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Abstract

Structured statistical models play a critical role in controlling the complexity of large-
scale estimation problems. Graphical models provide a powerful general framework
for encoding this structure. For graphs which are acyclic or tree-structured, there exist
efficient exact algorithms for statistical inference. However, real-world phenomena are
often only well modeled by graphs with cycles. As direct estimation procedures are
generally prohibitively costly for such graphs, it is necessary to develop more efficient
iterative alternatives.

In this thesis, we develop a novel iterative estimation algorithm for Gaussian pro-
cesses defined on graphs with cycles. It operates by exactly solving a series of modi-
fied estimation problems on spanning trees embedded within the original cyclic graph.
When the algorithm converges, it always computes the correct conditional means. In
contrast to many other iterative estimation algorithms, the tree-based procedures we
propose may be extended to calculate exact error variances. Although the conditional
mean iteration is effective for quite densely connected graphical models, the error vari-
ance computation is most efficient for sparser graphs. In this context, we present a
modeling example which suggests that very sparsely connected graphs with cycles
may provide significant advantages relative to their tree-structured counterparts.

The convergence properties of the proposed tree-based iterations are extensively
characterized both analytically and experimentally. We also provide an analysis of
the geometric structure underlying these iterations which naturally suggests tech-
niques for accelerating their convergence. Several different acceleration methods are
proposed and analyzed, the most effective of which uses the tree-based iterations to
precondition the conjugate gradient method. Simulation results are presented show-
ing that for many problems, accelerated tree-based iterations converge much more
rapidly than competing techniques.
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Chapter 1

Introduction

Gaussian processes play an important role in a wide range of practical, large–scale sta-

tistical estimation problems. Moderately sized Gaussian inference problems are easily

solved using standard linear algebraic techniques. However, for applications arising in

such fields as image processing and oceanography, Gaussian priors are commonly used

to model the statistical dependencies among tens or hundreds of thousands of ran-

dom variables. In such cases, the storage and computational requirements of direct,

brute–force modeling and inference techniques are intractably large. Instead, fami-

lies of structured statistical models, and complementary classes of efficient estimation

algorithms, must be developed.

In this thesis, we study Gaussian processes whose statistical properties are con-

strained by an associated graph. The nodes of the graph represent random variables,

while edges specify their statistical interrelationships (see Figure 1-1). A wide range

of stochastic processes can be compactly expressed by such graphical models [43, 48].

For example, linear state space models [44], Markov random fields [13], and multiscale

autoregressive models [20, 30] are all defined using graphical constraints. When de-

signing graphical models, graph structure naturally captures a fundamental tradeoff

between the expressiveness and accuracy of the modeled distribution, and the com-

plexity of statistical inference. At one extreme are tree–structured graphs: although

they lead to highly efficient estimation algorithms, their modeling power is rather

limited. The addition of edges to the graph tends to increase modeling power, but
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also introduces cycles that require the use of more sophisticated, and computationally

expensive, inference techniques.

In an effort to mitigate this tradeoff, this thesis focuses on the development of effi-

cient inference algorithms for arbitrarily structured Gaussian graphical models. The

proposed algorithms are iterative, computing a sequence of estimates which converges

asymptotically to the desired solution. Importantly, given a set of noisy observations,

the proposed methods calculate not only the conditional means, but also the asso-

ciated error variances. These error variances provide important information about

the reliability of the computed estimates, but are not correctly calculated by many

existing inference algorithms.

Many aspects of the inference algorithms developed in this thesis were strongly

motivated by the modeling tradeoffs hinted at above. Thus, we begin with an example,

originally presented in [78], which explores these issues in more detail.

1.1 Multiscale Models and Graphs with Cycles

Graphical models, like those shown in Figure 1-1, use edges to represent the sta-

tistical structure of the modeled random variables. Although this thesis focuses on

Gaussian models, graphical models may also be defined using non–Gaussian random

variables [48]. Associated with each edge is a function which provides a local measure

of the statistical dependence between the variables it joins. Intuitively, the correla-

tion between any given pair of random variables is determined by the combined effects

of all sequences of edges, or paths, connecting them. Typically, variables are most

strongly dependent on their nearest neighbors, as correlation tends to decrease with

path length. Any probability distribution can be represented by a sufficiently densely

connected graphical model. However, the structure provided by a graphical model

is only useful when it is relatively sparsely connected, so that each node depends

directly on only a few neighbors.

In many application areas, no single statistical model, graphical or otherwise, can

be uniquely identified as the “correct” model for the variables of interest. In such

14



(a) (b)

(c) (d)

Figure 1-1: Sample graphical model structures. Each node represents a random variable.
(a) Markov chain (state space model). (b) Markov random field (2-D nearest neighbor grid).
(c) Multiscale autoregressive time series model. (d) Multiscale autoregressive random field model.

cases, many different graphical structures may provide reasonable approximations of

the desired dependencies. The challenge, then, is to find graphs which accurately

capture important statistical features, but still lead to efficient inference algorithms.

For the modeling of one–dimensional time series, linear state space models, which

graphically correspond to the Markov chain of Figure 1-1(a), are a common choice.

Computationally, they are attractive because efficient and exact inference is possible

using the Kalman filter [44]. In addition, their representation of each successive

random variable as a noisy function of its immediate predecessors is a good match

for many real stochastic processes.

Markov random fields defined on 2-D nearest neighbor grids, as shown in Fig-

ure 1-1(b), are a natural generalization of Markov chains for the modeling of spatial

processes. The statistical structure they provide, in which each random variable

15



interacts directly with its nearest spatial neighbors, can lead to a wide range of inter-

esting two–dimensional distributions. Unfortunately, however, the presence of large

numbers of cycles in this graph leads to estimation algorithms that are very computa-

tionally intensive. In particular, accurate calculation of the error variances associated

with a Markov random field model is often intractable. Thus, in many situations,

it is necessary to replace Markov random fields with more computationally feasible

alternatives.

Multiscale autoregressive models, as illustrated in Figure 1-1(c,d), provide an at-

tractive alternative to traditional Markov models. In such models, additional “coarse

scale” nodes are added to the graph which may or may not be directly linked to

any measurements.1 These nodes are auxiliary variables created to explain the “fine

scale” stochastic process of primary interest. If properly designed, the resulting tree

structure can accurately model a wide range of interesting phenomena. For example,

large scale, long–range interactions are quite naturally captured by the presence of

variables at multiple scales. In addition, generalizations of the Kalman filter allow op-

timal estimates, including error variances, to be calculated extremely efficiently [20].

