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Abstract

The thesis provides a detailed analysis of the independence structure possessed by multiscale models
and demonstrates that such an analysis provides important insight into the multiscale stochastic
realization problem. Multiscale models constitute a broad class of probabilistic models which
includes the well-known subclass of multiscale autoregressive (MAR) models. MAR models have
proven useful in a variety of different application areas, due to the fact that they provide a rich
set of tools for various signal processing tasks. In order to use these tools, however, a MAR or
multiscale model must first be constructed to provide an accurate probabilistic description of the
particular application at hand. This thesis addresses this issue of multiscale model identification
or realization.

Previous work in the area of MAR model identification has focused on developing algorithms
which decorrelate certain subsets of random vectors in an effort to design an accurate model. In
this thesis, we develop a set-theoretic and graph-theoretic framework for better understanding these
types of realization algorithms and for the purpose of designing new such algorithms. The benefit of
the framework developed here is that it separates the realization problem into two understandable
parts – a dichotomy which helps to clarify the relationship between the exact realization prob-
lem, where a multiscale model is designed to exactly satisfy a probabilistic constraint, and the
approximate realization problem, where the constraint is only approximately satisfied.

The first part of our study focuses on developing a better understanding of the independence
structure exhibited by multiscale models. As a result of this study, we are able to suggest a number
of different sequential procedures for realizing exact multiscale models. The second part of our
study focuses on approximate realization, where we define a relaxed version of the exact multiscale
realization problem. We show that many of the ideas developed for the exact realization problem
may be used to better understand the approximate realization problem and to develop algorithms for
solving it. In particular, we propose an iterative procedure for solving the approximate realization
problem, and we show that the parameterized version of this procedure is equivalent to the well-
known EM algorithm. Finally, a specific algorithm is developed for realizing a multiscale model
which matches the statistics of a Gaussian random process.

Thesis Supervisor: Alan S. Willsky
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Chapter 1

Introduction

THE goal of this thesis is to illuminate and investigate a number of important ideas related
to the multiresolution probabilistic framework introduced in [13–15]. The contributions of

this thesis may be divided into two major parts. The first part is aimed at providing a thorough
study and classification of the independence properties of multiresolution or multiscale (as they are
called here) models, as well as providing a graph-theoretic framework by which to enumerate these
independence properties. The second part of this thesis draws upon the ideas proposed in the first
part, with the goal of developing efficient algorithms for solving the multiscale realization problem,
i.e. designing multiscale models which exactly or approximately satisfy a given set of probabilistic
constraints. As subsequent discussion reveals, the two threads of ideas – model independencies
and model realization – are very much intertwined, and for this reason, these ideas are studied in
conjunction with one another. Essentially, each chapter provides yet another perspective on the
same general problem.

This thesis draws upon the large body of ideas generated from several decades worth of research
in the area of multiresolution modeling, and in particular, it continues the lineage of research in
the area of multiscale autoregressive (MAR) models introduced in [13–15]. The MAR framework
has proven useful in a variety of applications including remote sensing [23,30], geophysics [25,70],
oceanography [31,32], speech processing [61–63], and image processing [11,34,35,51,65,66,74,93,95].
One reason that these models have been so successfully applied in such diverse fields is due to the
fact that the MAR framework is able to compactly and accurately model a wide variety of random
phenomena. For example, MAR models have been shown to be well-suited for modeling one-
dimensional Markov processes and some two-dimensional Markov random fields [73,75], fractal-like
processes [22,24,33,74], and several other interesting examples [37,38,49,52].

Another reason for the success of the MAR framework is that it offers an efficient set of tools
for performing a number of important signal processing tasks. Among these are linear least-
squares estimation [13,15], likelihood calculation [76], calculation of error statistics [77], and sample
path generation. In addition, this framework is well-suited for handling a number of challenges
encountered in real-world signal processing problems such as the need to fuse data from multiple
sources and modalities [14,23], handling large data sets [30], and dealing with irregularly-spaced and
non-local measurements [21, 38]. Furthermore, the structure of these models allows computations
to be performed in parallel – a feature which has become more relevant with the growing popularity
of distributed networks [67].

During the same period of time in which the MAR framework has been developed, the related
field of graphical models has grown in popularity – providing significant contributions to proba-
bilistic modeling in general [58, 71, 84] and proving useful in a number of important application
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areas, perhaps most notably in the field of coding theory [6, 79, 87, 88]. A significant portion of
the research performed in the area of graphical models seeks to find causal relationships in large
datasets [85, 98], such as those encountered in the areas of medicine [53] and biology [96] for ex-
ample. This area of study shares some connections with the MAR framework, but its objectives
tend to be somewhat different. A second area of research in graphical models, and the one which
most intersects with the MAR framework, has the goal of constructing accurate and parsimonious
representations of random processes, so that estimation or inference tasks may be performed effi-
ciently [57,80,101–103,107]. Because of this intersection, this thesis applies many of the important
and relevant ideas developed within the graphical models community to the area of MAR models
and to the richer class of multiscale models. This thesis also attempts to bridge the gap between
these two bodies of research by incorporating ideas from each area, as well as their associated
terminologies, into a cohesive framework for better understanding and analyzing the properties of
multiscale models.

The remainder of this chapter provides a brief introduction to multiscale models as well as a
description of the major problems to be addressed in this thesis. Subsequent chapters provide addi-
tional background material for the reader and as such, are meant to be self-contained. Nonetheless,
each chapter draws upon results from previous chapters. For a detailed history of the MAR frame-
work, see the introductory chapter of [38]; for a more thorough introduction to graphical models,
see [59,104]; and for a broad perspective of multiresolution models and their applications, see [109].

� 1.1 Main Problems Addressed

The following sections provide a preview of the ideas presented in this thesis.

� 1.1.1 Multiscale Models and Their Conditional Independencies

Multiscale models represent an important subclass of the more general class of directed acyclic
models studied extensively in the graphical models literature [58, 71]. As we demonstrate, these
types of models have a number of interesting properties and represent a generalization of the sub-
class of MAR models on which much of the probabilistic multiresolution modeling literature has
focused up to this point [11,13,38,49,62]. Chapter 2 provides a formal definition of multiscale mod-
els, as well as a detailed study of their conditional independence or Markov properties. Chapter 3
then continues this study by introducing a graph-theoretic framework useful for enumerating these
conditional independencies.

A multiscale model is a collection of random vectors {Xv} which possesses a very special condi-
tional independence structure. In particular, the vectors {Xv} are indexed by the nodes or vertices
of a tree (see for example the tree shown in Figure 1.1(a)), and any connection between vertices
u and v (represented by an arrow) in the tree indicates a probabilistic constraint imposed on the
vectors Xu and Xv . As we later discuss in more detail, the consequence of such probabilistic con-
straints is that the collection {Xv} exhibits a particular set of conditional independencies called
the global Markov property – a property which has been well-studied in the MAR literature [38,49].

As an example of the independence constraints imposed by the global Markov property, consider
the tree shown in Figure 1.1(b). If vertex v is removed from this tree, the resulting graph consists of
three distinct trees with vertices which lie in the sets Av, Bv, and Cv shown in Figure 1.1(b). The
global Markov property requires that random vectors XAv , XBv , and XCv be jointly independent
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Figure 1.1. (a) An example of a tree containing vertices 0, 1, . . . , 14 which index the collection of
random vectors {Xv} associated with a multiscale model. (b) An example of the sets of vertices Av,
Bv, and Cv associated with the three different trees formed if vertex v = 1 is removed. In order for
the global Markov property to be satisfied at vertex v, the random vectors indexed by these three
sets must be jointly conditionally independent given Xv.
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conditioned on random vector Xv.
1 Furthermore, the global Markov property is satisfied and the

collection {Xv} is a multiscale model if and only if a similar conditional independence constraint
is satisfied for every vertex v in the tree.

While the global Markov property is useful for understanding the global independence structure
of a multiscale model, the constraints imposed on {Xv} by this property are numerous. For example,
while we have described the constraints imposed on random vectors Xv, XAv , XBv , and XCv in
Figure 1.1(b), similar constraints must be satisfied for every vertex v. Consequently, multiscale
models must satisfy a large set of overlapping and competing constraints. In Chapter 2, we propose
a less-complex set of constraints which we call the reduced-order global Markov property, and we
show that this new type of Markovianity is equivalent to the global Markov property. As we
discuss, this latter notion of Markovianity is not unique for a given tree; in fact, there are a number
of equivalent reduced-order sets of constraints, each tied to a particular ordering of the vertices of
a tree.

The benefit of the reduced-order global Markov property is that it helps to remove redundant
independence constraints. As subsequent discussion reveals, redundant constraints are problematic
for developing efficient multiscale realization algorithms. However, despite the simplification which
the reduced-order global Markov property provides, the constraints which it imposes on {Xv} are
still severe in the sense that each random vector Xv must satisfy multiple competing constraints.

To address this issue, we introduce a novel form of Markovianity called the marginalization-
invariant Markov property. This form of Markovianity is a function of a specified subset M of
the vertices of a tree, and it imposes a constraint on the marginal density of the vectors {Xv}v∈M

associated with a multiscale model. One interesting property of this form of Markovianity is that it
is completely equivalent to the reduced-order global Markov property (and hence the global Markov
property) when M contains all vertices of a tree. However, when M contains only a portion of the
vertices, the conditional independence constraints imposed by this property are necessarily simpler
than those required by the reduced-order global Markov property, and the degree of overlap between
the constraints is less severe. Therefore, the marginalization-invariant Markov property represents
a relaxation of the constraints imposed by the global Markov property, and the degree of relaxation
is tied to the chosen set M .

In studying the marginalization-invariant Markov property, we take two different points-of-view.
The first point-of-view, discussed in Chapter 2, is a set-theoretic perspective. This perspective states
the constraints imposed by the marginalization-invariant Markov property in terms of a sequence
of partitions of the vertices of a tree. As we demonstrate, these partitions can be obtained by a
specific intersection of the constraints associated with the reduced-order global Markov property
and the subset of vertices M . This further emphasizes the point that the marginalization-invariant
Markov property is a relaxation of the reduced-order global Markov property and is strongly tied
to the choice of M .

The second point-of-view, elaborated upon in Chapter 3, is a graph-theoretic perspective of the
marginalization-invariant Markov property, and more generally, this point-of-view is based upon a
novel theory which applies equally well to more complicated probabilistic models. In the first part of
this chapter, we show that a rather simple statement about the factorization structure of a density
p(·) provides a sufficient condition for the marginalization-invariant Markov property to be satisfied.
The second part of this chapter then shows how this factorization constraint is equivalent to the set

1The notation XA indicates the collection {Xv}v∈A.
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of conditional independencies required by the marginalization-invariant Markov property. To do
this, we introduce two novel graph-theoretic constructs called clique extensions and neighborhood
separators, and we use these constructs to demonstrate that the constraints of the marginalization-
invariant Markov property can be ascertained by examining a special sequence of graphs.

Even though multiscale models represent a small subclass of the much broader class of graphical
models, the exposition provided in this thesis demonstrates that they possess several interesting
characteristics. The marginalization-invariant Markov property is the particular characteristic to
which we devote most of our efforts. By itself, this property is interesting from a theoretical
perspective, but it is not immediately obvious how it is useful for the multiscale realization problem.
The following two sections provide a preview of why this Markov property is so important.

� 1.1.2 Realizing Exact Multiscale Models

The second major contribution of this thesis is in relating the conditional independencies possessed
by multiscale models to the multiscale realization problem. The tie between these two ideas was
first expressed in [49] while suggesting an interesting approach to multiscale realization based on
canonical-correlations analysis [48], a method which provides one measure of conditional indepen-
dence. Subsequently,the work of [38] suggests both a different measure of conditional independence
termed predictive efficiency and a different sequential approach to the realization problem, termed
scale-recursive realization.

The novelty of the ensuing discussion and our approach to the realization problem is that we
separate the problem into two separate fundamental ideas: (1) the conditional independencies which
a set of vectors {Xv} must satisfy and (2) how to measure the degree to which these conditional
independencies are satisfied. As we show, an answer to the first idea is given by the constraints
imposed by the marginalization-invariant Markov property. The second idea can be attacked from
several equally viable perspectives depending on the particular problem at hand. For example,
the work of [49] focuses on canonical correlations, while the work of [38] focuses on predictive
efficiency. Our approach to this second idea focuses on measuring conditional independence using
the Kullback-Leibler divergence [17].

An additional benefit of the dichotomy between conditional independence constraints and how
to measure them is that we can focus our attention on these two different ideas in a systematic
manner. In Chapter 2 and the first part of Chapter 3, we solely focus on the exact multiscale
realization problem, and we show that it may be solved by satisfying the constraints imposed
by the marginalization-invariant Markov property. Then, in the last part of Chapter 3 and in
Chapter 4, we focus on the impact of only approximately satisfying the marginalization-invariant
constraints, and we show how such an approximation affects the overall accuracy of the multiscale
model.

As a brief introduction to these ideas, the multiscale realization problem consists of three main
ingredients: a set of vectors {Xv} indexed by the vertices of a tree, a set M composed of a subset of
the vertices of a tree, and a specified marginal density p(xM ). In the exact realization problem, the
vectors {Xv}v∈M are constrained to have the density p(xM ), while the remaining vectors {Xv}v 6∈M

are so-called design vectors and are unconstrained. The goal is to specify these design vectors so
that the complete collection {Xv} corresponds to a multiscale model. More specifically, the correct
specification of the design vectors {Xv}v 6∈M requires finding a conditional density p(xv 6∈M |xM ) so
that the density p(xv 6∈M |xM )p(xM ) has the factorization structure required for a multiscale model.

As an example, consider a zero-mean Gaussian density p(xM ) with a covariance matrix whose
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Figure 1.2. Surface plot of the entries of a 512 × 512 covariance matrix which corresponds to a
damped sinusoid.

entries are graphically depicted by the height of the surface shown in Figure 1.2 and where M
corresponds to the terminal vertices of the tree previously shown in Figure 1.1(a). In this example,
the multiscale realization problem consists of identifying random vectors X0,X1, . . . ,X6, i.e. the
vectors indexed by the non-terminal vertices of the tree, so that the marginal constraint p(xM )
is satisfied and so that the collection {Xv} corresponds to a multiscale model. In choosing these
design vectors, we must simultaneously satisfy the tradeoff between the marginal constraint p(xM )
and the constraints imposed by the global Markov property.

The benefit of describing the multiscale realization problem in such general terms is that the
density p(xM ) can represent any type of probabilistic constraint. Specifically, with this view of the
realization problem, we can handle the following important specifications of the process XM :

(1) An exact set of probabilistic constraints represented by a complete density p(xM ).

(2) A partial set of probabilistic constraints represented by a subset of the marginals of p(xM ).

(3) A set of realizations (observations) of the process XM .

The second type of specification is encountered in the covariance completion problem where only
a partial set of second-order statistics is known for a given process (see [36, 38] for a discussion
of this type of specification). The third type of specification is encountered when dealing with



1.1. MAIN PROBLEMS ADDRESSED 27

data, where the density p(xM ) corresponds to the empirical density associated with a given set of
observations. In this thesis, we focus only on a complete characterization of the density p(xM ), but
the theoretical foundation derived here applies equally well to cases (2) and (3).

The novelty of our approach to the multiscale realization problem is derived from the fact that it
is based on the marginalization-invariant Markov property. By definition, the constraints imposed
by this property are precisely the constraints which a set of vectors {Xv}must satisfy in order for the
realization problem to have an exact solution. When the set M contains only terminal vertices of a
tree, we demonstrate that these constraints may be ordered in such a way that permits a sequential
approach to solving the realization problem. In cases where M includes non-terminal vertices of a
tree,2 we propose an alternative realization problem which introduces additional design variables.
This problem is a generalization of the state augmentation approach proposed in [21]. Using these
additional design variables, as well as a generalized form of the marginalization-invariant Markov
property, we devise a sequential realization procedure for these types of problems as well.

� 1.1.3 Realizing Approximate Multiscale Models

For any choice of density p(xM ) where M corresponds to the terminal vertices of a tree, the
multiscale realization problem always has an exact solution. In particular, the dimensions of the
design vectors Xv , v 6∈M , may be increased to the point where an exact, perhaps trivial, solution
exists. This approach to the realization problem is undesirable, however, because the value of a
multiscale model is derived from the fact that it provides a simple factored representation of a
density p(xM ). If the dimensionality of this representation is significantly larger than that of XM ,
then a multiscale model provides little or no benefit for estimation and other signal processing
tasks.

To address this issue, the latter part of Chapter 3 proposes a relaxed version of the exact
multiscale realization problem where the density associated with random vectors {Xv}v∈M is only
required to approximately match the desired marginal p(xM ). Specifically, we constrain the dimen-
sions of the design vectors {Xv}v 6∈M , and we identify the choices for these vectors which generate
a collection {Xv} that “best” approximates the marginal density p(xM ). Of course, the definition
of best depends on the chosen criterion. One natural criterion, and the one we choose, is the
Kullback-Leibler divergence.

Even though the Kullback-Leibler divergence is not a metric in the strict sense, it provides some
notion of the deviation between two probability densities, and it has several nice properties which
we use to our advantage. Using this particular notion of deviation, we propose a cost function for
the approximate realization problem which can be decomposed into a sum of different terms. We
show that each term represents the degree to which the constraints of the marginalization-invariant
Markov property are satisfied. Therefore, even when considering a relaxed version of the multiscale
realization problem, we can show that the severity of the approximation is directly tied to how well
the marginalization-invariant Markov property is satisfied, and we can directly measure the degree
of approximation.

In Chapter 4, we propose an iterative procedure for solving the approximate multiscale real-
ization problem. This type of iterative approach to realization represents a significant departure
from the sequential procedures previously proposed for MAR models [38, 49], and in fact, it has

2This scenario is encountered in applications where both lower- and high-resolution data must be fused into a
single cohesive probabilistic model. For details, see the groundwater problem studied in [21,25].
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more commonality with the well-known EM algorithm [27] used for realizing more general graph-
ical models [59]. As we show, our proposed iterative procedure is identical to EM when specific
parameterized realization problems are considered.

The novelty of our discussion of EM lies in the fact that we can provide a direct link between
the EM algorithm and the conditional independencies possessed by multiscale models. As we show,
the two steps of the EM algorithm seek a tradeoff between the two types of constraints involved in
the approximate realization problem. Specifically, a multiscale model must (1) provide an accurate
approximation to a density p(xM ) and (2) approximately satisfy the constraints imposed by the
global Markov property. We prove that the EM algorithm tries to find an optimal solution by a
two-step process that alternates between optimizing constraints (1) and (2).

Another contribution provided in Chapter 4 is a specific algorithm for solving the Gaussian
multiscale realization problem using EM.3 While EM has been used for realizing multiscale models
from data [64], it has not been used to generate a model which approximates the second-order
statistics of a process. This particular problem has been considered in [49] and [38] but not from
the perspective of EM. In the final part of Chapter 4, we derive an efficient method for calculating
the matrix quantities necessary to perform the EM iterations, and we provide several illustrative
examples of the performance of this algorithm in practice.

� 1.2 Thesis Organization

The remainder of this thesis is organized in the following manner.

Chapter 2 – Multiscale Models and Markovianity

This chapter formally defines the class of multiscale models considered in this thesis and studies
their independence properties. It is well-known that multiscale models satisfy a so-called global
Markov property – essentially a list of conditional independence statements. As we demonstrate,
this list contains a significant number of redundancies, and we suggest a set-theoretic method
for generating a less-complex but equivalent set of conditional independencies. In addition, we
introduce a novel notion of Markovianity called marginalization-invariant Markovianity which ties
the list of independencies to a given marginal constraint.

This chapter also formally defines the multiscale realization problem considered in this thesis.
We then use the marginalization-invariant Markov property to suggest a sequential procedure for
constructing multiscale models which satisfy a specified marginal constraint. In cases where such a
sequential procedure is not possible, we introduce an alternative realization procedure called state
augmentation, and we show that every type of multiscale realization problem can in theory be
solved using this latter procedure.

Chapter 3 – Realizing Multiscale Models: A Graph-Theoretic Perspective

This chapter continues to investigate the ideas introduced in Chapter 2 by presenting a graph-
theoretic framework for analyzing the conditional independencies associated with multiscale models.
This framework is useful because it provides a simple method for generating a list of conditional
independencies by examining a special sequence of graphs. In this discussion, we introduce two new

3The Gaussian realization problem requires the density p(xM ) to be Gaussian and requires the vectors {Xv} of
the multiscale model to be jointly Gaussian.
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graph-theoretic constructs, and we provide a rather general result concerning the Markov properties
of a broad class of graphical models. Using this general result, we then prove two important special
cases which were stated in Chapter 2 but not proven.

In this chapter, we also introduce a relaxed version of the multiscale realization problem which
we formulate as a constrained optimization problem. Using the Kullback-Leibler divergence as a
measure of approximation, we state necessary conditions for optimality. In addition, we demon-
strate that the approximate realization problem may be solved by minimizing a special upper
bound, and we show that this upper bound may be decomposed into a sum of terms, where each
term directly measures the degree to which the marginalization-invariant Markov property is sat-
isfied.

Chapter 4 – Realizing Approximate Multiscale Models Using EM

This chapter continues the study of the approximate multiscale realization problem by proposing
an iterative procedure for solving it. Using the theory developed in Chapter 3, we show that the
proposed procedure seeks to find an appropriate tradeoff between satisfying a specified marginal
constraint and satisfying the global Markov property. From a slightly different perspective, we also
show how this procedure seeks to minimize an upper bound – a bound which is tight for exact
solutions to the realization problem.

Up until the second half of Chapter 4, the entire class of multiscale models is considered in its
totality, and all results are stated generically for the class as a whole. In the second half of this
chapter, we focus on developing specialized realization algorithms for a parameterized subclass of
multiscale models, and we develop a parameterized version of the iterative procedure proposed in
the first half of the chapter. We subsequently prove that this latter procedure is equivalent to the
EM algorithm, and using this procedure, we derive an efficient algorithm for finding local optima
of the approximate Gaussian multiscale realization problem.

Chapter 5 – Conclusions and Future Research Directions

This chapter provides concluding remarks and summarizes the main contributions of this thesis.
Several extensions to the ideas presented here are discussed, with a number of suggestions for
further research.
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Chapter 2

Multiscale Models and Markovianity

THE primary purpose of this chapter is to introduce the class of multiscale models and to
discuss their so-called Markov properties. Through this exploration, we demonstrate that un-

derstanding these Markov properties can be advantageous in the development of efficient multiscale
realization algorithms. The results of this chapter also establish a common framework from which
to view several important results in multiscale realization theory [21,38,49,73].

In order to achieve these goals, it is necessary to introduce basic results from graph theory
and provide some notation in Sections 2.1 and 2.2. In Section 2.3, the multiscale model is formally
defined, and the important subclasses of Gaussian multiscale models and internal multiscale models
are introduced. Sections 2.4, 2.5, and 2.6 introduce and discuss the Markov properties of multiscale
models. Section 2.7 formally defines the multiscale realization problem and shows how a thorough
understanding of the Markov properties of multiscale models is an important step in better under-
standing the issues involved in the realization problem. Section 2.8 provides several examples to
illustrate the relationship between the framework established in this chapter and earlier work in
this area.

� 2.1 Some Graph Theory

A graph G = (V,E) is an ordered pair of sets1, where V is called the vertex set and E ⊂ V × V is
called the edge set. We henceforth assume that graphs are finite so that |V | <∞, and we impose
the additional restriction that for all v ∈ V , the edge (v, v) 6∈ E. Consequently, graphs contain no
self-loops. The edge set E may contain two types of edges: directed and undirected. An edge is
directed if (u, v) ∈ E and (v, u) 6∈ E, while an edge is undirected if (u, v) ∈ E and (v, u) ∈ E. When
an edge is undirected, we use the shorthand {u, v} ∈ E to denote both (u, v) ∈ E and (v, u) ∈ E.

So far, a graph has been described as a purely mathematical object, but it is also convenient to
consider it a “graphical” object. To do this, we represent a vertex by a small dot, an undirected
edge by a line connecting two vertices, and a directed edge (u, v) by an arrow pointing from vertex
u to vertex v. Figure 2.1(a) provides such an illustration of a graph, where in this case the vertex
set V consists of positive integers. A graph containing only undirected edges is called an undirected
graph as shown in Figure 2.1(b), and a graph containing only directed edges is called a directed
graph as shown in Figure 2.1(c).

Given two graphs G = (V,E) and G′ = (V ′, E′) with V ⊆ V ′ and E ⊆ E′, G is called a
subgraph of G′, and G′ is called a supergraph of G. The subgraph of G induced by a set of vertices
U ⊆ V and denoted by G (U) is the graph with vertices U and edges E ∩ (U × U). This means

1We use upper case English letters to denote sets.
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Figure 2.1. (a) Graph with directed and undirected edges. (b) Undirected graph and a tree. (c)
Directed graph and a rooted tree. The dashed lines show the four subtrees formed by removing
vertex 2.
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that the induced subgraph only contains edges (u, v) ∈ E with both u, v ∈ U . For example, in
Figure 2.1(c), the subgraph induced by the vertices U = {1, 5, 12, 13} contains the directed edges
{(1, 5), (5, 12), (5, 13)}.

If (u, v) is a directed edge in a graph G = (V,E), then v is called the child of u, and u is called
the parent of v. We introduce two special functions π and χ which map elements v ∈ V into subsets
of V as follows,

π(v) = {u ∈ V |(u, v) is a directed edge in E} (2.1a)

χ(v) = {u ∈ V |(v, u) is a directed edge in E}. (2.1b)

Thus, π(v) and χ(v) respectively contain the parents and children of vertex v. The closure of a
subset of vertices U ⊆ V with respect to a directed graph G contains U as well as the parents of
all elements in U and is defined as follows,

Ū , (∪u∈Uπ(u)) ∪ U. (2.2)

The closure of U = {10, 18, 19} in Figure 2.1(c) is Ū = {3, 10, 18, 19}.
A walk of length n from vertex v0 to vertex vn (denoted [v0, . . . , vn]) in a graph G is a sequence

of vertices v0, . . . , vn such that (vi−1, vi) is an edge in the graph for 1 ≤ i ≤ n. Similarly, a path is
a walk [v0, . . . , vn] such that the vertices v0, . . . , vn are distinct. If there is a path between every
two distinct vertices u, v ∈ V , then we say that the graph is connected. For example, the graph in
Figure 2.1(b) is connected. A cycle of length n is a path of length n but with the modification that
v0 = vn. Given two vertices v and v′ such that there exists a path from v to v′ but no path from
v′ to v, we call v an ancestor of v′, and we call v′ a descendent of v. In Figure 2.1(c), vertex 1 is
an ancestor of vertex 18, while vertex 18 is a descendent of vertex 1.

A tree is an undirected graph which is connected and contains no cycles. Figure 2.1(b) shows
one example of a tree. A rooted tree is constructed from a tree by choosing a vertex called the
root and then replacing all undirected edges with directed edges which point away from the root.
Figure 2.1(c) shows the rooted tree obtained from the tree in Figure 2.1(b), by choosing vertex 1
as the root. In most of the discussion to follow, we focus on graphs which are rooted trees, and we
devote the next section to further discussing these types of graphs.

� 2.2 Rooted Trees and the Notion of Scale

Suppose the graph G� = (V,E) is a rooted tree.2 We use the notation G� because as we discuss
here, a rooted tree has a natural partial order �. Suppose v0 is the root of G�, and consider the
following function which maps vertices into the nonnegative integers,

m : V −→ N, m(v) = number of edges between v0 and v, (2.3)

and where we define m(v0) , 0. In Figure 2.1(c), for example, m(v) = 1 for v = 2, . . . , 6 and
m(v) = 2 for v = 7, . . . , 15.

We refer to the value m(v) as the scale of vertex v, e.g. the scale of v0 is 0. In subsequent
sections, we map random vectors to each of the vertices of a graph, and at that point, this particular
word choice becomes more meaningful, since it says something about the resolution or scale of the

2For simplicity, we will occasionally refer to G� as a tree, understanding that it is really a rooted tree.
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process mapped to the graph. For our purposes, though, it is notationally simpler to associate scale
with the vertices rather than the corresponding random process.

For a rooted tree, there exists a natural partial order � on the vertices V given by

v � v′ if v′ is a descendent of v. (2.4)

For any partial order, we say that two elements are comparable if either v � v′ or v′ � v; otherwise,
they are incomparable. For the partial order �, two vertices are comparable only when one is a
descendent of the other. A subset of a partially ordered set is called a chain if all elements are
comparable. The maximal (with respect to inclusion) chains of � are subsets {v0, . . . , vn} of V
where [v0, . . . , vn] is a path in the graph G� starting at the root v0 and ending at vn, a terminal
vertex with no children – called a leaf vertex. The leaves of the tree in Figure 2.1(c) are 4,7,9, and
11–19. It is convenient to define the following subsets of leaf vertices,

Lv , {u ∈ V |u � v, χ(u) = ∅}, (2.5)

i.e. Lv contains the leaf vertices which descend from vertex v. Of course, Lv0 contains all leaf
vertices, and if v is itself a leaf vertex then Lv = {v}. In Figure 2.1(c), L3 = {11, 18, 19}.

We also define several special subgraphs which we later use. A subtree of a rooted tree G� is a
subgraph of G� which is itself a rooted tree with root v (not necessarily equal to v0). One important
subtree of G� is the subgraph induced by the vertices

Sv , {u ∈ V |v � u}, (2.6)

i.e. the set containing v and all vertices which are descendants of v. For example, S3 is equal to
{3, 10, 11, 18, 19} for the rooted tree shown in Figure 2.1(c). We introduce the notation Sc

v , V −Sv

to indicate the vertices V not contained in Sv. Note that the subgraph induced by Sc
v is a subtree

with root v0 which does not contain the vertices Sv.
Suppose that a vertex v has q children χ(v), and imagine removing the vertex v from the graph

G�, then the resulting graph consists of q + 1 subtrees induced by the sets Sc
v and Su for u ∈ χ(v).

Henceforth, we say that vertex v separates the graph into q + 1 subtrees. For example, the dashed
lines in Figure 2.1(c) indicate the subtrees separated by vertex 2. Also, recall that the closure of a
set of vertices includes all parent and neighboring vertices of the set. For all v 6= v0, the closure of
Sv is simply S̄v = Sv ∪ {π(v)}.

� 2.3 Multiscale Models

Given a graph G = (V,E), suppose we map to each vertex v ∈ V a random vector Xv, taking values
in some space Xv. In so doing, we have created a random process indexed by a graph G, and we
henceforth use the ordered pair (X,G) to represent such a process, where X = {Xv}v∈V is the set
of random vectors mapped to the vertices of G. When the graph is a rooted tree G�, we say that
(X,G�) is a tree-indexed process. Given a tree-indexed process, we call the process indexed by the
leaves of the tree, i.e. XLv0

, the finest-scale process, and if m(v) < m(u), we say that Xv is of

coarser-scale than Xu.3

3The reason for this particular terminology is that if a tree-indexed process (X,G�) represents multiresolution
data, then the leaf vertices contain the finest-resolution data, while vertices closer to the root represent a coarsening
of the data.
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By itself, a tree-indexed process is rather uninteresting. However, if we impose additional
requirements on the random variables mapped to the graph – specifically, if we require the proba-
bility density to factor in a certain way – then such a process displays very interesting conditional
independence properties. Much of the remaining discussion in this chapter is devoted to further
understanding this idea. In this section, we introduce the type of factorization that we consider, and
in subsequent sections, we discuss the conditional independence properties that are a consequence
of this factorization.

� 2.3.1 Definition of Multiscale Models

Before defining the class of multiscale models, it is useful to provide one general definition associated
with directed acyclic graphical models. Note that given a subset of vertices U ⊂ V , we use the
notation XU to represent the collection of random vectors {Xu}u∈U .

Definition 2.1 (Recursive Factorization).
Let (X,G) be a process indexed by a directed acyclic graph G, where X has a probability density
p. Then, p admits a recursive factorization with respect to G if there exist conditional probability
densities p(xv|xπ(v)) such that

p(x) =
∏

v∈V

p(xv|xπ(v)), (2.7)

where p(xv|xπ(v)) , p(xv) when π(v) is empty. ◭

Therefore, a recursive factorization with respect to a directed acyclic graph G allows a density p
to be factored as a product of so-called “local” probability densities each of which involve only
the random vectors Xv and Xπ(v).

4 Figure 2.2(a) shows one example of a recursive factorization.
Notice that we have chosen to represent the vertices in Figure 2.2(a) by large shaded circles rather
than the smaller dots used in earlier graphs; this is simply to indicate that vectors {Xv} have been
mapped to the vertices of the graph and that the process recursively factors according to the graph.

Definition 2.2 (Multiscale Model).
A multiscale model is a tree-indexed process (X,G�) with a density p that admits a recursive
factorization with respect to G�. ◭

Examining Definitions 2.1 and 2.2, it is clear that multiscale models are a subclass of the larger
set of models whose densities admit a recursive factorization with respect to directed acyclic graphs.
This broader class of models, commonly termed directed graphical models, has been studied in detail
(see [71] for example), but as we show, there are still open and interesting questions for the smaller
class of multiscale models. In addition, as later examples illustrate, multiscale models are a rich
and powerful set of models, providing utility in a variety of applications.

Note that since a multiscale model is defined on a rooted tree, the parent set π(v) is a singleton
for each non-root vertex v ∈ V , and consequently, each density p(xv|xπ(v)) can be associated with
an edge of the graph G�. Figures 2.2(b), (c), and (d) show three examples of multiscale models
defined on different tree structures. The multiscale model in Figure 2.2(b) is defined on a graph

4Notice that Definition 2.1 assumes that X permits a density p. We shall continue to assume that this condition
holds for all random vectors, but for clarity of exposition, we will no longer remind the reader of this fact.
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Figure 2.2. (a) A model with a density that recursively factors according to a directed acyclic graph
which is not a rooted tree. (b–d) Three multiscale models defined on different graph structures: (b)
A monadic tree. (c) A dyadic tree. (d) A quad tree.
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where each non-leaf vertex has a single child, i.e. a monadic tree. In the time-series literature,
a model defined on a monadic tree is more commonly called a Markov chain, but since this type
of model is a special case of Definition 2.2, we shall (where appropriate) consider it a multiscale
model.

Figures 2.2(c) and (d) show two other possible graph structures, namely a dyadic tree and
a quad tree. Notice that we have drawn the quad tree in Figure 2.2(d) as a three-dimensional
object; this is to emphasize the fact that such a structure can be used to model a two-dimensional
random field. However, the structure of this graph is no different than the planar graph shown in
Figure 2.2(c), except that each non-leaf vertex now has four children rather than two. Examining
Figures 2.2(b),(c), and (d), notice that a multiscale density p(x) is completely specified by a root
density p(x0) and the “local” interactions p(x1|x0), p(x2|x0), . . .. We explore this idea further in
the next section for a particular subclass of multiscale models.

� 2.3.2 Gaussian Multiscale Models

Gaussian multiscale models are an important subclass of multiscale models where each density
p(xv|xπ(v)) is normally distributed. For our purposes, this is an important subclass since it is
the focus of the model realization procedures described in subsequent chapters. It is also the
predominant type of multiscale model investigated up to this point [13, 14, 21, 29, 30, 38–40, 47, 49,
50,73,75–77].

For simplicity, assume that the random vectors {Xv} are all zero-mean, and denote the covari-
ance of Xv by Pxv and the cross-covariance between Xv and Xπ(v) by Pxvxπ(v)

. Since p(xv|xπ(v)) is

a normal density, it is characterized by its mean µv and covariance P̃v
5; it is well-known that these

two quantities are given by6

µv = Pxvxπ(v)
P−1

xπ(v)
xπ(v) (2.8a)

P̃v = Pxv − Pxvxπ(v)
P−1

xπ(v)
P T

xvxπ(v)
. (2.8b)

As (2.8) indicates, this particular class of multiscale models is completely parameterized by the set
of covariances PG�

, {Pxv0
} ∪ {Pxv , Pxvxπ(v)

}v∈V −{v0}, where v0 is the root vertex.
Consider also a different set of parameters Av, Qv defined as follows for all v 6= v0,

Av , Pxvxπ(v)
P−1

xπ(v)
(2.9a)

Qv , P̃v = Pxv − Pxvxπ(v)
P−1

xπ(v)
P T

xvxπ(v)
. (2.9b)

Note that (2.9) defines a mapping from the covariances PG�
to the parameters {Av , Qv}v∈V −{v0}.

This mapping is in fact invertible given the root covariance Pxv0
since the remaining covariances

can be recursively computed along all chains of the partial order � as follows,

Pxvxπ(v)
= AvPxπ(v)

Pxv = Qv +AvP
T
xvxπ(v)

.

5We henceforth use the notation X ∼ N (µ, P ) to denote a random vector X which is normally distributed with
mean µ and covariance P .

6For simplicity, we assume that all covariances Pxπ(v)
are positive definite. This is a reasonable assumption,

since in most cases of practical interest, a model with singular covariances Pxπ(v)
may be replaced by a model with

non-singular covariances, without degrading the model fidelity.
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Consequently, an equivalent parametrization of this class of multiscale models is given by {Pxv0
}∪

{Av , Qv}v∈V −{v0}. One reason for considering this particular parametrization is that random draws
from the conditional distribution p(xv|xπ(v)) may be generated via the simple recursive equation,

xv = Avxπ(v) + x̃v, (2.11)

where x̃v is drawn from a zero-mean Gaussian distribution with covariance Qv. This suggests one
benefit of multiscale models; namely, assuming that p(x) admits a recursive factorization, then
samples from p(x) may be easily generated using (2.11).

Besides the benefit of efficient simulation, these types of multiscale models are efficient in at
least two other important ways. First, if X is a zero-mean Gaussian random vector with covariance
Px and a density satisfying p(x) =

∏
v∈V p(xv|xπ(v)), then there must exist an invertible mapping

between the covariances PG�
and Px. For problems where the dimension of Px is large, storing only

the covariances PG�
can be a significant improvement over storing all of Px.

Second, Gaussian multiscale models admit an efficient inference or estimation algorithm. Sup-
pose that at each vertex v ∈ V , there exist observations of the form

Yv = CvXv +Wv, (2.12)

where Wv ∼ N (0, Rv) and is uncorrelated with Xv . Notice that (2.12) in combination with (2.11)
is reminiscent of the state-space representation used in time-series models. For time-series, it is
well-known that it is possible to calculate the conditional distribution p(xv|{yv}v∈V ) in a recursive
manner (with respect to time) via the Kalman filter [60] and Rauch-Tung-Striebel smoother [86].
The generalization to multiscale models has also been shown to be possible [13, 14], where in this
case, the recursion occurs with respect to scale. If we let dv represent the dimension of each vector
Xv, the complexity of the inference algorithm has been shown to be proportional to

∑
v∈V d

3
v.

The reason that this complexity is possible is that p(x) can be parameterized in terms of local
rather than global parameters and because these types of models obey the global Markov property
discussed in Section 2.4.

� 2.3.3 Internal Multiscale Models

Another important type of multiscale model is the subclass of so-called internal multiscale models.
The notion of an internal model is originally derived from the time-series literature [72], but this idea
has been successfully applied to the more general class of multiscale models and studied extensively
in the context of the multiscale realization problem [21, 24, 38–40, 49, 50]. This section provides a
few generalizations of the ideas originally presented in [38–40].

We begin with the definition of an internal tree-indexed process.

Definition 2.3 (Internal Tree-Indexed Processes).
A tree-indexed process (X,G�) is internal if for all non-leaf vertices v, Xv is a deterministic function
of the process indexed by the leaf vertices descending from v, i.e. for each vertex v, there exists
some function fv(·) such that

Xv = fv(XLv ). (2.13)

◭
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Notice that the process mapped to the leaf vertices, i.e. XLv0
, and the collection of functions

{fv(·)}v∈V −Lv0
completely specify an internal tree-indexed process. In addition, the process XLv0

contains all of the inherent randomness in this type of tree-indexed process, since XV −Lv0
is a

deterministic function of XLv0
. Consequently, the complete density p(xV ) is degenerate for an

internal tree-indexed process.
Given the above definition, an internal multiscale model is an internal tree-indexed process

(X,G�) with a density that also recursively factors according to G�. As one might suspect, requiring
a model to be both internal and have a recursive factorization leads to interesting properties of (and
constraints on) the density p(·). To investigate these further, we introduce the notion of locally
internal tree-indexed processes.

Definition 2.4 (Locally Internal Tree-Indexed Processes).
A tree-indexed process (X,G�) is locally internal if for all non-leaf vertices v, Xv is a deterministic
function of the process indexed by the child vertices of v, i.e. for each vertex v, there exists some
function gv such that

Xv = gv(Xχ(v)). (2.14)

◭

Notice that the class of locally internal tree-indexed processes includes the class of internal
tree-indexed processes. This is because we can always recursively compose the local parent-child
functions in (2.14) to write Xv as a function of the process XLv . The reverse operation is however
not true in general – an internal tree-indexed process may not be a locally tree-indexed process,
but these two types of processes are equivalent if an additional constraint is imposed, namely that
the process is in fact a multiscale model.

Proposition 2.1 (Equivalence of Internal and Locally Internal Multiscale Models).
A multiscale model is internal if and only if it is locally internal.

Proof. See Appendix A.1. �

This is a valuable result because it shows that all internal multiscale models can be parameter-
ized by a set of “localized” functions {gv(·)}; that is, for each non-leaf vertex v, Xv = gv(Xχ(v)) is
only a function of Xχ(v). The proof of this result relies entirely on the conditional independence
properties associated with the recursive factorization, which we now examine in detail.

� 2.4 The Global Markov Property

In this section, we characterize the conditional independence or Markov properties of multiscale
models, and we show that these Markov properties can be discerned from the underlying graph G�.
To provide intuition, we begin with an example. This example addresses three important questions
that underly the remainder of the results in this chapter:

(1) Given a distribution p which factors according to a graph G�, what conditional independencies
are implied by this factorization?

(2) How may we infer these independencies from the graph G�?
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p(x1|x0) p(x2|x1)
X0 X1 X2

p(x0)

Figure 2.3: A simple Markov chain considered in Example 2.1.

(3) Conversely, given a distribution p satisfying specific conditional independencies, what does
this imply about the structure of its factorization?

Example 2.1 (A Markov Chain).
Consider the multiscale model shown in Figure 2.3. Assuming that X = {X0,X1,X2} has a density
p which admits a recursive factorization on G�, then the following is true,

p(x0, x1, x2) = p(x0)p(x1|x0)p(x2|x1). (2.15)

Given a density with such a special factorization, we first ask the question, “What conditional
independencies do the random vectors {X0,X1,X2} exhibit?” Using (2.15) gives

p(x0, x2|x1) =
p(x0, x1, x2)

p(x1)
=
p(x0)p(x1|x0)p(x2|x1)

p(x1)
= p(x0|x1)p(x2|x1), (2.16)

thereby proving that X0 and X2 are conditionally independent given knowledge of X1.
Now consider how we might infer this conditional independence property from the underlying

graph G� shown in Figure 2.3. Notice that vertices 0 and 2 are separated when vertex 1 is removed
from the graph. Therefore, in this example, the graphical notion of separation conveys the proba-
bilistic notion of conditional independence. As Theorem 2.1 later shows, this is also true for any
rooted tree G�.

As the converse of the result discussed above, suppose that three random vectors {X0,X1,X2}
have the property that X0 and X2 are conditionally independent given X1. The conditional density
p(x0, x2|x1) must therefore satisfy (2.16), and the joint density can be calculated as

p(x0, x1, x2) = p(x0, x2|x1)p(x1) = p(x0|x1)p(x2|x1)p(x1)

= p(x0)p(x1|x0)p(x2|x1),

showing that the random vectors {X0,X1,X2} admit a recursive factorization. Thus, in this exam-
ple, by specifying a density p which satisfies the conditional independencies indicated by the graph
G� (via its separation property), we obtain a density which recursively factors according to G�. ◭

In order to characterize the conditional independencies exhibited by a multiscale model, it is
necessary to consider specific subgraphs of the associated rooted tree G�. To make this discussion
more succinct, we introduce some additional notation. A calligraphic letter is used to represent
a family of sets, e.g. S = {S1, . . . , Sn}. The intersection and difference operations between a
family of sets and a set is defined componentwise, i.e. S ∩ S , {S1 ∩ S, . . . , Sn ∩ S} and S − S =
{S1 − S, . . . , Sn − S}. The union operation between two families is the usual set operation, i.e. if
R = {R1, . . . , Rm}, then R ∪ S = {R1, . . . , Rm, S1, . . . , Sn}. Finally, the intersection and union
operations on families are defined to be ∩S , ∩n

i=1Si and ∪S , ∪n
i=1Si.
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Now, suppose that a family of sets S satisfies the following property,

S − ∩S = {S∗
1 , . . . , S

∗
n}, and

S∗
i 6= ∅, ∀i S∗

i ∩ S
∗
j = ∅, ∀i 6= j. (2.17)

This property simply indicates that after removing the elements which are common to all sets in
S, the resulting sets are non-empty and have no common elements. Given a family which satisfies
this property, the following statement concerning conditional independence is well-defined.

Definition 2.5 (Conditional Independence).
Given a family of sets S = {S1, . . . , Sn} with the property (2.17), we say that a set of vectors
{Xv}v∈∪S satisfies conditional independence with respect to S if the following is true

p(xS∗
1
, . . . , xS∗

n
|x∩S) =

n∏

i=1

p(xS∗
i
|x∩S). (2.18)

The conditional independence of (2.18) is denoted by ⊥XS . If ∩S = ∅, then (2.18) is defined to be
a statement of independence rather than conditional independence. ◭

For our purposes, the common intersection ∩S will in most cases be a singleton, but it is useful
to express conditional independence in this type of set-theoretic language since the sets become
increasingly complicated in subsequent sections.

For a specific illustration of Definition 2.5, consider the rooted tree shown in Figure 2.4.
The three dashed contours divide the vertices into three sets which comprise the family S1 =
{{1, 3, 7, 8}, {1, 4, 9, 10}, {0, 1, 2, 5, 6, 11, 12, 13, 14}}.7 Notice that ∩S1 is the singleton {1}, and
S1 −∩S1 is the collection of subtrees obtained by removing vertex {1} from the graph, specifically
S1 − ∩S1 = {{3, 7, 8}, {4, 9, 10}, {0, 2, 5, 6, 11, 12, 13, 14}}. Using the notation introduced in Sec-
tion 2.2, we can write this collection of subtrees as S1 − ∩S1 = {S3, S4, S

c
1}, and we can also write

the family of sets S1 as S1 = {S̄3, S̄4, S
c
1 ∪ {1}}.

8 The independence condition ⊥XS1 requires that
the random vectors indexed by the sets S3, S4, and Sc

1 be conditionally independent given X1.
Consider now the following families of sets defined for all non-leaf vertices of a rooted tree

G� = (V,E),

Sv0 , {S̄u}u∈χ(v0) (2.19a)

Sv , {S̄u}u∈χ(v) ∪ {S
c
v ∪ {v}}, v 6= v0. (2.19b)

Each such family has the property that ∩Sv = {v}, and using (2.19b), Sv−∩Sv = {Su}u∈χ(v)∪{S
c
v}

are the subtrees obtained by removing vertex v from the graph G�. The family S1 considered earlier
and shown in Figure 2.4 provides one example of these types of sets.

Using the families (2.19), it is now straightforward to state the Markov property of interest.
This property is a special case of the directed global Markov property defined in [71] for arbitrary
directed acyclic graphs, but the following simpler version is sufficient for our purposes.

Definition 2.6 (The Global Markov Property).
Let G� be a rooted tree with vertices V . The collection of random vectors {Xv}v∈V are said to
satisfy the global Markov property at vertex v if ⊥XSv holds. Furthermore, {Xv}v∈V satisfies the
global Markov property if ⊥XSv holds for all non-leaf vertices v. ◭

7The significance of the notation S1 will be made clear later.
8Recall that for a rooted tree, the closure of the set Sv, v 6= v0, is simply S̄v = Sv ∪ {π(v)}.
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S̄3

1413121110987

6543

21

0

Sc
1 ∪ {1}S̄4

Figure 2.4. The dashed lines show the three sets of vertices required for the global Markov property
to hold at vertex 1. Specifically, given the family of sets S1 = {S̄3, S̄4, S

c
1 ∪ {1}} and the random

vectors X0, . . . , X14, the global Markov property holds at vertex 1 if ⊥XS1.

In summary, the global Markov property requires the following for every non-leaf vertex v: the
random vectors indexed by the subtrees separated by v must be conditionally independent given Xv.
In Figure 2.4, this property is satisfied at vertex 1 if X{3,7,8}, X{4,9,10}, and X{0,2,5,6,11,12,13,14} are
jointly independent conditioned on the value of X1. We call Xv a state vector if the global Markov
property is satisfied at vertex v. This terminology is in keeping with the time-series literature where
a state is a sufficient statistic of the past that makes the past and future conditionally independent.

As the following theorem evidences, the global Markov property completely characterizes the
Markov properties of multiscale models. As proven in [71], the theorem applies more generally to
any directed acyclic graphical model, but we only state the result pertaining to multiscale models.

Theorem 2.1 (Multiscale Models and the Global Markov Property).
(X,G�) is a multiscale model if and only if X = {Xv} satisfies the global Markov property.

Proof. See [71]. �

Theorem 2.1 is important because it answers all three questions raised at the beginning of this
section.

(1) Assuming that (X,G�) is a multiscale model, the distribution p(x) recursively factors accord-
ing to G�, and Theorem 2.1 states the specific conditional independencies that X satisfies.

(2) The conditional independencies ⊥XSv are characterized by the structure of G�. Specifically,
the process indexed by the vertices separated by vertex v must be conditionally independent
given Xv.

(3) The converse to Theorem 2.1 says that the independencies ⊥XSv imply that p(x) admits a
recursive factorization according to G�.

For the purposes of this thesis, we are most interested in the converse of this theorem. From the
viewpoint of constructing a multiscale model, the converse indicates that if a set of vectors {Xv}
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can be specified such that the global Markov property is satisfied with respect to G� then these
vectors in fact correspond to a multiscale model on the graph G�. Before discussing how to use
this idea, though, it is necessary to analyze the global Markov property in more detail.

� 2.5 The Reduced-Order Global Markov Property

The global Markov property is useful in the sense that it characterizes all possible multiscale models
via a list of conditional independence requirements. For our needs, though, this list is a complicated
set of coupled requirements. In this section, we show that by choosing an ordering on the non-leaf
vertices of a rooted tree G�, a smaller set of requirements are in fact equivalent to the global Markov
property. We specifically address two important questions:

(1) What are the reduced-order sets which are equivalent to the sets required for the global
Markov property?

(2) How may these sets be recognized from the graph G�?

The following example provides some useful intuition concerning these reduced-order sets.

Example 2.2 (Reduced-Order Sets for Global Markovianity).
Consider the rooted tree shown in Figure 2.5(a). In this example, we examine the conditions
required for the global Markov property to hold at vertices 0 and 1. According to Definition 2.6,
we need ⊥XS0 and ⊥XS1 where

S0 = {S̄1, S̄2}

S1 = {S̄3, S̄4, S
c
1 ∪ {1}}

are shown by the dashed lines in Figures 2.5(a) and (b) respectively. As we demonstrate here, these
independence conditions are coupled and include some redundancies. Specifically, there exists a
family R1 = {S̄3, S̄4, R

∗} such that R∗ ⊂ Sc
1 ∪ {1}, and the requirements ⊥XS0 and ⊥XR1 imply

that ⊥XS0 and ⊥XS1 are also true.
To show this, define R∗ = {0, 1}, so that ⊥XS0 and ⊥XR1 together require

p(xS1 , xS2 |x0) = p(xS1 |x0)p(xS2 |x0) (2.20a)

p(xS3, xS4 , x0|x1) = p(xS3 |x1)p(xS4 |x1)p(x0|x1). (2.20b)

Note that (2.20a) equivalently indicates that p(xS2|x0, xS1) = p(xS2|x0). Using this fact along with
(2.20b) and the chain rule for probabilities shows that the condition ⊥XS1 is satisfied,

p(xS3 , xS4 , xSc
1
|x1) = p(xS3 , xS4 , x0, xS2︸ ︷︷ ︸

xSc
1

|x1) = p(xS3 , xS4 , x0|x1)p(xS2 |xS3 , xS4 , x1︸ ︷︷ ︸
xS1

, x0)

= p(xS3 |x1)p(xS4 |x1)p(x0|x1)p(xS2 |x0, x1)

= p(xS3 |x1)p(xS4 |x1)p(x0, xS2︸ ︷︷ ︸
xSc

1

|x1).

It is important to note that this result depends on an explicit ordering of the vertices. Specifically,
we have assumed that ⊥XS0 holds, and then, we specified a family R1 so that ⊥XS1 holds as well.
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Figure 2.5. Graphical illustration of the sets required for the reduced-order global Markov property
to be satisfied at vertices 0,1,2, and 3, for the ordering (0, 1, 3, 2, . . .). (a) The dashed lines show the
family S0 necessary for the global Markov property to be satisfied at vertex 0. (b) The dashed lines
show the family S1 necessary for the global Markov property to be satisfied at vertex 1. The solid
line corresponds to the set S̄1 contained in S0. (c) The dashed lines show the family S3 necessary
for the global Markov property to be satisfied at vertex 3. The solid line corresponds to the set S̄3

contained in S1. (d) The dashed lines show the family S2 necessary for the global Markov property
to be satisfied at vertex 2. The solid line corresponds to the set S̄2 contained in S0.



2.5. THE REDUCED-ORDER GLOBAL MARKOV PROPERTY 45

More generally, the families Rv defined in this section require an ordering on the non-leaf vertices
v of the graph.

Next, we ask the question of how to recognize this reduced-order property from the graph G�.
Recall that R1 = {S̄3, S̄4, {0, 1}} in this example. Examining Figure 2.5(b), note that all elements
of R1 are contained within the set S̄1 ∈ S0, and in fact, R1 is the intersection of S1 with the set S̄1,
thereby forming a refinement or partitioning of S̄1. The general characterization of the families Rv

is slightly more complicated than this example implies, but the important intuition to take from
this example is that the families Rv represent the portion of the sets in Sv contained within some
boundary. There is no reason to include elements outside this boundary since other conditions
⊥XRvi

already enforce these constraints. ◭

Let (v1, . . . , vm) be an arbitrary ordered set of all non-leaf vertices, and let < denote the cor-
responding order, i.e. v1 < v2 < · · · < vm. For any distinct vertices u ∈ V and v ∈ (v1, . . . , vm),
there is a unique set S ∈ Sv which contains u. We henceforth use the notation Su

v to represent this
unique set, i.e.

Su
v , S, where S ∈ Sv, u ∈ S, v 6= u. (2.21)

For example, in Figure 2.4, the family S1 contains three sets, and we use the notation S3
1 to indicate

the unique set in S1 which contains vertex 3. Of course, there is also a unique set in S1 which
contains vertex 7, i.e. S7

1 , and a unique set in S1 which contains vertex 8, i.e. S8
1 , and all of these

sets are the same, i.e. S3
1 = S7

1 = S8
1 .

Now, let vi ∈ (v2, . . . , vm) be a fixed vertex, and consider all families Sv with v < vi. Each such
family has a unique set Svi

v which contains vi. We define Bvi
to be the intersection of all such sets,

Bvi
,
⋂

v<vi

Svi
v , vi ∈ (v2, . . . , vm). (2.22)

This set Bvi
is what we call the “boundary of influence” for vertex vi – an idea that we previously

mentioned in Example 2.2. It is also convenient to define the following set

Tvi
, {v|v ∈ Bvi

, v < vi}, (2.23)

containing vertices in the boundary Bvi
that precede vertex vi in the ordering.

Example 2.3 (Boundary Sets).
To provide some intuition for these boundary sets, consider again the rooted tree shown in Fig-
ure 2.5. This example assumes an ordering (0, 1, 3, 2, . . .) of the non-leaf vertices; the families
S0,S1,S3, and S2 are respectively represented by the dashed lines in Figures 2.5(a),(b),(c), and (d).

The first boundary set B1 is defined to be the set in S0 which contains vertex 1; this set is simply
S̄1 and is represented by the solid line in Figure 2.5(b). The boundary set B3 is the intersection
of the set in S0 and the set in S1 which contain vertex 3, i.e. B3 = S̄1 ∩ S̄3 = S̄3. Similarly, the
boundary B2 is the intersection of S̄2 ∈ S0, S

c
1∪{1} ∈ S1 and Sc

3∪{3} ∈ S3. Examining Figure 2.5,
it is easy to see that this intersection is B2 = S̄2, as indicated by the solid line in Figure 2.5(d). In
this case, the set T2 = {0} since vertex 0 is the only element of B2 = S̄2 which precedes vertex 2 in
the ordering.

The ordering (0, 1, 3, 2, . . .) considered in this example leads to a particularly simple set of
boundaries, each of which correspond to subtrees of the graph. We will soon consider a more
complicated example where the boundary sets are not so trivial. ◭
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Given the definition (2.22) of the boundary sets, the reduced-order sets Rvi
are defined as

follows,9

Rv1 , Sv1 (2.24a)

Rvi
, Svi

∩Bvi
, i = 2, . . . ,m. (2.24b)

In Figures 2.5(a)–(d), the reduced-order sets are respectively R0 = S0, R1 = {S̄3, S̄4, {0, 1}},
R3 = {S̄7, S̄8, {1, 3}}, and R2 = {S̄5, S̄6, {0, 2}}.

Definition 2.7 (The Reduced-Order Global Markov Property).
Random vectors {Xv} are said to satisfy the reduced-order global Markov property with respect to
the ordering (v1, . . . , vm) of non-leaf vertices if ⊥XRvi

for i = 1, . . . ,m. ◭

Before stating the main result of this section, it is useful to further examine the boundary sets
Bvi

and the families Rvi
. We do this first through an example and then more formally through the

two results provided in Proposition 2.2.

Example 2.4 (Characterization of Boundary and Reduced-Order Sets).
In this example, we graphically illustrate two important properties of the boundary and reduced-
order sets, utilizing Figures 2.6 and 2.7, and we assume the ordering (3, 6, 1, 0, . . .) on the non-leaf
vertices. Figure 2.6(a) shows the reduced-order family R3, and since vertex 3 is first in the ordering,
we have by definition R3 = S3. For the sake of discussion in this example, we denote the sets in

any family Rv by R
(1)
v , R

(2)
v , . . .. Figure 2.6(b) illustrates both the family S6 (dashed) and its

associated boundary B6 (solid), and Figure 2.6(c) shows the resulting intersection R6 = S6 ∩ B6.
In a similar manner, Figure 2.6(d) shows the family S1 and boundary B1, and Figure 2.7(a) shows
the resulting intersection R1 = S1 ∩B1. Figures 2.7(b),(c) show similar results for vertex 0.

This example shows that, depending on the chosen ordering, the boundary sets can be much
more complicated than the sets previously provided in Example 2.3. More importantly, it em-
phasizes an important property of the boundary sets. Notice in Figure 2.6(b) that the boundary

set B0 is equal to one of the reduced-order sets R
(3)
3 . In addition, B1 = R

(3)
6 and B0 = R

(3)
1 as

indicated respectively in Figures 2.6(d) and 2.7(b). Consequently, each boundary set is actually
a reduced-order set, which then implies that any family Rv = Sv ∩ Bv = Sv ∩ R is refinement of
another reduced-order set R. The progression of sets shown in Figures 2.6(a),(c) and 2.7(a),(c)
illustrate this property of refinement. This result is more formally stated in Proposition 2.2.

Another important property of the boundary sets can be seen by examining Figures 2.6(b),(d),
and 2.7(b). Notice that the vertices not contained within the boundary set can be partitioned into
disjoint sets which are graphically separated by the boundary set. In Figure 2.6(b), there is only
one such set {7, 8}, and in Figure 2.6(d), there are two such sets {7, 8} and {13, 14}. Figure 2.7(d)
illustrates this idea for the boundary B0. Notice that the vertex t1 = 1 in Figure 2.7(d) separates
the subgraph induced by A1 ∪ {t1} from the rest of the graph; similarly, t2 = 6 separates the
subgraph induced by A2 ∪ {t2} from the rest of the graph. Furthermore, we have T0 = {t1, t2} in
this case. This result is more formally stated in Proposition 2.2. ◭

9Notice that this notation is somewhat misleading in that the family Rvi is not fixed and explicitly depends on the
ordering (v1, . . . , vm). In contrast, the family Svi is fixed. For simplicity, we do not mention the associated ordering
when discussing the families Rvi since it will be assumed.
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Figure 2.6. Graphical illustration of the result provided in Proposition 2.2. (a),(c) Show the sets
contained in the two families R3 and R6 respectively. (b),(d) Shows how the reduced-order families
R6 and R1 respectively are obtained by partitioning a “previous” reduced-order set.
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Figure 2.7. Graphical illustration of the result provided in Proposition 2.2. (a),(c) Show the sets
contained in the two families R1 and R0 respectively. (b) Shows how the reduced-order family R0 is
obtained by partitioning a “previous” reduced-order set. (d) Illustrates the result given in the second
part of Proposition 2.2; specifically, the vertices satisfy V = A1∪A2 ∪B0, and for i = 1, 2, the vertex
ti separates the subgraph induced by Ai ∪ {ti} from the rest of the graph.
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Proposition 2.2 (Characterization of Boundary and Reduced-Order Sets).
Let (v1, . . . , vm) be an ordering of the non-leaf vertices of a graph G� = (V,E).

(1) For any i = 2, . . . ,m, the set Bvi
defined in (2.22) is equal to some set R ∈ Rv with v < vi.

Consequently, Rvi
= Svi

∩Bvi
= Svi

∩R is a partitioning of the set R.

(2) For any vi ∈ (v2, . . . , vm), suppose Tvi
= {t1, . . . , tn}. The vertices V may be written as the

union of n+ 1 disjoint sets A1, . . ., An, and Bvi
, where the subgraph induced by Aj ∪ {tj} is

separated from the rest of the graph by vertex tj.

Proof. See Appendix A.2. �

Using the second part of Proposition 2.2, it is straightforward to prove the following theorem
which indicates that the reduced-order global Markov property is equivalent to the global Markov
property.

Theorem 2.2 (Equivalence of Global and Reduced-Order Global Markov Properties).
Random vectors {Xv} satisfy the global Markov property if and only if they satisfy the reduced-order
global Markov property.

Proof. See Appendix A.2. �

The great benefit of this result is that the number of conditional independencies required to
satisfy the global Markov property has been reduced. However, this result has not solved another
problem – the conditional independencies are still coupled. For example, Figures 2.7(a) and (c)
show that the independence conditions ⊥XR1 and ⊥XR0 place constraints on the vectors X0 and
X1. From a design standpoint, this means that X0 and X1 must be specified simultaneously in
order to jointly satisfy these constraints. The results provided in the following section show that
the degree of coupling may be reduced if a different but related problem is considered.

� 2.6 Marginalization-Invariant Markovianity

In this section, we continue our discussion of the Markov properties associated with multiscale
models, but we consider a slightly different problem. Suppose that {Xv}v∈V is now a collection of
random vectors associated with a graph G� and having an arbitrary density p. Consider another
density q defined as follows,

q(x) ,
∏

v∈V

p(xv|xπ(v)). (2.25)

By definition, q recursively factors according to G�, and therefore (X,G�) is a multiscale model
under the density q. Of course, if p also recursively factors according to G�, then q = p, but for an
arbitrary density p, this will not necessarily be true.

Suppose, however, we select a subset of vertices M ⊂ V and consider the marginal densities
p(xM ) and q(xM ). The goal of this section is to characterize the densities p for which p(xM ) = q(xM )
is satisfied. Specifically, what conditional independence properties must p satisfy (which in turn
says something about the factorization of p) such that p(xM ) = q(xM ). If M ( V , we show that
the number of conditional independencies which p must satisfy in order for p(xM ) = q(xM ) is
generally smaller than the number of conditional independencies exhibited by q. The following
example illustrates this idea.
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Figure 2.8. The rooted tree G� considered in Example 2.5. The dashed lines show the two sets
included in the family M0, and the solid box represents the set {3, 4, 5, 6} for which the marginal
constraint p(x3, x4, x5, x6) = q(x3, x4, x5, x6) must be satisfied.

Example 2.5 (Sets for Marginalization-Invariant Markovianity).
Consider the graph shown in Figure 2.8. Using the results provided in the previous section, the
reduced-order sets for this example, assuming the ordering (0, 1, 2), are as follows,

R0 = {S̄1, S̄2} = {{0, 1, 3, 4}, {0, 2, 5, 6}}

R1 = {{1, 3}, {1, 4}, {1, 0}}

R2 = {{2, 5}, {2, 6}, {2, 0}}.

Suppose we are given a density p(x0, . . . , x6), and further, suppose that we define a density q(·)
which recursively factors according to the graph G� shown in Figure 2.8, i.e.

q(x0, . . . , x6) , p(x0)p(x1|x0)p(x2|x0)p(x3|x1)p(x4|x1)p(x5|x2)p(x6|x2). (2.26)

Theorem 2.2 implies that the conditions ⊥XR0 , ⊥XR1 , and ⊥XR2 on the density p(·) are sufficient
to ensure that q(·) = p(·).

For the purpose of this example, we are interested in examining the conditions on p(·) for
which the densities agree on the finest scale, i.e. under which q(x3, x4, x5, x6) = p(x3, x4, x5, x6)
is satisfied. We propose here a family M0 such that the independence conditions ⊥XM0 are less
stringent than the conditions ⊥XR0 , and we show that together the conditions ⊥XM0, ⊥XR1 , and
⊥XR2 on p(·) ensure that q(·) has the correct marginal density. Specifically, define the familyM0

(graphically displayed in Figure 2.8) as follows

M0 , {{0, 3, 4}, {0, 5, 6}}. (2.27)

To begin, first suppose ⊥XR2 is satisfied under the density p(·), i.e.

p(x0, x2, x5, x6) = p(x0, x5, x6|x2)p(x2) = p(x0|x2)p(x5|x2)p(x6|x2)p(x2)

= p(x0)p(x2|x0)p(x5|x2)p(x6|x2).

Substituting this expression into (2.26) gives

q(x0, . . . , x6) = p(x1|x0)p(x3|x1)p(x4|x1)p(x0, x2, x5, x6)

= p(x1|x0)p(x3|x1)p(x4|x1)p(x0)p(x5, x6|x0)p(x2|x0, x5, x6). (2.28)
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Next, suppose ⊥XR1 is satisfied under the density p(·), i.e.

p(x0, x1, x3, x4) = p(x0, x3, x4|x1)p(x1) = p(x0|x1)p(x3|x1)p(x4|x1)p(x1)

= p(x0)p(x1|x0)p(x3|x1)p(x4|x1).

Substituting this expression into (2.28) gives

q(x0, . . . , x6) = p(x0, x1, x3, x4)p(x5, x6|x0)p(x2|x0, x5, x6)

= p(x0)p(x3, x4|x0)p(x5, x6|x0)p(x2|x0, x5, x6)p(x1|x0, x3, x4). (2.29)

Finally, the condition ⊥XM0 requires

p(x0, x3, x4, x5, x6) = p(x0)p(x3, x4|x0)p(x5, x6|x0),

and using this in (2.29) gives

q(x0, . . . , x6) = p(x0, x3, x4, x5, x6)p(x2|x0, x5, x6)p(x1|x0, x3, x4)

= p(x3, x4, x5, x6)p(x2|x0, x5, x6)p(x1|x0, x3, x4)p(x0|x3, x4, x5, x6). (2.30)

Examining (2.30), note that integrating out the variables x2, x1, and x0 (in that order) proves the
claim.

Therefore, if the density q(·) need only satisfy the marginal requirement q(x3, x4, x5, x6) =
p(x3, x4, x5, x6) then ⊥XR0 , ⊥XR1 , and ⊥XR2 impose more constraints than necessary for the
task; in this case, the requirements ⊥XM0, ⊥XR1 , and ⊥XR2 are sufficient. Intuitively, this
result implies that the set of vertices {3, 4, 5, 6} ( V must be included in all of the relevant
independence constraints, while vertices not included in this set may be safely removed from some
of the constraints. ◭

� 2.6.1 Definition of Marginalization-Invariant Markovianity and Main Theorem

We now define the sets which characterize the marginalization-invariant Markov property. Let M ,
which we call the marginalization constraint set, be a specified subset of the vertices V , and let
(v1, . . . , vm) be an ordering of the non-leaf vertices of G�. Consider the sequence of sets,

M (0) , M (2.31a)

M (i) , M (i−1) ∪ {vi}, i = 1, . . . ,m. (2.31b)

The families of interest here are defined as follows,10

Mvi
, Rvi

∩M (i), i = 1, . . . ,m. (2.32)

Notice that this definition resembles the definition of the families Rvi
in (2.24), where in this case,

M (i) takes on the role of a “boundary” set. In particular, M (1) = M ∪ {v1} can be considered a
boundary of importance for vertex v1, and Mv1 = Rv1 ∩M

(1) is a partitioning of that boundary.
The analogy ends there, however, because M (i) ⊂M (i+1) is an increasing sequence of sets, whereas

10As with the reduced-order families Rvi , the families Mvi explicitly depend on the ordering (v1, . . . , vm).
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the boundary sets satisfy Bvi
⊃ Bvj

for some vj > vi (see the first part of Proposition 2.2).

Consequently, the sets M (i) function somewhat differently than the boundary sets Bvi
.

Some intuition about (2.32) can be gained by examining the first and last families in the
ordering, i.e. Mv1 and Mvm . Note that if M (1) = M ∪ {v1} is a strict subset of the vertices V ,
then Mv1 = Rv1 ∩M

(1) = Sv1 ∩M
(1) is a “smaller” family than Rv1 . That is, ⊥XMv1

contains
fewer conditional independence requirements than ⊥XRv1

. At the other extreme, if we assume that
M contains all of the leaf vertices of G� plus possibly some subset of non-leaf vertices, then we
have M (m) = V . As a result,Mvm = Rvm ∩ V = Rvm , implying that ⊥XMvm

and ⊥XRvm
impose

equivalent constraints. Intuitively, the remaining families Mvi
with v1 < vi < vm contain some

tradeoff between the marginal requirement specified by the set M and the Markov requirements
specified by the families Rvi

.
As an example of this fact, consider the graph shown in Figure 2.8 with the ordering (0, 1, 2)

and with M = {3, 4, 5, 6}. The sequence of sets given by (2.31) are M (0) = {3, 4, 5, 6}, M (1) =
{0, 3, 4, 5, 6}, M (2) = {0, 1, 3, 4, 5, 6}, and M (3) = {0, 1, 2, 3, 4, 5, 6}. The families Mvi

are then
given by

M0 = R0 ∩M
(1) = {{0, 3, 4}, {0, 5, 6}}

M1 = R1 ∩M
(2) = R1

M2 = R2 ∩M
(3) = R2.

