φ are the basis

vectors. This problem is difficult to solve directly; consequently, a number of indirect

techniques have been developed to obtain solutions. The two main approaches go by

the names ‘matching pursuit’ and ‘basis pursuit,’ with alternative more descriptive

names ‘orthogonal greedy algorithm’ and ‘convex relaxation.’

Matching pursuit approaches the problem in an iterative fashion. In the first it-

eration, the algorithm selects the single basis vector that minimizes the `2 error if

included in an expansion and then subtracts away its contribution from the mea-

surement, leaving a residual vector. The same process is continued in subsequent

iterations, taking the basis vector that minimizes the error with the residual into the

expansion. When stopped after i iterations, the expansion contains i basis vectors,
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which is a sparse representation if i is small. The iteration may be continued until

the residual is zero.

In basis pursuit, the problem (2.23) is relaxed by replacing the `0-norm with the

`1-norm, giving the following problem:

minimize ‖a‖1 (2.24)

subject to r = Φa.

This problem has a piecewise linear convex objective function and is straightforwardly

cast as a linear programming problem, efficiently solved by a number of optimization

techniques. Under certain conditions on the overcomplete basis Φ, it can be shown

that the original problem and the relaxed problem have the same solution [18, 36].

When the measurements r are noisy, the signal representation problem turns into

a signal approximation problem with essentially the same form. An optimally sparse

solution is a solution to the following problem:

minimize ‖a‖0 (2.25)

subject to ‖r−Φa‖2 ≤ δ,

where δ is a small noise allowance. Instead of satisfying r = Φa exactly, the solution

coefficient vector a is allowed to satisfy the relationship approximately. The matching

pursuit algorithm does not change in the presence of noise, but may be terminated

when the residual vector has `2-norm less than δ. Basis pursuit relaxation from `0 to

`1 with the approximation constraint can be cast as a convex quadratic program and

solved efficiently.

Matching pursuit and basis pursuit are effective methodologies for sparse signal

representation and sparse approximate signal representation usually applied to real-

valued data. A different approach to sparsity, employing the `p-norm, with 0 < p < 1,

is presented in the next section.
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2.2.3 Sparsifying Regularization

This section pulls together pieces from the previous two sections into a common

framework, yielding a sparsity formulation distinct from matching pursuit and basis

pursuit. If the sparse signal representation problem is approached as an ill-posed

inverse problem requiring regularization, then the regularization term should favor

sparse solutions. As discussed in Sec. 2.2.2, the `p-norm is a useful tool for considering

sparsity, suggesting a regularization term of the form J2 = ‖a‖p
p and regularization

cost function:

J (a) = ‖r−Φa‖2
2 + α ‖a‖p

p . (2.26)

The above cost function may also be recognized as a Lagrangian relaxation to the

optimization problem given below.

minimize ‖a‖p
p (2.27)

subject to ‖r−Φa‖2
2 ≤ δ′.

When p 6= 2, J2 is not quadratic and not in the Tikhonov form. When p = 1, the

regularization cost function (2.26) corresponds to basis pursuit. Ideally, p should be

zero for sparsity; however, the relaxed case 0 < p < 1 is of interest in the remainder of

the thesis. With p < 1, the cost (2.26) is not of the Tikhonov form, and thus there is

no closed form solution for its minimum. Additionally, the cost function is not convex.

However, the optimization can be performed with a quasi-Newton method detailed in

[9] and discussed in Chapter 4. Chapter 3 makes clear how sparsifying regularization

fits with wide-angle SAR imaging. The next section departs from inverse problems

and sparse signal representation in examining methods of anisotropy characterization.

2.3 Prior Work on Anisotropy Characterization

The problem of detecting, estimating, and modeling aspect-dependent scattering be-

havior has received attention lately. This section briefly surveys a few proposed
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methods for anisotropy characterization. SAR imaging has many closely aligned av-

enues of research, but the survey is restricted in scope to the anisotropy problem.

Anisotropy characterization methods may be broadly categorized into those that op-

erate in the phase history domain, employing parameterizations for angle-dependent

scattering, and those that operate in the image domain. Both classes are put forward

along with an overall discussion on their positive and negative aspects.

2.3.1 Parametric Methods

As seen in Sec. 2.1, specifically equations (2.16) and (2.19), the phase history domain

observation model with anisotropy is composed of s(θ) functions for each scattering

center. A general approach is to posit a parametric model for s(θ) and estimate the

model parameters for each scattering center. Often, scattering center spatial locations

(xp, yp) are also estimated within the parameter estimation. Electromagnetic theory

provides motivation for a number of parametric functions including parameterizations

of frequency dependence, some of which are given below.

A model obtained from the geometrical theory of diffraction is:

s (xp, yp, f, θ) = Ap

(
jf

fc

)αp

exp {βpθ} (2.28)

where fc is the center frequency of the radar pulse, and Ap, αp, and βp are the

parameters to estimate [47]. The αp parameters are restricted to be half-integers

and relate to the number of bounces a radar pulse takes before coming back to the

antenna. Two other parametric models also motivated by the geometrical theory of

diffraction [26] include, for localized scattering mechanisms such as corners and edges

of manmade objects:

s (xp, yp, f, θ) = Ap exp {−2πfγp sin θ} (2.29)
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and for distributed scattering mechanisms, such as flat plates and cylinders:

s (xp, yp, f, θ) = Ap

(
jf

fc

)αp

sinc

(
2πf

c
Lp sin (θ − ϕp)

)
. (2.30)

The parameters to be estimated are Ap, αp, γp, Lp, and ϕp. Iterative algorithms for

maximum likelihood parameter estimation for these three models exist [14].

A different parametric model for scattering behavior uses an expansion of s(x, y, θ)

into spherical harmonic functions with θ as their argument [17]. The coefficients for

the spherical harmonic basis are obtained by taking inner products. In [54], the

scattering function is parameterized with Gaussians. The model is:

s (xp, yp, θ) = Ap exp

{
−(θ − ϕp)

2

2σ2
p

}
(2.31)

and the parameters Ap, ϕp, and σp are found with a given efficient numerical algo-

rithm.

In addition to parameterizing anisotropy, the aspect dependence of spatial location

(migratory scattering) may also be parameterized. The work in [25] parameterizes

anisotropy with polynomials and also range profile with polynomials:

ρp (θ) = ap + bpθ +
cp

2
θ2. (2.32)

The stationary point scatterer expression for range profile can be recovered by setting

ap = xp, bp = yp, and cp = −xp, yielding ρp(θ) = xp cos(θ)+ yp sin(θ) using Maclaurin

series approximations for sine and cosine.

Parametric methods in the phase history domain yield well-defined estimation

problems based on the physics of canonical scattering or other prior knowledge. The

next section is concerned with methods that incorporate very little prior information.
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2.3.2 Image-Domain Methods

Image-domain methods use a multiaperture approach for characterizing anisotropy.

The radar measurements are divided into smaller pieces, with cuts along the θ axis.

An image, known as a subaperture image, is then formed from each segment of

the measurements. It should be noted that the subaperture images have poorer

cross-range resolution than an image formed from the full aperture would. Also,

subapertures are of fixed angular extent; consequently, any subaperture analysis is

limited in its ability to characterize anisotropy extent.

In [23], the division of the aperture is a partition into equally-sized subapertures

and the goal is the detection of anisotropy. After subaperture images are formed

through conventional imaging and registered, changes among corresponding pixels

are detected. In essence, the procedure is like looking at a flipbook and picking out

little flashes. The detection is posed as a binary hypothesis testing problem for each

location and the likelihood functions are estimated using a trained hidden Markov

model. The result can be summarized as a Boolean image that is true at pixel (xp, yp)

if s(xp, yp, θ) is anisotropic. By dividing the aperture into non-overlapping subaper-

tures, anisotropic behavior that straddles a subaperture boundary may be missed.

Overlapped subapertures are not used in [23] due to the increase in computation.

Similar methods are described in [50].

The method described above can be visualized as passing the phase history through

a filterbank with non-overlapping rectangular windows. A different procedure for

forming subapertures, given in [41], is to use a filterbank with overlapping Hamming

windows. Further processing used in [41] involves subaperture image formation using

point-enhanced imaging [10]. Anisotropy is characterized by considering correspond-

ing pixels in each subaperture image — the subaperture image with the maximum

pixel value corresponds to the direction of anisotropy. Other approaches use filters

different from Hamming and rectangular windows in the filterbank that are matched

to expected responses [2]. Other subaperture approaches are detailed in [13, 34, 22].

The above methods consider anisotropy of fixed angular extent only. A method of
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detecting anisotropic scattering [32] that is in the same spirit as the previous methods

additionally uses multiple levels of subapertures. Within each level, the subapertures

have the same angular extent and are overlapping, but the extent in each level is

half that of the previous level. The layers of subapertures form a tree-structured

subaperture pyramid, with the full aperture as the root. Each of the subapertures

can be considered as a hypothesis. For each pixel (xp, yp) independently, the tree is

searched for the best hypothesis to explain the data, considering two levels at a time,

starting at the root. The search is continued if a child subaperture is more likely

to explain the data than the parent. The likelihoods are obtained using a derived

statistic analogous to the total energy contained in the subaperture.

In general, image-domain multiaperture methods operate on images already formed

by conventional or enhanced image formation techniques, proceeding based on the

simple fact that partial data is enough to still form reasonable images. The next sec-

tion discusses aspects of this class of methods side-by-side with parametric methods.

2.3.3 Discussion

The parametric methods and image-domain methods described above have been

shown to work well in different situations. Notably, the parametric models incorpo-

rate much prior information about expected scattering behavior. Also, the estimated

parameters have physical significance, e.g. the parameter Lp corresponds to the phys-

ical length of the scattering mechanism. The image-domain methods are robust, easy

to reason about conceptually, and can be applied to already formed images. They can

be used to characterize anisotropy to various levels of detail, from simple detection —

isotropic vs. anisotropic — to more complicated questions such as the angular extent

or center angle of anisotropy.

The parametric model formulation of the anisotropy characterization problem

is of course predicated on the correct modeling of natural phenomena. The above

parametric models often do not hold in wide-angle imaging scenarios [41]. This fact

is especially evident in equation (2.32), the range profile parameterization, in which

the basic point scatterer model cannot be recovered in wide-angle scenarios. Model
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misspecification error is considered in [14], but with the limitation that the unknown

true model is of a known parametric family. However, moving from narrow-angle

SAR to wide-angle SAR is not simply a transition of the parametric model within

a family of models. Within the image-domain methods, the subaperture pyramid

framework moves towards allowing a continuum of aspect angle extents, but is still

limited to full-, half-, quarter-, · · · -, apertures. All of the image-domain methods use

subapertures which inherently reduce resolution. Also, in most of the techniques, the

characterization of anisotropy in different spatial locations (different pixels) is done

independently.

A formulation using an overcomplete basis novel to the anisotropy characterization

problem is presented in Chapter 3. While still taking advantage of prior information,

this method is flexible enough to admit solutions that are not from a prespecified

parametric family. It jointly treats spatial locations and suffers no reduction in cross-

range resolution.
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Chapter 3

Overcomplete Basis Formulation

for Anisotropy Characterization

and Image Formation

Interpretation of inaccurate, insufficient, and inconsistent data: Many problems
in physical science involve the estimation of a number of unknown parameters
which bear a linear or quasi-linear relationship to a set of experimental data.
The data may be contaminated by random errors, insufficient to determine the
unknowns, redundant, or all of the above.

— D.D. Jackson (1972), in Geophysical Journal of the Royal Astronomical
Society

This chapter describes a formulation of the anisotropy characterization problem

different from the subaperture and parametric formulations discussed in Sec. 2.3. The

problem is approached through the sparsifying regularization framework described in

Sec. 2.2.3 by constructing an overcomplete basis and appropriately using the phase

history measurements. The idea is to expand the scattering function s(θ) at each

spatial location as a superposition of basis vectors and then determine coefficients

for those vectors. The first part of the chapter leaves the overcomplete basis fully

general; the chapter concludes with a consideration of specific basis choices.
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3.1 Anisotropy Characterization Inverse Problem

In this section, the observation models for stationary and migratory point scattering

with anisotropy, equations (2.16) and (2.19), are expanded into overcomplete bases.

The expansions are expressed in both summation notation and in matrix-vector form.

3.1.1 Stationary Scattering Centers

The starting point for the overcomplete expansion is the observation model for sta-

tionary scattering centers, derived in Sec. 2.1, which is reproduced below.

r (f, θ) =
P∑

p=1

s (xp, yp, θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
. (3.1)

For a single spatial location p, the aspect-dependent scattering is expanded as follows:

s (xp, yp, θ) =
M∑

m=1

ap,mbm (θ) , (3.2)

yielding the following overall M ·P basis expansion:

r (f, θ) =
P∑

p=1

M∑
m=1

ap,mbm (θ) exp

{
−j

4πf

c
(xp cos θ + yp sin θ)

}
. (3.3)

Taking the phase history measurements at K discrete frequencies and N discrete

aspect angles, let us define length N vectors rk = r(fk, θ), bm = bm(θ), and εk,p =

exp
{
−j 4πfk

c
(xp cos θ + yp sin θ)

}
. Then, taking φk,p,m = bm • εk,p, where M1 •M2 is

the elementwise multiplication of matrices M1 and M2, the basis expansion may be

simply expressed as:

rk =
P∑

p=1

M∑
m=1

ap,mφk,p,m, k = 1, . . . , K. (3.4)

The inverse problem is to determine the M ·P complex-valued coefficients ap,m that

satisfy or approximately satisfy the linear equations (3.4). The number of basis
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vectors M is chosen such that M > N , making the basis overcomplete.

Now, moving to matrix-vector equations, the collection of all phase history mea-

surements can be stacked as the following tall N ·K-vector r.

r =


r1

r2

...

rK

 . (3.5)

The set of all basis vectors at a particular frequency fk and spatial location (xp, yp)

can be collected into a matrix Φk,p.

Φk,p =
[
φk,p,1 φk,p,2 · · · φk,p,M

]
. (3.6)

In the same manner, the bm vectors can be concatenated into a B matrix.

B =
[
b1 b2 · · · bM

]
. (3.7)

These two matrices are related by the following expression:

Φk,p = B •
(
εk,p1

T
M

)
, (3.8)

where 1M is the M -vector of all ones. The factor B is subject to design in the

anisotropy characterization procedure, but εk,p is fundamental to the SAR phase

history measurements. The choice of B is discussed in the second half of this chapter.