Previous research has demonstrated that multiscale graphical models can pro-

vide efficient, effective solutions to a wide range of problems [24, 28, 29, 50, 66]. The

most significant weakness revealed by these studies is the presence of boundary arti-

facts in the computed estimates. The problem is that spatially adjacent, and hence

highly correlated, fine–scale nodes may be widely separated in the tree structure. As

a result, dependencies between these nodes may be inadequately modeled, causing

blocky discontinuities. Blockiness can be reduced by increasing the dimension of the

coarse scale nodes. However, the computational cost of inference algorithms is cubic

in the variable dimension, so it is usually not computationally feasible to completely

eliminate blockiness in this fashion.

One potential solution to the boundary artifact problem is to add edges between

1In some applications, coarse scale nodes provide a convenient way for modeling measurements
which naturally occur at multiple scales [23, 24]. However, in the example presented here, we are
only interested in the covariance matrix induced at the finest scale.
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pairs of fine–scale nodes where discontinuities are likely to arise. Such edges should be

able to account for short–range dependencies neglected by standard multiscale models.

To illustrate this idea, we consider the modeling of the one–dimensional process of

length 32 whose exact covariance P is shown in Figure 1-2(a). We approximate this

process using two different graphical models: a multiscale tree (Figure 1-2(b)), and a

“near–tree” containing an additional edge across the largest fine scale tree boundary

(Figure 1-2(c)). In both models, the dimension of the Gaussian variable at each node

is constrained to be 2; therefore, the finest scale contains 16 nodes to model all 32

process points.

The tree–based multiscale model was realized using the scale–recursive algorithm

presented in [30, 31]. Figure 1-2(d) shows the resulting fine–scale covariance matrix

Ptree, while Figure 1-2(f) gives the corresponding absolute error |P − Ptree|. The tree
model matches the desired process statistics relatively well except at the center, where

the tree structure causes a boundary artifact. In contrast, Figures 1-2(e) and 1-2(g)

show the covariance Ploop and absolute error |P − Ploop| which can be attained by

the augmented multiscale model. The addition of a single edge has reduced the peak

error by 60%, a substantial gain in modeling fidelity. In §3.5.2, we show that the

inference algorithms developed in this thesis can efficiently and accurately calculate

both conditional means and error variances for this model.

The previous example suggests that very sparsely connected graphs with cycles

may offer significant modeling advantages relative to their tree–structured counter-

parts. Unfortunately, as the resulting graphs do have cycles, the extremely efficient

inference algorithms which made tree–structured multiscale models so attractive are

not available. The primary goal of this thesis is to develop novel inference techniques

which allow estimates, and the associated error variances, to be quickly calculated for

the widest possible class of graphs. The algorithms we develop are particularly effec-

tive for graphs, like that presented in this example, which are nearly tree–structured.

We hope that our results will motivate future studies exploring the design of multi-

scale models defined on graphs with cycles.
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Figure 1-2: Multiscale modeling example. Note that adding an extra edge significantly reduces
boundary artifacts. (a) Desired covariance P . (b) Multiscale tree model. (c) Tree augmented by
extra edge. The two weakest edges in this graph’s single cycle are highlighted (see §3.5.2). (d)
Covariance Ptree realized by tree model. (e) Covariance Ploop realized by graph with cycles. (f)
Error |P − Ptree| in tree realization. (g) Error |P − Ploop| in loopy realization.
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1.2 Contributions and Organization

For Gaussian graphical models whose graphs are tree–structured, there exist efficient,

exact inference algorithms for finding both estimates and error variances. The primary

contribution of this thesis is to demonstrate that tree–based inference routines provide

a natural basis for the design of estimation algorithms which apply to much broader

classes of graphs. All of the algorithms depend on the fact that, within any graph

with cycles, there are many embedded tree–structured subgraphs. Each of these

embedded trees can be revealed by removing a different subset of the original graph’s

edges. We show that, by appropriately combining sequences of exact calculations

on these embedded trees, it is possible to solve statistical inference problems defined

on the original graph with cycles efficiently. Importantly, embedded trees lead to

procedures for calculating not only conditional means, but also the associated error

variances.

The remainder of this thesis is organized as follows.

Chapter 2, Background

The primary purpose of Chapter 2 is to provide a self–contained introduction to

graphical models. After a brief review of linear estimation theory, we demonstrate

how graphs are used to define stochastic processes, focusing on Gaussian models.

We then discuss the strengths and weaknesses of existing graph–based inference al-

gorithms. In the process, we provide a detailed derivation of the popular “belief

propagation” algorithm for exact inference on tree–structured graphs. The deriva-

tion is from a probabilistic perspective, and reveals several interesting features not

discussed in the standard belief propagation literature. The chapter concludes with a

discussion of iterative methods from the numerical linear algebra literature, including

the classical Richardson iteration and the conjugate gradient algorithm. Some of the

novel algorithms presented in the following chapters are derived as extensions to these

more basic methods.
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Chapter 3, Embedded Trees

Chapter 3 presents a family of tree–based inference algorithms for solving estimation

problems defined on graphs with cycles. The chapter begins with a discussion of the

connections between spanning tree distributions and graphs with cycles. Then, we

use these connections to develop the embedded trees (ET) algorithm, which computes

a sequence of estimates converging to the conditional mean of the loopy estimation

problem. A combination of theoretical results and numerical examples are used to

demonstrate several properties of the ET iteration, including the important perfor-

mance improvements obtained by employing multiple embedded trees.

Following the discussion of the ET iteration for estimates, we present a comple-

mentary tree–based iterative algorithm for calculating error variances. The computa-

tional complexity of this algorithm is proportional to the number of edges which must

be removed from the graph with cycles to reveal an embedded tree. Thus, it will be

particularly efficient for the very sparse loopy graphs discussed in §1.1. We present

several theoretical results which may be used to guarantee the convergence of either

inference algorithm. The chapter concludes with a set of simulations demonstrating

the effectiveness of the proposed methods.

Chapter 4, Accelerated Tree–Based Iterations

In Chapter 4, we present several techniques which use the basic embedded trees iter-

ation developed in Chapter 3 to create more rapidly convergent algorithms. We start

by demonstrating that the standard ET iteration may sometimes be made to con-

verge faster by appropriately modifying the numerical structure of the tree–structured

subproblems solved at each iteration. Then, we show that the dynamics of the ET

iteration reveal information about the directions in which the errors in the current

estimate lie. This leads to a rank–one correction technique which first estimates the

dominant error direction, and then removes those errors on subsequent iterations.

We discuss certain inefficiencies with the rank–one acceleration method, which

in turn motivate the use of the ET algorithm as a preconditioner for the conjugate
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gradient iteration. We demonstrate that for sparsely connected graphs, precondi-

tioners based on a single spanning tree are guaranteed to rapidly converge to the

exact solution. Several numerical simulations are then presented showing that even

on more densely connected graphs, both single and multiple tree preconditioners can

be very effective. The chapter concludes with a discussion of connections to existing

preconditioning theory.