These are precisely the sets considered previously in Example 2.5.
Having defined the families Mvi

in (2.32), we now consider a new Markov property, namely
the marginalization-invariant Markov property. The significance of this name will be made clear
shortly in Theorem 2.3.

Definition 2.8 (The Marginalization-Invariant Markov Property).
Random vectors {Xv}v∈V are said to satisfy the marginalization-invariant Markov property with
respect to the ordering (v1, . . . , vm) of non-leaf vertices and with respect to the set M ⊂ V if
⊥ XMvi

for i = 1, . . . ,m. ◭

Example 2.6 (Sets for Marginalization-Invariant Markovianity).
As an additional illustration of the sets required for marginalization-invariant Markovianity, we
consider the graph shown in Figure 2.9, where in this case M = {7, . . . , 14} contains all leaf
vertices. We choose the ordering (0, 1, 3, 2, . . .)11 on the non-leaf vertices. Recall that this graph
and ordering was previously considered in Example 2.3 and Figure 2.5. The reduced-order family
R0 is represented by the dashed lines in Figure 2.5(a), while the families R1, R3, and R2 are
the intersection of the dashed contours with the solid contour in each of the Figures 2.5(b)–(d)
respectively.

Given the ordering (0, 1, 3, 2, . . .), the first few sets M (i) in (2.31) are given by: M (1) =
{7, . . . , 14, 0}, M (2) = {7, . . . , 14, 0, 1}, M (3) = {7, . . . , 14, 0, 1, 3}, and M (4) = {7, . . . , 14, 0, 1, 3, 2}.
The familiesM0,M1,M3, andM2 obtained from the intersection of a reduced-order set with the
appropriate set M (j) are graphically depicted in Figure 2.9. ◭

The following theorem indicates that any tree-indexed process (X,G�) which satisfies the
marginalization-invariant Markov property also possesses a very specific marginal invariance. This

11The notation (0, 1, 3, 2, . . .) indicates that we are only interested in the first four vertices of the ordering, i.e. 0,
1, 3, and 2. The remaining vertices in the ordering can be arbitrary.
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Figure 2.9. Graphical illustration of the sets required for the marginalization-invariant Markov
property to hold, assuming an ordering (0, 1, 3, 2, . . .) on the non-leaf vertices and assuming that
M = {7, . . . , 14}. The dashed contours define the sets which comprise the families: (a) M0 (b) M1

(c) M3 (d)M2.
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theorem is the most important result provided in this chapter, and it is the basis of our remaining
discussion on multiscale realization.

Theorem 2.3 (Significance of the Marginalization-Invariant Markov Property).
Suppose the random vectors {Xv}v∈V admit a probability density p(·), and define the density q(x) ,∏

v∈V p(xv|xπ(v)). If {Xv} satisfies the marginalization-invariant Markov property with respect to a
specified set M and any ordering (v1, . . . , vm) of the non-leaf vertices of G�, then q(xM ) = p(xM ).

Proof. See Section 3.9.1. �

This is the same result proven in Example 2.5 for a special case.
Notice that Theorem 2.2 now follows directly from Theorem 2.3. Letting M = V , the families

Mvi
are equal to the families Rvi

, implying that the marginalization-invariant and reduced-order
Markov conditions are equivalent in this case. Theorem 2.3 indicates that if these marginalization-
invariant (reduced-order) conditions are satisfied, then p(xV ) = q(xV ) recursively factors according
to G�, and using Theorem 2.1, the global Markov property must be satisfied.

� 2.6.2 Two Special Cases

In the previous section, marginalization-invariant Markovianity was defined for arbitrary orderings
(v1, . . . , vm) of the non-leaf vertices. As one might expect, the families Mvi

and the associated
conditional independence constraints can be rather complicated for arbitrary orderings. In this
section, we limit the types of orderings (v1, . . . , vm) to so-called top-down and bottom-up orderings,
with the goal of providing a simpler characterization of the families Mvi

. Most of the examples
considered henceforth will use one of the following two types of orderings.

Definition 2.9 (Top-down Ordering).
An ordering (v1, . . . , vm) of the non-leaf vertices of a graph G� is called top-down if there exists no
vj , vk ∈ (v1, . . . , vm) with vk > vj and vk ≺ vj.

12 ◭

Definition 2.10 (Bottom-up Ordering).
An ordering (v1, . . . , vm) of the non-leaf vertices of a graph G� is called bottom-up if there exists
no vj , vk ∈ (v1, . . . , vm) with vk < vj and vk ≺ vj. ◭

If we imagine constructing a top-down ordering by adding non-leaf vertices one at a time in a
sequential fashion, then Definition 2.9 indicates that a vertex v can be added only if its parent has
already appeared in the ordering; consequently, the root vertex must appear first in the ordering.
Similarly, constructing a bottom-up ordering in a sequential fashion requires that a vertex v can be
added only if all of its children have already appeared in the ordering; in this case, the root vertex
must appear last in the ordering. We choose the names top-down and bottom-up because they are
visually suggestive when the graph G� is drawn with the root vertex on top and the leaf vertices
on bottom, as illustrated in most of the graphs shown so far. As an example, (0, 1, 3, 2, 5, 4, 6)
is a top-down ordering for the graph shown in Figure 2.9, while (3, 6, 5, 2, 4, 1, 0) is a bottom-up
ordering.

We now characterize the families Mvi
for these two types of orderings. In order to simplify

this characterization, we additionally assume that the marginalization constraint set M is precisely

12Recall that < is the ordering associated with (v1, . . . , vm), and ≺ is the partial ordering defined in Section 2.2.
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the set of all leaf vertices of the specified graph G�.13 As we later discuss, this is a reasonable
assumption for many of the realization problems of interest.

Proposition 2.3 (Marginalization-Invariant Markovianity and a Top-Down Ordering). Suppose
the marginalization constraint set M is equal to all leaf vertices of a graph G�, and let (v1, . . . , vm)
be a top-down ordering of the non-leaf vertices. Then, the families Mvi

may be written as follows:

Mv0 − {v0} = {Lv}v∈χ(v0), (2.33a)

Mvi
− {vi} = {Lv}v∈χ(vi) ∪ {π(vi)}, vi 6= v0. (2.33b)

Proof. See Appendix A.3. �

For simplicity of the expression on the right-hand side of (2.33), we have chosen to characterize
Mvi

− {vi} instead of Mvi
.14 Suppose that vertex vi has q children χ(vi), then the right side of

(2.33b) is the collection of q + 1 sets: the q sets Lv, each containing the leaf vertices that descend
from a child v of vi, and the (q + 1)st set containing only the parent of vi. As an example, we
previously considered a top-down ordering in Figure 2.9, where we illustrated the first four families
Mvi

for the ordering (0, 1, 3, 2, . . .).
The characterization of the familiesMvi

is slightly more complicated for a bottom-up ordering
than for a top-down ordering. It is useful for our purposes to introduce the following operator
which maps subsets of vertices to subsets of vertices,

min
G�

(A) , {v ∈ A|there does not exist a u ∈ A with u ≺ v}. (2.34)

Therefore, minG�
(A) intuitively consists of the elements of A “closest” to the root vertex. More

precisely, v ∈ minG�
(A) if and only if m(v) < m(u) for all vertices u ∈ A which are comparable to

v with respect to �.

Proposition 2.4 (Marginalization-Invariant Markovianity and a Bottom-Up Ordering). Suppose
the marginalization constraint set M is equal to all leaf vertices of a graph G�, and let (v1, . . . , vm)
be a bottom-up ordering of the non-leaf vertices. Then, the familiesMvi

may be written as follows:

Mv0 = {{v0, v}}v∈χ(v0) , (2.35a)

Mvi
= {{vi, v}}v∈χ(vi)

∪

{
min
G�

(
M (i)

)}
, vi 6= v0. (2.35b)

Proof. See Appendix A.3. �

Assuming that vertex vi has q children, the right side of (2.35b) is the collection of q + 1 sets: q of
these are doubleton sets each containing vi and a single child of vi. The remaining set, containing
the smallest elements of M (i), is more difficult to visualize. First of all, it must contain vi. To
see this, recall that M (i) contains the set M (leaf vertices in this case) plus any vertices vj ≤ vi.

13If M contains any non-leaf vertices, the families Mvi explicitly depend on which non-leaf vertices are contained
in M , regardless of the ordering. By restricting M to the set of leaf vertices, we can completely characterize the
families Mvi for top-down and bottom-up orderings.

14Recall that the operation Mvi − {vi} removes the common element {vi} from each set in the family Mvi .
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By the nature of the bottom-up ordering, vi ∈ minG�

(
M (i)

)
because it is smaller (with respect

to ≺) than any of its descendants, each of which must be included in M (i), and because there is
no element smaller (with respect to ≺) than vi in M (i). The remaining elements of minG�

(
M (i)

)

contain the vertices in M (i) “closest” to the root vertex and such that no element is a descendent
of another. As an example, Figures 2.10 illustrate the families Mvi

for the bottom-up ordering
(3, 6, 5, 2, 4, 1, 0). The family M0, which is not shown, is given byM0 = {{0, 1}, {0, 2}}.

� 2.7 The Multiscale Realization Problem

As mentioned previously, the ultimate goal of studying the conditional independence properties
of multiscale models is to provide additional machinery for the multiscale realization problem.
Theorem 2.3 provides significant guidance because it offers a prescription or recipe for solving the
realization problem. At this point, the connection between Theorem 2.3 and the realization problem
might not be at all obvious to the reader – we relate the two in the following section.

� 2.7.1 Multiscale Realization and Theorem 2.3

Suppose a random process Y is observed and can be described by a probability density p, and
suppose we map this process to a subset M of the vertices of a rooted tree G� such that Y =
{Xv}v∈M .15 Consequently, we have defined a density p(xM ). See Figure 2.11(a) for an example of
a typical mapping.

The goal of the multiscale realization problem is to: (1) specify a density q(xV ), which recur-
sively factors according to a graph G� and (2) satisfy the marginal requirement q(xM ) = p(xM ).
The connection between the realization problem and Theorem 2.3 is that the theorem allows one to
characterize all possible models q(·) which satisfy the above two requirements. In order to apply the
theorem, though, we must have a density p(xV ) over all vertices V , rather than simply the subset
M .16 This suggests that we must somehow specify an extension of the given density p(xM ) to a com-
plete density p(xV ), where p(xV ) agrees with the marginal p(xM ), i.e.

∫
xV −M

p(xV )dxV = p(xM ).

Then, if any complete density p(xV ) satisfies the marginalization-invariant Markov property with
respect to the set M , Theorem 2.3 indicates that the marginal constraint p(xM ) = q(xM ) will be
satisfied, and consequently, q(xV ) ,

∏
v∈V p(xv|xπ(v)) is a solution to the realization problem.

More specifically, the realization problem can be viewed in two steps:

(1) Specify any conditional density p̄(xV −M |xM ), such that the random vectors {Xv}v∈V (un-
der the complete density p(xV ) = p̄(xV −M |xM )p(xM )) satisfy the marginalization-invariant
Markov property. Notice that the conditional density p̄(xV −M |xM ) provides the required
extension from p(xM ) to p(xV ), and it implicitly represents the degrees of freedom which we
have in the realization problem.

(2) Based on this complete density p(xV ), define q(xV ) ,
∏

v∈V p(xv|xπ(v)).

15The choice of the particular rooted tree G�, the chosen subset M , and the mapping of the process to the vertices
M are all important issues. For now, we assume that we have made adequate choices for a given problem at hand.

16As we later discuss in Section 2.7.2, Theorem 2.3 may be applied to the realization problem even if the entire
density p(xV ) is not known. We will in fact show that it is sufficient to have a specific set of marginals of p(xV ), but
for the sake of discussion here, we assume that it is necessary to know the entire density p(xV ).
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Figure 2.10. Graphical illustration of the sets required for the marginalization-invariant Markov
property to hold, assuming a bottom-up ordering (3, 6, 5, 2, 4, 1, 0) on the non-leaf vertices and as-
suming that M = {7, . . . , 14}. The dashed contours define the sets which comprise the families: (a)
M3 (b)M6 (c) M5 (d)M2 (e) M4 (f) M1.
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Figure 2.11. (a) An example mapping of an observed process Y to a subset of the vertices of a
rooted tree. (b) One of the simplest multiscale realization problems. Specifically, given a density
p(x1, . . . , xn), how should X0 be defined such that X1, X2, . . . , Xn are conditionally independent
given knowledge of X0? A trivial solution to this problem is given by X0 = (X1, . . . , Xn−1)

T .

Hence, we view the realization problem as a search for a “valid” conditional density p̄(xV −M |xM ),
i.e. a conditional density which allows p(xM ) = q(xM ) to be satisfied. We use the notation
p̄(xV −M |xM ) to remind the reader that, unlike p(xM ), this conditional density is unspecified and
must be designed as part of the realization problem.

As one might suspect, there are an infinite number of “valid” conditional densities, and most of
these are trivial solutions to the problem. Suppose, for example, we have the problem graphically
displayed in Figure 2.11(b) where we want to specify a random vector X0 such that n random
vectors X1, . . . ,Xn are made conditionally independent given knowledge of X0. Choosing X0 to be
composed of the vectors X1, . . . ,Xn−1 constitutes a valid solution to this problem, and similarly,
any (n−1)-sized subset of the vectors X1, . . . ,Xn is a valid solution. For a more complicated graph
G� than the one shown in Figure 2.11(b), if we allow the dimensionality of the random vectors Xv,
v ∈ V −M , to be arbitrary, then there exist many trivial solutions of this nature.

Recall that the fundamental reason for using multiscale models (at least for the Gaussian case)
is the efficiency of estimation tasks, and this efficiency is achieved only when the dimensionality of
each vector Xv is much smaller than the dimensionality of the observed random process. In order
to avoid trivial solutions in which some or all vectors Xv have large dimensionality, we must impose
constraints on these dimensions. In doing so, however, there is a distinct possibility that no exact
solutions to the realization problem will exist. While choosing these constraints is an important
and challenging problem, it is not the focus of this thesis; instead, one of two approaches is taken:

(1) If an obvious non-trivial solution to the realization problem exists, then we choose the di-
mensions of Xv, v ∈ V −M , to match this solution. This will be the case for the examples
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considered later in Section 2.8, where we are more interested in academic examples that
provide intuition.

(2) Based on either an arbitrary choice or some knowledge about the problem, the dimensions of
Xv are fixed. This is the view we will take in subsequent chapters when discussing approximate
multiscale models.

In the remainder of this chapter, our approach to finding a valid and non-trivial solution to
the multiscale realization problem is (given Theorem 2.3) a very natural one. In particular, an
exact multiscale model can be realized in a sequential fashion by specifying the random vectors Xv,
v ∈ V −M , one at a time. The fact that a multiscale model can be realized in a successive fashion
is due to two inherent properties of the families Mvi

and the independence constraints ⊥XMvi
.

We discuss these important properties in the following section.

� 2.7.2 Sequential Realization of Multiscale Models

An important issue associated with marginalization-invariant Markovianity, Theorem 2.3, and con-
sequently with the realization problem is that of coupled conditional independence constraints.
This is an issue with which we have been concerned throughout this chapter. In this section
and the next, we show that for all problems of interest to us, the constraints associated with the
marginalization-invariant Markov property can be ordered so that a sequential realization procedure
is possible.

Example 2.7 (Sequential Realization).
As an illustration of what we mean by sequential realization, consider again Example 2.6 and
Figure 2.9, where we imposed a marginal constraint on the leaves of the multiscale model, i.e.
p(x7, . . . , x14) = q(x7, . . . , x14), and where we chose the ordering (0, 1, 3, 2, . . .) on the non-leaf
vertices. As discussed in the previous section, we can use Theorem 2.3 to realize a multiscale
model q(·) which satisfies p(x7, . . . , x14) = q(x7, . . . , x14) if we can find a conditional density
p̄(x0, . . . , x6|x7, . . . , x14) such that {X0, . . . ,X14} (under the complete density p(x0, . . . , x14)) satis-
fies the marginalization-invariant Markov property. This example shows that the marginalization-
invariant Markov property can be satisfied in a sequential manner, which immediately implies that
an exact multiscale model can be realized in a sequential manner.

As demonstrated by the family M0 in Figure 2.9(a), the independence constraint ⊥XM0 is
satisfied ifX{7,...,10} andX{11,...,14} are conditionally independent givenX0 = x0, under some density
p(x0, x7, . . . , x14). Therefore, by specifying p̄(x0|x7, . . . , x14) such that X{7,...,10} and X{11,...,14} are
conditionally independent given X0 = x0 (under the joint density p(x0, x7, . . . , x14)), we will satisfy
⊥XM0 . Notice that in this first step we use the given marginal density p(x7, . . . , x14) to design the
new vector X0.

Continuing in a similar fashion, random vector X1 must satisfy the condition ⊥XM1 , where
the family M1 is shown in Figure 2.9(b). Here, the role of X1 is to make X{7,8}, X{9,10}, and X0

conditionally independent under some density p(x0, x1, x7, x8, x9, x10). Notice that in designing X0

in the previous step, we have specified the density p(x0, x7, . . . , x14), and by marginalizing out the
variables x11, x12, x13, x14, we get the density p(x0, x7, x8, x9, x10). Then, in order to design random
vector X1, we must specify a conditional density p̄(x1|x0, x7, x8, x9, x10) so that we satisfy ⊥XM1 .

This second step in the realization procedure raises a very important point. Namely, in order
to satisfy the constraint ⊥XM1, we only need to specify the density p(x0, x1, x7, x8, x9, x10), not
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the larger density p(x0, x1, x7, . . . , x14). More generally, this step in the realization procedure
illustrates the fact that Theorem 2.3 does not impose conditions on the full density p(x); instead,
it imposes conditions on a set of marginals of p(x). In terms of this example, this means that we
never really specify the complete conditional density p̄(x0, . . . , x6|x7, . . . , x14) (or the complete joint
density p(x0, . . . , x14)), but instead, we specify the relevant pieces of this conditional density, i.e
p̄(x0|x7, . . . , x14), p̄(x1|x0, x7, x8, x9, x10), etc., so that the necessary marginal densities satisfy the
marginalization-invariant Markov property.

The realization procedure continues in a similar fashion by successively defining the vectors X3,
X2, and so forth. Figure 2.12 provides a graphical illustration of the steps involved in realizing
the multiscale model in this example, where we have chosen the ordering (0, 1, 3, 2, 4, 5, 6) on the
non-leaf vertices. Notice that at each step of the procedure we use a previously specified density
to design a new vector Xv; in so doing, we ensure that all of the marginal densities are consistent,
i.e. all densities have marginals that agree on the variables which they have in common. Also
notice that the structure of the block diagram in Figure 2.12 remains the same for any top-down
ordering. That is, for any top-down ordering, the same set of conditional densities are designed.
This property, however, does not hold for bottom-up orderings, i.e. different bottom-up orderings
require different conditional densities to be specified explicitly. ◭

Having provided an example of a sequential realization procedure, we now define and discuss
two properties of the families Mvi

which permit such a procedure. We then propose a general
algorithm for realizing multiscale models in a sequential fashion, and we subsequently show that
the algorithm is well-defined and generates an exact multiscale model when the marginalization
constraint set M contains only the leaf vertices of a rooted tree G�.

The preceding example, along with Figure 2.12, provides some intuition for our discussion. In
particular, notice that the familiesMvi

possess two properties which are essential to the existence
of a sequential realization procedure. The first property, which we call orderability and formally
define in Definition 2.11, is a set-theoretic property of the familiesMvi

that allows the vectors Xv,
v /∈M , to be designed in a successive fashion. This property is evident in Example 2.7 because the
vectors X0, X1, X3, X2, etc. are designed successively with respect to previously defined vectors.
The second property, which we call a nesting property, ensures that each of the marginal densities
can be specified in a consistent fashion. This property is evident in Example 2.7 because we are able
to design new densities from previously specified densities, thereby avoiding conflicting marginal
densities, i.e. p(x7, . . . , x14) is used to design p(x0, x7, . . . , x14); p(x0, x7, . . . , x14) is used to design
p(x0, x1, x7, . . . , x10); p(x0, x1, x7, . . . , x10) is used to design p(x1, x3, x7, x8); etc. We now discuss
these two properties in more detail.

The following definition characterizes the previously mentioned orderability property. For the
purposes of this definition, suppose that each of the familiesM1,M2, . . . ,Mm satisfy the property
given in (2.17) and satisfy ∩Mi 6= ∅ for 1 ≤ i ≤ m. This simply ensures that the conditional
independence constraints ⊥XM1,⊥XM2 , . . . ,⊥XMm are valid. We choose to state this set-theoretic
property in terms of a generic set of families Mi, 1 ≤ i ≤ m, and a set M ⊆ V 17. The reader
should associate the family Mi with the marginalization-invariant family Mvi

and associate the
set M with the marginalization constraint set M . As we later show in Proposition 2.5, the families

17The set M must be included in the definition of the orderability property. From the standpoint of realization,
M is the marginalization constraint set associated with the specified density p(xM). To ensure that the families Mi

are orderable and hence a sequential realization procedure is possible, we must require that the constraints ⊥XMi

do not involve a design variable Xv with v ∈ M . Consequently, our definition of orderability includes this set M .
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Figure 2.12. Block diagram illustrating the steps involved in a sequential realization of the multi-
scale model considered in Example 2.7, with the ordering (0, 1, 3, 2, 4, 5, 6) on the non-leaf vertices.
The rectangular boxes contain the densities needed to satisfy the conditions ⊥XMvi

, while the
rounded boxes contain intermediate densities which result from a marginalization step. The dashed
arrows indicate a marginalization of a density, while the solid arrows represent a design step where
a conditional density must be specified.
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Mvi
satisfy the following property when the marginalization constraint set M contains only leaf

vertices.

Definition 2.11 (Ordered Conditional Independence Constraints).
The conditional independence constraints ⊥XM1 ,⊥XM2 , . . . ,⊥XMm are said to be ordered with
respect to a set M ⊆ V if for j = 1, . . . ,m, the following conditions are satisfied:

∩Mj 6⊂M

∩Mj 6⊂ ∪Mk for all k < j. ◭

To apply Definition 2.11 to a particular example, consider again Example 2.7 where the first
four families in the ordering (0, 1, 3, 2, . . .) are M0 = {{0, 7, 8, 9, 10}, {0, 11, 12, 13, 14}, M1 =
{{0, 1}, {1, 7, 8}, {1, 9, 10}},M3 = {{3, 7}, {3, 8}, {1, 3}}, andM2 = {{0, 2}, {2, 11, 12}, {2, 13, 14}}.
This sequence of families satisfies Definition 2.11, with respect to the marginalization constraint
set M = {7, . . . , 14}, since ∩M1 = {1} is not a subset of ∪M0 or M ; ∩M3 = {3} is not a subset
of ∪M0, ∪M1, or M ; and ∩M2 = {2} is not a subset of ∪M0, ∪M1, ∪M3, or M .

From the perspective of sequential realization, Definition 2.11 ensures that each constraint
⊥XMj

introduces a new design variable. For example, in Example 2.7, X∩M0 = X0, X∩M1 = X1,
X∩M3 = X3, and X∩M2 = X2 are the design variables in the realization problem since their role
is to make certain sets of variables conditionally independent. The fact that the families ⊥XM0 ,
⊥XM1 , ⊥XM3 , and ⊥XM2 are ordered implies that the design variables X0, X1, X3, and X2 may
be defined successively. This follows from the fact that X1 is not associated with the conditions
⊥XM0 or the given density p(xM ); X3 is not associated with the conditions ⊥XM0 , ⊥XM1 , or the
given density p(xM ); and X2 is not associated with the conditions ⊥XM0 , ⊥XM1 , ⊥XM3 , or the
given density p(xM ).

More generally, the constraints associated with the marginalization-invariant Markov property
are ordered, with respect to the set M , if we require M to contain only the leaf vertices of a rooted
tree, as evidenced by the following proposition.

Proposition 2.5 (Ordered Marginalization-Invariant Constraints).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of
G�. Suppose the marginalization constraint set M is the set of all leaf vertices of G�. Then, the
conditional independence constraints ⊥XMv1

, . . . ,⊥XMvm
are ordered with respect to M .

Proof. Consider any family Mvi
, and note that ∩Mvi

= {vi}. Using (2.31) and the fact that vi

is not an element of M gives vi /∈ M (i−1) ⊃ · · · ⊃ M (0) ⊃ M , and consequently, vi /∈ M and
vi /∈ ∪Mvj

for all vj < vi. �

In Example 2.7, we exploited the fact that the constraints ⊥XMvi
were ordered in order to design

variables one at a time in a successive fashion. However, we were also concerned with ensuring
consistency among the marginal densities; specifically, we found a previously defined joint density,
marginalized out the relevant variables, and then defined a new joint density. In so doing, we ensure
that any two densities defined in this sequential procedure agree with each other along their shared
variables. For example, as shown in Figure 2.12, the constraints ⊥XM3 require an appropriate joint
density p(x1, x3, x7, x8) to be specified, but in this particular example, the variables X1, X7, and
X8 have already been defined. Consequently, to ensure consistency, we marginalize the previously
defined density p(x0, x1, x7, . . . , x10) to give p(x1, x7, x8), and we then use p(x1, x7, x8) in defining
the new density p(x1, x3, x7, x8).
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The fact that we can always find such a previously defined density is an inherent nesting
property of the families Mvi

, which we now describe. In order to satisfy the constraint ⊥XMvi
, it

is necessary to specify a density p(x∪Mvi
). In our approach to sequential realization, we consider

X∩Mvi
= Xvi

to be the design variable, and in order to maintain consistency, we need the remaining
non-design variables to be defined in a previously specified density. For notational convenience, we
let Ni , ∪Mvi

−{vi}, so that XNi
represents the non-design variables. The density p(x∪Mvi

) may
then be written as the product p̄(xvi

|xNi
)p(xNi

), where p̄(xvi
|xNi

) is the density to be designed. In
order for the sequential realization procedure to be well-defined, we need p(xNi

) to be a marginal of
a previously designed density, and this is true only if Ni ⊆ ∪Mvj

for some vj < vi. The following
proposition shows that this required nesting property is true for any choice of the marginalization
constraint set M .

Proposition 2.6 (Nested Marginalization-Invariant Constraints).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of G�.
Given any marginalization constraint set M ⊆ V , the sets ∪Mvi

are nested in the following sense:

∪Mv1 − {v1} ⊆M (2.36a)

∪Mvi
− {vi} ⊆ ∪Mvj

for some vj < vi, and i = 2, . . . ,m. (2.36b)

If v1 /∈M , then (2.36a) is an equality.

Proof. See Appendix A.4. �

Having identified and discussed two important properties of the families Mvi
, we are now in

a position to propose a general algorithm for realizing an exact multiscale model in a sequential
fashion. Subsequently, in Proposition 2.7, we show that this algorithm is well-defined if M is
precisely equal to the set of all leaf vertices of the graph.

Algorithm 2.1 (Sequential Realization of Multiscale Models).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of
G�. Suppose a density p(xM ) is specified for some set M ⊆ V .

(1) Specify a density p̄(xv1 |xM ) such that the conditional independence constraint ⊥XMv1
is

satisfied, under the joint density p(1)(xv1 , xM ) , p(xv1 , xM ) = p̄(xv1 |xM )p(xM ).

(2) For i = 2, . . . ,m:

(a) Define Ni , ∪Mvi
− {vi}, and find a vertex vj < vi such that Ni ⊆ ∪Mvj

.

(b) Using the density p(j)(·), marginalize away the variables indexed by ∪Mvj
−Ni, to give

a density p(xNi
).

(c) Specify a density p̄(xvi
|xNi

) such that the conditional independence constraint ⊥XMvi

is satisfied under the joint density p(i)(xvi
, xNi

) , p(xvi
, xNi

) = p̄(xvi
|xNi

)p(xNi
).

(3) Form the density q(xV ) ,
∏

v∈V p(xv|xπ(v)). ◭
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Proposition 2.7 (Appropriateness of Algorithm 2.1).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of G�.
Suppose p(xM ) is a density specified on the set of all leaf vertices of G�. Then, Algorithm 2.1 is
well-defined and generates a multiscale model (X,G�) with density q(·) satisfying q(xM ) = p(xM ).

Proof. The result directly follows from Proposition 2.5, Proposition 2.6, and Theorem 2.3. �

While the preceding proposition is encouraging, it raises two important questions about the set
M :

(1) What happens when M is a proper subset of the leaf vertices of a graph?

(2) What happens when M contains some non-leaf vertices?

The first issue is a simple one to address. Suppose that M is a proper subset of the leaf vertices of
a graph, so that there is at least one leaf vertex v′ /∈M . Using (2.31) and (2.32), v′ is not contained
in any of the familiesMvi

, and consequently, it is an extraneous vertex that may be safely removed
from the model without any loss to the realization problem. As a result, we henceforth assume
that M contains at least all of the leaf vertices; otherwise, the tree can be “pruned” until this is
the case.

The second issue is more complicated. Suppose M contains a subset of the non-leaf vertices,
and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices. Then, the conditions for
marginalization-invariant Markovianity become unorderable with respect to the set M , i.e. no per-
mutation of the constraints ⊥XMv1

, . . . ,⊥XMvm
satisfies Definition 2.11. Therefore, if M contains

non-leaf vertices, we cannot introduce design variables in a successive fashion, and consequently, it
may not be possible to sequentially realize a multiscale model.

The fact that this particular choice of M does not allow the constraints to be ordered actually
points to a related issue. By including non-leaf vertices in M , we may limit the types of densities
p(xM ) that can be exactly realized by a multiscale model. As an illustration, consider the graph
shown in Figure 2.8, and suppose the goal is to realize a multiscale model that matches a given
density p(x2, x3, x4, x5, x6). Thus, M = {2, 3, 4, 5, 6} contains the non-leaf vertex 2. Given the
ordering (2, 1, 0) on the non-leaf vertices, the family M2 is equal to

M2 = {{2, 3, 4}, {2, 5}, {2, 6}},

and consequently, the independence condition ⊥XM2 requires X{3,4}, X5, and X6 to be condition-
ally independent given X2 = x2, i.e.

p(x2, x3, x4, x5, x6) = p(x3, x4|x2)p(x5|x2)p(x6|x2). (2.37)

Thus, for the ordering (2, 1, 0) on the non-leaf vertices, the realization problem can be solved when
the given density p(x2, x3, x4, x5, x6) satisfies (2.37) and therefore, has a specific conditional indepen-
dence structure. If we choose a different ordering (v1, v2, v3) on the non-leaf vertices, the conditions
⊥XMv1

,⊥XMv2
,⊥XMv3

will require at least some marginal of the density p(x2, x3, x4, x5, x6), e.g.
p(x2, x5, x6), to possess a conditional independence structure similar to (2.37).

In particular applications, a specified density p(xM ) may have a special conditional indepen-
dence structure, such as (2.37), and consequently, there are cases where Algorithm 2.1 can be used
to sequentially realize a multiscale model that exactly matches such a density p(xM ). For problems
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where p(xM ) does not have such special structure, we must do something different. One possibility
for dealing with this issue is to change the structure of the graph G� and/or re-map the vectors
Xv, v ∈M , such that the resulting marginalization constraint M ′ contains only the leaf vertices of
the new graph G′�. This approach is unsatisfying because as we later illustrate in Section 2.8.2, it
is sometimes desirable to have M include non-leaf vertices. We focus instead on a second approach
developed in the following section.

� 2.7.3 Sequential Realization of Multiscale Models Using Augmented States

In this section, we continue our discussion of sequential realization by addressing the difficulty
encountered in the previous section. We show that if M contains any non-leaf vertex v, then a
sequential realization procedure is possible if the vector Xv is augmented with an additional design
vector. Intuitively, this process of augmentation provides additional degrees of freedom in the
realization problem thereby permitting a sequential realization procedure and in theory allowing
any specified density p(xM ) to be realized. To illustrate this idea of augmentation, we provide an
example.

Example 2.8 (Sequential Realization Using Augmented States).
Our goal in providing this example is three-fold. First, we introduce the idea of an augmented state
and show how to add additional design variables to the realization problem. Second, we show that
a result similar to Theorem 2.3 continues to hold for a new set of families M♯

vi , which incorporate
this notion of augmentation. Finally, we show that the families M♯

vi satisfy the orderability and
nesting properties discussed in the previous section, and consequently, it is possible to develop a
sequential realization procedure.

Consider again Example 2.5 and Figure 2.8, where we imposed a marginal constraint on the
leaves of the multiscale model and chose the ordering (0, 1, 2) on the non-leaf vertices. Suppose
that our goal is to now satisfy p(x2, x3, x4, x5, x6) = q(x2, x3, x4, x5, x6), where M = {2, 3, 4, 5, 6}
includes the non-leaf vertex 2. As discussed in the previous section, including vertex 2 in the set M
implies that only a subset of densities p(x2, x3, x4, x5, x6) may be realized with the graph structure
shown in Figure 2.8. In addition, the families

M0 = {{0, 3, 4}, {0, 2, 5, 6}} (2.38a)

M1 = {{1, 3}, {1, 4}, {1, 0}} (2.38b)

M2 = {{2, 5}, {2, 6}, {2, 0}}, (2.38c)

are unorderable with respect to M , and therefore, a sequential realization procedure is not possible.
To address this issue, let vector X2 be composed of two sub-vectors X2(d) and X2(t) , i.e. X2 =

{X2(d) ,X2(t)}, and consider a new marginalization constraint set M ♯ = {3, 4, 5, 6, 2(t)}.18 Our goal
in this example is to design a multiscale model q(·) which satisfies the marginal constraint q(xM♯) =
p(xM♯) for a specified density p(xM♯). By splitting X2 into two sub-vectors, we have additional
degrees of freedom which we did not previously have – this is the concept of augmentation previously
mentioned. The sub-vector X2(d) implicitly represents these additional degrees of freedom, serving
as a design vector in the realization problem, and the sub-vector X2(t) is what we call a target
vector since it is part of the specified density p(xM♯).

18This particular notation is defined later in this section.
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1
2

3 4 5 6
M ♯

X2 = {X2(d) , X2(t)}

0

2(d) 2(t)

Figure 2.13. A graphical representation of the state augmentation problem where vertex 2 is split
into two separate vertices 2(d) and 2(t), and X2 = {X2(d) , X2(t)} is composed of both a design vector
X2(d) and a target vector X2(t) . The marginalization constraint set M ♯ contains the vertices 3, 4, 5,
6, and 2(t).

In order to incorporate the notion of augmentation into our set-theoretic notation, we introduce
the artifice of a “split” vertex. That is, we now consider vertex 2 to be a tuple of vertices, i.e.
2 = (2(d), 2(t)), where 2, 2(d), and 2(t) all have the same physical location in the graph G� but
simply index different parts of the process X. Figure 2.13 graphically illustrates this idea.

Having introduced an additional design variable into the realization problem, we now consider
a new set of families M♯

vi as follows,

M♯
0 = {{0, 3, 4}, {0, 2(t) , 5, 6}} (2.39a)

M♯
1 = {{1, 3}, {1, 4}, {1, 0}} (2.39b)

M♯
2 = {{2, 5}, {2, 6}, {2, 0}} = {{2(d), 2(t), 5}, {2(d), 2(t), 6}, {2(d), 2(t), 0}}. (2.39c)

Notice that the families M♯
vi are identical to those in (2.38) except that vertex 2 in M0 has been

replaced by vertex 2(t) inM♯
0.

19 Since the familiesM♯
vi andMvi

are different, we need a modified
version of Theorem 2.3 that accounts for the separation of design and target vectors. To proceed,
we must show that a density p(·) satisfying ⊥X

M♯
0
, ⊥X

M♯
1
, and ⊥X

M♯
2

does in fact generate a

density q(x) =
∏

v∈V p(xv|xπ(v)), with q(xM♯) = p(xM♯).
The method of proof is the same as that given in Example 2.5. We begin by imposing the two

constraints M♯
2 and M♯

1 on p(·), and since this was already performed in Example 2.5, we borrow
the result from (2.29),

q(x) = p(x0)p(x3, x4|x0)p(x5, x6|x0)p(x2|x0, x5, x6)p(x1|x0, x3, x4).

Splitting variable X2 into its two components X2(d) and X2(t) and manipulating the densities gives

19We use the notation M♯
vi

to remind the reader that these are not the usual families Mvi . Later in this section,
we provide a rule for obtaining these types of families.
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the following,

q(x) = p(x0)p(x3, x4|x0)p(x5, x6|x0)p(x2(d) , x2(t) |x0, x5, x6)p(x1|x0, x3, x4)

= p(x0)p(x3, x4|x0)p(x5, x6|x0)p(x2(t) |x0, x5, x6)p(x2(d) |x0, x5, x6, x2(t))p(x1|x0, x3, x4)

= p(x0)p(x3, x4|x0)p(x5, x6, x2(t) |x0)p(x2(d) |x0, x5, x6, x2(t))p(x1|x0, x3, x4). (2.40)

Imposing the constraint ⊥X
M♯

0
on p(·), which requires

p(x0, x3, x4, x5, x6, x2(t)) = p(x0)p(x3, x4|x0)p(x5, x6, x2(t) |x0),

gives

q(x) = p(x0, x3, x4, x5, x6, x2(t))p(x2(d) |x0, x5, x6, x2(t))p(x1|x0, x3, x4), (2.41)

and integrating out the variables x2(d) , x1, and x0 (in that order) shows that q(x3, x4, x5, x6, x2(t)) =
p(x3, x4, x5, x6, x2(t)).

Having proven the preceding fact, we can now proceed to designing a sequential realization
procedure, but this task is simple given the discussion in the previous section. Notice that the
constraints ⊥X

M♯
0
, ⊥X

M♯
1
, and ⊥X

M♯
2

are ordered with respect to M ♯ = {3, 4, 5, 6, 2(t)}, thereby

ensuring that the design variables X0, X1, and X2(d) may be introduced in a successive fashion. In

addition, the families M♯
0, M

♯
1, and M♯

2 exhibit a nesting property similar to the one previously
discussed in Proposition 2.6, thereby allowing us to maintain consistency amongst the marginals.20

Figure 2.14 shows the resulting sequential realization procedure for this example. ◭

In the remainder of this section, we proceed in a manner similar to that provided in Example 2.8.
First, we introduce the necessary notation and provide a rule for obtaining the familiesM♯

vi . Second,
we provide a strengthened version of Theorem 2.3 that applies to the families M♯

vi . Finally, we
provide results similar to those given in the previous section, ultimately arriving at a general
algorithm for sequential realization.

To accommodate augmented states, we now allow every vertex v ∈ V to have two labels v(d)

and v(t); these labels provide a convenient means of indexing relevant parts of the process X. In
particular, for each vertex v ∈ V , we have the following three types of vectors:

(1) Xv(d) – refers to the design vector at vertex v

(2) Xv(t) – refers to the target vector at vertex v

(3) Xv = {Xv(d) ,Xv(t)} – refers to the entire vector at vertex v.

Of course, for some vertices v, the two vectors Xv(d) and Xv are identical; this occurs when v is a
non-leaf vertex containing no target vector, i.e. v is not part of the constraint set M . Alternatively,
for leaf vertices v, the two vectors Xv(t) and Xv are identical because a design vector at a leaf vertex
plays no role in the realization problem.

Suppose G� = (V,E) is a rooted tree, M ⊆ V is a marginalization constraint set, and
(v1, . . . , vm) is an ordering on the non-leaf vertices. Using the familiesMvi

characterized in (2.32),

we now define a set of augmented marginalization-invariant families M♯
vi and an augmented mar-

ginalization constraint set M ♯ via the following augmentation rule.

20We provide the details of this nesting property later in Proposition 2.8.
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p(x0, x1, x3, x4)

Design

x5, x6, x2(t)

Marginalize

p̄(x0|x3, . . . , x6, x2(t))
Design

Marginalize
x3, x4

Design
p̄(x1|x0, x3, x4)

p(x0, x5, x6, x2(d) , x2(t))Satisfies ⊥X
M♯

2

p(x0, x5, x6, x2(t))

p(x3, . . . , x6, x2(t))

p(x0, x3, . . . , x6, x2(t))Satisfies ⊥X
M♯

0

p(x0, x3, x4)

Satisfies ⊥X
M♯

1

p̄(x2(d) |x0, x5, x6, x2(t))

Figure 2.14. Block diagram illustrating the steps involved in a sequential realization of the mul-
tiscale model considered in Example 2.8 and Figure 2.13, with the ordering (0, 1, 2) on the non-leaf
vertices and M ♯ = {3, 4, 5, 6, 2(t)}. The rectangular boxes contain the densities needed to satisfy
the conditions ⊥X

M
♯
vi

, while the rounded boxes contain intermediate densities which result from

a marginalization step. The dashed arrows indicate a marginalization of a density, while the solid
arrows represent a design step where a conditional density must be specified.

Augmentation Rule:

(0) Let M ♯ = M and M♯
vi =Mvi

for i = 1, . . . ,m.

(1) Replace each vertex v ∈M ♯ with v(t).

(2) For each vi ∈ (v1, . . . , vm) and each v ∈ ∪M♯
vi do the following:

(i) If v is a leaf vertex or if v is a non-leaf vertex with v > vi, replace v with v(t).

(ii) If v is a non-leaf vertex with v ≤ vi and v ∈M , replace v with the tuple v(d), v(t).

(iii) If v is a non-leaf vertex with v ≤ vi and v /∈M , replace v with v(d).

Given a specified density p(xM ), step (1) in the preceding rule creates an equivalent density p(xM♯)
which uses the new indexing scheme introduced in this section. The consequence of step (2) is
that for any vi ∈ (v1, . . . , vm), the constraint ⊥X

M♯
vi

considers the entire vector Xv for vertices

v ≤ vi and considers only the partial vector Xv(t) for vertices v > vi.
21 These steps generate a set

21In this rule, we have chosen to be explicit about what part of the vector Xv is included in each constraint ⊥X
M

♯
vi

.

For example, if v /∈ M , then there is no target vector Xv(t) (i.e. Xv = Xv(d) ), and consequently, we do not include
the vertex v(t) in M♯

vi
. This explicitness is necessary in order for the families M♯

vi
to possess the nesting property

provided in Proposition 2.8.



2.7. THE MULTISCALE REALIZATION PROBLEM 69

of families M♯
v1 , . . . ,M

♯
vm and corresponding independence conditions ⊥X

M♯
v1
, . . .⊥X

M♯
vm

which,

as we later indicate, permit a sequential realization procedure.
The augmentation rule allows us to reformulate Theorem 2.3 for the more general problem of

interest here.

Theorem 2.4 (Marginalization-Invariance for Augmented States).
Suppose random vectors {Xv}v∈V admit a probability density p(·); define q(x) ,

∏
v∈V p(xv|xπ(v)).

In addition, suppose the families M♯
v1 , . . . ,M

♯
vm satisfy the augmentation rule for some specified

set M and an ordering (v1, . . . , vm) on the non-leaf vertices of G�. If {Xv} satisfies the conditional
independence constraints ⊥X

M♯
v1
, . . . ,⊥X

M♯
vm

then q(xM♯) = p(xM♯).

Proof. See Section 3.9.2. �

Given Theorem 2.4, it is now possible to propose a sequential realization procedure using augmented
states. The intuition behind this procedure is the same as that given previously in Section 2.7.2,
and therefore, we simply state the relevant results.

Proposition 2.8 (Properties of Augmented Marginalization-Invariant Families).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of G�.
Given any marginalization constraint set M ⊆ V , the following is true:

(1) The constraints ⊥X
M♯

v1
, . . . ,⊥X

M♯
vm

are ordered with respect to M ♯.

(2) The sets ∪M♯
vi are nested in the following sense:

∪M♯
v1
− {v

(d)
1 } = M ♯ (2.42a)

∪M♯
vi
− {v

(d)
i } ⊆ ∪M

♯
vj

for some vj < vi, and i = 2, . . . ,m. (2.42b)

Proof. See Appendix A.4. �

Algorithm 2.2 (Sequential Realization Using Augmented States).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of
G�. Suppose a density p(xM ) is specified for some set M ⊆ V .

(1) Specify a density p̄(x
v
(d)
1

|xM♯) such that the conditional independence constraint ⊥X
M♯

v1
is

satisfied, under the joint density p(1)(x
v
(d)
1
, xM♯) , p(x

v
(d)
1
, xM♯) = p̄(x

v
(d)
1
|xM♯)p(xM♯).

(2) For i = 2, . . . ,m:

(a) Define Ni , ∪M♯
vi − {v

(d)
i }, and find a vertex vj < vi such that Ni ⊆ ∪M

♯
vj .

(b) Using the density p(j)(·), marginalize away the variables indexed by ∪M♯
vj −Ni, to give

a density p(xNi
).

(c) Specify a density p̄(x
v
(d)
i

|xNi
) such that the conditional independence constraint ⊥X

M♯
vi

is satisfied under the joint density p(i)(x
v
(d)
i

, xNi
) , p(x

v
(d)
i

, xNi
) = p̄(x

v
(d)
i

|xNi
)p(xNi

).

(3) Form the density q(xV ) ,
∏

v∈V p(xv|xπ(v)). ◭
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Proposition 2.9 (Significance of Algorithm 2.2).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of
G�. Suppose p(xM ) is a density specified on a set of the vertices M ⊆ V . Then, Algorithm 2.2 is
well-defined and generates a multiscale model (X,G�) with density q(·) satisfying q(xM♯) = p(xM♯).

Proof. The result directly follows from Proposition 2.8 and Theorem 2.4. �

In summary, we have shown that any realization problem may in theory be solved sequentially
if enough design variables are introduced. In practice, the design steps required in Algorithms 2.1
and 2.2, namely step 1 and step 2(c), can be very challenging. The next section includes several
academic examples where each design step can be solved in a simple manner, and in subsequent
chapters, we develop methods for approximating the design steps for more complex applications.

� 2.8 Ties To Earlier Work

We conclude this chapter with a series of examples illustrating the usefulness of the methodology
described in the preceding sections. In what follows, we do not provide new algorithms for realizing
multiscale models, but instead, we offer a new perspective on existing results by showing how
several important topics in multiscale realization theory fit into our framework.

� 2.8.1 Markov Processes

The class of Markov processes has served as a particularly important example throughout the
development of multiscale realization theory. The work of [75] showed that multiscale models can
be constructed to match the statistics of these types of processes exactly, and in several different
applications, estimation tasks have been performed with respect to a multiscale prior model of
a Markov process [47, 73]. This example shows how Theorem 2.3 may be used to construct a
multiscale model for a Markov process mapped to the leaf vertices of a tree.

Consider the 16 point first-order Markov process Y = {Yi}1≤i≤16 graphically represented in
Figure 2.15(a). Further, suppose that the goal is to construct a multiscale model with the graph
structure shown in Figure 2.15(b) and where the process Y is mapped to the leaf vertices of the
graph. In order to realize the process Y , Theorem 2.3 indicates that the constraints ⊥XMvi

must
be satisfied (here we arbitrarily chose the ordering (0, 1, 2)) for the following families:

M0 = {{0, 3, 4}, {0, 5, 6}}

M1 = {{1, 3}, {1, 4}, {0, 1}}

M2 = {{2, 5}, {2, 6}, {0, 2}}.

Proceeding in a sequential fashion, as described earlier in Section 2.7.1, we first design the
vector X0 so that X{3,4} and X{5,6} are conditionally independent. Using the properties of the
first-order Markov process, note that either X0 = {Y8} or X0 = {Y9} is a valid choice. To satisfy
⊥XM1 , we must design X1 to make X3,X4, and X0 conditionally independent, and choosing either
X1 = {Y4, Y8} or X1 = {Y5, Y8} satisfies this goal for both choices of X0. Finally, to satisfy ⊥XM2

and make X5, X6, and X0 conditionally independent given the value of X2, we can either choose
X2 = {Y9, Y12} or X2 = {Y9, Y13}.

Notice that this sequential realization procedure leads to eight different multiscale models, each
satisfying the required marginal constraint; Figure 2.15(c) graphically displays one of these models.
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Figure 2.15. (a) A 16 point first-order Markov process, Y . (b) Mapping of the process Y to the
leaf vertices of rooted tree. (c) One possible multiscale model that exactly realizes the statistics of
Y .
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Figure 2.16. (a) An example of a state-augmentation problem where the value of
∑
XL1 must

be contained at vertex 1 and the finest-scale statistics must match some specified density p(xM ).
(b) Assuming (X,G�) is a multiscale model with finest-scale density p(xM ), then the figure illustrates
one possible solution to the realization problem considered in (a).

Notice also that all eight possibilities correspond to internal multiscale models. In Section 2.8.3,
we will show that a bottom-up realization procedure, rather than the top-down procedure used
here, is a more appropriate choice for realizing internal models. This example is special in that
the particular ordering on the non-leaf vertices is not important; the reader can verify that any
ordering yields the same eight possibilities.

This example, while somewhat trivial in nature, demonstrates the utility of Theorem 2.3 in
providing a methodologically simple approach to model realization. The same procedure may be
used for Markov processes of any finite order, and also for two-dimensional Markov random fields.
However, the difficulty for two-dimensional fields is that the dimension of each non-leaf vector Xv

can become large when designing exact models. One approach to dealing with this problem is to
design approximate multiscale models as discussed in Chapter 3.

� 2.8.2 Representing Nonlocal Variables

In this example, we describe the realization problem originally studied in [21] and further studied
in [38]. The goal is to specify a multiscale model that exactly represents: (1) the statistics of an
observed finest-scale process and (2) some specified linear functions of the finest-scale process. We
call these additional linear functions, nonlocal variables. For example, consider the graph shown
in Figure 2.16(a), where a process XM is mapped to the leaf vertices. We want to design a model
that exactly captures the statistics of XM , and in addition, we require vertex 1 to contain the sum
of the process XL1 .

22

In practice, this type of realization problem is important in two different settings:

22For an n-dimensional vector X = (X1, X2, . . . , Xn), the notation
P

X is used to represent
PN

i=1 Xi.
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(1) In some settings, such as remote sensing [23] or geophysical applications, observed data may be
available at different resolutions. In order to incorporate all such data into a single statistical
model, it is necessary to “fuse” observations in a coherent manner. Multiscale models provide
an effective means to perform data fusion if we map the finest resolution data to the leaves
of a tree and coarser-resolution data to vertices closer to the root. In Figure 2.16(a), for
example, the value of

∑
XL1 might represent an additional observation contained within a

given set of data.

(2) In other settings (see [25] for example), nonlocal variables might be introduced into a multi-
scale model in order to simplify an estimation task. For example, in Figure 2.16(a), the value
of
∑
XL1 can be efficiently estimated within the multiscale framework since the multiscale

inference algorithm computes the best estimate of
∑
XL1 at vertex 1.

While the example shown in Figure 2.16(a) offers a simplified perspective of the more general
problem considered in [21], it emphasizes the dual role that X1 must play. First, X1 must satisfy
the constraints placed on it by the conditional independence requirements of a multiscale model,
and second, X1 must contain a specified function of the realized finest-scale process. We describe
two different approaches for solving this type of realization problem.

State Augmentation

The work of [21] showed how to augment the states of an existing multiscale model with specific
nonlocal variables, without destroying the Markov properties of the model. Using the example in
Figure 2.16(a), we show how the approach of [21] can be deduced directly from the marginalization-
invariant Markov property. While we focus on a simple example, the ideas presented here hold more
generally for adding an arbitrary number of nonlocal variables, and we refer the reader to [21] for
more details.

Suppose a multiscale model (Z,G�) with density p and the graph structure shown in Fig-
ure 2.16(a) is given;23 consequently, each non-leaf vector Zv satisfies the global Markov property.
We want to realize a new multiscale model (X,G�) with density q, containing

∑
ZL1 at vertex

1 and such that the density at the finest-scale remains unchanged. It is useful to consider the
sequence of steps involved in the realization problem:

(0) We are given a tree-indexed process (Z,G�) characterized by a density p which recursively
factors according to G�.

(1) We then must create a new tree-indexed process (X,G�) characterized by density p̃(·) such
that p̃(xM ) = p(xM ) and such that

∑
ZL1 is represented at vertex 1.

(2) We then form a multiscale model (X,G�) with density q, using the density factorization
q(x) =

∏
v∈V p̃(xv |xπ(v)).

Our discussion in Section 2.7.3 on sequential realization using augmented states applies to this
type of problem. In particular, Theorem 2.4 specifies the requirements on the tree-indexed process

23This model could come from a previous realization procedure. For our purposes, we simply assume that a
multiscale model is given. We use random vector Z rather than X in order to remind the reader that this is the
multiscale model associated with density p.
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in (1) in order for the multiscale model in (2) to satisfy the marginalization constraint q(xM♯) =
p̃(xM♯) = p(xM ,

∑
xL1), where M ♯ = M ∪ {1(t)}.24

To identify a solution to this realization problem, we use Theorem 2.4 and Algorithm 2.2. As
we show, the design steps required in Algorithm 2.2 can be solved in a simple manner because
we have an existing multiscale model (Z,G�) that satisfies many of the conditional independencies
required by Theorem 2.4. Therefore, this type of realization problem has more structure than the
generic problem considered in Section 2.7.3 because, as we show, the realization problem can be
solved by making simple modifications to the existing model (Z,G�). As a first step, we know that
the tree-indexed process (X,G�) with density p̃(·) must satisfy p̃(xM♯) = p(xM ,

∑
xL1), as required

in (1) above. To ensure that this is the case, we set Xv = Zv for all leaf vertices v ∈ V , and we set
X1(t) =

∑
ZL1 .

Consider now any ordering of the form (1, 2, 3, . . .). For this particular ordering, the constraint
⊥X

M♯
1

requires XL2 = ZL2 , XL3 = ZL3 , and the rest of the finest-scale process to be conditionally

independent given X1 = {X1(t) ,X1(d)} = {
∑
ZL1 ,X1(d)}. If X1 did not contain

∑
ZL1, then we

could simply choose X1 = Z1, since the global Markov property is satisfied at vertex 1 in the existing
model. Notice that the choice X1 = {

∑
ZL1 , Z1} is not a valid solution because conditioning on∑

ZL1 =
∑
zL1 and Z1 = z1 together causes XL2 = ZL2 and XL3 = ZL3 to be conditionally

dependent. To satisfy our objective, we must further augment the state with either
∑
ZL2 or∑

ZL3 as follows,

X1 =
{∑

ZL1 , Z1,
∑

ZL2

}
or (2.43a)

X1 =
{∑

ZL1 , Z1,
∑

ZL3

}
. (2.43b)

In a similar manner, the conditions ⊥X
M♯

2
and ⊥X

M♯
3

must be satisfied. In accordance with the

condition ⊥X
M♯

2
, we design X2 so that X4 = Z4, X5 = Z5, and X1 are conditionally independent,

and this can be accomplished, regardless of our choice in (2.43), by the following

X2 =
{
Z2,
∑

Z4,
∑

Z5

}
. (2.44)

Similarly, the choice

X3 =
{
Z3,
∑

Z6,
∑

Z7

}
(2.45)

makes X6 = Z6, X7 = Z7, and X1 conditionally independent, as required by ⊥X
M♯

3
. Finally,

for any non-leaf vertex v 6= 1, 2, 3, the choice Xv = Zv satisfies the requirements of the global
Markov property and hence the conditions ⊥X

M♯
v
. Figure 2.16(b) graphically depicts one of the

two solutions derived here for this simple realization problem.
In the preceding discussion, a valid solution to the realization problem was found when vertices

1, 2, 3 were required to be first in the ordering, but this requirement was simply for clarity of
exposition. In fact, the same solution satisfies the conditions ⊥X

M♯
vi

for an arbitrary ordering.

Furthermore, the solution outlined here is equivalent to the state augmentation approach presented
in [21]. We note also that this solution has in the past been interpreted as the one needed to
maintain consistency or internality [21, 38], but from our perspective, it is in fact the solution
needed to ensure that the marginal constraint is satisfied.

24Recall that 1(t) is simply an index for the observed vector at vertex 1; in this case, X1(t) =
P

ZL1 .
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Exact Nonlocal Method

The work of [38] presents an alternative method for realizing multiscale models that contain nonlocal
functions. The idea is similar in spirit to state augmentation, but this approach is different in that
the nonlocal functions are mapped to the tree first and then a multiscale model is designed around
the functions. From a realization standpoint, this makes more sense because it allows vectors Xv

to satisfy their conditional independence roles with specific knowledge of the nonlocal functions to
be represented, rather than adding nonlocal functions to an existing model and thereby increasing
the dimension of each state.

The relationship between this approach to modeling and the framework discussed in this chapter
is that they are identical points of view. The marginalization constraint q(xM ) = p(xM ) contains
all of the necessary requirements, including those required for representing nonlocal functions. We
note that the algorithm presented in [38] includes an additional step which ensures that the resulting
model is internal.

� 2.8.3 Internal Models and a Scale-Recursive Algorithm

The work of [38–40] provides a computationally efficient and non-iterative algorithm for realizing
Gaussian internal multiscale models where the process of interest is mapped to the leaf vertices
of the graph. While this algorithm is well-suited to realize approximate models – the focus of the
next chapter – we choose to discuss here the basic structure of the algorithm, and we show how
this structure is similar to the methodology presented in this chapter.

First, recall that a multiscale model is internal if and only if it is locally internal, as shown in
Proposition 2.1. Second, consider any bottom-up ordering on the non-leaf vertices of a graph, and
recall that this implies that a vertex v cannot precede any of its children in the ordering. These
two facts together suggest a sequential realization procedure which uses a bottom-up ordering to
recursively define vectors Xv via local functions of already defined vectors Xχ(v).

In [38], this type of bottom-up procedure is used to realize a locally internal and hence internal
multiscale model. However, a very specific bottom-up ordering (v1, . . . , vm) is chosen, one that
satisfies m(vi) ≥ m(vj) for all vi < vj. This implies that the ordering must start with the vertices
of finest scale, then the vertices of the next finest scale, and so forth. We call this type of ordering
scale recursive. In Figure 2.17, (3, 4, 5, 6, 1, 2, 0) is an example of a scale-recursive ordering.

We now use the graph in Figure 2.17 to illustrate the relationship between marginalization-
invariant Markovianity, Theorem 2.3, and the scale-recursive approach in [38]. Suppose the goal
is to realize a process mapped to the finest-scale vertices of the graph in Figure 2.17, so that
M = {7, . . . , 14}, and suppose the scale-recursive ordering (3, 4, 5, 6, 1, 2, 0) is chosen. The first four
families Mvi

are given by25

M3 = {{3, 7}, {3, 8}, {3, 9, 10, 11, 12, 13, 14}} (2.46a)

M4 = {{4, 9}, {4, 10}, {4, 3, 11, 12, 13, 14}} (2.46b)

M5 = {{5, 11}, {5, 12}, {5, 3, 4, 13, 14}} (2.46c)

M6 = {{6, 13}, {6, 14}, {6, 3, 4, 5}}, (2.46d)

and these families are graphically depicted in Figures 2.17(a),(c),(e), and (g).

25Recall that Proposition 2.4 characterized the families Mvi for any bottom-up ordering when M is equal to all of
the leaf vertices.
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Now, consider a different set of families M′
vi

defined as follows

M′
3 = {{3, 7}, {3, 8}, {3, 9, 10, 11, 12, 13, 14}} (2.47a)

M′
4 = {{4, 9}, {4, 10}, {4, 7, 8, 11, 12, 13, 14}} (2.47b)

M′
5 = {{5, 11}, {5, 12}, {5, 7, 8, 9, 10, 13, 14}} (2.47c)

M′
6 = {{6, 13}, {6, 14}, {6, 7, 8, 9, 10, 11, 12}}, (2.47d)

and graphically depicted in Figures 2.17(b),(d),(f), and (h). Recall that our goal is to realize
an internal model, and this in turn implies that X3 is a function of X{7,8}, X4 is a function of
X{9,10}, and so forth. The consequence of internality is that the conditions ⊥XM′

vi
imply the

conditions ⊥XMvi
, i.e. if ⊥XM′

vi
holds then ⊥XMvi

holds as well. To see this, compare the left

and right columns in Figure 2.17. For example, comparing Figures 2.17(d) and (c), if X9, X10,
and X{7,8,11,12,13,14} are conditionally independent given X4 = x4 (or equivalently ⊥XM′

4
) then

X9, X10, and X{3,11,12,13,14} are conditionally independent given X4 = x4 (or equivalently ⊥XM4)
because X3 is a function of X7 and X8. This line of reasoning indicates that an exact internal
multiscale model may be realized by satisfying the conditions ⊥XM′

vi
(assumingM′

1,M
′
2, andM′

0

are defined appropriately).
The families M′

vi
defined in (2.47) are exactly the types of families considered in [38]. Notice

that each familyM′
vi

has the property that the scale of all vertices contained inM′
vi
−{vi} is one

larger than the scale of vi. This property allows internal multiscale models to be realized recursively
with respect to scale, i.e. all vectors Xv at the same scale may be designed independently of each
other. A drawback to this scale-recursive approach is that a vector Xv may have to satisfy a slightly
more stringent conditional independence requirement than necessary. For example, comparing the
familiesM6 andM′

6, Theorem 2.3 requires X13, X14, and X{3,4,5} to be conditionally independent
given X6 = x6, whereas the family M′

6 imposes a larger set of conditions.



2.8. TIES TO EARLIER WORK 77

M3

0

1 2

M

1413121110987

6543

M′
3

3 4 5 6

7 8 9 10 11 12 13 14

M

21

0

(a) (b)

M4

3 4 5 6

7 8 9 10 11 12 13 14

M

21

0

M′
4

0

1 2

M

1413121110987

6543

(c) (d)

M5

0

1 2

M

1413121110987

6543

M′
5

3 4 5 6

7 8 9 10 11 12 13 14

M

21

0

(e) (f)

M6

3 4 5 6

7 8 9 10 11 12 13 14

M

21

0

M′
6

0

1 2

M

1413121110987

6543

(g) (h)

Figure 2.17. Comparison of the marginalization-invariant families (assuming the ordering
(3, 4, 5, 6, . . .)) and the scale-recursive families studied in [38]. The dashed contours define the sets
which comprise the families Mvi

and M′
vi

provided in (2.46) and (2.47) respectively: (a) M3 (b)
M′

3 (c) M4 (d)M′
4 (e) M5 (f) M′

5 (g) M6 (h)M′
6.
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Chapter 3

Realizing Multiscale Models: A

Graph-Theoretic Perspective

THE primary purpose of this chapter is to introduce a graph-theoretic framework for viewing
the multiscale realization problem. While many of the ideas presented here apply to a broader

class of modeling problems, we focus our attention on the multiscale realization problem discussed
in the previous chapter, and in addition, we introduce a relaxed version of the realization problem
which we call approximate multiscale realization. The results provided here are also used to prove
several of the theorems which were stated in the previous chapter but not proven.

In Section 3.1, we formalize the multiscale realization problem for both exact and approximate
models. To support our theoretical development, we provide some background material on graph
theory in Section 3.2 and graphical models in Section 3.3. In Section 3.4, we return to the exact
multiscale realization problem and present several alternative problem formulations along with
a set of sufficient conditions for the exact realization problem, and in Section 3.5, we provide
a motivating example to help guide the reader through the remaining theoretical development.
The primary graph-theoretic and modeling contributions contained in this chapter are provided
in Sections 3.6–3.8, and Section 3.9 uses these results to prove all of the unproven theorems from
the previous chapter. Finally, Section 3.10 suggests a relaxed version of the multiscale realization
problem for the purpose of realizing approximate multiscale models.

� 3.1 General Problem Formulation

In the previous chapter, we discussed the steps involved in sequential realization of exact multiscale
models. Most of the ideas presented in this chapter also relate to exact realization, but the frame-
work we establish also applies to realizing inexact or approximate multiscale models. To motivate
the need for approximations, recall that there are two goals in the exact realization problem:

(1) Given a rooted tree G� = (V,E), design a multiscale model with density q(xV ) such that
q(xM ) = p∗(xM ) for some M ⊆ V .1

(2) Minimize the complexity of the model (and hence the computational complexity of the asso-
ciated estimation algorithm).

1Notice that we now use the notation p∗(xM ) rather than p(xM) to denote the target density to be matched.
Also, instead of M , we could use M ♯, i.e. the marginalization constraint set associated with the state augmentation
problem discussed in Section 2.7.3. For clarity, we continue to use M , with the understanding that this first step in
the realization problem can be more general.
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We equate the second goal with that of minimizing the dimension of each state variable to be
designed in the realization problem. From the discussion in Section 2.7.1, we know that as the
state dimension decreases, it becomes less likely that the first goal may be satisfied exactly, and
consequently, we must be content to have q(xM ) ≈ p∗(xM ) in some sense. In the remainder of this
section, we formalize the realization problem as well as this notion of approximation.

Recall from Section 2.3 that the tuple (X,G) represents a process X indexed by a graph G =
(V,E), where each Xv, v ∈ V , takes values in some space Xv.

2 Given an indexed process (X,G)
with associated density p(xV ), the notation d(Xv) denotes the dimension of random vector Xv , i.e.
d(Xv) = n if and only if Xv = (Z1, . . . , Zn)T with each Zi being a scalar random variable. For each
v ∈ V , we specify an integer dv > 0 which represents the maximum allowable dimension of random
vector Xv, i.e. d(Xv) ≤ dv must be satisfied, and we define d , {dv}v∈V to be the collection of all
such values dv. We say that a process (X,G) or equivalently a density p(xV ) is consistent with a
set of dimensions d if every constraint d(Xv) ≤ dv, v ∈ V , is satisfied, and we define P(V, d) to be
the set of all densities p(xV ) defined on the space

∏
v∈V Xv and consistent with d,3 i.e.

P(V, d) ,

{
p(xV )

∣∣∣∣∣p is a density defined on some space
∏

v∈V

Xv, d(Xv) ≤ dv ∀v ∈ V

}
. (3.1)

Notice that a density p ∈ P(V, d) need not possess any special factorization structure and con-
sequently such a density does not necessarily possess any conditional independencies. As discussed
in the previous chapter, we are interested in the subset of densities p ∈ P(V, d) which recursively
factor according to the rooted tree G�, and as such, we define PG�

(V, d) ⊂ P(V, d) to be the set of
all multiscale densities contained in P(V, d), i.e.

PG�
(V, d) ,

{
q(xV )

∣∣∣∣∣q ∈ P(V, d), q(xV ) =
∏

v∈V

q
(
xv|xπ(v)

)
}
. (3.2)

Therefore, PG�
(V, d) contains all possible multiscale models with the tree structure G� and with

the maximum possible state dimensions allowed by d.
In order for the realization problem to be well-defined, we also require that a target density

p∗(xM ) be consistent with dimensions d, i.e. d(Xv) ≤ dv for all v ∈M . Without this requirement,
the problem would be trivial in that no solution exists, and therefore, p∗(xM ) is assumed to be
consistent with d, even if it is not explicitly stated. Given the preceding definitions, the exact
multiscale realization problem can be succinctly stated as follows:

Exact Multiscale Realization Problem: Given a rooted tree G�, a set of di-
mensions d, and a target density p∗(xM ) consistent with d, find any density
q̂ ∈ PG�

(V, d) such that q̂(xM ) = p∗(xM ).

Of course, for some choices of d, there may be no density q ∈ PG�
(V, d) which satisfies q(xM ) =

p∗(xM ), and when this occurs, we may wish to relax the exact problem formulation by finding

2The space Xv may be either a continuum or a discrete set of values. In what follows, we do not distinguish between
these two cases, and for simplicity, we call p(xv) a probability density rather than a probability mass function even
if Xv takes on a discrete set of values.

3We henceforth assume that the space
Q

v∈V Xv is understood from context, and we do not include this space in
our notation.
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the “best” approximating model according to some criterion. For the moment, suppose D (p‖q)
is any cost functional which provides a measure of discrimination between two densities p and q;
specifically, D (p‖q) discriminates between p and q in the following sense,

D (p‖q) ≥ 0 for all densities p and q, (3.3a)

D (p‖q) = 0 if and only if p = q almost everywhere. (3.3b)

In Section 3.10.1, we discuss the Kullback-Leibler divergence, a cost functional satisfying (3.3) and
possessing other desirable properties.

Given such a cost, the approximate multiscale realization problem may be stated as follows:

Approximate Multiscale Realization Problem: Given a rooted tree G�, a set
of dimensions d, and a target density p∗(xM ) consistent with d, find any
density q̂ ∈ PG�

(V, d) which minimizes the cost D (p∗(xM )‖q̂(xM )), i.e.

q̂ = arg min
q∈PG�

(V,d)
D (p∗(xM )‖q(xM )) . (3.4)

Thus, instead of searching for an exact model amongst the allowable densities PG�
(V, d), this relaxed

formulation finds a density q̂ which minimizes the cost D (·‖·). Notice that we are interested in the
complete density q̂(xV ) defined on all vertices V , but we only measure the discrepancy between
p∗(xM ) and q̂(xM ), i.e. on the desired marginal.

To develop a computationally tractable algorithm for solving the problem in (3.4), it is generally
necessary to limit the set PG�

(V, d) to some parameterized family of densities, such as all Gaussian
multiscale densities. While we focus on such a parameterized family in the next chapter, in this
chapter we view the realization problem from the level of abstraction in (3.4). For most of this
chapter, it is assumed that there exists a q̂ ∈ PG�

(V, d) such that D (p∗(xM )‖q̂(xM )) = 0, i.e. an
exact model, and in the final section of this chapter, the ideas developed for the exact realization
problem are extended to problems where an exact model does not exist.