Putting together all frequencies and spatial locations, the overall overcomplete

basis Φ is:

Φ =


Φ1,1 Φ1,2 · · · Φ1,P

Φ2,1 Φ2,2 · · · Φ2,P

...
...

. . .
...

ΦK,1 ΦK,2 · · · ΦK,P

 . (3.9)
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Defining the length M ·P vector of coefficients as:

a =
[
a1,1 a1,2 · · · a1,M a2,1 · · · aP,M

]T
, (3.10)

the statement r = Φa in matrix-vector form is completely equivalent to the summa-

tion form (3.4). In this form, it is readily apparent that there are N·K linear equations

with M·P unknowns and M > N . Often in the choice of B, M � N , so regardless of

P and K, M·P > N·K and the system is an underdetermined set of linear equations.

Solving the inverse problem with sparsifying regularization, mentioned in Sec. 2.2.3,

is discussed in greater depth in Chapter 4.

By forming this Φ matrix, the spatial locations are treated jointly within one

system of equations. The first M elements of a depend on the first spatial location

p = 1, elements M + 1 to 2M of a depend on the second position p = 2, and so

on. Thus, by setting up the problem in this manner, it is possible to decompose the

phase history data into contributions from different point scatterers and in the process,

characterize amplitude and anisotropy for each one. As a notational convenience, ap

is the M -vector of coefficients corresponding to position p and:

Φp =


Φ1,p

Φ2,p

...

ΦK,p

 ,

the subset of basis vectors corresponding to position p. There is no requirement that

all spatial locations under consideration contain a scatterer. If there is no scatterer

at a particular spatial location p, then all of the elements of ap should come out to

be zero. It is thus possible to use a grid of pixels as the set of spatial locations.

3.1.2 Migratory Scattering Centers

With migratory scattering, there is an additional degree of freedom over stationary

scattering. The overcomplete basis expansion of aspect-dependent scattering is the
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same as above, giving:

r (f, θ) =
P∑

p=1

M∑
m=1

ap,mbm (θ) exp

{
−j

4πf

c
((x̄p + Rp(0)) cos θ + ȳp sin θ −Rp (θ))

}
.

(3.11)

The observation model is further expanded in migration. Restricting to circular

migration (see equation (2.17)), the observations are related to the overcomplete

basis and coefficients by:

r (f, θ) =
P∑

p=1

L∑
l=1

M∑
m=1

ap,l,mbm (θ) exp

{
−j

4πf

c
((x̄p + Rp,l) cos θ + ȳp sin θ −Rp,l)

}
.

(3.12)

Again defining vectors εk,p,l = exp
{
−j 4πfk

c
((x̄p + Rp,l) cos θ + ȳp sin θ −Rp,l)

}
and

φk,p,l,m = bm • εk,p,l, of length N , the basis expansion is:

rk =
P∑

p=1

L∑
l=1

M∑
m=1

ap,l,mφk,p,l,m, k = 1, . . . , K. (3.13)

Thus, with circular migratory scattering there are L·M·P complex-valued coefficients.

Each basis vector corresponds to a different invariant spatial location, different radius

of migration, and different anisotropy, i.e. bm.

The conversion from summation notation to matrix-vector notation follows in the

same manner as for stationary scattering. The main extensions are highlighted below:

Φk,p,l =
[
φk,p,l,1 φk,p,l,2 · · · φk,p,l,M

]
, (3.14)

Φ =


Φ1,1,1 Φ1,1,2 · · · Φ1,1,L Φ1,2,1 · · · Φ1,P,L

Φ2,1,1 Φ2,1,2 · · · Φ2,1,L Φ2,2,1 · · · Φ2,P,L

...
... · · · · · · · · · . . .

...

ΦK,1,1 ΦK,1,2 · · · ΦK,1,L ΦK,2,1 · · · ΦK,P,L

 , (3.15)
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and

a =
[
a1,1,1 a1,1,2 · · · a1,1,M a1,2,1 · · · a1,L,M a2,1,1 · · · aP,L,M

]T
. (3.16)

The overcomplete bases and inverse problems for the anisotropy characterization and

migratory scattering problems have now been stated. The choice of vectors in B is

covered in the next section, whereas solving the inverse problem is covered in the next

chapter.

3.2 Choice of Basis Vectors

The set of vectors B for the overcomplete basis Φ is to be chosen such that its

cardinality is much greater than the dimension of θ and linear combinations of very

few basis vectors accurately represent plausible angle-dependent scattering behaviors.

The choice of B is a way to incorporate prior information about angle-dependent

scattering.

3.2.1 Contiguous Anisotropy

As seen in Sec. 2.3, methods employing subaperture analysis and parametric mod-

els expect to find contiguous intervals in θ for which there is non-zero scattering.

Fig. 3-1 shows an example of the aspect-dependent scattering function of a real-

istic point scattering center — the anisotropy is contiguous. Basis vectors used

in this thesis are chosen to similarly represent contiguous segments of anisotropy.

The bm are chosen to be pulses with all possible angular extents and all possible

starting angles, in other words all widths and shifts. For example, if N = 8 and

the pulse shape is rectangular, then b1, the isotropic vector is [1 1 1 1 1 1 1 1]T ,

b2 = [1 1 1 1 1 1 1 0]T , b3 = [0 1 1 1 1 1 1 1]T , and the final pulse with the finest

anisotropy bM = [0 0 0 0 0 0 0 1]T . The bm have unit maximum amplitude; solv-

ing the inverse problem gives the complex amplitude coefficients. The full set B for

N = 8 is illustrated in Fig. 3-2. The dots represent entries that have a non-zero value
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Figure 3-1: Contiguous anisotropy: large scattering response over contiguous intervals
of aspect angle and nearly zero response elsewhere.
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Figure 3-2: Illustration of matrix B for N = 8.

and spaces without dots represent zero-valued elements.

For this choice, there is a simple relationship between M , the number of vectors

in B, and N , the number of angle samples. M is the N th triangular number:

M =

N + 1

2

 =
1

2
N2 +

1

2
N. (3.17)

Various pulse shapes may be enlisted in the overcomplete basis, e.g. triangle, raised

triangle, and raised cosine. These shapes are discussed further in Sec. 3.2.3. The next

section describes a structure for the basis that comes in handy in developing methods

of solution for the inverse problem.

3.2.2 Graph-Structured Interpretation of Basis

The overcomplete basis described in the previous section has a nice, intuitive graph-

structured interpretation. The vectors bm can be arranged as nodes in a weakly

connected directed acyclic graph. The graph is given in Fig. 3-3 for N = 8, with

nodes labeled to the left with their corresponding b vectors when the pulse shape is

rectangular. A topological sort for this graph is exactly the ordering from left to right

of the vectors in B, illustrated in Fig. 3-2.

The root node is the isotropic basis vector; traversing down the graph corresponds

to decreasing angular extent of anisotropy. Any such traversal from coarse to fine

anisotropy is analogous to the path a shot or chip takes when dropped into a pegboard

apparatus in which the pegs are arranged in a quincunx pattern. Such apparatus,
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Figure 3-3: Directed acyclic graph representation of B.

(a) (b)

Figure 3-4: Quincunx peg apparatus (a) Galton board1, and (b) plinko board2.

going by names such as the Galton board and plinko board have been used to study

statistics [24] and in games of chance [46], see Fig. 3-4. Consequently, in this thesis a

graph of this form with N rows is referred to as an N -level plinko graph.

The graph-structured representation need not have directed edges. Edges are

directed in this section for pedagogic reasons only; plinko graphs are undirected in

the remainder of the thesis.

1image from page 63, Fig. 7 of Galton [24]
2image from Mobliss website (http://www.mobliss.com/ img/game/detail/plinko 150x200.gif)
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3.2.3 Mutual Coherence

Mutual coherence of an overcomplete basis, µ(Φ), is an important quantity in con-

vergence and stability conditions of sparse signal representation algorithms such as

matching pursuit and basis pursuit [19]. Mutual coherence is defined as:

µ (Φ) = max
i6=j

|φH
i φj|, (3.18)

where the φ vectors are normalized to unit `2 magnitude. Equivalently, it is the largest

non-diagonal entry of the Gram matrix G = ΦHΦ in magnitude. By definition, µ is

between zero and one. Mutual coherence indicates how similar the two most similar

basis vectors in the overcomplete basis are. Orthonormal bases have zero mutual

coherence. Overcomplete bases with small µ are referred to as incoherent, whereas

overcomplete bases with large µ are referred to as coherent.

Mutual coherence gives an indication of how difficult or ill-posed the overcom-

plete basis is. Sparse signal representation algorithms employing `1 relaxations can

be shown to always find solutions that are exactly the optimally sparse solution,

i.e. with minimum `0-norm, when the overcomplete basis is sufficiently incoherent

[36, Chapter 7], [19]. Essentially, mutual incoherence enables the construction of a

sufficient condition for `1-`0 equivalence, hence guaranteeing the solution of a com-

binatorial optimization problem by tractable optimization algorithms. In this sense,

mutual coherence is an indicator of how demanding a particular overcomplete basis

is for a sparse signal representation algorithm.

When considering the mutual coherence of the overcomplete basis for anisotropy

characterization described in this chapter, intuitively, vectors corresponding to the

same spatial location p and radius of migration l are the most similar. Consequently,

the two basis vectors which provide the maximum inner product to the mutual coher-

ence calculation originate in the same p and l. Thus, it is B and not the εk,p,l vectors

which determine µ(Φ).

This begs the question, how does pulse shape in B affect mutual coherence? Are

there easier and more difficult pulse shapes? The mutual coherence of different pulse
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shapes is now compared.

The mutual coherence of an overcomplete basis B with rectangular pulses or

boxcar window shapes is easily determined analytically as a function of the number

of angle samples N . The vectors b1 and b2 have the maximum inner product. The

two vectors are both non-zero in N − 1 entries and have normalization factors 1√
N

and 1√
N−1

, resulting in:

µ
(
Bboxcar

N

)
=

√
N − 1

N
. (3.19)

The mutual coherence for triangle window shapes constructed using the triang func-

tion in Matlab is more complicated, but can be worked out to be:

µ
(
Btriang

N

)
=


N3−N√

N6+N4−2N2 , N = 2, 4, 6, . . .

N3−4N+3√
N6−2N4−6N3+N2+6N

, N = 3, 5, 7, . . .

. (3.20)

Even and odd N have different expressions because the triangle window is defined

differently for the two cases. As N goes to infinity, µ goes to one for both the boxcar

and triangle window, but the convergence to unity is slower for the boxcar window,

implying that both types of overcomplete bases are difficult, but the triangle is more

difficult.

The two above mutual coherence expressions are plotted in Fig. 3-5 along with

the mutual coherences for overcomplete bases employing several other pulse shapes.

These other shapes include the Hamming window, as defined by the Matlab func-

tion hamming; a house shape, given by (triang(N)+1)/2; and a v shape, given by

circshift(triang(N),ceil(N/2)). It can be observed that the more a pulse shape

tapers to zero at its edges, the more coherent the basis using that pulse shape. Thus

the v-shaped pulse is the least coherent (it grows towards its edges); unfortunately,

this type of shape is not very plausible in explaining anisotropy.

The choice of pulse shape should foremost be representative of expected aspect-

dependent scattering. However, solving the sparse signal representation problem

becomes more difficult with peaky, tapering shapes. These two factors may be in

contention and may require a compromise. The next section defines a new mutual
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Figure 3-5: Mutual coherence as a function of N using different pulse shapes.

coherence-like quantity specific to the overcomplete basis for anisotropy character-

ization to further investigate how different parameters affect the difficulty of the

problem.

3.2.4 Cross-Coherence

As discussed above, mutual coherence does not depend on the SAR εk,p,l vectors.

Here a new notion, cross-coherence, is defined that does depend on the εk,p,l. The

maximum inner product is taken over all pairs of basis vectors such that they do not

share common p and l. In terms of the Gram matrix, instead of disregarding just

the diagonal as done in the mutual coherence calculation, a block diagonal portion is

disregarded. Specifically,

ν (Φ) = max
φp′,l′,m′ /∈Φp,l

φp,l,m /∈Φp′,l′

|φH
p,l,mφp′,l′,m′|. (3.21)
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Cross-coherence may be used to investigate trends in the difficulty of the anisotropy

characterization sparse signal representation problem under various SAR parameters.

The effects of the number of angle samples N , the number of frequency samples K,

the aperture width, and the frequency bandwidth are investigated.

When the two closest positions are (xA, yA) and (xB, yB), then the functional form

for cross-coherence, ν(Φ), is simply:

ν (Φ) =
1

NK

∣∣∣∣∣
N∑

n=1

K∑
k=1

e−j 4π
c

fk((xB−xA) cos θn+(yB−yA) sin θn)

∣∣∣∣∣ . (3.22)

However, it is difficult to intuit the effects of the various parameters from the above

expression. In order to develop this intuition, first let the N aspect angles be equally

spaced from −θ̂ to +θ̂ and the K frequencies be equally spaced from fc− B
2

to fc + B
2
.

For N = 1, equation (3.22) reduces to:

ν (K, B) =


2
K

∑K
2
k=1 cos

(
4π
c

2k−1
K−1

B
2

(xB − xA)
)
, K even

1
K

+ 2
K

∑K−1
2

k=1 cos
(

4π
c

2k
K−1

B
2

(xB − xA)
)
, K odd

, (3.23)

as a function of K and B. For ranges of parameters often encountered, B|xB−xA|
c

< 1
4
,

so ν gets values from the first quarter cycle of cosine waves; hence ν is positive and

monotonically decreasing with increasing bandwidth B. As K increases, cosines with

longer periods contribute and thus ν increases. These trends are illustrated in Fig. 3-

6 with xB − xA = 0.001. As bandwidth is increased, diversity in the measurements

increases, thus reducing the cross-coherence and making the problem easier. Because

frequency dependence is not modeled in the overcomplete basis, measurements at

additional frequencies provide redundant information; redundancy makes the inverse

problem more difficult, hence the increase in ν with K.