Chapter 5, Recommendations and Conclusions

The main contributions of the thesis are summarized in Chapter 5. Several open

research problems associated with tree–based inference algorithms for graphs with

cycles are proposed. In addition, a variety of open questions associated with the

design of graphical models with cycles are presented.
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Chapter 2

Background

In this thesis, we develop computationally efficient algorithms for solving Gaussian

statistical inference problems defined by graphical models. The primary purpose of

this chapter is to provide a self–contained introduction to graphical models, empha-

sizing their powerful ability to express globally consistent probability distributions

through a series of local constraints. After a brief review of linear estimation in §2.1,
we demonstrate in §2.2 how graphs are associated with probability distributions, fo-

cusing on the particular features of Gaussian models. Then, in §2.3, we discuss the

strengths and weaknesses of existing inference algorithms for graphical models. In

particular, we provide a detailed derivation of a popular inference algorithm known

as belief propagation which forms the basis for many of the new results in this thesis.

The chapter concludes in §2.4 with an introduction to some relevant techniques from

the numerical linear algebra literature.

2.1 Linear Estimation

This thesis focuses on a classical problem in estimation theory. We are given a

vector of observations y of an unknown random vector x, where x and y are jointly

Gaussian with zero mean.1 Under these assumptions, the conditional distribution

1Non–zero means can be easily accounted for by estimating the deviation from the mean using
the modified random variables x̄ = (x− E [x]) and ȳ = (y − E [y]).
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p (x | y) ∼ N
(
x̂, P̂

)
is also Gaussian, with mean and covariance given by the normal

equations :

x̂ � E [x | y] = PxyP−1
y y (2.1)

P̂ � E
[
(x− x̂) (x− x̂)T

∣∣∣ y] = Px − PxyP−1
y PT

xy (2.2)

Here, Px � E
[
xxT

]
and Py � E

[
yyT

]
denote the covariance matrices of x and y,

respectively, and Pxy � E
[
xyT

]
denotes their cross–covariance matrix.

For Gaussian problems, the conditional mean x̂ is the best estimate of the unknown

vector x under a wide range of error criteria. In particular, it coincides with both

the Bayes’ least squares estimate minimizing the mean squared error E
[
(x− x̂)2 | y]

and the maximum a posteriori (MAP) estimate maximizing p (x̂ | y). Even if x and y

are not jointly Gaussian, x̂ may still be justified as giving the smallest mean squared

error of any linear estimator [45]. For this reason, x̂ is sometimes called the linear

least squares estimate (LLSE).

Although the estimate x̂ is the primary objective of inference, the covariance

P̂ of the conditional distribution also provides important information. From equa-

tion (2.2), we see that P̂ is equal to the covariance of (x− x̂), the error between the

optimal estimate x̂ and the true value of the unobserved variables x. Therefore, it

provides a measure of the reliability of the estimate x̂, and is often referred to as the

error covariance matrix. Note that for Gaussian problems, P̂ is not a function of the

observed vector y, but does depend on the joint statistics of x and y.

In many problem domains, the observations y are naturally expressed as a noise–

corrupted linear function of x given by

y = Cx+ v (2.3)

where v ∼ N (0, R) is a zero–mean Gaussian noise process, and x and v are indepen-
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dent. In this case, equations (2.1, 2.2) specialize to

x̂ = PCT
(
CPCT +R

)−1
y (2.4)

P̂ = P − PCT
(
CPCT +R

)−1
CP (2.5)

where P � E
[
xxT

]
is the prior covariance of the unobserved variables x. Assuming

that P and R are both positive definite and hence invertible, we may use the matrix

inversion lemma (see Appendix A.1) to rewrite equations (2.4, 2.5) as

(
P−1 + CTR−1C

)
x̂ = CTR−1y (2.6)

P̂ =
(
P−1 + CTR−1C

)−1
(2.7)

This information form of the normal equations plays a crucial role in computations

involving the structured prior models considered later in this thesis.

Although the normal equations give an explicit formula for determining both x̂ and

P̂ , directly solving them may require an intractable amount of computation for large–

scale estimation problems. Let Nx be the dimension of x, and Ny be the dimension of

y. If we assume that R is diagonal but all other matrices are full, then equations (2.4,

2.5) require O(N3
y + N2

xNy) operations, while equations (2.6, 2.7) require O(N3
x).

For practical problems arising in fields such as image processing and oceanography,

Nx ≈ Ny ≈ 105 and either formulation is intractable. Also, note that in the absence

of special structure, simply storing P or P̂ requires O(N2
x) bytes, which is often

unreasonably large. These costs motivate the development of structured statistical

models which yield efficient estimation procedures.

2.2 Graphical Models

Graphical models provide a powerful general framework for encoding the probabilistic

structure of a set of random variables [43, 48]. They are ideally suited to applications

where the statistical behavior of a large, complex system may be specified in terms
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of a combination of local observations and interactions. This local structure allows

complicated stochastic processes to be specified very compactly. In addition, efficient

inference algorithms can exploit this structure to achieve huge savings over direct

computational costs. For these reasons, graphical models have been widely applied

in such fields as artificial intelligence [59], error correcting codes [34, 51], speech pro-

cessing [60], statistical physics [82], image processing [36, 66], remote sensing [24, 29],

and computer vision [28, 32, 50].

2.2.1 Graph Separation and Conditional Independence

A graph G consists of a set of nodes or vertices V , and a corresponding set of edges

E . Graphical models associate each node s ∈ V with a random vector xs. In gen-

eral, xs could be drawn from a wide variety of probability distributions. In this

thesis, however, we focus on the case where xs is a Gaussian random vector of di-

mension ds � dimxs. For any subset A ⊂ V , we denote the set of random vari-

ables in A by xA � {xs}s∈A. If the N � |V| nodes are indexed by the integers

V = {1, 2, . . . , N}, the Gaussian stochastic process defined on the overall graph is

given by x �
[
xT

1 xT
2 · · · xT

N

]T
. Note that dimx =

∑
s∈V ds.

Graphical models use edges to implicitly specify a set of conditional independen-

cies. Each edge (s, t) ∈ E connects two nodes s, t ∈ V, where s �= t. In this thesis, we

exclusively employ undirected graphical models for which the edges (s, t) and (t, s)

are equivalent.2 Figure 2-1(a) shows an example of an undirected graphical model

representing five different random variables. Such models are also known as Markov

random fields (MRFs), or for the special case of jointly Gaussian random variables

as covariance selection models in the statistics literature [26, 48, 69]. For a graphical

interpretation of many standard Gaussian data analysis techniques, see [61].