� 3.2 More Graph Theory

To facilitate subsequent discussion, we now introduce additional graph-theoretic terminology. While
we focus here on undirected graphs, the reader may also refer to Section 2.1 for a related discussion
on directed graphs, as well as some background material assumed for our discussion here. For
additional background on graph theory, there are many useful references including [16,43,71,108].

� 3.2.1 Undirected Graphs

Recall from Section 2.1 that an undirected graph G = (V,E) contains only undirected edges E,
i.e. if (u, v) ∈ E then (v, u) ∈ E, and recall that G (U) is the subgraph induced by U ⊂ V . Unless
otherwise indicated, we now assume that all graphs are undirected. A complete graph G on a set
of vertices V is a graph which contains all possible edges (excluding self-loops). If the subgraph
G (C) induced by C ⊆ V is a complete graph, then we say that C is a clique of G. If C is a clique
of G and there does not exist a clique C ′ such that C ⊂ C ′, we say that C is a maximal clique of
G. In Figure 3.1(c), for example, the sets {3}, {3, 7}, and {3, 7, 8} all induce complete subgraphs
and are therefore cliques, but the largest clique containing all of these cliques is the maximal clique
{3, 4, 7, 8}.
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Figure 3.1. Illustrative example of several different types of graphs. (a) A graph which is not
triangulated because the cycles [1, 3, 8, 4, 1] and [1, 3, 7, 4, 1] have no chord. (b) A graph with three
connected components induced by the vertices {1}, {2, 3, 6}, and {4, 5, 7, 8, 9}. (c) A triangulated
graph obtained from the non-triangulated graph in (a) by adding the edge {3,4}. (d) A spanning
tree for the graph in (c).
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Two vertices u and v are said to be neighbors in a graph G = (V,E) if {u, v} ∈ E.4 The
neighborhood of a vertex v is defined to be the set of all neighbors of v. We use the notation NG(v)
to represent such a neighborhood,5 i.e.

NG(v) , {u ∈ V | G = (V,E), {u, v} ∈ E}, (3.5)

and for convenience, we also define NG [v] as follows

NG [v] , NG(v) ∪ {v}. (3.6)

The preceding definitions may also be extended to a neighborhood of a set of vertices S ⊂ V ,

NG [S] ,
⋃

v∈S

NG [v], (3.7a)

NG(S) , NG[S]− S. (3.7b)

As an example, the graph G shown in Figure 3.1(d) has NG(3) = {1, 2, 7}, NG [3] = {1, 2, 3, 7},
NG({2, 3}) = {1, 6, 7}, and NG [{2, 3}] = {1, 2, 3, 6, 7}.

The deficiency of vertex v in an undirected graph G is defined to be the set of undirected edges
which must be added to G so that NG [v] becomes a clique. Specifically, we define the deficiency
DG(v) as follows,

DG(v) , {{x, y}| G = (V,E), x, y ∈ NG(v), {x, y} 6∈ E}. (3.8)

Notice that DG(v) is a set of sets, whereas NG(v) is simply a set. As an example, the graph G
shown in Figure 3.1(d) has DG(3) = {{1, 2}, {1, 7}, {2, 7}}.

If for some vertex v ∈ V , DG(v) = {∅}, then we say v is simplicial in G, and hence by definition,
NG [v] is a clique of G. However, as the following lemma indicates, when v is simplicial, NG [v] is not
only a clique but is in fact the unique maximal clique which contains v.

Lemma 3.1 (Simplicial Vertices and Maximal Cliques).
Let G = (V,E) be a graph with a simplicial vertex v ∈ V . Then, NG [v] is the unique maximal

clique of G which contains v.

Proof. Since v is simplicial and DG(v) = {∅}, NG [v] is a clique in G. If there exists another maximal
clique C containing v, then there is a vertex u ∈ C and u /∈ NG [v], such that u and v are neighbors
in G. But, then we must have u ∈ NG [v] which is a contradiction. �

Recall from Section 2.1 that a graph is connected if there exists a path between every pair of
distinct vertices. If an undirected graph G is not connected then it contains two or more connected
components where each connected component is a maximal connected subgraph of G. For example,
the graph shown in Figure 3.1(b) has 3 connected components induced by the vertices {1}, {2, 3, 6},
and {4, 5, 7, 8, 9}.

4Recall that {u, v} ∈ E denotes the presence of an undirected edge in a graph.
5The notation NG(v) makes it clear that the neighborhood of v is taken with respect to the graph G. In subsequent

sections, different graphs will be considered simultaneously, in which case it is important to be clear about which
graph is being considered.



84 CHAPTER 3. REALIZING MULTISCALE MODELS: A GRAPH-THEORETIC PERSPECTIVE

A subset of vertices S ⊂ V is said to be an (a, b)-separator if all paths from a to b intersect S,
and more generally, S is said to separate two sets A ⊂ V and B ⊂ V if it is an (a, b)-separator for
every a ∈ A and b ∈ B. In an undirected graph, this means that S separates A and B if A and
B lie in different connected components when the vertices S and all incident edges are removed
from the graph G. Using the graph in Figure 3.1(a), for example, S = {3} separates the two sets
A = {2, 6} and B = {1, 4, 5, 7, 8, 9}.

Recall that a cycle is a path which starts and ends at the same vertex. A cycle [v0, v1, . . . , vn, v0]
is said to have a chord if {vi, vj} ∈ E for some vi and vj with 1 < |i− j| < n, and a graph is said
to be triangulated (or chordal) if all cycles of length greater than three have a chord. The graph
shown in Figure 3.1(a) is not triangulated because the cycles [1, 3, 8, 4, 1] and [1, 3, 7, 4, 1] have no
chord. By adding the edge {3, 4}, as shown in Figure 3.1(c), the graph becomes triangulated.

Recall that a tree is a connected graph with no cycles. The following result indicates that there
is an interesting relationship between the number of edges and the number of vertices of a tree.

Lemma 3.2 (Characterization of a Tree). A graph G = (V,E) is a tree if and only if G is connected
and |V | = |E|+ 1.

Proof. See [108]. �

Given a connected undirected graph G = (V,E), a spanning tree for G is a tree G′ = (V,E′) such
that E′ ⊆ E, i.e. edges are removed from G to generate a tree. For example, Figure 3.1(d) shows
one possible spanning tree for the graph in Figure 3.1(c).

� 3.2.2 Junction Trees

In subsequent sections, we find great use for a special type of graph called a junction tree. As
discussed here, junction trees are intimately related to the class of triangulated graphs, and as
shown in subsequent sections, junctions trees have profound importance in the modeling problems
considered in this thesis.

Given any undirected graph G = (V,E), the junction graph for G is defined to be the undirected
graph J = (C, E), whose vertex set C = {C1, C2, . . . , Cn} is the collection of all maximal cliques
Ci ⊂ V of G and whose edge set E contains the undirected edge {Ci, Cj} ∈ E (connecting two
vertices Ci, Cj ∈ C) if and only if Ci ∩ Cj 6= ∅.

6 As an example, consider the graph G in Fig-
ure 3.1(c), containing maximal cliques C , {{2, 3, 6}, {1, 3, 4}, {3, 4, 7, 8}, {4, 5, 8}, {4, 8, 9}}. The
junction graph J = (C, E) for G is shown in Figure 3.2(a).

If an edge exists between vertices Ci and Cj in the junction graph, then a so-called separator
set Ci ∩Cj is associated with this edge, along with a weight equal to the size of the separator set,
i.e. |Ci ∩Cj|. For the junction graph shown in Figure 3.2(a), the separator sets are included in the
boxes along each edge.

Given an undirected graph G and corresponding junction graph J , we now focus on spanning
trees of J which possess a special property. Specifically, we define a junction tree of G to be any
spanning tree of J which satisfies the following intersection property : for every Ci, Cj ∈ C, all
vertices Ck ∈ C which lie on the unique path between Ci and Cj in the spanning tree must satisfy
Ci ∩ Cj ⊆ Ck. As an example of this property, consider the graph shown in Figure 3.2(b) – a
spanning tree of the junction graph shown in Figure 3.2(a). Notice that the unique path between

6Notice that this type of graph is more general than the graphs considered so far, since the vertices are sets and
the edges represent connections between sets.
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Figure 3.2. (a) The junction graph for the triangulated graph shown in Figure 3.1(c). The separator
sets are shown in the boxes along each edge. (b,c) Two different spanning trees for the junction graph
in (a) and consequently two possible junction trees for the triangulated graph in Figure 3.1(c).
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vertices {1, 3, 4} and {4, 5, 8} passes through vertices {3, 4, 7, 8} and {4, 8, 9}, both of which contain
{4} = {1, 3, 4} ∩ {4, 5, 8}. In fact, every pair of vertices in Figure 3.2(b) satisfies this property, and
consequently, the tree in Figure 3.2(b) is a junction tree for the graph in Figure 3.1(c).

While there may be many spanning trees of a junction graph, there is no guarantee that any
will satisfy this intersection property. The following important theorem states that only the class
of triangulated graphs will result in a spanning tree which satisfies this property.

Theorem 3.1 (Junction Trees and Triangulated Graphs).
A graph G is triangulated if and only if a junction tree exists for G.

Proof. See [59]. �

For example, since the graph shown in Figure 3.1(c) is triangulated, the junction graph in Fig-
ure 3.2(a) has a spanning tree satisfying the intersection property, as shown in Figure 3.2(b).

Another interesting property of junction trees can be seen by defining the weight of each span-
ning tree (for an associated junction graph) to be the sum of the weights on each edge in the tree.
As the following result indicates, the set of all junction trees are those which maximize this weight.

Proposition 3.1 (Junction Trees Are Maximal Weight Spanning Trees).
Given a triangulated graph G, a spanning tree for the junction graph of G is a junction tree if and
only if it is a spanning tree of maximal weight.

Proof. See [54]. �

In general, a junction graph can have a number of maximal weight spanning trees, and Propo-
sition 3.1 therefore indicates that there may be multiple junction trees for the same triangulated
graph. One might expect the separator sets associated with different junction trees to be different;
however, as the following proposition indicates, this is in fact not the case.

Proposition 3.2 (Equivalence of Junction Trees).
All junction trees for a given triangulated graph have the same separator sets (also counting mul-

tiplicity).

Proof. See [56]. �

For example, Figures 3.2(b) and (c) show two different junction trees for the triangulated graph in
Figure 3.1(c), and despite the fact that the edges are different, both junction trees have the same
separator sets {3}, {3, 4}, {4, 8}, and {4, 8}. We henceforth denote the collection of separator sets
by S (including multiplicities), so that for example S = {{3}, {3, 4}, {4, 8}, {4, 8}} for the junction
trees shown in Figures 3.2(b) and (c).

As a consequence of the property in Proposition 3.2, we choose to define a junction tree solely
in terms of its maximal cliques and its separator sets, without specifying the edges connecting the
maximal cliques. Specifically, given a triangulated graph G, we say that T = (C,S) is the junction
tree representation of G, where C denotes the maximal cliques of G and S denotes the separators of
any junction tree for G. Given a junction tree representation T = (C,S), we can always construct a
junction tree by specifying a set of edges between elements of C such that (1) the set of separators
are precisely those in S and (2) the graph is a tree.
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� 3.3 Undirected Graphical Models

Graphical models provide a powerful framework for representing probability densities with par-
ticular conditional independence properties and in addition exploiting these properties in various
estimation tasks. In the previous chapter, we discussed the conditional independence properties
of the class of multiscale models – a special type of graphical model defined on a directed graph.
In this section, we focus on graphical models defined on undirected graphs, and we discuss their
associated conditional independence properties. We also introduce an important factorization for
triangulated graphs which uses the junction tree representation, and finally, we show how multiscale
models can also be interpreted and represented as undirected graphical models. A more detailed
treatment of graphical models may be found in a variety of sources [41,55,58,59,71].

� 3.3.1 Undirected Graphical Models and Their Conditional Independence Properties

Suppose an indexed process (X,G) is given. By itself, such a process is rather uninteresting;
however, if X possesses a set of conditional independencies or if the associated density p(x) has a
special factorization structure then things become more interesting. For example, as discussed in
Sections 2.3 and 2.4, there exists an important relationship between factorization and conditional
independence properties for the class of multiscale models. As we now discuss, a similar relationship
exists for processes mapped to undirected graphs.

Suppose G is an undirected graph with a set of maximal cliques C, and let (X,G) be a process
indexed by G with an associated probability density p. Consider the following important factorized
form for a density.

Definition 3.1 (Factorization According to an Undirected Graph).
A density p(x) is said to factor according to G if there exist non-negative functions ψC(xC), C ∈ C,
such that

p(x) =
∏

C∈C

ψC(xC). (3.9)

◭

The functions ψC(xC) are often called compatibility functions. Notice that each function ψC(xC)
depends only on the variables indexed by the maximal clique C, and consequently, the density p is
a product of “localized” functions, where the degree of localization is determined by the graph G.

Given a density p which factors according to (3.9), it must be true that random vector X
displays some set of independencies; otherwise, no factorization would be possible. The following
definition provides a very compact and convenient statement of the conditional independencies
possessed by X, a fact which is later proven in Theorem 3.2.

Definition 3.2 (Markov Properties and Graph Separation).
An indexed process (X,G) is said to be Markov with respect to the undirected graph G if XA and
XB are conditionally independent given XS whenever A and B are separated by S in G. ◭

Therefore, if a process is Markov with respect to a graph G, all of the conditional independencies can
be read directly from G by examining the separation properties of the graph. This is an important
aspect of graphical models, since it allows graph-theoretic results to be brought to bear on the
modeling problem. As an example, consider the graphical model shown in Figure 3.3(a), where
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the underlying graph G corresponds to a simple cycle. If a process X is Markov with respect to G,
then X1 and X4 are conditionally independent given X2 and X3, due to the fact that S = {2, 3}
separates A = {1} and B = {4} in G.

The following important theorem indicates that a density of the form (3.9) will have precisely
the conditional independencies given in Definition 3.2. One might wonder if the converse is also
true. The answer is yes but with the caveat that the density p(x) is strictly positive, i.e. if an
outcome x = (x1, . . . , xn) satisfies p(xi) > 0 for i = 1, . . . , n, then we must have p(x) > 0 [10].

Theorem 3.2 (Hammersley-Clifford [45]).
Let G be an undirected graph with maximal cliques C, and let (X,G) be an indexed process with

density p(x). If p(x) factors according to (3.9) then (X,G) is Markov with respect to G. Conversely,
if p(x) is strictly positive and (X,G) is Markov with respect to G, then p(x) factors according to
(3.9).

Proof. See [10,44]. �

Therefore, as long as the density p(x) is strictly positive, the notions of factorization and Marko-
vianity specified in Definitions 3.1 and 3.2 are equivalent.

Notice that there exists an important difference between undirected graphical models and di-
rected acyclic graphical models (such as multiscale models). Namely, the factorization given in
(3.9) is stated in terms of abstract functions ψC(xC) and not probability densities as is the case for
directed models. As discussed in the next section, though, there are undirected graphical models
for which the compatibility functions may be written in terms of probability densities.

� 3.3.2 An Important Factorization

In this section, we discuss an important factorization of the form (3.9), where each ψC(xC) is
expressed solely as a function of p(xC) and marginals of p(xC). It turns out that such a factorization
does not generally exist when the underlying graph G is not triangulated, while such a factorization
always exists when G is triangulated. To develop some intuition for this fact, consider the following
example.

Example 3.1 (Factorization and the Single Cycle).
Consider the graphical model shown in Figure 3.3(a) where the graph G corresponds to a 4-cycle
and the associated density p factors according to

p(x1, x2, x3, x4) = ψ{1,2}(x1, x2)ψ{1,3}(x1, x3)ψ{2,4}(x2, x4)ψ{3,4}(x3, x4), (3.10)

for some choice of compatibility functions. Our goal is to specify each of the compatibility functions
ψC(xC) in (3.10) directly in terms of p(xC) and its marginals.

Consider expanding p using the chain rule for probabilities,

p(x1, x2, x3, x4) = p(x1, x2, x3)p(x4|x1, x2, x3). (3.11)

This expression may be simplified by applying the Markov properties implied by G,

p(x1, x2, x3, x4) = p(x1, x2, x3)p(x4|x2, x3)

= p(x1, x2, x3)

(
p(x2, x3, x4)

p(x2, x3)

)
. (3.12)
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Figure 3.3. (a) A graphical model defined on a non-triangulated graph. (b) A graphical model
defined on a triangulated graph.

The terms p(x1, x2, x3) and p(x2, x3, x4) cannot be simplified further because the graphical model
shown in Figure 3.3(a) does not imply any additional independencies, and since these two densities
are functions of three variables, (3.12) does not fit the desired form in (3.10). Of course, the chain
rule in (3.11) may be applied in multiple ways; however, every factorization ultimately requires a
marginal of the form p(xi, xj , xk). The reason that the desired factorization (3.10) is not achievable
is due to the fact that G is not triangulated.

Consider now the graphical model shown in Figure 3.3(b), with a density which factors according
to

p(x1, x2, x3, x4) = ψ{1,2,3}(x1, x2, x3)ψ{2,3,4}(x2, x3, x4). (3.13)

Using the decomposition in (3.11) and applying the Markov properties of this new model, we
again obtain the decomposition in (3.12). In this case, (3.12) fits the desired form in (3.13), due
to fact that the graphical model in Figure 3.3(b) is indexed by a triangulated graph. Since the
marginal p(x2, x3) in (3.12) may be shared between ψ{1,2,3}(x1, x2, x3) and ψ{2,3,4}(x2, x3, x4) in
multiple ways, there is no unique choice for the compatibility functions. For our purposes, this
non-uniqueness is inconsequential because we only care about the form of the factorization in
(3.12) and not about a particular choice for the compatibility functions. ◭

The factorization in (3.12) can be generalized to hold for any triangulated graph [59]. Specifi-
cally, let G be a triangulated graph with the junction tree representation T = (C,S), and let p be
a density which factors according to G. Then, p may be expressed as follows,

p(x) =
∏

C∈C

ψC(xC) =

∏
C∈C p(xC)∏
S∈S p(xS)

. (3.14)

Since the junction tree representation T = (C,S) is unique for a given triangulated graph, the
preceding decomposition is well-defined, i.e. it does not depend on a particular choice of junction
tree. In addition, since G is triangulated, Theorem 3.2 holds even when the density p(x) is not
strictly positive [99]. Thus, ifX is Markov with respect to a triangulated graph G, the corresponding
density p(x) must factor according to (3.14).

Consider now a slightly different perspective on the factorization in (3.14). Suppose an indexed
process (X,G) with density p(x) is given, and further suppose that p(x) does not factor according
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to the triangulated graph G. Then, using (3.14), we can define a density pG which does factor
according to G as follows,

pG(x) ,

∏
C∈C p(xC)∏
S∈S p(xS)

. (3.15)

We call pG the projection of p onto the graph G,7 and we take (3.15) to be the definition of this
projection. If G↓ = (U,F ) is any subgraph of G = (V,E) and p(xV ) is a density indexed by V ,
then the notation pG↓(xU ) indicates the projection of the marginal p(xU ) onto the subgraph G↓.
For notational convenience, we often write pG↓(x) instead of pG↓(xU ), with the understanding that
the argument x is indexed by the vertices of the graph G↓.

An interesting consequence of (3.15) is that pG satisfies a set of marginal constraints. Namely,
for every maximal clique C ∈ C, the constraint pG(xC) = p(xC) is satisfied. This follows from the
fact that pG factors according to G, in which case

pG(x) =

∏
C∈C pG(xC)∏
S∈S pG(xS)

=

∏
C∈C p(xC)∏
S∈S p(xS)

.

Hence, we can view pG as the density which factors according to G while maintaining the correct
marginal densities p(xC) on the maximal cliques. We use this idea extensively in subsequent
sections.

� 3.3.3 A Special Case: Multiscale Models

Multiscale Models and Undirected Graphs

In Chapter 2, multiscale models were defined in terms of a recursive factorization with respect
to a rooted tree. In this section, we show how multiscale models may also be defined in terms
of a factorization with respect to an undirected graph. To view this equivalence, we compare the
multiscale factorization to the factorization given in (3.14). Specifically, let G� = (V,E) be a rooted
tree, and let q(x) be a multiscale density with the usual factorization,

q(x) =
∏

v∈V

q(xv|xπ(v)).

Letting v0 correspond to the root vertex, q(x) can be rewritten as follows,

q(x) = q(xv0)
∏

v∈V −{v0}

q(xv , xπ(v))

q(xπ(v))
. (3.16)

Notice that (3.16) resembles the form of (3.14) with {v, π(v)} corresponding to a maximal clique
and {π(v)} corresponding to a separator set.

To solidify this relationship, let the graph G∼� represent the undirected version of G�, i.e. every
directed edge in G� is replaced by an undirected edge. Consequently, G∼� is an undirected graph
which is a tree. For illustrative purposes, a rooted tree G� and its undirected version G∼� are

7As we later discuss, this terminology is appropriate from a geometric perspective.
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shown in Figures 3.4(a) and (b) respectively. It can be shown that the junction tree representation
T = (C,S) for G∼� is given by8

C = {{v, π(v)}}v∈V −{v0} (3.17a)

S = {{π(v)}}v∈V −{v0} − {{v0}}. (3.17b)

Notice that one of the root vertices must be removed from the separator sets S due to an over-
counting. As an example, Figure 3.4(c) shows a junction tree for the graph in Figure 3.4(b).

Given the junction tree representation in (3.17), any density q which factors according to G∼�
may be written as follows,

q(x) =

∏
v∈V −{v0}

q(xv, xπ(v))
1

q(xv0 )

∏
v∈V −{v0}

q(xπ(v))
. (3.18)

Since (3.16) and (3.18) are equivalent factorizations, we know that a multiscale density q(x) defined
on a rooted tree G� is equivalent to a density q(x) which factors according G∼� . This equivalence
also implies that the conditional independencies exhibited by multiscale models must be identical
to the conditional independencies given in Definition 3.2. This is of course true because the global
Markov property of multiscale models was stated precisely in terms of graph separation, i.e. the
random vectors in the subtrees separated by a vertex v are conditionally independent given Xv.

Hence, multiscale models can be characterized either in terms of a directed factorization or
an undirected factorization. Recall that the benefit of the directed factorization is two-fold: (1)
a directed factorization leads to a simple “parametrization” in terms of conditional probabilities
mapped to edges of the graph; (2) the rooted tree possesses the notion of scale which induces a
partial ordering on the graph. The reason to now consider multiscale models in terms of their
undirected factorization is that this factorization allows more flexibility and fits more easily within
the framework established in this chapter.

Multiscale Models and Projections

Given any density p(x), not necessarily a multiscale density, we can always form a multiscale density
q(x) by projecting p(x) onto a graph which is a tree. Specifically, given a rooted tree G� and
corresponding undirected version G∼� , a multiscale density q(x) may be formed by projecting any
density p(x) onto the graph G∼� according to (3.15). Since G∼� has the junction tree representation
in (3.17), q(x) is given by,

q(x) , pG∼
�
(x) = p(xv0)

∏

v∈V −{v0}

p(xv, xπ(v))

p(xπ(v))
=
∏

v∈V

p(xv|xπ(v)). (3.19)

Notice that (3.19) is the same as (2.25); this equivalence provides additional intuition for the
realization approach suggested in the previous chapter.

When the underlying rooted tree G� is clear from context, we often use the notation pT (x) to
denote the multiscale density formed by projecting p(x) onto the tree G∼� , i.e. pT (x) , pG∼

�
(x).

This projection operation also provides a mapping p −→ pT from P(V, d) to PG�
(V, d), where

8For convenience, we retain the labeling implied by the rooted tree, i.e. even though G∼
� is undirected, we still

use the notation π(v) as if G∼
� were the rooted tree G�.
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Figure 3.4. (a) A rooted tree G�. (b) The undirected version of the rooted tree in (a). (c) A
junction tree for the graph in (b). (d) An augmented graph G♯ for the rooted tree in (a), assuming

M = {0, 2, 3, 4, 5, 6}. (e) The augmented graph G♯
� for the rooted tree in (a), assuming M =

{0, 2, 3, 4, 5, 6}. (f) A junction tree for the graph in (e).
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P(V, d) and PG�
(V, d) are the sets of densities introduced in Section 3.1. In other words, given any

p ∈ P(V, d), the density pT (where the projection is with respect to G∼�) satisfies pT ∈ PG�
(V, d).

We focus on this mapping in more detail in Section 3.4.

Multiscale Models and Augmented Graphs

In the previous chapter, we introduced a more general type of multiscale model where each state
variable Xv is allowed to have both a target vector Xv(t) as well as a design vector Xv(d) . From a
graphical modeling perspective, splittingXv into two sub-vectorsXv(d) andXv(t) provides additional
degrees of freedom in the realization problem and at the same time allows us to consider models
with more complicated dependencies. To incorporate this indexing scheme into our graph-theoretic
framework, it is convenient to introduce a special type of graph which we call an augmented graph
and often denote by G♯. Augmented graphs are the same as the undirected graphs considered so
far but with the modification that both types of vertices v(d) and v(t) are present.

To define an augmented graph G♯, a rooted tree G� = (V,E) and a marginalization constraint
set M must be specified,9 and therefore, every augmented graph G♯ is tied to an underlying tree
G� and some M ⊆ V .10 Once G� and M are specified, an augmented graph G♯ is defined to be any
undirected graph on a set of vertices V ♯ ⊂ {v(d), v(t)}v∈V which satisfies the following constraints:

(1) v(t) ∈ V ♯ if and only if v ∈M ;

(2) v(d) ∈ V ♯ if and only if v is a non-leaf vertex in G�.

Figure 3.4(d) shows one example of an augmented graph for the rooted tree G� in Figure 3.4(a)
and M = {0, 2, 3, 4, 5, 6}.

We impose the preceding constraints on an augmented graph in order to avoid superfluous
vertices that index meaningless vectors in the corresponding graphical model. Specifically, recall
that by definition no target vector Xv(t) exists for a vertex v 6∈M , and consequently, when v 6∈M ,
vertex v(t) is not included in the augmented graph. Similarly, a design vector Xv(d) located at a
leaf vertex of a multiscale model serves no purpose in the realization problem, and therefore, the
second constraint indicates that v(d) is not included in the augmented graph if v is a leaf vertex of
G�.

We now focus on a specific augmented graph denoted by G♯
�. For a given rooted tree G�, the

graph G♯
� = (V ♯, E♯) is defined to be the augmented graph with edge set E♯, where {x, y} ∈ E♯ if

and only if one of the following is satisfied:

(1) x = v(t) and y = v(d);

(2) x = u(t) or x = u(d), y = v(t) or y = v(d), and u ∈ π(v).

For example, Figure 3.4(e) shows the graph G♯
� for the rooted tree G� in Figure 3.4(a) and M =

{0, 2, 3, 4, 5, 6}.

The augmented graph G♯
� satisfies an important property: a process X which is Markov with

respect to G∼� is also Markov with respect to the graph G♯
�. To see this, suppose we are given

9We assume here that M contains at least all of the leaf vertices of G�.
10The notation G♯ does not convey this dependence on G� and M , but the particular choice of G� and M will

always be clear.



94 CHAPTER 3. REALIZING MULTISCALE MODELS: A GRAPH-THEORETIC PERSPECTIVE

a density q(xV ) indexed by a set of vertices V , and consider splitting each variable xv in q(xV )
into separate target and design variables xv(t) and xv(d) . This means that we can also index the
density q(xV ) in terms of the expanded vertex set V ♯, which we denote by q(xV ♯). Consider now a
multiscale density q(xV ) which factors according to the graph G∼� = (V,E). The structure of the

graph G♯
� = (V ♯, E♯) is special in the sense that the re-indexed density q(xV ♯) also factors according

to G♯
�, and consequently, the graph G♯

� implies the same conditional independencies as G∼� .

As an illustration, consider the augmented graph G♯
� and corresponding junction tree shown

in Figures 3.4(e) and (f) respectively. Notably, the junction tree in Figure 3.4(f) is structurally
identical to the junction tree shown in Figure 3.4(c); the only difference is that each vertex v has
been replaced by its appropriate label v(d) and/or v(t). More generally, the junction trees for the

graphs G∼� and G♯
� are always structurally identical (by the construction of G♯

�), and consequently,

a density q which factors according to G♯
� also factors according to G∼� and vice-versa.

Simply stated, augmented graphs are undirected graphs defined on an expanded vertex set.
They are useful for our purposes because they allow the two types of vectors Xv(t) and Xv(d) to be
indexed in a simple manner. As we later show, the graph-theoretic and graphical modeling ideas
presented here directly translate to augmented graphs, and therefore, we are able to state several
important results about the state augmentation problem without much additional work.

� 3.4 Alternative Problem Formulations For Exact Realization

In Section 3.1, we introduced an abstract statement of the exact multiscale realization problem,
which we now term exact multiscale realization problem Q and include below for reference.

Exact Multiscale Realization Problem Q: Find any density q̂ ∈ PG�
(V, d)

such that q̂(xM ) = p∗(xM ).

In this section, we introduce a number of alternative problems, each of which is equivalent to the
preceding problem in the sense that a surjective mapping exists from the solution set of each al-
ternative problem to the solution set of problem Q.11 Hence, by solving one of these alternative
problems, we are able to identify a solution to problem Q via this surjective mapping. We also show
that there exists an interesting relationship between the solution sets of some of the proposed alter-
native problems, and we use this relationship to suggest a number of different sufficient conditions
for the exact realization problem.

� 3.4.1 Two Alternative Problem Formulations

As an alternative to realization problem Q, consider the problem of searching amongst a larger set
of densities – namely searching in the full set of densities P(V, d) rather than the set of multiscale
densities PG�

(V, d). The goal is to find a density p̂ ∈ P(V, d) such that the projection p̂T onto the

tree G∼� satisfies p̂T (xM ) = p∗(xM ).12 We call this procedure alternative problem P.

11Of course, the exact realization problem Q might have no solution, in which case all of the proposed alterna-
tive problems will also have no solution. In this situation, we must consider the approximate realization problem
introduced in Section 3.1 and discussed in more detail in Section 3.10.

12Notice that p̂T (xM) is a shorthand for the marginal of p̂T (x) along the variables xM , i.e. p̂T (xM ) = q̂(xM ) where
q̂(x) , p̂T (x).
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Alternative Problem P: Find any density p̂ ∈ P(V, d) such that p̂T (xM ) =
p∗(xM ).

Since problem P searches over a larger space of densities, it is more computationally demanding
than problem Q. At the same time, this larger problem is theoretically interesting due to the fact
that the mapping p −→ pT is a surjection from the solution set of problem P onto the solution set
of problem Q. This implies that problem P may be considered without loss of generality, since all
solutions of problem Q can be identified from solutions of problem P. Because of this fact, we say
that problems P and Q are compatible.

Recall that the projection pT was previously introduced in Section 3.3.3. For a given rooted
tree G�, the mapping p −→ pT is a surjection from the space of densities P(V, d) onto PG�

(V, d),

since every q ∈ PG�
(V, d) satisfies q ∈ P(V, d) and q = qT . At the same time, this mapping is by

definition a surjection from the solution set of problem P onto the solution set of Q. Since it is
surjective, though, there may be infinitely many solutions p̂ each of which map to the same density
p̂T , and consequently, the solution set for problem P may be much larger than the solution set for
problem Q.

For our purposes, problem P searches over a larger space of densities than necessary, and as
such, in the remainder of this section and in the next section we further limit the space of densities
over which we search. Define PM (V, d) ⊂ P(V, d) to be the set of all densities p ∈ P(V, d) with the
marginal p(xM ) = p∗(xM ), i.e.

PM (V, d) , {p(xV )|p ∈ P(V, d), p(xM ) = p∗(xM )}. (3.20)

The following procedure, which we call alternative problem PM , is identical to problem P except
we search over the set PM (V, d) instead of P(V, d).

Alternative Problem PM : Find any density p̂ ∈ PM (V, d) such that
p̂T (xM ) = p∗(xM ).

Notice that p −→ pT is also a surjection from the solution set of PM onto the solution set of Q,
and hence, problems PM and Q are compatible. This relies on the fact that every solution q̂ of Q
is also a solution to PM (since q̂(xM ) = p∗(xM ) and therefore q̂ ∈ PM (V, d)).

One immediate benefit of considering problem PM instead of P is the fact that we can state
a simple sufficient condition for a density p̂ to be a solution to problem PM . Specifically, if
p̂ ∈ PM (V, d) satisfies p̂ = p̂T , then p̂ is a solution to problem PM . This follows trivially from the
fact that (1) p̂(xM ) = p∗(xM ) since p̂ ∈ PM (V, d) and (2) p̂(xM ) = p̂T (xM ) = p∗(xM ) since p̂ = p̂T .
Notice that solutions to problem P cannot be identified in such a manner, i.e. even if p = pT , there
is no constraint on the marginal p(xM ).

While the preceding is a sufficient condition for solutions to problem PM , it is not necessary
– there may exist an infinite number of solutions p̂ ∈ PM (V, d) which project to the same density
p̂T but do not satisfy p̂ = p̂T . In fact, this sufficient condition simply characterizes all solutions
to problem Q, and for this reason, it is not immediately obvious from the preceding discussion
why a more general problem formulation should be considered. The utility lies in the fact that a
less-stringent set of sufficient conditions may be obtained by considering a more structured problem
than PM .

To develop some intuition and at the same time tie the discussion here to the discussion in
Chapter 2, recall that the condition p̂ = p̂T is equivalent to requiring random vector X to satisfy
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the global Markov property with respect to density p̂. As stated in Theorem 2.3 (but not yet
proven), when we only care about matching a marginal, i.e. p̂(xM ) = p̂T (xM ), there exists a smaller
set of sufficient conditions than those required by the global Markov property (or equivalently the
reduced-order global Markov property). This suggests that the conditions p̂ ∈ PM (V, d) and p̂ = p̂T

are too stringent because they place constraints on the entire density p̂. By considering alternatives
to problem PM , as discussed in the next section, we subsequently show in Section 3.4.3 that less-
stringent sufficient conditions exist.

� 3.4.2 More Possibilities

The problem formulations considered in this section differ from those considered in the previous
section in that they possess additional conditional independence structure. Each problem has the
same form as problem PM , except the search is performed over a more limited space of densities
with a particular set of independencies. The set of independencies and the associated space of
densities is determined by the undirected graph G which is chosen.

Alternative Problems with Additional Conditional Independence Structure

Consider now the set of all densities p ∈ P(V, d) which factor according to an arbitrary undirected
graph G = (V,E). We denote this set by PG(V, d),13 i.e. if C is the set of all maximal cliques of G
and if ψC(xC) is any non-negative function defined on the variables xC , then

PG(V, d) ,

{
p(xV )

∣∣∣∣∣p ∈ P(V, d), p(x) =
∏

C∈C

ψC(xC)

}
. (3.21)

Since any density p ∈ PG(V, d) factors according to G, Theorem 3.2 indicates that a process X
with such a density p is Markov with respect to G, and therefore, by considering the set PG(V, d),
we are focusing on processes with the conditional independence structure implied by G. In what
follows, we choose not to consider the entire set PG(V, d) but only the subset of densities p(x) whose
marginals p(xM ) match a target density p∗(xM ), and we denote this set by PM

G (V, d), i.e.

PM
G (V, d) , {p(xV ) |p ∈ PG(V, d), p(xM ) = p∗(xM )} . (3.22)

Using the set PM
G (V, d), the following procedure, which we call alternative problem PM

G , is a
natural generalization of problem PM .

Alternative Problem PM
G : Find any density p̂ ∈ PM

G (V, d) such that

p̂T (xM ) = p∗(xM ).

Notice that by setting G = G∼� , the preceding problem is equivalent to problem Q, and by letting G

be the complete graph, the preceding problem is equivalent to problem PM . In addition to these
special cases, problem PM

G suggests a range of different formulations for undirected graphs which
lie “between” G∼� and the complete graph. As the following proposition indicates, problems PM

G

and Q are compatible, as long as G is a supergraph of G∼� .

13Notice that the set PG�
(V, d) of all multiscale models is equivalent to the set PG∼

�
(V, d).



3.4. ALTERNATIVE PROBLEM FORMULATIONS FOR EXACT REALIZATION 97

0

21

0

21

0

1 2

(a) (b) (c)

Figure 3.5. Graphs considered in Example 3.2. (a) Rooted tree G�. (b) The undirected version G∼�
of the rooted tree in (a). (c) A graph G which is not a supergraph of G∼� .

Proposition 3.3 (Relationship Between Solutions to PM
G and Q).

Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. If a
graph G = (V,E) is a supergraph of G∼� , the mapping p −→ pT is a surjection from the solution set

of problem PM
G onto the solution set of problem Q.

Proof. For every solution q̂ of problem Q, q̂ is also a solution to problem PM
G since q̂ ∈ PM

G (V, d)
(due to the fact that G is a supergraph of G∼�). Hence, q −→ q is a mapping from the solution set

of Q to the solution set of PM
G . In addition, q̂T = q̂ which proves that the identity map is a right

inverse of p −→ pT on the solution set of problem Q and thereby proves the proposition. �

When G is not a supergraph of G∼� , the mapping p −→ pT may be surjective, but this only
occurs for special choices of the target density p∗(xM ). When p∗(xM ) fails to have special structure
and when G is not a supergraph of G∼� , the mapping p −→ pT is not surjective, and consequently, all

solutions to problem Q cannot be identified from solutions to problem PM
G . The following example

provides a simple illustration of these ideas.

Example 3.2 (On the Compatibility of Problems PM
G and Q).

Consider the three graphs shown in Figure 3.5. The rooted tree G� shown in Figure 3.5(a) indicates
the structure of the multiscale model to be designed in this example, i.e. our ultimate goal is to
solve problem Q for this choice of G�. The undirected version G∼� of G� is shown in Figure 3.5(b),
and a graph G which is not a supergraph of G∼� is shown in Figure 3.5(c). Consider solving problem

PM
G for the graph G in Figure 3.5(c) and for a given target density p∗(xM ) with M = {1, 2}.

Suppose the target density p∗(xM ) has no independence structure – in particular, p∗(x1, x2) 6=
p∗(x1)p

∗(x2). Any density p which factors according to G must satisfy p(x) = p(x0)p(x1)p(x2),
implying that p(x1, x2) = p(x1)p(x2). Since p∗(x1, x2) does not possess this independence structure,
the set PM

G (V, d) is empty, and therefore, problem PM
G has no solution. This restriction on p∗(xM )

does not however suggest that problem Q has no solution, and consequently, if problem Q has a
least one solution, it cannot be identified by solving problem PM

G . This shows the importance of
G being a supergraph of G∼� ; if this is not the case, problem PM

G searches over a space of densities
with conditional independencies not possessed by the multiscale model of interest.

The independence structure of p∗(xM ) alone does not indicate whether the mapping p −→ pT

is surjective or not. Suppose now that p∗(x1, x2) = p∗(x1)p
∗(x2) and that problems Q and PM

G

both have solutions. This example is special in the sense that every solution p̂ of problem PM
G

gets mapped to itself under p −→ pT , i.e. since p̂(x) = p̂(x0)p̂(x1)p̂(x2), then p̂T (x) = p̂(x). This
suggests that p −→ pT is a surjection if and only if every solution q̂ of Q also factors according to G.
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However, just because a solution to Q satisfies q̂(x1, x2) = q̂(x1)q̂(x2) = p∗(x1, x2) does not imply
that it satisfies q̂(x) = q̂(x0)q̂(x1)q̂(x2). Hence, the projection mapping may not be surjective even
when p∗(xM ) has independence structure.

There are special cases where the choice of p∗(xM ) leads to a surjective mapping. As an example,
suppose X = (X0,X1,X2) takes values in the space {0, 1} × {0, 1} × {0, 1}, and suppose the goal
is to match the following target density,

p∗(x1, x2) =

{
1 if x1 = 1 and x2 = 1,
0 otherwise.

Since we constrain X0 to be a binary random variable, the set PM (V, d) only contains densities of
the form,

p(x0, x1, x2) =





p0 if x0 = 0, x1 = 1, and x2 = 1,
1− p0 if x0 = 1, x1 = 1, and x2 = 1,

0 otherwise,

where p0 ∈ [0, 1]. Notice that all such densities p ∈ PM (V, d) satisfy p(x0, x1, x2) = p(x0)p(x1)p(x2).
Consequently, the solution sets to problems Q and PM

G are identically equal to PM (V, d), and
p −→ pT is the identity mapping on this set. ◭

Since p∗(xM ) must be a special density for the mapping p −→ pT to be surjective, we henceforth
assume that G is a supergraph of G∼� when considering the alternative problem PM

G .

Relating Solutions to Different Alternative Problems

In addition to the relationship between problems PM
G and Q given in Proposition 3.3, there exists

an important relationship between the solutions to problems PM
G and PM

G′ for some choices of G and
G′. In this section, we characterize the types of graphs G and G′ for which an obvious surjection
exists between the solution sets of PM

G and PM
G′ . In particular, we consider the projection mapping

p −→ pG introduced in Section 3.3.2, which is well-defined for all triangulated graphs G and is a
generalization of the mapping p −→ pT .

Let G and G′ be supergraphs of a given tree G∼� , and consider the corresponding problems PM
G

and PM
G′ . We want to know what choices for G and G′ guarantee that p −→ pG is a surjective

mapping from the solution set of problem PM
G′ onto the solution set of problem PM

G . There are
three possibilities to consider:

(1) G is not a supergraph of G′, and G′ is not a supergraph of G.

(2) G′ is a supergraph of G, and G is not triangulated.

(3) G′ is a supergraph of G, and G is triangulated.

As discussed below, p −→ pG is only guaranteed to be a surjective mapping for a specific subset of
the problems in the third case.

First, recall that the mapping p −→ pG is not defined for non-triangulated graphs G. As such,
we can say nothing about the second case, and we can only consider triangulated graphs G in the
first case. Suppose the first case holds for some triangulated graph G, and consider any solution p̂ to
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problem PM
G′ . Since p̂ is an element of the set PM

G′ (V, d), it satisfies the conditional independencies
implied by the graph G′. Likewise, consider the projected density p̂G . Since p̂G maintains the
marginals of p̂ on the maximal cliques of G, it satisfies the conditional independencies implied by
both G and G′. Consequently, if there is any solution to problem PM

G that does not satisfy the
conditional independencies of both G and G′, the mapping p −→ pG is not a surjection. This
situation is intuitively similar to the problem considered previously in Example 3.2.

Finally, consider the third case. Given the fact that G′ is a supergraph of G, it seems plausible
that p −→ pG is in fact the needed surjection, but as we discuss, if the graph G does not have a
clique equal to M , a solution p̂ of problem PM

G′ is not guaranteed to map to a solution p̂G of problem

PM
G . Therefore, the projection operation p −→ pG may not be a mapping from the solution set of

problem PM
G′ to the solution set of problem PM

G in this case.

Let p̂ be any solution to problem PM
G′ . In order for p̂G to be a solution of problem PM

G , it must
satisfy two constraints:

(1) (p̂G)T (xM ) = p∗(xM ),

(2) p̂G ∈ P
M
G (V, d).

The first constraint is always satisfied, as evidenced by the following lemma.

Lemma 3.3 (Nested Projections).
Let H be any triangulated graph defined on vertex set V , and let G = (V,E) be any triangulated

supergraph of H. Given any density p(xV ), the two densities (pG)H and pH are equal, i.e. projecting
p onto the graph H is the same as first projecting p onto G and then H.

Proof. This follows directly from the definition of the projection operation and the fact that G is a
triangulated supergraph of H. Since G is a supergraph of H, every maximal clique of H is contained
in a maximal clique of G. Consequently, the marginals p(xC) of pG are identical to the marginals
p(xC) of p for every maximal clique C of H. �

Setting H = G∼� in the preceding lemma shows that (p̂G)T = p̂T , and therefore, (p̂G)T (xM ) =

p̂T (xM ) = p∗(xM ).
In order for the second constraint to be satisfied, p̂G must factor according to G (which is true by

definition), and in addition, p̂G(xM ) must equal p∗(xM ). It is the latter constraint p̂G(xM ) = p∗(xM )
which may not be satisfied when G has no clique equal to M , as the following example illustrates.

Example 3.3 (On the Compatibility of Problems PM
G and PM

G′ ).
Consider the graphs G� and G∼� shown in Figures 3.6(a) and (b), which correspond to the multiscale

model to be designed in this example. We are interested in the two alternative problems PM
G and

PM
G′ where G is shown in Figure 3.6(c) and G′ is the complete graph on the vertices V = {0, 1, 2, 3}.

The purpose of this example is to show that the projection operation p −→ pG is not necessarily a
mapping from the solution set of problem PM

G′ to the solution set of problem PM
G , and we accomplish

this by providing a specific solution p̂ of problem PM
G′ (or equivalently problem PM ) which does

not project to a solution p̂G of problem PM
G .

In this example, we assume that X0,X1,X2,X3 are binary random variables, each taking values
in the space {0, 1}. Now, let M = {1, 2, 3}, and suppose the target density p∗(xM ) is specified by the
probabilities shown in Table 3.1, i.e. X1,X2,X3 are uniformly distributed on {0, 1}×{0, 1}×{0, 1}
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Figure 3.6. Graphs considered in Example 3.3. (a) Rooted tree G�. (b) The undirected version G∼�
of the rooted tree in (a). (c) A graph G which is a triangulated supergraph of G∼� , but does not have

a clique equal to M = {1, 2, 3}.

X1 = 0, X2 = 0 X1 = 0, X2 = 1 X1 = 1, X2 = 0 X1 = 1, X2 = 1

X3 = 0 1/8 1/8 1/8 1/8

X3 = 1 1/8 1/8 1/8 1/8

Table 3.1: Table of probabilities for the target density p∗(x1, x2, x3) considered in Example 3.3.

X1 = 0, X2 = 0 X1 = 0, X2 = 1 X1 = 1, X2 = 0 X1 = 1, X2 = 1

X3 = 0, X0 = 0 1/16 0 0 1/16

X3 = 0, X0 = 1 1/16 1/8 1/8 1/16

X3 = 1, X0 = 0 1/16 1/16 1/16 1/16

X3 = 1, X0 = 1 1/16 1/16 1/16 1/16

Table 3.2. Table of probabilities for the discrete density p̂(x0, x1, x2, x3) considered in Example 3.3.
This density satisfies p̂(x1, x2, x3) = p̂T (x1, x2, x3) for the tree G∼� shown in Figure 3.6(b).

under the target density p∗(xM ). Given this target density, we want to find a density p̂(x0, x1, x2, x3)
such that p̂(xM ) = p∗(xM ) = p̂T (xM ), i.e. a solution p̂ to problem PM . One possible solution
p̂(x0, x1, x2, x3) is characterized by the values shown in Table 3.2. Marginalizing over variable X0

in Table 3.2, one can see that p̂(x1, x2, x3) = p∗(x1, x2, x3).
14 While we do not show it here, it is

also true that p̂T (xM ) = p∗(xM ), and therefore, p̂T is a solution to exact realization problem Q.
Now, consider projecting p̂ onto the graph G in Figure 3.6(c). As proven earlier in Lemma 3.3,

the density (p̂G)T is equal to p̂T , and therefore, (p̂G)T (xM ) = p∗(xM ). This means that the density
p̂ satisfies three very important equalities, namely p̂(xM ) = (p̂G)T (xM ) = p̂T (xM ) = p∗(xM ). These
equalities place very strong constraints on the density p̂, and in this example, we want to know
if these constraints necessarily imply the equality p̂G(xM ) = p∗(xM ). The answer is no, however,
since the marginal p̂G(xM ) is not uniformly distributed on {0, 1} × {0, 1} × {0, 1}, as indicated
by the probabilities in Table 3.3. This indicates that p̂G is not a solution to problem PM

G , and
consequently, p −→ pG is not a mapping from the solution set of PM to the solution set of PM

G .
◭

14The discrete probability table for p̂(x1, x2, x3) can be obtained by simply adding the appropriate entries of
Table 3.2. The values for p̂(X1 = x1, X2 = x2, X3 = 0) are obtained by adding the first two rows of Table 3.2, while
the values for p̂(X1 = x1, X2 = x2, X3 = 1) are obtained by adding the last two rows of Table 3.2.
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X1 = 0, X2 = 0 X1 = 0, X2 = 1 X1 = 1, X2 = 0 X1 = 1, X2 = 1

X3 = 0 7/60 8/60 8/60 7/60

X3 = 1 8/60 7/60 7/60 8/60

Table 3.3. Table of probabilities for the marginal density p̂G(x1, x2, x3) considered in Example 3.3,
where p̂(x0, x1, x2, x3) is specified by the values in Table 3.2 and where the graph G is shown in
Figure 3.6(c).

When a triangulated graph G has a clique equal to M , two densities p and pG are by definition
guaranteed to have the same marginal on the variables xM . As a consequence of this fact and
Lemma 3.3, the projection operation p −→ pG is in this case a mapping from the solution set of
problem PM

G′ to the solution set of problem PM
G , and as the following proposition indicates, the

mapping is also a surjection.

Proposition 3.4 (Relationship Between Solutions to PM
G and PM

G′ ).
Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. If graph
G = (V,E) is a triangulated supergraph of G∼� with a clique equal to M and if G′ = (V,E′) is a

supergraph of G, then the mapping p −→ pG is a surjection from the solution set of problem PM
G′

onto the solution set of problem PM
G .

Proof. From the preceding discussion, p −→ pG is in this case a mapping from the solution set
of problem PM

G′ to the solution set of problem PM
G . Now, for every solution q̂ of problem PM

G ,

q̂ is also a solution to problem PM
G′ since q̂ ∈ PM

G′ (V, d) (due to the fact that G′ is a supergraph

of G). Hence, q −→ q is a mapping from the solution set of PM
G to the solution set of PM

G′ . In
addition, q̂G = q̂ proving that the identity map is a right inverse of p −→ pG and thereby proving
the proposition. �

� 3.4.3 Sufficient Conditions for Exact Realization

In the previous section, the relationship between solutions to problems Q, PM
G , and PM

G′ was
examined. In this section, this relationship is used to suggest sufficient conditions for solutions to
problem PM , which in turn leads to solutions to problem Q via the mapping p −→ pT . As we show,
the sufficient conditions suggested here are less stringent than the two constraints p̂ ∈ PM (V, d)
and p̂ = p̂T introduced in Section 3.4.1. Before stating these conditions, though, we first consider
sufficient conditions for the more general problem PM

G .
The sufficient conditions p̂ ∈ PM (V, d) and p̂ = p̂T for problem PM easily generalize to sufficient

conditions for the more general problem PM
G . Specifically, suppose a density p̂ satisfies the following

two constraints:

Condition 1 p̂ ∈ PM
G (V, d),

Condition 2 p̂ = p̂T .

Then, p̂ is a solution to problem PM
G since the preceding conditions imply p̂(xM ) = p̂T (xM ) =

p∗(xM ).
While these sufficient conditions are simple to state, they are not necessarily simple to use in

a practical sense. In particular, depending on the choice of G, it may be difficult to satisfy the
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first constraint, satisfy the second constraint, or simultaneously satisfy both constraints. The first
constraint is challenging when the set PM

G (V, d) is difficult to characterize, i.e. for some choices
of G, it can be challenging to find a density p̂ which lies in the set PM

G (V, d). On the other hand,
the second constraint p̂ = p̂T is difficult to satisfy when the set PM

G (V, d) is large, i.e. if PM
G (V, d)

contains a large number of densities which do not satisfy p̂ = p̂T , then searching for a density which
does satisfy this constraint may be computationally prohibitive.

As a specific illustration of the preceding discussion, consider the two possible extremes for
G, i.e. when G is equal to G∼� and when G is the complete graph. When G = G∼� , charac-

terizing the set PM
G∼
�
(V, d) is equivalent to finding every solution to problem Q, and if we could

perform this task, we would simply solve the original realization problem. In addition, notice
that every density p̂ ∈ PM

G∼
�
(V, d) is a multiscale model and therefore satisfies p̂ = p̂T . Conse-

quently, the second constraint is trivially satisfied in this case. At the other extreme, when G is
the complete graph, the set PM (V, d) is easy to characterize since it consists of all densities of
the form p(x) = p(xV −M |xM )p∗(xM ), i.e. choose any conditional density p(xV −M |xM ) such that
p(x) = p(xV −M |xM )p∗(xM ) is consistent with dimensions d. On the other hand, satisfying the
second constraint is a non-trivial task, since finding a density p̂ = p̂T constitutes the large search
necessary to solve problem PM .

For graphs G which lie between G∼� and the complete graph, there is a tradeoff in the ease of
satisfying both of these constraints. For some choices of G, the first condition is easier to satisfy
than the second and vice-versa. In the remainder of this section, we focus on a particular subset
of graphs G which somewhat mediate this tradeoff – namely, triangulated supergraphs of G∼� which
have a clique equal to M . These are precisely the graphs G considered previously in Proposition 3.4.

For such a graph G, the set PM
G (V, d) can be completely characterized in terms of the set

PM (V, d) as follows,

PM
G (V, d) =

{
q(x)

∣∣q = pG, for some p ∈ PM (V, d)
}
. (3.23)

In other words, PM
G (V, d) is the image of PM (V, d) under the mapping p −→ pG, a fact which is

a direct consequence of requiring G to have a clique equal to M .15 Therefore, for this particular
choice of G, it is relatively simple to find a density that satisfies the first constraint. At the same
time, since the set PM

G (V, d) has fewer elements than PM (V, d) and since the elements of PM
G (V, d)

possess additional factorization structure not possessed by all of the elements of PM (V, d), the task
of finding a density p which satisfies p = pT is relatively easier in the set PM

G (V, d) than PM (V, d).
Therefore, this particular choice of G provides a reasonable balance to the tradeoff between the two
constraints.

In addition to the tradeoff, this choice of G, along with Proposition 3.4, suggests interesting
sufficient conditions for solutions to problem PM . In particular, suppose q̂ satisfies the conditions
q̂ ∈ PM

G (V, d) and q̂ = q̂T , i.e. the previously stated sufficient conditions for problem PM
G , so that

q̂ is a solution to problem PM
G . Using Proposition 3.4, any density p̂ ∈ PM (V, d) which satisfies

q̂ = p̂G is therefore a solution to problem PM (V, d), and using Lemma 3.3, all of these conditions
can be stated directly in terms of p̂, i.e. p̂ ∈ PM (V, d) and p̂G = (p̂G)T = p̂T . Hence, we have used
the fact that p −→ pG is a surjection in order to translate the sufficient conditions for problem
PM
G directly into sufficient conditions for problem PM , and these new conditions depend on the

15If G is triangulated but has no clique equal to M , then characterizing PM
G (V, d) is more challenging, since the

image of PM (V, d) under the projection operation p −→ pG is a superset of PM
G (V, d) in this case.
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particular choice of G. The following theorem summarizes this result.

Theorem 3.3 (Sufficient Conditions for Problem PM ).
Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. Suppose
G = (V,E) is any triangulated supergraph of G∼� with a clique equal to M . If a density p̂ ∈ PM (V, d)

satisfies p̂G = p̂T , then p̂ is a solution to problem PM , and p̂T is a solution to problem Q.

Proof. Follows directly from the sufficient conditions for solutions to problem PM
G , Proposition 3.4,

and Lemma 3.3. See the preceding discussion. �

Notice that the sufficient conditions provided in Theorem 3.3 are less stringent than the two
conditions p̂ ∈ PM (V, d) and p̂ = p̂T introduced in Section 3.4.1. In particular, the condition
p̂G = p̂T requires that p̂ match p̂T only on the marginals indexed by the maximal cliques of G,
whereas the condition p̂ = p̂T requires the entire density p̂ to factor according to G∼� . With this
fact in mind, we would ideally like to minimize the number of edges in the graph G, or in other
words, choose a sparse graph since this would lead to less-stringent sufficient conditions. Of course,
the degree of sparsity is limited by the fact that G must be a triangulated supergraph of G∼� and

have a clique equal to M in order for p̂G = p̂T to be a sufficient condition. Therefore, we would
ultimately like to choose the sparsest graph G which satisfies the conditions in Theorem 3.3.

While Theorem 3.3 provides a very succinct sufficient condition for solutions to problem PM ,
this condition is deceptively simple. In Sections 3.5– 3.8, we provide a graph-theoretic framework to
facilitate a deeper understanding of this important result, and we ultimately show in Section 3.9.1
that Theorem 3.3 is equivalent to the result provided in Theorem 2.3 concerning marginalization-
invariant Markovianity.

� 3.4.4 Sufficient Conditions For Exact Realization with Augmented States

Using the notion of an augmented graph along with a few minor alterations in the results provided
in Sections 3.4.2 and 3.4.3, the sufficient conditions stated in Theorem 3.3 can be generalized to the
realization problem where augmented states are allowed. Suppose a rooted tree G� = (V,E) and

a target density p∗(xM ) are specified.16 Recall from Section 3.3.3 that G♯
� is the augmented graph

defined in terms of G� and M which incorporates the two types of vectors v(t) and v(d). Given that

G♯
� is defined on an expanded vertex set V ♯ (according to the rules discussed in Section 3.3.3), we

redefine the set M as follows,17

M , {v(t)|v(t) ∈ V ♯}, (3.24)

and we map the previous target density p∗(xM ) to the new target density p∗(xM ) which is now

indexed by the set of all target vertices v(t) in the graph G♯
�.

By redefining the set M , the statements of problems PM and Q remain unchanged even when
considering augmented states. That is, the goal of problem PM is to find a density p̂ ∈ PM (V, d)
such that p̂T (xM ) = p∗(xM ), and the goal of problem Q is to find a density q̂ ∈ PM

G�
(V, d) such that

q̂(xM ) = p∗(xM ). The only difference is that the marginals p̂T (xM ), q̂(xM ), and p∗(xM ), are now
indexed by the target vertices v(t) ∈ V ♯ rather than the vertices v ∈ V .

16We assume that the set M contains some non-leaf vertices; otherwise, augmented states are unnecessary.
17This redefined set M is equivalent to the augmented marginalization constraint set M ♯ defined in Section 2.7.3

via the “augmentation rule”.
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When using augmented states, the graph-theoretic aspects of the results in Sections 3.4.2
and 3.4.3 become slightly more interesting. This is due to the fact that we are now working
on an expanded set of vertices, and in particular, the tree G∼� has been replaced by a more com-

plicated triangulated graph G♯
�. As discussed in Section 3.3.3, though, the two graphs G∼� and G♯

�

imply the same conditional independencies, and therefore, the two projections pG∼
�

and p
G♯
�

can be

considered interchangeably. In addition, the results provided in Proposition 3.3, Proposition 3.4,
and Theorem 3.3 do not rely on the fact that G∼� is a tree, but instead, hold more generally for the
class of triangulated graphs.

Rather than restate all of the preceding results for the case of augmented graphs, we simply
restate the most important result, namely Theorem 3.3.

Theorem 3.4 (Sufficient Conditions for Problem PM with Augmented States).
Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. Let M

be redefined according to (3.24), and let p∗(xM ) be indexed according to this new set M . Suppose

G♯ = (V ♯, E) is a triangulated supergraph of G♯
� = (V ♯, E♯) with a clique equal to M . If a density

p̂ ∈ PM (V, d) satisfies p̂G♯ = p̂T , then p̂ is a solution to problem PM , and p̂T is a solution to
problem Q.

Proof. Since p̂ ∈ PM (V, d) and G♯ has a clique equal to M , we have p̂G♯(xM ) = p̂(xM ) = p∗(xM ),
and since p̂G♯ = p̂T , we have p̂T (xM ) = p̂G♯(xM ) = p∗(xM ), thereby proving that p̂ is a solution to
problem PM . �

The essential difference between Theorem 3.4 and Theorem 3.3 is that all of the graph-theoretic
requirements are stated in terms of augmented graphs – in particular, the augmented graph G♯ must
be a supergraph of G♯

� and have a clique equal to the redefined set M . In Section 3.9.2, we show
that Theorem 3.4 is equivalent to the result provided in Theorem 2.4 concerning marginalization-
invariant Markovianity for augmented states.

� 3.5 A Road Map

In this section, we provide a motivating example to help guide the reader through the theory devel-
oped in Sections 3.6–3.8. In these subsequent sections, the graph-theoretic and probabilistic results
apply to general triangulated graphs, and the ideas are presented generically without motivation
for or reference to the exact realization problem. As such, the reader may need to occasionally refer
back to this example in order to better understand the relationship between subsequent results and
the realization problem. After establishing the needed theoretical results in Sections 3.6–3.8, we
return to the exact realization problem in Section 3.9.

Example 3.4 (A Motivating Example).
Consider the rooted tree G� and its corresponding undirected version G∼� shown previously in
Figures 3.4(a) and (b), and suppose a target density p∗(xM ) is indexed by the leaf vertices of G�,
i.e. M = {3, 4, 5, 6}.18 Using Theorem 3.3, any density p ∈ PM (V, d) satisfying the condition
pG = pT (for an appropriate choice of G) is a solution to problem PM . In this example, we study
the constraints imposed on a density p ∈ PM (V, d) by the condition pG = pT ; in particular, we
provide a set of conditional independencies which ensure this constraint is satisfied.

18Recall that this is the same problem considered in Example 2.5 in Section 2.6.
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Let X be a random process with density p ∈ PM (V, d), and consider the following family of
sets,

M0 = {{0, 3, 4}, {0, 5, 6}}

M1 = {{0, 1}, {1, 3}, {1, 4}}

M2 = {{0, 2}, {2, 5}, {2, 6}},

along with the following equivalences,19

⊥XM0 ⇐⇒
p(x0, x3, x4, x5, x6) = p(x0)p(x3, x4|x0)p(x5, x6|x0)

=
p(x0, x3, x4)p(x0, x5, x6)

p(x0)

(3.25a)

⊥XM1 ⇐⇒
p(x0, x1, x3, x4) = p(x1)p(x0|x1)p(x3|x1)p(x4|x1)

=
p(x0, x1)p(x1, x3)p(x1, x4)

p(x1)p(x1)

(3.25b)

⊥XM2 ⇐⇒
p(x0, x2, x5, x6) = p(x2)p(x0|x2)p(x5|x2)p(x6|x2)

=
p(x0, x2)p(x2, x5)p(x2, x6)

p(x2)p(x2)
.

(3.25c)

The first equivalence requires random vectors {X3,X4} and {X5,X6} to be conditionally indepen-
dent given X0 = x0. The second equivalence requires X0, X3, and X4 to be jointly independent
conditioned on X1 = x1, and the third equivalence requires X0, X5, and X6 to be jointly indepen-
dent conditioned on X2 = x2.

If X satisfies the conditions ⊥XM0 , ⊥XM1 , and ⊥XM2, it can be shown that pG = pT for a
specific graph G. To do this, consider the following special sequence of densities defined in terms
of particular marginals of p,

q(0)(x) = pT (x) =
p(x0, x1)p(x0, x2)p(x1, x3)p(x1, x4)p(x2, x5)p(x2, x6)

p(x0)p(x1)p(x1)p(x2)p(x2)

q(1)(x) = q(0)(x)
p(x0, x2, x5, x6)[

p(x0, x2)p(x2, x5)p(x2, x6)

p(x2)p(x2)

] =
p(x0, x1)p(x1, x3)p(x1, x4)p(x0, x2, x5, x6)

p(x0)p(x1)p(x1)

q(2)(x) = q(1)(x)
p(x0, x1, x3, x4)[

p(x0, x1)p(x1, x3)p(x1, x4)

p(x1)p(x1)

] =
p(x0, x1, x3, x4)p(x0, x2, x5, x6)

p(x0)

q(3)(x) = q(2)(x)
p(x0, x3, x4, x5, x6)[

p(x0, x3, x4)p(x0, x5, x6)

p(x0)

] =
p(x0, x1, x3, x4)p(x0, x2, x5, x6)p(x0, x3, x4, x5, x6)

p(x0, x3, x4)p(x0, x5, x6)
.

If X satisfies the conditions ⊥XM0 , ⊥XM1, and ⊥XM2 , the equivalences in (3.25) imply q(0) =
q(1) = q(2) = q(3).

19Recall from Definition 2.5 that the notation ⊥XS is a shorthand for a specific set of conditional independencies.
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The sequence of densities q(0), q(1), q(2), and q(3) is rather special. Specifically, each q(i) is the
projection of p onto the graph Gi, where G0, G1, G2, and G3, along with corresponding junction trees,
are shown in Figure 3.7. Notice that the graphs Gi, i = 1, 2, 3, are all triangulated supergraphs of
G∼� , and furthermore, G3 contains a clique equal to M = {3, 4, 5, 6}. Consequently, G3 fulfills the
requirements of Theorem 3.3. Then, if X satisfies the conditions ⊥XM0 , ⊥XM1 , and ⊥XM2 so
that q(0) = pT = q(3) = pG3, Theorem 3.3 indicates that p is a solution to problem PM .

As a final note, notice that the conditions ⊥XM0 , ⊥XM1, and ⊥XM2 are the same as those pre-
viously considered in Example 2.5. In fact, these are the conditions required by the marginalization-
invariant Markov property for the ordering (0, 1, 2). This observation is not a coincidence, as we
later show in Section 3.9. ◭

The preceding example suggests a list of conditional independencies that guarantee a solution
to problem PM ; of course, there are several other equally valid lists. The goal of Sections 3.6–3.8
is to: (1) develop a graph-theoretic framework by which to enumerate other possible lists and (2)
derive an accompanying set of probabilistic relationships which prove that each such list implies
the sufficient conditions in Theorem 3.3. In order fulfill this goal, there are three main issues to be
addressed, each of which is highlighted by the preceding example:

(1) characterize the equivalences in (3.25) for more general problems,

(2) generate an appropriate sequence of graphs Gi in order to define the densities q(i) = pGi
,

(3) derive the functional relationship that exists between q(i) and q(i−1).

We now consider each of these issues in turn.
Within the context of Example 3.4, the first issue is somewhat trivial since the equivalences

in (3.25) hold by the definition of conditional independence. For more general problems, however,
stating these equivalences succinctly is more challenging, and consequently, to deal with this par-
ticular issue, we introduce in Section 3.7.2 a graph-theoretic object called a neighborhood separator.
The defining properties of a neighborhood separator allow it to be easily identified in a graph G,
and this type of object is directly linked to equivalences like those in (3.25). While we do not
discuss the specific details of a neighborhood separator here, the interested reader should refer to
Section 3.7.2 for its definition and application.

As Example 3.4 indicates, the sequence of graphs Gi shown in Figure 3.7 is special in that each
Gi is a triangulated supergraph of G∼� , and in addition, the final graph in the sequence has a clique
equal to M . In Section 3.8, we suggest a method for generating such a sequence of graphs, using
what we call the modified elimination game – a generalization of the elimination game discussed
in Section 3.6. While the elimination game can be used to generate a sequence G0, . . . ,Gn of
triangulated graphs, the graph Gn does not necessarily have a clique equal to M , and because of
this fact, we introduce the modified elimination game.

Given a sequence of graphs G0, . . . ,Gn generated by the modified elimination game, the third
and final issue concerns the functional relationship that exists between the densities pG0, . . . , pGn .
To address this issue, we show that the modified elimination game generates a sequence of clique
extensions, i.e. each graph Gi has only one additional maximal clique not contained in Gi−1. For
example, the graphs shown in Figure 3.7 form such a sequence, since {0, 2, 5, 6}, {0, 1, 3, 4}, and
{0, 3, 4, 5, 6} are the unique new maximal cliques respectively contained in G1, G2, and G3. Since the
modified elimination game generates a sequence of clique extensions, a simple functional relationship
exists between pGi

and pGi−1 as shown in Section 3.7.1.
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Figure 3.7. The sequence of triangulated graphs Gi and corresponding junction trees considered
in Example 3.4. (a) G0 (b) A junction tree for G0. (c) G1 (d) A junction tree for G1. (e) G2 (f) A
junction tree for G2. (g) G3 (h) A junction tree for G3.
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� 3.6 The Elimination Game

The elimination game was first introduced by Parter [83] for the purpose of examining the fill
generated by Gaussian elimination when solving a system of linear equations. Later, Rose [89]
generalized the results of Parter and showed that there exist elimination sequences which produce no
fill for a broader class of problems. We are interested in the elimination game solely for the purpose
of introducing several graph-theoretic results and to further explore the relationship between graphs
and probabilistic modeling. In this section, we formally define what we mean by the elimination
game; we discuss the elimination game in the context of triangulated graphs; and we derive an
important probabilistic relationship.

� 3.6.1 Definition and Notation

The key graphical operation involved in the elimination game is that of vertex elimination. For the
immediate discussion, assume that an arbitrary graph G = (V,E), not necessarily triangulated, is
given. Then, for any vertex v ∈ V , eliminating v from the graph G involves two steps: (1) add
edges to G so that NG(v) becomes a clique; (2) remove vertex v and all incident edges from this
new graph. The first step can be accomplished by adding the edges contained in DG(v); the second
step generates the subgraph induced by the vertices V − {v}. More formally, these steps may be
written as follows,

G′ = (V,E ∪DG(v)) (3.26a)

G↓ = G′(V − {v}), (3.26b)

where G′ is an intermediate graph generated in the process of elimination and G↓ is the resulting
elimination graph. We henceforth use the notation

y(G, v) to denote the elimination graph obtained
by eliminating vertex v from G. Figure 3.8 provides a graphical illustration of the steps involved
in vertex elimination.

Extending this idea, we now consider the process of eliminating a subset of the vertices of a
graph G = (V,E). Specifically, given a set A ⊂ V , the vertices in V − A are eliminated one-by-
one, and the resulting subgraph is denoted by G 〈A〉. It can be shown that the graph G 〈A〉 is
independent of the order in which the vertices V − A are eliminated [82]. An illustration of this
invariance property is shown in Figures 3.9 and 3.10, where the elimination graphs in Figures 3.9(c)
and 3.10(c) are identical yet obtained by eliminating vertices 1 and 2 in a different order.

Note that the subgraph induced by the set A, i.e. G (A), is not necessarily the same as G 〈A〉
since additional edges may be added in the process of vertex elimination. In addition, notice that
G 〈V − {v}〉 and

y(G, v) are equivalent notations for the elimination graph obtained by eliminating
vertex v.