A clean simplification ν(N, θ̂) similar to equation (3.23) does not fall out by set-

ting K = 1 in general; however, ν(N, θ̂)|N=2 is cos(4π
c
fc(yB − yA) sin θ̂). The widest

of wide-angle apertures have angular extent less than 180◦, so θ̂ < π
2
, and sin(θ̂) is a

monotonically increasing function. Thus, as θ̂ increases, sin(θ̂) increases and conse-
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Figure 3-6: Cross-coherence as a function of bandwidth for different numbers of
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Figure 3-7: Cross-coherence as a function of aperture width for different numbers of
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quently ν decreases. As N increases, ν increases, mirroring the trends for frequency.

The reasoning for the aspect-angle trends also mirrors the reasoning for the frequency

trends. Cross-coherence as a function of aperture width, i.e. 2θ̂, for different values

of N is shown in Fig. 3-7. For this plot, xB − xA = 0.001, yB − yA = 0.001, and

fc = 1010.

Using phase history measurements corresponding to just two frequencies bracket-

ing the widest possible bandwidth is a good strategy because small K and large B

minimize ν. This reasoning would seem to suggest that not making use of all available

data is advantageous; however, throwing away data, no matter how redundant, is not

good for robustness in the presence of noise. It may be better to use measurements at

several frequencies, but not necessarily all available phase history measurements. The

tradeoff of noise robustness and difficulty of the sparse signal representation problem

is investigated further in Chapter 5. By a similar logic, it would seem to follow that N

should be kept small as well. However, the goal of this work is anisotropy character-
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ization; not making use of all data in aspect angle limits the quality of characterized

anisotropy. Thus, measurements at all angles should be used.

Employing cross-coherence as an indicator for the difficulty of the anisotropy char-

acterization sparse signal representation problem, this section has shown in conjunc-

tion with the previous section that the problem as posed is difficult. As expected,

diversity in the data makes the problem easier and an interesting tradeoff concerning

redundancy in the data appears. The overcomplete basis defined in this chapter is

fairly coherent, nevertheless viable methods of solution exist and are discussed in the

next chapter.
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Chapter 4

Optimization Methods

Structures are the weapons of the mathematician.

— Nicolas Bourbaki1

The thesis has heretofore developed a precise formulation of anisotropy character-

ization and image formation as a sparse signal representation inverse problem with a

specific overcomplete basis and a specific methodology for solution — minimization

of a regularization cost function. The contents of this chapter deal with actually

carrying out the minimization. The techniques in this chapter make varying use of

the structure of the overcomplete basis developed in Chapter 3.

4.1 Quasi-Newton Method

The cost function at hand in the minimization problem, J(a) = ‖r−Φa‖2
2 + α‖a‖p

p,

p < 1, is certainly non-linear and non-quadratic; it may be shown that J(a) is non-

convex as well. To say that non-convex optimization is challenging would be an

understatement. Further complicating matters, Φ, a, and r are complex-valued.

This section describes a quasi-Newton numerical optimization technique applicable

to J(a) developed in [9].

1This quotation is often attributed to the pseudonymous Nicolas Bourbaki, but the original source
is quite elusive.
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4.1.1 Iterative Algorithm

In order to arrive at the quasi-Newton algorithm, the cost function is approximated

by a function differentiable everywhere, which is then differentiated and set to zero.

The derivation of the algorithm is sketched below; a more thorough derivation may

be found in [9].

The cost function being minimized is reproduced below in equation (4.1), with

the ‖ · ‖p
p term expressed explicitly in summation form.

J(a) = ‖r−Φa‖2
2 + α

M∑
i=1

|(a)i|p. (4.1)

The ‖ · ‖p
p function forms a cusp at the origin; consequently J(a) is not differentiable

at a = 0. A simple approximation Jε(a), defined below, differentiable at 0, is used

proceeding forward.

Jε(a) = (r−Φa)H(r−Φa) + α
M∑
i=1

(
(a)2

i + ε
)p/2

. (4.2)

Clearly, Jε(a) = J(a) as ε goes to zero. Also, for small ε, Jε and J are discernibly

different only locally near the origin.

The next step towards reaching the iterative algorithm is determining the gradient

of Jε. The gradient of the quadratic term is:

∇
(
(r−Φa)H(r−Φa)

)
= −2ΦH(r−Φa) . (4.3)

The partial derivative of the sparsifying term with respect to entry (a)i is:

∂

∂(a)i

(
M∑
i=1

(
(a)2

i + ε
)p/2

)
=

p

2

(
(a)2

i + ε
)p/2−1

(2(a)i) . (4.4)

Then, after canceling twos and noting that the partial derivative with respect to

variable (a)i depends only on (a)i, the gradient may be formed as follows with a
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diagonal matrix:

∇

(
M∑
i=1

(
(a)2

i + ε
)p/2

)
= p


((a)2

1 + ε)
p/2−1

0 · · · 0

0 ((a)2
2 + ε)

p/2−1 · · · 0
...

...
. . .

...

0 0 · · · ((a)2
M + ε)

p/2−1

 a.

(4.5)

Defining the matrix in equation 4.5 as Λ(a) and collecting the two gradient ex-

pressions leads to:

∇Jε(a) = −2ΦH(r−Φa) + αpΛ(a)a

= −2ΦHr +
(
2ΦHΦ + αpΛ(a)

)
a. (4.6)

Once again, the notation is simplified by defining a matrix, H(a) = 2ΦHΦ+αpΛ(a).

Setting ∇Jε equal to zero leads to:

−2ΦHr + H(a)a = 0

H(a)a = 2ΦHr. (4.7)

If H were not a function of a, then there would be a closed form solution for the

optimal a, but alas, that is not the case.

Instead, an iterative approach is taken. The following iteration is used to converge

to an a that minimizes the cost function.

a(n+1) = H−1
(
a(n)
)
2ΦHr (4.8)

The iteration is terminated when the percent change between successive iterates falls

below a small constant.

It is shown in [9] that this quasi-Newton method is also an extension of half-

quadratic optimization and inherits the convergence properties of half-quadratic op-

timization. The technique is robust and is initialized with a(1) = ΦHr. The algorithm
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works well in practice; examples are given in Sec. 4.1.2. Next, a few aspects of the

iterative update that may be taken advantage of under special structure in H are

noted.

In the algorithm, ΦHΦ and ΦHr are calculated once, whereas Λ is recalculated

at every iteration. The set of linear equations (4.7) are resolved on every iteration

as well. Efficient methods for solving large systems of equations are often specialized

to systems with a special structure, such as triangular matrices and banded matrices

[56]. Systems with diagonally dominant matrices, i.e. matrices that have the property

that for each row, the sum of the non-diagonal magnitudes is smaller than the diago-

nal entry magnitude, have iterative algorithms for solution such as the Gauss-Jacobi

and Gauss-Seidel methods. Iterative methods may also be used to solve systems ap-

proximately by early termination. Fortunately, the H(a) produced by the anisotropy

characterization overcomplete basis is diagonally dominant.

In the examples in this thesis, the conjugate gradient method, another iterative

method for solving systems of linear equations is used. The conjugate gradient tech-

nique repeatedly computes the forward linear operation H. With stationary scattering

centers, if the spatial locations (xp, yp) are equally spaced, then the matrix ΦHΦ is a

block convolution matrix. Hence, computations may be sped up through the use of

convolution rather than matrix multiplication.

4.1.2 Examples

This section contains three examples: an example with stationary scattering centers

using synthetic data, an example with stationary scattering centers using XPatch

data, and an example with migratory scattering centers using synthetic data. To-

gether these examples illustrate that the overcomplete basis formulation is quite ef-

fective for joint image formation and anisotropy characterization.

The first example has N = 16 equally-spaced angles over [−55◦, +55◦]. There are

K = 3 frequencies 7.047 GHz, 7.059 GHz, and 7.070 GHz, the speed of propagation

c = 2.998× 108 m/s, and there are P = 25 spatial locations on a square lattice going

from zero to four meters in both x and y. Of the 25 positions, five contain point
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Figure 4-1: Complex amplitudes of true coefficients a with real part ◦ and imaginary
part ×.

scatterers, with a variety of rectangular anisotropy extents and complex amplitudes

— Fig. 4-1 shows the true coefficient vector a. In the figure, a is partitioned into

subvectors ap, with each ap arranged according to its corresponding spatial location

as in an image. With N = 16, there are M = 136 coefficients per position. The

136 coefficients are displayed as a stem plot, in a left to right ordering similar to

Fig. 3-2, with the ◦ being the real part of the complex amplitude and the × being

the imaginary part of the complex amplitude.

First, r = Φa is solved using the pseudo-inverse to obtain the least-squares,

minimum norm solution âLS as a baseline for comparison. In Fig. 4-2, âLS is displayed

in the same manner as a in Fig. 4-1. This solution puts energy into coefficients of all

âLS
p , giving non-zero scattering to all spatial locations. The coefficients are mapped

67



 a
1

 a
2

 a
3

 a
4

 a
5

 a
6

 a
7

 a
8

 a
9

 a
10

 a
11

 a
12

 a
13

 a
14

 a
15

 a
16

 a
17

 a
18

 a
19

 a
20

 a
21

 a
22

 a
23

 a
24

 a
25

Figure 4-2: Complex amplitudes of coefficients in least-squares solution âLS with real
part ◦ and imaginary part ×.
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Figure 4-3: Least-squares solution scattering magnitude overlaid on true scattering
magnitude.

to their corresponding scattering functions in Fig. 4-3. Once again, the scattering

functions for individual scattering centers are arranged as in an image based on the

spatial location of the scattering centers. The solid line with markers is the least-

squares solution and the dotted line is the true scattering. As there is no additive

noise, the product of âLS and Φ equals r, but in this solution, the contributions

are not assigned to individual spatial locations in a way that accurately reflects the

underlying truth.

In contrast, the use of sparsifying regularization gives a solution to the inverse

problem that explains the observations consistent with the true scattering function.

Solution coefficients âSR, shown in Fig. 4-4, are obtained with the regularization term

being the `0.1-norm and the regularization parameter α = 3. The scattering function
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Figure 4-4: Complex amplitudes of coefficients in sparsifying regularization solution
âSR with real part ◦ and imaginary part ×.
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Figure 4-5: Sparsifying regularization solution scattering magnitude overlaid on true
scattering magnitude.

corresponding to these coefficients, shown in Fig. 4-5, illustrates that this methodology

of an overcomplete basis with sparsifying regularization is an effective method for

characterizing anisotropy of point scatterers from phase history measurements. It

also illustrates the fact that all spatial locations need not contain point scattering

centers.

In the previous example the scatterer anisotropies exactly match the basis vectors,

but in realistic imaging scenarios, that is not necessarily the case. In this second

example, there are four spatial locations; two of the spatial locations have no scatterers

and the scattering centers at the other two spatial locations exhibit realistic, i.e. from

XPatch predictions, aspect-dependent scattering behavior. The four positions are at

(0, 0), (0, 1
2
), (1

2
, 0), and (1

2
, 1

2
) meters, measurements are at K = 3 frequencies 9 GHz,
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Figure 4-6: Complex amplitudes of coefficients in least-squares solution âLS with real
part ◦ and imaginary part ×.

9.016 GHz, and 9.032 GHz over the N = 50 angle samples equally spaced over a 98◦

aperture. The least-squares solution and a solution using the quasi-Newton method

with the `p-norm having p = 0.1 and the regularization parameter α = 1 are shown

in Fig. 4-6 through Fig. 4-9.

As expected, âSR is much sparser due to the `0.1 regularization term. As in the

first example, the coefficients corresponding to spatial locations without scattering

centers are all nearly zero in the sparse solution, whereas the least-squares solution

has many large-valued coefficients. Inspecting the scattering functions, the sparse

solution is more accurate in its representation of the underlying truth than the least-

squares solution, giving an indication that basis vectors of contiguous anisotropy are

fairly good at sparsely representing realistic aspect-dependence.
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Figure 4-7: Least-squares solution scattering magnitude overlaid on true scattering
magnitude.
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Figure 4-8: Complex amplitudes of coefficients in sparsifying regularization solution
âSR with real part ◦ and imaginary part ×.
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Figure 4-9: Sparsifying regularization solution scattering magnitude overlaid on true
scattering magnitude.
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Figure 4-10: Illustration of basis vectors of different radii of migration along with true
radius of migration, the circle with dots, overlaid on conventionally formed image.

The previous two examples deal with stationary scattering centers, whereas the

third example contains a migratory scattering center. There is just one scattering

center in the scene, i.e. P = 1, with N = 15 angle samples over a 14◦ aperture. The

scatterer has a certain rectangular anisotropy and has circular migration with radius

0.6 meters. The overcomplete basis has L = 5 radii, with the Rl being 0, 1
4
, 1

2
, 3

4
, and

1 meters. These different Rl are illustrated in Fig. 4-10 along with the true radius of

migration overlaid on an image of the scene formed by conventional processing.

The inverse problem is solved with K = 5 frequencies 9.00 GHz, 9.49 GHz, 9.98

GHz, 1.05 GHz, and 1.10 GHz, by the quasi-Newton method. The coefficient mag-

nitudes of the solution are shown in Fig. 4-11; two of the radii, R3 = 1
2

and R4 = 3
4
,

have non-zero coefficients corresponding to the true rectangular anisotropy. The true

radius, 0.6, falls between 1
2

and 3
4
, so the solution follows expected behavior. Putting

different discrete values for radii into the overcomplete basis is somewhat limiting; a

finer discretization of radius would have given more precise results. The next section
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Figure 4-11: Magnitudes of coefficients in sparsifying regularization solution of mi-
gratory scattering example.

discusses a different approach to characterizing the radius of migration in circular

migratory scattering centers that does not discretize radius.

4.2 Regression Over Radius

The overcomplete basis expansion with circularly migratory scattering centers:

P∑
p=1

L∑
l=1

M∑
m=1

ap,l,mbm (θ) exp

{
−j

4πf

c
((x̄p + Rp,l) cos θ + ȳp sin θ −Rp,l)

}

requires the possible radii of migration to come from a discrete set of L values per

scattering center. As seen in the previous section, this approach is quite effective,

but causes the overcomplete basis to have O(LN2P ) basis vectors. Additionally, it

is desirable to allow any value for the radius rather than just the chosen Rp,l. In

this section, a method is developed that uses a Φ matrix with O(N2P ) columns and

converges to a radius that does not come from a discrete set, but may be any value.