When describing the statistical properties of Markov random fields, the structural

properties of the underlying graph play an important role. A path between nodes s0

2There is another formalism for associating conditional independencies with graphs which uses
directed edges. Any directed graphical model may be converted into an equivalent undirected model,
although some structure may be lost in the process [48, 59].
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Figure 2-1: (a) An undirected graphical model representing five random variables. (b) Correspon-
dence between graph separation and conditional independence. The random variables in sets A and
C are conditionally independent given set B.

and sT is defined to be a sequence of nodes s0, s1, . . . , sT such that (si−1, si) ∈ E for

i = 1, . . . , T , and (si−1, si) �= (sj−1, sj) for i �= j. If there is a path between every

pair of nodes, G is connected. A cycle, or loop,3 is defined as a path which starts and

ends with the same node. If a graph has no cycles, it is said to be tree–structured.

Note that in a connected tree–structured graph, there is a unique path between each

pair of nodes. The diameter of a graph is equal to the number of edges in the longest

path between any two nodes. Finally, a clique is defined to be a set of nodes in which

every node is directly connected to every other node in the clique. For example,

in Figure 2-1(a) the sets {x1}, {x1, x3}, {x1, x3, x4}, and {x1, x3, x5} are all cliques.

However, {x1, x3, x4, x5} is not a clique because there is no edge between x4 and x5.

For Markov random fields defined on undirected graphs, conditional independence

is associated with graph separation. Suppose thatA, B, and C are subsets of the vertex
set V . Then set B is said to separate sets A and C if there are no paths between sets A
and C which do not pass through set B. The stochastic process x is said to be Markov

with respect to G if xA and xC are conditionally independent given xB whenever A
and C are separated by B. Figure 2-1(b) illustrates this concept. For example, in

3In graph theoretic terminology, a loop is an edge connecting a node to itself [48]. However,
as graphical models do not have self–connections, in this thesis we use the terms loop and cycle
interchangeably, as is standard in the graphical inference literature [52, 77, 79].
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Figure 2-1(a) we have

p (x2, x4, x5 | x1, x3) = p (x2 | x1, x3) p (x4 | x1, x3) p (x5 | x1, x3)

If the neighborhood of a node s is defined to be N(s) � {t|(s, t) ∈ E}, the set of all

nodes which are directly connected to s, it follows immediately that

p
(
xs | xV\s

)
= p

(
xs | xN(s)

)
(2.8)

That is, conditioned on its immediate neighbors, the probability distribution of the

random vector at any given node is independent of the rest of the process. In

Figure 2-1(a), this property implies that

p (x5 | x1, x2, x3, x4) = p (x5 | x1, x3)

We may also define a local neighborhood for anyA ⊂ V as N(A) �
{⋃

s∈AN(s) \ A},
which gives the following generalization of equation (2.8):

p
(
xA | xV\s

)
= p

(
xA | xN(A)

)
(2.9)

The nearest–neighbor conditional independencies implied by equation (2.8) are known

as local Markov relationships, in contrast to the global Markov relationships illustrated

in Figure 2-1(b). It is possible to construct degenerate probability distributions which

satisfy (2.8) for all s ∈ V, but do not globally associate graph separation with condi-

tional independence. However, for graphical models with positive continuous densi-

ties, like the Gaussian Markov random fields considered in this thesis, the global and

local Markov properties are equivalent [48].

2.2.2 Structured Inverse Covariance Matrices

Clearly, only a limited subset of Gaussian probability distributions p (x) ∼ N (0, P )

will satisfy the conditional independencies implied by a given graph G. Interest-
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ingly, in the Gaussian case, the Markov properties of G constrain the structure of

the inverse covariance matrix P−1. Most efficient inference algorithms for Gaussian

graphical models, including those developed in this thesis, depend fundamentally on

the exploitation of this structure.

Suppose the inverse covariance matrix J � P−1 is partitioned into an N ×N grid

of submatrices, where the submatrix sizes are chosen to match the dimensions of the

node variables {xs}Ns=1. Denote the (s, t)
th block of J by Js,t, so that Js,t is a matrix of

size ds×dt. Also, let {λi (A)} and {σi (A)} denote the sets of eigenvalues and singular

values, respectively, of a matrix A. The following proposition, which is proved for

the special case of scalar variables in [48], provides a statistical interpretation of the

inverse covariance entries:

Proposition 2.1. For any s ∈ V, the conditional covariance matrix var
(
xs

∣∣xN(s)

)
may be directly calculated from the corresponding block diagonal entry of J = P−1:

var
(
xs

∣∣xN(s)

)
= (Js,s)

−1 (2.10)

In addition, for any s, t ∈ V, the conditional canonical correlation coefficients of xs

and xt, conditioned on their local neighborhood xN(s,t), may be calculated from

{
σi

(
var
(
xs

∣∣xN(s,t)

)− 1
2 cov

(
xs, xt

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

)− 1
2

)}
=
{
σi

(
(Js,s)

− 1
2 Js,t (Jt,t)

− 1
2

)}
(2.11)

Proof. See Appendix B.2.3.

For an introduction to canonical correlations analysis, see Appendix B.2. For scalar

xs and xt, equation (2.11) may be specialized to show that the conditional correlation

coefficient ρst|N(s,t) is given by

ρst|N(s,t) �
cov

(
xs, xt

∣∣xN(s,t)

)√
var
(
xs

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

) =
−Js,t√
Js,sJt,t

(2.12)
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Combining Proposition 2.1 with the Markov properties implied by equations (2.8, 2.9),

we may show that the inverse covariance matrix has the following structure [48, 69]:

Theorem 2.2. Let x ∼ N (0, P ) be a Gaussian stochastic process which is Markov

with respect to an undirected graph G = (V , E). Assume that x is not Markov with

respect to any G ′ = (V , E ′) such that E ′ � E , and partition J = P−1 into a |V| × |V|
grid according to the dimensions of the node variables. Then for any s, t ∈ V such

that s �= t, Js,t = JT
t,s will be nonzero if and only if (s, t) ∈ E .

Proof. Consider any s, t ∈ V such that s �= t. Combining equation (2.11) with basic

properties of the singular value decomposition, we see that Js,t will be nonzero if and

only if cov
(
xs, xt

∣∣xN(s,t)

) �= 0. Since xs and xt are jointly Gaussian, it follows that

Js,t will be zero if and only if xs and xt are conditionally independent given xN(s,t).

Suppose that (s, t) �∈ E , then N(s, t) separates nodes s and t, and by the Markov

properties of G, xs and xt must be conditionally independent. This in turn implies

Js,t = 0. Alternatively, if (s, t) ∈ E , then N(s, t) does not separate s and t. By

assumption, x is not Markov with respect to the subgraph created by removing edge

(s, t), so xs and xt must be conditionally dependent, and therefore Js,t �= 0.