Having defined vertex elimination, we are now in a position to discuss the elimination game,
which simply involves a sequence of vertex eliminations. To define such a sequence, an ordering
on the vertices is required: an ordering α on a set of vertices V is a bijection of the form α :
{1, . . . , n} → V , where n = |V |. Given an ordering α, we define a sequence of elimination graphs
as follows

G↓0 , G (3.27a)

G↓i ,

y
(
G↓i−1, α(i)

)
= G 〈V − {α(1), . . . , α(i)}〉 , i = 1, . . . , n. (3.27b)
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NG[v]G = (V, E)

v v

G ′ = (V, E ∪DG(v)) NG[v]

(a) (b)

y(G, v) = G ′(V − {v}) NG(v)

(c)

Figure 3.8. Illustration of the steps involved in vertex elimination. (a) A graph G = (V,E) is given.
(b) Graph G′ is formed by adding edges such that NG(v) becomes a clique. (c) Vertex v and all
incident edges are removed from the graph to give the elimination graph

y(G, v) .
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Figure 3.9. Graphical illustration of a sequence of elimination graphs for the vertex ordering

α = (1, 2, 3, 4, 5, 6). The dashed edges indicate the elimination deficiencies. (a) G↓0 = G (solid), D↓
G(1)

(dashed) (b) G↓1 (solid), D↓
G(2) (dashed) (c) G↓2 (solid), D↓

G(3) (dashed)
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Figure 3.10. Graphical illustration of a sequence of elimination graphs for the vertex ordering

α = (2, 1, 3, 4, 5, 6). The dashed edges indicate the elimination deficiencies. (a) G↓0 = G (solid), D↓
G(2)

(dashed) (b) G↓1 (solid), D↓
G(1) (dashed) (c) G↓2 (solid), D↓

G(3) (dashed)

Therefore, the graph G↓i is obtained from G by eliminating the vertices {α(1), . . . , α(i)}, or equiva-

lently, G↓i is obtained from G↓i−1 by eliminating vertex α(i). Even though the sequence (3.27) is a
function of α, we suppress this dependence for notational clarity; the particular choice of α will be
clear from context. Figures 3.9 and 3.10 illustrate two sequences of elimination graphs for different
vertex orderings.

For our purposes, we are less interested in the sequence of graphs {G↓i } than in the edges added

in the process of elimination. Specifically, consider the two graphs G↓i−1 and G↓i . To eliminate α(i)

from G↓i−1, the edges in D
G↓

i−1
(α(i)) must be added to G↓i−1in order to make N

G↓
i−1

(α(i)) a clique.

We call these added edges fill, and we introduce notation to denote this fill. In particular, given an
ordering α, the elimination deficiency of vertex v = α(i) is defined as

D↓
G(v) , D

G↓
i−1

(v), v = α(i), (3.28)

i.e. it is the deficiency of vertex α(i) in the elimination graph G↓i−1. Similarly, the elimination
neighborhood of vertex v = α(i) is defined as

N↓
G(v) , N

G↓
i−1

(v), v = α(i), (3.29a)

N↓
G [v] , N↓

G(v) ∪ {v}. (3.29b)

Even though bothD↓
G(v) and N↓

G(v) are functions of α, we again choose to suppress this dependence
for clarity.

As an illustration, the dashed lines in Figures 3.9(a),(b), and (c) indicate the edges contained

in D↓
G(1), D↓

G(2), and D↓
G(3) respectively, for the ordering α = (1, 2, 3, 4, 5, 6).20 The dashed lines in

Figures 3.10(a),(b), and (c) indicate the edges contained in D↓
G(2), D↓

G(1), and D↓
G(3) respectively,

for the ordering α = (2, 1, 3, 4, 5, 6). Notice that while the elimination graph G↓2 is identical in both
figures, the edges added during the elimination process are somewhat different.

In general, the number of edges added during the elimination process is dependent on the
initial graph G and the ordering α. For example, as we discuss in the next section, if the initial

20Recall from the previous chapter that we used the ordered set (v1, . . . , vm) to denote a particular ordering on the
non-leaf vertices. We also use this notation here, when it is necessary for us to state a specific ordering α on the full
set of vertices.
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graph G is triangulated then there exists an ordering α such that no fill edges are generated during
the elimination game. Also, if the initial graph G is not triangulated, then adding all of the
fill edges to G will generate a triangulated graph. Specifically, given a graph G = (V,E) (not

necessarily triangulated) and an ordering α, if we define F , ∪v∈VD
↓
G(v), then G′ = (V,E ∪ F )

is triangulated [82]. Triangulated graphs and vertex orderings are further examined in the next
section.

� 3.6.2 Elimination Orderings

As mentioned above, the degree of fill generated during the elimination game is closely tied to the
original graph G and the ordering α on the vertices. If there exists an ordering α such that no fill
is generated during the elimination process, then we call α a perfect elimination ordering. More
specifically, α is a perfect elimination ordering for a graph G = (V,E) if D↓

G(v) = {∅} for all v ∈ V .
The class of graphs G for which a perfect elimination ordering always exists is precisely the class
of triangulated graphs, as evidenced by the following well-known result.

Theorem 3.5 (Triangulated Graphs and Perfect Elimination Orderings).
A graph is triangulated if and only if there exists a perfect elimination ordering on the vertices.

Proof. See [89]. �

For instance, the graph represented by the solid lines in Figure 3.9(a) is not triangulated. In fact,
no vertex in the graph is simplicial, implying that no vertex can even start a perfect elimination
ordering. If the dashed edges shown in Figures 3.9(a)–(c) are added to the graph in Figure 3.9(a),
then the resulting graph is triangulated, since by construction α = (1, 2, 3, 4, 5, 6) is a perfect
elimination ordering.

In subsequent sections, we occasionally place additional restrictions on an ordering α. For
example, given a graph G = (V,E) with |V | = n and a set A ⊂ V with |A| = n− k, we sometimes
require the first k vertices of α, i.e. α(1), . . . , α(k), to provide an ordering on the set V −A, while
the last n− k elements of α, i.e. α(k + 1), . . . , α(n), to provide an ordering on the set A. If this is
the case, we say that α is an elimination ordering down to A, i.e. α(j) ∈ A for j = k + 1, . . . , n.
If in addition α is a perfect elimination ordering, we say that α is a perfect elimination ordering
down to A. The following result indicates that for triangulated graphs we can always find a perfect
elimination ordering down to A if A corresponds to a clique of the graph.

Lemma 3.4 (Perfect Elimination Down to a Clique).
Let G = (V,E) be a triangulated graph with clique C ⊆ V . There exists a perfect elimination

ordering down to C.

Proof. See [89]. �

In some instances, we are not interested in the properties of a complete ordering of the vertices
but rather the first k vertices in an ordering. We say that α is a k-partial elimination ordering if
D↓

G(α(i)) = {∅} for i = 1, . . . , k. In other words, α(1), . . . , α(k) is the start of a perfect elimination
ordering. Of course, a perfect elimination ordering is always a k-partial elimination ordering, but a
k-partial elimination ordering may or may not be a perfect elimination ordering. When the value
of k is not important, we refer to a k-partial elimination ordering as simply a partial elimination
ordering.
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Given a graph G = (V,E) and a set A ⊂ V , we stated earlier that the induced subgraph G (A)
and the elimination graph G 〈A〉 are not necessarily the same. Using the preceding definitions, we
can state conditions under which the two graphs are identical.

Lemma 3.5 (Induced Subgraphs and Elimination Graphs).
Given G = (V,E) and a set A ⊂ V with |V |−k = |A|, the two graphs G (A) and G 〈A〉 are identical
if there exists a k-partial elimination ordering α down to A.

Proof. If α is a k-partial elimination ordering, no edges are added in the process of elimination
down to A, and therefore, G 〈A〉 is by definition the subgraph induced by A. �

� 3.6.3 Vertex Elimination and Marginalization

This section relates the graph-theoretic notion of vertex elimination to the probabilistic notion
of marginalization. For our purposes, it is sufficient to examine this relationship for the class of
triangulated graphs and for the special case where the vertex to be eliminated is simplicial. The
fact that the graphs are triangulated allows us to obtain an explicit factorization of the densities
in terms of their marginals. In addition, since we consider simplicial vertices, the process of vertex
elimination does not introduce additional edges in the elimination graph, and as we show here, the
resulting marginal density does not possess additional dependencies beyond those contained in the
original density.

A Factorization Involving Simplicial Vertices

Let G = (V,E) be an arbitrary triangulated graph, and let p(xV ) be a probability density indexed
by V . As discussed earlier, pG is a well-defined probability density, and as such, we can write

pG(x) = pG(xv|xV −{v})pG(xV −{v}). (3.30)

In addition, pG by definition respects the Markov properties implied by the graph G. Consequently,
the separation properties of G may be used to characterize the density pG(xv|xV −{v}), and doing
so, gives the following

pG(xv |xV −{v}) = pG(xv|xNG(v)). (3.31)

This indicates that XNG(v) is a sufficient statistic for XV −{v} (under the density pG) and follows
from the fact that NG(v) separates vertex v from the rest of the vertices in G. Combining (3.30) and
(3.31) provides a functional relationship between the full density pG(x) and the marginal density
pG(xV −{v}).

The important consequence of (3.31) is the fact that pG(xv|xV −{v}) is only a function of the
“local” variables Xv and XNG(v). However, a closed-form expression for this function (in terms of
the original density p) is not generally possible because of the fact that pG(xv|xNG(v)) is obtained
by marginalizing the density pG . If vertex v is simplicial, though, this integration is not necessary,
and we can immediately write pG(xv|xV −{v}) = p(xv|xNG(v)), a fact which we now prove.

Let T = (C,S) be the junction tree representation for G = (V,E), and let vertex v ∈ V be
simplicial in G. Since v is simplicial, Lemma 3.1 indicates that NG [v] is the unique maximal clique
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of G containing v. If we define C , NG [v], then the following decomposition for pG(x) holds,

pG(x) =

∏
C′∈C p(xC′)∏
S′∈S p(xS′)

= p(xC)

∏
C′∈C−{C} p(xC′)
∏

S′∈S p(xS′)

= p(xv|xNG(v))

[
p(xNG(v))

∏
C′∈C−{C} p(xC′)
∏

S′∈S p(xS′)

]
. (3.32)

Since v is part of the unique maximal clique C, the bracketed expression in (3.32) does not contain
the variable xv. Consequently, integrating out xv from both (3.30) and (3.32) shows that pG(xV −{v})
is equal to the term in brackets. Thus, when vertex v is simplicial in G, the following probabilistic
relationship holds,

pG(x) = p(xv|xNG(v))pG(xV −{v}). (3.33)

Simplicial Vertices and Marginalization

Another interesting thing happens when v is simplicial. Specifically, we are able to easily char-
acterize the independence structure of the marginal density pG(xV −{v}). Namely, we can write

pG(xV −{v}) = pG↓(x) where G↓ =
y(G, v) ,21 and therefore, the graph G↓ characterizes all of the

independencies present in the marginal density pG(xV −{v}). To show this, we first examine the
junction tree representation, and we prove that it changes in a predictable fashion when a simpli-
cial vertex v ∈ V is eliminated from a triangulated graph. In particular, the following proposition
indicates that the junction tree representation can change in only one of two ways.

Proposition 3.5 (Vertex Elimination and Junction Trees).
Let G = (V,E) be a triangulated graph, and let T = (C,S) be the junction tree representation of G.
Suppose v ∈ V is a simplicial vertex, and let C denote the unique maximal clique containing v. If
we define the elimination graph G↓ ,

y(G, v) as well as the sets C↓ , C − {v} and C↓ , C − {C},
then one and only one of the following is a junction tree representation T ↓ for G↓:

(1) T ↓ =
(
C↓ ∪ {C↓},S

)
,

(2) T ↓ = (C↓,S − {C↓}).

Proof. See Appendix B.1. �

The first junction tree representation occurs when C − {v} is a maximal clique in the elimination
graph G↓, while the second occurs when C − {v} is a subset of another maximal clique in G↓.

To illustrate these two possibilities, consider the graphs and junction trees shown in Figure 3.11.
The original triangulated graph G and a corresponding junction tree are shown in Figures 3.11(a)
and (b) respectively. Notice that {1, 2, 4, 5} is a maximal clique in G. If vertex 1 is eliminated
from G to form G↓, then {2, 4, 5} becomes a maximal clique of G↓ as illustrated in Figure 3.11(c),
and because of this, the junction tree simply reflects this change in the set of maximal cliques,
as illustrated in Figure 3.11(d). Consider now what happens when vertex 6 is eliminated from G
as shown in Figure 3.11(e). In this case, {3, 5, 6} is a maximal clique of G, but when vertex 6 is
eliminated to form G↓, {3, 5} is a subset of the maximal clique {2, 3, 5} in G↓. Consequently, the
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Figure 3.11. Graphical illustration of the two possible junction trees which can result from removing
a simplicial vertex from a triangulated graph. (a) The original graph G. (b) A junction tree for the
graph G in (a). (c) The elimination graph G↓ =

y(G, 1) . (d) A junction tree for G↓ in (c). The
maximal clique {1, 2, 4, 5} in G is replaced by the new maximal clique {2, 4, 5}. (e) The elimination
graph G↓ =

y(G, 6) . (f) A junction tree for G↓ in (e). The maximal clique {3, 5, 6} as well as the
separator {3, 5} have been eliminated.
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junction tree no longer has the maximal clique {3, 5, 6} as well as the separator {3, 5} as shown in
Figure 3.11(f).

Returning to our earlier goal, we now show that the marginal density pG(xV −{v}) (or equivalently

the bracketed expression in (3.32)) is equal to pG↓(x) with G↓ =
y(G, v) . Consider the two cases

for the junction tree representation of G↓ as indicated in Proposition 3.5. In the first case, the
separator sets for G↓ are the same as the separators S of G, and the set of maximal cliques of G↓ are
given by (C − {C}) ∪ {NG(v)}, where we have used the fact that C − {v} = NG(v). Consequently,
the bracketed expression in (3.32) is by definition equal to pG↓(x). In the second case provided in
Proposition 3.5, the set of maximal cliques of G↓ is given by C − {C}, and the set of separators is
given by S − {NG(v)}. We also know from the proof to Proposition 3.5 that, in this second case,
at least one of the separator sets of G is equal to NG(v). Consequently, the bracketed expression in
(3.32) is by definition equal to pG↓(x) because p(xNG(v)) cancels with one of the terms p(xS).

Hence, we have proven the following important relationship,

pG(x) = p(xv|xNG(v))pG↓(x). (3.34)

Since v is simplicial, we also know that the elimination graph G↓ is equal to the subgraph G(V −{v}),
and consequently, since pG(xV −{v}) = pG↓(x), the marginal density has no additional dependencies
than those exhibited by the original density pG. All of these ideas are summarized in the following
proposition.

Proposition 3.6 (Vertex Elimination and Marginalization).
Let G = (V,E) be a triangulated graph. For v ∈ V , define the elimination graph G↓ ,

y(G, v) .
Then, the following relationship holds

pG(x) = pG(xv|xNG(v))pG(xV −{v}), (3.35)

and if v is a simplicial vertex in G, then

pG(x) = p(xv|xNG(v))pG(xV −{v}) = p(xv|xNG(v))pG↓(x). (3.36)

Proof. See the preceding discussion. �

The relationship in (3.36) may also be applied in a recursive fashion to a sequence of elimination
graphs, as long as a simplicial vertex is removed at each step. The following corollary states this
extension of Proposition 3.6 for a k-partial elimination ordering α.

Corollary 3.1 (k-Partial Elimination Orderings and Marginalization).
Let G = (V,E) be a triangulated graph. Suppose α is a k-partial elimination ordering, and define

the elimination graph G↓ , G 〈V − {α(1), . . . , α(k)}〉. Then, the following decomposition holds for
pG(x),

pG(x) = pG↓ (x)
k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
= pG

(
xV −{α(1),...,α(k)}

) k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
.

Proof. Follows directly by recursively applying (3.36). See Appendix B.2 for details. �

21Recall from the discussion in Section 3.3.2 that the shorthand pG↓(x) is often used instead of pG↓(xV −{v}).
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� 3.7 Clique Extensions and Neighborhood Separators

� 3.7.1 Clique Extensions

The relationship between vertex elimination and marginalization, established in the preceding sec-
tion, may be used to derive a simple functional relationship between two densities pG and pG′ for
some choices of G and G′. In this section, we focus on triangulated graphs G and G′ where G′ is a
supergraph of G. The fact that G′ has the same edges as G plus additional edges implies that pG′

exhibits fewer conditional independencies than pG, and as we show, these conditional independen-
cies are easy to characterize due to the structure of the graphs G′ considered here. In particular,
the relationship between pG and pG′ is simple because G′ is not an arbitrary supergraph of G but is
contained within a subclass of all supergraphs called clique extensions.

Definition 3.3 (Clique Extensions).
Let G = (V,E) be an arbitrary triangulated graph. A graph G′ = (V,E′) is called a clique extension
of G if G′ is a triangulated supergraph of G with only one additional maximal clique not contained
in G. ◭

Note that any supergraph G′ of a graph G must have at least one new maximal clique not
contained in G. The key aspect of a clique extension is that it only has one additional maximal
clique. Of course, this maximal clique might be formed by joining together many smaller cliques
into a new larger clique, and consequently, the junction tree representations for G and G′ can be
significantly different. As we later show, however, it is not necessary to explicitly examine the
junction tree representation in order to derive a probabilistic relationship between pG and pG′ .

One Type of Clique Extension

For a general triangulated graph G, it may be difficult to characterize which edges can be added
to G in order to generate a clique extension. As it turns out, we have already discussed one type
of clique extension. Namely, if we choose some vertex v ∈ V and add all of the edges in DG(v) to
the graph G, then the resulting graph is a clique extension with new maximal clique NG [v]. For
example, consider the graph G shown in Figure 3.12(a), where the solid lines correspond to edges
of G. If the dashed edges corresponding to DG(2) are added to the graph, then the resulting graph
is a clique extension with new maximal clique NG[2] = {1, 2, 3, 5, 6}.

In subsequent sections, we consider clique extensions like that generated by adding edges DG(2)
to the graph in Figure 3.12(a); however, we may not add all of the edges in the set DG(2). Instead,
we may choose to add only a subset of these edges. Consider the three possibilities which could
result from choosing such a subset, as illustrated in Figures 3.12(b)–(d). If only edge {1, 3} is
added to the graph, then the resulting graph is not triangulated because the cycle [1, 3, 6, 5, 1]
has no chord. If edges {1, 3} and {3, 5} are added, the resulting graph is triangulated but not a
clique extension since two new maximal cliques {2, 3, 5, 6} and {1, 2, 3, 5} are generated. Finally, if
edge {1, 6} is added, the resulting graph is a clique extension with the unique new maximal clique
{1, 2, 5, 6}.

Given that choosing only a subset of the edges in DG(2) can generate three such possibilities, we
now formally characterize when such a choice will generate a clique extension; this characterization
is provided in Proposition 3.7. Before that, though, we graphically illustrate this characterization.
Consider the graph G in Figure 3.12(a), and notice that vertices 3 and 4 are the start of a perfect
elimination ordering for G. If we define G↓ , G 〈{1, 2, 5, 6}〉 = G ({1, 2, 5, 6}), then the deficiency
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Figure 3.12. (a) The solid lines correspond to a triangulated graph G, while the dashed lines
correspond to edges contained in DG(2). If all of the dashed edges are added to the graph, the
resulting graph is a clique extension with new maximal clique {1, 2, 3, 5, 6}. If only a subset of the
edges in DG(2) are added to G then the resulting graph has different properties depending on which
edges are chosen: (b) Edge {1, 3} added; the graph is not triangulated. (c) Edges {1, 3} and {3, 5}
added; the graph is triangulated but not a clique extension since two new maximal cliques {2, 3, 5, 6}
and {1, 2, 3, 5} are formed. (d) Edge {1, 6} added; the graph is a clique extension with new maximal
clique {1, 2, 5, 6}.

of vertex 2 in this new graph is given by DG↓(2) = {{1, 6}}, i.e. G↓ is a subgraph of G where the
deficiency of vertex 2 is the single edge {1, 6}. Adding the edge {1, 6} to the graph generates the
clique extension shown in Figure 3.12(d).

More generally, Proposition 3.7 shows that a set of edges F ⊆ DG(v) added to a graph G
will generate a clique extension if and only if there exists an elimination graph of G (obtained by
successively eliminating simplicial vertices) where F is equal to the deficiency of v in the elimination
graph. Notice that the graphs in Figures 3.12(b) and (c) are not clique extensions of G because no
such elimination graph exists.

Proposition 3.7 (Elimination Graphs and Clique Extensions).
Let G = (V,E) be a triangulated graph. For some v ∈ V , let F ⊆ DG(v), F 6= {∅}, and define
the new graph G′ , (V,E ∪ F ). Then, G′ is a clique extension of G if and only if there exists a
k-partial elimination ordering α of G such that F = DG↓(v), with G↓ , G 〈V − {α(1), . . . , α(k)}〉.
Furthermore, the unique new maximal clique C contained in G′ is given by C = NG↓ [v].

Proof. See Appendix B.3. �

Graph Structure of Clique Extensions

Having defined clique extensions, we now provide several important properties of clique extensions.
The first property involves what we call the internal structure of a clique extension, namely the
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structure within the new maximal clique. The following proposition states that every edge {a, b}
contained in the clique extension G′ but not G must satisfy {a, b} ⊂ C, where C is the new maximal
clique of G′. Simply stated, this constraint must be satisfied because otherwise more than one
maximal clique would be formed.

Proposition 3.8 (Internal Structure of Clique Extensions).
Let G = (V,E) be a triangulated graph, and let G′ = (V,E ∪ F ) with E ∩ F = ∅ be a clique

extension of G. Suppose C is the unique maximal clique contained in G′ but not G. If {a, b} ∈ F
then {a, b} ⊂ C.

Proof. Suppose {a, b} ∈ F and {a, b} 6⊂ C, then {a, b} ⊂ C ′, where C ′ 6= C is a maximal clique of
G′, and since {a, b} 6∈ E, C ′ is not a maximal clique of G. This contradicts the fact that G′ is a
clique extension of G. �

Hence, this first property indicates that the edges of the two graphs G and G′ differ only within the
maximal clique C.

We now consider the external structure of a clique extension, i.e. the structure outside the
maximal clique C. The following proposition provides two related properties of external structure.

Proposition 3.9 (External Structure of Clique Extensions).
Let G, G′, and C be defined as in Proposition 3.8. Let α be a perfect elimination ordering down to
C for the graph G′. If k = |V | − |C|, then:

(1) N↓
G(α(i)) = N↓

G′(α(i)) for i = 1, . . . , k,

(2) α is also a k-partial elimination ordering for G.

Proof.

(1) By Lemma 3.4, we know that a perfect elimination ordering α down to C exists for the graph

G′. If N↓
G(α(i)) 6= N↓

G′(α(i)) for some i = 1, . . . , k, then there exists an edge {α(i), b} ∈ E ∪F
and {α(i), b} 6∈ E. Hence, {α(i), b} ∈ F , and by Proposition 3.8, we must have {α(i), b} ⊂ C,
which contradicts the fact that α(i) 6∈ C for i = 1, . . . , k.

(2) Suppose α is not a k-partial elimination ordering for G. Then, D↓
G(α(i)) 6= {∅} for at least

one i = 1, . . . , k. Thus, we have at least one edge {a, b} ∈ D↓
G(α(i)) and {a, b} /∈ D↓

G′(α(i)),
and consequently, {a, b} is not an edge in G but is an edge in G′. This implies that {α(i), a, b}
is a clique in G′ (but not G) and therefore a subset of some maximal clique; call this maximal
clique C ′. Now, we have α(i) ∈ C ′ and α(i) /∈ C (by the definition of the ordering α), and
thus, C ′ 6= C is not a maximal clique of G. This contradicts the fact that G′ is a clique
extension of G. �

The first property in Proposition 3.9 indicates that the elimination neighborhoods of G and G′

are identical if a k-partial elimination ordering α down to C is chosen. The second property
indicates that these elimination neighborhoods are cliques in their respective elimination graphs,
or equivalently that α is also a k-partial elimination ordering for G.

Hence, Proposition 3.8 shows that the graphs G and G′ differ only on the subgraphs induced by
C, and Proposition 3.9 shows that the graphs G and G′ share the same perfect elimination orderings
down to the clique C. We use these properties in what follows.
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Probabilistic Relationships for Clique Extensions

The fact that the structure of a clique extension G′ of a graph G differs only on the new maxi-
mal clique C suggests that perhaps the two projections pG and pG′ differ only on their marginal
densities pG(xC) and pG′(xC). We now show that this is the case by utilizing Proposition 3.9 and
Corollary 3.1.

Let G, G′, C, and α be defined according to Proposition 3.9. Since α is a k-partial elimination
ordering for both G and G′, Corollary 3.1 suggests the following decompositions for pG′ and pG,

pG′(x) = pG′(xC)
k∏

i=1

p

(
xα(i)|xN↓

G′ (α(i))

)
(3.37a)

pG(x) = pG(xC)

k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
= pG(xC)

k∏

i=1

p

(
xα(i)|xN↓

G′ (α(i))

)
, (3.37b)

where the second equality in (3.37b) follows from the first part of Proposition 3.9. Since the product
of conditional densities in (3.37a) and (3.37b) is identical, we can combine the two equations as
follows,

pG′(x) = pG′(xC)

k∏

i=1

p

(
xα(i)|xN↓

G′ (α(i))

)
= pG′(xC)

[
pG(x)

pG(xC)

]
= pG(x)

pG′(xC)

pG(xC)
.

Since C is a clique of G′, we know that pG′(xC) = p(xC), thereby giving the following important
relationship

pG′(x) = pG(x)
p(xC)

pG(xC)
. (3.38)

Notice that (3.38) can rewritten as pG′(x) = pG(xV −C |xC)p(xC), which indicates that the den-
sity pG(x) can be transformed into the density pG′(x) by keeping the same conditional density
pG(xV −C |xC) and by replacing the marginal pG(xC) with p(xC). Hence, the two densities truly
differ only with respect to their marginals on the maximal clique C.

By defining the elimination graph G↓ , G 〈V − {α(1), . . . , α(k)}〉, (3.38) may also be written as
follows,

pG′(x) = pG(x)
p(xC)

pG↓(x)
.

This follows from Corollary 3.1 which indicates that pG↓(x) = pG(xC). Notice also that since α
is a k-partial elimination ordering, Lemma 3.5 indicates that G↓ is identical to the subgraph of G
induced by V − {α(1), . . . , α(k)}, which in this case is G (C). These facts are summarized in the
following theorem.

Theorem 3.6 (Probabilistic Relationship for Clique Extensions).
Let G′ be a clique extension of a triangulated graph G = (V,E), and suppose C is the additional

maximal clique contained in G′ but not G. Define the induced subgraph G↓ , G(C). Then, for any
density p(xV ), the following probabilistic relationships hold,

pG′(x) = pG(x)
p(xC)

pG(xC)
= pG(x)

p(xC)

pG↓(x)
. (3.39)
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Proof. See the preceding discussion. �

The previous result can be extended to a sequence of graphs, where each graph is a clique extension
of the preceding graph in the sequence. The following corollary states this fact.

Corollary 3.2 (Probabilistic Relationship for a Sequence of Clique Extensions).
Let G = (V,E) be a triangulated graph, and let G = G0,G1,G2, . . . ,Gn = G′ be a sequence of graphs
where Gi is a clique extension of Gi−1 and where Ci is the unique maximal clique contained in Gi

but not Gi−1. Then, for any density p(xV ), the following probabilistic relationships hold,

pG′(x) = pG(x)

n∏

i=1

[
p(xCi

)

pGi−1(xCi
)

]
= pG(x)

n∏

i=1

[
p(xCi

)

pGi−1(Ci)(x)

]
. (3.40)

Proof. Follows directly by induction on (3.39). �

Conditional Independencies and Clique Extensions

Using the functional relationship in (3.39), we now characterize the conditional independencies
which a process X must satisfy in order for the two densities pG and pG′ to be equal. In particular,
pG = pG′ if and only if p(xC) = pG↓(x), and since G↓ is a triangulated graph in Theorem 3.6, we
know that p(xC) = pG↓(x) if and only if the subprocess XC is Markov with respect to the graph
G↓. Hence, we can use (3.39) to determine precisely which conditional independencies guarantee
that the two projections pG and pG′ are equivalent, and these independencies only involve variables
in the subprocess XC .

For some choices of G and G′, listing all of the conditional independencies implied by the
subgraph G↓ may be challenging. For example, for any triangulated graph G, the complete graph
is a clique extension with new maximal clique C = V . Using (3.39), the two densities p and pG are
equal if and only if X is Markov with respect to G, but of course, we knew this already. Thus, the
relationship in (3.39) provides little additional benefit in this particular case or similarly in cases
where G and G′ differ by a significant number of edges. One option for dealing with this issue is to
consider a sequence of clique extensions such as in Corollary 3.2. By considering such a sequence,
the problem of characterizing all conditional independencies implied by G may be split into smaller
sub-problems, as we now show.

Given any triangulated graph G and any triangulated supergraph G′, there always exists a
sequence of triangulated graphs G0 = G,G1, . . . ,Gn = G′ where each Gi has only one additional edge
not contained in Gi−1 [16]; this type of sequence is commonly called a chordal sequence. As the
following lemma indicates, a chordal sequence always forms a sequence of clique extensions.

Lemma 3.6 (Chordal Sequences and Clique Extensions).
Let G0 = G,G1, . . . ,Gn = G′ be a chordal sequence. Then, G0 = G,G1, . . . ,Gn = G′ is also a sequence
of clique extensions.

Proof. We only need to show that the case n = 1 holds, since the result follows directly from this
case. Suppose G0 = (V,E),G1 = (V,E′) is a chordal sequence where {a, b} is the added edge, i.e.
{a, b} 6∈ E and {a, b} ∈ E′. Suppose G1 is not a clique extension of G0, and hence, there exist at
least two maximal cliques C 6= C ′ contained in G1 but not G0. Since {a, b} is the only added edge,
{a, b} ⊆ C and {a, b} ⊂ C ′. If {a, b} = C then there cannot exist a C ′ with {a, b} ⊂ C ′ because C
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would not be a maximal clique. Hence, {a, b} ⊂ C and {a, b} ⊂ C ′, and since C 6= C ′, there must
exists some v ∈ C and v′ ∈ C ′ such that {v, v′} 6∈ E′ and thus {v, v′} 6∈ E. Then, [v, a, v′, b, v] is a
cycle in G0 with no chord, which contradicts the fact that G0 is triangulated. �

Therefore, for any two triangulated graphs G and G′, where G′ is a supergraph of G, there always
exists a sequence of clique extensions between G and G′.

Given a sequence of clique extensions, (3.40) indicates that the constraints p(xCi
) = pGi−1(Ci)(x),

i = 1, . . . , n, imply that pG′ and pG are equal; however, it is not immediately obvious that the
converse of this statement is true. In particular, if pG′ = pG, the product of ratios on the right-hand
side of (3.40) is equal to 1, but in general, this should not necessarily imply that each individual
ratio is equal to 1. In this case, though, the fact that both pG and pG′ are densities places some
constraints on this relationship, and therefore, the ratios in (3.40) have special properties, as the
following theorem indicates.

Theorem 3.7 (Conditional Independencies and Clique Extensions).
Let G = G0,G1,G2, . . . ,Gn = G′ be a sequence of clique extensions with corresponding maximal
cliques Ci as in Corollary 3.2. Then, for any density p(xV ), the following are equivalent:

(1) pG′ = pG,

(2) p(xCi
) = pGi−1(xCi

) = pGi−1(Ci)(x) for i = 1, . . . , n,

(3) XCi
(under density p) is Markov with respect to the subgraph Gi−1 (Ci) for i = 1, . . . , n.

Proof. See Appendix B.4. �

Based on the preceding discussion, the proof of Theorem 3.7 is, for the most part, straightforward.
However, the equivalence between (1) and (2) is established by using the Kullback-Leibler diver-
gence discussed in Section 3.10.1, and as such, we have placed the proof in Appendix B.4 for the
interested reader.

Given two graphs G and G′ as in Corollary 3.2, it is important to note that there may be several
different sequences of clique extensions of the form G = G0,G1,G2, . . . ,Gn = G′. Using Theorem 3.7,
this implies that there are then several different ways to express the conditional independencies
which equate pG and pG′ . The following example illustrates this idea as well as the other ideas
discussed in this section.

Example 3.5 (Non-uniqueness of Sequences of Clique Extensions).
Consider the sequence of clique extensions G0 = G, G1, G2 = G′ shown in Figures 3.13(a), (b), and
(c) respectively. For this sequence, G1 has a new maximal clique C1 = {2, 4, 5, 6}, and G2 has a new
maximal clique C2 = {1, 2, 4, 5, 6}. Using Theorem 3.7, the two densities pG and pG′ are equal if
and only if the two constraints p(xC1) = pG0(C1)(x) and p(xC2) = pG1(C2)(x) are satisfied, where the
subgraphs G0 (C1) and G1 (C2) are shown in Figures 3.13(d) and (e) respectively. Examining the
structure of G0 (C1) and G1 (C2), notice that these two constraints imply the following factorizations
and corresponding conditional independencies,

p(x2, x4, x5, x6) = p(x4|x2, x5)p(x6|x2, x5)p(x2, x5)⇐⇒ (X4⊥X6) | (X2,X5) (3.41a)

p(x1, x2, x4, x5, x6) = p(x1|x2, x4)p(x5, x6|x2, x4)p(x2, x4)⇐⇒ (X1⊥ (X5,X6)) | (X2,X4) . (3.41b)
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Figure 3.13. The sequence of clique extensions and corresponding subgraphs considered in Exam-
ple 3.5. (a) A triangulated graph G0. (b) A clique extension G1 of G0 in (a) with new maximal clique
C1 = {2, 4, 5, 6}. (c) A clique extension G2 of G1 in (b) with new maximal clique C2 = {1, 2, 4, 5, 6}.
(d) The subgraph G0(C1). (e) The subgraph G1(C2).

For convenience, we use the notation (X⊥Y ) |Z to indicate X and Y are conditionally independent
given Z.

Consider now a different sequence of clique extensions shown in Figures 3.14(a), (b), and (c),
where the graphs G and G′ are the same as before, but the intermediate graph G1 is different and has
a new maximal clique C1 = {1, 2, 4, 5}. The corresponding subgraphs G0 (C1) and G1 (C2), shown in
Figures 3.14(d) and (e) respectively, are noticeably different from the subgraphs in Figures 3.13(d)
and (e), and consequently, the implied conditional independencies differ from those given in (3.41),

p(x1, x2, x4, x5) = p(x1|x2, x4)p(x5|x2, x4)p(x2, x4)⇐⇒ (X1⊥X5) | (X2,X4) (3.42a)

p(x1, x2, x4, x5, x6) = p(x1, x4|x2, x5)p(x6|x2, x5)p(x2, x5)⇐⇒ ((X1,X4)⊥X6) | (X2,X5) . (3.42b)

However, as Theorem 3.7 indicates, the two sets of conditions in (3.41) and (3.42) are equivalent.
As this example illustrates, the choice of the sequence G0 = G,G1, . . . ,Gn = G′ can significantly

affect the list of conditional independencies stated in Theorem 3.7. This begs the question of
what types of sequences lead to a “minimal” (given an appropriate definition of minimality) list of
conditional independencies for given graphs G and G′. We do not address this issue in this thesis,
but instead, we later provide a recipe for generating an appropriate and useful sequence of clique
extensions. ◭

� 3.7.2 Neighborhood Separators

While the previous section derived a relationship between two densities pG and pG′ , this section
focuses on the conditional independencies implied by special subgraphs of a graph G. The graph-
theoretic tool used to analyze these conditional independencies is called a neighborhood separator.
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Figure 3.14. Another sequence of clique extensions and corresponding subgraphs considered in
Example 3.5. (a) A triangulated graph G0. (b) A clique extension G1 of G0 in (a) with new maximal
clique C1 = {1, 2, 4, 5}. (c) A clique extension G2 of G1 in (b) with new maximal clique C2 =
{1, 2, 4, 5, 6}. (d) The subgraph G0(C1). (e) The subgraph G1(C2).

Definition 3.4 (Neighborhood Separators).
Given a graph G = (V,E), a neighborhood separator S ⊂ V of G satisfies the following two proper-
ties:

(1) NG [S] = NG [v] for all v ∈ S.

(2) The subgraph of G induced by NG(S) contains l ≥ 1 connected components induced by the
vertices C1, . . . , Cl, where each Ci is a clique of G. ◭

The first property of a neighborhood separator requires each vertex v ∈ S to have exactly the same
neighborhood as S, and this in turn implies that S must be a clique of G. The second property
indicates that if we define the subgraph G↓ , G (NG[S]), then S must be a separator of G↓, i.e.
S is a separator of its own neighborhood. Notice that this is a weaker condition than the usual
notion of a separator in which S would have to separate the entire graph rather than simply its
neighborhood. Notice also that the second property requires each of the connected components
separated by S to be cliques; the importance of this requirement will become clear later.

For a graphical illustration of a neighborhood separator, consider the graph shown in Figure 3.15.
In this example, vertex 5 is a neighborhood separator since it separates its neighborhood into the
components {1, 2, 3} and {7, 8}, each of which is a clique. However, vertex 5 is not a graph separator,
since removing vertex 5 and all incident edges leaves a connected graph. The set {7, 8} is also a
neighborhood separator, since it separates its neighborhood into the trivial cliques {4}, {5}, and
{6}.

The utility of neighborhood separators is derived from the fact that probability densities defined
on subgraphs induced by neighborhood separators (and the conditional independencies associated
with such a density) can be easily characterized. To see this, let G be a graph with neighborhood
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separator S and corresponding sets C1, . . . , Cl as in Definition 3.4, and define the subgraph G↓ ,

G (NG [S]). Since S is a neighborhood separator, the maximal cliques of G↓ are precisely the sets
Ci ∪ S, i = 1, . . . , l, and consequently, we can immediately write the junction tree representation
T ↓ of G↓ as follows,

T ↓ , (C,S), where C = {Ci ∪ S}
l
i=1, S = { S, . . . , S︸ ︷︷ ︸

(l−1) times

}. (3.43)

One example of a junction tree for G↓ is shown in Figure 3.16.
Using the junction tree representation in (3.43), any density p which factors according to the

graph G↓ may be written as follows,

p(x) =

∏l
i=1 p(xCi

, xS)

p(xS)l−1
= p(xS)

l∏

i=1

p(xCi
|xS). (3.44)

The second equality in (3.44) shows the conditional independence structure associated with such a
density p. Specifically, p factors according to (3.44) if and only if random vectors XC1 , . . . ,XCl

are
jointly independent conditioned on XS , or equivalently, using the notation in Definition 2.5, these
conditional independencies may be compactly stated as ⊥XC where C is the set of maximal cliques
of G↓. If some set Ci in Definition 3.4 is not a clique, then a process X which is Markov with
respect to G↓ would exhibit additional independencies than ⊥XC , and for this reason, we require
each Ci to be a clique.

Neighborhood separators are therefore useful in that they provide a means of accounting for the
conditional independencies exhibited by a density defined on a special subgraph of a larger graph.
By itself, such a characterization is not particularly useful, but when combined with the notion
of a clique extension, these two graph-theoretic tools have significant implications for probabilistic
modeling. To understand the significance, consider again the relationship in (3.39) between the two
densities pG and pG′ . The nature of a clique extension allows these two densities to be functionally
related by the ratio p(xC)/pG↓(x), where G↓ is the subgraph of G induced by the maximal clique
C. Since pG↓ is the projection of p onto the graph G↓, this ratio can be written directly in terms of
the marginals of p; however, the form of the density pG↓ depends on the structure of the subgraph
G↓, which for an arbitrary triangulated graph G may be a rather complicated function of p.

If C is equal to NG [S] for some neighborhood separator S of G, though, the density pG↓(x)
may be written in the form of (3.44), and consequently, the two densities pG′ and pG are related
in a simple and predictable way. Furthermore, Theorem 3.7 allows us to state the conditional
independencies that guarantee pG′ = pG. In particular, if C is the set of maximal cliques of G↓ and
if the conditions ⊥XC are satisfied with respect to the density p, then the ratio p(xC)/pG↓(x) is
equal to 1 and pG′ = pG.

Taking this idea one step further, consider the relationship in (3.40) for a sequence of clique
extensions. In order to write the functional relationship between pG′ and pG directly in terms of
marginals of p, it is necessary to know the structure of each subgraph Gi−1 (Ci). If by chance
each Ci is equal to NGi−1[Si] for some neighborhood separator Si of Gi−1, then the situation is
the same as above, and the functional relationship is simple to characterize. For the sequence
of graphs introduced in the next section, it is true that each Ci is equal to NGi−1[Si] for some
neighborhood separator Si, but in order to prove that this property is satisfied, we need some
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Figure 3.15. An example of a graph G which has a neighborhood separator covering. Specifically,
the sets {1},{2, 3},{4},{5},{6}, and {7, 8} form such a covering since each is a neighborhood separator
of G.

C1 ∪ S

C2 ∪ S

C3 ∪ S

Cl ∪ S

S

S

S

Figure 3.16. Given a graph G and a neighborhood separator S of G, the figure shows one possible
junction tree for the subgraph G↓ , G (NG [S]).
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means of accounting for the neighborhood separators in a graph. For this purpose, we introduce
the notion of a neighborhood separator covering.

Definition 3.5 (Neighborhood Separator Coverings).
Given a graph G = (V,E), a neighborhood separator covering is a collection {Si}

m
i=1 of neighborhood

separators Si of G such that V = ∪m
i=1Si and Si ∩ Sj = ∅ for all i 6= j. ◭

Therefore, a neighborhood separator covering is a collection of neighborhood separators which
partition the vertices of a graph. Since this collection is not unique, though, a neighborhood
separator covering does not provide an exhaustive list of all possible neighborhood separators
for a given graph. For example, the graph shown in Figure 3.15 has neighborhood separators
{1},{2, 3},{4},{5},{6}, and {7, 8} which form a partition. However, vertices {2} and {3} are
also neighborhood separators, and thus, the collection {{1}, {2}, {3}, {4}, {5}, {6}, {7, 8}} is also
a neighborhood separator covering.

In addition to non-uniqueness, there are other interesting graph-theoretic questions concerning
neighborhood separator coverings such as what types of graphs admit such a partitioning. For
our purposes, it is not necessary to address these graph-theoretic questions since the graphs of
interest to us have obvious neighborhood separator coverings. For example, consider the tree G∼� in

Figure 3.4(b) as well as the augmented graph G♯
� in Figure 3.4(e). For the graph G∼� , the individual

vertices {v} are the only neighborhood separators, and therefore, the collection {{v}}v∈V is the
unique neighborhood separator covering. In Figure 3.4(e), the collection

{{0(t), 0(d)}, {1(d)}, {2(t), 2(d)}, {3(t)}, {4(t)}, {5(t)}, {6(t)}}

is the unique neighborhood separator covering for G♯
�.

Given a graph G with a neighborhood separator covering {Si}
m
i=1, such as G∼� and G♯

� for
example, we now examine how two different graphical operations affect this covering. As the
following proposition indicates, when G is triangulated, the process of adding the edges in DG(v)
(for any v ∈ V ) to G does not destroy the neighborhood separator covering, i.e. {Si}

m
i=1 is a

neighborhood separator covering for the resulting graph.

Proposition 3.10 (Neighborhood Separator Coverings and Adding Edges).
Let G = (V,E) be a triangulated graph with neighborhood separator covering {Si}

m
i=1. Given some

v ∈ V , define G′ , (V,E ∪DG(v)). Then, {Si}
m
i=1 is also a neighborhood separator covering for G′.

Proof. See Appendix B.5. �

Using the preceding proposition, the following corollary indicates that a neighborhood separator
covering changes in a predictable way when a vertex v is eliminated from a triangulated graph.
Specifically, the covering remains unchanged except that vertex v is removed from the set Si con-
taining v.

Corollary 3.3 (Neighborhood Separator Coverings and Vertex Elimination).
Let G = (V,E) be a triangulated graph with neighborhood separator covering {Si}

m
i=1. Given some

v ∈ V and v ∈ Si, define G↓ ,
y(G, v) . Then, {S1, . . . , Si−1, Si − {v}, Si+1, . . . , Sm} is a neighbor-

hood separator covering for G↓.

Proof. See Appendix B.5. �
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Since a neighborhood separator covering changes in a predictable fashion for a single vertex
elimination, it changes in similarly predictable fashion for a sequence of vertex eliminations. Con-
sequently, given an initial triangulated graph G with a neighborhood separator covering {Si}

m
i=1,

we can keep track of the neighborhood separator covering as vertices are sequentially eliminated
from the graph G. This fact, along with the simple factorization in (3.44), allows us to explicitly
state the functional relationship in (3.40) directly in terms of marginals of p. We demonstrate this
process in the next section for a specific sequence of graphs.

� 3.8 The Modified Elimination Game

In Section 3.6, vertex elimination and the elimination game were introduced. This section dis-
cusses a useful modification of the elimination game and shows how the graphs generated by the
modified elimination game relate to clique extensions and neighborhood separators. Section 3.8.1
introduces the modified elimination game, and Section 3.8.2 provides an important graph-theoretic
characterization of the graphs generated by the modified elimination game. In Section 3.8.3, the
graph-theoretic results and probabilistic relationships discussed in the previous section for general
triangulated graphs are applied to the graphs generated by the modified elimination game.

� 3.8.1 Definition and Notation

The modified elimination game is similar to the elimination game in the sense that a sequence of
graphs are generated by successively adding edges and removing vertices. The modification is that
at every step in the sequence, the current vertex may or may not be removed from the graph. More
specifically, let G = (V,E) with |V | = n be an arbitrary graph with an associated ordering α on V ,
and let M ⊆ V be a specified subset of the vertices.22 The modified elimination graphs are defined
as follows,23

G̃↓0 , (V0, F0) = G = (V,E) (3.45a)

G̃↓i , (Vi, Fi) =





(
Vi−1, Fi−1 ∪DeG↓

i−1
(α(i))

)
if α(i) ∈M,y

(
G̃↓i−1, α(i)

)
if α(i) 6∈M,

i = 1, . . . , n. (3.45b)

To better understand (3.45), recall that eliminating a vertex v from a graph G has two steps:
(1) edges are added to G in order to make NG(v) a clique and (2) vertex v and all incident edges are

removed from the graph. In (3.45b), if α(i) 6∈M the graph G̃↓i is obtained from G̃↓i−1 by eliminating
vertex α(i) from the graph, i.e. both steps of vertex elimination are performed. On the other
hand, if α(i) ∈M then only the first step of vertex elimination is performed, i.e. edges are added

to G̃↓i−1 so that NeG↓
i−1

(α(i)) becomes a clique in G̃↓i . A graphical illustration of this procedure is

shown in Figures 3.17 and 3.18 for two different orderings of the vertices but the same set M = {2}.
Comparing Figures 3.9 and 3.17 (and similarly Figures 3.10 and 3.18), notice that the modified
elimination game generates more fill edges than the elimination game; this is of course due to the
fact that vertex 2 is never removed from the graph.

22For now, the set M is an arbitrary set with no specific meaning, but in Section 3.9, this same M will be interpreted
as the marginalization constraint set discussed before.

23The dependence on the set M and the ordering α is suppressed for notational clarity.
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Figure 3.17. Graphical illustration of the first three graphs in a sequence of modified elimination
graphs for the vertex ordering α = (1, 2, 3, 4, 5, 6) and M = {2}. The dashed edges indicate the

modified elimination deficiencies. (a) G̃↓0 = G (solid), D̃↓
G(1) (dashed) (b) G̃↓1 (solid), D̃↓

G(2) (dashed)

(c) G̃↓2 (solid), D̃↓
G(3) (dashed)
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Figure 3.18. Graphical illustration of the first three graphs in a sequence of modified elimination
graphs for the vertex ordering α = (2, 1, 3, 4, 5, 6) and M = {2}. The dashed edges indicate the

modified elimination deficiencies. (a) G̃↓0 = G (solid), D̃↓
G(2) (dashed) (b) G̃↓1 (solid), D̃↓

G(1) (dashed)

(c) G̃↓2 (solid), D̃↓
G(3) (dashed)

The fact that the modified elimination game generates more fill edges than the elimination
game is the reason why we consider this modification; the importance of these additional edges will
become clear later. For now, we introduce notation, similar to that of the elimination game, to
represent the edges added during the modified elimination game. In particular, given an ordering
α, the modified elimination deficiency of vertex v = α(i) is defined as

D̃↓
G(v) , DeG↓

i−1
(v), v = α(i), (3.46)

i.e. it is the deficiency of vertex α(i) in the modified elimination graph G̃↓i−1. Similarly, the modified
elimination neighborhood of vertex v = α(i) is defined as

Ñ↓
G(v) , NeG↓

i−1
(v), v = α(i), (3.47a)

Ñ↓
G [v] , Ñ↓

G(v) ∪ {v}. (3.47b)

As an example, the dashed lines in Figures 3.17(a),(b), and (c) indicate the edges contained in

D̃↓
G(1), D̃↓

G(2), and D̃↓
G(3) respectively, for the ordering α = (1, 2, 3, 4, 5, 6) and M = {2}. The

dashed lines in Figures 3.18(a),(b), and (c) indicate the edges contained in D̃↓
G(2), D̃↓

G(1), and

D̃↓
G(3) respectively, for the ordering α = (2, 1, 3, 4, 5, 6) and M = {2}.
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Figure 3.19. Graphical illustration of the first three graphs in the sequence G̃i in (3.48) assuming

the initial graph G̃0 = G shown in Figure 3.17(a) (solid), the vertex ordering α = (1, 2, 3, 4, 5, 6), and

M = {2}. (a) G̃1 (b) G̃2 (c) G̃3
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Figure 3.20. Graphical illustration of the first three graphs in the sequence G̃i in (3.48) assuming

the initial graph G̃0 = G shown in Figure 3.18(a) (solid), the vertex ordering α = (2, 1, 3, 4, 5, 6), and

M = {2}. (a) G̃1 (b) G̃2 (c) G̃3

Using the fill edges generated at each step of the modified elimination game, we now introduce
a new sequence of graphs which form the basis of our discussion in the remainder of this section.
Specifically, given a graph G = (V,E) with |V | = n, an ordering α, and a set M ⊆ V , we define the
following graphs

G̃0 , (V,E0) = G = (V,E) (3.48a)

G̃i , (V,Ei) =
(
V,Ei−1 ∪ D̃

↓
G(α(i))

)
, i = 1, . . . , n. (3.48b)

Notice that this sequence differs from the modified elimination graphs in the sense that each graph is
defined on the same set of vertices. In particular, (3.48) defines a sequence where G̃i is a supergraph

of G̃i−1, differing only on the edges in the set D̃↓
G(α(i)).

Figure 3.19 provides an example of the graphs G̃i, assuming the initial graph G̃0 = G is repre-
sented by the solid lines in Figure 3.17(a) with α = (1, 2, 3, 4, 5, 6) and M = {2}. This sequence
is generated by successively adding the dashed lines shown in Figure 3.17. Similarly, Figure 3.20
provides the same type of example for the ordering α = (2, 1, 3, 4, 5, 6) and M = {2}.

Notice that while the elimination graphs G̃↓2 shown in Figures 3.17(c) and 3.18(c) are the same,

the graphs G̃3 shown in Figures 3.19(c) and 3.20(c) are different. This is due to the fact that the fill

edges D̃↓
G(v), v ∈ V , vary greatly depending on the ordering α. To better understand the graphs

G̃i, we now provide an important characterization of the edges contained in each such graph.
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� 3.8.2 Characterization of Edges

In the previous section, we showed how to construct the graphs G̃i in (3.48) by recursively adding
the edges generated by the modified elimination game. In this section, we characterize the edges
contained in the graph G̃i solely in terms of the initial graph G, the ordering α, and the set
M , without reference to the sequence of steps involved in the modified elimination game. This
characterization is a generalization of the characterization given in [90] for the elimination game,
and it is useful for proving some of the remaining graph-theoretic results.

To simplify the characterization provided below in Proposition 3.11, we introduce a function
β−1 defined in terms of a specified ordering α. Given a set V with |V | = n, a set M ⊆ V , and an
ordering α on V , we define β−1 : V → {1, . . . , n,∞} as follows,

β−1(v) ,

{
α−1(v) if v 6∈M,
∞ if v ∈M.

(3.49)

Intuitively, β−1 maintains the same ordering as α for the vertices not in the set M and assigns ∞
to all of the vertices in M .

Proposition 3.11 (Edges Associated with the Modified Elimination Game).
Let G = (V,E) be an arbitrary graph, and let G̃i = (V,Ei) be defined according to (3.48) for some
ordering α and some M ⊆ V . Define β−1 according to (3.49). Then, {a, b} ∈ Ei if and only if
there exists a path [a = v1, v2, . . . , vk, vk+1 = b] in G such that α−1(vj) < min(β−1(a), β−1(b), i+1),
for j = 2, . . . , k.24

Proof. See Appendix B.6. �

For an illustration of this characterization, consider the graph G̃3 shown in Figure 3.19(c).
Notice that edge {4, 6} is present because the path [4, 1, 2, 3, 6] in G (G is shown in Figure 3.17(a))
satisfies the requirements of Proposition 3.11. On the other hand, edge {1, 5} is not present in G̃3

shown in Figure 3.19(c) because any path between 1 and 5 in G must contain either vertex 4 or
vertex 2, and neither of these vertices satisfy the requirements of Proposition 3.11.

One immediate consequence of Proposition 3.11 is that it suggests an important property of the
graph G̃n, i.e. the final graph in the sequence. Namely, if G is connected then M is a clique of G̃n.
To see this, choose any {a, b} ⊆ M , and notice that by definition β−1(a) = ∞ and β−1(b) = ∞.
Since G is connected, there must be a path from a to b in G, and any such path trivially satisfies
the conditions of Proposition 3.11. Consequently, {a, b} ∈ En, thereby proving that M is a clique
of G̃n. This property of the modified elimination game is the reason we chose to introduce such a
modification and the reason why more fill edges are desirable. We return to this idea in Section 3.9.

� 3.8.3 Tying It All Together

In this section, we provide three propositions which relate the graph-theoretic results and proba-
bilistic relationships presented in Section 3.7 to the graphs G̃i generated by the modified elimination
game. The first proposition indicates that the graphs G̃i in (3.48) form a sequence of clique ex-
tensions if the initial graph G̃0 = G is triangulated, and furthermore, the corresponding maximal
cliques Ci are equal to the modified elimination neighborhoods Ñ↓

G [α(i)] in (3.47b). The result
follows from induction and application of Proposition 3.7.

24If {a, b} ∈ E, then we assume that k = 1, and consequently, these conditions are trivially satisfied.
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Proposition 3.12 (Modified Elimination Game and Clique Extensions).
Suppose G = (V,E) is a triangulated graph. Given any set M ⊆ V and any ordering α on the
vertices V , the sequence of graphs G̃i in (3.48) form a sequence of clique extensions, and the new

maximal clique Ci contained in G̃i but not G̃i−1 is given by Ci = Ñ↓
G [α(i)].

Proof. See Appendix B.7. �

Notice that while the graphs G̃i form a sequence of clique extensions, they do not necessarily
correspond to a chordal sequence since more than one edge may be added to G̃i−1 in order to form
G̃i. Using the graphs G̃i, we can always construct a chordal sequence {Hi} such that {G̃i} is a
subsequence of {Hi}, but within the context of the multiscale realization problem, this additional
step is not necessary.

As previously shown in Proposition 3.10 and Corollary 3.3, a neighborhood separator covering
of a triangulated graph changes in a predictable way under two simple graph operations. As the
following proposition indicates, these two results may be applied in a sequential fashion to prove
that the elimination graphs G̃↓i have a neighborhood separator covering, assuming that the initial

graph G̃0 = G is triangulated and has a neighborhood separator covering.

Proposition 3.13 (Modified Elimination Game and Neighborhood Separators).
Suppose G = (V,E) is a triangulated graph with a neighborhood separator covering. Consider the

sequence of graphs G̃↓i in (3.45) for a given set M ⊆ V and ordering α on V . For i = 0, . . . , n, each

graph G̃↓i has a neighborhood separator covering.

Proof. We prove the result by induction. By assumption G̃↓0 = G is triangulated and has a neigh-

borhood separator covering. Using Proposition 3.12, G̃↓i−1 is triangulated, and by the induction

hypothesis, G̃↓i−1 has a neighborhood separator covering. If α(i) ∈ M , then G̃↓i is obtained from

G̃↓i−1 by adding the edges in DeG↓
i−1

(α(i)), and using Proposition 3.10, G̃↓i has the same neighborhood

separator covering as G̃↓i−1. If α(i) 6∈ M , then G̃↓i =
y
(
G̃↓i−1, α(i)

)
, and by Corollary 3.3, G̃↓i has a

neighborhood separator covering. �

Notice that the results stated in Proposition 3.10 and Corollary 3.3 are stronger than needed for
the preceding proposition. In fact, Proposition 3.10 and Corollary 3.3 may be used to show how
an initial neighborhood separator covering {Si}

m
i=1 for the graph G changes in each of the modified

elimination graphs G̃↓i . Such a characterization is not needed for our purposes since we are only
interested in the fact that a neighborhood separator covering exists.

The final result provided in this section is the following restatement of Theorem 3.7 for the
graphs G̃i.

Proposition 3.14 (Modified Elimination Game and Theorem 3.7).
Suppose G = (V,E) is a triangulated graph with a neighborhood separator covering. Let the sequence
of graphs G̃i be defined according to (3.48) for some set M ⊆ V and an ordering α on V . Let Ci
denote the set of maximal cliques of the subgraph G̃i−1 (Ci), where Ci , Ñ↓

G [α(i)] for i = 1 . . . n.
Then, for any density p(xV ), the following are equivalent:

(1) peGi
= pG for some 1 ≤ i ≤ n,

(2) the conditions ⊥XCj
are satisfied (under density p) for all 1 ≤ j ≤ i.
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Proof. See Appendix B.7. �

Therefore, when the initial graph G̃0 = G is triangulated and has a neighborhood separator covering,
the graphs G̃i generated by the modified elimination game have sufficient structure to permit an
important simplification to the statement in Theorem 3.7. In particular, Proposition 3.13 indicates
that the elimination graphs G̃↓i have a neighborhood separator covering, and consequently, each

maximal clique Ci is equal to NeG↓
i−1

[S] for some neighborhood separator S of G̃↓i−1. As a result,

each subgraph G̃i−1 (Ci) has the simple structure discussed in Section 3.7.2 for neighborhood sepa-
rators, and a process XCi

, which is Markov with respect to G̃i−1 (Ci), exhibits only the conditional
independencies ⊥XCi

. Using this simplification, we are now in a position to prove the unproven
results provided in Chapter 2.

� 3.9 Marginalization-Invariant Markovianity Revisited

In this section, we clarify the relationship between the marginalization-invariant Markov property
introduced in the previous chapter and the sufficient conditions for exact realization presented in this
chapter, and in establishing this relationship, we immediately prove Theorems 2.3 and 2.4. Recall
from Section 2.6 that the marginalization-invariant Markov property is a set-theoretic character-
ization of the Markov properties required for exact realization. In contrast, this chapter presents
a graph-theoretic characterization of the sufficient conditions required for exact realization. The
following section shows that these two characterizations are equivalent for the multiscale realization
problem, and Section 3.9.2 shows their equivalence for the state augmentation problem.

� 3.9.1 Sufficient Conditions for Exact Multiscale Realization

The theoretical results presented in this chapter provide a powerful framework for characterizing
and enumerating the set of conditional independencies sufficient to solve the exact multiscale real-
ization problem. In particular, Theorem 3.3 suggests a sufficient condition in order for a density
p ∈ PM (V, d) to be a solution to problem PM , which then leads to the solution pT of the exact
realization problem Q. This sufficient condition requires pG = pG∼

�
for a particular class of graphs

G. Theorem 3.7 later provides a convenient graph-theoretic approach for listing the conditional
independencies that a process X must satisfy in order for its density to satisfy pG = pG∼

�
. Of

course, this list depends on the particular sequence of clique extensions which is chosen.
Section 3.8 suggests a method for creating a sequence of clique extensions given an initial

triangulated graph and an ordering on the vertices, and furthermore, this sequence is special in
that the final graph in the sequence is guaranteed to have a clique equal to M . Given a sequence
of clique extensions generated by the modified elimination game, Proposition 3.14 states that the
conditional independencies associated with such a sequence, as established by Theorem 3.7, may be
characterized in a simple manner as long as the initial graph is triangulated and has a neighborhood
separator covering. Since the tree G∼� is triangulated and has a neighborhood separator covering,
we can then use this theoretical framework to state a sufficient set of conditional independencies for
solutions to the exact realization problem, and such a characterization is given in Proposition 3.15
to follow.

As noted earlier, one interesting property of the graphs G̃i generated by the modified elimination
game is that the final graph in the sequence has a clique equal to M – a property which must be
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satisfied in order for the sufficient conditions in Theorem 3.3 to apply. However, if the initial graph
G̃0 is equal to the tree G∼� , then some orderings on the vertices lead to an intermediate graph G̃i

with a clique equal to M . This fact is evidenced by the following lemma.

Lemma 3.7 (Modified Elimination Graphs and Trees).
Let G� = (V,E) be a specified rooted tree, and let α be any ordering on V such that for all non-leaf

vertices v ∈ V , α−1(v) ≤ m for some 1 ≤ m ≤ |V |. Define the sequence of graphs G̃i according to
(3.48) for some set M ⊆ V , the initial graph G̃0 = G∼� , and the ordering α. Then, G̃m has a clique
equal to M .

Proof. Choose any {a, b} ⊆ M . According to Proposition 3.11, {a, b} is an edge in the graph
G̃m if and only if there exists a path [a = u1, u2, . . . , uk, uk+1 = b] in G∼� such that α−1(uj) <

min(β−1(a), β−1(b),m + 1) for 2 ≤ j ≤ k. Since a, b ∈ M , we have β−1(a) = β−1(b) = ∞, and
thus, the vertices uj need only satisfy α−1(uj) < m+ 1. Using the fact that G∼� is a tree, each uj ,

2 ≤ j ≤ k, must be a non-leaf vertex, and by the definition of α, the condition α−1(v) < m+ 1 is
satisfied for all non-leaf vertices of G∼� . Hence, {a, b} is an edge in G̃m. �

Therefore, the intermediate graph G̃m has a clique equal to M as long as the ordering α has only
leaf vertices after vertex α(m). Because of this fact, we choose to only consider orderings α which
place all non-leaf vertices first and all leaf vertices last, and we call such an ordering a leaf-last
ordering.

Using this fact and the results presented so far in this chapter, we can now provide a list of
the conditional independencies which ensure a solution to the exact realization problem. In the
following proposition, we assume that the graphs G̃i are defined according to (3.48) with the initial
graph G̃0 = G∼� , and as in Proposition 3.14, we let Ci denote the maximal cliques of G̃i−1 (Ci), where

Ci , Ñ↓
G∼
�
[α(i)].

Proposition 3.15 (Sufficient Conditional Independencies for Exact Realization).
Let G� be a rooted tree defined on vertex set V with m non-leaf vertices, and let α be any leaf-

last ordering on V . Let p∗(xM ) be a given target density for some M ⊆ V . If a random process
{Xv}v∈V with density p(xV ) satisfies the conditional independencies ⊥XCi

for 1 ≤ i ≤ m, then
pT (xM ) = p(xM ), and if p ∈ PM (V, d), then pT is solution to problem Q.

Proof. Follows directly from Lemma 3.7, Proposition 3.14, and Theorem 3.3. �

Notice that the result given in Proposition 3.15 resembles the result stated previously in Theo-
rem 2.3. The only difference is that Theorem 2.3 considers the conditions ⊥XMvi

associated with
the marginalization-invariant Markov property, whereas Proposition 3.15 considers the conditions
implied by the sets of maximal cliques Ci. As we show in Proposition 3.16, these conditions are
equivalent and related in a simple way.

To develop some intuition, notice that the sets Mvi
and Ci differ in a very distinctive way. In

particular, the maximal cliques contained in Ci have larger cardinality with increasing values of
i since the graphs G̃i contain more and more edges. In contrast, the sets contained in Mvi

have
smaller cardinality with increasing values of i because of the fact that successive boundary sets Bvi

have smaller cardinality. In fact, we can show that the collection of setsMvi
and Ci, i = 1, . . . ,m,

are the same but simply permuted.
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To formalize this relationship, let (v1, . . . , vm) be any ordering on the non-leaf vertices of G� =
(V,E),25 and let α be any leaf-last ordering on V such that

α(m− i+ 1) = vi, i = 1, . . . ,m, (3.50)

i.e. α(1) = vm, α(2) = vm−1, . . . , α(m) = v1. Therefore, α flips the ordering (v1, . . . , vm) and places
all leaf vertices last. Given such an ordering, the following proposition shows that the sets Mvi

and Cm−i+1 are equal for i = 1, . . . ,m.

Proposition 3.16 (Marginalization-Invariant Markovianity and Proposition 3.15).
Let (v1, . . . , vm) be an ordering on the non-leaf vertices of a rooted tree G� = (V,E), and let α be
any leaf-last ordering on V satisfying (3.50). Assume that M ⊆ V contains all leaf vertices of G�,
and let Ci be defined as in Proposition 3.15. Then, Cm−i+1 =Mvi

for i = 1, . . . ,m.

Proof. See Appendix B.8. �

Notice that the preceding proposition requires M to contain all leaf vertices of G�. This condition
is necessary in order to ensure the equality of Cm−i+1 andMvi

, but it is not a restriction since the
leaf vertices of the tree can always be pruned until this condition is satisfied.

The result in Proposition 3.16 thereby proves that the two sets of conditions {⊥XMvi
}1≤i≤m and

{⊥XCi
}1≤i≤m are equivalent, and combining this fact with Proposition 3.15 proves Theorem 2.3.

Consequently, we now have two equivalent sets of sufficient conditions for the exact realization
problem. The conditions ⊥XCi

are derived from a graph-theoretic scheme to account for the
conditional independencies in a sequence of graphs. In contrast, the conditions ⊥XMvi

are based on
a set-theoretic scheme of intersecting the conditional independencies required by the global Markov
property with the marginalization constraint set M . Both types of conditions provide valuable
insights into the exact realization problem, and both lead to a sequential realization procedure for
designing exact multiscale models, as discussed previously in Section 2.7.2.

� 3.9.2 Sufficient Conditions for Exact Multiscale Realization Using Augmented States

With very little additional work, we can generalize the results stated in the previous section to
the class of multiscale models with augmented states. In particular, we generalize Lemma 3.7,
Proposition 3.15, and Proposition 3.16 in what follows.

Recall from Section 3.3.3 that a special augmented graph G♯
� may be constructed from a rooted

tree G� = (V,E) and a set M ⊆ V , and this augmented graph provides a convenient means of
indexing the augmented states of a multiscale model. As discussed in Section 3.4.4, we choose to
redefine the set M according to (3.24) so that it only contains the target vertices v(t) ∈ V ♯. For
this redefined set M , we generalize Lemma 3.7 to show that certain orderings α on V ♯ lead to an
intermediate graph G̃m with a clique equal to M .

Lemma 3.8 (Modified Elimination Graphs and G♯
�).

Let G� = (V,E) be a specified rooted tree, and let G♯
� = (V ♯, E♯) be the corresponding augmented

graph for some set M ⊆ V . Redefine M according to (3.24), and let α be any ordering on V ♯ such
that for any v(d) ∈ V ♯, α−1(v(d)) ≤ m for some 1 ≤ m ≤ |V ♯|. Define the sequence of graphs G̃i

25Recall that we considered such an ordering (v1, . . . , vm) in the previous chapter when we were only interested in
ordering the non-leaf vertices.
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according to (3.48) for the redefined set M , the initial graph G̃0 = G♯
�, and the ordering α. Then,

G̃m has a clique equal to M .

Proof. The proof is similar to that in Lemma 3.7. Namely, we must show that there exists a path
[a = u1, u2, . . . , uk, uk+1 = b] in G♯

� such that α−1(uj) < m + 1 for 2 ≤ j ≤ k. Because of the

structure of G♯
�, we can construct a path between any vertices a, b ∈ V ♯ which passes only through

design vertices v(d), and by the definition of α, the condition α−1(uj) < m+ 1 is then satisfied. �

Because of this fact, we choose to only consider orderings α which place all design vertices of G♯
�

first and all target vertices last, and we call such an ordering a target-last ordering.
For the following generalization of Proposition 3.15, assume that a rooted tree G� = (V,E) is

given along with a target density p∗(xM ) defined on some set M ⊆ V , and let G♯
� = (V ♯, E♯) be

the corresponding augmented graph. As in Section 3.4.4, redefine the set M according to (3.24),
and let p∗(xM ) be indexed by this new set M . Finally, let the graphs G̃i be defined according

to (3.48) for the initial graph G̃0 = G♯
�, the modified set M , and an ordering α on V ♯, and as in

Proposition 3.14, let Ci denote the maximal cliques of G̃i−1 (Ci), where Ci , Ñ↓

G♯
�

[α(i)].

Proposition 3.17 (Sufficient Conditional Independencies for Exact Realization Using Augmented
States).
Let α be any target-last ordering on V ♯, where V ♯ contains m design vertices v(d). If a random

process {Xv}v∈V with density p(xV ) satisfies the conditional independencies ⊥XCi
for 1 ≤ i ≤ m,

then pT (xM ) = p(xM ), and if p ∈ PM (V, d), then pT is solution to problem Q.

Proof. Follows directly from Lemma 3.8, Proposition 3.14, and Theorem 3.4. �

Finally, we generalize Proposition 3.16 to the case of augmented states by showing that the
maximal cliques Ci in Proposition 3.17 and the augmented marginalization-invariant families M♯

vi

are simply permuted versions of one another. To formalize this relationship, let (v1, . . . , vm) be any
ordering on the non-leaf vertices of G� = (V,E), and let α be any target-last ordering on V ♯ such
that

α(m− i+ 1) = v
(d)
i , i = 1, . . . ,m. (3.51)

Therefore, α is of the form α = (v
(d)
m , v

(d)
m−1, . . . , v

(d)
1 , . . .) with all of the target vertices following

the design vertices. Given such an ordering, the following proposition shows that the setsM♯
vi and

Cm−i+1 are equal for i = 1, . . . ,m.