4.2.1 Nonlinear Least-Squares

As described in Sec. 2.1.4 and Sec. 3.1.2, there are invariant spatial locations (x̄p, ȳp)

for each migratory scattering center p, but Rp is not known. In the technique con-

sidered in this section, the Rp are initially zero and then increased until settling onto

hopefully the correct values. In a sense, the method is like blowing up P balloons
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simultaneously. The details are given below.

Starting with the P scattering centers and invariant positions (x̄p, ȳp), the follow-

ing vectors as functions of Rp are defined:

εk,p(Rp) = exp

{
−j

4πfk

c
((x̄p + Rp) cos θ + ȳp sin θ −Rp)

}
,

and φk,p,m(Rp) = bm • εk,p(Rp). Concatenating the φk,p,m(Rp) yields a matrix Φ(R),

where R =
[
R1 R2 · · · RP

]T
. For fixed anisotropy characterization coefficients a,

as R changes, aspect-dependent magnitudes for individual scattering centers remain

the same, but phases do not. Phase affects how the contributions from the various

scattering centers combine. The approach is to optimize over the radius vector R to

minimize the data fit error ‖r − Φ(R)a‖2
2, but since anisotropy is also to be char-

acterized with sparsity, the a in the previous expression is a sparse solution. The

optimization problem is thus:

min
R

∥∥∥r−Φ(R) arg min
a

{
‖r−Φ(R)a‖2

2 + α‖a‖p
p

}∥∥∥2

2
. (4.9)

To solve this problem, the outer minimization is performed using an iterative

nonlinear least-squares algorithm trust-region reflective Newton to converge to an

optimal R [15]. On every iteration, the update of R requires the evaluation of r −

Φ(R)a, which requires the inner minimization to be carried out, using the quasi-

Newton method of Sec. 4.1. The procedure is initialized with R = 0, exactly the

problem for stationary scattering centers, giving a first a. On subsequent iterations,

the inner sparse signal representation minimization is carried out with fixed Φ(R),

R 6= 0. The outer minimization is terminated when the change in R falls below a

small constant. Constraints such as R ≥ 0 or Rp ≤ Rmax
p may also be imposed on the

outer minimization if prior information is available. Often, the coefficient vector a will

retain its sparsity structure throughout the trust-region reflective Newton iterations

because even for R = 0, characterized anisotropy may be close to correct, or at least

have the correct support. Examples of using this approach are given in the next

section.
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Figure 4-12: Cost function for minimization over radius in synthetic example.

4.2.2 Examples

The first example in this section is the same problem as the last example of Sec. 4.1.2,

with a single scatterer with true radius 0.6. The cost function of the outer minimiza-

tion for this problem is plotted in Fig. 4-12. The cost function is one-dimensional

because there is one scattering center. Calculation of the cost function requires solv-

ing the inner anisotropy characterization problem for fixed radius. The minimum is

located at the true radius of 0.6 meters. The numerical optimization technique re-

turns a radius of 0.5999995 meters along with the correct anisotropy characterization.

From this example, it seems that optimizing over radius is a promising technique and

better suited to the task of migration characterization than the inclusion of basis

vectors corresponding to different radii in the overcomplete basis. The next example

is more complicated with more scattering centers in the scene.

In the second example, there are six scattering centers. Three of the scatterers

are stationary point scatterers and the other three have non-zero radius, as shown
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Figure 4-13: True migratory scattering radii overlaid on conventionally formed image.

in Fig. 4-13. P = 6 spatial locations are extracted using the method described in

Sec. 5.2. In this case, the optimization over radius is of a six-dimensional cost function.

There are N = 19 angle samples over 18◦ degrees and K = 3 frequencies 9 GHz, 10

GHz, and 11 GHz. The solution that is obtained is fairly good, i.e. the characterized

anisotropy has the right support for all six scatterers and the characterized radii are

fairly close to the truth, as seen in Fig. 4-14. The method of optimizing over radius

works well in practice even with multiple scattering centers.

The final example of this section uses XPatch data of a tophat scatterer with the

same angles and frequencies as the first example. The angle-dependent scattering,

shown in Fig. 4-15, is peaky; hence raised triangle basis vectors are used. The invari-

ant spatial location (x̄, ȳ) is obtained from a conventionally formed image. Similarly

to Fig. 4-12, the cost function of the outer minimization can be calculated for this

example and is shown in Fig. 4-16. It should be reiterated that obtaining the cost

function requires solution of the anisotropy characterization problem for every data
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Figure 4-14: Solution migratory scattering radii overlaid on conventionally formed
image.

81



θ

m
ag

ni
tu

de

Figure 4-15: True aspect-dependent scattering function of tophat scatterer.

0 1 2 3 4 5 6 7
radius (m)

Figure 4-16: Cost function for minimization over radius in XPatch example.
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Figure 4-17: Image showing radius of minimum cost in XPatch example overlaid on
conventionally formed image.

point on the curve. For the cost function plotted in the figure, the regularization

parameter α = 55. The cost in this example resembles that of the synthetic example

only near the minimum and is nearly flat, but sloping inward, elsewhere; the almost

flat portions are a consequence of regularization.

Initialized with R = 0, nonlinear least-squares optimization is successful at finding

the minimum, the best radius. The solution is 5.314 meters; for reference, the circular

migration corresponding to a radius of 5.314 meters is displayed in Fig. 4-17 and

matches well with the conventionally formed image also shown in the figure.

In the examples considered in this section, the method of optimization over radius

has been shown to perform well with realistic data as well as with several scatterers

in a scene, with solutions giving information about both anisotropy and migration.

Although not explored further in this thesis, a method using a coarse discretization

in radius through the overcomplete basis may be used to provide an initialization for

the outer minimization. The approach is extended in Chapter 6 to consider migration
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that is not just circular, but of other shapes as well.

4.3 Greedy Graph-Structured Algorithm

In theory, there is no restriction on the size of the problem that the quasi-Newton

method can be applied to. However, the number of columns of Φ, which is O(N2P )

for the choice of overcomplete basis in Sec. 3.2, is restrictive in terms of memory as

well as computation in realistic imaging scenarios with hundreds of angle samples and

spatial locations. (In this section, only stationary point scattering is considered, but

the methodology does not exclude migratory point scattering.) This section develops

a suite of greedy algorithms with reduced memory requirements taking advantage of

the graph structure described in Sec. 3.2.2.

4.3.1 Hill-Climbing Search

The idea to have in mind during the exposition of the algorithm is of a small subgraph,

given the name guiding graph, iteratively moving through an N -level plinko graph

(recall Sec. 3.2.2), searching for a parsimonious representation. The specifics of the

guiding graph, the search strategy, and search steps are presented below.

In the N -level plinko graph, the nodes represent the basis vectors in the over-

complete basis. The basis is designed such that a few or often just one basis vec-

tor per position p′ is sufficient to represent the aspect-dependent scattering function

s(xp′ , yp′ , θ). Thus, the sparse signal representation problem may be reformulated as

a search for a node or a few nodes in the plinko graph. In addition to finding nodes,

complex amplitudes must also be determined. In general, there are P > 1 positions

in the problem, and consequently P coexisting plinko graphs. Thus, to solve the

problem, there is not just one search to be done, but P simultaneous searches. To

be most effective, these searches should not be performed independently, but rather

should interact and influence each other.

Plinko graphs can be converted to trees through node repetition, as shown in

Fig. 4-18 for a 3-level plinko graph, transforming the problem to search on a tree.
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Figure 4-18: Conversion of plinko graph to tree.

Search on a tree is a well-studied problem with well-studied algorithms, with the only

requirement that it should be obvious when the goal node is reached. Depth-first

search and breadth-first search are two blind search algorithms that incorporate no

prior information to guide the search. In heuristic search algorithms, however, some

notion of closeness to the goal is available during the search process, allowing the

search to proceed along paths that are likely to lead to the goal. Heuristic search

algorithms have reduced average-case running time than blind search algorithms.

One example of a heuristic search algorithm is hill-climbing search, also known

as guided depth-first search. In the depth-first algorithm, one path is followed from

root to leaf in a predetermined way, such as: “always proceed to the left-most child.”

If the goal is not found along the way and the bottom of the tree is reached, then

there is back-tracking also in a predetermined way. In hill-climbing, the search still

proceeds from root to leaf along one path, but this path is not predetermined. Instead

of always proceeding to the left-most child, the algorithm will “proceed to the most

promising child based on a heuristic.” Selection of back-tracking paths also involves

use of the heuristic. Both depth-first search and hill-climbing search always find the

goal if it exists in the tree.

As described thus far, hill-climbing search finds a single node — a single basis

vector — per plinko graph. However, the algorithm proposed here is able to find a

small subset of basis vectors by employing a guiding graph. The guiding graph is

chosen to be a G-level plinko graph, G � N , with its root at the current node of

the search. The search procedure moves the guiding graph around within the full

plinko graph by moving the root node in the hill-climbing manner. Thus it is as if the
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guiding graph root node leads the search and the rest of the guiding graph is along

for the ride; an alternative interpretation is as follows. Guiding graphs themselves

may be taken as nodes in a search graph. An example of the same search with the

two different interpretations for N = 8, G = 4 is shown in Fig. 4-19. With the

alternate interpretation, the search is once again a search for a single node. The first

interpretation is used in the remainder of this thesis.

The plan going forward is to use simultaneous hill-climbing searches on P plinko

graphs to arrive at a solution for the anisotropy characterization sparse signal repre-

sentation problem. Hill-climbing search requires heuristics and stopping conditions,

which are discussed in the next section.

4.3.2 Heuristics and Stopping Conditions

In standard search problems on trees, nodes are labeled and the goal of the search

is specified with a label, e.g. “find node K.” Also, the goal remains fixed. Thus the

stopping criterion for the search is simply whether the current node’s label matches

the goal of the search. Also, there is often a notion of intrinsic distance between nodes

that leads to simple search heuristics.

When the sparse signal representation problem for a single spatial location is re-

formulated as a search on an N -level plinko graph, stopping criteria and heuristics

are not obvious. One clear desideratum is that calculation of both should be much

less memory and computation intensive than solving the full problem through the

quasi-Newton method. Heretofore, the guiding graph concept has been used to allow

a subset of basis vectors rather than a single basis vector to be used in the representa-

tion. However, the main role of the guiding graph is to guide the search by providing

search heuristics and stopping conditions, as seen next.

Intuition about the problem suggests that if basis vectors corresponding to true

scattering behavior are not included in the guiding graph when the inverse problem

is solved in a sparsity enforcing manner, then the resulting solution coefficient vector

a will have a non-zero coefficient for the basis vector most ‘similar’ to the truth. In

terms of the N -level plinko graph, intuition suggests that if the truth is far down in
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(a)

(b)

Figure 4-19: The (a) primary and (b) alternate interpretations of search with a guiding
graph, where nodes marked with X indicate true anisotropy.
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Figure 4-20: An 8-level guiding graph.

the plinko graph, but the inverse problem is solved with only basis vectors from a

guiding graph near the top of the N -level plinko graph, then coefficients in the first

G − 1 levels will be zero and coefficients in level G may be non-zero. In the same

vein, if the guiding graph is rooted below the truth, then the root coefficient may be

non-zero and the coefficients in levels two through G will be zero. Again, intuition

suggests that if the guiding graph is such that it contains the truth, then coefficients

explaining the truth will be non-zero and the rest of the coefficients zero.

Before arriving at the search heuristics and stopping conditions, the above intu-

ition is first confirmed through experimentation for N = 400, G = 8, and implicitly

P = 1. The 400 angle samples are over the interval [−55◦, +55◦], the number of

frequencies K = 3 with values 7.047 GHz, 7.059 GHz, and 7.070 GHz, and the regu-

larization parameter α = 150. The 8-level guiding graph contains 36 nodes, as shown

in Fig. 4-20. In the first experiment, with results in Fig. 4-21, the guiding graph is

fixed with root at the left-most node of level 200 in the plinko graph. The true scat-

tering behavior is varied from isotropic, to anisotropic with medium angular extent,

to anisotropic with just one angle sample non-zero. In terms of the 400-level plinko

graph, the true coefficient is varied, starting at the root node, through all nodes along

the left edge of the graph, to the left-most node of level 400, as diagrammed in the left
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Figure 4-21: Coefficient magnitudes in 8-level guiding graph as true scattering behav-
ior is varied from isotropic to highly anisotropic. The guiding graph is fixed with top
node having angular extent 55.3◦ and eighth row nodes having angular extent 53.1◦.

portion of Fig. 4-21. The large triangle is the 400-level plinko graph, the tiny filled

triangle is the fixed guiding graph, and the arrows along the left edge indicate the

variation of the true node. In the two plots, the angular extent of the true scattering

behavior is plotted on the horizontal axis. In the top plot, the coefficient magnitudes

for all 36 coefficients are plotted on the vertical axis, whereas in the bottom plot,

coefficient magnitudes are indicated by shading (white is zero) and each horizontal

strip is for each of the 36 different coefficients. The coefficient values are obtained by

solving the inverse problem with sparsifying regularization. Most coefficients are zero

for all true scattering behaviors in this experiment. Lines on the plots are labeled

in correspondence with node labels in Fig. 4-20. The figure shows that in agreement

with intuition, in the regime where the guiding graph is below the true coefficient,

the root node (node h) is non-zero. In the regime where the guiding graph covers

the true coefficient, the correct node is non-zero (nodes b-g). Also in agreement with

intuition, when the guiding graph is above the true coefficient, the node in the last
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Figure 4-22: Coefficient magnitudes in 8-level guiding graph as center angle of true
scattering behavior is varied. The guiding graph is fixed, covering center angles
[−1.0◦, +1.0◦].

level closest to the truth (node a) is non-zero and others are zero. It should be noted

that the influence of the finest angular extent scattering, when the true coefficient

has angular extent less than about 13◦, does not reach up to make any guiding graph

nodes non-zero (a consequence of regularization).

The experiment yielding the results of Fig. 4-22 has the same setup, but the

guiding graph is fixed with root at the center node of level 200 instead of the left-

most node. The true node is varied from left to right across the plinko graph at

level 210, three levels below the bottom of the guiding graph, effectively changing

the center angle of the anisotropy, but leaving the extent constant. This figure is

organized in the same manner as Fig. 4-21, but the horizontal axis features the center

angle rather than angular extent. From these results, first it is apparent that only

nodes in the last level of the guiding graph are non-zero, reconfirming results from

the previous experiment. Second, it can be seen that when the truth is to the left of

the guiding graph, the left-most node of the Gth level (node α) is non-zero. Similarly,
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when the truth is to the right, the right node (node κ) is non-zero; when the truth is

underneath the 8-level graph, nodes along the last level (nodes β-η) are non-zero.