Figure 2-2 illustrates Theorem 2.2 for a small sample graph. In most graphical models,

each node is only connected to a small subset of the other nodes. Theorem 2.2 then

shows that P−1 will be a sparse matrix with a small (relative to N) number of

nonzero entries in each row and column. This sparsity is the fundamental reason for

the existence of the efficient inference algorithms discussed in §2.3.

2.2.3 Parameterization of Gaussian Markov Random Fields

The sparse structure exhibited by the inverse covariance matrix of a Gaussian Markov

random field is a manifestation of the constraints which the Markov properties dis-

cussed in §2.2.1 place on p (x). Similar constraints also hold for more general undi-

rected graphical models. In particular, the Hammersley–Clifford Theorem relates the

Markov properties implied by G to a factorization of the probability distribution p (x).
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Figure 2-2: (a) Graphical model representing five jointly Gaussian random vectors. (b) Structure
of the corresponding inverse covariance matrix P−1, where black squares denote nonzero entries.

If C is the set of all cliques of G, then a strictly positive distribution p (x) is Markov

with respect to G if and only if it can be written in the factorized form

p (x) =
1

Z

∏
C∈C

ψC (xC) (2.13)

where ψC (xC) is an arbitrary positive function, or clique potential, defined over the

elements of the clique C. Z is a normalization constant, sometimes called the partition

function. For example, applying the Hammersley–Clifford Theorem to the graph in

Figure 2-1(a), we find that the joint distribution p (x) must factorize as

p (x1, x2, x3, x4, x5) =
1

Z
ψ2,3 (x2, x3)ψ1,3,4 (x1, x3, x4)ψ1,3,5 (x1, x3, x5)

There are a variety of proofs of the Hammersley–Clifford Theorem [13, 18, 48]; see

Clifford [21] for an interesting historical survey.

In many cases, the prior model is most naturally specified by “pairwise” clique

potentials involving pairs of nodes which are connected by edges:

p (x) =
1

Z

∏
(s,t)∈E

ψs,t (xs, xt) (2.14)

An arbitrary Markov random field may be represented using only pairwise clique

potentials by appropriately clustering nodes in the original graph [84]. However,
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some of the graph’s structure may be lost in the process.

For Gaussian Markov random fields, the prior distribution p (x) is uniquely speci-

fied by either the full covariance matrix P or the inverse covariance matrix J = P−1.

However, because of the sparse structure implied by Theorem 2.2, J provides the

more natural and efficient parameterization. Often, it is convenient to decompose J

into (pairwise) clique potentials as in equation (2.14). To each edge (s, t) ∈ E , we
associate a clique potential

ψs,t (xs, xt) = exp

−12 [xT
s xT

t

]Js(t) Js,t

Jt,s Jt(s)

xs

xt

 (2.15)

where the Js(t) terms are chosen so that for all s ∈ V,

∑
t∈N(s)

Js(t) = Js,s (2.16)

Straightforward algebraic manipulation shows that any set of clique potentials (2.15)

which satisfy the consistency condition (2.16) will define a probability distribution

p (x) such that

p (x) =
1

Z
exp

{
−1
2
xTP−1x

}
=

1

Z

N∏
s=1

N∏
t=1

exp

{
−1
2
xT

s Js,txt

}
=

1

Z

∏
(s,t)∈E

exp

−12 [xT
s xT

t

]Js(t) Js,t

Jt,s Jt(s)

xs

xt

 =
1

Z

∏
(s,t)∈E

ψs,t (xs, xt) (2.17)

where Z =
(
(2π)N detP

)1/2
is a normalization constant.

The preceding construction shows that it is always possible to represent a Gaus-

sian Markov random field using pairwise clique potentials without having to cluster

nodes. Note that this construction does not guarantee that the local potential ma-

trices
[

Js(t)

Jt,s

Js,t

Jt(s)

]
will be positive definite. In such cases, ψs,t (xs, xt) is not a bounded

function of x, and therefore cannot be normalized so that it defines a locally consis-
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tent probability distribution.4 However, the message–passing recursions discussed in

§2.3 are valid even if the potential terms are not positive definite.

In the remainder of this thesis, we primarily use inverse covariance matrices

J = P−1 to parameterize Gaussian Markov random fields. Sometimes, however, it is

useful to reparameterize the model in terms of clique potential functions (2.14, 2.15).

In such cases, it is important to remember that the decomposition into clique po-

tentials is not unique. Also, note that we do not employ the state space formalism

traditionally used in the time series literature [44]. State space models correspond to

the factorization of p (x) into a product of an initial distribution p (x0) and a series

of one–step transition distributions p (xt | xt−1). While such factorizations naturally

extend to the partial ordering offered by tree–structured graphs [20], they cannot be

consistently constructed for graphs with cycles.

2.3 Graph–based Inference Algorithms

In this section, we apply the graphical model formalism developed in §2.2 to the linear
estimation problem introduced in §2.1. Assume that the unobserved random vector

x ∼ N (0, P ) is a Gaussian process which is Markov with respect to an undirected

graph G. Because the variables {xs}Ns=1 are unobserved, their associated nodes in G
are called hidden nodes.5 As discussed in §2.2.3, p (x) is parameterized by a sparse

inverse covariance matrix J = P−1. The observations y are assumed to be generated

according to equation (2.3).

When the prior distribution p (x) is parameterized by an inverse covariance ma-

trix J , the conditional distribution p (x | y) ∼ N
(
x̂, P̂

)
is naturally expressed as

the solution of the information form of the normal equations (2.6, 2.7). We as-

sume, without loss of generality,6 that the observation vector y decomposes into a

4There exist graphs with cycles for which no factorization will have normalizable clique potentials.
5In the recursive estimation literature, xs is the state variable associated with node s [20, 44].

However, this terminology is not entirely appropriate for graphs with cycles because {xt|t ∈ N(s)}
are not, in general, conditionally independent given xs.

6Any observation involving multiple hidden nodes may be represented by a clique potential which
includes those nodes. For Gaussian graphical models, such potentials simply modify certain entries
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Figure 2-3: Graphical model with observation nodes explicitly shown. Circles represent hidden
nodes xs, while squares represent local observations ys.

set {ys}Ns=1 of local, conditionally independent observations of the hidden variables

{xs}Ns=1, so that p (y | x) = ∏N
s=1 p (ys | xs). In this case, C = diag(C1, C2, . . . , CN)

and R = diag(R1, R2, . . . , RN) must be block diagonal matrices, and for all s ∈ V,

ys = Csxs + vs (2.18)

where vs ∼ N (0, Rs). As shown in Figure 2-3, it is sometimes convenient to augment

G by a set of observed nodes representing the local observations {ys}Ns=1.