Proposition 3.18 (Marginalization-Invariant Markovianity and Proposition 3.17).
Let (v1, . . . , vm) be an ordering on the non-leaf vertices of a rooted tree G� = (V,E), and let α
be any target-last ordering on V ♯ satisfying (3.51). If Ci is defined as in Proposition 3.17, then,

Cm−i+1 =M♯
vi for i = 1, . . . ,m.

Proof. See Appendix B.9. �

Notice that the preceding proposition does not explicitly constrain the initial set M to contain the
leaf vertices of G�, as was required in Proposition 3.16. This is because we imposed this constraint

already in Section 3.3.3 when defining the augmented graph G♯
�.

The result in Proposition 3.18 thereby proves that the two sets of conditions {⊥X
M♯

vi

}1≤i≤m

and {⊥XCi
}1≤i≤m are equivalent. Combining this fact with Proposition 3.17 proves Theorem 2.4.
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� 3.10 Approximate Multiscale Realization: A Relaxed Problem Formulation

Having discussed the exact multiscale realization problem in detail, we now return to the approx-
imate multiscale realization problem introduced in Section 3.1. As we show, many of the ideas
presented for the exact realization problem directly translate into similar ideas for this relaxed
version of the realization problem. Given some measure of discrimination D (p‖q) between two
densities p and q, recall from Section 3.1 that the approximate multiscale realization problem is
defined as follows:

Approximate Multiscale Realization Problem Q̃: Find any density q̂ ∈ PG�
(V, d)

which minimizes the cost D (p∗(xM )‖q̂(xM )), i.e.

q̂ = arg min
q∈PG�

(V,d)
D (p∗(xM )‖q(xM )) .

This relaxed formulation of the exact realization problem Q is henceforth referred to as approximate
multiscale realization problem Q̃.

In this thesis, we focus on a particularly important and useful choice for the functional D (·‖·)
– namely, the Kullback-Leibler divergence discussed in Section 3.10.1. In Section 3.10.2, we intro-
duce an important mapping which is an integral part of the approximate realization problem. In
Section 3.10.3, we suggest a series of alternative problems to problem Q̃, and we discuss necessary
conditions for solving each such alternative. Finally, in Section 3.10.4 we provide an important
decomposition of the cost D (p∗(xM )‖q(xM )) associated with problem Q̃.

� 3.10.1 Kullback-Leibler Divergence As a Measure of Approximation

The Kullback-Leibler (KL) divergence [69] has found great utility in the area of information the-
ory [17, 42, 68] due to its close relationship to the notions of entropy and mutual information and
utility in the area of information geometry [1,2,4,18,20] due to its in interesting geometric proper-
ties. For our purposes, the KL divergence is not interpreted as a measure of information but rather
a cost function, providing a measure of discrimination between two densities p and q, and as we
discuss here, KL has several important properties which we use extensively in subsequent sections.

Given two probability densities p(x) and q(x) defined on a continuous space X , the KL diver-
gence is given by the following,

D (p(x)‖q(x)) ,

∫

X
p(x) log

(
p(x)

q(x)

)
dx, (3.52)

and if the space X is discrete, the integral is replaced by a summation. Using Jensen’s inequality, it
can be shown that D (p‖q) ≥ 0 for all p and q, with equality if and only if p = q almost everywhere.
Therefore, the KL divergence provides a measure of discrimination between two densities p and
q, with large values of D (p‖q) indicating that p and q are dissimilar. However, D (p‖q) is not
symmetric in p and q and does not necessarily satisfy the triangle inequality, and as a result, it is
not a true distance measure.

In using the KL divergence as a measure of discrimination, we encounter an important technical
consideration not encountered in the exact realization problem. Specifically, the divergence in (3.52)
may not be defined for some choice of densities p and q. For a discrete space X , the divergence
is undefined when p(x) > 0 and q(x) = 0 for some x ∈ X , and for a continuous space X , the
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divergence is undefined when
∫
XR

p(x)dx > 0 and
∫
XR

q(x)dx = 0 for some measurable setXR ⊂ X .
In order to simplify subsequent discussion, we henceforth assume (but do not explicitly state) that
all densities p and q under consideration satisfy the technical conditions necessary for (3.52) to be
defined.

Given two probability densities p(x, y) and q(x, y) defined on a continuous space X × Y, the
KL divergence may also be used to provide a measure of discrimination between two conditional
densities p(y|x) and q(y|x). Using the definition in (3.52), though, the divergence D (p(y|x)‖q(y|x))
depends on the particular instantiation of X = x and is therefore a function over the space X . For
convenience, we define the functional D̄ (p(y|x)‖q(y|x)) to be the average of D (p(y|x)‖q(y|x)) over
all instantiations of X = x as follows,26

D̄ (p(y|x)‖q(y|x)) ,

∫

X
p(x)D (p(y|x)‖q(y|x)) dx

=

∫

X

∫

Y
p(x, y) log

(
p(y|x)

q(y|x)

)
dydx. (3.53)

Using (3.52) and (3.53), it can be shown that KL satisfies the following additivity property [17],

D (p(x, y)‖q(x, y)) = D (p(x)‖q(x)) + D̄ (p(y|x)‖q(y|x)) . (3.54)

Another important property of KL is that the triangle inequality is satisfied (with equality)
for some choices of densities. For example, the following decomposition indicates that the diver-
gence between two densities p and q is equal to the sum of the divergences D (p(x)‖pG(x)) and
D (pG(x)‖q(x)) if q(x) factors according to a subgraph of G.

Proposition 3.19 (Additivity of Projections).
Let H = (V,E) be any graph defined on a vertex set V , and let G = (V,E′) be any triangulated
supergraph of H, i.e. E′ ⊇ E. Suppose p(xV ) and q(xV ) are two densities indexed by V and defined
on the same space X =

∏
v∈V Xv. If q(x) factors according to H, then the following decomposition

holds,

D (p(x)‖q(x)) = D (p(x)‖pG(x)) +D (pG(x)‖q(x)) . (3.55)

Proof. See Appendix B.10. �

Using the decomposition in (3.55), we can also state an important geometric property of pG . Namely,
pG is the “closest” density to p (in the KL sense) which factors according to G, or said in a different
way, pG is the “best” model for p amongst all densities with the conditional independencies implied
by G. This fact establishes the appropriateness of calling pG a projection of p onto G and is stated
in the following corollary to Proposition 3.19.

Corollary 3.4 (pG is a KL Projection).
Let G = (V,E) be a triangulated graph, and let p(xV ) be indexed by V and defined on the space
X =

∏
v∈V Xv. Then, q(x) = pG(x) is a minimizer of D (p(x)‖q(x)) over all q(xV ) defined on X

and satisfying q = qG.27

26Some authors define this average measure to be the KL divergence between conditional densities.
27We cannot say that q(x) = pG(x) is the unique minimizer when X is a continuous space.
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Proof. Let H = G in Proposition 3.19. Then, the first term in (3.55) is constant with respect to
q(x), and the second term can be minimized by setting q(x) = pG(x). �

One particularly important illustration of the result in Corollary 3.4 occurs when G = G∼� is a

tree. In this case, q(x) = pT (x) is the minimizer of D (p(x)‖q(x)) over all multiscale densities q(x)
with the structure of G�. Comparing this optimization problem to problem Q̃, we see that the
two problems are identical when M = V ; that is, when the target density is p∗(xM ) = p∗(xV ), a
closed-form solution to problem Q̃ is given by q̂ = (p∗)T . However, when M ⊂ V , the problem is
not so trivial, and this is the topic we address in the remaining sections of this chapter.

� 3.10.2 An Important Mapping

In this section, we introduce an important mapping with a number of special properties. Specifically,
for a fixed target density p∗(xM ), we define the mapping FM as follows,

FM : P(V, d) −→ PM (V, d), FM (q) , q(xV −M |xM )p∗(xM ). (3.56)

This mapping transforms any q ∈ P(V, d) to a density p̄(x) , FM (q(x)) with the desired marginal
p̄(xM ) = p∗(xM ), while maintaining the same conditional density p̄(xV −M |xM ) = q(xV −M |xM ).

Since FM (·) only alters the marginal density of XM , the KL divergence between p̄(x) and q(x)
is equal to the divergence between p∗(xM ) and q(xM ), a fact that can be shown by using the
additivity property (3.54),

D
(
FM (q(x))‖q(x)

)
= D (p̄(x)‖q(x)) = D (p̄(xM )‖q(xM )) + D̄ (p̄(xV −M |xM )‖q(xV −M |xM ))

= D (p∗(xM )‖q(xM )) . (3.57)

Using this relationship, the divergence D (p∗(xM )‖q(xM )) considered in problem Q̃ can equivalently
be written as a divergence between the two densities FM (q(x)) and q(x), each defined on the entire
space X rather than the subspace XM .

Geometric Properties of the Mapping FM (·)

As we now discuss, the pair of densities q and FM (q) have an interesting geometric relationship. In
particular, the following proposition indicates that the KL divergence satisfies the triangle inequality
(with equality) for any three densities p ∈ PM (V, d), q ∈ P(V, d), and FM (q) ∈ PM (V, d).

Proposition 3.20 (The Geometry of the Mapping FM (·)).
Let p ∈ PM (V, d) and q ∈ P(V, d). Then, the following decomposition holds,

D (p(x)‖q(x)) = D
(
p(x)‖FM (q(x))

)
+D

(
FM (q(x))‖q(x)

)
. (3.58)

Proof. Follows directly from the definition of KL, the relationship in (3.57), and the fact that
p ∈ PM (V, d). See Appendix B.10 for details. �

Notice that the density FM (q) in (3.58) plays a role similar to the projection pG in (3.55). In
fact, as the following corollary to Proposition 3.20 indicates, FM (q) is the projection of q onto
the set PM (V, d). The two projections pG and FM (q) are fundamentally different, though, in the
sense that q = pG is a minimizing solution with respect to the second argument of D (·‖·), while
p = FM (q) is a minimizing solution with respect to the first argument of D (·‖·).
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Corollary 3.5 (FM (q) is a KL Projection).
Given any q ∈ P(V, d), the density p̂(x) = FM (q(x)) is a minimizer of the function D (p(x)‖q(x))
over all p ∈ PM (V, d).

Proof. The second term in (3.58) is a function of q(x) and does not depend on p(x), and the first
term can be minimized by setting p(x) = FM (q(x)). �

For the class of exponential models [4, 12], the density pG is called an M -projection, while the
density FM (q) is called an E-projection [1, 2]. The geometric properties of this particular family
of models have been well-studied in the literature [12,18,28,57,104], and a number of optimization
algorithms such as the famous EM algorithm may be viewed as performing an alternating series of
projections [19,20,59].

Multiscale Models and the Mapping FM (·)

Consider now the implications of Corollary 3.5 when q has additional conditional independence
structure, and in particular, suppose q is a multiscale density, i.e. q ∈ PG�

(V, d). Corollary 3.5

indicates that FM (q) is the “closest” density to q which lies in the set PM (V, d), or said differently,
FM (q) is the “closest” density with the target marginal p∗(xM ). However, since FM (q) has the
marginal p∗(xM ), it is not necessarily a multiscale density, and for most choices of p∗(xM ), FM (q)
possesses fewer conditional independencies than q.

To see this, suppose p∗(xM ) possesses no conditional independencies and is therefore Markov
with respect to the complete graph on M , denoted by KM , (M,EM ), and further suppose that
C is the set of all maximal cliques of G∼� = (V,E). We now show that FM (q) factors according

to the graph G , (V,E ∪ EM ), i.e. the graph containing the edges in the tree G∼� plus the edges
in the complete graph KM . Using the fact that q(x) factors according to G∼� for some choice of

compatibility functions ψC , the density FM (q) may be written as follows

FM (q(x)) = q(xV −M |xM )p∗(xM ) = q(x)
p∗(xM )

q(xM )
=

[
∏

C∈C

ψC(xC)

]
ψM (xM ), (3.59)

where ψM (xM ) ,
p∗(xM )
q(xM ) . Consequently, FM (q(x)) may be written as a product of compatibility

functions over a set of cliques C ∪ {M}, and since this set is necessarily a subset of the maximal
cliques of the graph G, FM (q(x)) factors according to G. As an example, Figures 3.21(a) and (b)
respectively show a tree G∼� = (V,E) and the graph G = (V,E ∪EM ), where M = {3, 4, 5, 6}.

In summary, the density FM (q) may possess fewer conditional independencies than q (depending
on p∗(xM )) because it necessarily factors according to a graph which is fully connected on the
vertices M . This fact is important for subsequent discussion because it proves that the set PM

G (V, d)
is non-empty for every graph G (triangulated or not triangulated) which is a supergraph of G∼�
and has a clique equal to M . This follows from the fact that every density p ∈ P(V, d) has a
corresponding multiscale density pT which maps to FM (pT ), and since FM (pT ) factors according
to the graph G = (V,E ∪EM ), it also factors according to every supergraph of G.

An Invariance Property

The mappings FM (·) and p −→ pT exhibit an interesting property when applied to solutions q̂ of

problem Q̃. In particular, the mapping
(
FM (·)

)T
, i.e. the composition of the two mappings FM (·)
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(a) (b)

Figure 3.21. (a) A tree G∼� = (V,E). (b) A graph G containing the edges E in G∼� plus the edges

needed to make M = {3, 4, 5, 6} a clique. If q is a density that factors according to the graph in (a),
then FM (q) factors according to G.

and p −→ pT , is idempotent on the solution set of problem Q̃, and therefore, every solution q̂ satisfies

q̂ =
(
FM (q̂)

)T
. This equality certainly does not hold for all multiscale densities q because, at the

very least, the transformed density q̄ ,
(
FM (q)

)T
would have to satisfy q̄(xv) = p∗(xv) = q(xv) for

all v ∈M . Therefore, solutions to problem Q̃ have a remarkable invariance property, as evidenced
by the following proposition.

Proposition 3.21 (An Invariance Property of Solutions to Problem Q̃).

If q̂ is a solution to problem Q̃, then q̂ =
(
FM (q̂)

)T
.

Proof. To prove this result, we consider what happens when the mappings FM (·) and p −→ pT are
successively applied to q̂. In particular, we define the densities p̂ , FM (q̂) and p̄ , FM (p̂T ), or
equivalently, we consider the following succession of densities,

q̂
FM (·)
−→ p̂

(·)T

−→ p̂T FM (·)
−→ p̄.

Using Proposition 3.19, the divergence D (p̂‖q̂) may be decomposed as follows,

D (p̂‖q̂) = D
(
p̂‖p̂T

)
+D

(
p̂T ‖q̂

)
, (3.60)

and since p̂ ∈ PM (V, d) and p̂T ∈ P(V, d), the first term on the right-hand side of (3.60) may be
further decomposed using the result in Proposition 3.20,

D (p̂‖q̂) = D (p̂‖p̄) +D
(
p̄‖p̂T

)
+D

(
p̂T‖q̂

)
. (3.61)

Using the relationship in (3.57), we can also writeD (p̂‖q̂) = D (p∗(xM )‖q̂(xM )) and D
(
p̄‖p̂T

)
=

D
(
p∗(xM )‖p̂T (xM )

)
, so that (3.61) is equivalent to

D (p∗(xM )‖q̂(xM )) = D
(
p∗(xM )‖p̂T (xM )

)
+D (p̂‖p̄) +D

(
p̂T ‖q̂

)
. (3.62)

By the non-negativity of the KL divergence, D (p∗(xM )‖q̂(xM )) ≥ D
(
p∗(xM )‖p̂T (xM )

)
with equal-

ity if and only if p̂ = p̄ and p̂T = q̂. However, if D (p∗(xM )‖q̂(xM )) > D
(
p∗(xM )‖p̂T (xM )

)
then
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this contradicts the fact that q̂ is a solution to problem Q̃. Thus, we must have equality, in which
case p̂T = q̂ which then implies p̂ = p̄. �

This invariance property therefore requires all solutions q̂ of problem Q̃ to satisfy q̂(xv) = p∗(xv)
for all v ∈ M , or in other words, all solutions to problem Q̃ must, at the very least, match the
vertex marginals p∗(xv) of the target density.

From a slightly different perspective, this invariance property is equivalent to the statement
that p −→ pT is an inverse mapping of FM (·) on the domain equal to the solution set of problem
Q̃. Recall from Section 3.4 that we proved the identity map to be a right inverse of the mapping
p −→ pT when applied to solutions of the exact realization problem. As we show in the next section,
the mapping FM (·) is an appropriate generalization of the identity mapping to the approximate
realization problem, and it is used to prove that p −→ pT is a surjection for a number of alternative
realization problems.

� 3.10.3 Necessary Conditions for Approximate Multiscale Realization

In this section, we provide a generalization of the ideas discussed in Section 3.4. Namely, we suggest
a series of alternative formulations to problem Q̃, and we show that a subset of these alternatives is
equivalent to Q̃ in the sense that a surjective mapping exists from the solution set of each alternative
problem to the solution set of problem Q̃. This analysis also suggests necessary conditions for the
approximate realization problem.

Alternative Problem Formulations for Approximate Multiscale Realization

Rather than solving problem Q̃ directly, consider solving one of a series of alternative problems
which searches over a set of densities different from the multiscale densities considered in problem
Q̃; specifically, the search is performed over the set PM

G (V, d) defined in (3.22) for some specified
graph G. Therefore, the problems considered here are similar to the alternative problems PM

G

discussed in Section 3.4.2 in that each density p ∈ PM
G (V, d) possesses the conditional independence

structure implied by G and has the marginal p(xM ) = p∗(xM ). However, the problems considered
here are relaxed in the sense that the marginal pT (xM ) is not required to match p∗(xM ) exactly
but rather minimize the functional D

(
p∗(xM )‖pT (xM )

)
.

Given a rooted tree G� defined on a vertex set V and any graph G = (V,E), consider the follow-
ing approximation to alternative problem PM

G , henceforth called alternative approximate problem

P̃M
G .

Alternative Approximate Problem P̃M
G : Find any density p̂ ∈ PM

G (V, d)

which minimizes the cost D
(
p∗(xM )‖p̂T (xM )

)
, i.e.

p̂ = arg min
p∈PM

G (V,d)
D
(
p∗(xM )‖pT (xM )

)
.

Therefore, problem P̃M
G seems to be a relaxation of problem PM

G in the sense that p̂T (xM ) is not
required to be equal to p∗(xM ). In the special case where G is the complete graph, we often use
the notation P̃M rather that P̃M

G to emphasize the fact that P̃M is an approximation to problem
PM introduced in Section 3.4.1.

For the exact realization problem, Proposition 3.3 proved the mapping p −→ pT to be a sur-
jection from the solution set of PM

G onto the solution set of Q, as long as G is a supergraph of G∼� .
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In the approximate realization problem, this same result does not necessarily hold; specifically, a
surjection may not exist from the solution set of problem P̃M

G onto the solution set of problem Q̃,

even if G is a supergraph of G∼� . This is due to the fact that problem Q̃ is by definition a relaxation

of problem Q, while problem P̃M
G may or may not be a relaxation of problem PM

G for some choices
of G. The following example illustrates this idea.

Example 3.6 (On the Existence of Surjective Mappings).
This example provides a thought exercise to illustrate the fact that P̃M

G may not be a relaxation of
problem PM

G for all graphs G and to show how this affects the existence of a surjection between the

solution sets of P̃M
G and Q̃. Consider again the graphs shown in Figure 3.6, and suppose a target

density p∗(xM ) is given for M = {1, 2, 3}, the leaf vertices of the rooted tree shown in Figure 3.6(a).
For the purpose of this example, we assume that problem Q̃ has at least one solution, while problem
Q has no solution. This is certainly possible since Q̃ is a relaxation of Q.

Consider now the graph G shown in Figure 3.6(c), where G is a supergraph of G∼� . For some
choice of p∗(xM ) and a sufficiently small choice for the dimension of random vector X0, it is possible
that PM

G (V, d) is empty because there is no density p which has dimensions d, factors according
to G, and exactly satisfies the marginal constraint p(xM ) = p∗(xM ). Then, if PM

G (V, d) is empty,

neither problem PM
G nor problem P̃M

G has a solution since each searches over the space PM
G (V, d),

and since problem Q̃ does have a solution, there is no surjection from the solution set of P̃M
G onto

the solution set of Q̃.
Notice that the graph G shown in Figure 2.8(c) does not have a clique equal to M = {1, 2, 3}.

Because of this, we cannot guarantee that the set PM
G (V, d) is non-empty, and as a result, the search

space for problem P̃M
G may be overly restrictive. In order to ensure that PM

G (V, d) is non-empty,
the graph G must satisfy the following two properties:

(1) G has a clique equal to M ,

(2) G is a supergraph of G∼� .

As discussed in the previous section, the properties of the mapping FM (·) ensure that the set
PM
G (V, d) is non-empty when G satisfies these two conditions. Because of this, we choose to focus

on these types of graphs in the remainder of our discussion, and in particular, we prove that the
approximate problem P̃M

G is, in this case, a sufficient relaxation of PM
G to allow a surjection between

the solution sets of P̃M
G and Q̃. ◭

Consider now any alternative problem P̃M
G where G is a supergraph of G∼� with a clique equal

to M . In the following proposition, we prove that p −→ pT is a surjection from the solution set of
P̃M
G onto the solution set of problem Q̃. To do this, we first show that p −→ pT is a mapping from

the solution set of P̃M
G to the solution set of Q̃, and second, we show that the mapping FM (·) is a

right inverse of p −→ pT . These two facts prove that p −→ pT is in fact a surjection.

Proposition 3.22 (Relationship Between Solutions to P̃M
G and Q̃).

Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. If a graph
G = (V,E) is a supergraph of G∼� and has a clique equal to M , the mapping p −→ pT is a surjection

from the solution set of problem P̃M
G onto the solution set of problem Q̃.
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Proof. See Appendix B.11. �

As a consequence of Proposition 3.22, it is reasonable to consider solving the alternative approximate
problem P̃M

G rather than problem Q̃ since all solutions to problem Q̃may be identified from solutions

to problem P̃M
G .

Necessary Conditions for Alternative Problem Formulations

Recall from Section 3.4.3 that the following two constraints are sufficient conditions for solutions
to alternative problem PM

G and hence the exact realization problem:

Condition 1 p̂ ∈ PM
G (V, d),

Condition 2 p̂ = p̂T .

Compare these two constraints with the following, which we subsequently show in Theorem 3.8 to
be necessary conditions for solutions to alternative approximate problem P̃M

G :

Condition 1 p̂ ∈ PM
G (V, d),

Condition 2 p̂T =
[
FM (p̂T )

]T
.

The first constraint is the same in both sets of conditions and simply requires p̂ to lie in the
search set for problems PM

G and P̃M
G . The second constraint in the latter set of conditions is more

interesting because it is (as it should be) less-stringent than the second constraint in the former
set of conditions. In particular, if there is no exact solution to the realization problem, then the
constraints p̂ ∈ PM

G (V, d) and p̂ = p̂T cannot be simultaneously satisfied by any density p̂, and in

this case, the necessary condition p̂T =
[
FM (p̂T )

]T
represents a relaxation of the constraint p̂ = p̂T .

On the other hand, the latter set of constraints can be extremely weak for some realization

problems. In particular, the constraint p̂T =
[
FM (p̂T )

]T
is an uninformative necessary condition

for solutions to exact realization problem PM
G . To see this, recall that every solution p̂ to problem

PM
G satisfies p̂T (xM ) = p∗(xM ), and consequently, the density p̂T remains unchanged under the

mapping FM (·), i.e. p̂T = FM (p̂T ). Using this fact, the constraint p̂T =
[
FM (p̂T )

]T
simply

requires p̂T =
[
p̂T
]T

. However, every density satisfies this constraint due to the fact that (·)T

is a projection operator, and therefore, the latter set of constraints are uninformative necessary
conditions for the exact realization problem.

Figure 3.22 provides a graphical illustration of these two sets of conditions. The illustration
provided in Figure 3.22(a) shows the case where the realization problem has an exact solution.
In this situation, the sufficient conditions p̂ ∈ PM

G (V, d) and p̂ = p̂T precisely characterize the
densities which lie in the intersection of the sets PM

G (V, d) and PG�
(V, d), i.e. multiscale densities

which exactly match the target density p∗(xM ). The illustration provided in Figure 3.22(b) shows
the case where the realization problem has no exact solution. In this situation, the necessary
conditions for approximate problem P̃M

G (the latter set of conditions) require every solution p̂ to

satisfy p̂ ∈ PM
G (V, d) and p̂T = p̄T with p̄ , FM (p̂T ). As the figure illustrates, when the two sets

PM
G (V, d) and PG�

(V, d) do not intersect, the latter set of constraints characterizes solutions p̂ in
terms of their orthogonality properties.

Figure 3.22(b) also illustrates the fact that some solutions to problem P̃M
G satisfy an interesting

invariance property. Namely, there exists a solution p̄ ∈ PM
G (V, d) which remains invariant under
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the composition of the two projections (·)T and FM (·), and furthermore, every solution p̂ to problem
P̃M
G can be mapped to such a density as shown in Figure 3.22(b). We exploit this property in the

next chapter in developing an iterative approach for solving the approximate realization problem.
Using the invariance property of the mapping FM (·) provided in Proposition 3.21, along with

Proposition 3.22, it is straightforward to show that the latter set of constraints are indeed necessary
conditions. This result is formally stated and proven in the following theorem.

Theorem 3.8 (Necessary Conditions for Problem P̃M
G ).

Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. Suppose
G = (V,E) is any triangulated supergraph of G∼� with a clique equal to M . If density p̂ is a solution

to problem P̃M
G , then it must satisfy p̂ ∈ PM

G (V, d) and p̂T =
[
FM (p̂T )

]T
.

Proof. The constraint p̂ ∈ PM
G (V, d) requires p̂ to lie in the search set for problem P̃M

G . Using

Proposition 3.22, we know that q̂ , p̂T is a solution to problem Q̃, and then, by Proposition 3.21,

we know that this solution must satisfy q̂ =
[
FM (q̂)

]T
, thereby proving the result. �

In the preceding discussion, we have focused exclusively on graphs G which are supergraphs
of a tree H = G∼� . However, all of the results provided for the approximate multiscale realization
generalize to the case where H is any triangulated graph, not necessarily a tree. Consequently,
by using the notion of an augmented graph, a result similar to Theorem 3.8 also holds for the
state augmentation problem. While we do not derive this fact here, the necessary conditions
for the approximate realization problem with augmented states are identical to those provided in
Theorem 3.8 if the assumptions in Theorem 3.4 are used.

� 3.10.4 An Important Decomposition of the Kullback-Leibler Divergence

Recall that Proposition 3.20 provides an important decomposition of the KL divergence which
emphasizes the geometry of the mapping FM (·). The next chapter focuses on this result in further
detail and shows how the relationship in (3.58) leads to an iterative algorithm for solving the
approximate realization problem. In concluding this chapter, we show how the decomposition in
(3.58) is related to both the sufficient conditions for exact realization and the necessary conditions
for approximate realization.

Choose any p ∈ PM (V, d), and notice that pG ∈ P
M (V, d) as long as G is a triangulated graph

with a clique equal to M . Then, applying the relationship in (3.58) gives

D
(
pG(x)‖pT (x)

)
= D

(
pG(x)‖FM (pT (x))

)
+D

(
FM (pT (x))‖pT (x)

)
,

and since the final term may be rewritten using (3.57), we get the following important decomposi-
tion,

D
(
p∗(xM )‖pT (xM )

)
= D

(
pG(x)‖pT (x)

)
−D

(
pG(x)‖FM (pT (x))

)
. (3.63)

This relationship is intuitively pleasing because it indicates that the “distance” between p∗(xM )
and pT (xM ) may equivalently be measured by computing the “total distance” between pG and pT

and subtracting the “distance” between pG and FM (pT ). Furthermore, the density pG in (3.63)
may be replaced by any projection pG′ , as long as G′ is a triangulated graph with a clique equal to
M . These ideas are graphically depicted in Figure 3.23.
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PG�
(V, d)

PM
G (V, d)

p̂ = p̂T

(a)

PG�
(V, d)

PM
G (V, d)

p̂

p̄ = FM(p̂T )

p̂T = p̄T

(b)

Figure 3.22. (a) Graphical depiction of sufficient conditions for exact realization problem PM
G . (b)

Graphical depiction of necessary conditions for approximate realization problem P̃M
G .
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p

D
(
pG‖p

T
)

D
(
FM(pT )‖pT

)

D
(
pG‖F

M(pT )
)

D (p‖pG)

pG

FM(pT )

pT

Figure 3.23. Illustrates the additive property of the Kullback-Leibler divergence for the two types
of projections pG and FM (pT ).

The Tradeoff Between Sufficient Conditions for Exact Realization and Necessary Conditions for Approx-

imate Realization

Besides the preceding additive property, there are several important points to make about the
decomposition in (3.63) in terms of the sufficient conditions for exact realization and the necessary
conditions for approximate realization:

(1) Due to the non-negativity of the KL divergence, (3.63) shows thatD
(
pG(x)‖pT (x)

)
is an upper

bound for D
(
p∗(xM )‖pT (xM )

)
. Consequently, if there exists a density p ∈ PM (V, d) such

that pG = pT , then pT is an exact solution to the realization problem. These same sufficient
conditions were previously derived in Theorem 3.3 for the exact realization problem.

(2) Consider now the second term on the right-hand-side of (3.63) which measures the divergence
between pG and FM (pT ). Notice that any density p which satisfies pG = FM (pT ) must also

satisfy pT =
[
FM (pT )

]T
, and consequently, the term D

(
pG‖F

M (pT )
)

measures something
stronger than the necessary conditions stated in Theorem 3.8. However, it is important to
note that the conditions p ∈ PM (V, d) and pG = FM (pT ) are neither necessary nor sufficient
for the approximate realization problem. As Lemma 3.9 (to follow) shows, though, there
exists at least one solution to the approximate realization problem which satisfies these two
conditions.

(3) As a whole, the relationship in (3.63) shows a tradeoff between the sufficient conditions for
exact realization and the necessary conditions for approximate realization. Specifically, if we
try to minimize the upper boundD

(
pG(x)‖pT (x)

)
or equivalently seek to satisfy the sufficient

conditions for the exact realization problem, the actual divergence D
(
p∗(xM )‖pT (xM )

)
is

smaller than this upper bound because the sufficient conditions for exact realization are too
stringent for the approximate realization problem. Consequently, the term D

(
pG‖F

M (pT )
)

provides the appropriate correction factor. As Proposition 3.23 (to follow) states, if for some
density p ∈ PM (V, d) the upper bound D

(
pG‖p

T
)

cannot be further decreased, then pT is

a solution to approximate realization problem Q̃, and furthermore, D
(
pG‖F

M (pT )
)

= 0 so

that the condition pG = FM (pT ) (and in turn the necessary condition pT =
[
FM (pT )

]T
) is
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exactly satisfied in this case.

As the second item in the preceding discussion suggests, there always exists a solution to
alternative problem P̃M which satisfies the constraint p̂G = FM (p̂T ). For example, the density
p̄ illustrated in Figure 3.22(b) is one such solution which satisfies this constraint. The following
lemma states this important result.

Lemma 3.9 (Existence of Solutions Satisfying p̂G = FM (p̂T )).
Let G be a graph satisfying the assumptions stated in Theorem 3.8. If approximate realization

problem Q̃ has at least one solution, then there exists a solution p̂ to problem P̃M satisfying the
conditions p̂ ∈ PM (V, d) and p̂G = FM (p̂T ).

Proof. Suppose problem Q̃ has at least one solution q̂. The proof to Proposition 3.22 shows that
p̂ , FM (q̂) is a solution to problem P̃M , and consequently, the solution set of problem P̃M is
non-empty.

Now, choose any solution p̂ to problem P̃M , and consider the density p̄ , FM (p̂T ). In most
cases, the two densities p̂ and p̄ are not the same, but using Proposition 3.22, we know that p̄ is
a solution to problem P̃M . Furthermore, using the invariance property in Proposition 3.21, the

densities p̂ and p̄ satisfy p̂T =
(
FM (p̂T )

)T
= p̄T . Therefore, the density p̄ satisfies p̄ ∈ PM (V, d)

and p̄ = FM (p̄T ). Finally, by the discussion in Section 3.10.2, p̄ = FM (p̄T ) must factor according
to all supergraphs of G∼� which have a clique equal to M . Consequently, p̄ = p̄G for the graphs G
considered in Theorem 3.8, thereby proving the result. �

Using Lemma 3.9, we can also prove an important result about the upper boundD
(
pG(x)‖pT (x)

)

in (3.63). Specifically, as mentioned in the preceding discussion, minimizing this upper bound leads
to a solution to the approximate realization problem, as stated in the following proposition.

Proposition 3.23 (Identifying Solutions By Minimizing An Upper Bound).
Let G be a graph satisfying the assumptions stated in Theorem 3.8. A density p̂ minimizes
D
(
pG(x)‖pT (x)

)
over all p ∈ PM (V, d) if and only if p̂ is both a solution to problem P̃M and

satisfies p̂G = FM (p̂T ).

Proof. Let p̂ be a minimizer of D
(
pG(x)‖pT (x)

)
over all p ∈ PM (V, d). Since G has a clique equal

to M , p̂G ∈ P
M
G (V, d), and consequently, we can use the relationship in (3.63) to write the following,

D
(
p∗(xM )‖p̂T (xM )

)
= D

(
p̂G(x)‖p̂T (x)

)
−D

(
p̂G(x)‖FM (p̂T (x))

)
. (3.64)

Now, suppose p̂ is not a solution to problem P̃M , so that there exists a density p which satisfies
D
(
p∗(xM )‖pT (xM )

)
< D

(
p∗(xM )‖p̂T (xM )

)
. By Lemma 3.9, there exists a solution p which satisfies

pG = FM (pT ), and using (3.63), this implies D
(
p∗(xM )‖pT (xM )

)
= D

(
pG(x)‖pT (x)

)
. Combining

this fact with (3.64) gives the following,

D
(
p∗(xM )‖pT (xM )

)
= D

(
pG(x)‖pT (x)

)
< D

(
p̂G(x)‖p̂T (x)

)
−D

(
p̂G(x)‖FM (p̂T (x))

)
,

which indicates that D
(
pG(x)‖pT (x)

)
< D

(
p̂G(x)‖p̂T (x)

)
. However, this contradicts the minimal-

ity of p̂. Consequently, there is no such density p, and p̂ is a solution to problem P̃M . Furthermore,
this same argument implies that D

(
p̂G‖F

M (p̂T )
)

= 0 so that p̂G = FM (p̂T ).
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Now suppose p̂ is both a solution to problem P̃M and satisfies p̂G = FM (p̂T ). Suppose how-
ever that p̂ is not a minimizer of D

(
pG(x)‖pT (x)

)
, so that there exists a density p satisfying

D
(
pG(x)‖pT (x)

)
< D

(
p̂G(x)‖p̂T (x)

)
. Using the relationship in (3.63) on both sides of the preced-

ing equation, along with the fact that p̂G = FM (p̂T ), gives the following,

D
(
p∗(xM )‖pT (xM )

)
+D

(
pG(x)‖FM

(
pT (x)

))
< D

(
p∗(xM )‖p̂T (xM )

)
.

This implies that D
(
p∗(xM )‖pT (xM )

)
< D

(
p∗(xM )‖p̂T (xM )

)
, which contradicts the fact that p̂ is a

solution to problem P̃M . Hence, there is no such density p, and p̂ is a minimizer of D
(
pG(x)‖pT (x)

)

over all p ∈ PM (V, d). �

A Greedy Approach to Approximate Realization

The result provided in Proposition 3.23 suggests one approach to finding a solution to the ap-
proximate realization problem. Specifically, rather than minimizing D

(
p∗(xM )‖pT (xM )

)
, we can

instead attempt to minimize the upper bound D
(
pG(x)‖pT (x)

)
over all densities p ∈ PM (V, d).

Of course, this approach to the realization problem does not represent a significant simplification
since minimizing the upper bound is still a global minimization problem. As we show here, though,
the ideas previously discussed within the context of the exact realization problem may be used to
decompose this global cost function into a sum of more localized cost functions.

In particular, we propose an expansion of D
(
pG‖p

T
)

into a sum of terms, based on a chosen
sequence of clique extensions G0 = G∼� ,G1, . . . ,Gn = G. Based on the discussion in Section 3.7.1
and Lemma 3.6 in particular, such a sequence must exist, since G∼� is triangulated and since G is a
triangulated supergraph of G∼� . Given such a sequence, the corresponding projections pG0 , . . . , pGn

satisfy the simple probabilistic relationship in (3.39) for clique extensions, and using this fact in
conjunction with the additivity properties (3.54) and (3.55) of KL proves that D

(
pG‖p

T
)

may be
decomposed into a sum of simpler terms. The following proposition provides such a decomposition
for any sequence of clique extensions between two triangulated graphs G and G′.

Proposition 3.24 (Decomposing KL for a Sequence of Clique Extensions).
Let G = (V,E) be a triangulated graph, and let G = G0,G1,G2, . . . ,Gn = G′ be a sequence of graphs
where Gi is a clique extension of Gi−1 and where Ci is the unique maximal clique contained in Gi

but not Gi−1. Then, for any density p(xV ), the following decomposition of the KL divergence holds,

D (pG′(x)‖pG(x)) =
n∑

i=1

D
(
p(xCi

)‖pGi−1(Ci)(xCi
)
)
. (3.65)

Proof. This result can be derived directly using the relationship in Corollary 3.2 and the definition
of KL; we instead choose to derive the result using the properties of KL. First, suppose n = 1 so
that G′ is a clique extension of G with unique new maximal clique C. Then, using (3.54), we get

D (pG′(x)‖pG(x)) = D (pG′(xC)‖pG(xC)) +D (pG′(xV −C |xC)‖pG(xV −C |xC)) . (3.66)

By the relationship in (3.39) for clique extensions, the last term in (3.66) is zero because the two
conditional densities are identical. Therefore, we get

D (pG′(x)‖pG(x)) = D (p(xC)‖pG(xC)) = D
(
p(xC)‖pG(C)(xC)

)
. (3.67)
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Suppose now that n > 1. By the nature of the clique extension, each Gi for i = 1, . . . , n is a
triangulated supergraph of G0. As such, we can inductively use the additivity property (3.55) of
projections to show the following,

D (pG′(x)‖pG(x)) = D (pGn(x)‖pG0(x)) =

n∑

i=1

D
(
pGi

(x)‖pGi−1(x)
)
. (3.68)

Combining (3.67) and (3.68) proves the result. �

As a consequence of this result, we can seek to minimize the upper bound D
(
pG(x)‖pT (x)

)
by

minimizing the sum of terms in (3.65) for some chosen sequence of clique extensions. A greedy
approach to minimizing this sum is to try to minimize each term separately, and this type of greedy
approach is similar in spirit to the approach taken in [38] for internal multiscale models, although
in [38] there is no global cost function such as we have here.

The difficulty with this type of greedy approach is that it is computationally infeasible for
many practical problems. This is due to the fact that at least one of the maximal cliques Ci in
the sequence of clique extensions must have M ⊆ Ci, and consequently, trying to minimize the
term D

(
p(xCi

)‖pGi−1(Ci)(xCi
)
)

in (3.65) may be as difficult as solving the original problem. Rather
than focus on this greedy approach to approximate realization, we focus instead on the iterative
algorithm discussed in the next chapter which does not suffer from this computational difficulty.
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Chapter 4

Realizing Approximate Multiscale Models

Using EM

IN this chapter, we use the theoretical framework established in the previous chapter to develop
an iterative approach for solving the approximate multiscale realization problem. Section 4.1

proposes such an iterative procedure and discusses its convergence properties. As we show, if
the iterates of this procedure converge to a fixed density, then this density satisfies the necessary
conditions for optimality provided in Theorem 3.8. In Section 4.2, we use the inherent conditional
independencies of multiscale models to suggest an efficient recursive procedure for implementing
this iterative approach to the realization problem.

From a theoretical point-of-view, the iterative approach presented in Section 4.1 is significant
due to its convergence properties, but from a practical point-of-view, such an approach is computa-
tionally intractable since each iteration is performed within the space of all densities. In Section 4.3,
we address this issue by considering a parameterized subspace of densities, and we show that the
iterative approach suggested in Section 4.1 is more commonly known as the EM algorithm when
such a parametrization is considered.

While the EM algorithm is computationally viable for many problems of interest, it has one
important drawback in that it may not find an optimal solution to the approximate realization
problem. As we discuss, though, there is at least one important problem scenario for which the
EM algorithm does in practice find optimal solutions, and this occurs when we consider the class of
Gaussian multiscale models and when we require the target density p∗(xM ) to be Gaussian as well.
Section 4.4 uses this fact to develop a computationally efficient algorithm for solving the Gaussian
multiscale realization problem.

� 4.1 An Iterative Procedure for Solving the Multiscale Realization Problem

In this chapter, we focus on developing an iterative approach to finding solutions to the approximate
multiscale realization problem. For the moment, we maintain the perspective of the previous chapter
by considering the multiscale realization problem to be a search over all probability densities which
factor according to the rooted tree of interest. Later in this chapter, we provide a more practical
perspective when we consider the search to be over a parameterized family of densities.

� 4.1.1 Perspective on the Problem

Recall that approximate multiscale realization problem Q̃ is defined as follows:
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Approximate Multiscale Realization Problem Q̃: Find any density q̂ ∈ PG�
(V, d)

which minimizes the cost D (p∗(xM )‖q̂(xM )), i.e.

q̂ = arg min
q∈PG�

(V,d)
D (p∗(xM )‖q(xM )) .

In other words, problem Q̃ finds a multiscale density q(x) which minimizes the Kullback-Leibler
divergence between the target density p∗(xM ) and the marginal density q(xM ). This problem is
non-trivial largely because of the fact that the cost function is defined on the subspace XM , whereas
the density of interest, q(x), is defined on the full space X .

In the preceding chapter, we dealt with this difficulty by considering a series of alternative
problem formulations P̃M

G each of which involved densities p(x) that satisfied various conditional

independence constraints. Consider again one of these problems, which we called problem P̃M :

Alternative Approximate Problem P̃M : Find any density p̂ ∈ PM (V, d)

which minimizes the cost D
(
p∗(xM )‖p̂T (xM )

)
, i.e.

p̂ = arg min
p∈PM (V,d)

D
(
p∗(xM )‖pT (xM )

)
.

In other words, problem P̃M finds any density p(x) which has the target marginal p∗(xM ) and min-
imizes the KL divergence between p∗(xM ) and pT (xM ). By considering densities p(x) ∈ PM (V, d)
rather than densities q(x) ∈ PG�

(V, d), we have introduced additional degrees of freedom into the
optimization problem. In particular, while it is not immediately obvious, these densities p(x) allow
the optimization problem to be treated in the full space X rather than the subspace XM .

To better understand this point, consider again the decomposition of KL divergence derived in
Proposition 3.20. If q(x) ∈ PG�

(V, d) is a multiscale density and if p(x) ∈ PM (V, d) has the target
marginal p∗(xM ), we may write1

D (p∗(xM )‖q(xM )) = D (p(x)‖q(x)) −D
(
p(x)‖FM (q(x))

)
. (4.1)

This decomposition shows that the cost of interest in problem Q̃ may be written as the difference of
two functions defined on the full space X . In addition, the left-hand-side of (4.1) does not depend
on the density p(x), and therefore, p(x) provides additional degrees of freedom in the optimization
problem.

The iterative procedure suggested in this section relies on the decomposition in (4.1), and
it heavily exploits the degrees of freedom provided by this additional density p(x). Since (4.1)
separates the cost function into two terms, this approach seeks to minimize D (p∗(xM )‖q(xM ))
by successively optimizing the two terms on the right-hand-side of (4.1). As we soon show, the
iterations of this procedure have an extremely simple functional form and are closely related to the
theoretical arguments presented in the previous chapter.

Just as in the last chapter, the first two sections of this chapter provide an abstract view of both
the realization problem and the iterative approach proposed to solve this problem. The benefit of
this point-of-view and the novelty of the ensuing discussion is that significant insight can be gained
into the nature of the realization problem and how to solve it. Specifically, the iterates of the

1Recall from Section 3.10.2 that FM (·) maps q(x) to the new density q(xV −M |xM )p∗(xM ).
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approach presented here can be viewed as trading off both the sufficient conditions required for
solving the exact realization problem and the necessary conditions for solving the approximate
realization problem.2 In addition, this iterative approach can be viewed as attempting to minimize
the upper bound discussed in Section 3.10.4, and as Proposition 3.23 points out, minimizing this
upper bound does in fact provide a solution to the approximate realization problem.

While this level of abstraction is beneficial for building intuition about the nature of this prob-
lem, there are some drawbacks. First of all, we cannot guarantee that the sequence of densities
generated by this iterative approach is guaranteed to converge to a fixed density. This difficulty is
an artifact of performing the iterations in the space of all densities and is more of a technicality
rather than a practical issue. In fact, this issue is overcome for the most part when we consider
searching over parameterized spaces of densities.

A second drawback to this approach is that even if the sequence of densities converges, we are
not guaranteed to find an optimal solution to the approximate realization problem. We can only
guarantee that the necessary conditions for the approximate realization problem are met. Even
when we consider performing the iterations in a parameterized family of densities, this difficulty
is present, and as such, for many parameterized problems, the iterations are only guaranteed to
converge to either saddle points or local minima of the cost function. This issue can be overcome
to some degree by considering different initial starting points.

� 4.1.2 Alternating Minimizations

Consider the following alternating minimization procedure for finding an optimal solution to the
approximate multiscale realization problem. The procedure is initialized with a density p(0)(x) and

corresponding multiscale density q(0) ,
[
p(0)
]T

. Then, the following two minimization steps are
performed for i = 1, 2, . . .:

p(i) , arg min
p∈PM (V,d)

D
(
p(x)‖q(i−1)(x)

)
, (4.2a)

q(i) , arg min
q∈PG�

(V,d)
D
(
p(i)(x)‖q(x)

)
. (4.2b)

The first minimization in (4.2a) finds a density p(i) with the correct marginal p∗(xM ), i.e. p(i) ∈
PM (V, d), which is “closest” to the multiscale density q(i−1). The second minimization in (4.2b)
finds a multiscale density q(i), i.e. q(i) ∈ PG�

(V, d), which is “closest” to the density p(i) with the
correct marginal.

Intuitively, the goal of alternating between the densities p(i) and q(i) in (4.2) is to find a multiscale
density p̂ with the correct marginal p∗(xM ), i.e. p̂ simultaneously satisfies the two constraints p̂ ∈
PM (V, d) and p̂ ∈ PG�

(V, d) (equivalently p̂ = p̂T ). A geometric picture of these two minimization
steps is shown in Figure 4.1(a), for the case where an exact solution to the realization problem
exists. As previously discussed in Section 3.4.1, the two conditions p̂ ∈ PM (V, d) and p̂ = p̂T are
sufficient conditions for the exact realization problem. Therefore, when an exact solution exists,
the procedure (4.2) seeks to find a point in the intersection of the two sets PM (V, d) and PG�

(V, d).
When an exact solution does not exist, there is no density contained in the intersection of the

two sets PM (V, d) and PG�
(V, d), and the procedure (4.2) seeks to mediate the tradeoff between

2See Chapter 3 and in particular Section 3.10.4 for a review of these ideas.
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p(1)

p̂ = p̂T

PG�
(V, d)

PM(V, d)

q(0)

q(1)

q(2)

p(2)

(a)

p(2)

q(0)

p̂

p̂T

PM(V, d)

PG�
(V, d)

q(1)

q(2)

p(1)

(b)

Figure 4.1. (a) Graphical depiction of alternating minimization procedure (4.2) when an exact solu-
tion to the multiscale realization problem exists. (b) Graphical depiction of alternating minimization
procedure (4.2) for finding an approximate solution to the multiscale realization problem.
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finding a multiscale density and finding a density with the correct marginal p∗(xM ). Figure 4.1(b)
provides a geometric picture of the sequence of minimizations in this case.

Based on the discussion in the preceding chapter, we can say much more about the two min-
imization problems in (4.2). In particular, Corollary 3.5 provides a closed-form expression for a
solution to the first minimization problem, and Corollary 3.4 provides a closed-form expression for
a solution to the second minimization problem. Using these solutions, the procedure in (4.2) may
be written as follows,

p(i) = FM
(
q(i−1)

)
, (4.3a)

q(i) =
[
p(i)
]T
. (4.3b)

In (4.3a), the multiscale density q(i−1) is transformed into the density p(i) ∈ PM (V, d) via the
projective mapping FM (·), i.e. p(i)(x) = q(i−1)(xV −M |xM )p∗(xM ). Hence, the first minimization
problem is solved by maintaining the same conditional density q(i−1)(xV −M |xM ) and by replacing
q(i−1)(xM ) with the desired marginal p∗(xM ). In (4.3b), the density q(i) is obtained by projecting
p(i) onto the set of multiscale densities, and as discussed in the previous chapter, this projection is

given by q(i) =
[
p(i)
]T

.
In Section 4.1.4, we discuss the convergence properties of the iterations in (4.3), but for the

moment, consider what happens if the sequence p(i) does converge to a fixed density p̂. Combining
(4.3a) and (4.3b) shows that all fixed points p̂ satisfy the following,

p̂ = FM
(
p̂T
)
. (4.4)

As discussed in Section 3.10.2, the density FM
(
p̂T
)

factors according to all graphs G which are
supergraphs of the tree G∼� of interest and in addition have a clique equal toM . As such, the density
p̂ in (4.4) satisfies p̂ = p̂G for the same graphs G considered in Lemma 3.9. This lemma indicates
that at least one solution to the approximate realization problem must satisfy p̂G = FM

(
p̂T
)
, and

consequently, the set of all fixed points of the iterations in (4.3) contains at least one solution to
problem P̃M .

By projecting the densities on the left-hand- and right-hand-sides of (4.4) onto the tree G�, a
fixed point p̂ also satisfies the following

p̂T =
[
FM

(
p̂T
)]T

, (4.5)

and the relationship in (4.5) is precisely the necessary condition stated previously in Theorem 3.8.
This proves that the fixed points of (4.3) satisfy the necessary conditions for solutions to the
approximate realization problem. Furthermore, as evidenced by Proposition 3.23, if any of these
fixed points is indeed a solution, then it minimizes the upper boundD

(
p‖pT

)
over all p ∈ PM (V, d).

� 4.1.3 Bound Optimization

The alternating minimization procedure in (4.2) or equivalently (4.3) seeks to solve problem Q̃ by
introducing an extraneous sequence of densities p(i), each of which has the correct marginal p∗(xM )
but none of which are multiscale densities (unless an exact solution is found). As we now discuss, the
densities p(i) exploit the additional degrees of freedom present in the decomposition (4.1) discussed
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earlier. As a result, this particular iterative technique is in fact attempting to minimize the upper
bound D

(
p‖pT

)
– a bound which is tight for solutions to the approximate realization problem.

Consider again the decomposition provided in (4.1). Suppose q(x) is a fixed multiscale density,
and consider the second term on the right-hand-side of (4.1). This term can be set to zero by
choosing p(x) = FM (q(x)), and as a result, D (p∗(xM )‖q(xM )) = D (p(x)‖q(x)) for this choice of
p(x). Notice that the first step of the iterative procedure in (4.3a) makes a similar choice for the
density p(i)(x). Consider now the problem of minimizing the first term on the right-hand-side of
(4.1) with respect to all multiscale densities q(x). Corollary 3.4 indicates that this is accomplished
by choosing q(x) = pT (x). Notice that this choice for q(x) is identical to the choice for q(i)(x) in
the second step of the iterative procedure in (4.3b).

Based on these observations, we argue that the iterative procedure (4.3) successively minimizes
the two terms on the right-hand-side of (4.1); the first step chooses p(x) to minimize the second
term, while the second step chooses q(x) to minimize the first term. Or, said in a different way,
the first step seeks to satisfy the necessary conditions for solutions to the approximate realization
problem as stated in Theorem 3.8, while the second step seeks to satisfy the sufficient conditions
for solutions to the exact realization problem as stated in Theorem 3.3.

At first glance, it may seem counter-intuitive to minimize the second term in (4.1) because
after all, increasing its value helps to decrease the overall cost function. However, the importance
of setting the second term to zero is that at each iteration we are decreasing an upper bound
on the cost function. To validate this claim, consider the sequence of densities p(i) and q(i), as
well as the two minimization problems in (4.2). From the first minimization problem, we know
that D

(
p(i)‖q(i−1)

)
≤ D

(
p‖q(i−1)

)
for all p ∈ PM (V, d), including p = p(i−1). From the second

minimization problem, we know that D
(
p(i)‖q(i)

)
≤ D

(
p(i)‖q

)
for all q ∈ PG�

(V, d), including

q = q(i−1). Using these two facts, we can then write the following sequence of inequalities,

D
(
p(i)‖q(i)

)
≤ D

(
p(i)‖q(i−1)

)
≤ D

(
p(i−1)‖q(i−1)

)
.

Finally, using only the first and last terms from above, as well as the definition of q(i) and q(i−1) in
(4.3b), gives the following important inequality

D

(
p(i)‖

[
p(i)
]T)

≤ D

(
p(i−1)‖

[
p(i−1)

]T)
. (4.6)

This inequality proves that the sequence of densities p(i) decreases (or at least does not increase)
the cost D

(
p‖pT

)
at each iteration.

Based on the preceding inequalities, we see that the iterations in (4.2) seek a minimum of the
functionD

(
p‖pT

)
over all p ∈ PM (V, d). Furthermore, D

(
p‖pT

)
is an upper bound for the function

D
(
p∗(xM )‖pT (xM )

)
, a fact which can be seen by substituting q(x) = pT (x) into (4.1). Recall that

this upper bound was considered in the previous chapter. In particular, Proposition 3.23 proved
that minimizing this bound over the space of densities p ∈ PM (V, d) is guaranteed to generate
a solution to the approximate realization problem. However, Proposition 3.23 does not suggest
than any density p̂ satisfying p̂ = FM

(
p̂T
)

is necessarily a minimizer of this bound, and therefore,
as previously mentioned, we cannot guarantee that all fixed points are indeed solutions to the
approximate realization problem.
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� 4.1.4 Convergence Properties

As a final part of our discussion of (4.2) and (4.3), we analyze the convergence properties of this type
of iterative scheme. In the previous section, we showed that the sequence p(i) decreases an upper
bound at each iteration, as evidenced by the inequality in (4.6). In this section, we examine the
sequence q(i) with respect to the cost function D

(
p∗(xM )‖q(i)(xM )

)
, i.e. the cost to be minimized

in the approximate realization problem. As we show, this cost is decreased with each iteration.
To aid in this analysis, define the sequence of non-negative real numbers εi, i = 1, 2, . . ., as

follows

εi , D
(
p∗(xM )‖q(i)(xM )

)
. (4.7)

Our goal is to show that the sequence {εi} is non-increasing. Using (4.1) with the choice p(x) =
p(i+1)(x), we obtain an equivalent definition of εi,

εi = D
(
p(i+1)‖q(i)

)
−D

(
p(i+1)‖FM

(
q(i)
))

= D
(
p(i+1)‖q(i)

)
, (4.8)

where we have used the fact that p(i+1) = FM
(
q(i)
)
. Using Proposition 3.19, (4.8) may be decom-

posed as follows,

εi = D

(
p(i+1)‖

[
p(i+1)

]T)
+D

([
p(i+1)

]T
‖q(i)

)

= D
(
p(i+1)‖q(i+1)

)
+D

(
q(i+1)‖q(i)

)
. (4.9)

Calling upon (4.1) to further decompose D
(
p(i+1)‖q(i+1)

)
in (4.9), provides the final decomposition

of interest,

εi = D
(
p∗(xM )‖q(i+1)(xM )

)
+D

(
p(i+1)‖FM

(
q(i+1)

))
+D

(
q(i+1)‖q(i)

)

= εi+1 +D
(
p(i+1)‖p(i+2)

)
+D

(
q(i+1)‖q(i)

)
. (4.10)

Due to the non-negativity property of the KL divergence, (4.10) indicates that εi+1 ≤ εi.
Therefore, the sequence of real numbers {εi} is non-increasing for i = 1, 2, . . ., and furthermore,
the sequence is bounded below by 0. These two facts imply that the sequence {εi} converges to
some real number ε̄ ≥ 0 [91]. Consequently, εi − εi+1 −→ 0 as i −→ ∞, which implies that
both of the terms D

(
p(i+1)‖p(i+2)

)
and D

(
q(i+1)‖q(i)

)
in (4.10) approach zero as i −→ ∞. These

observations then indicate that there exist densities p̂ and q̂ such that p(i) −→ p̂ and q(i) −→ q̂
almost everywhere.3

In summary, this section suggests an interesting iterative approach to solving the approximate
realization problem. We have discussed this iterative scheme in three different contexts:

3This statement must be qualified due to several technicalities. First of all, the decomposition in (4.10) was derived
assuming that all of the KL divergences are finite. It is possible that some density p(i) or q(i) may not satisfy the
measure-theoretic conditions for the KL divergence to be finite. Even if this is not the case, it is possible that the
sequence p(i) converges to a density where in the limit the decomposition in (4.10) does not hold. Second, if (4.10)
does hold for all i = 1, 2, . . ., then the sequence p(i) converges to a fixed density p̂ almost everywhere. This means
that some portion of the density p̂ may not be invariant under the mapping FM

�
p̂T
�

but only on a set of measure
zero.

Both of these issues are not a concern for most practical problems. By placing additional restrictions on the class
of densities under consideration, e.g. they satisfy certain smoothness conditions, these technicalities are no longer a
concern. However, we do not investigate these issues further since they are beyond the scope of this thesis.
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(1) alternating between the minimization problems in (4.2);

(2) minimizing the upper bound D
(
p‖pT

)
;

(3) minimizing the cost function D (p∗(xM )‖q(xM )).

The first context shows that the iterations simultaneously tradeoff two constraints: (i) the density
has the marginal p∗(xM ) and (ii) the density is a multiscale density. The second context helps
to relate the ideas discussed here to the results presented in the previous chapter. The final
context shows that the iterations in (4.3) seek a minimum of the cost function of interest and that
under some restrictions these iterations converge in the limit to a density satisfying the necessary
conditions for optimality.

� 4.2 Taking Advantage of Conditional Independence Structure

In this section, we continue our discussion of the iterative procedure suggested in the previous
section. By taking advantage of the conditional independencies exhibited by multiscale models,
we show how to reduce the computational complexity of the calculations required to implement
the iterations in (4.3). In particular, we suggest a recursive procedure for calculating the marginal
densities needed to perform each iteration. As we show, the proposed recursion can be divided into
two separate steps: (1) incorporating the target density and (2) calculating conditional densities.
The first step, discussed in Section 4.2.1, involves the merging of the target density p∗(xM ) with
the conditional density q(i−1)(xV −M |xM ) to give p(i)(x) in (4.3a). The second step, discussed in
Section 4.2.2, involves the calculation of the conditional density q(i−1)(xV −M |xM ) necessary to
perform the first step.

The ideas presented here are similar to those widely discussed in the context of Kalman filter-
ing [60] and smoothing [86], belief propagation [84], and tree reparametrization [105, 106], which
we point out in the ensuing discussion. However, there is an important distinction between each of
these contexts and the ideas presented here, due to the fact that a target density p∗(xM ) has been
specified. Because of this, we must include an additional step, namely incorporating the target
density p∗(xM ), in our recursive procedure.

� 4.2.1 Incorporating the Target Density

From an abstract point-of-view, the procedure in (4.3) requires the two densities p(i) and q(i) to be
calculated at each iteration. As we now demonstrate, it is not necessary to calculate these densities
in their entirety in order to implement this procedure; rather, it is sufficient to calculate specific

marginals of p(i) and q(i). To gain some insight, consider first the projection q(i) =
[
p(i)
]T

in (4.3b),

which forms the multiscale density q(i) with respect to a specified rooted tree G�. Recall from
Section 3.3.3 that this projection can be written as follows,

q(i)(x) = p(i)(xv0)
∏

v∈V −{v0}

p(i)(xv, xπ(v))

p(i)(xπ(v))
, (4.11)

where v0 is the root vertex of G�. As (4.11) shows, the density q(i) can be calculated if all of the
marginals p(i)(xv, xπ(v)), v ∈ V − {v0}, are known. Equivalently, if we consider the undirected



4.2. TAKING ADVANTAGE OF CONDITIONAL INDEPENDENCE STRUCTURE 159

Lu

u = 2s = 1

t = 0

3 4 5 6

7 8 9 10 11 14
Ls

M = Lt
1312

Figure 4.2. A rooted tree G� where vertex t is the parent of vertex s and the marginalization
constraint set M is precisely the set of leaf vertices of G�, as indicated by the solid box. The leaf
vertices which descend from vertices s and u are denoted respectively by the sets Ls and Lu, as
indicated by the dashed boxes.

tree G∼� = (V,E), calculating q(i) requires knowledge of the marginals p(i)(xs, xt) along each edge

(s, t) ∈ E. Therefore, the multiscale density q(i) may be determined as long as a relatively small
subset of the marginals of p(i) are known. We now demonstrate that these marginals may be
calculated in a recursive fashion.

For notational simplicity, we drop the superscript i; equivalently, the reader can assume q(x) ,

q(i−1)(x) and p(x) , p(i)(x). Also, to simplify our discussion we henceforth assume that the
marginalization constraint set M ⊂ V is precisely equal to the leaf vertices of the rooted tree G�
of interest.4 Consider two vertices s and t such that (s, t) ∈ E and s, t 6∈ M , and without loss of
generality, assume that t is the parent of s in the rooted tree G�. Figure 4.2 provides an example
of such a choice for s and t. Now, suppose a multiscale density q(x) and a target density p∗(xM )
are given, and consider the marginal p(xs, xt) of p(x) , q(xV −M |xM )p∗(xM ). This marginal may
be calculated as follows,

p(xs, xt) =

∫

XV −{s,t}

p(x)dx =

∫

XV −{s,t}

q(xV −M |xM )p∗(xM )dx

=

∫
q(xs, xt|xM )p∗(xM )dxM , (4.12)

where the last equation follows from the fact that s, t 6∈M .
Recall that the set Ls contains all leaf vertices of a rooted tree G� which descend from vertex

s. For example, Figure 4.2 shows that the leaf vertices Ls = {7, 8, 9, 10} are descendants of vertex
s = 1. This figure also demonstrates the fact that vertex t graphically separates the collection of

4The recursive procedure described in this section and the next may be extended to include the problem where M
contains non-leaf vertices or extended to include the state augmentation problem where an augmented marginalization
set M ♯ is specified (see Section 2.7.3 for details of the state augmentation problem). Neither of these generalizations
is discussed here.



160 CHAPTER 4. REALIZING APPROXIMATE MULTISCALE MODELS USING EM

vertices {s}∪Ls from the remaining leaf vertices not contained in Ls. Consequently, using the fact
that q(x) is a multiscale density, we may write q(xs|xt, xM ) = q(xs|xt, xLs), which may then be
used to simplify the expression in (4.12),

p(xs, xt) =

∫
q(xs|xt, xM )q(xt|xM )p∗(xM )dxM =

∫
q(xs|xt, xLs)q(xt|xM )p∗(xM )dxM .

Notice that q(xt|xM )p∗(xM ) in the final expression is by definition equal to p(xt, xM ). Using this
fact and integrating out the variables xM−Ls provides an important expression for the marginal
p(xs, xt),

p(xs, xt) =

∫
q(xs|xt, xLs)p(xt, xM )dxM =

∫
q(xs|xt, xLs)p(xt, xLs)dxLs . (4.13)

The final equality in (4.13) demonstrates that p(xs, xt) may be calculated if the conditional
density q(xs|xt, xLs) and the marginal p(xt, xLs) are known. This suggests a recursive procedure
for calculating the necessary marginals p(xs, xt). The recursion is initialized by setting t equal
to the root vertex and computing p(xt, xM ) = q(xt|xM )p∗(xM ). For any child vertex s of t, the
marginal p(xt, xLs) may be calculated by integrating p(xt, xM ). Then, the density p(xs, xt, xLs)
may be calculated as follows, where the same sequence of steps is used as was used to derive (4.13),

p(xs, xt, xLs) =

∫
q(xs, xt|xM )p∗(xM )dxM−Ls =

∫
q(xs|xt, xM )q(xt|xM )p∗(xM )dxM−Ls

=

∫
q(xs|xt, xLs)p(xt, xM )dxM−Ls

= q(xs|xt, xLs)p(xt, xLs). (4.14)

Assuming q(xs|xt, xLs) is known, (4.14) shows how to calculate p(xs, xt, xLs) from p(xt, xLs). By
integrating out the variables xLs from p(xs, xt, xLs), the desired density p(xs, xt) can then be
obtained. Notice that performing this integration on the right-hand-side of (4.14) gives the same
expression originally derived in (4.13).

The purpose of calculating the density p(xs, xt, xLs) in (4.14), besides providing the marginal
p(xs, xt), is that xt may be marginalized away to give p(xs, xLs). Then, using the marginal
p(xs, xLs), all edge marginals p(xu, xv) within the subtree descending from s may be calculated
in the same recursive manner. Therefore, the density p(xs, xLs) provides sufficient information to
the subtree descending from vertex s, just as the density p(xt, xLt) provides sufficient information
to the subtree descending from vertex t. The following example provides a specific illustration of
this recursive procedure.

Example 4.1 (Recursive Procedure for Incorporating the Target Density).
Consider the rooted tree G� shown in Figure 4.2, and assume a target density p∗(x7, . . . , x14) =
p∗(xM ) defined on the leaf vertices of G� is given. This example shows how the result in (4.14)
may be used to recursively calculate the set of marginal densities p(xs, xt) along each edge of G�.

The recursion is initialized by computing the density p(x0, xM ) = q(x0|xM )p∗(xM ). Based
on this initial density, we have sufficient information to calculate the two marginals p(x0, x1) and
p(x0, x2). To calculate p(x0, x1), we first marginalize the density p(x0, xM ) = p(x0, x7, . . . , x14) to
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Figure 4.3. Block diagram illustrating a recursive approach to calculating marginals p(xs, xt) along
all edges in the graph G� shown in Figure 4.2. The rectangular boxes contain the marginal densities
generated by the recursion in (4.14), while the rounded boxes contain intermediate densities which
result from a marginalization step. The diamond-shaped boxes contain the marginals p(xs, xt) of
interest.
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give p(x0, xL1) = p(x0, x7, x8, x9, x10). Then, the result in (4.14) indicates that p(x0, x1, xL1) =
p(x0, x1, x7, x8, x9, x10) can be determined as follows,

p(x0, x1, x7, x8, x9, x10) = q(x1|x0, x7, x8, x9, x10)p(x0, x7, x8, x9, x10) = q(x1|x0, xL1)p(x0, xL1).

Finally, the density p(x0, x1, x7, x8, x9, x10) can be integrated to give the marginal p(x0, x1) of in-
terest, and the marginals p(x1, x7, x8) and p(x1, x9, x10) can also be computed for use in subsequent
calculations.

This process continues in a similar fashion until all of the relevant marginals p(xs, xt) are
computed. The block diagram in Figure 4.3 graphically illustrates the calculations required for this
example. The densities in the square boxes represent the marginals calculated using (4.14), while
the densities in the rounded boxes represent intermediate marginalization steps. The diamond-
shaped boxes contain the edge marginals p(xs, xt) of interest.

One interesting aspect of this block diagram is that it illustrates the similarity between the iter-
ative approach suggested here for the approximate realization problem and the sequential approach
suggested in Section 2.7.2 for the exact realization problem. Specifically, Example 2.7 considers the
exact realization problem for the same graph considered in this example, and Figure 2.12 demon-
strates that the structure of the two algorithms is identical. The only difference is that the so-called
design density p̄(·) has been replaced by the multiscale density q(·). Therefore, within the context
of the iterative approach discussed here, the multiscale density q(·) provides a convenient guess for
the design density p̄(·). ◭

As the preceding example illustrates, the process of introducing the target density p∗(xM )
begins by calculating the density p(xv0 , xM ) = q(xv0 |xM )p∗(xM ), where v0 is the root of the tree.
Subsequent calculations are then performed to generate densities which include the child vertices of
v0, and so forth. In fact, the recursive calculation in (4.14) is well-defined as long as the marginal
p(xt, xLt) has been calculated before any child of vertex t is considered. In other words, the recursion
is well-defined as long as we consider a top-down ordering (v1, . . . , vm) on the non-leaf vertices of
G�.5 Given this fact, we now formally state the recursive algorithm proposed in this section.

Algorithm 4.1 (Incorporating the Target Density).
Let G� be a given rooted tree. Assume M is precisely the set of leaf vertices of G� and that a
target density p∗(xM ) is specified. Also, assume that a multiscale density q(x) is given and that
all marginals of q(x) can be calculated. Choose any top-down ordering (v1, . . . , vm) on the non-leaf
vertices of G�.

Set t = v1, and compute p(xt, xLt) = p(xt, xM ) = q(xt|xM )p∗(xM ).
FOR i = 2, . . . ,m DO:

(1) Set s = vi, and set t equal to the unique parent of s.

(2) Marginalize p(xt, xLt) to get p(xt, xLs).

(3) Compute p(xs, xt, xLs) = q(xs|xt, xLs)p(xt, xLs).

(4) Marginalize p(xs, xt, xLs) to get p(xs, xt) and p(xs, xLs). ◭

5Recall from Definition 2.9 that a top-down ordering (v1, . . . , vm) places the root vertex first. Furthermore, the
parent of vertex vi must appear before vi in the ordering.
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The fact that Algorithm 4.1 is defined for all top-down orderings of the non-leaf vertices raises
the important question of considering other vertex orderings. The answer to this question is that
a similar algorithm exists for any such ordering; however, the recursion derived in (4.14) differs
in form depending on the chosen ordering. For convenience, we focus on Algorithm 4.1 since the
derived recursion is particularly simple.

� 4.2.2 Computational Structure for Tree-Based Conditional Densities

The recursive procedure suggested in the previous section provides a means to implement the first
step in (4.3) without calculating the entire density p(x). In addition, the third step of Algorithm 4.1
shows that it is not necessary to calculate the entire conditional density q(xV −M |xM ). Instead, only
certain pieces of this conditional density are required, namely q(xv0 |xM ) for the root vertex and
q(xs|xt, xLs) for every non-leaf and non-root vertex s and its parent t. So far, we have assumed
that all of these conditional densities are readily available. However, within the context of the
iterative procedure (4.3), the multiscale density q(i)(x) changes with each iteration, and therefore,
it is important that these conditional densities be calculated efficiently. This section provides a
recursive procedure for calculating these densities – a procedure which takes advantage of the
conditional independencies exhibited by multiscale models.