Intuition along with these experimental validations suggests simple stopping con-

ditions and heuristics. Two similar stopping criteria are apparent: first, stopping

when all of the nodes in level G (nodes α-κ) are zero during the search, or second,

stopping when in addition to all of the nodes in level G (nodes α-κ) being zero, the

top node of the guiding graph (node h) is also zero. The second stopping condition is

more amenable to back-tracking because it ends the search when the truth is neither

above nor below the current guiding graph location. These two stopping criteria may

terminate a search prematurely when the true anisotropy is of very small angular ex-

tent due to regularization effects as seen in the first experiment, in which anisotropy

of narrow angular extent resulted in all coefficients becoming zero.

A heuristic for the search is also apparent based on the coefficient values of the

G nodes in level G (nodes α-κ). Due to the structure of the plinko graph, each node

has two children, so the heuristic is used to determine whether to proceed to the left

child or the right child. Based on the second experiment, one reasonable idea is to

take the weighted average of the coefficient magnitudes of the bottom level — the

search can then be guided towards the side the average indicates to be stronger. The

basis used in calculating the given heuristic and stopping criterion has O(1) columns

for each spatial location and O(P ) columns for P spatial locations, providing savings

in terms of memory.

In summary, the greedy algorithm based on the plinko graph and hill-climbing

search is as follows. For the case of a single spatial location, P = 1, the inverse

problem r = Φ(i)â(i) is solved for each iteration i of the search, where Φ(i) contains

basis vectors belonging to the current guiding graph. Then, â(i) is tested for the

stopping condition. If the search is to continue, the heuristic is calculated to determine

which one of two choices Φ(i+1) will be, i.e. where the guiding graph will proceed. In

the depth-first approach, if a leaf of the N -level plinko graph is reached without the

stopping condition being met, then there is back-tracking; the search back-tracks and

again starts searching downwards starting at the highest guiding graph in the plinko
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graph for which â had a non-zero top node. The initial set of basis vectors Φ(1) is the

set with the largest angular extent located in the top G levels of the N -level plinko

graph.

For the general case of multiple spatial locations, P searches are performed simul-

taneously, but not independently. As in the single position case, r = Φ(i)â(i) is still

solved on each iteration, but now individual submatrices Φ
(i)
p evolve based on their

corresponding â
(i)
p . For example, the first spatial location’s coefficients â

(i)
1 may sat-

isfy the stopping condition, in which case Φ
(i+1)
1 = Φ

(i)
1 . The second spatial location’s

coefficients may indicate through the heuristic that the search should proceed to the

left child, so Φ
(i)
2 is updated accordingly. The third spatial location’s coefficients may

guide the search on Φ
(i)
3 to the right child, and so on. The overall search terminates

when all of the â
(i)
p satisfy the stopping criterion. The P searches are coupled because

the inverse problem is solved jointly for all spatial locations on every iteration; when

there are multiple spatial locations, contributions from different positions interact.

The experimental confirmations leading to the heuristics and stopping criteria

in this section were performed using rectangular pulse shapes. Harkening back to

Sec. 3.2.3, overcomplete bases with the rectangular shape have smaller mutual co-

herence than other shapes as a result of not tapering at the edge of the contiguous

segment of anisotropy. A related phenomenon presents itself when solving the inverse

problem with only a subset of basis vectors. When the experimental validation of

Fig. 4-22 is repeated with the house-shaped pulse, the same intuition follows, as seen

in Fig. 4-23. However, with the triangle pulse shape the results are quite different,

as shown in Fig. 4-24. Coefficients corresponding to interior bottom row nodes are

never non-zero, coefficients corresponding to nodes α and κ are only non-zero over

a limited range of center angles, and coefficients corresponding to nodes not in the

bottom row are non-zero for a certain range of center angles. This dashes any hope of

using search heuristics and stopping criteria based on guiding graphs for the triangle

and other tapered pulse shapes.

92



−30 −20 −10 0 10 20 30
Center Angle of Scattering Truth (degrees)

C
oe

ffi
ci

en
t M

ag
ni

tu
de

s

α

β γ ζη

κ

Center Angle of Scattering Truth (degrees)

C
oe

ffi
ci

en
t I

nd
ex

α
β
γ
ζ
η

κ

−30 −20 −10 0 10 20 30

Figure 4-23: Coefficient magnitudes in 8-level guiding graph as center angle of true
scattering behavior is varied, with raised triangle pulse shape.
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Figure 4-24: Coefficient magnitudes in 8-level guiding graph as center angle of true
scattering behavior is varied, with triangle pulse shape. Beyond center angles of ±9◦,
coefficients corresponding to nodes not in the bottom row are non-zero.
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Figure 4-25: Modified plinko graph with additional edges.

4.3.3 Variations on the Theme

The greedy graph-structured algorithm described thus far uses the full hill-climbing

search including back-tracking, taking steps of single levels per iteration based on

a heuristic employing guiding graphs taking the form of G-level plinko graphs. A

number of variations to the basic algorithm may be made that either make the method

less greedy or further reduce memory or computation.

Hill-climbing search always finds the goal node because of back-tracking. In a first

variation, the search is limited so that back-tracking is not allowed. Consequently,

the success of the search is not guaranteed. However, it is observed in examples (see

Sec. 4.3.4) that searches terminate on the first pass down plinko graphs before reaching

leaves, in which case, the algorithm remains unchanged. Without back-tracking, the

search takes O(N) iterations, whereas with back-tracking there are O(N2) iterations.

The plinko graph is structured such that in a greedy hill-climbing search without

back-tracking, one wrong step eliminates many nearby nodes and paths because each

node has only two children. The graph can be modified to increase the number of

children per node and consequently not disallow as many nodes and paths per search

step. An example of a modified 8-level plinko graph is given in Fig. 4-25. A modified
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heuristic to go along with this modified graph is to use the G coefficients in level G of

the guiding graph as before, but instead of determining whether the weighted average

of the coefficient magnitudes is in the left half or the right half, determining which

quarter the weighted average falls into. If the left-most quadrant is chosen, then the

search proceeds to the node in the next level that is two to the left of the current

node. If the middle left quadrant is chosen, then the next node is one to the left in the

next level, and so on. In a way, the modified plinko graph allows the search to center

itself above the true node. With these additional edges, the method is less greedy

with no additional cost, since calculating this modified heuristic is no more costly

than calculating the original heuristic. An example in Sec. 4.3.4 compares search

paths and solutions of hill-climbing search without back-tracking with modified and

unmodified plinko graphs.

The guiding graph need not be a G-level plinko graph; for example, the graph

may be thinned and include the top node, nodes in level G, and nodes in a few

intermediate levels rather than all intermediate levels, further reducing the number

of columns in Φ. These basis vectors are sufficient for calculating the heuristic and

stopping condition. Some examples in Sec. 4.3.4 make use of thinned guiding graphs.

Also, searches may take larger steps than moving guiding graphs just down one level

in the plinko graph per iteration.

The algorithm allows for contributions from more than one basis vector per spatial

location in the final solution, but those basis vectors must be within the span of a

guiding graph. The guiding graph may be enlarged to allow for contributions from

disparate basis vectors at additional expense, the extreme being to take the guiding

graph as the full plinko graph. The search strategy discussed so far uses a single

guiding graph to traverse the plinko graph. Although not explored in this thesis,

it may be possible to use heuristic search strategies from the literature other than

hill-climbing, including strategies that allow multiple candidates in the search and

multiple goal nodes, possibly through the use of multiple guiding graphs per spatial

location.

The greedy graph-structured algorithm reduces the number of basis vectors per
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spatial location fromO(N2) toO(1), but does nothing to reduce the number of spatial

locations P . A further variation to the hill-climbing search without back-tracking may

be introduced that reduces the average-case dependence of the number of total basis

vectors on P . It is observed that, despite interactions among contributions from

different spatial locations, once the search on a particular spatial location stops it

does not restart in general, but may occasionally restart after a few iterations. Fixing

the contribution from a spatial location after its coefficients have been found is thus

natural to consider. In the algorithm, this implies that once the stopping criterion

is met at position p, the observation data r is updated to be r′ = r − Φpap, and

Φp is removed from matrix Φ, thereby reducing the number of columns in Φ. In

practice, the removal is performed some iterations after the stopping criterion is met

and maintained to allow for a possible restart.

One way to further reduce the number of spatial locations P is through a prepro-

cessing step that first identifies positions of interest with large scattering magnitude

and only characterizes anisotropy for those positions. The justification for this prepro-

cessing is that locations with little scattering magnitude are likely background pixels

and characterizing their anisotropy is not imperative for applications. Such prepro-

cessing is discussed in Sec. 5.2, but is used in a couple of examples in Sec. 4.3.4.

Many other variations to the greedy graph-structured algorithm are possible that

either reduce complexity or improve performance. Algorithms that use one variation

or use a few variations together can be used to solve the inverse problem. Depending

on the size of the problem and the requirements of the application, one algorithm can

be selected from this suite of possible algorithms. In the next section, examples of

varied problem size are given, solved with different variations of the greedy algorithm.

4.3.4 Examples

In this section, several examples are given that show the workings of the greedy

graph-structured algorithm, culminating in a large, complicated example using the

backhoe dataset. The first example in this section solves the same problem as in the

first example of Sec. 4.1.2.
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Figure 4-26: Search paths.

Illustrating that the greedy algorithm described above may lead to solutions com-

parable in quality to solutions from solving the full inverse problem at once, the setup

of the scene is exactly the same as the example in Sec. 4.1.2 with 25 locations. The

heuristic and stopping criterion are calculated with an 8-level guiding graph, and the

regularization parameter α is 4; for the stopping criterion, any coefficient magnitude

less than 0.01 is considered zero. Fig. 4-26 shows the search paths for all 25 spatial

locations as a dark solid line overlaid on the full 16-level plinko graph, with dots

indicating nodes. For the 5 spatial locations with scatterers, the node corresponding

to the true scattering behavior is encircled. The triangle shows the coverage of the

final 8-level guiding graph for each spatial location. The search is performed without

back-tracking. Fig. 4-27 shows the final scattering function determined by the algo-

rithm. It is apparent in comparison with Fig. 4-5 that the greedy algorithm finds a
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Figure 4-27: Hill-climbing search without back-tracking solution scattering magni-
tude.
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solution that corresponds well to the underlying truth. Looking at the search paths,

despite not containing point scatterers, positions 15, 20, and 21 iterate nonetheless,

but in the end correctly give all zero coefficients. Also, the searches on positions

7 and 8 do not terminate at the earliest possible opportunity, but still give correct

coefficients. These effects, although not adverse to the solution in this case, are a

result of the interaction between different spatial locations. In addition to memory

savings, the running time for the greedy algorithm is one fourth the running time of

the quasi-Newton method on the full inverse problem for this example.

The problem size in the second synthetic example is larger than the first example.

The range of angles is still [−55◦, +55◦], but now there are N = 160 angles. The

3 frequencies and 25 spatial locations are as before and the anisotropy of the point

scatterers is similar, as seen in Fig. 4-28. Memory constraints do not allow the full

inverse problem to be solved in this case — the full Φ matrix has 322, 000 columns.

Two variations of the algorithm — with and without the additional step of removing

spatial locations from the measurement vector and overcomplete basis after they have

stopped iterating — are employed and compared. For both, the search uses an 8-level

guiding graph; for the search with removal, the removal of found spatial locations is

done after 8 iterations of the guiding graph remaining in the same place. The two

search paths are given in Fig. 4-29, where the dotted line is the path for the algorithm

without removal and the solid line is the path for the algorithm with removal. The

large triangle outlines the full 160-level plinko graph. The resulting scattering function

solutions are plotted in Fig. 4-28 along with the true scattering function. The three

lines in the plots — the truth and the two solutions — are indistinguishable due to the

similarity and quality of the results; in this and many other examples, the variation

of removing found spatial locations to reduce average-case complexity does not cause

the solution to suffer.

The third example is an example in which use of the modified plinko graph (see

Fig. 4-25) improves the performance of the greedy algorithm. In this example, N =

800 over 110◦ and K = 3 with frequencies 9.9 GHz, 10.0 GHz, and 10.1 GHz. There

are two scatterers with fairly close spatial locations, at (0.05, 0.02) and (0.02, 0.07),
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Figure 4-28: Scattering function magnitudes of truth, solution from hill-climbing
search without back-tracking, and solution from hill-climbing search without back-
tracking with removal of found spatial locations. The three lines are nearly indistin-
guishable.
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Figure 4-29: Search paths, where dotted line is path of algorithm without removal of
found locations and solid line is path of algorithm with removal.
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(a) (b)

Figure 4-30: Search paths with (a) unmodified plinko graph and (b) modified plinko
graph. True anisotropy is indicated by ◦.

thus influencing each other during the early part of the greedy search process. Fig. 4-

30 shows the search paths taken by hill-climbing search without back-tracking using

the standard plinko graph and the modified plinko graph with additional edges, with

8-level guiding graphs. The searches on both spatial locations are shown on the same

graph — the paths are coincident during the first few iterations — along with true

synthetic rectangular anisotropies, indicated by ◦. Without the additional edges of

the modified plinko graph, a single wrong step eliminates many possible guiding graph

placements, but with the additional edges, more placements remain in play. In this

example, a few wrong steps at the beginning of the search cause the characterized

anisotropy of one of the spatial locations to be inaccurate. The additional edges

reduce algorithm greediness without any increase in cost and in examples such as

this, improve performance.

The fourth example makes use of XPatch data and uses an image formed by con-

ventional processing to obtain spatial locations of interest. The conventional image,

shown in Fig. 4-31, is used to extract positions with large magnitude scattering re-

sponse. In this case, six locations (pixels) are selected, as shown in Fig. 4-32 (this

image is zoomed in). The data has N = 120 angles equally spaced in an aperture of

119◦. In forming the conventional image, 128 frequencies from 9 GHz to 11 GHz are
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Figure 4-31: Conventionally formed image of example with XPatch data. Shading is
on a linear scale.
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Figure 4-32: Spatial locations extracted from conventionally formed image.

used, but in anisotropy characterization, only data from the first K = 3 frequencies 9

GHz, 9.016 GHz, and 9.032 GHz is employed. The true aspect-dependent scattering

is shown as the dotted line in Fig. 4-33b.