Given this setup, we would like to compute the conditional marginal distributions

p (xs | y) ∼ N
(
x̂s, P̂s

)
for all s ∈ V. Note that each x̂s is simply a subvector of

x̂, while each P̂s is a block diagonal element of P̂ . We begin in §2.3.1 by deriving

the general integral form of an algorithm, known as belief propagation (BP), which

efficiently computes p (xs | y) for any tree–structured graph. In §2.3.2, we specialize

the BP algorithm to the Gaussian case. Finally, in §2.3.3 we discuss existing exact

and approximate inference algorithms for graphs with cycles.

2.3.1 Exact Inference for Tree–Structured Graphs

For graphs whose prior distribution is defined by a Markov chain, there exist efficient

recursive algorithms for exactly computing the single–node conditional marginal dis-

tributions p (xs | y). If the variables are jointly Gaussian, one obtains a family of

state–space smoothing algorithms which combine a standard Kalman filtering recur-

of P−1, and can be easily accounted for by any of the inference algorithms discussed in this thesis.
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Figure 2-4: Subsets of the observation nodes used by the BP algorithm. (a) Conditioned on the
hidden variable x1, the observation sets y2\1, y3\1, y4\1, and y1 become independent. (b) At iteration
n, the BP messages may be combined to compute p (x1 | yn

1 ).

sion with a complementary reverse–time recursion [44]. Discrete–valued hidden nodes

lead to the forward–backward (or α − β) algorithm commonly employed in speech

processing algorithms [60]. By generalizing the dynamic programming [10] recursions

underlying these time–series algorithms to the partial ordering naturally provided by

a tree, one can directly extend them to any graph without cycles. In this section,

we derive a particular form of the exact tree–based inference recursions known as the

belief propagation (BP) algorithm [59]. For alternate, but equivalent, frameworks for

inference on graphs, see [2, 20, 47].

For any tree–structured graphical model, it is straightforward to verify that the

prior distribution p (x) may be factorized in a symmetric form as

p (x) =
∏

(s,t)∈E

p (xs, xt)

p (xs) p (xt)

∏
s∈V

p (xs) (2.19)

where p (xs) and p (xs, xt) are exact marginal distributions. Equation (2.19) shows

that, for graphs without cycles, it is possible to factor p (x) using pairwise clique po-

tentials which are simple functions of the local marginal distributions at neighboring

nodes. However, such a factorization does not generally exist for graphs with cycles.

For any s ∈ V and any t ∈ N(s), let ys\t be the set of all observation nodes in the

tree rooted at node s, excluding those in the subtree rooted at node t. Figure 2-4(a)

provides a graphical illustration of this set. Then, using Bayes’ rule and the Markov
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properties implied by G, we may decompose the marginal distribution p (xs | y) as

p (xs | y) = p (y | xs) p (xs)

p (y)
= αp (xs) p (ys | xs)

∏
t∈N(s)

p
(
yt\s | xs

)
(2.20)

where α denotes a normalization constant7 which is independent of x. From this

decomposition, we see that for the purposes of calculating p (xs | y), the conditional

likelihood p
(
yt\s | xs

)
is a sufficient statistic of the data in the subtree rooted at node

t. Using the conditional independencies implied by G, we can derive a self–consistent

set of equations relating the conditional likelihoods at neighboring nodes:

p
(
yt\s | xs

)
=

p
(
xs | yt\s

)
p
(
yt\s
)

p (xs)
= α

∫
xt

p
(
xs, xt | yt\s

)
p (xs)

dxt

= α

∫
xt

p (xs, xt) p
(
yt\s | xs, xt

)
p (xs)

dxt

= α

∫
xt

p (xs, xt) p
(
yt\s | xt

)
p (xs)

dxt

= α

∫
xt

(
p (xs, xt)

p (xs) p (xt)

)
p (xt) p (yt | xt)

∏
u∈N(t)\s

p
(
yu\t | xt

)
dxt (2.21)

Note that the prior model appears in equation (2.21) solely in terms of the potential

functions found in the canonical tree–based factorization (2.19).

It is possible to modify equations (2.20, 2.21) to use the potential terms appear-

ing in an arbitrary pairwise factorization (2.14). In particular, if we “unwrap” the

conditional likelihood terms in equation (2.20) by repeated application of the local

consistency conditions (2.21), we obtain

p (xu | y) = α

∫
xV\u

∏
(s,t)∈E

p (xs, xt)

p (xs) p (xt)

∏
s∈V

p (xs) p (ys | xs) dxV\u

= α

∫
xV\u

∏
(s,t)∈E

ψs,t (xs, xt)
∏
s∈V

p (ys | xs) dxV\u (2.22)

where the second equality follows because equations (2.19) and (2.14) provide two

7By convention, the normalization constant α is always chosen so that the function it multiplies
integrates to unity. Thus, the specific numerical value of α may change from equation to equation.
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equivalent representations of the same joint distribution p (x). Thus, it is straightfor-

ward to show that the integral (2.22) which correctly computes p (xs | y) will also be

produced by the following analogs of equations (2.20, 2.21):

p (xs | y) = αp (ys | xs)
∏

t∈N(s)

mts (xs) (2.23)

mts (xs) = α

∫
xt

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mut (xt) dxt (2.24)

For non–canonical factorizations of p (x), the mts (xs) terms will in general not equal

the conditional likelihoods p
(
yt\s | xs

)
. Conceptually, however, mts (xs) may still be

interpreted as a sufficient statistic of yt\s for the purpose of calculating p (xs | y).
Equations (2.23, 2.24) show that the dependencies between the desired conditional

marginal distributions p (xs | y) and sufficient statistics mts (xs) may be expressed

using only local relationships between neighboring nodes. This naturally suggests

the development of algorithms which solve these equations using a distributed set of

local computations. The belief propagation (BP) algorithm begins by associating the

sufficient statistic mts (xs) with a message that we would like node t to send to node

s. This message provides all of the information about xs which is available from yt\s,

the subset of observations upon which xs depends only through its correlation with

xt. Given an algorithm which efficiently calculates all of the messages, the marginal

distributions p (xs | y), or “beliefs,” are easily found from equation (2.23).