Consider the conditional density q(xs|xt, xLs) required in the third step of Algorithm 4.1. Using
the chain rule for probabilities, this density may be rewritten as follows,

q(xs|xt, xLs) =
q(xs, xt|xLs)

q(xt|xLs)
=
q(xt|xs, xLs)q(xs|xLs)

q(xt|xLs)
.

Since vertex s separates vertex t from all of the vertices in the set Ls, the conditional density
q(xt|xs, xLs) is equal to q(xt|xs), which then gives the following expression,

q(xs|xt, xLs) =
q(xt|xs)q(xs|xLs)

q(xt|xLs)
. (4.15)

This expression forms the basis of the recursion suggested here because it shows how to combine
the terms q(xs|xLs) and q(xt|xLs) to form q(xs|xt, xLs).

6 The remainder of our discussion focuses
on how to calculate q(xs|xLs) and q(xt|xLs) efficiently.

First of all, calculating q(xt|xLs) is straightforward if the density q(xs|xLs) is known. This
follows directly from the chain rule for probabilities and the Markov properties of multiscale models,

q(xt|xLs) =

∫
q(xs, xt|xLs)dxs =

∫
q(xs|xLs)q(xt|xs, xLs)dxs

=

∫
q(xs|xLs)q(xt|xs)dxs. (4.16)

Within the context of the Kalman filter, the expression in (4.16) is often called the prediction step.
Namely, the best “guess” of vector Xt given an observation XLs = xLs is predicted based on the
best “guess” for vector Xs and the local conditional density q(xt|xs). It is important to note that
in our context the density q(xt|xLs) is a function of both xt and xLs , i.e. we consider all possible
outcomes xLs ∈ XLs . This is necessary in order to perform the integration with the density p∗(xM ).

6The density q(xt|xs) is readily available because it is a marginal along an edge of the multiscale model.
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When given a single observation as is the case in applications involving observed data, the value of
XLs = xLs is fixed and q(xt|xLs) is simply a function of xt.

Recall that χ(t) is the set containing all child vertices of t in the tree G�. We now show how
q(xt|xLt) can be calculated if q(xt|xLs) is known for all s ∈ χ(t). Using Bayes’ rule on q(xt|xLt)
and introducing the variables xχ(t) gives the following,

q(xt|xLt) =
q(xLt |xt)q(xt)

q(xLt)
=

q(xt)

q(xLt)

∫
q(xχ(t), xLt |xt)dxχ(t). (4.17)

The Markov properties of the multiscale model may be used to simplify the preceding expression. As
an example of this fact, consider the tree in Figure 4.2, and notice that vertex t = 0 graphically sepa-
rates the two sets of vertices {s}∪Ls = {1, 7, 8, 9, 10} and {u}∪Lu = {2, 11, 12, 13, 14}, where s and
u are the only child vertices of t, i.e. χ(t) = {s, u}. Because of this graphical separation, the Markov
properties of the multiscale model indicate that the density q(xχ(t), xLt |xt) = q(xs, xu, xLs , xLu |xt)
may be written as the product of the two densities q(xs, xLs |xt) and q(xu, xLu |xt).

More generally, in any tree, vertex t graphically separates the collection of vertices {s1}∪Ls1, . . . ,
{sq} ∪ Lsq , where si ∈ χ(t), and consequently, we can write q(xχ(t), xLt |xt) =

∏
s∈χ(t) q(xs, xLs |xt).

Using this factorization in the expression in (4.17) gives the following,

q(xt|xLt) =
q(xt)

q(xLt)

∫ 

∏

s∈χ(t)

q(xs, xLs |xt)


 dxχ(t) =

q(xt)

q(xLt)

∏

s∈χ(t)

q(xLs |xt).

Using Bayes’ rule on the terms q(xLs |xt) provides the final expression of interest,

q(xt|xLt) =
q(xt)

q(xLt)

∏

s∈χ(t)

q(xt|xLs)q(xLs)

q(xt)

=

[∏
s∈χ(t) q(xLs)

q(xLt)

]
·

[
1

q(xt)|χ(t)|−1

]
·
∏

s∈χ(t)

q(xt|xLs). (4.18)

Within the context of the Kalman filter (as generalized to multiscale models in [13]), the ex-
pression in (4.18) is often called the merge step. This is due to the fact that the best “guesses” for
Xt based on the separate observations XLs = xLs , s ∈ χ(t), are merged to form the best “guess” for
Xt based on the entire observation XLt = xLt . The essence of the merge step is accomplished by
the final term in (4.18), which computes the product of the densities q(xt|xLs). The first two terms
in (4.18) provide the necessary correction factors to make q(xt|xLt) a density. It is important to
note that calculating the first term in (4.18) can be problematic for implementing the merge step in
the abstract sense discussed here. This is because the densities q(xLt) and q(xLs) involved in this
term are not edge marginals and are therefore not easily accessible. However, when conditioning on
a single outcome XLt = xLt rather than all possible outcomes xLt ∈ XLt , the first term in (4.18) is
simply a constant and provides the scaling necessary to make q(xt|xLt) a density.7 In the Gaussian
case considered later, this term does not pose a problem since the form of the density q(xt|xLt) can
be determined using only the latter two terms in (4.18).

7In applications involving data, it is only necessary to condition on a single outcome or a finite set of outcomes,
and in this situation, the constant term in (4.18) can be ignored.
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The three relationships derived in (4.15), (4.16), and (4.18) form the basis of a recursive proce-
dure for calculating the conditional densities required to implement Algorithm 4.1. The procedure
begins with a pass of the tree which starts at the leaf vertices and works toward the root – a
pass which is used to recursively calculate the densities q(xs|xLs) and q(xt|xLs). The calculations
required for this pass are well-defined as long as a bottom-up ordering on the non-leaf vertices is
chosen,8 and the recursive equations in (4.16) and (4.18) are used to implement these calculations.
Then, a subsequent pass of the tree, which starts at the root and works toward the leaf vertices,
is used to calculate q(xs|xt, xLs), and this is accomplished by choosing a top-down ordering on the
non-leaf vertices and using the relationship in (4.15). This two-sweep process is summarized below
in Algorithm 4.2.

Algorithm 4.2 (Calculating Tree-Based Conditional Densities).
Let G� be a given rooted tree, and assume a multiscale density q(x) is given.

Initialization: For each leaf vertex s and its unique parent t, q(xt|xLs) , q(xt|xs).

Upward Pass: Choose any bottom-up ordering (u1, . . . , um) on the non-leaf vertices of G�.
FOR i = 1, . . . ,m DO:

(1) Set t = ui.

(2) Compute q(xt|xLt) using (4.18).

(3) Compute q(xπ(t)|xLt) =
∫
q(xt|xLt)q(xπ(t)|xt)dxt.

Downward Pass: Choose any top-down ordering (v1, . . . , vm) on the non-leaf vertices of G�.
FOR i = 2, . . . ,m DO:

(1) Set s = vi, and set t equal to the unique parent of s.

(2) Compute q(xs|xt, xLs) using (4.15). ◭

Figure 4.4(a) provides a graphical illustration of the upward pass described in Algorithm 4.2. For
each child vertex si ∈ χ(t), the prediction step is used to compute q(xt|xLsi

) based on the density
q(xsi

|xLsi
), and then, all of the densities q(xt|xLsi

) are merged to form the new density q(xt|xLt).
Figure 4.4(b) provides a graphical illustration of the downward pass described in Algorithm 4.2
in conjunction with the recursive calculation proposed in Algorithm 4.1. These two steps can be
considered separately or performed in concert with one another as demonstrated in Figure 4.4(b).
Within the context of recursive estimation, the two-step process depicted in Figure 4.4(b) is more
commonly called the smoothing step (e.g. see [13] for details) because it “smoothes” the estimates
obtained in the upward pass by incorporating observations from other branches of the tree.

Using Algorithms 4.1 and 4.2, we now have the means to implement the iterations in (4.3) more
efficiently than before. Specifically, at iteration i assume that the marginals p(i)(xs, xt) are known
for each edge of the graph. Since q(i) is the projection of p(i) onto the graph G�, the two marginals
q(i)(xs, xt) and p(i)(xs, xt) are equal, and Algorithm 4.2 can then be used to determine the condi-
tional densities q(i)(xs|xt, xLs). Subsequently (or concurrently with Algorithm 4.2), Algorithm 4.1

8Recall from Definition 2.10 that a bottom-up ordering (u1, . . . , um) places the root vertex last. Furthermore, all
child vertices of ui must appear before vertex ui in the ordering.
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Figure 4.4. (a) Illustrates the prediction and merge steps which constitute the upward pass described
in Algorithm 4.2. (b) Illustrates the smoothing step which constitutes the downward pass described
in Algorithm 4.2 coupled with Algorithm 4.1.
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can be used to calculate the marginals p(i+1)(xs, xt) along each edge of the tree. The iterations
then continue in this same manner until the densities converge within some desired tolerance level.
Section 4.4 uses this exact procedure to derive an algorithm specifically for the class of Gaussian
multiscale models.

� 4.3 The EM Algorithm

In this section, we show how the iterative algorithm discussed thus far in this chapter is really the
celebrated expectation-maximization (EM) algorithm in disguise. In order to make this comparison,
we now recast the multiscale realization problem as a search over a parameterized space of densities,
rather than the space of all densities; this reformulation is presented in Section 4.3.1. Section 4.3.2
then revisits the alternating minimization procedure originally discussed in Section 4.1.2 and shows
how the iterations in (4.2) may be reformulated for the parameterized setting. Section 4.3.3 sub-
sequently proves that the fixed points of this alternating procedure correspond to local extrema or
saddle points with respect to the parametrization. Finally, Section 4.3.4 relates this parameterized
form of the multiscale realization problem to the method of maximum-likelihood estimation and
demonstrates that the proposed iterative procedure is a natural generalization of the EM algorithm.

� 4.3.1 Parameterized Densities

Consider now the approximate multiscale realization problem performed with respect to a para-
meterized set of densities. Specifically, let Θ be a specified set such that for all θ ∈ Θ, q(x|θ) ∈
PG�

(V, d) is a multiscale density. Rather than considering the space of all possible multiscale den-
sities q(x) ∈ PG�

(V, d), we focus on the proper subset {q(x|θ)}θ∈Θ. For a given Θ, we define the

parameterized approximate multiscale realization problem Q̃(Θ) as follows:

Parameterized Approximate Multiscale Realization Problem Q̃(Θ): Find any

θ̂ ∈ Θ which minimizes the cost D
(
p∗(xM )‖q(xM |θ̂)

)
, i.e.

θ̂ = arg min
θ∈Θ

D (p∗(xM )‖q(xM |θ)) .

In addition to problem Q̃(Θ), we also consider a related optimization problem which is indexed
by a different space of densities. Let Γ be a specified set such that for all γ ∈ Γ, p(x|γ) ∈ PM (V, d),
i.e. each p(x|γ) has the target marginal p(xM |γ) = p∗(xM ).9 Rather than searching in the space
of parameterized multiscale densities {q(x|θ)}θ∈Θ, we consider the problem of searching in the
parameterized space {p(x|γ)}γ∈Γ.

In order to define this additional optimization problem, it is necessary to link the two spaces
of densities {p(x|γ)}γ∈Γ and {q(x|θ)}θ∈Θ, and this is accomplished by defining a special mapping
from Γ to Θ. Specifically, let γ ∈ Γ be fixed, and consider the following optimization problem,

θ̂γ , arg min
θ∈Θ

D (p(x|γ)‖q(x|θ)) . (4.19)

9Unlike the density q(x|θ), θ ∈ Θ, which has the conditional independence structure of a multiscale model, the
density p(x|γ), γ ∈ Γ, does not necessarily have any special independence structure. However, each density p(x|γ) is
required to have the correct marginal p∗(xM ).
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If the value of θ̂γ exists and is unique for every γ ∈ Γ, then (4.19) defines a mapping from Γ to Θ
and also implicitly a mapping from {p(x|γ)}γ∈Γ to {q(x|θ)}θ∈Θ. Although it is not essential that
such a mapping exist between Γ and Θ, we henceforth assume that it does, since it allows us to
make much stronger statements about the nature of optimization problem Q̃(Θ). In particular,
the existence of this mapping (along with additional assumptions) allows us to state an important
result about the convergence properties of the iterative procedure proposed in Section 4.3.2.

Using the decomposition in (3.55), the optimization problem in (4.19) may also be written as
follows,

θ̂γ = arg min
θ∈Θ

[
D
(
p(x|γ)‖pT (x|γ)

)
+D

(
pT (x|γ)‖q(x|θ)

)]

= arg min
θ∈Θ

D
(
pT (x|γ)‖q(x|θ)

)
. (4.20)

The preceding problem makes it clear that q(x|θ̂γ) is the closest multiscale density to the projection
pT (x|γ), and consequently, the mapping defined by (4.19) is a generalization of the tree projection
mapping p −→ pT discussed in the previous chapter. To remind the reader of this fact, we denote
the mapping defined by (4.19) as follows

T :Γ −→ Θ, T (γ) = θ̂γ . (4.21)

Now, suppose that Γ and Θ are specified sets and that the mapping T : Γ −→ Θ exists. Then,
we define the parameterized alternative approximate problem P̃M (Γ) as follows:

Parameterized Alternative Approximate Problem P̃M (Γ): Find any γ̂ ∈ Γ
which minimizes the cost D (p∗(xM )‖q(xM |T (γ̂)), i.e.

γ̂ = arg min
γ∈Γ

D (p∗(xM )‖q(xM |T (γ)) .

Notice that problem P̃M (Γ) is essentially identical to problem Q̃(Θ). In particular, both optimiza-
tion problems use the same cost function D (p∗(xM )‖q(xM |θ)). The only difference between these
two problems is the indexing set used for the search: problem Q̃(Θ) searches over Θ, while problem
P̃M (Γ) searches over T (Γ), i.e. the image of Γ under the mapping T (·).

The primary reason for considering problem P̃M (Γ) is that it offers additional degrees of freedom
useful for solving problem Q̃(Θ). We discussed this same concept in Section 4.1.1 when considering
alternative problem P̃M , and in fact, problem P̃M (Γ) is simply the generalization of P̃M to a
parameterized setting. Without additional constraints on the set Γ, however, problem P̃M (Γ) may
or may not be a meaningful alternative to problem Q̃(Θ), or in other words, problems P̃M (Γ) and
Q̃(Θ) may or may not be compatible.10 The two problems are not compatible when the space
of densities {p(x|γ)}γ∈Γ is not large enough to allow every solution θ̂ of problem Q̃(Θ) to have a

corresponding solution γ̂ of problem P̃M (Γ) with θ̂ = T (γ̂).
To ensure that problems P̃M (Γ) and Q̃(Θ) are in fact compatible, we consider another mapping

between the spaces Γ and Θ. Let θ ∈ Θ be fixed, and consider the following optimization problem,

γ̂θ , arg min
γ∈Γ

D (p(x|γ)‖q(x|θ)) . (4.22)

10Recall from Section 3.4.1 that two problem formulations are compatible if there exists a surjective mapping from
one solution space to the other solution space.
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If the value of γ̂θ exists and is unique for every θ ∈ Θ, then (4.22) defines a mapping from Θ to Γ
and also implicitly a mapping from {q(x|θ)}θ∈Θ to {p(x|γ)}γ∈Γ. Using the decomposition in (3.58),
the optimization problem in (4.22) may also be written as follows,

γ̂θ = arg min
γ∈Γ

[
D
(
p(x|γ)‖FM (q(x|θ))

)
+D

(
FM (q(x|θ))‖q(x|θ)

)]

= arg min
γ∈Γ

D
(
p(x|γ)‖FM (q(x|θ))

)
. (4.23)

The preceding problem makes it clear that p(x|γ̂θ) is the density closest to the projection FM (q(x|θ)),
and consequently, the mapping defined by (4.22) is a generalization of the projection mapping
q −→ FM (q) introduced in the previous chapter.

For our purposes, it is not sufficient to say that the mapping defined by (4.22) exists. In order
to guarantee that problems P̃M (Γ) and Q̃(Θ) are compatible, the set Γ and the associated densities
{p(x|γ)}γ∈Γ must be rich enough to allow the following condition to be satisfied:

for every θ ∈ Θ, there exists a γ ∈ Γ such that p(x|γ) = FM (q(x|θ)).

In other words, for every θ ∈ Θ we require the optimization problem in (4.23) to have a solution
for which the KL divergence is zero. In fact, it is not necessary that this choice for γ ∈ Γ be unique
but only that one such choice exists. For convenience, we assume that the choice is unique, and we
define the following mapping,

M : Θ −→ Γ, M(θ) = γ̂θ where p(x|γ̂θ) = FM (q(x|θ)). (4.24)

The notationM(·) is used to remind the reader that this mapping is a generalization of the mapping
q −→ FM (q) to a parameterized setting.

If both mappings T (·) and M(·) exist for given sets Θ and Γ, then the solutions to problem
Q̃(Θ) satisfy an important invariance property, as evidenced by the following proposition. This
result is a generalization of the invariance property previously identified in Proposition 3.21 for
solutions to problem Q̃.

Proposition 4.1 (An Invariance Property of Solutions to Problem Q̃(Θ)).
Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. Let Θ and
Γ be specified sets which index the densities {q(x|θ)}θ∈Θ ⊂ PG�

(V, d) and {p(x|γ)}γ∈Γ ⊂ P
M (V, d)

respectively. If the mapping T (·) in (4.21) and the mapping M(·) in (4.24) both exist and if θ̂ is a

solution to problem Q̃(Θ), then θ̂ = T
(
M
(
θ̂
))

.

Proof. See Appendix C.1. �

If the assumptions stated in Proposition 4.1 hold, we can use the preceding invariance property
to prove that problems P̃M (Γ) and Q̃(Θ) are compatible. Furthermore, any solution to problem
Q̃(Θ) may be identified from some solution to problem P̃M (Γ) via the mapping T (·).

Proposition 4.2 (Relationship Between Solutions to P̃M (Γ) and Q̃(Θ)).
Suppose the assumptions stated in Proposition 4.1 hold; in particular, suppose the mappings T (·)
and M(·) exist. Then, the mapping T (·) is a surjection from the solution set of problem P̃M (Γ)
onto the solution set of problem Q̃(Θ).
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Proof. See Appendix C.2. �

Proposition 4.2 demonstrates that solutions to problem Q̃(Θ) can be obtained from solutions to
alternative problem P̃M (Γ) if the sets Θ and Γ are appropriately chosen. For the non-parameterized
problems considered in the preceding chapter, Proposition 3.22 analogously proves that problems
P̃M and Q̃ are compatible. In this latter case, the two mappings p −→ pT and q −→ FM (q) are used
to show that a surjection exists between the two solution sets, and since these mappings are always
defined on the space of all densities, such a surjection is guaranteed to exist. As Proposition 4.2
demonstrates, though, we must be more careful when considering parameterized spaces if we want
to take advantage of the additional degrees of freedom afforded by alternative problem P̃M (Γ). As
the following section demonstrates, if the assumptions in Proposition 4.1 are satisfied, we can in
theory implement (within a parameterized setting) the iterative algorithm discussed in Section 4.1.

� 4.3.2 Alternating Minimizations in a Parameterized Space

Using the ideas introduced in the previous section, this section presents an iterative approach for
solving the parameterized approximate multiscale realization problem Q̃(Θ). This algorithm is
similar to the iterative approach suggested in Section 4.1 for solving problem Q̃, but rather than
performing the iterations in the space of all densities, we now restrict our attention to the two
subspaces {p(x|γ)}γ∈Γ and {q(x|θ)}θ∈Θ. Specifically, given an initial guess for θ(0), we consider the
following sequence of alternating minimizations for i = 1, 2, . . .,

γ(i) , arg min
γ∈Γ

D
(
p(x|γ)‖q(x|θ(i−1))

)
, (4.25a)

θ(i) , arg min
θ∈Θ

D
(
p(x|γ(i))‖q(x|θ)

)
. (4.25b)

Intuitively, the alternating minimizations in (4.25) attempt to minimize the cost function
C(γ, θ) , D (p(x|γ)‖q(x|θ)) over all γ ∈ Γ and θ ∈ Θ. From this perspective, we see that the
iterations are simply a method of coordinate descent: (4.25a) minimizes the cost with respect to
the first set of coordinates γ ∈ Γ, while (4.25b) minimizes the cost with respect to the second set of
coordinates θ ∈ Θ. Using the fact that γ(i) and θ(i) are minimizers of their respective optimization
problems, the following sequence of inequalities holds,

D
(
p(x|γ(i+1))‖q(x|θ(i+1))

)
≤ D

(
p(x|γ(i+1))‖q(x|θ(i))

)
≤ D

(
p(x|γ(i))‖q(x|θ(i))

)
,

and therefore, the iterations in (4.25) decrease (or at least do not increase) the cost C(γ, θ).
From a slightly different perspective, the iterations in (4.25) attempt to find a density p(x|γ)

with the correct marginal p∗(xM ) which is closest to a multiscale density q(x|θ). If there exists a
γ ∈ Γ and θ ∈ Θ such that p(x|γ) = q(x|θ) then an exact solution to problem Q̃(Θ) can be found;
otherwise, the iterations in (4.25) attempt to find an appropriate tradeoff. However, it is important
to note that the objective of problem Q̃(Θ) is not to find two densities p(x|γ) and q(x|θ) defined
on the full space X which are equal (or approximately equal) to each other. Rather, the goal is
find a multiscale density q(x|θ) such that the marginal q(xM |θ) matches the target density p∗(xM ).
This suggests that the alternating minimizations in (4.25) do not necessarily generate solutions
to problem Q̃(Θ). By imposing certain constraints on the sets Γ and Θ, however, the iterates in
(4.25) are in fact guaranteed to converge to fixed points θ̂ which satisfy the necessary conditions
for optimality stated in Proposition 4.1.
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Consider again the assumptions stated in Proposition 4.1 – the constraints needed for problems
Q̃(Θ) and P̃M (Γ) to be compatible. Specifically, assume that the mappings T (·) and M(·) both
exist. If this is the case, the iterations in (4.25) may equivalently be written as follows,11

γ(i) =M
(
θ(i−1)

)
, (4.26a)

θ(i) = T
(
γ(i)
)
. (4.26b)

In other words, (4.26a) indicates that there exists a γ(i) ∈ Γ such that p(x|γ(i)) = FM (q(x|θ(i−1)))
is the minimizer of (4.25a), and (4.26b) indicates that there exists a unique choice for θ(i) which
minimizes (4.25b).

Assuming for the moment that the iterations in (4.26) converge, notice that all fixed points

must satisfy θ̂ = T
(
M
(
θ̂
))

. As Proposition 4.1 indicates, the solutions to problem Q̃(Θ) must

also satisfy this same fixed-point equation. Consequently, all fixed points of the iterations in (4.26)
satisfy the necessary conditions for optimality.

Consider now the issue of whether or not the sequence {θ(i)} generated by (4.26) converges to
a fixed point θ̂. To aid in this effort, we examine the sequence of non-negative real numbers εi
defined as follows for i = 0, 1, 2, . . .,

εi , D
(
p∗(xM )‖q(xM |θ

(i))
)
. (4.27)

Using (4.1), the value of εi may also be written as follows,

εi = D
(
p(x|γ(i+1))‖q(x|θ(i))

)
−D

(
p(x|γ(i+1))‖FM

(
q(x|θ(i))

))
= D

(
p(x|γ(i+1))‖q(x|θ(i))

)
,

where the choice γ(i+1) = M(θ(i)) implies that p(x|γ(i+1)) = FM (q(x|θ(i))), thereby setting the
second term to zero. The minimization problem in (4.25b) then implies the following inequality,

εi = D
(
p(x|γ(i+1))‖q(x|θ(i))

)
≥ D

(
p(x|γ(i+1))‖q(x|θ(i+1))

)
, (4.28)

and if the value of θ(i+1) is unique in (4.25b), i.e. θ(i+1) = T (γ(i+1)), the inequality in (4.28) holds
with equality if and only if θ(i) = θ(i+1).

The expression on the right-hand-side of (4.28) may be further decomposed using (4.1),

D
(
p(x|γ(i+1))‖q(x|θ(i+1))

)
= D

(
p(x|γ(i+1))‖FM

(
q(x|θ(i+1))

))
+D

(
p∗(xM )‖q(xM |θ

(i+1))
)

= D
(
p(x|γ(i+1))‖p(x|γ(i+2))

)
+ εi+1. (4.29)

Combining (4.28) and (4.29) gives

εi+1 ≤ εi −D
(
p(x|γ(i+1))‖p(x|γ(i+2))

)
. (4.30)

This inequality proves that the iterations in (4.26) generate a non-increasing sequence of real
numbers {εi} which is bounded below by zero. Therefore, the sequence must converge to some
value ε̄ ≥ 0 [91]. Of course, we are more interested in the properties of the sequence {θ(i)} than in
{εi}. As the following proposition states, the existence of the mappings T (·) andM(·), along with
additional conditions on the set Θ, guarantee that {θ(i)} converges to a fixed point in the limit.

11Recall that the two minimization problems in (4.25) were previously considered in Section 4.3.1 when defining
the mappings T (·) and M(·).
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Proposition 4.3 (Convergence of the Sequence {θ(i)}).
Suppose the assumptions stated in Proposition 4.1 hold; in particular, suppose the mappings
T (·) and M(·) exist. Let Θ be a subset of some metric space. Given an initial starting point
θ(0) such that ε0 <∞, let Θ0 denote the subset of all θ ∈ Θ satisfying D (p∗(xM )‖q(xM |θ)) ≤
D
(
p∗(xM )‖q(xM |θ

(0))
)
, i.e.

Θ0 ,
{
θ ∈ Θ

∣∣∣D (p∗(xM )‖q(xM |θ)) ≤ D
(
p∗(xM )‖q(xM |θ

(0))
)}

. (4.31)

If Θ0 is a compact subset of Θ, then the sequence {θ(i)} generated by (4.26) converges to a fixed
point θ̂ which satisfies θ̂ = T (M(θ̂)).

Proof. Since the sequence {εi} is non-increasing, each θ(i) lies in the set Θ0, and consequently,
{θ(i)} is a sequence in a compact metric space. Then, some subsequence of {θ(i)} must converge in
the limit [91].

Since the sequence {εi} also converges, the inequality in (4.30) must be an equality in the limit,
and the second term on the right-hand-side of (4.30) must approach zero. We assume here that the
mapping T (·) exists; consequently the value of θ(i+1) = T (γ(i+1)) in (4.28) is unique. This means
that the inequality in (4.30) can only be an equality at the point of convergence. Therefore, the
sequence {θ(i)} must converge to a fixed point satisfying θ̂ = T (M(θ̂)). �

To summarize the preceding discussion, the two mappings T (·) and M(·) are important tools
for establishing the convergence of {θ(i)}. The mappingM(·) must exist in order for the sequence
{εi} to be non-increasing; without the existence of this mapping, the alternating minimizations in
(4.25), while attempting to minimize an upper bound, do not necessarily minimize the cost function
D (p∗(xM )‖q(xM |θ)) of interest. If the mapping T (·) exists, then as demonstrated in the proof of
Proposition 4.3, it is straightforward to show that {θ(i)} converges to a unique fixed point in the
limit.

Requiring the mapping T (·) to exist is a rather stringent condition for some parameterized prob-
lems, and as a result, similar conditions, which also guarantee convergence, have been considered
in the literature [78, 110] but discussed within the context of the EM algorithm. As an example,
the conditions cited in [110] require the set Θ0 to be compact and the mapping M(·) to exist,
just as we have assumed in Proposition 4.3; however, these conditions do not assume the existence
of the mapping T (·). For problems where Θ0 is compact and M(·) exists, the EM iterations are
guaranteed to converge, but in the limit, the iterates may cycle between a set of limit points. This
is not an issue in a practical sense, since each of these limit points is an equally viable solution to
the realization problem.

For our purposes, the conditions stated in Proposition 4.3 are easily verifiable for the Gaussian
problem considered in Section 4.4, and as such, we continue to focus on them. As we soon discuss,
both mappings M(·) and T (·) exist in the Gaussian realization problem, thereby ensuring the
monotonic properties of the sequence {εi}. In addition, since the class of Gaussian multiscale
models has a finite-dimensional parametrization, the set Θ0 is compact if and only if it is both
closed and bounded. As subsequent discussion reveals, the set Θ0 is unbounded for every initial
starting point in the Gaussian problem, and as such, additional constraints are imposed to deal
with this issue.
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� 4.3.3 Parameterizations and Local Minima

Proposition 4.3 states conditions under which the sequence {θ(i)} generated by (4.26) is guaranteed

to converge to a fixed point θ̂ = T
(
M
(
θ̂
))

, and Proposition 4.1 indicates that all solutions to

problem Q̃(Θ) satisfy this same fixed-point equation. In this section, we examine these fixed points
in more detail, and in particular, we show that the gradient of the function D (p∗(xM )‖q(xM |θ))
vanishes at each of these fixed points. Consequently, each such θ̂ is either a local extrema or saddle
point of the optimization problem Q̃(Θ).

To see this, assume the function C(θ) , D (p∗(xM )‖q(xM |θ)) is differentiable on the interior of
the set Θ. Then, using the decomposition in (4.1), we can write the gradient of C(θ) as follows,

∂

∂θ
C(θ) =

∂

∂θ

[
D (p(x|γ)‖q(x|θ))−D

(
p(x|γ)‖FM (q(x|θ))

)]
. (4.32)

Since (4.32) holds for any value of γ ∈ Γ, it holds for the value γ =M(θ). For this choice of γ, the
second term in (4.32) is zero, thereby giving

∂

∂θ
C(θ) =

∂

∂θ
D (p(x|γ)‖q(x|θ)) . (4.33)

Consider now any fixed point θ̂ = T (M(θ̂)), and assume that θ̂ lies in the interior of the set Θ.
Defining γ̂ ,M(θ̂) and using (4.33), the gradient of C(θ) at the point θ = θ̂ is given by,

∂

∂θ
C(θ)

∣∣∣∣
θ=θ̂

=

[
∂

∂θ
D (p(x|γ̂)‖q(x|θ))

]∣∣∣∣
θ=θ̂

. (4.34)

Now, since the fixed point θ̂ satisfies θ̂ = T (γ̂) and therefore is the unique minimizer of the
cost D (p(x|γ̂)‖q(x|θ)) in (4.25b), the gradient ∂

∂θD (p(x|γ̂)‖q(x|θ)) must be zero at θ = θ̂. Then,

according to (4.34), the gradient of C(θ) at θ = θ̂ must also be zero. This fact is summarized in the
following proposition.

Proposition 4.4 (Fixed Points are Points of Zero Gradient).
Suppose the assumptions stated in Proposition 4.1 hold; in particular, suppose the mappings T (·)

and M(·) exist. Suppose θ̂ = T
(
M
(
θ̂
))

is a fixed point of the iterations in (4.26) and lies in the

interior of the set Θ. If the function D (p∗(xM )‖q(x|θ)) is differentiable at the point θ = θ̂, then
the gradient is zero at this point.

Proof. See the preceding discussion. �

Proposition 4.4 demonstrates an important property possessed by the fixed points of the it-
erations in (4.26). Not only is the fixed-point equation θ̂ = T (M(θ̂)) a necessary condition for
solutions to problem Q̃(Θ), as evidenced by Proposition 4.1, but any point satisfying this equation
also satisfies the first-order necessary conditions for optimality. As a result, such a point may be
a local minimum, local maximum, or a saddle point. In general, the probability of finding a local
maximum is zero, since the iterations would need to be initialized to this point. Therefore, the
iterations in (4.26) tend to converge to either local minima or saddle points. The following example
is interesting because it demonstrates a simple problem where both of these points exist, and in
addition, it provides a preview of the Gaussian realization problem discussed in Section 4.4.
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X1

X0

X2

Figure 4.5. Multiscale model considered in Example 4.2, where X0, X1, X2 are all scalar random
variables and M = {1, 2}.

Example 4.2 (Local Minima and Saddle Points).
This example examines the multiscale realization problem for the model shown in Figure 4.5 and
where a target density p∗(xM ) is specified for the leaf vertices M = {1, 2}. In this example, X1

and X2 are jointly Gaussian zero-mean scalar random variables (under the density p∗(xM )) with
the following covariance matrix

E

[[
X1

X2

] [
X1 X2

]]
=

[
1 ρx1x2

ρx1x2 1

]
. (4.35)

The goal is to specify a scalar random variable X0 such that X1 and X2 are conditionally inde-
pendent given X0. Of course, this problem is trivial in the sense that X0 = X1 and X0 = X2 are
valid solutions which generate an exact multiscale model. Nonetheless, this problem still provides
valuable insight into the Gaussian realization problem.

In this example, we constrain the set of multiscale densities {q(x0, x1, x2|θ)}θ∈Θ to be zero-mean
and Gaussian, and therefore, the goal is to minimize the cost D (p∗(x1, x2)‖q(x1, x2|θ)) over this
set. Using the covariance in (4.35), it can be shown that this cost may be written as follows,

D (p∗(x1, x2)‖q(x1, x2|θ)) =
1

2
log

[
1− ρ2

x1x0
ρ2

x2x0

1− ρ2
x1x2

]
+

[
1− ρx1x0ρx2x0ρx1x2

1− ρ2
x1x0

ρ2
x2x0

]
− 1, (4.36)

where ρxixj
represents a correlation between Xi and Xj . In (4.36), ρx1x2 is the correlation between

X1 and X2 under the target density p∗(xM ) as specified in the covariance matrix in (4.35). On the
other hand, ρx1x0 and ρx2x0 are parameters of the multiscale model which define the correlations
between X1 and X0 (and X2 and X0) with respect to the multiscale density q(x|θ).12

The surface in Figure 4.6(a) shows the cost in (4.36) plotted as a function of the two parameters
ρx1x0 and ρx2x0 , with the choice ρx1x2 = 0.25. In this example, the surface is extremely flat, making
it difficult to distinguish several important features of the problem; as a visual aid, the function
log10 [0.01 +D (p∗(x1, x2)‖q(x1, x2|θ))] is plotted in Figure 4.6(b). This plot makes it clear that
the cost in (4.36) has a saddle point at (0, 0) and an infinite number of local minima which also
correspond to global minima. These local minima are located in two separate “troughs” with
endpoints at (1, 0.25), (0.25, 1), (−1,−0.25), and (−0.25,−1) – endpoints which correspond to the
trivial solutions X0 = X1, X0 = X2, X0 = −X1, and X0 = −X2 respectively.

12In this particular example, the cost in (4.36) is not a function of the variance of X0.
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Figure 4.6. (a) Plot of the KL divergence D (p∗(xM )‖q(xM |θ)) for the Gaussian multiscale re-
alization problem considered in Example 4.2. The plot shows the KL divergence as a function of
the two correlations ρx1x0 and ρx2x0 . (b) Same plot as in (a) but on a different scale, namely
log10 [0.01 +D (p∗(xM )‖q(xM |θ))]. The plot shows that there exists one saddle point at (0, 0) and
an infinite number of local minima that are also global minima. The dashed line shows the path of
the EM algorithm given an initial starting point of (0.9,−0.9); in this case, the algorithm converges
to the saddle point. The solid line shows the path of the EM algorithm given an initial starting point
of (0.905,−0.9).
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The plot in Figure 4.6(b) also shows the trajectory of the iterations in (4.26) for two different
starting points. When the starting point (0.9,−0.9) is chosen, the iterates follow the dashed
line and converge to the saddle point at (0, 0). In fact, any starting point of the form (a,−a),
−1 < a < 1, generates a sequence which converges to this saddle point. For all other starting
points, the sequence converges to a global minimum. For example, the starting point (0.905,−0.9)
generates the trajectory represented by the solid line in Figure 4.6(b). ◭

� 4.3.4 Maximum-Likelihood Estimation and the EM Algorithm

In this section, we take a brief aside to relate the parameterized approximate multiscale realization
problem Q̃(Θ), introduced in Section 4.3.1, to maximum-likelihood (ML) estimation [26], and we
relate the iterative procedure discussed in Section 4.3.2 to the EM algorithm [27]. First, the rela-
tionship between maximum-likelihood estimation and problem Q̃(Θ) can be seen by decomposing
the cost function D (p∗(xM )‖q(xM |θ)) considered in problem Q̃(Θ). Specifically, we can write13

D (p∗(xM )‖q(xM |θ)) =

∫
p∗(xM ) log

(
p∗(xM )

q(xM |θ)

)
dxM

=

∫
p∗(xM ) log p∗(xM )dxM −

∫
p∗(xM ) log q(xM |θ)dxM

= C − Ep∗ [log q(XM |θ)] . (4.37)

As (4.37) demonstrates, the first term involves only the target density p∗(xM ) and is therefore a
constant with respect to θ, while the second term is the negative expectation of log q(XM |θ) under
the target density p∗(xM ).

Using (4.37), we can equivalently state problem Q̃(Θ) as the following maximization problem,

θ̂ = arg max
θ∈Θ

Ep∗ [log q(XM |θ)] , (4.38)

or in other words, find the value of θ ∈ Θ which maximizes the expected log-likelihood. This
is a generalization of the method of ML estimation which seeks to maximize the log-likelihood
log q(XM |θ) for a single observation XM = xM . In (4.38), the log-likelihood is averaged over all
possible observations using the target density p∗(xM ).

If we consider the special case where p∗(xM ) is the empirical density for a set of N indepen-

dent observations x
(1)
M , x

(2)
M , . . . , x

(N)
M , i.e. p∗(xM ) = 1

N

∑N
i=1 δ(xM − x

(i)
M ), then the criterion to be

maximized in (4.38) can be rewritten as follows,

Ep∗ [log q(XM |θ)] =

∫
p∗(xM ) log q(xM |θ)dxM =

∫ [
1

N

N∑

i=1

δ(xM − x
(i)
M )

]
log q(xM |θ)dxM

=
1

N

N∑

i=1

log q(x
(i)
M |θ) =

1

N
log

[
N∏

i=1

q(x
(i)
M |θ)

]
. (4.39)

The expression in (4.39) is proportional to the log-likelihood, under the assumption of independent
observations. Therefore, when the goal is to find a multiscale model that “best” fits N independent

13In some cases, the KL divergence on the left-hand-side of (4.37) may be finite while one of the terms on the
right-hand-side of (4.37) is infinite. For the purpose of drawing a parallel to ML estimation, we assume that a target
density p∗(xM ) has been specified such that this is not the case.
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observations x
(1)
M , x

(2)
M , . . . , x

(N)
M , problem Q̃(Θ) is equivalent to ML estimation with respect to a

parameterized set of densities {q(x|θ)}θ∈Θ.
In general, ML estimation problems, such as the one considered in (4.38), can be difficult to

solve due to the existence of multiple local maxima. Since problem Q̃(Θ) is equivalent to (4.38),
it may possess multiple local minima (depending on the chosen parametrization and the target
density p∗(xM )), as discussed in the previous section. It is well-known that the EM algorithm can
be useful in attempting to solve some ML estimation problems, specifically problems where there
are “missing” data. In (4.38), we have this problem of missing data because only the variables
XM are defined (by the target density p∗(xM )) – the remaining variables XV −M are unknown or
missing.

As we now discuss, the iterative algorithm introduced in Section 4.3.2 is a generalization of the
EM algorithm and essentially provides a method for probabilistically characterizing the unknown
variables XV −M . Specifically, the mapping M(·) provides the necessary characterization. To see
this, suppose γ(i) =M(θ(i−1)) as in (4.26a); then, by definition the density p(x|γ(i)) satisfies

p(x|γ(i)) = FM
(
q(x|θ(i−1))

)
= q(xV −M |xM , θ

(i−1))p∗(xM ).

The density p(x|γ(i)) is a so-called complete density since it is defined on the complete set of
variables XV . This complete density maintains the same marginal density p∗(xM ) on the variables
XM and defines the unknown variables XV −M using the conditional density q(xV −M |xM , θ(i−1)).
This conditional density provides the best estimate for XV −M conditioned on XM under the current
model q(x|θ(i−1)).

Given the complete density p(x|γ(i)), consider now the optimization problem in (4.25b). The
cost function D

(
p(x|γ(i))‖q(x|θ)

)
can be decomposed in the same manner in which the cost

D (p∗(xM )‖q(xM |θ)) was decomposed in (4.37). Doing so gives the following,

D
(
p(x|γ(i))‖q(x|θ)

)
= C −Ep(x|γ(i)) [log q(X|θ)] , (4.40)

where C is a constant with respect to θ. Using (4.40), the optimization problem in (4.25b) can
equivalently be posed as follows,

θ(i) = arg max
θ∈Θ

Ep(x|γ(i)) [log q(X|θ)] , (4.41)

which is a maximum-likelihood estimation problem where the averaging density is the complete
density p(x|γ(i)).

Based on the preceding discussion, the alternating minimization problems in (4.25) can equiv-
alently be stated as follows (assuming that the mappingM(·) exists):

E-step: p(x|γ(i)) = FM
(
q(x|θ(i−1))

)
= q(xV −M |xM , θ(i−1))p∗(xM ),

M-step: θ(i) = arg max
θ∈Θ

Ep(x|γ(i)) [log q(X|θ)] .

The first step, the so-called expectation step of the EM algorithm, generates the averaging density
p(x|γ(i)), while the second step, the so-called maximization step of the EM algorithm, finds a value
of θ ∈ Θ which maximizes the expected log-likelihood.
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The relationship between the EM algorithm and the problem of alternating optimizations has
been noted by several authors including [20, 59, 81]. In [81], alternating maximizations are per-
formed with respect to the variational free energy from statistical physics, and these alternating
maximizations are shown to be equivalent to the iterations of EM. In [20], the alternating minimiza-
tion problems are identical to the ones considered here, except the search sets for these problems
are considered more generically and are not specifically sets of densities which possess conditional
independence or marginal constraints. As we have demonstrated here, though, these search sets
must satisfy certain constraints in order for the alternating minimizations in (4.25) to generate
solutions to problem Q̃(Θ).

� 4.4 Realizing Gaussian Multiscale Models Given Exact Statistics

Using the ideas presented in the previous three sections, we are now in a position to derive an
algorithm for finding a solution to the Gaussian multiscale realization problem. Section 4.4.1
describes the specific problem to be solved and shows how the convergence results presented in
Section 4.3 may be utilized in the problem of interest here. Section 4.4.2 then uses the algorithm
described in Section 4.2 to derive an efficient algorithm for solving the Gaussian realization problem,
and Section 4.4.3 suggests a re-scaled version of this algorithm which ensures that the iterations
always converge to a fixed point. Finally, Section 4.4.4 provides several illustrative examples which
demonstrate the convergence properties of the algorithm in practice.

� 4.4.1 The Problem Setup

Consider the multiscale realization problem where the target density p∗(xM ) is Gaussian with zero
mean and covariance P ∗

M , i.e.14

p∗(xM ) = N (xM ; 0, P ∗
M ) .

We henceforth assume that P ∗
M is positive definite and therefore invertible. Given such a target

density, our goal is to solve problem Q̃(Θ) with respect to the set of multiscale densities {q(x|θ)}θ∈Θ,
where each q(x|θ) = N

(
x; 0, Qθ

)
is a zero-mean Gaussian with positive-definite covariance matrix

Qθ.
As we now discuss, this particular realization problem may be viewed as a structured matrix

optimization problem. Specifically, since each q(x|θ), θ ∈ Θ, is a multiscale density and therefore
has special factorization structure, the covariance matrix Qθ associated with q(x|θ) has special
structure as well [71,97]. To see this structure, let the set Buv contain the indices of the matrix Qθ

which correspond to the cross-covariance between random vectors Xu and Xv . Hence, if Xu has
dimension du and Xv has dimension dv, the set Buv contains du×dv entries. Suppose a tree G� and
its undirected version G∼� = (V,E) are given, as well as a multiscale density q(x|θ) = N

(
x; 0, Qθ

)

which factors according to G∼� . Then, it can be shown that the inverse covariance matrix
[
Qθ
]−1

is guaranteed to have zeros in the entries indexed by Buv, if the edge (u, v) 6∈ E. As an example,
consider the tree shown in Figure 4.7(a), and assume that q(x|θ) is a multiscale density which

factors according to this tree. Figure 4.7(b) shows the structure of the matrix
[
Qθ
]−1

, assuming

14The notation N (x;µ, Σ) denotes a Gaussian density defined for random vector X which has mean vector µ and
covariance matrix Σ.
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that each random variable Xv is a scalar. The dark blocks in Figure 4.7(b) represent possible
non-zero entries, while the white blocks represent entries which must be zero.

Recall that the goal of optimization problem Q̃(Θ) is to find the value of θ ∈ Θ such that
D (p∗(xM )‖q(xM |θ)) is minimized. Since q(x|θ) is a zero-mean Gaussian density, q(xM |θ) is a zero-
mean Gaussian with covariance Qθ

M , i.e. Qθ
M contains the entries of Qθ indexed by the set M .

Consequently, the goal of problem Q̃(Θ) (as considered here) is to find a covariance matrix Qθ,
whose inverse has the zero/non-zero structure indicated by the tree G∼� , such that the sub-matrix

Qθ
M “best” matches the target covariance P ∗

M . The definition of “best” is of course determined by
the cost function D (p∗(xM )‖q(xM |θ)), which for the zero-mean Gaussian realization problem may
be written as follows,

D (p∗(xM )‖q(xM |θ)) = −
dM

2
−

1

2
log

(
det

([
Qθ

M

]−1
P ∗

M

))
+

1

2
trace

([
Qθ

M

]−1
P ∗

M

)
, (4.42)

with dM denoting the dimension of random vector XM . Therefore, the Gaussian realization problem
considered here is really a structured matrix optimization problem.

To develop an algorithm for solving this problem, we use the theoretical framework established
in the preceding sections of this chapter. Consider now the parameterized alternating minimization
procedure discussed in Section 4.3.2, and in particular, consider the set of densities {p(x|γ)}γ∈Γ

which permit such an alternating procedure. For our purposes, each p(x|γ) is a zero-mean Gaussian
density with positive-definite covariance matrix P γ such that the marginal constraint p(xM |γ) =
p∗(xM ) is satisfied. Therefore, each p(x|γ) has the correct marginal p∗(xM ) but does not necessarily
have special factorization structure.

The algorithm developed here is an implementation of the alternating minimizations in (4.25)
for the two sets of Gaussian densities {p(x|γ)}γ∈Γ and {q(x|θ)}θ∈Θ defined in this section. These
two sets of densities are particularly well-suited for this iterative approach because of the fact that
the mappingsM(·) and T (·) exist and are simple to characterize, and consequently, the alternating
minimizations in (4.25) may equivalently be written in terms of the mappings M(·) and T (·)
as in (4.26). To understand these two mappings, notice that both collections {p(x|γ)}γ∈Γ and
{q(x|θ)}θ∈Θ only contain Gaussian densities with positive-definite covariance matrices. As a result,
the KL divergence D (p(x|γ)‖q(x|θ)) is finite for all finite choices of γ ∈ Γ and θ ∈ Θ, a fact which
can be seen by applying (4.42). Furthermore, D (p(x|γ)‖q(x|θ)) is continuous with respect to γ and
θ and is equal to zero if and only if P γ = Qθ [17].

The preceding facts imply that both optimization problems in (4.25) have unique solutions.
Specifically, the iterations in (4.26), defined by the mappings T (·) and M(·), may be written as
follows

γ(i) : p(x|γ(i)) = FM
(
q(x|θ(i−1))

)
, (4.43a)

θ(i) : q(x|θ(i)) = pT (x|γ(i)). (4.43b)

Since M(·) and T (·) exist in this case, the convergence result stated in Proposition 4.3 indicates
that the sequence in (4.43) converges to a fixed point as long as the iterates θ(i) remain bounded.
In addition, Proposition 4.4 indicates that all fixed points are either local extrema or saddle points.

For the Gaussian realization problem considered here, it is difficult to determine if a given
initial starting point θ(0) generates a bounded sequence {θ(i)}. This is due to the fact that the set
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Figure 4.7. (a) An undirected tree G∼� = (V,E) with 15 vertices. (b) Given a Gaussian multiscale

density q(x|θ) = N
(
x; 0, Qθ

)
which factors according to the tree in (a) and where each Xv, v ∈ V ,

is a scalar random variable, the structure of
[
Qθ
]−1

is as shown. The dark blocks represent possible

non-zero entries, while the white blocks represent entries of
[
Qθ
]−1

which must be zero.
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Θ0 defined in Proposition 4.3 is unbounded for all initial starting points θ(0).15 Therefore, it is
possible to have a sequence {θ(i)} for which the cost function D

(
p∗(xM )‖q(xM |θ

(i))
)

decreases at

each iteration but at the same time θ(i) −→ ∞. For the moment, we do not consider the issue of
boundedness, choosing to focus instead on the implementation details of (4.43). In Section 4.4.3,
we provide a rescaled version of the iterations in (4.43) which overcomes this problem and ensures
that the iterations always converge to a fixed point.

Notice that the iterations in (4.43) are identical to those derived in (4.3) for the space of all
densities. In essence, the algorithm proposed here is an implementation of the iterative approach
first described in Section 4.1 but limited to the class of Gaussian densities. This is due to the
fact that Gaussian densities map to Gaussian densities under both p −→ pT and q −→ FM (q)
(assuming p∗(xM ) is also Gaussian). Consequently, given an initial Gaussian multiscale density
q(0) with positive-definite covariance, the iterations in (4.3) generate densities which lie in the sets
{p(x|γ)}γ∈Γ and {q(x|θ)}θ∈Θ defined in this section. The iterations in (4.43) then represent a
parameterized implementation of (4.3) for the Gaussian multiscale realization problem. Because
of this fact, Algorithms 4.1 and 4.2 can be used to efficiently implement (4.43), as the following
section demonstrates.

� 4.4.2 An Efficient Realization Algorithm for Gaussian Multiscale Models

In order to develop an efficient algorithm for solving problem Q̃(Θ), it is important to parameterize
each Gaussian multiscale density q(x|θ) directly in terms of its edge marginals. To do this, let
G� be a given rooted tree with undirected version G∼� = (V,E). Since q(x|θ) factors in terms of
the marginals q(xs, xt|θ), (s, t) ∈ E, we choose to parameterize the set {q(x|θ)}θ∈Θ using these
local marginals.16 Specifically, for each edge (s, t) ∈ E, q(xs, xt|θ) is constrained to be a zero-mean
Gaussian with a positive-definite covariance matrix, where 17

q(xs, xt|θ) = N

(
xs, xt; 0,

[
Qs Qs,t

Qt,s Qt

])
.

By parameterizing the densities q(x|θ) in this manner, we must be mindful of the fact that two
marginals q(xs, xt|θ) and q(xs, xu|θ), which share the same variable xs, must have the same marginal
q(xs|θ). This marginal requirement simply constrains the sub-matrices Qs to match in the two
marginals q(xs, xt|θ) and q(xs, xu|θ). However, this requirement is not a concern here since the
proposed algorithm generates marginals which automatically satisfy this constraint.

Using the preceding parametrization of q(x|θ), Algorithm 4.2 (see Section 4.2.2) may be used to
recursively calculate the parameters of any conditional density q(xs|xt, xLs , θ) needed to implement
the iterations in (4.43), and then, Algorithm 4.1 may be used to incorporate the target density
p∗(xM ). The remaining discussion focuses on the matrix equations which result from the recursive
calculations involved in Algorithms 4.1 and 4.2. The interested reader should refer to Section C.3
for a more detailed derivation.

15See Section 4.4.3 for a more detailed discussion of this issue.
16Other parameterizations are possible such as parameterizing the conditional densities q(xs|xt, θ) as previously

discussed in Section 2.3.2.
17In keeping with the previous notation, the entries of this covariance matrix should really be denoted by Qθ

s, Qθ
s,t,

etc., but we drop the superscript θ for notational simplicity with the understanding that these entries are parameters
of the model and indexed by the set Θ.
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Algorithm 4.2 Applied to the Gaussian Realization Problem

Examining Algorithm 4.2, we see that the calculations involve four different conditional densities:
q(xt|xs), q(xt|xLt), q(xt|xLs), and q(xs|xt, xLs), where vertex t is the parent of vertex s. For the
Gaussian problem, we parameterize each of these densities as follows,

q(xt|xs, θ) =N
(
xt;Fsxs, Q̃s

)
, (4.44a)

q(xt|xLt , θ) =N (xt;M
m
t xLt , R

m
t ) , (4.44b)

q(xt|xLs , θ) =N (xt;M
p
s xLs , R

p
s) , (4.44c)

q(xs|xt, xLs , θ) =N

(
xs;Ms

(
xt

xLs

)
, Rs

)
. (4.44d)

The parameters of the first density may be determined directly from the model parameters associ-
ated with the marginal q(xs, xt|θ),

Fs = Qt,sQ
−1
s , (4.45a)

Q̃s = Qt −Qt,sQ
−1
s Qs,t. (4.45b)

The parameters of the second density are calculated by the merge step of Algorithm 4.2 and
are given by,

Rm
t =


(1− qt)Q

−1
t +

∑

s∈χ(t)

[Rp
s]
−1



−1

, (4.46a)

Mm
t = Rm

t

[
[Rp

s1 ]
−1
Mp

s1 [Rp
s2 ]

−1
Mp

s2 · · ·
[
Rp

sqt

]−1
Mp

sqt

]
, (4.46b)

where qt denotes the number of children of vertex t and where the matrix in (4.46b) is a column-
wise concatenation of the matrices [Rp

si ]
−1
Mp

si for all child vertices si of t.18 The parameters of the
third density are calculated by the prediction step of Algorithm 4.2 and are given by,

Mp
s = FsM

m
s , (4.47a)

Rp
s = FsR

m
s F

T
s + Q̃s. (4.47b)

Finally, the parameters of the fourth density are calculated in the downward pass of Algorithm 4.2
and are given by,

Ms =
[
Js (I − JsFs)M

m
s

]
, (4.48a)

Rs = (I − JsFs)R
m
s , (4.48b)

where Js , Rm
s F

T
s [Rp

s ]
−1

.
It is important to note that the preceding matrix equations are similar to those derived in [13] for

tree-structured recursive estimation. The difference between the recursions here and those in [13]
lies in the fact that we must calculate the parameters of the conditional density q(xs|xt, xLs , θ)
in order to then incorporate the target density p∗(xM ). As a result, it is necessary to store and
manipulate larger matrices than those considered in [13]. In addition, the covariance matrix Rs

is slightly different in our implementation because of the fact that we calculate q(xs|xt, xLs , θ), as
opposed to the implementation in [13] which calculates the covariance of the density q(xs|xM , θ).

18The column-wise concatenation of matrices A1, A2, . . . , An (each with the same number of rows) generates a 1×n
block matrix, where the first sub-block is A1, the second sub-block is A2, and so forth.
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Algorithm 4.1 Applied to the Gaussian Realization Problem

Given the parameters Ms and Rs of the conditional density q(xs|xt, xLs , θ), it is then straight-
forward to apply Algorithm 4.1 to determine the marginals p(xs, xt|γ) of the density p(x|γ) =
q(xV −M |xM , θ)p

∗(xM ). Algorithm 4.1 essentially consists of two steps: marginalization of densities
and multiplication of densities. The marginalization step is simple to implement since it involves
picking the appropriate sub-block of a covariance matrix, while the multiplication step can be
implemented by matrix multiplication.

As an example, the second step in Algorithm 4.1 requires calculating the marginal p(xt, xLs |γ)
of p(xt, xLt |γ). Letting PA,B denote the covariance between vectors XA and XB under density
p(x|γ), the marginal p(xt, xLt |γ) is parameterized as follows,

p(xt, xLt |γ) = N (xt, xLt ; 0, Nt) , where Nt ,

[
Pt Pt,Lt

PLt,t PLt

]
. (4.49)

The marginal p(xt, xLs |γ) is then parameterized by

p(xt, xLs |γ) = N (xt, xLs ; 0, N
s
t ) , where N s

t ,

[
Pt Pt,Ls

PLs,t PLs

]
, (4.50)

and the covariance matrix N s
t is the sub-block of Nt which corresponds to the random vectors Xt

and XLs .
Consider now the third step of Algorithm 4.1, which requires computing p(xs, xt, xLs |γ) =

q(xs|xt, xLs , θ)p(xt, xLs |γ). Using the parameters Ms and Rs of the density q(xs|xt, xLs , θ), as
well as the covariance matrix N s

t of the density p(xt, xLs |γ), the covariance of p(xs, xt, xLs |γ) is
straightforward to calculate. Specifically, the density p(xs, xt, xLs |γ) is parameterized as follows,

p(xs, xt, xLs |γ) = N

(
xs, xt, xLs ; 0,

[
MsN

s
t M

T
s +Rs MsN

s
t

N s
t M

T
s N s

t

])
. (4.51)

Using the covariance matrix in (4.51), the covariance of the desired marginal p(xs, xt|γ) may then
be determined by choosing the correct sub-block.

Combining Algorithms 4.1 and 4.2

By performing the recursions in Algorithms 4.1 and 4.2 in concert with one another, we now have
an efficient means of implementing the iterations in (4.43) for the Gaussian realization problem.
The sequence of steps required to complete each iteration of (4.43) is summarized in the following
algorithm.

Algorithm 4.3 (Algorithms 4.1 and 4.2 for the Gaussian Realization Problem).
Let G� be a given rooted tree with undirected version G∼� = (V,E). Let M be the set of all leaf
vertices of G�, and suppose a zero-mean Gaussian target density p∗(xM ) is specified. Assume the
parameters Qs and Qs,t of the multiscale density q(x|θ) are specified for all (s, t) ∈ E.

Initialization: For each leaf vertex s and its unique parent t, q(xt|xLs , θ) , q(xt|xs, θ), and the
parameters Fs and Q̃s of q(xt|xs, θ) are calculated using (4.45).

Upward Pass: Choose any bottom-up ordering (u1, . . . , um) on the non-leaf vertices of G�.
FOR i = 1, . . . ,m DO:
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(1) Set t = ui.

(2) Compute the parameters Mm
t and Rm

t of q(xt|xLt , θ) using (4.46).

(3) Compute the parameters Mp
t and Rp

t of q(xπ(t)|xLt , θ) using (4.47).

Downward Pass: Choose any top-down ordering (v1, . . . , vm) on the non-leaf vertices of G�. Set
t = v1, and compute p(xt, xM |γ) = q(xt|xM , θ)p∗(xM ) as follows,

p(xt, xM |γ) = N

(
xt, xM ; 0,

[
Mm

t P
∗
M (Mm

t )T +Rm
t Mm

t P
∗
M

P ∗
M (Mm

t )T P ∗
M

])
.

FOR i = 2, . . . ,m DO:

(1) Set s = vi, and set t equal to the unique parent of s.

(2) Compute the parameters Ms and Rs of q(xs|xt, xLs , θ) using (4.48).

(3) Marginalize p(xt, xLt |γ) to get p(xt, xLs |γ), i.e. choose the sub-block N s
t of the covariance Nt

as shown in (4.49) and (4.50).

(4) Compute p(xs, xt, xLs |γ) = q(xs|xt, xLs , θ)p(xt, xLs |γ) using (4.51).

(5) Marginalize p(xs, xt, xLs |γ) to get p(xs, xt|γ) and p(xs, xLs |γ). ◭

Consider now the asymptotic computational complexity of Algorithm 4.3. We assume that
the dimension dv of all random vectors Xv, v ∈ V , is chosen independent of the problem size N ,
where N denotes the dimension of the target random vector XM . Because of this assumption, all
matrix inversions computed in Algorithm 4.3 are asymptotically negligible, since all such inversions
involve matrices of size dv × dv, i.e. the size of the state vector. The most significant component
of the computational complexity comes from matrix multiplies, such as those performed in (4.51).
For example, if t = v0 is the root vertex, calculating the density p(xt, xM |γ) requires multiplying
the dt × N matrix Mt = Mm

t by the N × N matrix P ∗
M , which requires approximately dtN

2

multiplies. Asymptotically, this is the dominant calculation, and consequently, Algorithm 4.3 has
computational complexity O(N2) (per iteration) for a problem of size N .

� 4.4.3 A Rescaling Algorithm for the Gaussian Multiscale Realization Problem

As previously mentioned in Section 4.4.1, the iterations in (4.43) are not guaranteed to converge
to a fixed point in the case of the Gaussian realization problem. Specifically, for every initial
starting point θ(0), the set Θ0 defined in Proposition 4.3 is unbounded, and consequently, there
is no guarantee on the boundedness of any particular sequence {θ(i)}. To address this issue, this
section proposes a “rescaled” version of the iterations in (4.43), which is guaranteed to generate
a bounded sequence as long as θ(0) is chosen so that the initial cost ε0 < ∞. The following two
examples illustrates these ideas.

Example 4.3 (Unbounded Sequences in the Gaussian Realization Problem).
Consider the multiscale model shown previously in Figure 4.5. This example demonstrates the fact
that Θ0 is an unbounded set for every starting point θ(0) of the iterations in (4.43). To do this,
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consider two different starting points θ(0) and θ̄(0), where the corresponding multiscale densities
q(x|θ(0)) and q(x|θ̄(0)) are both zero-mean and Gaussian. For notational convenience, we assume
that q(x|θ(0)) and q(x|θ̄(0)) have covariances Q and Q̄ respectively and that the marginal densities
q(xM |θ

(0)) and q(xM |θ̄
(0)) have marginal covariances QM and Q̄M respectively.

Consider first the marginal covariance QM , which can be shown to be the following function of
the state covariances Qv and edge covariances Quv of q(x|θ(0)),

QM =

[
Q1 Q10Q

−1
0 Q02

Q20Q
−1
0 Q01 Q2

]
. (4.52)

Now, suppose the covariances Q̄v and Q̄uv of q(x|θ̄(0)) are defined in terms of the covariances Qv

and Quv as follows,

Q̄1 , Q1, Q̄2 , Q2, Q̄0 , αQ0, (4.53a)

Q̄10 , Q10, Q̄20 , αQ20, (4.53b)

for some α ∈ (0,∞). Using (4.52), it can be seen that Q̄M = QM for all choices of α ∈ (0,∞). There-
fore, even though the two densities q(x|θ(0)) and q(x|θ̄(0)) are different, the marginals q(xM |θ

(0))
and q(xM |θ̄

(0)) are identical due to the form of the bijection θ(0) ←→ θ̄(0) in (4.53).
One immediate consequence of this fact is that it proves that the set Θ0 is unbounded. Since

q(xM |θ
(0)) = q(xM |θ̄

(0)), the KL divergences D
(
p∗(xM )‖q(xM |θ

(0))
)

and D
(
p∗(xM )‖q(xM |θ̄

(0))
)

are equal for all values of α ∈ (0,∞). For each positive integer N , consider the collection of all such
θ̄(0) for which α ≤ N , i.e. ΦN , {θ̄(0)|α ∈ (0, N ]}. Taking the limit N −→∞ gives the unbounded
set Φ∞. The set Θ0 =

{
θ ∈ Θ

∣∣D (p∗(xM )‖q(xM |θ)) ≤ D
(
p∗(xM )‖q(xM |θ

(0))
)}

is a superset of Φ∞

and is therefore unbounded as well. ◭

The ideas presented in the preceding example may be generalized to the class of all Gaussian
multiscale models. Specifically, it is important to note that every multiscale density q(x|θ) has
an infinite number of corresponding multiscale densities q(x|θ′), each possessing the same marginal
q(xM |θ) = q(xM |θ

′). Because of this redundancy, the iterations in (4.43) may become poorly scaled
in the limit.

To deal with this issue, we would ideally like to identify an equivalence class 〈θ〉 with each
multiscale model q(x|θ), such that θ′ ∈ 〈θ〉 if and only if q(xM |θ) = q(xM |θ

′). Given such a
partitioning of the set Θ, the issue of scaling can be overcome by performing the iterations in (4.43)
with respect to the set of equivalence classes. Unfortunately, characterizing these equivalence classes
can be difficult for the multiscale realization problem, and as such, we propose a partitioning which
deals with the issue of scaling but does not necessarily correspond to an equivalence relation. The
following example demonstrates this idea.

Example 4.4 (Rescaling the Covariances of Multiscale Models).
Consider again the multiscale model and the densities q(x|θ(0)) and q(x|θ̄(0)) discussed in Ex-
ample 4.3. In this example, we propose a more general rescaling of the covariance Q̄ than that
provided in (4.53). In particular, consider the following bijection between θ(0) and θ̄(0) where M is
an arbitrary invertible matrix,

Q̄1 , Q1, Q̄2 , Q2, Q̄0 , MTQ0M, (4.54a)

Q̄10 , Q10M, Q̄20 , Q20M. (4.54b)
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Using (4.52), it can be seen that any such choice for M generates a covariance Q̄ which satisfies
Q̄M = QM . Therefore, (4.54) provides a rather general method for rescaling the covariances of the
multiscale model in Figure 4.5, without changing the marginal density q(xM |θ

(0)).
In this section, we focus on a particular choice for the matrix M in (4.54); specifically, we set

M = Q
−1/2
0 , where Q

−1/2
0 is the inverse symmetric square-root of Q0. This choice for M gives the

following marginal covariances of Q̄,

Q̄1 , Q1, Q̄2 , Q2, Q̄0 , I, (4.55a)

Q̄10 , Q10Q
−1/2
0 , Q̄20 , Q20Q

−1/2
0 . (4.55b)

Therefore, this particular rescaling generates a multiscale model with the root covariance Q̄0 equal
to the identity.

The bijection defined in (4.55) may be extended to more complicated multiscale models, as we
soon demonstrate. In particular, we will show that any Gaussian multiscale density q(x|θ) with
non-singular covariance Q may be mapped to a multiscale density q(x|θ̄) with a covariance Q̄ which
satisfies Q̄v = I for all non-leaf vertices v and in addition satisfies Q̄M = QM . Therefore, applying
such a mapping to Q generates a multiscale model with the same desired marginal but with each
state covariance rescaled to the identity.

Since multiscale models may be rescaled in such a manner, we now focus on the subclass of
multiscale models with state covariances equal to the identity. This subclass of multiscale models
is sufficiently rich for our purposes because any solution to problem Q̃(Θ) may be mapped to a
corresponding solution which has identity state covariances. In addition, by requiring the state
covariances to be equal to the identity, the model parameters are constrained in such a way as to
guarantee that the iterations in (4.43) converge, as we soon show. ◭

As Example 4.4 demonstrates, a simple three-vertex Gaussian multiscale model may be rescaled
so that the root covariance equals the identity, and this rescaling does not alter the marginal of
interest. We now show how the mapping in (4.55) may be generalized to all Gaussian multiscale
models defined on arbitrary trees G∼� = (V,E). To do this, let q(x|θ) and q(x|θ̄) be two multiscale
densities with covariances Q and Q̄ respectively. The mapping of interest to us is given by the
following,

Q̄v ,

{
I, v ∈ V −M
Qv, v ∈M

(4.56a)

Q̄uv ,

{
Q

−1/2
u QuvQ

−1/2
v , (u, v) ∈ E, u, v ∈ V −M

QuvQ
−1/2
v , (u, v) ∈ E, u ∈M

(4.56b)

where Q
−1/2
u and Q

−1/2
v are the inverse symmetric square roots of Qu and Qv respectively. In

(4.56a), all non-leaf state covariances are mapped to the identity, while all leaf covariances remain
unchanged, and in (4.56b), the cross-covariances along edges (u, v) are rescaled using the matrices

Q
−1/2
u and Q

−1/2
v .

For notational convenience, we denote the mapping in (4.56) by R(·) since it acts as a rescaling
operation on the set of multiscale models. More specifically, R : Θ −→ Θ̄, where Θ̄ denotes the
subset of Θ for which each multiscale density q(x|θ) has state covariances equal to the identity.
As the following proposition indicates, the mapping R(·) satisfies our previously stated criterion in
that it scales the state covariances but does not alter the marginal of interest.
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Proposition 4.5 (Rescaling Multiscale Models to Have Identity State Covariances).
Let two zero-mean Gaussian multiscale densities q(x|θ) = N(x; 0, Q) and q(x|θ̄) = N(x; 0, Q̄) be
specified such that the marginals Q̄v and Q̄uv of Q̄ are defined in terms of the marginals Qv and
Quv of Q according to (4.56). Then, Q̄v = I for all non-leaf vertices v, and the two marginal
covariances QM and Q̄M are identical.

Proof. See Appendix C.4. �

Having defined the rescaling mapping R(·) in (4.56), we now utilize this mapping in the context
of the multiscale realization problem. Simply stated, we use R(·) to rescale the EM iterations in
(4.43). As a result, the problem of unbounded sequences is not an issue since this rescaling is
guaranteed to generate a bounded sequence {θ̄(i)}. Since R(·) does not change the marginal of
interest, the sequence of KL divergences ε̄i , D

(
p∗(xM )‖q(xM |θ̄

(i))
)

is monotonically decreasing,

and consequently, the sequence {θ̄(i)} is guaranteed to converge in the limit. We elaborate on these
ideas in the remainder of this section.

Consider the following modification of the iterations in (4.43) which has an additional rescaling
step,

γ(i) : p(x|γ(i)) = FM
(
q(x|θ̄(i−1))

)
, (4.57a)

θ(i) : q(x|θ(i)) = pT (x|γ(i)), (4.57b)

θ̄(i) : θ̄(i) = R(θ(i)). (4.57c)

The EM iterations in (4.57a) and (4.57b) have the same form as before, but in addition, the value of
θ(i) is transformed in (4.57c) using R(·). As a result, the corresponding multiscale density q(x|θ(i))
is mapped to a new density q(x|θ̄(i)) with state covariances equal to the identity. Since this rescaling
operation is performed at each iteration, the sequence {θ̄(i)} remains bounded, and in particular,
each θ̄(i) lies in the bounded set19

Θ̄0 ,
{
θ̄ ∈ Θ̄

∣∣∣D
(
p∗(xM )‖q(xM |θ̄)

)
≤ D

(
p∗(xM )‖q(xM |θ̄

(0))
)}

,

as the proof of Proposition 4.6 (to follow) demonstrates. The set Θ̄0 is analogous to the set Θ0

introduced in Proposition 4.3, but in this case, we restrict our attention to parameters which lie in
the set Θ̄.