Hill-climbing search without back-tracking, with removal of found spatial loca-

tions, with the unmodified plinko graph, and 8-level guiding graphs is applied to the

P = 6 spatial locations. The resulting scattering function magnitudes are shown in

Fig.4-33a, arranged as in the image Fig. 4-32. Two spatial locations have non-zero

responses that conspire to match the true scattering parsimoniously and well, as seen

in Fig. 4-33b. With many closely spaced pixels, it is possible for the method to

assign contributions to different positions such that the overall summed phase his-

tory is matched to the measurements when those contributions are not within the

span of a single guiding graph. One way to reduce this effect is to cluster pixels in

the conventional image that correspond to a single scattering center and only take

one spatial location from the cluster as done in the next example and discussed in
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Figure 4-33: Scattering function magnitude solutions for (a) individual spatial loca-
tions and (b) all spatial locations combined as phase history — the marked line is the
solution and the dotted line is the true scattering function magnitude.
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Figure 4-34: Backhoe spatial locations color-coded with anisotropy center of solution.

Sec. 5.2. Another way is to include additional terms in the sparsifying regularization

cost function that explicitly favor sparsity in the image or range profile domains, as

discussed in Sec. 6.1.

The final example, with a dataset from the Backhoe Data Dome [4], uses hill-

climbing search without back-tracking and a thinned 16-level guiding graph. The

data has N = 1541 angle samples over the range [−10◦, 100◦]. P = 75 spatial lo-

cations are extracted from a composite image of conventionally-formed subaperture

images [12] and then the greedy graph-structured algorithm is applied to the data

with K = 3 and frequencies 7.047 GHz, 9.994 GHz, and 12.953 GHz. Each of the

75 spatial locations, shown in Fig. 4-34, comes from a different cluster of pixels. The

center angle of the characterized anisotropy in the solution is indicated in Fig. 4-34

as a color, where dark red corresponds to the center angle closest to −10◦ and blue

corresponds to the center angle closest to 100◦, with the colors cycling red to green to

blue. The characterized anisotropies of a few scattering centers are shown in Fig. 4-
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Figure 4-35: Sample scattering function magnitudes from backhoe example with sub-
aperture pixel values also plotted as asterisks.

35. The solid line indicates the solution from the overcomplete basis formulation and

graph-structured algorithm, whereas the asterisks show subaperture pixel values from

conventional imaging with overlapping 20◦ subapertures [12]. The vertical axes for

the line and the set of asterisks are scaled differently to allow comparison. For the

first two scattering centers, the subaperture pixel values indicate contiguous extents

of anisotropy and the overcomplete basis formulation also detects strong responses at

those angles. However, the type of solution that may be produced is more detailed

in θ, as subaperture analysis only gives one value per subaperture whereas the over-

complete basis formulation gives values for all angle samples spaced small fractions

of degrees apart. The results indicate that anisotropy persistence is not matched

to the 20◦ subaperture width because the solutions have thinner anisotropy. In the
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third scattering center, the subaperture pixel values indicate two disjoint segments of

anisotropy. However, the greedy algorithm may only use basis vectors that lie within

a guiding graph to explain the anisotropy. Nevertheless, the algorithm does the best

it can to produce two peaks via a positive-valued guiding graph root coefficient and

negative-valued leaf coefficient. Multiple candidate search is an approach that would

allow for better performance in such instances.
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Chapter 5

Practical Issues

Of beings, those that are endowed with life are superior. Of living beings,
those that are endowed with intelligence are superior. Of intelligent creatures,
men are superior. Of men, the twice-born are superior. Of the twice-born,
students of the Veda are superior. Of students of the Veda, those of cultured
understanding are superior. Of cultured men, practical persons are superior.

— Drupada, in Mahābhārata1

In this chapter, a few lingering topics that are of practical importance are dis-

cussed. In particular, parameter selection in the sparsifying regularization cost func-

tion, preprocessing techniques to identify spatial locations of interest (used in exam-

ples in Chapter 4 and Chapter 6), and performance with noise are covered.

5.1 Parameter Selection

The sparsifying regularization cost function J(a) = ‖r − Φa‖2
2 + α‖a‖p

p has two

parameters, α and p, that must be specified. The regularization parameter α is a

positive-valued number that trades off data fidelity for sparsity, whereas the parameter

p of the `p-norm is between zero and one, and controls how close the relaxation is to

the `0-norm. The effects of these parameters are looked at in this section.

In all of the examples in this thesis, the regularization parameter α is chosen

manually to give good results. As a general trend it is true that as α increases,

1Translation from The Mahabharata of Krishna-Dwaipayana Vyasa, by Kisari Mohan Ganguli.
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the number of non-zero coefficients decreases. However, this trend is not always

monotonic; it is possible for the number of non-zero coefficients to actually increase

as α increases. When α is too large, then the coefficients in resulting solutions are

all nearly zero. The set of non-zero coefficients in solutions remains the same for

long stretches as α is varied. However, there are sudden jumps where the set of non-

zero coefficients discontinuously changes but then stays the same for a range of α

afterwards.

A recently developed method to solve the `1-relaxation basis pursuit is able to

efficiently trace out solution paths for the full range of α, allowing one to automatically

select the regularization parameter if the desired number of non-zero coefficients is

known a priori [37]. In general, automatic regularization parameter selection is an

open research problem.

Although the trend that as α increases, sparsity increases, is not strict, the sub-

jective choices made in this thesis have been guided by it. Enough sparsity is required

when using the quasi-Newton method such that the contributions of different spatial

locations are separated correctly in the inverse problem and there is not an overfitting

of the data, but not so much so that complicated realistic scattering functions cannot

be explained. When using the graph-structured algorithm, it is important to have

sparse solutions so that the heuristics and stopping criteria can work as envisioned;

thus, it is better to sacrifice some of the freedom to explain complicated scattering

functions and get more sparsity.

The parameter p defining the `p-relaxation is set to p = 0.1 throughout the ex-

amples of the thesis. To remain faithful to the `0-norm, p should be as small as

possible. The effect of p is seen most clearly without the complications of multiple

spatial locations. If the measurement vector r is such that it equals column m of

the overcomplete basis Φ, then as p approaches zero, in the solution a, (a)m goes to

one and the other coefficients go to zero. As p is relaxed, the value of (a)m falls off,

but not too quickly. However as p reaches one, the falloff is significant. An example

is shown in Fig. 5-1, with the line marked noiseless, for the case with rectangular

pulse shape, N = 8, K = 1, M = 36, m = 11, spatial location (0, 0), and α fixed
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Figure 5-1: Solution as a function of p.

at 4. In the plot, p varies from 0.001 to 1 on a logarithmic scale. The decrease in

coefficient (a)m=11 is noticeable, becoming objectionable as p passes 0.1 or 0.2. Thus

it is sensible to take p fairly small.

However, when p is very small, some issues come up. Consider these three expo-

nentiations: (10−100)0.1 = 10−10, (10−100)0.01 = 0.1, and (10−100)0.001 = 0.794. Any

quantity, even a tiny value that is zero for all intents and purposes, goes to nearly

unity when raised to the p power for p very small. If p is very small, then the solution

is sensitive to even a small amount of noise added on to the measurements r. With

the same setup as above (the rectangular pulses have unit amplitude), the inverse

problem is solved with zero mean white Gaussian noise with variance 1
25

added on

to the measurement. The average value of the coefficient (a)m=11 from 100 trials is

shown in Fig. 5-1 as the line marked noisy. When p is less than approximately 0.04,

the solution is not consistent with the noiseless solution and truth. In light of the

effects discussed when p is large and when p is very small, p = 0.1 is a reasonable
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value to use.

5.2 Preprocessing to Obtain Spatial Locations of

Interest

The overcomplete basis Φ has O(LN2P ) columns. Sec. 4.2 discusses a method to

reduce the dependence on L by optimization over radius and Sec. 4.3 discusses meth-

ods to reduce the dependence on N through guiding graphs. The number of spatial

locations P is reduced on average by removing positions that have stopped iterating

in the graph-structured algorithm. However, it is better from a complexity perspec-

tive to reduce P before even coming to anisotropy characterization and forming Φ.

This section discusses preprocessing to identify spatial locations of interest.

Forming images through conventional techniques such as the polar format algo-

rithm is fairly quick in practice. Hence, conventional images provide a good starting

point for preprocessing. Characterizing the anisotropy of locations with small scat-

tering magnitude, which are likely background pixels, is not critical in many appli-

cations. Preprocessing determines spatial locations with large scattering magnitude;

anisotropy is only characterized for those positions. There are various approaches to

preprocessing; the approach used in examples here is the method of [33].

The method is a watershed algorithm that starts with the conventionally formed

magnitude image, which can be treated as an elevation map. Large magnitude scat-

tering corresponds to spire-like maxima in elevation. Water is filled so that it covers

everything and then drained so that the maximum peak is exposed. Water continues

to be drained, growing a region around the maximum. This cluster of pixels is taken

as a group of spatial locations of interest. In the next step of the method, the cluster

of pixels is subtracted away from the image and water is again filled. This process

is repeated to get the set of spatial locations. As an alternative to taking the full

cluster of pixels as spatial locations, just the peak of each cluster may be taken as

the spatial location of interest.
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5.3 Performance with Measurement Noise

The measurements in the phase history domain, r, are never received unimpaired. A

common model for measurement noise is additive white zero-mean circularly symmet-

ric complex Gaussian noise [9]. The regularization cost function formulation handles

additive Gaussian noise unchanged. This section briefly investigates the effect of

noise, focusing on a tradeoff mentioned in Sec. 3.2.4, which informally is that the

inverse problem is harder to solve but resistance to noise is better with an increased

number of frequency measurements for a fixed bandwidth. A more comprehensive

analysis of performance under noise corruption may be performed, but is not the

focus here.

Let an example with a specific setup be considered; the conclusions generalize how-

ever. The scene has two stationary point scatterers at (0.01, 0.01) and (0.01,−0.01).

Anisotropy characterization is performed using the quasi-Newton method with these

P = 2 spatial locations. There are N = 9 angles over a 16◦ aperture, resulting in

M = 45. The true anisotropies of the scatterers correspond to coefficients m1 = 13

and m2 = 17 respectively. The frequency band is from 9.9 GHz to 10.1 GHz with

the number of frequencies K varying. In the regularization cost, α = 10 and p = 0.1.

Complex Gaussian noise with varying variance is added to the measurements.

The sum of the magnitudes of coefficients (a)m1 and (a)m2 in the solution are

plotted in Fig. 5-2 as a function of K. Each curve is for a different noise variance and

is the average from 500 trials. Solutions with the largest |(a)m1|+|(a)m2| are the closest

to the truth. The key feature to note in the curves is that the maximum is at a small

value of K and that as noise variance increases, the peak of the curve shifts to higher

values of K. The best solutions occur neither at the smallest value of K nor the largest

value. Thus, it is advantageous not to use all frequency measurements. Not using all

frequencies reduces the cross-coherence of the overcomplete basis, making the inverse

problem less demanding, and has the added benefit of reducing memory requirements.

Because measurements at additional frequencies give redundant information, it is to

be expected that the peak of the curve moves to the right as noise increases — more
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Figure 5-2: Solution as a function of K with additive Gaussian noise of different
variances.

measurements, i.e. larger K, increase robustness to noise. Overall, the greater the

noise power, the more frequencies should be used; however using too many frequencies

is not of benefit either. Different analysis is required to give a well-justified statement

about the overall robustness to noise of the anisotropy characterization procedures

using the specific overcomplete basis.
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Chapter 6

Objects and Image Formation

A chariot is not asserted to be other than its parts, nor non-other. It also does
not possess them. It is not in the parts, nor are the parts in it. It is not the
mere collection of its parts, nor is it their shape. The self and the aggregates
are similar.

— Chandrakirti (c. 650), in Madhyamakavatara1

The model of point scattering is a model of the observation process, but scat-

tering centers do not occur in isolation, they arise from real-world objects such as

vehicles on the ground. The anisotropy characterization formulation for stationary

scattering centers considered up to now has not considered interrelationships, espe-

cially geometric interrelationships in the x-y domain, among points or pixels as parts

of objects. The work on migratory scattering centers builds up a notion of objects,

but has thus far been limited in scope to circular objects. This chapter looks at

extensions concerned with these two object-level issues in SAR imaging.

6.1 Object-Level Regularization

Different domains in which SAR measurements may be viewed were discussed in

Chapter 2, including the phase history domain, the range profile domain, and the im-

age domain. This section makes extensive use of the range profile domain in inserting

1Translation adapted from Emptiness Yoga, by Jeffrey Hopkins.
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additional regularization terms related to spatial geometry into the regularization cost

function. The range profile domain is closely related to the normal parameter space

of the Hough transform, which has traditionally been used to detect parameterized

shapes such as lines and circles in binary images.

6.1.1 Range Profile, Radon Transform, Hough Transform

The continuous range profile expression (2.3), reproduced here:

R̂(ρ, θ) =

∫∫
x2+y2≤L2

s (x, y) δ (ρ− x cos θ − y sin θ) dx dy,

exactly expresses the Radon transform [49] of s(x, y), R{s(x, y)}, aside from the

limits of integration. Taking s(x, y) to be zero outside of the ground patch,

R{s(x, y)} =

∞∫∫
−∞

s (x, y) δ (ρ− x cos θ − y sin θ) dx dy = R̂(ρ, θ). (6.1)

The Radon transform is defined for all ρ and all θ ∈ [0, π]. If s(x, y) is real-valued

then the Radon transform is also real-valued, but if s(x, y) is complex-valued then

R{s(x, y)} is complex-valued. Wide-angle SAR measurements cover a significant part

of, but not the complete range of angles θ, and R̂(ρ, θ) is in the form of samples, not

a continuous field. Also, by using K-point one-dimensional DFTs of phase history

measurements to obtain range profiles, data is not available for all ρ.