Belief propagation is typically described as a parallel algorithm in which equa-

tion (2.24) is iteratively applied, generating a sequence of messages {mn
ts (xs)} which

converge to mts (xs) as n→∞. In particular, for all t ∈ V and s ∈ N(t), we initialize

m0
ts (xs) to some arbitrary initial value, typically m0

ts (xs) = 1, and then iteratively

apply the following message update equation:

mn
ts (xs) = α

∫
xt

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mn−1
ut (xt) dxt (2.25)

It is straightforward to show that, after a number of iterations equal to the diameter
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D of G, the messages will converge to the unique fixed point of the message update

equation (2.25), so that mD
ts (xs) = mts (xs). This in turn allows p (xs | y) to be

exactly calculated for all s ∈ V. Even prior to convergence, however, the message

values mn
ts (xs) provide useful information. Let yn

s be the set of observations that are

separated from s in G by at most n edges, as illustrated in Figure 2-4(b). Then,

assuming m0
ts (xs) = 1, we have

p (xs | yn
s ) = αp (ys | xs)

∏
t∈N(s)

mn
ts (xs) (2.26)

Thus, the parallel BP message updates effectively compute a series of approximations

{p (xs | yn
s )} to p (xs | y), each of which optimally incorporates all measurements in

an expanding domain of observation.

While intuitively appealing, the parallel BP algorithm is inefficient if implemented

directly on a serial computer. In fact, if the message updates (2.25) are scheduled in

the proper order, each individual message must only be calculated once, and the exact

marginals may be found with only O(N) such updates. One example of an efficient

message scheduling begins by choosing a particular node to be the root of the tree.

This induces a partial ordering of the nodes in scale according to their distance from

the root. Each node, besides the root, then has a unique neighboring parent node

which is closer to the root; the other neighbors are called child nodes. The inference

procedure begins with an upward sweep which calculates all of the messages from child

to parent nodes, starting with the most distant scales and proceeding recursively to

the root. Then, a downward sweep calculates all of the parent to child messages

starting from the root and proceeding outward. For more details, see [20].

The BP update equations (2.25, 2.26) will, in principle, calculate the correct

marginals p (xs | y) for an arbitrary tree–structured Markov random field. In practice,

however, the message update integral (2.25) is intractable for many distributions p (x).

Fortunately, there exist two general classes of tractable distributions. If the hidden

variables xs take values from a discrete set of dimensionm, the integrals become sums

which can be calculated in O(m2) operations per message update. Alternatively,
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for jointly Gaussian MRFs, all conditional distributions are also Gaussian, and the

integrals may be replaced by recursions on the mean and covariance parameters of

these Gaussians. Each message update at node s requires O(d3
s) operations. The

following section explores these updates in detail.

2.3.2 Gaussian Belief Propagation

In this section, we specialize the BP update equations (2.25, 2.26) to the Gaus-

sian graphical models introduced in previous sections. Recall that, for the pur-

pose of calculating p (xs | y), equation (2.20) shows that the conditional likelihoods

{p (yt\s | xs

)}t∈N(s) provide a set of sufficient statistics, where

p
(
yt\s | xs

)
= α

p
(
xs | yt\s

)
p (xs)

(2.27)

Because x and y are jointly Gaussian, p (xs) and p
(
xs | yt\s

)
are also Gaussian, and

therefore have a finite–dimensional parameterization in terms of their mean and co-

variance. When viewed as a function of xs for a fixed set of observations y, the like-

lihood p
(
yt\s | xs

)
does not correspond to a probability distribution. However, equa-

tion (2.27) shows that p
(
yt\s | xs

)
is still proportional to an exponentiated quadratic

form in xs. Since the proportionality constant is independent of xs, we may param-

eterize p
(
yt\s | xs

)
with a “mean” vector and “covariance” matrix, just as we would

a Gaussian probability distribution. Furthermore, using the structure of Gaussian

clique potentials (2.15), it is straightforward to show that the BP messages mts (xs)

may also be parameterized by a mean and covariance. This parameterization is im-

portant because it allows the integral BP update equation (2.25) to be transformed

into a set of linear algebraic equations.

It is possible to develop a set of Gaussian belief propagation equations which act

directly on the mean and covariance parameters of the messages mts (xs). However,

just as §2.2.3 showed that Gaussian prior models are most naturally parameterized

by their sparse inverse covariance matrix J = P−1, Gaussian BP is simplest when the

messages are represented in an information form [44]. For a Gaussian distribution
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with mean µ and covariance P, the information parameters are defined by

ϑ = P−1µ Λ = P−1 (2.28)

We use the notation N−1(ϑ,Λ) to indicate a Gaussian probability distribution with

information parameters ϑ and Λ. For a more detailed introduction to information

parameters, see Appendix B.1. We will denote the information parameters of the BP

messages and conditional marginal distributions as

mn
ts (xs) = αN−1(ϑn

ts,Λ
n
ts) p (xs | yn

s ) = N−1(ϑn
s ,Λ

n
s ) (2.29)

mts (xs) = αN−1(ϑts,Λts) p (xs | y) = N−1(ϑs,Λs) (2.30)

where equation (2.29) gives the values at iteration n, and equation (2.30) gives the

corresponding steady–state values. The moment parameters of p (xs | y) ∼ N
(
x̂s, P̂s

)
are then related to the information parameters as follows:

x̂s = (Λs)
−1ϑs P̂s = (Λs)

−1 (2.31)

Notice that Λ’s are used to denote the inverse covariance parameters of messages and

beliefs, while J ’s denote elements of the inverse covariance of the prior model.

To derive the Gaussian BP equations, we must determine the information param-

eterizations of all of the terms appearing in the general BP equations (2.25, 2.26).

The pairwise clique potentials are already expressed in an information form by equa-

tion (2.15). Using Bayes’ rule, we can write the local observation terms as

p (ys | xs) = α
p (xs | ys)

p (xs)
(2.32)

Clearly, because x ∼ N (0, P ), p (xs) = N−1
(
0, P−1

s,s

)
. Combining the information

form of the normal equations (2.6, 2.7) with the local measurement model (2.18), we

find that p (xs | ys) = N−1
(
CT

s R
−1
s ys, P

−1
s,s + CT

s R
−1
s Cs

)
. Then, taking the quotient
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of these terms using equations (B.8, B.9) gives

p (ys | xs) = αN−1
(
CT

s R
−1
s ys, C

T
s R

−1
s Cs

)
(2.33)

Note that because the update equations employ likelihoods p (ys | xs) rather than

conditional densities p (xs | ys), we are able to avoid explictly computing the marginal

variances Ps,s of the prior model.