Using the fact that {θ̄(i)} is bounded, in addition to the fact that {ε̄i} is a monotonically
decreasing sequence (see Appendix C.5), the result previously provided in Proposition 4.3 indicates
that {θ̄(i)} converges to a fixed point θ̂. The following proposition states this fact for the special
case of the Gaussian realization problem considered here.

Proposition 4.6 (Convergence of the Sequence {θ̄(i)} for the Gaussian Realization Problem).
Let Θ index the set of zero-mean Gaussian multiscale densities with positive-definite covariances,
and suppose θ̄(0) is an initial starting point for the sequence {θ̄(i)} in (4.57) which satisfies ε̄0 =
D
(
p∗(xM )‖q(xM |θ̄

(0))
)
<∞. Then, the sequence {θ̄(i)} converges to a fixed point θ̂ which satisfies

θ̂ = T (M(θ̂)).

19Recall from the preceding discussion that Θ̄ is defined to be the subset of all Θ where each multiscale density
q(x|θ̄), θ̄ ∈ Θ̄, has non-leaf state covariances equal to the identity.
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Proof. See Appendix C.5. �

The result in Proposition 4.6 is significant because it indicates that the iterations in (4.57) are
guaranteed to converge to a fixed point which satisfies the necessary conditions for solutions to
the Gaussian multiscale realization problem. Furthermore, it is straightforward to incorporate the
rescaling step (4.57c) into the recursive algorithm previously discussed in Section 4.4.2 by simply
applying the mapping R(·) to θ(i) at each iteration. Since the mapping R(·) is only a function
of edge and vertex marginals, this additional step does not alter the computational complexity of
the resulting algorithm. The following section provides several examples which demonstrate the
convergence properties of this particular algorithm.

� 4.4.4 Examples and Results

In this section, we provide several examples which illustrate the convergence properties of the
iterative technique developed in this chapter for solving the Gaussian multiscale realization problem.
Our goal is to solve the Gaussian realization problem introduced in Section 4.4.1 for several different
choices of the target covariance matrix P ∗

M . To do this, we use Algorithm 4.3 to recursively compute
the necessary marginals at each iteration. In addition, at each iteration we perform the rescaling
operation R(·) discussed in Section 4.4.3 in order to ensure that the model parameters do not
diverge to infinity.

A First-Order Markov Process

In this example, we demonstrate the performance of the iterations in (4.57) on a simple first-
order Markov process. Consider the 16 point first-order Markov process Y whose conditional
independence structure is given by the graphical model shown in Figure 4.8(a), and assume that
Y is mapped to vectors X1 and X2 as shown in Figure 4.8(b). The goal of this example is to
find a scalar variable X0 such that X1 and X2 are conditionally independent given X0. Since Y
is a first-order Markov process, we know that at least two exact solutions, namely X0 = Y8 and
X0 = Y9, exist for this problem. As we soon discuss, the iterations in (4.57) find solutions which
are a linear combination of Y8 and Y9.

As a specific example, suppose the entries of P ∗
M are specified by the height of the surface in

Figure 4.9(a). The magnitudes of the entries of [P ∗
M ]−1 are also provided in Figure 4.9(b). As

the latter figure demonstrates, the zero entries (i, j) of [P ∗
M ]−1 precisely correspond to edges (i, j)

not present in the graph shown in Figure 4.8(a), and therefore, P ∗
M is indeed a first-order Markov

process.
Figure 4.10 illustrates the convergence characteristics of (4.57) for this example. Each line in the

plot corresponds to the iterates generated by choosing a different initial multiscale parametrization
θ̄(0). Since an exact solution exists in this case, any global minima of optimization problem Q̃(Θ)
also corresponds to an exact solution of the realization problem. As Figure 4.10 demonstrates, at
least five of the initial starting points produce iterates which converge to exact solutions. At the
same time, however, the rate of convergence for each of these starting points is highly variable. In
fact, one of the starting points generates a sequence which decreases the cost function only slightly
after 1000 iterations. We conjecture that this particular starting point is located in an extremely
flat region of the cost function and is also in close proximity to a saddle point. As a result, it
requires a large number of iterations to move away from this saddle point.
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Figure 4.8. (a) A 16 point first-order Markov process, Y . (b) Mapping of the process Y to the leaf
vertices of a rooted tree with three vertices.

For the starting points in Figure 4.10 which generate sequences converging to an exact solution,
we observe that the value of X0 at a point near convergence is of the form X0 = aY8 + bY9, for
some choice of a and b. Recall that we also observed this type of solution in Example 4.2 where an
infinite “trough” of global minima existed in addition to the obvious trivial solutions. Of course,
since we perform a rescaling step at each iteration, the solutions X0 = aY8 + bY9 are constrained
in this example because the variance of X0 is required to equal 1.

Fractional Brownian Motion

In this example, we examine the convergence characteristics of the iterations in (4.57) when the
target density p∗(xM ) does not have special factorization structure, such as that exhibited by the
preceding first-order Markov process. In particular, consider the 256 × 256 covariance matrix P ∗

M

whose entries are represented by the surface plot in Figure 4.11(a). Here, P ∗
M is the covariance

matrix for 256 samples of fractional Brownian motion (fBm) on the interval (0, 1] and with Hurst
parameter H = 0.3. The log-magnitudes of the entries of [P ∗

M ]−1 are also provided in Figure 4.11(b).
The structure of the inverse is interesting in that the magnitudes of the entries decrease very rapidly
away from the main diagonal, but none of the entries is equal to zero. Consequently, p∗(xM ) does
not have special factorization structure.

In this example, we consider a multiscale model whose underlying tree G∼� is shown in Fig-
ure 4.12. Since the tree has 32 leaf vertices, we set the dimension of Xv to 8 for each leaf vertex
v, and we map the 256-dimensional fBm process sequentially to the vectors Xv . For the remaining
non-leaf vectors Xv, we constrain each of their dimensions to 4.

Figure 4.13(a) provides convergence curves for 5 different initial starting points. As this plot
demonstrates, the curves are almost identical (for very different initial starting points). This
observation stands in sharp contrast to the convergence variability seen in the previous example.
We conjecture that the degree of variability is a function of the structure of [P ∗

M ]−1. Specifically,
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Figure 4.9. (a) Surface plot of the entries of a covariance matrix P ∗
M for a first-order Markov

process. (b) Magnitude of the entries of [P ∗
M ]

−1
, where P ∗

M is shown in (a). The locations of the zero
entries correspond to edges absent in the directed graph shown in Figure 4.8(a).



4.4. REALIZING GAUSSIAN MULTISCALE MODELS GIVEN EXACT STATISTICS 191

Iteration Number

K
L

D
iv

er
ge

n
ce

0 100 200 300 400 500 600 700 800 900 1000
10−15

10−10

10−5

100

Figure 4.10. Convergence results for the iterations in (4.57) assuming the target covariance P ∗
M

shown in Figure 4.9(a). Each line corresponds to a different initial starting point.

when p∗(xM ) does not possess special factorization structure, we conjecture that the cost function
has a fewer number of saddle points, thereby decreasing the probability of finding a starting point
which lingers in the vicinity of a saddle point for a large number of iterations. Notice also that
all 5 convergence curves demonstrate rapid initial convergence followed by a much slower rate
of convergence. This characteristic is commonly observed with EM-type iterations, and various
approaches for dealing with this issue have been addressed in the literature [78].

The convergence curves in Figure 4.13(a) demonstrate that there exist multiscale models which
well-approximate the fBm process considered here. To obtain a better sense of the quality of this
approximation, Figure 4.13(b) provides a point-wise plot of the absolute error between the true
covariance in Figure 4.11(a) and the realized covariance of a multiscale model obtained after 1000
iterations of (4.57). The magnitudes of the errors are rather small overall. The largest errors
occur in the cross-covariance between the endpoints of the process. This is most likely due to the
fact that one endpoint has a variance close to zero, while the other endpoint has a variance of
one. The remaining errors of notable size occur at the major tree boundaries where two points
are spatially close in the underlying process but are far apart in the multiscale model. This latter
phenomenon has been noted and discussed in a number of sources including [38,49,73], and at least
two approaches for dealing with this issue have been proposed [29,103].
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Figure 4.11. (a) Surface plot of the entries of a 256× 256 covariance matrix P ∗
M which corresponds

to fractional Brownian motion with Hurst parameter H = 0.3. (b) Log-magnitude of the entries of

[P ∗
M ]

−1
, where P ∗

M is shown in (a). Since the entries of the inverse are not zero anywhere, this process
factors according to a complete graph, i.e. it possesses no conditional independence structure.
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Figure 4.12: Graph structure of the multiscale model to be realized in the fBm example.

A Sinusoidal Covariance

In this final example, we consider the performance of the iterations in (4.57) on a target covariance
whose inverse structure lies somewhere between the structures of the first two examples. Consider
the 512×512 target covariance matrix P ∗

M shown in Figure 4.14(a) and the log-magnitude of [P ∗
M ]−1

shown in Figure 4.14(b). The entries of P ∗
M are given by a damped sinusoidal function, where the

variances on the main diagonal are equal to 1 and the magnitudes of the cross-covariances decay as
a function of the distance from the main diagonal. The structure of the inverse covariance [P ∗

M ]−1 is
similar in that the magnitudes of the entries decay rapidly as the distance from the main diagonal
increases. In fact, the degree of decay is much more rapid than that seen in the fBm example,
and as Figure 4.14(b) illustrates, the inverse is approximately equal to a banded matrix of width
k. Because of this, the sinusoidal covariance shown in Figure 4.14(a) is approximately equal to a
kth-order Markov process. However, since none of the entries is exactly equal to zero, the target
density p∗(xM ) does not possess special factorization structure.

The multiscale model considered in this example is similar to the one previously shown in
Figure 4.12, except that one additional layer of vertices is added to give a total of 64 leaf vertices.
The 512-dimensional process of interest is sequentially mapped to the random vectors Xv at the
64 leaf vertices such that each Xv has dimension 8. We consider the performance of the iterations
in (4.57) when we constrain the state dimensions of all non-leaf vertices to either be 4 or 1.

Figure 4.15(a) shows the convergence results if each non-leaf vector Xv has dimension 4, while
Figure 4.15(b) shows the results if each non-leaf vector Xv has dimension 1. Noticeably, the curves
are very similar within each plot and between the two plots. As in the previous example, we
conjecture that the results are similar within each plot due to the fact that [P ∗

M ]−1 has no zero
entries and therefore p∗(xM ) has no special factorization structure.

The fact that the results are similar between the two plots indicates that in this particular
example state dimensions of 1 generate as good of an approximation as state dimensions of 4.
The choice of state dimension is an important part of the multiscale realization problem which we
have not focused on in this thesis. A natural extension of the optimization problem Q̃(Θ) is to
incorporate the choice of state dimension into the objective function, rather than imposing a fixed
hard constraint as we have done here. In this way, the objective of the multiscale realization problem
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is to find the “best” approximate model with respect to some additional complexity constraints.
Some ideas regarding this particular issue have been expressed in [38].

To obtain a better sense of the quality of the approximation obtained in this example, Figure 4.16
shows the magnitudes of the point-wise differences between the true covariance in Figure 4.14(a)
and two different approximate solutions. Figure 4.16(a) shows the error for an approximate model
generated after 1000 iterations of (4.57), where each non-leaf state dimension is equal to 4. Fig-
ure 4.14(b) provides a similar plot but for an approximate model with non-leaf state dimensions
equal to 1. The magnitudes of the errors are very similar, with Figure 4.14(b) appearing to have
slightly smaller point-wise errors than Figure 4.14(a). This, however, is due to the fact that neither
approximation has truly converged to a fixed point.
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Figure 4.13. (a) Convergence results for the iterations in (4.57) assuming the target covariance P ∗
M

shown in Figure 4.11(a). Each line corresponds to a different initial starting point. (b) Shows the
absolute error between the true covariance in Figure 4.11(a) and an approximate solution generated
after 1000 iterations of (4.57). In this example, the dimension of Xv is equal to 4 for each non-leaf
vertex v and equal to 8 for each leaf vertex v.
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Figure 4.14. (a) Surface plot of the entries of a 512× 512 covariance matrix P ∗
M which corresponds

to a damped sinusoid. (b) Log-magnitude of the entries of [P ∗
M ]

−1
, where P ∗

M is shown in (a).
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Figure 4.15. (a) Convergence results for the iterations in (4.57) assuming the target covariance
P ∗

M shown in Figure 4.14(a). Each line corresponds to a different initial starting condition. The
dimension of Xv is equal to 4 for each non-leaf vertex v and equal to 8 for each leaf vertex v. (b)
Same type of plot as in (a), but here, the dimension of Xv is equal to 1 for each non-leaf vertex v.
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(a)

(b)

Figure 4.16. (a) Shows the absolute error between the true covariance in Figure 4.14(a) and an
approximate solution generated after 1000 iterations of (4.57). In this case, the dimension of Xv is
equal to 4 for each non-leaf vertex v and equal to 8 for each leaf vertex v. (b) Same type of plot as
in (a), but here, the dimension of Xv is equal to 1 for each non-leaf vertex v.



Chapter 5

Conclusions and Future Research

Directions

THIS thesis provides a detailed study of multiscale models, their independence properties, and
the multiscale realization problem. This study reveals that a thorough understanding of the

conditional independencies exhibited by multiscale models plays an important role in the develop-
ment of efficient multiscale realization algorithms, a statement which is supported by the various
contributions summarized in Section 5.1. While several facets of multiscale models and the mul-
tiscale realization problem have been explored, there are still a number of unanswered questions.
Section 5.2 addresses some of these open questions by suggesting appropriate extensions to the
realization framework developed in this thesis.

� 5.1 Summary of Contributions

The contributions of this thesis may be broadly categorized as follows:

• Study of a novel type of Markov property – marginalization-invariant Markovianity.

• Development of a sequential procedure for solving the exact multiscale realization problem
(with and without augmented states).

• Development of a graph-theoretic framework for enumerating the conditional independencies
of multiscale models, as well as more complex graphical models.

• Formulation of an approximate multiscale realization problem for which the degree of approx-
imation is tied to the constraints imposed by the marginalization-invariant Markov property.

• Application of the EM algorithm to the approximate multiscale realization problem.

The first contribution of this thesis is the most fundamental, and perhaps the most important,
since the remaining contributions are directly tied to or rely upon the marginalization-invariant
Markov property. This property is defined in Chapter 2 in terms of so-called boundary sets which
depend on the choice of the marginalization constraint set M and the sets associated with the
reduced-order global Markov property. The marginalization-invariant Markov property is important
because it provides a set of sufficient conditions which solutions to the multiscale realization problem
must satisfy. These sufficient conditions, however, are not unique for a given multiscale model and
depend on the ordering chosen for the non-leaf vertices of the tree.
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The structure of these sufficient conditions leads directly to the second contribution of this
thesis – a sequential procedure for the exact multiscale realization problem. In the second part of
Chapter 2, we demonstrate that the constraints imposed by the marginalization-invariant Markov
property may be specially ordered when the marginalization constraint set M contains only leaf
vertices, and we use this fact to derive a sequential realization procedure. In the cases where M
contains non-leaf vertices, we demonstrate that a sequential realization procedure is also possible
if additional design vectors are introduced into the problem.

The fact that the marginalization-invariant Markov property is not unique for a given tree
implies that many different sequential realization procedures may be devised. Namely, a chosen
ordering on the non-leaf vertices of the tree leads to a particular set of sufficient conditions and
a specific sequential realization procedure based on these conditions. By changing the ordering, a
different realization procedure is obtained. For example, in Section 2.8.3 we demonstrate that a
bottom-up ordering1 leads to a procedure which resembles the scale-recursive algorithm discussed
in [38]. Similarly, choosing a top-down ordering leads to a procedure like the one proposed in [49].
However, since there are combinatorially many such procedures, it is not always clear which one is
best for a given problem; Section 5.2.1 provides some guidance on how to think about this problem
from a graph-theoretic perspective.

Even though the marginalization-invariant Markov property is defined and studied in Chapter 2,
its significance for the multiscale realization problem is not proven until Chapter 3. To help prove
its significance, the first part of Chapter 3 develops an interesting graph-theoretic framework for
enumerating the conditional independencies of multiscale models, as well as more complex graphical
models. Using this framework, we then show that the marginalization-invariant Markov property
provides a set of sufficient conditions for solutions to the multiscale realization problem.

An additional benefit of the graph-theoretic framework introduced in Chapter 3 is that it leads
to an important decomposition of the KL divergence between a density p and its projection pT

onto a tree. In the second part of Chapter 3, we formulate an approximate version of the multiscale
realization problem which uses the KL divergence as a measure of approximation, and we show
that there exists an upper bound on this criterion which possesses several important and useful
properties. In particular, we prove that this upper bound may be additively decomposed into terms
which measure the constraints imposed by the marginalization-invariant Markov property.

In Chapter 4, we continue our discussion of the approximate multiscale realization problem by
proposing a specific iterative procedure for solving it. We view this procedure from several different
perspectives, and in particular, we demonstrate that it seeks solutions which simultaneously tradeoff
the desired marginal constraint with the constraints imposed by the global Markov property – the
same two constraints satisfied by the marginalization-invariant Markov property. We subsequently
demonstrate how to apply this iterative procedure to parameterized approximate realization prob-
lems, and we demonstrate that such a procedure is in fact equivalent to the EM algorithm. In the
final part of Chapter 4, we apply this iterative procedure to the Gaussian multiscale realization
problem, and we provide several interesting examples which validate its performance in practice.

1See Section 2.6.2 for a review of bottom-up and top-down orderings.
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� 5.2 Suggestions for Future Research

This section focuses on several questions which are raised in this thesis but not answered, as well as
several questions not raised in this thesis but for which the framework developed here is applicable.

� 5.2.1 Conditional Independence and Minimality

In Chapter 3, Theorem 3.3 suggests a set of sufficient conditions which solutions to the multiscale
realization problem must satisfy – conditions which are stated in terms of specific triangulated
supergraphs of trees. In this section, we consider an equivalent set of conditions which holds for
more general graphical models, and we demonstrate that the complexity of these conditions may be
analyzed from a graph-theoretic perspective. Specifically, we show how so-called minimal triangula-
tions, as well as the notions of clique extensions and neighborhood separators previously introduced
in Chapter 3, are important components for understanding complexity. Our discussion suggests
several interesting research questions which should be addressed in order to better understand the
multiscale realization problem as well as more complex realization problems. We conjecture that
this graph-theoretic perspective may ultimately be useful for finding minimal-complexity realization
algorithms for a broader class of graphical models.

Minimal Triangulations

Consider now a generalization of the sufficient conditions stated in Theorem 3.3 which holds for
more complex graphical models. Suppose a triangulated graph G = (V,E), a subset of vertices
M ⊂ V , and a target density p∗(xM ) are given. In this scenario, the exact realization problem
consists of identifying a density q which factors according to G and satisfies q(xM ) = p∗(xM ). One
method for finding solutions is to identify densities p which satisfy the following set of conditions:

Sufficient Conditions S
Given a triangulated graph G = (V,E) and M ⊂ V , let G′ be a triangulated
supergraph of G which contains a clique equal to M . A density p generates a
solution q = pG to the realization problem if p(xM ) = p∗(xM ) and pG′ = pG .

The result trivially follows from the sequence of equalities p∗(xM ) = p(xM ) = pG′(xM ) = pG(xM ) =
q(xM ).

The conditions stated above are important because they demonstrate which conditional inde-
pendencies are relevant for the realization problem – namely the conditional independencies which
ensure that the equality pG′ = pG holds. Since the complexity of these conditional independencies
is directly related to the number of additional edges contained in G′ but not in G, it is important
that G′ have the fewest number of edges possible. Of course, G′ must be both triangulated and
have a clique equal to M , and as such, the number of additional edges can be quite large for some
types of graphs and some choices of M .

More formally, the preceding requirements on G′ may be stated in terms of the graph-theoretic
notion called minimal triangulation. Given a non-triangulated graph H = (U,F ), a minimal tri-
angulation H′ = (U,F ∪ F ′) of H is one where every edge in F ′ is required in order for H′ to
be triangulated, i.e. if any edge or set of edges is removed from F ′, the resulting graph is not
triangulated. In order for a graph G′ to satisfy conditions S, the graph G′ should be a minimal
triangulation of G ∪ KM , i.e. the graph formed by the union of the edges contained in G and
the complete graph on M . Such a triangulation provides a graph G′ which not only satisfies the
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conditions S but is also minimal in the sense that removing any edges results in a graph which
does not satisfy conditions S. It is important to note, however, that minimal triangulations are not
unique: some minimal triangulations can contain more edges than others. Minimal triangulations
with the fewest number of edges are called minimum triangulations.

For general graphs, finding minimal triangulations can be somewhat challenging, and finding a
minimum triangulation is NP-hard. These types of problems have been studied extensively in the
graph theory literature, and there are several techniques for finding minimal triangulations [7,46,82].
For the multiscale realization problem, we conjecture that the modified elimination game in fact
generates minimal triangulations for tree-structured graphs as long as a leaf-last vertex ordering is
chosen. If this conjecture is true, it then suggests that the constraints imposed by marginalization-
invariant Markov property are irreducible. Furthermore, it raises the question of which classes of
graphs and which vertex orderings lead to minimal triangulations when the modified elimination
game is used.

Conditional Independence Constraints with Minimal Redundancy

While minimal triangulations are important for understanding the complexity of realization algo-
rithms, there is another important aspect of complexity which must be addressed – redundant con-
ditional independence constraints. As an example of redundant constraints, recall from Chapter 2
that the global Markov property imposes a set of overlapping conditional independence constraints.
We subsequently showed that this overlap may be diminished by considering the constraints im-
posed by the reduced-order global Markov property. Essentially, the reduced-order global Markov
property removes constraints which are enforced more than once and are therefore redundant. From
the perspective of the realization problem, it is important to remove all redundant constraints since
this redundancy impacts the computational efficiency of any algorithm which attempts to enforce
these constraints.

We conjecture that the graph-theoretic concepts introduced in Chapter 3, specifically clique
extensions and neighborhood separators, provide the tools necessary for eliminating redundancy
in a set of conditional independence constraints. In particular, we argue that a subgraph H in-
duced by the neighborhood of a neighborhood separator represents the most complex non-complete
graph for which all implied Markov properties may be compactly stated without redundancy. For
example, consider the graph G shown in Figure 5.1 which contains the subgraph H induced by
the neighborhood of the neighborhood separator S = {u, v}. In this example, the set of vectors
Xr,Xs,Xt,Xu,Xv are Markov with respect to H if and only if they satisfy the following constraint,

Xr⊥Xs⊥Xt| (Xu,Xv) . (5.1)

Even though the preceding constraint may be represented in a number of equivalent ways,2 no
other representation of this constraint provides additional benefit over the one provided in (5.1).
Based on this, we conjecture that neighborhood separators are the fundamental building blocks for
studying conditional independencies.

Besides neighborhood separators, we conjecture that clique extensions provide the most natural
method for enumerating the conditional independencies implied by graphs with multiple neighbor-
hood separators. For example, in Chapter 3 we used clique extensions to compare the conditional

2For example, the two constraints Xr⊥Xs| (Xu, Xv) and Xt⊥ (Xr, Xs) | (Xu, Xv) taken together are equivalent to
the single constraint Xr⊥Xs⊥Xt| (Xu, Xv).
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independencies exhibited by two densities pG and pG′ , where G and G′ are triangulated and G′ is
a supergraph of G. We first showed that a sequence of clique extensions G = G0,G1, . . . ,Gn = G′

always exists for such choices of G and G′. Then, using this sequence along with Theorem 3.7, we
showed how the conditional independencies exhibited by pG but not pG′ can be easily listed by ex-
amining the maximal cliques generated in this sequence. We conjecture that all such graphs G and
G′ may be decomposed in terms of clique extensions such that a non-redundant set of constraints
is always obtained.

As an example, consider the sequence of clique extensions G = G0,G1,G2 = G′ shown in Fig-
ure 5.2(a), (b), and (c) respectively. Using this sequence, we can determine a non-redundant set of
conditional independencies implied by the graph G by examining the two maximal cliques {1, 2, 3, 4}
and {0, 1, 2, 3, 4} formed in this sequence. Doing so suggests that a density pG exhibits the following
conditional independencies

(X1,X2)⊥X4|X3 (5.2a)

X0⊥ (X3,X4) | (X1,X2) . (5.2b)

Alternatively, if we examine the graph G directly, it is immediately clear that pG satisfies the
following conditional independencies,

(X0,X1,X2)⊥X4|X3 (5.3a)

X0⊥ (X3,X4) | (X1,X2) , (5.3b)

but it is not immediately obvious that random vector X0 may be removed from the conditional
independence statement in (5.3a), as in (5.2a), without changing the Markov properties implied by
both statements in (5.3). This example illustrates the utility of clique extensions for minimizing
redundancy in a set of conditional independence constraints.

This same example also illustrates the important point that not all clique extensions result in
a non-redundant set of conditional independencies. For example, the graphs G,G′ form a sequence
of clique extensions since G′ is the complete graph. However, this sequence results in the creation
of the maximal clique {0, 1, 2, 3, 4} which requires us to examine the conditional independencies of
the entire graph G, and as previously stated, it can be difficult to determine a non-redundant set
of conditional independencies for an entire graph at once. This underscores the importance of the
particular choice of clique extension. We conjecture that this issue is not a problem if a chordal
sequence of clique extensions is chosen. Since a chordal sequence adds edges one-at-a-time, we
conjecture that a non-redundant set of constraints is guaranteed in this situation.

Minimum-Complexity Realization Algorithms

While the graph-theoretic ideas of minimal triangulations, neighborhood separators, and clique
extensions provide an interesting methodology for listing conditional independencies, we are ulti-
mately interested in the realization algorithms which result from this methodology. For example,
in the case of the multiscale realization problem, we demonstrated that the constraints imposed
by the marginalization-invariant Markov property may be ordered (when M contains only leaf ver-
tices) so that non-leaf vectors Xv may be designed in a sequential fashion. We conjecture that any
non-redundant set of constraints, such as that generated by a sequence of clique extensions, imme-
diately suggests a sequential procedure for a much broader class of graphical models. For example,
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Figure 5.1. A graph G where the subgraph H is induced by the neighborhood of the neighborhood
separator S = {u, v}.
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Figure 5.2. Illustration of a sequence of clique extensions G0, G1, and G2, where G0 is shown in (a),
G1 in (b), and G2 in (c).
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Chapter 3 proves that a sequential procedure is available for graphical models whose underlying
structure is given by an augmented graph.

Another issue related to sequential realization concerns which sets of constraints lead to the
most efficient realization procedures. As previously discussed, one set of constraints may be more
complex than another due to the minimal triangulation and the clique extensions which are chosen.
In addition, the dimensionality of each random vector Xv is an important aspect of complexity, and
therefore, it is essential that dimensionality be accounted for when deciding between different sets
of constraints. One method for attacking this problem is to formulate the search for the optimal
set of constraints in terms of the search for an optimal sequence of edges. Specifically, we can
treat this problem as a graph optimization problem, where weights are associated with edges in the
graph and provide an appropriate measure of complexity. Such an optimization problem could be
NP-hard for general graphs, but it may be possible to derive guaranteed bounds on complexity for
particular subclasses of graphs.

� 5.2.2 Measuring Conditional Independence

While the previous section focused on how to derive a minimal set of sufficient conditions for solu-
tions to a realization problem, this section focuses on how to measure conditional independencies.
This is an important aspect of any realization problem since it is not always possible to satisfy a set
of constraints exactly, as discussed earlier in the context of the approximate multiscale realization
problem. In this thesis, we focused exclusively on the measure of approximation provided by the
KL divergence; however, there are other measures of note which may prove useful for other types
of realization problems.

One possible measure is the one provided by canonical correlations, as used in [49] for the
Gaussian multiscale realization problem. Canonical correlations can be used to measure the con-
ditional correlation between two random vectors X1 and X2, conditioned on some linear function
of X1, and this measure can then be optimized to find the best linear function which conditionally
decorrelates X1 and X2. It can be shown, however, that the exact same linear function is obtained
by optimizing the conditional KL divergence. Consequently, we believe that the KL divergence is
a natural generalization of any measure based on canonical correlations.

A second possibility for the Gaussian multiscale realization problem is the predictive efficiency
measure proposed in [38]. This measure is computationally simpler to optimize than canonical
correlations, and it can be interpreted as a measure of estimation error. The difficulty with this
measure (as well as canonical correlations) is that it can only be used to conditionally decorrelate
two random vectors at a time. Consequently, this measure does not naturally lend itself to the
problem of simultaneously decorrelating more than two random vectors, as required in the multiscale
realization problem for example. We conjecture that predictive efficiency represents a specific
upper bound on the KL divergence. By viewing predictive efficiency as an approximation to the
KL divergence, it should be possible to generalize this measure so that more complex conditional
independencies can be handled. Ultimately, the hope would be that this measure provides a notion
of approximation which is relevant for a particular type of realization problem and for which its
optimization is simpler than the optimization required for the KL divergence.

In addition to canonical correlations, predictive efficiency, and KL divergence, there are other
measures of conditional independence which may be of possible interest. These include the multi-
information function [100], the kernel independent component analysis proposed in [3], and various
measures used in signal processing such as the Hellinger, Chernoff, and Bhattacharyya distances [5].
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The kernel independent component analysis, for example, provides a means of measuring condi-
tional independence when densities are non-Gaussian; such a measure could be useful for solving
realization problems involving non-Gaussian target densities p∗(xM ).

In considering other measures of conditional independence, it is also important that such a
measure be decomposable. As demonstrated in Proposition 3.24, the KL divergence can be decom-
posed into a sum of terms, where each term measures a single independence constraint. Ideally, any
chosen measure of conditional independence should be decomposable in a similar manner, so that
the contribution of each independence constraint to overall approximation quality may be easily
identified and optimized.

� 5.2.3 Iterative Methods for Solving the Approximate Multiscale Realization Problem

In this thesis, we use the EM algorithm as a method for solving the approximate multiscale real-
ization problem, but there are other possibilities which may be of use for this problem as well as
more general realization problems. In this section, we suggest two possibilities that are based on
Propositions 3.23 and 3.24. Recall from Proposition 3.23 that the multiscale realization problem
may be solved by minimizing an upper bound – a bound which Proposition 3.24 shows to be de-
composable into a sum of simpler terms. Both of the methods suggested here involve minimizing
this upper bound by using its additive structure.

A Dynamic Programming Approach

First consider a dynamic programming approach to minimizing the upper bound provided in Propo-
sition 3.23. This approach relies on the fact that the constraints imposed by the marginalization-
invariant Markov property may be ordered so that vectors Xv are designed sequentially. This
implies that the terms of the additive decomposition in Proposition 3.24 may be ordered so that
each term in the decomposition can be individually optimized with respect to a single design vector
Xv. However, even though each term can be treated in such a myopic way, other terms in the
additive decomposition also depend on the choice of Xv , and consequently, we must account for
the contributions of these other terms to the total cost.

This type of sequential dependence on previous decisions is reminiscent of dynamic programming
problems [8], and therefore, we believe that it may be useful to formulate the multiscale realization
problem as a sequential optimization problem. As an example of what we mean, consider the tree
shown in Figure 5.3 where M = {3, 4, 5, 6} contains all leaf vertices. Using Proposition 3.24, the
function D

(
p(x)‖pT (x)

)
to be minimized may be written as follows,

D
(
p(x)‖pT (x)

)
= D (p(x1, x3, x4, x5, x6)‖p(x3|x1)p(x4|x1)p(x5, x6|x1)p(x1)) +

D (p(x1, x2, x5, x6)‖p(x1|x2)p(x5|x2)p(x6|x2)p(x2))+

D (p(x0, x1, x2)‖p(x1|x0)p(x2|x0)p(x0)) . (5.4)

In the first term, random vectors X3,X4,X5,X6 are defined by the joint density p∗(xM ), and there-
fore, the only degree of freedom is the choice for the conditional density p(x1|x3, x4, x5, x6) which
defines X1. In choosing X1, however, we must account for its influence on the two remaining terms
in (5.4) which also depend on X1. Assuming that random vector X1 can be designed appropriately,
the second term in (5.4) is then only a function of X2. When optimizing this term, though, we
must recognize the fact that the third term also depends on X2. Finally, given choices for X1 and
X2, the third term may be optimized with respect to X0.
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Figure 5.3. The tree considered in the discussion of a dynamic programming approach to the
multiscale realization problem.

We conjecture that dynamic programming may be a useful way to deal with the type of in-
terdependency displayed in the preceding example. However, this type of problem could prove
difficult to solve exactly, and therefore, it may be useful to consider approximate iterative dynamic
programming methods. Since the scale-recursive realization algorithm proposed in [38] is essen-
tially a greedy version of what we propose here, i.e. each term in (5.4) is optimized separately, we
believe that performing a few iterations of an approximate dynamic programming algorithm will
necessarily lead to significantly better multiscale models.

A Conjugate Gradient Approach

Besides the dynamic programming approach mentioned above, it is also possible to apply other
types of optimization techniques to the multiscale realization problem. The method of conjugate
gradients [9, 94] is one optimization technique which may prove useful due to its excellent con-
vergence properties for a broad array of problems. For example, recent work, which considers
conjugate gradients in the context of the realization problem, suggests an interesting relationship
between the EM algorithm and a so-called expectation-conjugate-gradient algorithm [92].

The novelty of the approach suggested here is that it relies on the upper bound given in Propo-
sition 3.23, which as far as we can tell has not been considered in the realization literature. Since
this bound may be additively decomposed in terms of more localized functions, we conjecture that
the gradient of this bound (with respect to a particular parametrization) may be decomposable as
well. Since the method of conjugate gradients only requires a cost function and its gradient to be
calculated, this method of optimization may represent a viable alternative to the EM algorithm.

� 5.2.4 Partial Specifications

An interesting and important generalization of the problem framework considered in this thesis
– and one that has close connections to problems such as the so-called covariance completion
problem – is the following. Suppose that instead of having a single set of vertices M and target
density p∗(xM ) we have several possibly overlapping sets of vertices M1,M2, . . . and associated
target densities p∗(xM1), p

∗(xM2), . . .. In this case, the question of determining multiscale or other
graphical model realizations has a feature not found in the problem studied in this thesis. In
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particular, there is the issue of the compatibility of a set of target densities, i.e. whether any
density over the set of vertices M1 ∪M2 ∪ . . . could have these specified marginal densities. Indeed,
this question represents a generalization of the question of whether a partially specified covariance
matrix has any positive definite completion.

The motivation for this generalization comes from the same source as that for covariance com-
pletion; namely, available measurement data may only provide estimates of these densities over
subsets of variables. Developing methods for determining exact realizations, of course, would have
to deal with whether the given target densities are compatible. In principle, however, the problem
of determining models that approximate each of these target densities would not require such com-
patibility but would require the use of a cost function that separately combines the error measures
for each of the target densities.
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Proofs for Chapter 2

� A.1 Proof of Proposition 2.1

We note that the proof of the following proposition is a simple adaptation of the proof given in [38]
for multiscale autoregressive models.

Proposition 2.1 (Equivalence of Internal and Locally Internal Multiscale Models).
A multiscale model is internal if and only if it is locally internal.

Proof. As previously discussed in Section 2.3.3, any locally internal tree-indexed process is also an
internal tree-indexed process; therefore, this fact also holds for multiscale models.

To prove the other direction, assume that (X,G�) is an internal multiscale model. We show
that for any non-leaf vertex v, the vector Xv is equal to E[Xv |Xχ(v)], thereby implying that Xv

can be written as a deterministic function of the process indexed by the children of v, i.e. Xχ(v).
To begin, we can always write

Xv = E[Xv |Xχ(v)] + X̃v, (A.1)

for some X̃v. The result follows if we can show that X̃v is equal to zero. Using (A.1), note that X̃v

is a deterministic function of Xv and Xχ(v), and therefore, we can write

X̃v = E[X̃v |Xv,Xχ(v)]. (A.2)

Since (X,G�) is internal, we know that both Xv and Xχ(v) are functions of the process XLv ,

and using (A.2), X̃v is also some function of XLv . The global Markov property of multiscale models
then implies that X̃v (a function of XLv) and Xv are conditionally independent given Xχ(v), and
consequently,

X̃v = E[X̃v |Xv,Xχ(v)] = E[X̃v |Xχ(v)] = E[Xv − E[Xv|Xχ(v)]|Xχ(v)] = 0. (A.3)

The final equality follows from the definition of X̃v in (A.1). �

� A.2 Proof of Proposition 2.2 and Theorem 2.2

Recall from Section 2.5 that for all non-leaf vertices v, with v 6= vi, we use the notation Svi
v to

represent the unique set S ∈ Sv that contains vi. Recall also that such a set Svi
v can take one of

two forms,

Type 1: Svi
v = S̄u, where u ∈ χ(v) such that vi � u,

Type 2: Svi
v = Sc

v ∪ {v}.
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We henceforth refer to these two different forms as Type 1 and Type 2.
To prove Proposition 2.2 and Theorem 2.2, it is necessary to provide several intermediate results.

The first of these provides an important characterization of the intersection of any two sets Svi
v and

Svi

v′ .

Lemma A.1 (Intersection of Subtrees).
Let v and v′ be distinct non-leaf vertices of a graph G�. Suppose S ∈ Sv, S

′ ∈ Sv′ , and both S and
S′ contain a common element v∗.

(1) v /∈ S ∩ S′ if and only if S′ ⊂ S.

(2) Both v ∈ S ∩ S′ and v′ ∈ S ∩ S′ only in the following cases:

(i) S is Type 1, S′ is Type 2, and v′ ∈ S.

(ii) S is Type 2, S′ is Type 1, and v ∈ S′.

(iii) S and S′ are Type 2, and v and v′ are not comparable with the partial order �.

Proof. Before proving either result, we consider all possible combinations of S and S′. We present
a graphical proof by considering the exhaustive set of examples shown in Figures A.1 and A.2.
Consider the four possible combinations for S and S′:

• S is Type 1 and S′ is Type 1:

v ≻ v′, v /∈ S′ =⇒ v∗ /∈ S ∩ S′ = ∅

v ≻ v′, v ∈ S′ =⇒ S′ * S, v ∈ S ∩ S′, v′ /∈ S ∩ S′

v′ ≻ v, v′ /∈ S =⇒ v∗ /∈ S ∩ S′ = ∅

v′ ≻ v, v′ ∈ S =⇒ S′ ⊂ S, v /∈ S ∩ S′, v′ ∈ S ∩ S′

v ⊁ v′, v′ ⊁ v =⇒ v∗ /∈ S ∩ S′ = ∅

The first two statements follow from the illustrations shown in Figures A.1(a) and (b) respec-
tively. The third and fourth statements follow from Figures A.1(a) and (b) respectively by
reversing the vertices v and v′ and their corresponding sets S and S′. The fifth statement
follows from Figure A.1(c).

• S is Type 1 and S′ is Type 2:

v ≻ v′ =⇒ v∗ /∈ S ∩ S′ = ∅

v′ ≻ v, v′ /∈ S =⇒ S′ * S, v ∈ S ∩ S′, v′ /∈ S ∩ S′

v′ ≻ v, v′ ∈ S =⇒ S′ * S, v ∈ S ∩ S′, v′ ∈ S ∩ S′

v ⊁ v′, v′ ⊁ v =⇒ S′ * S, v ∈ S ∩ S′, v′ /∈ S ∩ S′

The first three statements follow from Figures A.1(d), (e), and (f) respectively. The final
statement follows from Figure A.2(a).
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S S 0

v
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Figure A.1: Set of examples used to graphically prove the results in Lemma A.1.
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Figure A.2: Set of examples used to graphically prove the results in Lemma A.1.
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• S is Type 2 and S′ is Type 1:

v ≻ v′, v /∈ S′ =⇒ S′ ⊂ S, v /∈ S ∩ S′, v′ ∈ S ∩ S′

v ≻ v′, v ∈ S′ =⇒ S′ * S, v ∈ S ∩ S′, v′ ∈ S ∩ S′

v′ ≻ v =⇒ v∗ /∈ S ∩ S′ = ∅

v ⊁ v′, v′ ⊁ v =⇒ S′ ⊂ S, v /∈ S ∩ S′, v′ ∈ S ∩ S′

The first three statements follow by reversing the role of v and v′ in Figures A.1(e), (f), and (d)
respectively, and the final statement follows by reversing the role of v and v′ in Figure A.2(a).

• S is Type 2 and S′ is Type 2:

v ≻ v′ =⇒ S′ ⊂ S, v /∈ S ∩ S′, v′ ∈ S ∩ S′

v′ ≻ v =⇒ S′ * S, v ∈ S ∩ S′, v′ /∈ S ∩ S′

v ⊁ v′, v′ ⊁ v =⇒ S′ * S, v ∈ S ∩ S′, v′ ∈ S ∩ S′

The first statement follows from the illustration shown in Figure A.2(b). The second state-
ment follows from Figure A.2(b) by reversing v and v′. The final statement follows from
Figure A.2(c).

(1) To prove the first result, we must show that in all cases where S and S′ contain a common
element v∗, the statements v /∈ S ∩ S′ and S′ ⊂ S are equivalent. Examining the cases
discussed above shows that this is in fact true.

(2) Examining the different combinations of S and S′, we see that v ∈ S ∩ S′ and v′ ∈ S ∩ S′ in
only the three scenarios which were listed. �

Recall the definition of the boundary set of vertex vi ∈ (v2, . . . , vm),

Bvi
=
⋂

v<vi

Svi
v , (A.4)

and the corresponding set Tvi
,

Tvi
, {v|v ∈ Bvi

, v < vi}, (A.5)

containing vertices in the boundary Bvi
that precede vertex vi in the ordering. An immediate con-

sequence of Lemma A.1 is the following corollary that provides a characterization of the boundary
Bvi

which is similar to (A.4) but ignores sets Svi
v that do not influence Bvi

.

Corollary A.1 (Characterization of the Boundary Sets).
The boundary set Bvi

can be written as the intersection over the sets Svi
v for all v ∈ Tvi

,

Bvi
=
⋂

v∈Tvi

Svi
v . (A.6)

Proof. Assuming that Tvi
6= {v1, . . . , vi−1}, choose any element v ∈ {v1, . . . , vi−1}, v /∈ Tvi

. Since
v /∈ Tvi

, we know that v /∈ Bvi
, and therefore, there must exist at least one vertex v′ < vi such that

v /∈ Svi
v ∩ S

vi

v′ . Using the first part of Lemma A.1, this implies that Svi

v′ ⊂ Svi
v , and consequently,

the set Svi
v does not influence the boundary Bvi

. The vertex v can be safely removed from the
definition of Bvi

. �



214 APPENDIX A. PROOFS FOR CHAPTER 2

Another important consequence of Lemma A.1 is the following characterization of the elements
of the set Tvi

and the associated sets Svi
t for t ∈ Tvi

.

Lemma A.2 (Characterization of Tvi
).

(1) The set Tvi
is non-empty.

(2) If Tvi
contains at least two elements, then there exists at most one element t∗ ∈ Tvi

which
is comparable to t ∈ Tvi

, t 6= t∗, with respect to the partial order �. If such a t∗ exists then
t ∈ Svi

t∗ for all t ∈ Tvi
.

(3) The set Svi
t∗ is Type 1. For any t ∈ Tvi

, t 6= t∗, the set Svi
t is Type 2.

Proof.

(1) By Corollary A.1, if Tvi
= ∅, then Bvi

= ∅ which is a contradiction since Bvi
by definition

contains at least vi.

(2-3) Let t and t∗ be distinct elements of Tvi
, and consider the sets Svi

t and Svi
t∗ . First, suppose that

Svi
t and Svi

t∗ are both Type 1. The second part of Lemma A.1 implies that either t /∈ Svi
t ∩S

vi
t∗

or t∗ /∈ Svi
t ∩S

vi
t∗ . This in turn implies that either t /∈ Tvi

or t∗ /∈ Tvi
, which is a contradiction.

This indicates that there can be at most one set Svi
t∗ , t

∗ ∈ Tvi
, of Type 1.

Suppose now that Svi
t∗ is Type 1 and Svi

t is Type 2 for all t 6= t∗. Using the second part of
Lemma A.1, the only way we can have t ∈ Svi

t ∩S
vi
t∗ and t∗ ∈ Svi

t ∩S
vi
t∗ is if t ∈ Svi

t∗ . Therefore,
t ∈ Svi

t∗ for all t ∈ Tvi
, and Svi

t is Type 2 for all t 6= t∗.

Finally, suppose Svi
t and Svi

t′ , t 6= t′, are Type 2. The second part of Lemma A.1 indicates
that t and t′ cannot be comparable since otherwise we arrive at a contradiction. Thus, all
sets Svi

t , t 6= t∗ are Type 2, and all elements of Tvi
not equal to t∗ are incomparable with

respect to �. �

Lemma A.2 allows the characterization of Bvi
in Corollary A.1 to be strengthened.

Corollary A.2 (Characterization of the Boundary Sets).
If a t∗ as described in Lemma A.2 exists, then let u∗ be the vertex such that Svi

t∗ = S̄u∗. The
boundary set Bvi

may be written as

Bvi
=




⋂

t∈Tvi
−{t∗}

(Sc
t ∪ {t})


 ∩ S̄u∗ . (A.7)

Otherwise, if no such t∗ exists then

Bvi
=
⋂

t∈Tvi

(Sc
t ∪ {t}) . (A.8)

Proof. The result follows directly from Corollary A.1 and Lemma A.2. �

Finally, we need the following lemma which provides an important characterization of the reduced-
order sets.
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Lemma A.3 (Reduced-Order Sets).

Let vi ∈ (v2, . . . , vm) and v∗ ∈ Tvi
. Then, vi ∈ R

∗ for some R∗ ∈ Rv∗ and R∗ =
⋂

v≤v∗

Svi
v .

Proof. Since v∗ ∈ Tvi
, we have v∗ ∈ Bvi

and hence v∗ ∈ Svi
v for all v < vi. Consequently, for all

v < v∗, we know that Sv∗
v = Svi

v , which implies that vi ∈ Bv∗ =
⋂

v<v∗

Sv∗
v =

⋂

v<v∗

Svi
v . Since vi ∈ Bv∗ ,

it must also be an element of one of the sets in Rv∗ = Sv∗ ∩Bv∗ ; call this set R∗. Since vi can only
be an element of the set Svi

v∗ ∈ Sv∗ , we then get

R∗ = Bv∗ ∩ S
vi
v∗ =

(
⋂

v<v∗

Svi
v

)
∩ Svi

v∗ =
⋂

v≤v∗

Svi
v . �

Using the preceding results, it is now possible to prove Proposition 2.2 and Theorem 2.2.

Proposition 2.2 (Characterization of Boundary and Reduced-Order Sets).
Let (v1, . . . , vm) be an ordering of the non-leaf vertices of a graph G� = (V,E).

(1) For any i = 2, . . . ,m, the set Bvi
defined in (2.22) is equal to some set R ∈ Rv with v < vi.

Consequently, Rvi
= Svi

∩Bvi
= Svi

∩R is a partitioning of the set R.

(2) For any vi ∈ (v2, . . . , vm), suppose Tvi
= {t1, . . . , tn}. The vertices V may be written as the

union of n+ 1 disjoint sets A1, . . ., An, and Bvi
, where the subgraph induced by Aj ∪ {tj} is

separated from the rest of the graph by vertex tj.

Proof.

(1) By Lemma A.2, the set Tvi
is non-empty. Take any v ∈ Tvi

, and according to Lemma A.3
there must exist a set R ∈ Rv that contains vi. Take R∗ to be the smallest set (with respect
to inclusion) amongst all such sets R. Call v∗ the vertex for which vi ∈ R

∗ ∈ Rv∗ . We will
show that Bvi

= R∗.

By Lemma A.3, R∗ =
⋂

v≤v∗

Svi
v , and recall that Bvi

=
⋂

v∈Tvi

Svi
v =

⋂

v<vi

Svi
v . If there is no vertex

v′ ∈ Tvi
such that v∗ < v′ < vi, then we are done since R∗ = Bvi

. Suppose there is such
a vertex v′. We now show that if there is such a vertex v′ then there exists a set R′ ∈ Rv′

which contains vi and such that R′ ( R∗. Since this contradicts the minimality of R∗, we can
conclude that there is no such v′, in which case R∗ = Bvi

must be true.

By Lemma A.3, since v′ ∈ Tvi
, the set R′ ∈ Rv′ containing vi can be written as R′ =

⋂

v≤v′

Svi
v .

In addition, since v′ ∈ Tvi
and hence v′ ∈ Bvi

, we know that v′ ∈ Svi
v ∩ S

vi

v′ for all v < vi.
Then, by Lemma A.1, Svi

v * Svi

v′ for all v < vi, v 6= v′, thereby implying that Svi
v ∩ S

vi

v′ ( Svi
v .

Using this fact and the fact that v∗ < v′ < vi gives the following set relationships,

R′ =
⋂

v≤v′

Svi
v =

(
⋂

v<v′

Svi
v

)
∩ Svi

v′ ⊆



⋂

v≤v∗

Svi
v


 ∩ Svi

v′

=
⋂

v≤v∗

(
Svi

v ∩ S
vi

v′

)
(
⋂

v≤v∗

Svi
v = R∗.

Thus, we have vi ∈ R
′ ( R∗, which is the desired contradiction.
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(2) Using Corollary A.1 and one of DeMorgan’s laws gives the following,

V −Bvi
= V −

⋂

t∈Tvi

Svi
t =

⋃

t∈Tvi

(V − Svi
t ). (A.9)

Defining Aj , V − Svi
tj

for tj ∈ Tvi
, j = 1, . . . , n, provides the required decomposition for V ,

i.e. V = A1 ∪ . . . ∪An ∪Bvi
.

Recall that Svi
t can only be one of two types. Suppose Svi

tj
is Type 1, then

Svi
tj

= S̄u, where u ∈ χ(tj) and vi � u

=⇒Aj = V − S̄u = Sc
u − {tj},

and suppose Svi
tk

is Type 2, then

Svi
tk

= Sc
tk
∪ {tk}

=⇒Ak = V −
(
Sc

tk
∪ {tk}

)
= Stk

− {tk}.

This then implies that the subgraph induced by Aj ∪ {tj} = Sc
u is separated from the rest of

the graph by vertex tj, and similarly, the subgraph induced by Ak ∪ {tk} = Stk
is separated

from the rest of the graph by vertex tk.

We now show that A1,. . .,An, and Bvi
are disjoint. First, note that Bvi

⊂ Svi
tj

for j = 1, . . . , n,

and consequently Aj ∩Bvi
= ∅. Now consider two sets Aj = V −Svi

tj
and Ak = V −Svi

tk
. Using

Lemma A.2, both Svi
tj

and Svi
tk

cannot be Type 1, and so, we first consider the case where

Svi
tj

is Type 1 and Svi
tk

is Type 2. According to Lemma A.2, if Svi
tj

is Type 1 then tk ∈ S
vi
tj

,

implying that Ak = Stk
− {tk} ⊂ Svi

tj
. As a result, we get Aj ∩ Ak = (V − Svi

tj
) ∩ Ak = ∅ as

desired.

The only other case to consider is when both Svi
tj

and Svi
tk

are Type 2, so that

Aj = Stj − {tj}

Ak = Stk
− {tk}.

Again using Lemma A.2, we know that tj and tk cannot be comparable, and consequently,
Aj ∩Ak = ∅. �

Theorem 2.2 (The Reduced-Order Global Markov Property).
Random vectors {Xv} satisfy the global Markov property if and only if they satisfy the reduced-order
global Markov property.

Proof. If {Xv} satisfies the global Markov property then it also satisfies the reduced-order global
Markov property because each R ∈ Rvi

satisfies R ⊂ S for some S ∈ Svi
.

We prove the converse by induction. First, Rv1 = Sv1 so the global Markov property holds at
vertex v1. Suppose now that the global Markov property holds at all vertices v1, . . . , vi−1. We show
that this fact in conjunction with the requirement ⊥ XRvi

gives ⊥ XSvi
. Recall that ∩Svi

= {vi},



A.2. PROOF OF PROPOSITION 2.2 AND THEOREM 2.2 217

and suppose Svi
−∩Svi

= Svi
−{vi} = {S1, . . . , Sk}. Consequently, in order for ⊥ XSvi

to hold, we
need

p(xS1 , . . . , xSk
|xvi

) =

k∏

j=1

p(xSj
|xvi

).

Consider the reduced-order sets Rvi
, and suppose Rvi

− ∩Rvi
= Rvi

− {vi} = {R1, . . . , Rk},
where Rj ⊂ Sj for j = 1, . . . , k. Further, define Uj , Sj −Rj, for j = 1, . . . , k. Then,

p(xS1, . . . , xSk
|xvi

) = p(xR1 , . . . , xRk
, xU1 , . . . , xUk

|xvi
)

= p(xR1 , . . . , xRk
|xvi

)p(xU1 , . . . , xUk
|xvi

, xR1 , . . . , xRk
)

=




k∏

j=1

p(xRj
|xvi

)


 p(xU1 , . . . , xUk

|xvi
, xR1 , . . . , xRk

), (A.10)

where the last equality is due to the reduced-order global Markov property ⊥XRvi
holding at vertex

vi. Using the chain rule for probabilities, the last term in (A.10) may be written as follows,

p(xU1 , . . . , xUk
|xvi

, xR1 , . . . , xRk
) =

k∏

j=1

p(xUj
|xU1 , . . . , xUj−1 , xvi

, xR1 , . . . , xRk
). (A.11)

Choose any term p(xUj
|xU1 , . . . , xUj−1 , xvi

, xR1 , . . . , xRk
) in (A.11); we will show that this term is

equal to p(xUj
|xvi

, xRj
).

To see this, suppose Tvi
= {t1, . . . , tn}, and note the following about the set Uj ,

Uj = Sj −Rj = Sj − Sj ∩Bvi
= Sj ∩ (V −Bvi

)

= Sj ∩ (A1 ∪ · · · ∪An) , (A.12)

where the sets A1, . . . , An in the final equality are the same as those considered in the second part
of Proposition 2.2. We now show that each set Al, l = 1, . . . , n, must either be completely contained
in the set Sj, or not contained at all, i.e the intersection Al ∩ Sj is either Al or ∅.

Recall from the proof of Proposition 2.2 that Al can have one of two forms. First, suppose
Al = Stl

− {tl}, and recall that Al and Bvi
must be disjoint. Consequently, Al cannot contain

vertex vi, implying that vi ⊁ tl. This in turn implies that Al must be completely contained in one
of the sets S ∈ Svi

− {vi}. Thus, either Al is a subset of Sj , or Al ∩ Sj = ∅ as desired. Finally,
suppose Al = Sc

u − {tl} is of the second form described in Proposition 2.2, where u ∈ χ(tl) and
vi � u. This immediately implies that Al is a subset of the Type 2 set contained in the family Svi

.
Thus, Al ∩ Sj = ∅ if Sj ∪ {vi} is Type 1, and Al ⊂ Sj if Sj ∪ {vi} is Type 2.

Using (A.12) along with the preceding discussion, indicates that Uj is the union of the sets Al,
l = 1, . . . , n, which are completely contained in Sj. Suppose Al ⊂ Sj for l = l1, . . . , lp, so that
Uj = Al1 ∪ · · ·∪Alp . From Proposition 2.2, we also know that each vertex tl, l = 1, . . . , n, separates
the subgraph induced by Al ∪{tl} from the rest of the graph. Furthermore, since tl ∈ Tvi

, we know
that tl < vi, and by our assumption, the global Markov property must then hold at each of the
vertex tl, l = 1, . . . , n.
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All of this implies that p(xUj
|xV −Uj

) = p(xUj
|xtl1

, xtl2
, . . . , xtlp

), and since tl1, . . . , tlp ∈ Rj , we
can also write p(xUj

|xV −Uj
) = p(xUj

|xRj
, xvi

). Using this fact in (A.10) and (A.11) gives the result,

p(xS1, . . . , xSk
|xvi

) =




k∏

j=1

p(xRj
|xvi

)






k∏

j=1

p(xUj
|xvi

, xRj
)




=

k∏

j=1

p(xRj
, xUj
|xvi

) =

k∏

j=1

p(xSj
|xvi

). �

� A.3 Proof of Propositions 2.3 and 2.4

Proposition 2.3 (Marginalization-Invariant Markovianity and a Top-Down Ordering). Suppose
the marginalization constraint set M is equal to all leaf vertices of a graph G�, and let (v1, . . . , vm)
be a top-down ordering of the non-leaf vertices. Then, the families Mvi

may be written as follows:

Mv0 − {v0} = {Lv}v∈χ(v0),

Mvi
− {vi} = {Lv}v∈χ(vi) ∪ {π(vi)}, vi 6= v0.

Proof. Since the ordering is top-down, v0 must appear first in the ordering, which implies that
Rv0 = Sv0 = {S̄v}v∈χ(v0). Since M contains all leaf vertices, we have M (1) = M ∪{v0} = Lv0 ∪{v0},
implying the following,

Mv0 = Rv0 ∩M
(1) = {S̄v}v∈χ(v0) ∩ (Lv0 ∪ {v0})

= {S̄v ∩ (Lv0 ∪ {v0}}v∈χ(v0) = {Lv ∪ {v0}}v∈χ(v0).

Consider now any other vertex vi in the ordering, and recall that Bvi
=
⋂

v<vi
Svi

v . Since the
ordering is top-down, π(vi) must appear before vi in the ordering, and the set Svi

π(vi)
is equal to S̄vi

.

Consequently, Bvi
⊂ S̄vi

. However, due to the top-down ordering, there is no vj ∈ S̄vi
with vj < vi,

which then implies that Bvi
= S̄vi

. This then gives,

Rvi
= Svi

∩ S̄vi
= {S̄v}v∈χ(vi) ∪ {{vi} ∪ π(vi)}.

By definition, M (i) contains all leaf vertices plus all vertices less than vi, but since ∪Rvi
=

S̄vi
, the only elements of M (i) contained in ∪Rvi

are Lvi
, π(vi), and vi. This gives the needed

characterization as follows,

Mvi
= Rvi

∩M (i) = {S̄v ∩M
(i)}v∈χ(vi) ∪ {({vi} ∪ π(vi)) ∩M

(i)}

= {Lv ∪ {vi}}v∈χ(vi) ∪ {{vi} ∪ π(vi)}. �

We use the following lemma, in order to later prove Proposition 2.4. We now choose to define
the boundary set Bv1 , V for the first vertex v1 in any ordering (v1, . . . , vm).

Lemma A.4 (Useful Results for Bottom-up Ordering).
Suppose the marginalization constraint set M is equal to all leaf vertices of a graph G�, and let

(v1, . . . , vm) be a bottom-up ordering of the non-leaf vertices. Then, the following two equalities
hold for 1 ≤ i ≤ m,
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(1) min
G�

(
M (i)

)
=

[
Sc

vi
∩min

G�

(
M (i−1)

)]
∪ {vi},

(2) Bvi
∩M (i) = min

G�

(
M (i−1)

)
∪ {vi}.

Proof.

(1) By the nature of the bottom-up ordering, vi ∈ minG�

(
M (i)

)
since there is no element smaller

than vi in M (i). For all vj ≻ vi, vj /∈ minG�

(
M (i)

)
by definition, and consequently, we may

safely remove all descendants of vi from M (i),

min
G�

(
M (i)

)
= min

G�

(
M (i−1) ∪ {vi}

)
= min

G�

((
Sc

vi
∩M (i−1)

)
∪ {vi}

)

= min
G�

(
Sc

vi
∩M (i−1)

)
∪ {vi} =

[
Sc

vi
∩min

G�

(
M (i−1)

)]
∪ {vi}.

(2) Note that Bv1 ∩M
(1) = M (1) = M (0)∪{v1} = minG�

(
M (0)

)
∪{v1}, where the last equality is

due to the fact that M (0) = M only contains leaf vertices. Suppose now that Bvi−1∩M
(i−1) =

minG�

(
M (i−2)

)
∪ {vi−1}, and consider the following decomposition of Bvi

∩M (i),

Bvi
∩M (i) =

(
⋂

v<vi

Svi
v

)
∩
(
M (i−1) ∪ {vi}

)
=

[(
⋂

v<vi

Svi
v

)
∩M (i−1)

]
∪ {vi}.

Due to the bottom-up ordering, for any v < vi, either vi ≺ v, or vi and v are not comparable,
and as such, we must have Svi

v = Sc
v ∪ {v}, for all v < vi. Using this fact, gives the following,

Bvi
∩M (i) =

[(
⋂

v<vi

(Sc
v ∪ {v})

)
∩M (i−1)

]
∪ {vi}

=



(
Sc

vi−1
∪ {vi−1}

)
∩




⋂

v<vi−1

(Sc
v ∪ {v})


 ∩M (i−1)


 ∪ {vi}

=
[(
Sc

vi−1
∪ {vi−1}

)
∩Bvi−1 ∩M

(i−1)
]
∪ {vi}.

Using the induction hypothesis and part (1) of this lemma implies the result,

Bvi
∩M (i) =

[(
Sc

vi−1
∪ {vi−1}

)
∩

(
min
G�

(
M (i−2)

)
∪ {vi−1}

)]
∪ {vi}

=

[(
Sc

vi−1
∩min

G�

(
M (i−2)

))
∪ {vi−1}

]
∪ {vi} = min

G�

(
M (i−1)

)
∪ {vi}. �

Proposition 2.4 (Marginalization-Invariant Markovianity and a Bottom-Up Ordering). Suppose
the marginalization constraint set M is equal to all leaf vertices of a graph G�, and let (v1, . . . , vm)
be a bottom-up ordering of the non-leaf vertices. Then, the familiesMvi

may be written as follows:

Mv0 = {{v0, v}}v∈χ(v0) ,

Mvi
= {{vi, v}}v∈χ(vi)

∪

{
min
G�

(
M (i)

)}
, vi 6= v0.
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Proof. Notice that Mvi
= Rvi

∩M (i) = (Svi
∩Bvi

) ∩M (i) for all 1 ≤ i ≤ m. The second part of
Lemma A.4 implies the following,

Mvi
= Svi

∩
(
Bvi
∩M (i)

)
= Svi

∩

(
min
G�

(
M (i−1)

)
∪ {vi}

)
. (A.15)

Consider in turn the intersection of each set in Svi
with minG�

(
M (i−1)

)
∪{vi}. First, for any vertex

v ∈ χ(vi), we must characterize the intersection

S̄v ∩

(
min
G�

(
M (i−1)

)
∪ {vi}

)
= (Sv ∪ {vi}) ∩

(
min
G�

(
M (i−1)

)
∪ {vi}

)

=

(
Sv ∩min

G�

(
M (i−1)

))
∪ {vi},

but since the ordering is bottom-up, the only element of minG�

(
M (i−1)

)
also contained in Sv is v.

This provides the first part of the characterization ofMvi
. Second, if vi is not the root vertex then

we must also characterize the intersection
(
Sc

vi
∪ {vi}

)
∩

(
min
G�

(
M (i−1)

)
∪ {vi}

)
=

(
Sc

vi
∩min

G�

(
M (i−1)

))
∪ {vi},

but by the first part of Lemma A.4, this equals minG�

(
M (i)

)
. �

� A.4 Proof of Proposition 2.6 and Proposition 2.8

Proposition 2.6 (Nested Marginalization-Invariant Constraints).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of G�.
Given any marginalization constraint set M ⊆ V , the sets ∪Mvi

are nested in the following sense:

∪Mv1 − {v1} ⊆M (A.16a)

∪Mvi
− {vi} ⊆ ∪Mvj

for some vj < vi, and i = 2, . . . ,m. (A.16b)

Proof. First, note thatMv1 = Rv1 ∩M
(1) = Sv1 ∩M

(1). Consequently, ∪Mv1 = M (1) = M ∪{v1}.
If v1 /∈M then ∪Mv1 − {v1} = M , otherwise ∪Mv1 − {v1} ⊂M .

In a similar manner, note that Mvi
= Rvi

∩ M (i) = Svi
∩ Bvi

∩ M (i), and consequently,
∪Mvi

= Bvi
∩M (i) and ∪Mvi

− {vi} ⊆ Bvi
∩M (i−1) (with equality if vi /∈ M). Using the first

part of Proposition 2.2, we know that Bvi
= R for some R ∈ Rvj

and vj < vi. Furthermore,
since vi ∈ R and R ∈ Rvj

, we can equivalently write Bvi
= Svi

vj
∩ Bvj

. Using a result in the
proof of Proposition 2.2, we can also write Bvi

= ∩v≤vj
Svi

v , and using Corollary A.1, we can write
Bvi

= ∩v∈Tvi
Svi

v . In summary, we have the following forms for Bvi
,

Bvi
=
⋂

v<vi

Svi
v =

⋂

v≤vj

Svi
v =

⋂

v∈Tvi

Svi
v = Svi

vj
∩Bvj

. (A.17)

Using the first three equalities in (A.17), we see that the vertices vj+1, . . . , vi−1 are not elements
of Tvi

, and consequently, vj+1, . . . , vi−1 /∈ Bvi
. Using this fact and the fourth equality in (A.17)

provides the result for i = 2, . . . ,m,

∪Mvi
− {vi} ⊆ Bvi

∩M (i−1) = Bvi
∩
(
M (j) ∪ {vj+1, . . . , vi−1}

)

= Bvi
∩M (j) = Svi

vj
∩Bvj

∩M (j) = Svi
vj
∩
(
∪Mvj

)
⊆ ∪Mvj

. �
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Proposition 2.8 (Properties of Augmented Marginalization-Invariant Families).
Let G� be a rooted tree, and let (v1, . . . , vm) be an arbitrary ordering on the non-leaf vertices of G�.
Given any marginalization constraint set M ⊆ V , the following is true:

(1) The constraints ⊥X
M♯

v1
, . . . ,⊥X

M♯
vm

are ordered with respect to M ♯.

(2) The sets ∪M♯
vi are nested in the following sense:

∪M♯
v1
− {v

(d)
1 } = M ♯ (A.18a)

∪M♯
vi
− {v

(d)
i } ⊆ ∪M

♯
vj

for some vj < vi, and i = 2, . . . ,m. (A.18b)

Proof.

(1) Note that either ∩M♯
vi = {v

(d)
i , v

(t)
i } or ∩M♯

vi = {v
(d)
i } depending on whether or not vi ∈M .

By definition, M ♯ does not contain any design vertices, and therefore, v
(d)
i /∈ M ♯. Similarly,

by definition, v
(d)
i /∈ ∪M♯

vj for all vj < vi.

(2) Using the proof to Proposition 2.6, we know that ∪Mv1 = M ∪ {v1}. Suppose we apply the
same steps used in the augmentation rule (for the familyMv1) to the set ∪Mv1 , meaning the
following for each v ∈ ∪Mv1 :

(a) If v 6= v1, replace v with v(t).

(b) If v1 ∈M , replace v1 with the tuple v
(d)
1 , v

(t)
1 ; otherwise, replace v1 with v

(d)
1 .

By definition, these steps generate the set ∪M♯
v1 . Consider now applying operations (a)

and (b) to each v ∈ M ∪ {v1}. If v1 ∈ M , these operations generate the set M ♯ ∪ {v
(d)
1 },

and if v1 /∈ M , these operations also generate the set M ♯ ∪ {v
(d)
1 }. Consequently, we get

∪M♯
v1 = M ♯ ∪{v

(d)
1 }, and since v

(d)
1 /∈M ♯, this is equivalent to ∪M♯

v1 −{v
(d)
1 } = M ♯, thereby

validating (A.18a).

Next, using Proposition 2.6, we know that ∪Mvi
− {vi} ⊆ ∪Mvj

for some vj < vi and
i = 2, . . . ,m, and furthermore, from the proof to the proposition, we know that the vertices
vj+1, . . . , vi are not contained in ∪Mvi

− {vi}. Suppose we apply the same steps used in
the augmentation rule (for the familyMvj

) to the set ∪Mvj
, meaning the following for each

v ∈ ∪Mvj
:

(a) If v is a leaf vertex or if v is a non-leaf vertex with v > vj , replace v with v(t).

(b) If v is a non-leaf vertex with v ≤ vj and v ∈M , replace v with the tuple v(d), v(t).

(c) If v is a non-leaf vertex with v ≤ vj and v /∈M , replace v with v(d).

By definition, these steps generate the set ∪M♯
vj . Consider now applying operations (a), (b),

and (c) to each v ∈ ∪Mvi
−{vi}. Since vertices vj+1, . . . , vi are not contained in ∪Mvi

−{vi},
operations (a), (b), and (c) are equivalent to the following operations for each v ∈ ∪Mvi

−{vi}:

(a’) If v is a leaf vertex or if v is a non-leaf vertex with v > vi, replace v with v(t).

(b’) If v is a non-leaf vertex with v ≤ vi and v ∈M , replace v with the tuple v(d), v(t).
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(c’) If v is a non-leaf vertex with v ≤ vi and v /∈M , replace v with v(d).

If vi /∈M , these steps generate the set ∪M♯
vi − {v

(d)
i }, thereby validating (A.18b).

If vi ∈ M , these steps generate the set ∪M♯
vi − {v

(d)
i , v

(t)
i }. However, since vi ∈ M , we have

vi ∈M
(j), and using (A.17), we also have vi ∈ Bvj

. This implies that vi ∈ ∪Mvj
= Bvj

∩M (j).

Finally, since vi ∈ ∪Mvj
, the augmentation rule implies that v

(t)
i ∈ ∪M

♯
vj . Consequently, we

get ∪M♯
vi − {v

(d)
i , v

(t)
i } ⊂ ∪M

♯
vi − {v

(d)
i } ⊆ ∪M

♯
vj , thereby validating (A.18b) for the case

vi ∈M . �



Appendix B

Proofs for Chapter 3

� B.1 Proof of Proposition 3.5

Proposition 3.5 (Vertex Elimination and Junction Trees).
Let G = (V,E) be a triangulated graph, and let T = (C,S) be any junction tree representation of G.
Suppose v ∈ V is a simplicial vertex, and let C denote the unique maximal clique containing v. If
we define the elimination graph G↓ ,

y(G, v) as well as the sets C↓ , C − {v} and C↓ , C − {C},
then one and only one of the following is a junction tree representation T ↓ for G↓:

(1) T ↓ =
(
C↓ ∪ {C↓},S

)
,

(2) T ↓ = (C↓,S − {C↓}).