The Hough transform is not strictly a transform, but a method in image analysis

for detecting parameterized curves in binary images [29]. The original formulation of

the method was to detect straight lines parameterized by slope and intercept, but was

improved and generalized in [21]. Still looking at the problem of detecting straight

lines, the parameterization of [21], which is called the normal parameterization, uses

the angle of a line’s normal θ and its algebraic distance ρ from the origin of the

image. With x and y as coordinates in the image plane, the equation for a line is

x cos θ + y sin θ = ρ. The parameter space, the ρ-θ plane, and the image space, the
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x-y plane, are related by the following properties: a point in image space corresponds

to a sinusoid in parameter space and a set of points lying on the same line in image

space corresponds to a set of sinusoids that intersect at a common point in parameter

space. Also, a point in parameter space corresponds to a line in image space and a

set of points lying on the same sinusoidal curve in parameter space correspond to a

set of lines that intersect at a common point in image space. The Hough transform

method of detecting straight lines makes use of these properties.

Let the binary image be such that the background is made up of zero-valued pixels

and lines of one-valued pixels. Parameter space is gridded into ρ-θ cells and each one-

valued pixel ‘votes’ for all cells along the sinusoid corresponding to that pixel. If

many one-valued pixels are along a common straight line, then their corresponding

sinusoids will intersect in one parameter space cell. With parameter space cells acting

as accumulators of votes from image domain pixels, a cell with a high count indicates

a line in image space. The approach has been extended with different parameters

looking for different parameterized curves.

The normal parameter space of the Hough transform is a discretization of the

Radon transform domain [55] and consequently corresponds to the discrete samples

of the range profile domain. The Hough transform parameter space properties lend a

geometric interpretation to the set of range profiles that is used in the next section.

6.1.2 Glint

Pixels may be treated as scattering centers, but this ignores the fact that a single

point scatterer may correspond to a spatially distributed scattering mechanism. For

one type of scattering, the migratory model is able to assign a single scatterer to

a distributed area in image space, but cannot do so for spatially-distributed but

stationary scattering. One important type of scattering, referred to as flash or glint

that comes from long, flat metal plates has very thin anisotropy and corresponds

to a line segment in image space oriented at the same angle as the center angle of

the anisotropy. A parsimonious representation ought to explain scattering with a

single scatterer rather than a collection of scatterers along a line. The goal of this
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section is to extend the regularization cost function (2.26) to favor sparsity along

lines in addition to favoring sparsity among basis vectors, making use of the Hough

transform properties discussed in the previous section.

In [1], a Hough space sparsifying regularization approach is employed to enhance

and detect straight lines in positive real-valued images by imposing sparsity when

taking the image data to the ρ-θ plane. Parameter space cells with small counts

are suppressed and cells with large counts are enhanced; thus, non-line features are

suppressed and line features are enhanced in image space, making the line detection

problem painless. The goals in this section are very different from those in [1] and

consequently, the regularization terms are of a different flavor as well: the Hough

transform conception of accumulators to detect lines is turned on its head.

The idea here is to have sparsity in each cell of the ρ-θ plane rather than having

sparsity among cells. As points on a line in the image domain transform to sinusoids

coincident at a point in the range profile domain, sparsity among scatterers in indi-

vidual ρ-θ cells achieves the goal of sparsity among points on a line. This qualitative

description is translated into mathematical terms in the remainder of the section.

The regularization cost J(a) is a function of the coefficient vector a; consequently,

in order to work with range profiles, the coefficients must be mapped to that domain

first. P separate range profile planes, coming from each of the P scatterers, are re-

quired to achieve sparsity among the scatterers in ρ-θ cells. As discussed in Sec. 2.1.2,

the range profile domain and the phase history domain are a single one-dimensional

discrete Fourier transform away from each other. Also, the overcomplete basis Φ is

exactly the mapping from coefficients to the phase history domain. However, taking

the coefficients through the overcomplete basis inherently sums the contributions of

each spatial location coherently, which is undesirable when seeking to keep data from

the P scatterers separate. Hence, in mapping from coefficients to a set of P range

profile planes, a block diagonal matrix Φ̃ with Φp matrices on the diagonal is used

in conjunction with a matrix F, which is like a DFT matrix. The values are exactly

those that would appear in a K ×K DFT matrix, but rearranged to fill an N ·K by

N ·K area and replicated P times. An illustration is given in Fig. 6-1.
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Figure 6-1: An illustration of the DFT-like matrix F for N = 20, K = 5, and P = 2.
The real part of the values in the matrix are shown.

Additionally, to select data from a cell (ρ = ρk, θ = θn) in the range profile

domain, a matrix Sk,n with P rows and N ·K ·P columns composed of mostly zeroes

and P ones is used. Specifically, Sk,n is defined as follows with entries indexed by row

i = 1, . . . , P , and column j = 1, . . . , N ·K ·P :

(Sk,n)i,j =

1, j = (k − 1)N + n + (i− 1)NK

0, otherwise

. (6.2)

Thus, a length P vector of values for an individual range profile cell (ρk, θn) is obtained

by the multiplication Lk,na, where Lk,n = Sk,nFΦ̃, and has P rows and M·P columns.

The Lk,n matrices need not be calculated through matrix multiplication; the FΦ̃

product may be calculated analytically in a straightforward manner based on the

discrete Fourier transform of the pulse shape in the bm vectors along with the phase

term εk,p, and the operation Sk,n simply involves extracting out the correct elements
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from the Fourier transform result.

It follows that for sparsity among scatterers in cell (ρk, θn), a regularization term

of the form ‖|Lk,na|‖p
p, p < 1 is used. Then, continuing to maintain sparsity among

basis vectors, the overall regularization cost function including sparsity in all range

profile cells is:

Jline (a) = ‖r−Φa‖2
2 + α0 ‖a‖p0

p0
+

K∑
k=1

N∑
n=1

αk,n‖|Lk,na|‖
pk,n
pk,n . (6.3)

Taking the regularization parameters for all cells to be the same and taking the p of

the `p-norm to be the same throughout, the cost function simplifies to:

Jline (a) = ‖r−Φa‖2
2 + α0 ‖a‖p

p + α1

K∑
k=1

N∑
n=1

‖|Lk,na|‖p
p. (6.4)

This extended cost function Jline(a) may be minimized using the quasi-Newton

method described in Sec. 4.1, but with H(a) composed of additional terms. The

H(a) matrix in this extension, Hline(a), is:

Hline (a) = 2ΦHΦ + α0pΛ(a) + α1pΛline(a), (6.5)

where,

Λline (a) =
K∑

k=1

N∑
n=1

LH
k,nDk,n(a)Lk,n

and

Dk,n (a) =



(∣∣∣∑M·P
j=1 (Lk,n)1,j (a)j

∣∣∣2 + ε

)p/2−1

· · · 0

...
. . .

...

0 · · ·
(∣∣∣∑M·P

j=1 (Lk,n)P,j (a)j

∣∣∣2 + ε

)p/2−1

 .

Accounting for the glint phenomenon, the extended formulation incorporating

sparsity along lines in the spatial domain has now been stated. An example compar-
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ing the anisotropy characterization and image formation of glint scattering with and

without the additional regularization terms is presented in the next section. Glint

and sparsity among points on a line is just one imaging scenario, but an important

one; other extensions to the regularization cost function for other scattering phenom-

ena and objects may be developed, either based on properties of the Hough normal

parameter space or other parameter spaces and domains.

6.1.3 Example

The example presented in this section uses XPatch data of glint type anisotropy and

shows how the extended cost function with both sparsifying terms, the original one

and the new one, leads to a parsimonious representation, whereas a cost with either of

the sparsifying terms alone with the data fidelity term does not. The scene contains a

single scatterer located at (0, 0) with aspect-dependent scattering as shown in Fig. 6-

2. There are N = 20 angles over a 19◦ aperture centered around zero degrees. There

θ

m
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de

Figure 6-2: True scattering magnitude of glint anisotropy from XPatch data, with
lines for ten different frequency measurements.
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Figure 6-3: Conventionally formed image of glint anisotropy.

is a spike in scattering response at 5.5◦, which is the flash or glint. The figure shows

the magnitude of the scattering at ten different frequencies in this XPatch data —

since there is almost no frequency dependence, the lines are nearly indistinguishable.

In a conventionally formed image using data with a bandwidth of 2 GHz, Fig. 6-3,

the glint shows up as a spread out line segment oriented at 5.5◦. From this image,

P = 24 pixels are chosen as spatial locations for joint anisotropy characterization and

image formation. The spatial locations range from − 9
90

m to − 1
90

m in the x direction

and from − 1
90

m to 2
90

m in the y direction, with a uniform pixel spacing of 1
90

m in

both directions.

Then, with K = 10 frequencies in the range 9.00 GHz to 9.14 GHz, the anisotropy

is characterized with three different pairs of values for the regularization parameters α0

and α1. The first set of regularization parameters is α0 = 30 and α1 = 0, i.e. without

the extension to the cost function discussed in the previous section. The magnitudes

of the coefficients for the twenty-four spatial locations are plotted in Fig. 6-4, ar-
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Figure 6-4: Solution coefficients in glint anisotropy example, α0 = 30, α1 = 0.

ranged as in an image, and the scattering function magnitudes for each of the spatial

locations are given in Fig. 6-5, also arranged as in an image. The anisotropy has been

characterized correctly, but split up and assigned to all of the spatial locations. This

solution is parsimonious in basis vectors per spatial location, but is not parsimonious

in the number of spatial locations used.

The second set of regularization parameters is α0 = 0 and α1 = 20: just sparsity

among spatial locations along a line. As seen in Fig. 6-6, the solution in this case

has non-zero coefficients at just one spatial location. This spatial location is the

closest among all P = 24 spatial locations to (0, 0), the true location of the scatterer.

However, there are many coefficients with large values, not just one as in the previous

case. The coefficients and corresponding basis vectors are such that they add to

match the true anisotropy well, as seen in Fig. 6-7, but the representation is not

parsimonious in terms of basis vectors per spatial location.

The third set of parameters is chosen such that both sparsifying terms in the

regularization cost function are significant. With α0 = 30, α1 = 20, the solution
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Figure 6-5: Solution scattering magnitudes in glint anisotropy example, α0 = 30,
α1 = 0.

Figure 6-6: Solution coefficients in glint anisotropy example, α0 = 0, α1 = 20.
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Figure 6-7: Solution scattering magnitudes in glint anisotropy example, α0 = 0,
α1 = 20.

coefficient vector has only one non-zero coefficient seen in Fig. 6-8. The coefficient

corresponds to a basis vector with a single non-zero angle sample, shown in Fig. 6-9,

and is thus parsimonious in both spatial locations and basis vectors.

The original sparsifying regularization cost function has the effect of favoring so-

lutions with sparsity among spatial locations, seen in examples of Chapter 4, because

the vector a has coefficients associated with all spatial locations. The additional reg-

ularization terms of this section also favor sparsity among spatial locations because

spatial locations along a line are general spatial locations as well. However, the dis-

tinguishing characteristic of the additional regularization terms is that the favored

sparsity is specially adapted for the object-level idea that individual point-scattering

centers affect linear regions in space.

Through the example it has been seen that both types of sparsity — sparsity

among basis vectors and sparsity among spatial locations along a line — are necessary

in the regularization in order to recover a solution that represents the scattering
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Figure 6-8: Solution coefficients in glint anisotropy example, α0 = 30, α1 = 20.

Figure 6-9: Solution scattering magnitudes in glint anisotropy example, α0 = 30,
α1 = 20.
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as coming from a single point and with very thin anisotropy explained by a single

basis vector. With this representation, spatial properties about the object being

imaged, such as orientation and physical extent, may be inferred; thin anisotropy

corresponds to objects of large physical extent and wider anisotropy to objects with

smaller physical extent. Also, the center angle of anisotropy indicates orientation in

the spatial domain. Points have more meaning than just pixels with aspect-dependent

amplitudes.

6.2 Object Shape of Migratory Scattering Centers

The machinery developed in the thesis thus far to handle migratory scattering has

restricted the migration to be in a circle. Circular migration comes about from cylin-

ders and tophats, which are often encountered in practice. However, if the machinery

were more general purpose, then it would be possible to characterize objects of var-

ious other shapes as well. In this section, a methodology is suggested based on the

observation that smooth convex shapes can be locally approximated by circles.

6.2.1 Circular Migration in Subapertures

Convex shapes in image space may be parameterized around a center (xc, yc) by a

radius function R(θ). When a scattering center migrates along such a shape, the range

profile is no longer a sinusoid, but the function R(θ) wrapped around a sinusoid, as

discussed in Sec. 2.1.4 and given in equation (2.18), reproduced here:

ρ(θ) = xc cos θ + yc sin θ −R(θ).

When a convex shape is viewed over only a small angular sector, then it looks very

much like a circle (also over that same small angular sector). Also, small non-

sinusoidal segments may be approximated by small sinusoidal segments. These small

angular sectors or segments are in fact subapertures in the context of SAR data.

The work in this thesis has stayed away from subaperture analysis due to the
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associated reduction in cross-range resolution. Here, however, a method is developed

that uses data from subapertures to locally fit circles to more complicated shapes.

This problem of determining migration shape is different from that of estimating

the shape of convex sets in images from tomographic projections, tackled in [48, 27],

because although migratory scattering centers may move along a convex-shaped path,

scattering only occurs from a single point on the surface of the object per observation

angle θ, in contrast to tomographic applications in medical imaging, for example,

in which objects are filled with mass and line integrals through the entire object

contribute to the measurements.

The methodology to determine the shape of objects producing migratory scatter-

ing is then to divide the phase history measurements into subapertures, optimize over

radius as described in Sec. 4.2 to find the best circle for each subaperture, and then

take all of the circles from the subapertures together to obtain a unified picture of

object shape. This approach is fairly crude and there is much room for improvement

in the formulation; nonetheless it may be used effectively, as shown in the next section

through an example.

6.2.2 Example

The example in this section considers migratory scattering along a non-circular shape,

illustrating that the method of finding best circular segments over subapertures is

promising. The shape of migration is an ellipse with eccentricity 0.7 and semimajor

axis of length 0.4 meters, centered at the point (0.1, 0.1) and rotated by 20◦. The

true ellipse is shown in Fig. 6-10 with the solid line. The background in the figure

is the subaperture image formed with an 18◦ subaperture with center angle 0◦. The

dotted line circle is the best explanation of migration using a circle, determined using

the regression method of Sec. 4.2 over that subaperture.

Overall, data is available over a 108◦ wide-angle aperture; the scattering in this

synthetic example is isotropic across the entire aperture. Nineteen overlapping 18◦

subapertures with center angles ranging from −45◦ to 45◦ at 5◦ increments are used.

The conventional image formed from the full 108◦ aperture is shown in Fig. 6-11.
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Figure 6-10: True elliptical migration as solid line overlaid on subaperture image
along with best circular explanation over the subaperture as a dotted line.
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Figure 6-11: Solution subaperture circles overlaid on conventionally formed wide-
angle image.

Overlaid on the image are the 19 circle solutions of optimizations over radius for each

of the subapertures. The 19 optimizations are not coupled in any manner, but further

extensions of the methodology may include some way of optimizing jointly.

Each of the circle solutions is only valid over its corresponding subaperture. Hence,

it is only sensible to view circular segments, not entire circles. The circular seg-

ment solutions are shown in Fig. 6-12, overlaid on the same 108◦ aperture image of

Fig. 6-11, but enlarged. Clearly, the segments taken together provide a good approx-

imation to the true elliptical migration in the spatial domain. The segments also

well-approximate the true migration in the range profile domain, as seen in Fig. 6-13.

The top plot shows the ideal range profile with elliptical migration and the bottom

plot shows the overlapping range profiles segments of the circle solutions.

This chapter, building upon stationary point scattering and circular migratory

scattering discussed in earlier chapters, has moved in a direction away from a pixel

representation towards more of an object-type representation. If the subaperture
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Figure 6-12: Solution circular segments overlaid on conventionally formed wide-angle
image.
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Figure 6-13: Range profile domain view of circular segments locally fitting elliptical
migration.
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segments were to be stitched together, then the result would be a unified object-level

parsimonious representation akin to circular migratory scattering and glint scattering

representations. This object-level conception may be taken even further through the

use of basis vectors that are not necessarily localized in space; an elaboration is

provided in Sec. 7.2.2.
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Chapter 7

Conclusion

I just don’t think you have time. I’ve never been a great believer in reflection.
I don’t think it’s a productive enterprise. I think that when you’re done, then
you look back and it’ll be great to look back at a lot of things, a whole number
of things. That’ll actually be fun to do that, to look back and think about each
team, the different situations.

— Jim Boeheim (2005), in The Post-Standard

The first part of this concluding chapter wraps up the work in the thesis with a

brief summary. However, the material cannot really be packaged nicely and neatly;

many issues and directions remain sticking out like hooks. In the second part of the

chapter, suggestions for future work are suggested.

7.1 Brief Summary

If one were to describe the aims of the research in this thesis generally, it would come

down to taking problems and issues associated with wide-angle SAR and turning

them into opportunities to squeeze out as much information and understanding from

the data as possible. The issue in wide-angle SAR imaging considered primarily in

the thesis is aspect-dependent scattering or anisotropy. Anisotropy may be viewed

as a nuisance to conventional two-dimensional image formation techniques such as

the polar format algorithm, but if anisotropy can be characterized within the image

formation process, then the additional information can be useful as a feature for
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automatic target recognition and as an indicator about spatial domain properties of

the objects being imaged. Similarly, the secondary wide-angle issue investigated in the

thesis, migratory scattering, may also be viewed as either a problem or opportunity.

Migration characterization gives information about object shape directly.

In SAR imaging, it is determination of the complex-valued scattering function of

the ground patch s that is of interest. (Of course, the real goal is trying to learn as

much as possible of what is out there, what it is doing, etc.) With anisotropy, the

scattering function takes on an aspect angle dependence and is thus s(x, y, θ). By

joint image formation and anisotropy characterization, it is meant that s(x, y, θ) is

to be recovered from the phase history measurements. The point-scattering model

of radar allows the problem to be one of determining scattering over a discrete set

rather than determining a continuous field.

The approach taken in this thesis makes use of an overcomplete basis expansion

and sparsifying regularization to obtain a solution for s(x, y, θ). This formulation of

anisotropy characterization is new. The problem is then to solve for coefficients in

the basis expansion. Overcomplete bases give rise to an infinite subspace of solution

coefficient vectors; hence some way of selecting a favorite solution is required. Over-

complete bases are often designed, including in this thesis, such that basis vectors

parsimoniously describe the class of signals that will be encountered, i.e. linear com-

binations of very few basis vectors are needed to well-represent signals. In this light,

sparse solutions, i.e. coefficient vectors with few non-zero entries, are to be favored.

Finding optimally sparse solutions is a combinatorial optimization problem, however.

The overcomplete basis is designed with a basis vector for every possible width of

angular persistence of anisotropy and every possible shift of that contiguous anisotropy

across the aperture. This choice is motivated by the physics of scattering, which indi-

cate that objects have strong scattering responses over contiguous segments of aspect

angle, to allow for parsimony in the representation of anisotropy. In the thesis, it is

recognized that this overcomplete set has a structure to it that may be represented

by a graph.

Reverting to the issue of finding sparse solutions, a relaxation employing the `p-
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norm with p < 1 in a regularization cost function is used as an objective to minimize;

coefficient vectors that minimize the cost function are sparse. A previously developed,

non-combinatorial, quasi-Newton algorithm is applied to perform the minimization,

yielding good results on examples with SAR data. A novel suite of algorithms are

developed in the thesis with reduced complexity at the expense of greediness based

on the graph structure of the overcomplete basis. The algorithms, best explained

as heuristic search on the graph also achieve fine results on SAR examples, even on

complicated scenes such as the backhoe public release dataset [4].

The overcomplete basis formulation solves for the anisotropy of all spatial loca-

tions within one system of equations, taking interactions among scattering centers

into account. Also, the formulation is more flexible than parametric methods, but

nevertheless does incorporate prior information about anisotropy through the choice

of basis vectors. Data from the full wide-angle aperture is used throughout and the

solutions have more detail in aspect angle than subaperture methods.

The ideas and terms point scattering center, spatial location, and pixel are fairly

interchangeable unless more meaning is injected into the idea of a scattering center.

With scatterers that appear to move or migrate as a function of the viewing direction,

each scattering center corresponds to an area in space, not just a single spatial lo-

cation or pixel. The overcomplete basis formulation is extended in a straightforward

manner to incorporate migratory scattering centers with circular migration, through

one additional dimension, radius, in the collection of basis vectors. These new basis

vectors with migration radii provide more of an object-level description.

As an alternative to including basis vectors with different radii of migration in the

overcomplete basis, an optimization methodology is developed in the thesis that both

optimizes radius and characterizes anisotropy. It is a nonlinear least-squares regres-

sion technique over radii that performs the sparsifying cost function minimization as

part of function evaluations. Through the use of subapertures and local approxima-

tion of non-circular migration by circular migration, the beginnings of an approach

are laid to lend object-level descriptions to scattering centers with any general convex

migration shape.
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Object-level descriptions for stationary scattering centers are also come upon

through the use of Hough transform-inspired regularization terms for favoring so-

lutions that assign scattering contributions from objects distributed in space to sin-

gle points. Object-level descriptions of stationary scattering centers can be further

extended as actual basis vectors in the overcomplete basis as described in the next sec-

tion as a direction for future research. The next section also discusses other avenues

of research that have been illuminated by the inquiry into anisotropy characterization

via sparse signal representation in this thesis.

7.2 Suggestions For Future Work

There are many different research directions that branch from the core work presented

in this thesis, ranging from the development of automatic parameter selection meth-

ods to extending the formulation to three-dimensional imaging where the scattering

function with angle-dependent scattering takes the form s(x, y, z, θ, ϕ). Frequency-

dependent scattering may also be characterized. Effective techniques for the visu-

alization of s(x, y, θ) solutions may be investigated, considering movies, lenticular

images [35], and various ways to use color and shading.

The use and performance of characterized anisotropy as a feature in functioning

automatic target recognition systems has not been examined. An extensive inves-

tigation into the effects of basis vector pulse shape not matching true anisotropy is

worth pursuing as well. Also, there are many imaging application domains other than

SAR, such as sonar, ultrasound, digital holography, and laser imaging that share the

characteristics of coherency and complex-valued signals [11]; there are bound to be

effects closely related to anisotropic or migratory scattering with these modalities,

lending an opportunity to apply the formulation of this thesis. In the remainder of

this section, two research directions — analysis and extension of the graph-structured

algorithm, and further object-level processing — are commented upon.
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7.2.1 Graph-Structured Algorithm Analysis and Extensions

The novel graph-structured algorithm developed in Sec. 4.3 is based on fairly simple

heuristics and stopping criteria based on solutions with sparsifying regularization.

Less computationally intensive methods, e.g. matching pursuit, could be considered to

calculate the heuristics and stopping conditions as well. In the thesis, the algorithm is

described and motivated intuitively and validated empirically, but no detailed analysis

on its properties is performed. A next logical step for research is to analyze the

algorithm first for the single spatial location case and then for the multiple spatial

location case.

The minimum argument of the regularization cost function, J(a) = ‖r−Φa‖2
2 +

α‖a‖p
p, has a statistical interpretation as the maximum a posteriori estimate for

a when it is taken as a random vector a with prior probability density function

fa(a) ∝ e−α‖a‖p
p and the measurements r are corrupted by additive white circularly

symmetric complex Gaussian noise [9]. Additionally, if each choice of left or right

is independent and uniformly distributed for a chip falling down the plinko graph,

then the distribution at the bottom level, level N , approaches a Gaussian distribution

as N approaches infinity [24]. Putting these two facts together with perhaps some

additional machinery, it may be possible to give a probabilistic guarantee on the con-

vergence of the hill-climbing search method without back-tracking, at least for the

single spatial location case. For the multiple spatial location case, showing something

similar may be more difficult, but not out of the question.

The suite of graph-structured algorithms of this thesis can be related to other

methods in science and engineering, e.g. multigrid methods [20]. One-way multigrid

is similar to hill-climbing search without back-tracking on a plinko graph. The nested

iteration algorithm or full multigrid, operating in a coarse-to-fine manner with cor-

rections included, is in the same spirit as hill-climbing with back-tracking on a plinko

graph. Connections such as this may lead to innovations in the graph-structured

algorithm.

Considering the alternate interpretation of the search procedure, shown in Fig. 4-
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19b, the idea of taking guiding graphs themselves as nodes is closely related to the

idea of junction trees, although it is not exactly the same [16]. With a junction tree

or something similar as a starting point along with the probabilistic interpretation

discussed earlier in this section, more complicated procedures beyond the simple hill-

climbing search, including multiscale or multiresolution methods, may be envisioned.

Also, if a multiple candidate search procedure that allows contributions from disparate

guiding graphs in the solution coefficient vector were to be developed, it would improve

the generality and reduce the greediness of the graph-structured algorithms.

Sec. 4.3.3, variations on the theme, is by no means comprehensive; any number

of slight modifications or tweaks are possible. However, principled approaches such

as search on trees, multigrid, and inference algorithms on graphical models using

junction trees, may have a more radical effect on the theory of and extensions to the

graph-structured algorithm than minor modifications.

7.2.2 Object-Level Processing

The work presented in Chapter 6 approaches a general framework for objects with

anisotropic scattering, an associated region in space, and possibly migration, but may

be taken even further. The approach of Sec. 6.2 fits sinusoidal segments to general

curves in the range profile domain. However, a more general approach may be to fit

splines or other similar functions to the entire curve. In a general sense, this type

of approach was followed in [48]. Another possibility is to use ideas from snakes

and curve evolution [43]. The method of Sec. 4.2 is like blowing up circular balloons

starting from points; the use of an outward curve evolution flow that could converge

to non-circular shapes is a possible approach. It is interesting that the same migration

is a sinuous curve in the range profile domain and a closed convex curve in the image

domain, both concentrated into lines, not regions.

The stationary and circularly migratory basis vectors used in the thesis may be

viewed as curves in a three-dimensional space of x, y, and θ, following visualizations

in [5]. Stationary basis vectors are straight lines and migratory basis vectors are

spirals, as shown in Fig. 7-1. Thinking in this space, glint anisotropy can also be
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Figure 7-1: Stationary and migratory basis vectors in x-y-θ space.

represented by a line, but one that lies in a plane parallel to the x-y plane, as seen

in Fig. 7-2. (Stationary basis vectors lie in planes perpendicular to the x-y plane.)

Also, non-circular migration maps to generalized spirals. Continuing to think in this

three-dimensional space, the overcomplete collection of basis vectors should ideally

contain line segments and spiral-like curves of all different types and orientations.

Basis vectors of this type would couple spatial extent and anisotropy in a physically

meaningful way.

A very different approach to determine the size and shape of objects from radar

measurements, the Bojarski-Lewis inverse scattering method from the electromagnet-

ics literature, is ill-posed unless data is available at all frequencies and aspect angles

[6, 45]. The method recovers a binary function g(x, y, z) in 3-D that is one inside

and zero outside of the object. This function g is the inverse Fourier transform of a

function G which is related to the scattered signal from the object, r(x′, y′, z′), with
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Figure 7-2: Glint anisotropy in x-y-θ space.

a radar pulse at frequency 2πf = c
2

√
x′2 + y′2 + z′2, by the following expression:

G(x′, y′, z′) =
4
√

π<{r(x′, y′, z′)}
x′2 + y′2 + z′2

, (7.1)

where x′, y′, and z′ are spatial frequencies. The exact relationship between r(x′, y′, z′)

and SAR phase history measurements needs to be investigated, but if done, the

physics-based approach may provide insight for developing new object-level regular-

ization terms which would both take care of the ill-posedness of the Bojarski-Lewis

method and bring the method into a common frame as the overcomplete basis for-

mulation for image formation and anisotropy characterization.

Moving even one layer of abstraction higher, object-type scattering centers are in-

terrelated as parts of more complicated objects and the eventual goal in SAR imaging

is detecting and recognizing these larger complicated objects, e.g. vehicles. Recent

work in the computer vision community has looked at learning hierarchical models of

scenes, objects, and parts, but this work relies on crude low-level interest operators
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for features such as image patches, corners, edges, etc. that are hoped to be invariant

under many variables [52]. It is here that scattering centers may be employed as

physically and semantically meaningful descriptors for use in higher level tasks such

as object classification. This may eventually lead to a vertically integrated system

starting at the lowest level of physics, moving through signal processing, statistical

inference, and going all the way to understanding and awareness.
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