Proof. First, by the second part of Lemma 3.1, we know that C = NG [v] is the unique maximal
clique in G containing v. If we eliminate v from G, then either C − {v} is a maximal clique of G↓,
or it is a subset of another maximal clique. First, suppose that C − {v} is a maximal clique of
G↓. Then, the set of maximal cliques of G↓ consists of all maximal cliques in G except C, plus the
new maximal clique C − {v}, i.e. (C − {C}) ∪ {C − {v}} = C↓ ∪ {C↓}. Next, since v is only an
element of the maximal clique C, it is not an element of any separator set S ∈ S. Since T satisfies
the running intersection property then T ↓ =

(
C↓ ∪ {C↓},S

)
satisfies this property as well, proving

that this is the junction tree representation for G↓.
Now, suppose that C − {v} is a subset of at least one other maximal clique in G↓, and sup-

pose we are given any junction tree for the graph G. In such a junction tree, C has n ≥ 1
neighbors {C1, . . . , Cn} and corresponding separator sets {S1, . . . , Sn}, as graphically illustrated in
Figure B.1(a). From the running intersection property of the junction tree, we know that C must
be connected to at least one of the maximal cliques C̄ which satisfy C − {v} ⊆ C̄. To see this,
assume that this is not the case. Then, take any such C̄, and note that C ∩ C̄ = C−{v}. Consider
any path from C to C̄, and note that it must pass through one of the maximal cliques Ci. Since
no Ci satisfies C ∩ C̄ = C − {v} ⊆ Ci, this cannot be a junction tree which is a contradiction.
Therefore, we must have C − {v} ⊆ Ci for some neighboring vertex Ci in the junction tree; we
henceforth assume that C1 satisfies this requirement.

If C is not a leaf vertex in the junction tree (i.e. n = 1), we now show that there exists a junction
tree such that this is the case, as illustrated in Figure B.1(b). Specifically, we disconnect the cliques
C2, . . . , Cn from C and reconnect them to C1, and we call the new separator sets S′

1, . . . , S
′
n. In

order to prove that this is a junction tree, we will show that the graph in Figure B.1(b) is a tree and
that Si = S′

i for i = 1, . . . , n. Hence, we still have a maximal weight spanning tree and therefore a
junction tree.
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C
C1

C2

Cn

S1

S2

Sn

C

C1

C2

Cn

S ′
2

S ′
n

S ′
1

(a) (b)

Figure B.1. (a) A junction tree for the triangulated graph G considered in the proof to Proposi-
tion 3.5. Specifically, C is the unique maximal clique containing a vertex v, and C has n neighbors
C1, . . . , Cn in the junction tree. (b) This graph is obtained from the graph in (a) by disconnecting
Ci, i = 2, . . . , n, from C and reconnecting Ci to C1. Assuming C − {v} ⊆ C1, we show that this
graph is also a junction tree for G.

First, the graph in Figure B.1(b) must be a tree because it is connected and has the same
number of edges as the tree in Figure B.1(a) (see Lemma 3.2). Notice also that S′

1 = S1 = C−{v}.
Consider now the sets S′

i for i = 2, . . . , n. Since the graph in Figure B.1(a) is a junction tree,
the running intersection property indicates that Ci ∩ C1 ⊆ C for i = 2, . . . , n, which implies the
following,

Ci ∩ C1 = Ci ∩ (Ci ∩C1) ⊆ Ci ∩C. (B.1)

In addition, we know that C − {v} ⊆ C1, which then implies the following,

Ci ∩ (C − {v}) = Ci ∩ C ⊆ Ci ∩ C1. (B.2)

The relationships in (B.1) and (B.2) then imply that S′
i = Ci ∩ C1 = Ci ∩ C = Si for i = 2, . . . , n,

and therefore, Figure B.1(b) is a junction tree for G.
Given that the junction tree in Figure B.1(b) has C has a leaf vertex, consider now removing

vertex v from the graph G. If we do so, then the clique C−{v} = S1 is no longer maximal, and this
clique as well as the separator S1 may be removed from the junction tree shown in Figure B.1(b)
to give a junction tree for G↓. �



B.2. PROOF OF COROLLARY 3.1 225

� B.2 Proof of Corollary 3.1

Corollary 3.1 (k-Partial Elimination Orderings and Marginalization).
Let G = (V,E) be a triangulated graph. Suppose α is a k-partial elimination ordering, and define
the elimination graph G↓ , G 〈V − {α(1), . . . , α(k)}〉. Then, the following decomposition holds for
pG(x),

pG(x) = pG↓ (x)

k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
= pG

(
xV −{α(1),...,α(k)}

) k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
. (B.3)

Proof. Given a k-partial elimination ordering α, consider the sequence of elimination graphs G↓i
given in (3.27). In any elimination graph G↓i−1 with i ≤ k, we know thatD

G↓
i−1

(α(i)) = D↓
G(α(i)) = ∅,

and therefore, we use (3.36) to give the following,

p
G↓

i−1
(x) = p

G↓
i
(x)p(xα(i)|xN

G
↓
i−1

(α(i))) = p
G↓

i
(x)p(xα(i)|xN↓

G(α(i))
), i = 1, . . . , k.

Applying the above relationship recursively proves the first equality in (B.3),

pG(x) = p
G↓

0
(x) = p

G↓
k

(x)
k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
= pG↓ (x)

k∏

i=1

p
(
xα(i)|xN↓

G(α(i))

)
. (B.4)

To prove the second equality in (B.3), we integrate out the variables xα(1), . . . , xα(k) (in that
order) from both sides of (B.4). Such an integration yields pG(xV −{α(1),...,α(k)}) on the left side of
(B.4). In integrating the right side of (B.4), note that by definition, variable xα(i) is not included

in any terms p
(
xα(j)|xN↓

G(α(j))

)
with j > i. Consequently, integrating the right side of (B.4) gives

pG↓(x), thereby proving the second equality in (B.3). �

� B.3 Proof of Proposition 3.7

Proposition 3.7 (Elimination Graphs and Clique Extensions).
Let G = (V,E) be a triangulated graph. For some v ∈ V , let F ⊆ DG(v), F 6= {∅}, and define
the new graph G′ , (V,E ∪ F ). Then, G′ is a clique extension of G if and only if there exists a
k-partial elimination ordering α of G such that F = DG↓(v), with G↓ , G 〈V − {α(1), . . . , α(k)}〉.
Furthermore, the unique new maximal clique C contained in G′ is given by C = NG↓ [v].

Proof. Suppose G′ is a clique extension of G, and let C be the unique new maximal clique contained
in G′ but not G. From Lemma 3.4, we know that there exists a perfect elimination ordering α of
G′ down to the clique C, and by the second part of Proposition 3.9, α is also a partial elimination
ordering for G down to C. Let k = |V | − |C|, and define G↓ , G 〈V − {α(1), . . . , α(k)}〉 = G 〈C〉.
Using Proposition 3.8, every edge {a, b} ∈ F satisfies {a, b} ⊂ C, and since F ⊆ DG(v), we must
also have F ⊆ DG↓(v). The fact that G′ 〈C〉 is the complete graph on vertices C then implies
F = DG↓(v) and C = NG↓ [v].

For the converse, we first show that NG↓ [v] is a maximal clique in G′. By the definition of F ,
NG↓ [v] must be a clique of G′, a clique not contained in G, and therefore, NG↓ [v] ⊆ C for some
new maximal clique C of G′. Suppose NG↓ [v] 6= C, so that there exists at least one vertex v′ ∈ C,
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v′ /∈ NG↓ [v]. Since {v, v′} is an edge in G′ but v′ /∈ NG↓ [v], we must have {v, v′} ∈ E. Consider
two cases: (i) v′ 6= α(i) for i = 1, . . . , k and (ii) v′ = α(i) for some i = 1, . . . , k. In the first case,
v′ is a vertex in G↓ and {v, v′} ∈ E; hence, {v, v′} is an edge in G↓. However, this contradicts the
fact that v′ /∈ NG↓ [v]. In the second case, let v′ = α(i) for some i = 1, . . . , k, and choose any edge
{a, b} ∈ F . Since {v′, a} and {v′, b} are edges in G′ and v′ /∈ NG↓ [v], we must have {v′, a} ∈ E
and {v′, b} ∈ E. Consequently, a and b are neighbors of v′ in G. Since {a, b} /∈ E, the edge {a, b}
must be added at some point in the elimination process, and this contradicts the fact that α is a
k-partial elimination ordering. Therefore, no such vertex v′ exists, and C = NG↓[v] is a maximal
clique of G′.

To show that C = NG↓ [v] is the unique new maximal clique contained in G′, suppose there exists
another maximal clique C ′ of G′ not contained in G. Then, there must be some edge {a, b} ∈ F
which formed this new maximal clique, and we must have {a, b} ⊂ C and {a, b} ⊂ C ′. Choose any
vertex v′ ∈ C ′ with v′ /∈ C. Since {v′, a} and {v′, b} are edges in G′ but v′ /∈ NG↓ [v], we must have
{v′, a} ∈ E and {v′, b} ∈ E. Since {a, b} ∈ DG↓(v), we have {v, a} ∈ E and {v, b} ∈ E, and in
addition, {a, b} /∈ E, and {v, v′} /∈ E since v′ /∈ C. This implies that [v, a, v′, b, v] is a chordless
cycle in G, which contradicts the fact that G is triangulated. Hence, no such v′ exists, and C is the
unique new maximal clique of G′.

Finally, we show that G′ is triangulated by providing a perfect elimination ordering for G′. Since
α is a k-partial elimination ordering for G, it is also a k-partial elimination ordering for G′, due
to the fact that every edge {a, b} ∈ F satisfies {a, b} ⊂ V − {α(1), . . . , α(k)} by definition. Next,
using Lemma 2 in [89], adding edges F = DG↓(v) to the triangulated graph G↓ generates a new
triangulated graph. Consequently, there exists a perfect elimination ordering β for this new graph,
and the concatenation of α(1), . . . , α(k) with β gives a perfect elimination ordering for G′. �

� B.4 Proof of Theorem 3.7

Theorem 3.7 (Conditional Independencies and Clique Extensions).
Let G = G0,G1,G2, . . . ,Gn = G′ be a sequence of clique extensions with corresponding maximal
cliques Ci as in Corollary 3.2. Then, for any density p(xV ), the following are equivalent:

(1) pG′ = pG,

(2) p(xCi
) = pGi−1(xCi

) = pGi−1(Ci)(x) for i = 1, . . . , n,

(3) XCi
(under density p) is Markov with respect to the subgraph Gi−1 (Ci) for i = 1, . . . , n.

Proof. Notice that (2) directly implies (1) by using the relationship in (3.40). Suppose now that
pG′ = pG , and consider the decomposition proven in Proposition 3.24 which indicates

D (pG′(x)‖pG(x)) =

n∑

i=1

D
(
p(xCi

)‖pGi−1(Ci)(xCi
)
)
.

Since pG′ = pG, we must have D (pG′(x)‖pG(x)) = 0, and since the Kullback-Leibler divergence is
always non-negative, we must have D

(
p(xCi

)‖pGi−1(Ci)(xCi
)
)

= 0 for i = 1, . . . , n. This is true if
and only if p(xCi

) = pGi−1(Ci)(xCi
) almost everywhere. Therefore, (1) and (2) are equivalent.

To show that (2) and (3) are equivalent, recall that Theorem 3.2 does not require the positiv-
ity condition to be satisfied when a graph is a triangulated. Furthermore, notice that Gi−1 (Ci)
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is a triangulated graph for i = 1, . . . , n, since the induced subgraph of a triangulated graph is
always triangulated [89]. Using Theorem 3.2, the density p(xCi

) factors according to Gi−1 (Ci), i.e.
p(xCi

) = pGi−1(Ci)(x), if and only if XCi
is Markov with respect to Gi−1 (Ci). �

� B.5 Proof of Proposition 3.10 and Corollary 3.3

Proposition 3.10 (Neighborhood Separator Coverings and Adding Edges).
Let G = (V,E) be a triangulated graph with neighborhood separator covering {Si}

m
i=1. Given some

v ∈ V , define G′ , (V,E ∪DG(v)). Then, {Si}
m
i=1 is also a neighborhood separator covering for G′.

Proof. Suppose vertex v is an element of the separator Si. There are three cases to consider.

(1) By Proposition 3.7, G′ is a clique extension with new maximal clique NG [v], but since v ∈ Si

and Si is a neighborhood separator of G, we have NG [v] = NG [Si]. Hence, NG [Si] is a maximal
clique in G′, which implies that Si is a trivial neighborhood separator for G′.

(2) Consider the neighborhood separator Sj 6= Si. If there is no edge {a, b} ∈ DG(v) with
{a, b} ⊂ NG [Sj ], then the structure of the subgraph induced by NG [Sj] is the same in G and
G′. Hence, Sj is a neighborhood separator for G′.

(3) Consider the neighborhood separator Sj 6= Si, and suppose there exists an edge {a, b} ∈ DG(v)
with {a, b} ⊂ NG [Sj ]. We now show that Sj satisfies the first property of a neighborhood
separator. Choose any vi ∈ Si and vj ∈ Sj, and note that [vi, a, vj , b, vi] is a cycle in G. Since
G is triangulated and since {a, b} /∈ E, we must have {vi, vj} ∈ E. This is true for all vi ∈ Si

and vj ∈ Sj, and hence Sj ⊂ NG[Si]. Recall that G′ is a clique extension with new maximal
clique NG [Si]; therefore, in the graph G′, each vertex vj ∈ Sj is a neighbor of every vertex
in NG [Si]. This implies that NG′ [vj ] = NG [vj ] ∪ NG [Si], and since vj is an element of the
neighborhood separator Sj, we have NG′ [vj ] = NG [Sj ] ∪ NG [Si]. Notice that NG′ [vj ] is the
same regardless of the choice of vj ∈ Sj , and consequently, NG′ [vj ] = NG′ [Sj] for all vj ∈ Sj.

In order to prove that Sj satisfies the second requirement of a neighborhood separator, notice
that every {a, b} ∈ DG(v) must satisfy {a, b} ⊂ NG [Si]. Therefore, the addition of the edges
in DG(v) does not change the structure induced by vertices NG [Sj ]−NG [Si] in the graph G′,
and in addition, NG [Si] is a clique in G′. Thus, Sj is a neighborhood separator if we can
show that there is no edge {v, v′} in G with v ∈ NG [Si]− Sj and v′ ∈ NG [Sj ]−NG[Si]. First,
if v ∈ Si, then {v, v′} /∈ E because v′ /∈ NG [Si]. Similarly, if v ∈ NG [Si] − NG [Sj ], then
{v, v′} /∈ E because v /∈ NG [Sj ]. Now, let v ∈ NG [Si] ∩ NG [Sj ], v /∈ Si, v /∈ Sj. Choose any
vi ∈ Si, vj ∈ Sj , and note that the following edges are present in G: {vi, v}, {vj , v}, {vj , vi},
{vj , v

′}. Suppose that {v, v′} ∈ E, then since Sj is a neighborhood separator for G, we must
have {vi, v

′} ∈ E, but this contradicts the fact that v′ /∈ NG [Si]. Hence, no such edge {v, v′}
exists in G, thereby proving the result.

�
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Corollary 3.3 (Neighborhood Separator Coverings and Vertex Elimination).
Let G = (V,E) be a triangulated graph with neighborhood separator covering {Si}

m
i=1. Given some

v ∈ V and v ∈ Si, define G↓ ,
y(G, v) . Then, {S1, . . . , Si−1, Si − {v}, Si+1, . . . , Sm} is a neighbor-

hood separator covering for G↓.

Proof. From Proposition 3.10, we know that {Si} is a neighborhood separator covering for G′ =
(V,E ∪DG(v)). Now, we only need to show that {S1, . . . , Si−1, Si − {v}, Si+1, . . . , Sm} is a neigh-
borhood separator covering for G↓ = G′(V − {v}). There are three cases to consider.

(1) Suppose v /∈ NG′ [Sj ] for some Sj 6= Si. Then, the neighborhood structure of Sj remains the
same in G′ and G↓, and Sj is also a neighborhood separator for G↓.

(2) Suppose v ∈ NG′ [Sj] for some Sj 6= Si. Since we are only removing a vertex from the graph
and not introducing additional edges, the neighborhood structure of NG↓ [Sj] = NG′ [Sj ]−{v}
does not change, and therefore, Sj is also a neighborhood separator for G↓.

(3) If Si−{v} = ∅, then we are done. Otherwise, define S , Si−{v}. Notice that for each v′ ∈ S,
we have NG↓ [v′] = NG [Si] − {v} = NG [S], and hence, the first property of a neighborhood
separator is satisfied. The set S also satisfies the second property of a neighborhood separator
since removing vertex v does not change the neighborhood structure of NG↓ [S] in G↓.

�

� B.6 Proof of Proposition 3.11

Proposition 3.11 (Edges Associated with the Modified Elimination Game).
Let G = (V,E) be an arbitrary graph, and let G̃i = (V,Ei) be defined according to (3.48) for some
ordering α and some M ⊆ V . Define β−1 according to (3.49). Then, {a, b} ∈ Ei if and only if
there exists a path [a = v1, v2, . . . , vk, vk+1 = b] in G such that α−1(vj) < min(β−1(a), β−1(b), i+1),
for j = 2, . . . , k.

Proof. We show that such a path always exists by using induction on i. First, suppose {a, b} ∈ E0.
Then, {a, b} ∈ E, and there exists a trivial path in G, i.e. k = 1 in this case. Suppose now the
result holds for all i < i0, and consider the case i = i0. Let {a, b} ∈ Ei, in which case, either

{a, b} ∈ Ei−1 or {a, b} ∈ D̃↓
G(α(i)). If {a, b} ∈ Ei−1, the induction hypothesis provides the needed

path.
Suppose {a, b} ∈ D̃↓

G(α(i)). Then, {a, b} ⊂ NeG↓
i−1

(α(i)), which implies {a, α(i)} ∈ Ei−1 and

{b, α(i)} ∈ Ei−1. By the induction hypothesis, the following two paths exist in G:

(1) [a = y1, y2, . . . , yl, yl+1 = α(i)] with α−1(yj) < min
(
β−1(a), β−1(α(i)), i

)
, j = 2, . . . , l

(2) [α(i) = z1, z2, . . . , zm, zm+1 = b] with α−1(zj) < min
(
β−1(α(i)), β−1(b), i

)
, j = 2, . . . ,m.

Consider the walk [a = y1, y2, . . . , yl, α(i), z2, . . . , zm, zm+1 = b] in G. By the definition of β−1, the
condition i ≤ β−1(α(i)) is always satisfied, and so, we can simplify the inequalities in (1) and (2)
above as follows,

α−1(yj) < min
(
β−1(a), i

)
, j = 2, . . . , l (B.5a)

α−1(zj) < min
(
β−1(b), i

)
, j = 2, . . . ,m. (B.5b)
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Since {a, b} ∈ D̃↓
G(α(i)), a and b are by definition contained in the elimination graph G̃↓i−1. This

implies that β−1(a) > i and β−1(b) > i, which may also be written as follows,

α−1 (α(i)) = i < min
(
β−1(a), β−1(b), i+ 1

)
. (B.6)

Using (B.6) in conjunction with (B.5) gives

α−1(yj) < min
(
β−1(a), β−1(b), i + 1

)
, j = 2, . . . , l (B.7a)

α−1(zj) < min
(
β−1(a), β−1(b), i + 1

)
, j = 2, . . . ,m. (B.7b)

The inequalities in (B.6) and (B.7) are precisely the inequalities needed for each vertex in the walk
[a = y1, y2, . . . , yl, α(i), z2, . . . , zm, zm+1 = b]. If the walk is not a path, it can be turned into one
by removing the appropriate repeated vertices.

To prove the other direction, we also use induction on i. Let i = 0, and suppose there exists a
path [a = v1, v2, . . . , vk, vk+1 = b] in G such that α−1(vj) < min(β−1(a), β−1(b), 1) for j = 2, . . . , k.
Since each α−1(vj) ≥ 1, we must have k = 1 and [a, b] a path in G. This implies {a, b} ∈ E = E0.

Suppose the converse holds for each i < i0, and consider the case i = i0. Suppose there
exists a path [a = v1, v2, . . . , vk, vk+1 = b] in G satisfying α−1(vj) < min(β−1(a), β−1(b), i + 1) for
j = 2, . . . , k. Define v′ , vt where α−1(vt) = max{α−1(vj)|2 ≤ j ≤ k}, and define m , α−1(vt).
Therefore, each vj 6= v′, j = 2, . . . , k, satisfies α−1(vj) < m = α−1(v′) < min(β−1(a), β−1(b), i+ 1),
and since α−1(v′) ≤ β−1(v′), this gives α−1(vj) < min(β−1(a), β−1(b), β−1(v′),m).

Consider now the two paths [a = v1, v2, . . . , vt−1, v
′] and [v′, vt+1, . . . , vk, vk+1 = b] in G, where

the following inequalities are satisfied,

α−1(vj) < min(β−1(a), β−1(v′),m), j = 2, . . . , t− 1 (B.8a)

α−1(vj) < min(β−1(v′), β−1(b),m), j = t+ 1, . . . , k. (B.8b)

Since m < i + 1, the induction hypothesis gives {a, v′} ∈ Em−1 and {v′, b} ∈ Em−1, and conse-
quently, we know that {a, b} ⊆ NeGm−1

(v′). Using the inequality α−1(v′) < min(β−1(a), β−1(b), i+1)

implies that vertices a and b, in addition to v′, are in the elimination graph G̃↓m−1. Therefore,

{a, b} ⊆ Ñ↓
G(v′), and either {a, b} is an edge in the elimination graph G̃↓m−1 or {a, b} ∈ D̃↓

G(v′). In
either case, {a, b} ∈ Em and therefore {a, b} ∈ Ei. �

� B.7 Proof of Propositions 3.12 and 3.14

Before proving Propositions 3.12 and 3.14, we state an important lemma concerning the relationship
between the graphs G̃↓i in (3.45) and G̃i in (3.48). Specifically, the graph G̃↓i may be generated from

G̃i by eliminating all vertices α(j) 6∈M with j ≤ i, i.e. the vertices in the set Ai,

A0 , ∅ (B.9a)

Ai , {α(j)|j ≤ i, α(j) 6∈M}, i = 1, . . . , n. (B.9b)

Defining ki , |Ai|, we also show in Lemma B.1 that a ki-partial elimination ordering down to the
set V −Ai exists for the graph G̃i.
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Lemma B.1 (G̃↓i is an Elimination Graph of G̃i).

Let the sequence of graphs G̃↓i and G̃i, i = 0, . . . , n be defined according to (3.45) and (3.48)
respectively for a given graph G = (V,E), an ordering α on V, and a set M ⊆ V . If Ai is defined
according to (B.9), then there exists a ki-partial elimination ordering ᾱ down to V − Ai for the

graph G̃i such that G̃↓i = G̃i 〈V − {ᾱ(1), . . . , ᾱ(ki)}〉 = G̃i 〈V −Ai〉 = G̃i (V −Ai) for i = 0, . . . , n.

Proof. By definition, G̃↓0 = G = G̃0 〈V −A0〉 = G̃0, and since A0 = ∅, any ordering on the vertices

V is a 0-partial ordering for G̃0. Assume that the result holds for i < i0, and consider the case
i = i0. Let ᾱ be a ki−1-partial elimination ordering of G̃i−1 down to V − Ai−1 such that G̃↓i−1 =

G̃i−1 〈V − {ᾱ(1), . . . , ᾱ(ki−1)}〉 = G̃i−1 〈V −Ai−1〉.

Using (3.48), G̃i = (V,Ei) = (V,Ei−1∪F ) where F = D̃↓
G(α(i)) = DeG↓

i−1
(α(i)). Consider now the

elimination graph G↓ , G̃i 〈V − {ᾱ(1), . . . , ᾱ(ki−1)}〉, and suppose G̃↓i−1 = (Vi−1, Fi−1) as in (3.45).

Since F only contains vertices in the elimination graph G̃↓i−1 and since the vertices ᾱ(1), . . . , ᾱ(ki−1)

are not in G̃↓i−1, we must have G↓ = (Vi−1, Fi−1∪F ), and in addition, ᾱ is a ki−1-partial elimination

ordering for G̃i down to V −Ai−1.
Consider now the two possible cases for α(i). If α(i) ∈M then Ai = Ai−1 = {ᾱ(1), . . . , ᾱ(ki−1)}

and ki = ki−1. By the definition in (3.45), G̃↓i = (Vi−1, Fi−1 ∪ F ) = G↓ = G̃i 〈V −Ai〉, and

ᾱ is a ki-partial elimination ordering for G̃i down to V − Ai = V − Ai−1. If α(i) 6∈ M then

Ai = Ai−1 ∪ {α(i)} = {ᾱ(1), . . . , ᾱ(ki−1), α(i)}. Using (3.45), G̃↓i =
y
(
G̃↓i−1, α(i)

)
, and since

G↓ = (Vi−1, Fi−1 ∪ F ), we can also write G̃↓i =
y(G↓, α(i)

)
which in turn is equal to G̃↓i =y

(
G̃i 〈V − {ᾱ(1), . . . , ᾱ(ki−1)}〉 , α(i)

)
= G̃i 〈V −Ai〉. Furthermore, since G↓ contains the edges

in F , vertex α(i) may be eliminated from G↓ without introducing fill edges, and consequently, any
ordering of the form (ᾱ(1), . . . , ᾱ(ki−1), α(i), . . .). is a ki-partial elimination ordering for G̃i down
to V −Ai.

Finally, since there exists a ki-partial elimination ordering of G̃i down to V − Ai, Lemma 3.5
indicates that G̃i 〈V −Ai〉 = G̃i (V −Ai). �

Proposition 3.12 (Modified Elimination Game and Clique Extensions).
Let G = (V,E) be a triangulated graph. Given any set M ⊆ V and any ordering α on the vertices
V , the sequence of graphs G̃i in (3.48) form a sequence of clique extensions, and the new maximal

clique Ci contained in G̃i but not G̃i−1 is given by Ci = Ñ↓
G [α(i)].

Proof. We prove the result by induction. By assumption, the initial graph G̃0 = G is triangulated.
Assume now that G̃i−1 is triangulated. By applying Proposition 3.7, we show that G̃i is a clique
extension of G̃i−1.

Set F = DeG↓
i−1

(α(i)) = D̃↓
G(α(i)), and recall from (3.48b) that G̃i = (V,Ei) = (V,Ei−1 ∪ F ).

According to Lemma B.1, there exists a ki−1-partial elimination ordering ᾱ of G̃i−1 such that
G̃↓i−1 = G̃i−1 〈V − {ᾱ(1), . . . , ᾱ(ki−1)〉 = G̃i−1 (V −Ai−1). Since G̃↓i−1 is an induced subgraph of

G̃i−1, the set F = DeG↓
i−1

(α(i)) satisfies F ⊆ DeGi−1
(α(i)). Therefore, F , G̃i−1, and G̃i satisfy all

of the requirements of Proposition 3.7, thereby implying that G̃i is a clique extension of G̃i−1.
Furthermore, Proposition 3.7 indicates that Ci = NeG↓

i−1
[α(i)] = Ñ↓

G [α(i)] is the unique maximal

clique contained in G̃i but not G̃i−1. �
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Proposition 3.14 (Modified Elimination Game and Theorem 3.7).
Suppose G = (V,E) is a triangulated graph with a neighborhood separator covering. Let the sequence
of graphs G̃i be defined according to (3.48) for some set M ⊆ V and an ordering α on V . Let Ci
denote the set of maximal cliques of the subgraph G̃i−1 (Ci), where Ci , Ñ↓

G [α(i)] for i = 1 . . . n.
Then, for any density p(xV ), the following are equivalent:

(1) peGi
= pG for some 1 ≤ i ≤ n,

(2) the conditions ⊥XCj
are satisfied (under density p) for all 1 ≤ j ≤ i.

Proof. Choose some 1 ≤ i ≤ n, and consider the sequence G̃0 = G, G̃1, . . . , G̃i, which by Proposi-
tion 3.12 is a sequence of clique extensions with corresponding new maximal cliques Cj = Ñ↓

G [α(j)],
1 ≤ j ≤ i. Using Theorem 3.7, peGi

= pG if and only if XCj
is Markov with respect to the subgraph

G̃j−1 (Cj) for 1 ≤ j ≤ i.

We first show that G̃j−1(Cj) = G̃↓j−1(Cj). Using Lemma B.1, G̃↓j−1 = G̃j−1 〈V −Aj−1〉 =

G̃j−1 (V −Aj−1). Furthermore, the set Cj = Ñ↓
G [α(j)] = NeG↓

j−1
[α(j)] is a subset of the vertices

in the elimination graph G̃↓j−1, i.e. Cj ⊆ V −Aj−1. Then, G̃↓j−1(Cj) is an induced subgraph of G̃↓j−1

which in turn is an induced subgraph of G̃j−1, and therefore, we must have G̃↓j−1(Cj) = G̃j−1(Cj).

By Proposition 3.13, the graph G̃↓j−1 has a neighborhood separator covering, and therefore,

vertex α(j) ∈ Cj is a subset of some neighborhood separator S in G̃↓j−1. By the definition of
a neighborhood separator, Cj = NeG↓

j−1
[α(j)] = NeG↓

j−1
[S], and consequently, the process XCj

is

Markov with respect to G̃j−1 (Cj) = G̃↓j−1 (Cj) if and only if the conditions ⊥XCj
are satisfied. �

� B.8 Proof of Proposition 3.16

Before proving Proposition 3.16, we provide two important lemmas. Recall that the boundary sets
Bvi

are defined in (2.22) for i = 2, . . . ,m. In order to simplify subsequent statements as well as
some of the inductive proofs, it is useful to define Bv1 , V , i.e. the first boundary set contains
all vertices in the graph. The first lemma provides an alternative characterization of the boundary
sets which lends itself more easily to the graph-theoretic arguments to follow.

Lemma B.2 (Alternative Characterization of Boundary Sets Bvi
).

Let (v1, . . . , vm) be an ordering on the non-leaf vertices of a rooted tree G� = (V,E), and let α be
a leaf-last ordering on V satisfying (3.50). The boundary sets Bvi

, i = 1, . . . ,m, may equivalently
be characterized as follows,

Bvi
= {vi} ∪

{
v ∈ V

∣∣there exists a path [v = u1, u2, . . . , uk, uk+1 = vi] in G∼�

such that α−1(uj) < α−1(vi), 2 ≤ j ≤ k
}
. (B.10)

Proof. For i = 1, . . . ,m, we define the sets B̃vi
as in (B.10), i.e.

B̃vi
= {vi} ∪

{
v ∈ V

∣∣there exists a path [v = u1, u2, . . . , uk, uk+1 = vi] in G∼�

such that α−1(uj) < α−1(vi), 2 ≤ j ≤ k
}
,
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and we show that B̃vi
= Bvi

. Consider separately the case of v1, and recall that Bv1 = V . By
definition, B̃v1 ⊂ V and v1 ∈ B̃v1 . Now, choose any v ∈ V , v 6= v1, and notice that there exists a
unique path [v = u1, u2, . . . , uk, uk+1 = v1] in G∼� between v and v1. Any such path must have all

uj , 2 ≤ j ≤ k, equal to non-leaf vertices distinct from v1, and as a result, α−1(uj) < α−1(v1) = m
by the definition of α. Thus, V ⊂ B̃v1 , thereby proving B̃v1 = Bv1 = V .

Choose any vi, i = 2, . . . ,m. By definition, vi ∈ Bvi
and vi ∈ B̃vi

. Choose any v∗ ∈ Bvi
with

v∗ 6= vi, and notice that there exists a unique path [v∗ = u1, u2, . . . , uk, uk+1 = vi] in G∼� between
v∗ and vi, where each uj , 2 ≤ j ≤ k, is a non-leaf vertex distinct from vi. Since Bvi

=
⋂

v<vi
Svi

v ,
we must have v∗ ∈ Svi

v for all v < vi, meaning that v∗ is in the same subtree Svi
v as vi. This

implies that each uj , 2 ≤ j ≤ k, cannot satisfy uj = v for some vertex v < vi. Therefore, each uj

must be a non-leaf vertex with uj > vi for 2 ≤ j ≤ k, which by the definition of α is the same as
α−1(uj) < α−1(vi). Hence, v∗ ∈ B̃vi

and Bvi
⊂ B̃vi

.
Similarly, for any i = 2, . . . ,m, choose v∗ ∈ B̃vi

with v∗ 6= vi, so that there exists a path
[v∗ = u1, u2, . . . , uk, uk+1 = vi] in G∼� with α−1(uj) < α−1(vi), 2 ≤ j ≤ k. Thus, each uj , 2 ≤ j ≤ k,
is a non-leaf vertex satisfying uj > vi, implying that uj 6= v for any v < vi. This in turn implies
that v∗ is in the same subtree Svi

v as vi for all v < vi, and consequently, v∗ ∈ Bvi
, thereby proving

B̃vi
⊂ Bvi

. �

The following lemma provides several useful properties of the subgraph G̃m−i (Cm−i+1) for i =
1, . . . ,m. In the second property, we use the set M (i); recall that this set is associated with the
marginalization-invariant Markov property and is defined in (2.31).

Lemma B.3 (Characterization of the Subgraphs G̃m−i (Cm−i+1)).
Let (v1, . . . , vm) be an ordering on the non-leaf vertices of a rooted tree G� = (V,E), and let α be

a leaf-last ordering on V satisfying (3.50). Suppose M ⊆ V contains all the leaf vertices of G�,

and let G̃i be generated by the modified elimination game according to (3.48) with G̃0 = G∼� . Denote

the unique maximal clique contained in G̃i but not G̃i−1 by Ci. Then, for i = 1, . . . ,m the following
three items are true:

(1) α(m− i+ 1) = vi is a neighborhood separator in the subgraph G̃m−i (Cm−i+1).

(2) Cm−i+1 = Bvi
∩M (i).

(3) Edge {v, v′} is present in the subgraph G̃m−i (Cm−i+1) if and only if either v′ = vi or the
unique path between v and v′ in G∼� does not pass through vi.

Proof.

(1) By the definition of α, vi = α(m− i+ 1), and using Proposition 3.12, Cm−i+1 = Ñ↓
G∼
�

[α(m−

i + 1)] = NeG↓
m−i

[vi] is the neighborhood of vi in the elimination graph G̃↓m−i. Recall from

Lemma B.1 that G̃↓m−i = G̃m−i (V −Am−i). Since the collection of vertices {{v}}v∈V form

a neighborhood separator covering for G̃0 = G∼� , Proposition 3.10 and Corollary 3.3 may be
used along with induction to show that {{v}}v∈V −Am−i

is a neighborhood separator covering

for the elimination graph G̃↓m−i. Therefore, α(m− i+ 1) = vi ∈ V −Am−i is a neighborhood

separator in the graph G̃↓m−i, with a neighborhood equal to Cm−i+1, and G̃m−i (Cm−i+1) is

the subgraph of G̃m−i induced by the neighborhood of a neighborhood separator. Thus,
α(m− i+ 1) = vi is a neighborhood separator in G̃m−i (Cm−i+1).
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(2) We first show that Cm−i+1 ⊆ M (i) for i = 1, . . . ,m. By definition, the elements of Cm−i+1

are vertices in the elimination graph G̃↓m−i = G̃m−i (V −Am−i), and consequently, Cm−i+1 ⊆
V − Am−i. Consider separately the case i = m, in which case V −Am−i = V −A0 = V and
Cm−i+1 = C1 ⊆ V = M (m). Using (B.9b) for i = 1, . . . ,m − 1, the set V − Am−i may be
characterized as follows,

V −Am−i = V − {α(j)|j ≤ m− i, α(j) 6∈M} = M ∪ {α(j)|j > m− i}.

Since M contains all the leaf vertices of G�, this set may equivalently be written as follows,

V −Am−i = M ∪ {α(j)|j ≥ m− i+ 1} = M ∪ {v|v ≤ vi} = M (i).

Hence, Cm−i+1 ⊆ V −Am−i = M (i).

By Proposition 3.12, Cm−i+1 is a maximal clique in G̃m−i+1, and it is the unique maximal
clique in G̃m−i+1 containing vi. Consequently, the set Cm−i+1 contains vi plus all vertices v
such that {v, vi} ∈ Em−i+1, where Em−i+1 represents the edges in the graph G̃m−i+1. By
definition, Cm−i+1 and Bvi

∩M (i) both contain vertex vi; we now show that these two sets
coincide for vertices not equal to vi.

Choose any v ∈ Cm−i+1, v 6= vi. By Proposition 3.11, {v, vi} ∈ Em−i+1 if and only if there ex-
ists a path [v = u1, u2, . . . , uk, uk+1 = vi] in G∼� such that α−1(uj) < min(β−1(v), β−1(vi),m−

i+2) for 2 ≤ j ≤ k. This implies that α−1(uj) ≤ m−i+1 = α−1(vi), and since uj and vi must
be distinct, α−1(uj) < α−1(vi). Using Lemma B.2, we then have v ∈ Bvi

. In addition, the
preceding discussion shows that Cm−i+1 ⊆M

(i), implying v ∈M (i). Therefore, v ∈ Bvi
∩M (i)

and Cm−i+1 ⊂ Bvi
∩M (i).

Now choose any v ∈ Bvi
∩M (i), v 6= vi. Then, v ∈ Bvi

, in which case Lemma B.2 indicates
that there exists a path [v = u1, u2, . . . , uk, uk+1 = vi] in G∼� such that α−1(uj) < α−1(vi) =

m − i + 1 < m− i + 2 for 2 ≤ j ≤ k. This also implies α−1(uj) < α−1(vi) ≤ β−1(vi). Since
v ∈M (i), either v ∈ M or v < vi. If v ∈M , then α−1(uj) < β−1(v) =∞ is always satisfied.
If v 6∈ M and v < vi, then α−1(v) > α−1(vi), in which case α−1(uj) < α−1(vi) < α−1(v) =
β−1(v). Thus, for 2 ≤ j ≤ k, we have α−1(uj) < min(β−1(v), β−1(vi),m − i + 2), and by
Proposition 3.11, {v, vi} ∈ Em−i+1. Therefore, v ∈ Cm−i+1, thereby proving Bvi

∩M (i) ⊂
Cm−i+1.

(3) Since vi is a neighborhood separator in G̃m−i (Cm−i+1), we know that the edge {v, vi} is present
for all v ∈ Cm−i+1 with v 6= vi. Now, choose distinct vertices v, v′ ∈ Cm−i+1 with v 6= vi and
v′ 6= vi. Suppose {v, v′} is an edge in G̃m−i (Cm−i+1); then, {v, v′} is also an edge in G̃m−i. By
Proposition 3.11, it must be true that the unique path [v = u1, u2, . . . , uk, uk+1 = v′] between v
and v′ in G∼� must satisfy α−1(uj) < min(β−1(v), β−1(v′),m−i+1). Since m−i+1 = α−1(vi),
this means that uj 6= vi for 2 ≤ j ≤ k, and therefore, the path between v and v′ cannot pass
through vi.

Suppose now that v, v′ ∈ Cm−i+1 and that the unique path [v = x1, x2, . . . , xq, xq+1 = v′]
between v and v′ in G∼� does not pass through vi. Using the second fact in this lemma, we

have Cm−i+1 = Bvi
∩M (i), and therefore, v, v′ ∈ Bvi

and v, v′ ∈ M (i). Since v ∈ M (i), we
must have either v ∈M or v 6∈M with v < vi, and the same is true for v′. These conditions



234 APPENDIX B. PROOFS FOR CHAPTER 3

imply α−1(vi) < β−1(v) and α−1(vi) < β−1(v′), or in another form,

α−1(vi) = min(β−1(v), β−1(v′),m− i+ 1). (B.11)

Since v, v′ ∈ Bvi
, Lemma B.2 indicates that there exist paths [v = u1, u2, . . . , uk, uk+1 = vi]

and [vi = w1, w2, . . . , wp, wp+1 = v′] in G∼� such that α−1(uj) < α−1(vi), 2 ≤ j ≤ k, and

α−1(wj) < α−1(vi), 2 ≤ j ≤ p. Consider concatenating the path from v to vi and the path
from vi to v′. This forms a walk [v, u2, . . . , uk, vi, w2, . . . , wp, v

′] (since the unique path from v
and v′ does not pass through vi), and the path [v = x1, x2, . . . , xq, xq+1 = v′] may be formed
by removing vertices from this walk. However, the preceding inequalities are also satisfied
for this path, i.e. α−1(xj) < α−1(vi) for 2 ≤ j ≤ q. Combining this with (B.11), we get
α−1(xj) < α−1(vi) = min(β−1(v), β−1(v′),m− i+ 1). By Proposition 3.11, {v, v′} is an edge

in the graph G̃m−i and thus an edge in the subgraph G̃m−i (Cm−i+1). �

Using the preceding two lemmas, we are now in a position to prove Proposition 3.16.

Proposition 3.16 (Marginalization-Invariant Markovianity and Proposition 3.15).
Let (v1, . . . , vm) be an ordering on the non-leaf vertices of a rooted tree G� = (V,E), and let α be
any leaf-last ordering on V satisfying (3.50). Assume that M ⊆ V contains all leaf vertices of G�,
and let Ci be defined as in Proposition 3.15. Then, Cm−i+1 =Mvi

for i = 1, . . . ,m.

Proof. Recall thatMvi
= Svi

∩
(
Bvi
∩M (i)

)
for i = 1, . . . ,m, and consequently,Mvi

is a collection

of vertices from the set Bvi
∩M (i). Similarly, Cm−i+1 is a collection of vertices from the set Cm−i+1,

since Cm−i+1 contains the maximal cliques of a subgraph induced by Cm−i+1. By the second part
of Lemma B.3, Cm−i+1 = Bvi

∩M (i) for i = 1, . . . ,m, and hence, Mvi
and Cm−i+1 are collections

on the same set of vertices. We now show that these two collections are identical.
Choose some i = 1, . . . ,m. Let the collection Cm−i+1, containing the maximal cliques of

G̃m−i (Cm−i+1), be represented as Cm−i+1 = {K1,K2, . . . ,Kl}, and choose any Kj ∈ Cm−i+1. By

the third part of Lemma B.3, vi ∈ Kj since {v, vi} is an edge in G̃m−i (Cm−i+1) for all v 6= vi and
v ∈ Cm−i+1. Now, choose some v ∈ Kj with v 6= vi. By the third part of Lemma B.3, {v, v′} is

an edge in G̃m−i (Cm−i+1) if and only if the unique path between v and v′ in G∼� does not pass
through vi. This is equivalent to saying that v and v′ lie in the same subtree of G∼� separated by

vi. Therefore, Kj contains vi plus all vertices in Cm−i+1 = Bvi
∩M (i) which lie in the same subtree

of G∼� separated by vi, and by the definition of Mvi
, we must have Kj ∈ Mvi

. We can perform
this same argument for each 1 ≤ j ≤ l, and since Mvi

and Cm−i+1 are defined on the same set of
vertices, we must have Mvi

= Cm−i+1. �

� B.9 Proof of Proposition 3.18

In order to prove Proposition 3.18, we begin with an important lemma which relates the two
different sets of maximal cliques Ci discussed in Propositions 3.16 and 3.18. To begin, assume that
an ordering (v1, . . . , vm) has been specified on the non-leaf vertices of the graph G� = (V,E), and

for a given set M ⊆ V , let the augmented graph G♯
� be defined as in Section 3.3.3. Consider

any leaf-last ordering α on V which satisfies (3.50), and let α♯ be the corresponding target-last
ordering satisfying (3.51). By saying that α♯ is the corresponding ordering, we mean that the

two orderings satisfy α(m − i + 1) = vi and α♯(m − i + 1) = v
(d)
i where v

(d)
i is the design vertex
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associated with the non-leaf vertex vi. It is important to note that any leaf-last ordering α always
has such a corresponding target-last ordering α♯, and conversely, any target-last ordering α♯ has a
corresponding leaf-last ordering α.

To ease the notational burden in the following lemma, we let Ci denote the set of maximal
cliques considered in Proposition 3.16 for the ordering α, and we now let C♯

i denote the set of
maximal cliques considered in Proposition 3.18 for the corresponding ordering α♯. As the following
lemma demonstrates, there exists a simple rule which can be applied to the maximal cliques Ci,
i = 1, . . . ,m, in order to generate the maximal cliques C♯

i .

Lemma B.4 (Maximal Cliques and Augmented Graphs).

Let M , α, α♯, Ci, and C♯
i be defined as above. Then, C♯

i , i = 1, . . . ,m, may be obtained from Ci as
follows:

(0) Set C♯
i = Ci for i = 1, . . . ,m.

(1) For each i = 1, . . . ,m and each v ∈ ∪C♯
i , do the following:

(i) If v is a leaf vertex or if v is a non-leaf vertex with α−1(v) > i, replace v with v(t).

(ii) If v is a non-leaf vertex with α−1(v) ≤ i and v ∈M , replace v with the tuple v(d), v(t).

(iii) If v is a non-leaf vertex with α−1(v) ≤ i and v 6∈M , replace v with v(d).

Proof. This result follows directly from the structure of the augmented graph G♯
� and the sequence

of modified elimination graphs G̃↓i , i = 1 . . . ,m which define the sets of maximal cliques C♯
i . First

of all, if v is a leaf vertex, then v must be replaced by the target vertex v(t) by the definition of G♯
�.

Namely, all leaf vertices are excluded from being considered design vertices. The remaining steps
in this transformation are due to the connectivity of the graph G♯

�. To see this, notice that v(d)

and v(t) have an identical set of neighbors in the graph G♯
�, and they also have the same neighbors

as v does in the graph G�.1 The vertices v(d) and v(t) also have the same set of neighbors in each

of the elimination graphs G̃↓j up until the point where vertex v(d) is eliminated. Once vertex v(d) is

eliminated, vertex v(t) appears alone.
The second part of (i) then follows from the fact that v may be replaced with v(t) once v(d) is no

longer a vertex in the elimination graph, i.e. α−1(v) > i. Item (ii) follows from the fact that both
vertices v(d) and v(t) appear in the same maximal cliques before v(d) is eliminated, i.e. α−1(v) ≤ i,
assuming that v ∈M in which case there is a target vertex v(t). Item (iii) reflects the same idea as
(ii), only in this case there is no target vertex v(t) since v 6∈M . �

Proposition 3.18 (Marginalization-Invariant Markovianity and Proposition 3.17).
Let (v1, . . . , vm) be an ordering on the non-leaf vertices of a rooted tree G� = (V,E), and let α
be any target-last ordering on V ♯ satisfying (3.51). If Ci is defined as in Proposition 3.17, then,

Cm−i+1 =M♯
vi for i = 1, . . . ,m.

Proof. This follows directly from Proposition 3.16, the augmentation rule described in Section 2.7.3,
and Lemma B.4. Specifically, Proposition 3.16 proves that the maximal cliques Cm−i+1 are equal to

1Here we mean that the underlying vertices are the same. Namely, the neighbors of vertex v may be u1, u2, . . . , un

in the graph G�, while the neighbors of v(d) and v(t) are u
(d)
1 , u

(t)
1 , u

(d)
2 , u

(t)
2 , . . . , u

(d)
n , u

(t)
n in the graph G♯

�.
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the familiesMvi
when α is a leaf-last ordering on the vertices of G�. If we consider the corresponding

ordering α♯ on G♯
�, then the transformation described in Lemma B.4 may be applied to the families

Ci to give the families C♯
i , which are identical to the families Ci considered in this proposition.

Finally, notice that the transformation in Lemma B.4 is equivalent to the transformation applied
to the families Mvi

by the augmentation rule. Since the families M♯
vi represent the result of

applying the augmentation rule to the families Mvi
, the result directly follows. �

� B.10 Proof of Propositions 3.19 and 3.20

Proposition 3.19 (Additivity of Projections).
Let H = (V,E) be any graph defined on a vertex set V , and let G = (V,E′) be any triangulated
supergraph of H, i.e. E′ ⊇ E. Suppose p(xV ) and q(xV ) are two densities indexed by V and defined
on the same space X =

∏
v∈V Xv. If q(x) factors according to H, then the following decomposition

holds,

D (p(x)‖q(x)) = D (p(x)‖pG(x)) +D (pG(x)‖q(x)) .

Proof. Let C denote the set of maximal cliques in the triangulated graph G. Since pG(x) factors
according to G, we can write

pG(x) =
∏

C∈C

ψC(xC), (B.12)

for some choice of compatibility functions ψC . Since q(x) factors according to H, it also factors
according to the supergraph G, and for some choice of ψ̃C , it can be written as

q(x) =
∏

C∈C

ψ̃C(xC). (B.13)

Notice that D (p(x)‖q(x)) may be decomposed as follows,

D (p(x)‖q(x)) =

∫
p(x) log

(
p(x)

q(x)

)
dx =

∫
p(x) log

(
p(x)

pG(x)

pG(x)

q(x)

)
dx

=

∫
p(x) log

(
p(x)

pG(x)

)
dx+

∫
p(x) log

(
pG(x)

q(x)

)
dx

= D (p(x)‖pG(x)) +

∫
p(x) log

(
pG(x)

q(x)

)
dx.

To prove the result, we must show that the last term is equal to D (pG(x)‖q(x)). To do this, we
use the decompositions for p and q in (B.12) and (B.13),

∫
p(x) log

(
pG(x)

q(x)

)
dx =

∫
p(x) log

(∏
C∈C ψC(xC)

∏
C∈C ψ̃C(xC)

)
dx

=
∑

C∈C

[∫
p(x) log

(
ψC(xC)

ψ̃C(xC)

)
dx

]

=
∑

C∈C

[∫
p(xC) log

(
ψC(xC)

ψ̃C(xC)

)
dxC

]
. (B.14)
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In the last equality, we have integrated out the variables xV −C .
Now, compare the decomposition obtained in (B.14) to the following decomposition,

D (pG(x)‖q(x)) =

∫
pG(x) log

(
pG(x)

q(x)

)
dx

=
∑

C∈C

[∫
pG(xC) log

(
ψC(xC)

ψ̃C(xC)

)
dxC

]
. (B.15)

This decomposition was derived in the same manner used to derive (B.14), and as such, we have
omitted the intermediate steps. By the definition of the projection pG(x), we know that pG(xC) =
p(xC) for all C ∈ C. Therefore, the sum of terms in (B.14) and (B.15) is identical, thereby proving
the result. �

Proposition 3.20 (The Geometry of the Mapping FM ).
Let p ∈ PM (V, d) and q ∈ P(V, d). Then, the following decomposition holds,

D (p(x)‖q(x)) = D
(
p(x)‖FM (q(x))

)
+D

(
FM (q(x))‖q(x)

)
.

Proof. Defining p̄(x) , FM (q(x)) and manipulating the integrals in the definition of KL, we get

D (p(x)‖q(x)) =

∫
p(x) log

(
p(x)

p̄(x)

p̄(x)

q(x)

)
dx =

∫
p(x) log

(
p(x)

p̄(x)

)
dx+

∫
p(x) log

(
p̄(x)

q(x)

)
dx

= D (p(x)‖p̄(x)) +

∫
p(x) log

(
p̄(x)

q(x)

)
dx.

We now show that the final term in the preceding equation is equal to D (p̄(x)‖q(x)). Using the
fact that p̄(x) = q(xV −M |xM )p∗(xM ) and integrating out the variables xV −M gives

∫
p(x) log

(
p̄(x)

q(x)

)
dx =

∫
p(x) log

(
p∗(xM )

q(xM )

)
dx

=

∫
p∗(xM ) log

(
p∗(xM )

q(xM )

)
dxM = D (p∗(xM )‖q(xM )) .

Notice that the last line in the preceding decomposition follows from the fact that p(xM ) = p∗(xM ),
and therefore, we must require p ∈ PM (V, d) for this relationship to hold. Finally, using (3.57), we
have D (p∗(xM )‖q(xM )) = D (p̄(x)‖q(x)). �

� B.11 Proof of Proposition 3.22

Proposition 3.22 (Relationship Between Solutions to P̃M
G and Q̃).

Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. If a graph
G = (V,E) is a supergraph of G∼� and has a clique equal to M , the mapping p −→ pT is a surjection

from the solution set of problem P̃M
G onto the solution set of problem Q̃.

Proof. Let p̂ be any solution to problem P̃M
G . We first show that p̂T is a solution to problem Q̃.

To do this, suppose p̂T is not a solution to problem Q̃, and let q̂ be any solution to problem Q̃. By
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Proposition 3.21, the density p̄ , FM (q̂) satisfies q̂ = p̄T , and furthermore, p̄ ∈ PM
G (V, d) for all

graphs G which are supergraphs of G∼� and have a clique equal to M . Therefore, we have a density

p̄ ∈ PM
G (V, d) such that

D
(
p∗(xM )‖p̄T (xM )

)
= D (p∗(xM )‖q̂(xM )) < D

(
p∗(xM )‖p̂T (xM )

)
,

but this contradicts the fact that p̂ is a solution to problem P̃M
G . Therefore, p̂T is a solution to

problem Q̃.
We now show that FM (·) is a mapping from the solution set of Q̃ to the solution set of P̃M

G .

Let q̂ be any solution to problem Q̃, and define p̄ , FM (q̂). We have p̄ ∈ PM
G (V, d) as long as G is

a supergraph of G∼� and has a clique equal to M . Suppose that p̄ is not a solution to problem P̃M
G ,

so that there exists a p̂ such that

D
(
p∗(xM )‖p̂T (xM )

)
< D

(
p∗(xM )‖p̄T (xM )

)
= D (p∗(xM )‖q̂(xM ))

and where the final equality follows from Proposition 3.21. This inequality however contradicts the
fact that q̂ is a solution to problem Q̃, and therefore, we must have that p̄ is a solution to problem
P̃M
G .

We have shown that p −→ pT is a mapping from the solution set of P̃M
G to the solution set

of Q̃ and FM (·) is a mapping from the solution set of Q̃ to the solution set of P̃M
G . Further,

Proposition 3.21 indicates that p −→ pT is the inverse of FM (·) on the domain equal to the
solution set of Q̃. Hence, p −→ pT is a surjection. �
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Proofs for Chapter 4

� C.1 Proof of Proposition 4.1

Proposition 4.1 (An Invariance Property of Solutions to Problem Q̃(Θ)).
Let G� be a rooted tree defined on vertex set V , and let p∗(xM ) be a given target density. Let Θ and
Γ be specified sets which index the densities {q(x|θ)}θ∈Θ ⊂ PG�

(V, d) and {p(x|γ)}γ∈Γ ⊂ P
M (V, d)

respectively. If the mapping T (·) in (4.21) and the mapping M(·) in (4.24) both exist and if θ̂ is a

solution to problem Q̃(Θ), then θ̂ = T
(
M
(
θ̂
))

.

Proof. Define γ̂ ,M(θ̂) and θ̄ , T (γ̂). We want to show that θ̄ = θ̂. Using the decomposition in
(4.1), we can write

D
(
p∗(xM )‖q(xM |θ̂)

)
= D

(
p(x|γ̂)‖q(x|θ̂)

)
−D

(
p(x|γ̂)‖FM (q(x|θ̂))

)

= D
(
p(x|γ̂)‖q(x|θ̂)

)
,

where the last equality follows from the definition of γ̂ =M(θ̂).
Next, the following inequality must be satisfied, since θ̄ = T (γ̂) is by definition the unique

minimizer of D (p(x|γ̂)‖q(x|θ)) over all θ ∈ Θ,

D
(
p∗(xM )‖q(xM |θ̂)

)
= D

(
p(x|γ̂)‖q(x|θ̂)

)
> D

(
p(x|γ̂)‖q(x|θ̄)

)
.

Finally, the decomposition in (4.1) is used once again to give

D
(
p∗(xM )‖q(xM |θ̂)

)
> D

(
p(x|γ̂)‖q(x|θ̄)

)

= D
(
p(x|γ̂)‖FM (q(x|θ̄))

)
+D

(
p∗(xM )‖q(xM |θ̄)

)
. (C.1)

The inequality in (C.1) contradicts the fact that θ̂ is a solution to problem Q̃(Θ). Since no such
θ̄ can exist, we must have θ̄ = θ̂, in which case the inequality in (C.1) becomes an equality and the

divergence D
(
p(x|γ̂)‖FM (q(x|θ̄))

)
= D

(
p(x|γ̂)‖FM (q(x|θ̂))

)
is zero by the definition of γ̂. �

� C.2 Proof of Proposition 4.2

Proposition 4.2 (Relationship Between Solutions to P̃M (Γ) and Q̃(Θ)).
Suppose the assumptions stated in Proposition 4.1 hold; in particular, suppose the mappings T (·)
and M(·) exist. Then, the mapping T (·) is a surjection from the solution set of problem P̃M (Γ)
onto the solution set of problem Q̃(Θ).
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Proof. Let γ̂ be any solution to problem P̃M (Γ). We first show that θ̂ , T (γ̂) is a solution to
problem Q̃(Θ). To do this, suppose θ̂ is not a solution to problem Q̃(Θ), and let θ̄ be any solution
to problem Q̃(Θ). Define γ̄ ,M(θ̄). By Proposition 4.1, since θ̄ is a solution to problem Q̃(Θ), it
satisfies θ̄ = T (γ̄). Since θ̂ is not a solution to problem Q̃(Θ), we must then have

D (p∗(xM )‖q(xM |T (γ̄))) = D
(
p∗(xM )‖q(xM |θ̄)

)

< D
(
p∗(xM )‖q(xM |θ̂)

)
= D (p∗(xM )‖q(xM |T (γ̂))) .

This inequality contradicts the fact that γ̂ is a solution to problem P̃M (Γ), and we must therefore
have that θ̂ = T (γ̂) is a solution to problem Q̃(Θ).

We now show that M(·) is a mapping from the solution set of Q̃(Θ) to the solution set of
P̃M (Γ). Let θ̂ be any solution to problem Q̃(Θ), and define γ̂ ,M(θ̂). By Proposition 4.1, θ̂ must
satisfy θ̂ = T (γ̂). Suppose that γ̂ is not a solution to problem P̃M (Γ), so that there exists a γ̄ and
a θ̄ , T (γ̄) such that

D
(
p∗(xM )‖q(xM |θ̄)

)
= D (p∗(xM )‖q(xM |T (γ̄))

< D (p∗(xM )‖q(xM |T (γ̂))) = D
(
p∗(xM )‖q(xM |θ̂)

)

This inequality contradicts the fact that θ̂ is a solution to problem Q̃(Θ), and therefore, we must
have that γ̂ is a solution to problem P̃M (Γ).

We have shown that T (·) is a mapping from the solution set of P̃M (Γ) to the solution set of
Q̃(Θ) and that M(·) is a mapping from the solution set of Q̃(Θ) to the solution set of P̃M (Γ).
Furthermore, Proposition 4.1 indicates that T (·) is the inverse ofM(·) on the domain equal to the
solution set of Q̃(Θ). Hence, the mapping T (·) is the needed surjection. �

� C.3 Application of Algorithm 4.2 to Gaussian Multiscale Densities

In Section 4.4.2, we present a specific algorithm for calculating the matrix quantities necessary to
perform the expectation step of the EM algorithm. In this section, we show how these quantities
are derived. Specifically, we prove the equalities in (4.46), (4.47), and (4.48). For simplicity of
notation, we no longer denote the fact that each density is parameterized by the set θ.

The first equality in (4.46), which corresponds to the merge step of the algorithm, is derived
using the product of densities previously provided in (4.18) and included here for reference,

q(xt|xLt) =

[∏
s∈χ(t) q(xLs)

q(xLt)

]
·

[
1

q(xt)|χ(t)|−1

]
·
∏

s∈χ(t)

q(xt|xLs). (C.2)

Notice that the first term in (C.2) is constant with respect to xt. Using this fact, as well as the
parametrization provided in (4.44), the Gaussian density q(xt|xLt) can be written as follows,

q(xt|xLt) = α0×

exp


−1

2
(1− |χ(t)|) xT

t Q
−1
t xt −

1

2

∑

s∈χ(t)

(xt −M
p
s xLs)

T [Rp
s ]
−1 (xt −M

p
s xLs)


 , (C.3)
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where α0 is constant with respect to xt.
By defining the matrix Rm

t as follows,

Rm
t =


(1− |χ(t)|)Q−1

t +
∑

s∈χ(t)

[Rp
s ]
−1



−1

, (C.4)

the expression in (C.3) can then be manipulated into the form of a Gaussian density,

q(xt|xLt) = α0α1×

exp


−

1

2


xt −R

m
t

∑

s∈χ(t)

[Rp
s ]
−1Mp

s xLs




T

[Rm
t ]−1


xt −R

m
t

∑

s∈χ(t)

[Rp
s]
−1Mp

s xLs





 . (C.5)

The argument to exp(·) in the preceding expression contains the terms included in (C.3), plus an
additional cross term which only involves xLt . This additional term is accounted for by the scale
factor α1.

Since the density q(xt|xLt) in (C.5) has the form of a Gaussian, we can immediately write down
its mean and covariance. Specifically, its covariance is specified by the matrix Rm

t defined in (C.4),
and its mean (as a function of xLt) is given by the following,

µ(xt|xLt) = Rm
t

∑

s∈χ(t)

[Rp
s ]
−1Mp

s xLs .

Using the fact that the mean of q(xt|xLt) is defined in (4.44b) to be of the form µ(xt|xLt) = Mm
t xLt ,

the matrix Mm
t can be written as follows,

Mm
t = Rm

t

[
[Rp

s1 ]
−1
Mp

s1 [Rp
s2 ]

−1
Mp

s2 · · ·
[
Rp

sqt

]−1
Mp

sqt

]
, (C.6)

assuming that xLt ,
[
xLs1

xLs2
· · · xLsqt

]T
. The expressions for Rm

t and Mm
t in (C.4) and

(C.6) agree with those previously given in (4.46a) and (4.46b) respectively.
To prove the two remaining equalities, we first derive an intermediate result. Consider a

Gaussian density q(x, y|z) which factors as q(x, y|z) = q(x|y)q(y|z), and suppose these densities
are parameterized as follows,

q(x, y|z) = N (x, y;Az,Q) , (C.7a)

q(x|y) = N (x;Ayy,Qy) , (C.7b)

q(y|z) = N (y;Azz,Qz) . (C.7c)

Our goal is to determine A and Q as a function of the parameters Ay, Az, Qy, and Qz.
Using the parametrization in (C.7), we can write the following for the density q(x, y|z),

q(x, y|z) = q(x|y)q(y|z)

= α exp

[
−

1

2
(x−Ayy)

TQ−1
y (x−Ayy)−

1

2
(y −Azz)

TQ−1
z (y −Azz)

]
.
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The preceding equation can be manipulated into the form of a Gaussian density by defining

Q−1 =

[
Q−1

y −Q−1
y Ay

−AT
yQ

−1
y Q−1

z +AT
yQ

−1
y Ay

]
, (C.8)

so that we then have

q(x, y|z) = α exp

[
−

1

2

([
x
y

]
−Q

[
0

Q−1
z Azz

])T

Q−1

([
x
y

]
−Q

[
0

Q−1
z Azz

])]
. (C.9)

The block-partitioned matrix Q−1 in (C.8) can be inverted using the Schur complement to give the
following,

Q =

[
Qy +AyQzA

T
y AyQz

QzA
T
y Qz

]
. (C.10)

Using this expression for Q in (C.9) then gives the desired result,

q(x, y|z) = α exp

[
−

1

2

([
x
y

]
−

[
AyAz

Az

]
z

)T

Q−1

([
x
y

]
−

[
AyAz

Az

]
z

)]
. (C.11)

Therefore, q(x, y|z) is Gaussian with mean Az where

A =

[
AyAz

Az

]

and with covariance Q as specified in (C.10).
For our purposes, we are interested in two important densities derived from the conditional

density q(x, y|z). The first is the density q(x|z) obtained by marginalizing q(x, y|z) over y. Using
(C.11), the parameters of q(x|z) are easily identified by looking at the correct matrix sub-blocks,
i.e. q(x|z) has mean AyAzz and covariance Qy + AyQzA

T
y . The second density of interest is

the conditional density q(y|x, z). Using the standard formula for computing the parameters of a
Gaussian conditional density, the mean µ(y|x, z) of q(y|x, z) is given by

µ(y|x, z) = Azz +QzA
T
y

(
Qy +AyQzA

T
y

)−1
(x−AyAzz) =

[
J (I − JAy)Az

] [ x
z

]
,

where

J , QzA
T
y

(
Qy +AyQzA

T
y

)−1
,

and the conditional covariance matrix Qy|x,z of q(y|x, z) is given by

Qy|x,z = Qz −QzA
T
y

(
Qy +AyQzA

T
y

)−1
AyQz = (I − JAy)Qz.

Using the preceding results, the equalities in (4.47) and (4.48) directly follow. Specifically, if we
equate xs with y, xt with x, and xLs with z, then the parameters of the densities q(x|z) and q(y|x, z)
can be used to determine the means and covariances of the densities q(xt|xLs) and q(xs|xt, xLs)
respectively. Doing so leads to the same matrix equalities previously derived in (4.47) and (4.48).
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� C.4 Proof of Proposition 4.5

Proposition 4.5 (Rescaling Multiscale Models to Have Identity State Covariances).
Let two zero-mean Gaussian multiscale densities q(x|θ) = N(x; 0, Q) and q(x|θ̄) = N(x; 0, Q̄) be
specified such that the marginals Q̄v and Q̄uv of Q̄ are defined in terms of the marginals Qv and
Quv of Q according to (4.56). Then, Q̄v = I for all non-leaf vertices v, and the two marginal
covariances QM and Q̄M are identical.

Proof. The fact that Q̄v = I for all non-leaf vertices v follows by the definition of the mapping in
(4.56). Furthermore, by definition Q̄v = Qv for all v ∈M . Therefore, all that remains to be proven
is that Q̄ij = Qij for all i 6= j and i, j ∈ M . To see this, we use the fact that the covariance Qij

may be expressed in terms of the edge covariances Quv and state covariances Qv of the multiscale
model [38]. Specifically, let i, j ∈ M , and consider the unique path in G∼� between i and j. This
path has the following form,

[u0 = i, u1, u2, . . . , un = t = vm, . . . , v1, v0 = j], (C.12)

where vertex t is a common ancestor of i and j in the rooted tree G�.
Given the path in (C.12), the covariance Qij may be expressed as follows,

Qij =

[
n∏

k=1

Quk−1,uk
Q−1

uk

]
Qt

[
m∏

k=1

Qvk−1,vk
Q−1

vk

]T

. (C.13)

The preceding expression along with the mapping in (4.56) then implies the following form for Q̄ij ,

Q̄ij =

[
n∏

k=1

Q̄uk−1,uk
Q̄−1

uk

]
Q̄t

[
m∏

k=1

Q̄vk−1,vk
Q̄−1

vk

]T

= Qi,u1Q
−1/2
u1

[
n∏

k=2

Q−1/2
uk−1

Quk−1,uk
Q−1/2

uk

]
I

[
m∏

k=2

Q−1/2
vk−1

Qvk−1,vk
Q−1/2

vk

]T

Q−1/2
v1

Qv1,j

=

[
n∏

k=1

Quk−1,uk
Q−1

uk

]
Qt

[
m∏

k=1

Qvk−1,vk
Q−1

vk

]T

= Qij.

Consequently, this proves that Q̄M = QM . �

� C.5 Proof of Proposition 4.6

Proposition 4.6 (Convergence of the Sequence {θ̄(i)} for the Gaussian Realization Problem).
Let Θ index the set of zero-mean Gaussian multiscale densities with positive-definite covariances,
and suppose θ̄(0) is an initial starting point for the sequence {θ̄(i)} in (4.57) which satisfies ε̄0 =
D
(
p∗(xM )‖q(xM |θ̄

(0))
)
<∞. Then, the sequence {θ̄(i)} converges to a fixed point θ̂ which satisfies

θ̂ = T (M(θ̂)).

Proof. Using Proposition 4.3, we need to prove that ε̄i , D
(
p∗(xM )‖q(xM |θ̄

(i))
)

is monotonically

decreasing and that {θ̄(i)} is a bounded sequence. The latter follows directly from the fact that

Θ̄0 ,
{
θ̄ ∈ Θ̄

∣∣∣D
(
p∗(xM )‖q(xM |θ̄)

)
≤ D

(
p∗(xM )‖q(xM |θ̄

(0))
)}
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is bounded for every initial starting point θ̄(0) satisfying ε̄0 < ∞ and from the fact that {ε̄i} is
non-increasing, as we now show.

To prove that {ε̄i} is non-increasing, we use the previous inequalities derived in (4.28), (4.29),
and (4.30),

ε̄i = D
(
p(x|γ(i+1))‖q(x|θ̄(i))

)
−D

(
p(x|γ(i+1))‖FM

(
q(x|θ̄(i))

))
(C.14a)

= D
(
p(x|γ(i+1))‖q(x|θ̄(i))

)
(C.14b)

≥ D
(
p(x|γ(i+1))‖q(x|θ(i+1))

)
(C.14c)

= D
(
p(x|γ(i+1))‖FM

(
q(x|θ(i+1))

))
+D

(
p∗(xM )‖q(xM |θ

(i+1))
)

(C.14d)

= D
(
p(x|γ(i+1))‖FM

(
q(x|θ(i+1))

))
+D

(
p∗(xM )‖q(xM |θ̄

(i+1))
)

(C.14e)

≥ ε̄i+1. (C.14f)

Consequently, {ε̄i} is non-increasing and converges in the limit. Since the mapping T (·) exists in
the Gaussian case, we then have from Proposition 4.3 that {θ̄(i)} converges to a fixed point θ̂.

Using the iterations in (4.57), the fixed point θ̂ must satisfy θ̂ = R
(
T
(
M
(
θ̂
)))

. However, at

the point of convergence, the inequality in (C.14c) becomes equality, and we have θ̂ = T (M(θ̂)).
This proves that the iterations in (4.57) converge to a point which lies in the set Θ̄, so that T (M(θ̂))
is invariant under the mapping R(·). �
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