Now consider the belief update equation (2.26). By repeated application of the

rules for combining products of Gaussian densities (see equations (B.8, B.9)), we see

immediately that p (xs | yn
s ) = N−1(ϑn

s ,Λ
n
s ) is given by

ϑn
s = CT

s R
−1
s ys +

∑
t∈N(s)

ϑn
ts (2.34)

Λn
s = CT

s R
−1
s Cs +

∑
t∈N(s)

Λn
ts (2.35)

The message update equation (2.25) is slightly more complicated. By repeated ap-

plication of the product formulas, we find that

ψs,t (xs, xt) p (yt | xt)
∏

u∈N(t)\s

mn−1
ut (xt) ∝ N−1

(
ϑ,Λ

)
(2.36)

where

ϑ =

 0

CT
t R

−1
t yt +

∑
u∈N(t)\s ϑ

n−1
ut

 (2.37)

Λ =

 Js(t) Js,t

Jt,s Jt(s) + CT
t R

−1
t Ct +

∑
u∈N(t)\s Λ

n−1
ut

 (2.38)

and ψs,t (xs, xt) is parameterized as in equation (2.15). Applying the marginalization

equations (B.6, B.7) to perform the integration over xt, we find the following parallel
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update equations for the BP messages mn
ts (xs) = αN−1(ϑn

ts,Λ
n
ts):

ϑn
ts = −Js,t

Jt(s) + CT
t R

−1
t Ct +

∑
u∈N(t)\s

Λn−1
ut

−1CT
t R

−1
t yt +

∑
u∈N(t)\s

ϑn−1
ut

(2.39)
Λn

ts = Js(t) − Js,t

Jt(s) + CT
t R

−1
t Ct +

∑
u∈N(t)\s

Λn−1
ut

−1

Jt,s (2.40)

These equations are the Gaussian form of the parallel BP message update equa-

tion (2.25). The initial conditions ϑ0
ts and Λ0

ts may be arbitrarily chosen; typically,

one sets ϑ0
ts = 0 and Λ0

ts = 0. Note that these updates may be easily adapted to other,

more efficient message schedules as discussed in §2.3.1. Due to the matrix inversion,

the cost of computing the message update at node t is O(d3
t ). Upon convergence, the

information parameters of p (xs | y) may be found from equations (2.34, 2.35).

Equations (2.39, 2.40), which represent the standard form of the Gaussian BP

message updates, appear to depend on the chosen factorization of the inverse covari-

ance matrix J into clique potentials. Consider, however, the matrix which is inverted

in each of the update equations. Each incoming message Λut is a linear combina-

tion of Jt(u) with some other terms. Looking at these Jt(u) together with the locally

contributed Jt(s) term, we find that

Jt(s) +
∑

u∈N(t)\s

Jt(u) =
∑

u∈N(t)

Jt(u) = Jt,t (2.41)

where the last equality follows from the consistency condition (2.16). From this, we see

that although the BP messages themselves depend on the choice of clique potentials,

the calculated marginal distributions (or beliefs) do not. In fact, one may define an

alternate sequence of messages whose update depends directly on the (unfactorized)
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block diagonal entries of J as

ϑn
ts = −Js,t

Jt,t + CT
t R

−1
t Ct +

∑
u∈N(t)\s

Λn−1
ut

−1CT
t R

−1
t yt +

∑
u∈N(t)\s

ϑn−1
ut

(2.42)

Λn
ts = −Js,t

Jt,t + CT
t R

−1
t Ct +

∑
u∈N(t)\s

Λn−1
ut

−1

Jt,s (2.43)

where the local marginal distributions p (xs | yn
s ) = N−1(ϑn

s ,Λ
n
s ) are now given by

ϑn
s = CT

s R
−1
s ys +

∑
t∈N(s)

ϑn
ts (2.44)

Λn
s = Js,s + CT

s R
−1
s Cs +

∑
t∈N(s)

Λn
ts (2.45)

Note that the standard (2.39, 2.40) and factorization independent (2.42, 2.43) forms of

the BP message update equations will in general produce different messages (ϑn
ts,Λ

n
ts)

at each iteration. However, if the initial conditions are appropriately chosen, both

sequences of messages will produce the same conditional distributions p (xs | yn
s ) for

every node at every iteration. These alternative BP update equations are especially

useful when the prior model is specified by an inverse covariance J , because it is

possible to use the BP algorithm without first forming clique potentials. In addition,

they reveal certain invariants of the BP algorithm which may aid future analyses of

its performance on graphs with cycles, as discussed in the following section.

2.3.3 Inference for Graphs with Cycles

As demonstrated in the previous sections, tree–structured graphs lead to exact, effi-

cient inference algorithms. Unfortunately, however, the graphical models which arise

in many practical applications have large numbers of cycles. For such graphs, the

local conditional independencies that the BP algorithm uses to integrate information

from neighboring nodes do not exist, and the derivation in §2.3.1 breaks down.

The junction tree algorithm [43, 48] provides one way of extending tree–based in-
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ference procedures to more general graphs. It operates in three stages. In the first

stage, edges are added to G until it is triangulated.8 Then, a tree is formed from

the maximal cliques of the triangulated graph. Finally, an exact inference algorithm,

which is equivalent to belief propagation, is performed on the tree of cliques. The

triangulation step ensures that the clique tree satisfies the running intersection prop-

erty, which requires that any variables shared by two clique nodes also be members

of each clique on their unique connecting path. This property must be satisfied for

local computations on the clique tree to produce globally consistent estimates. Un-

fortunately, for most interesting graphs with cycles, triangulation greatly increases

the dimension d of the resulting clique variables. As tree–based inference procedures

require O(Nd3) operations, the junction tree algorithm is often no more tractable

than direct matrix inversion.

Because direct methods are generally intractable, a wide range of iterative infer-

ence algorithms have been developed for graphs with cycles. One of the most popular

is known as loopy belief propagation [79]. The loopy BP algorithm operates by it-

erating the parallel BP message passing equations, as derived in §2.3.1, on a graph

with cycles. Because of the presence of loops, the messages lose their strict prob-

abilistic interpretation, and the exact answer will not be achieved after any finite

number of iterations. In some cases, the iterations may not converge at all. How-

ever, for many graphs, especially those arising in error–correcting codes [34, 51], loopy

BP converges to beliefs which very closely approximate the true conditional marginal

distributions [33, 52]. The standard BP derivation, as given in §2.3.1, provides no jus-
tification for loopy BP, other than the vague intuition that belief propagation should

perform well for graphs whose cycles are “long enough.”

For Gaussian Markov random fields, loopy BP has been analyzed in some de-

tail. It was examined by Rusmevichientong and Van Roy [62] for the specific graphs

used by turbo codes [51], and for general MRFs by Weiss and Freeman [80]. They

show that when loopy BP does converge, it always calculates the correct conditional

8In a triangulated graph, every cycle of length four or greater has a chord, that is, an edge joining
two nonconsecutive vertices of the cycle.
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means. However, the error covariances are incorrect because the correlations induced

by the cycles are not properly accounted for. Weiss and Freeman were also able to

demonstrate a relationship between fast convergence and good approximations of the

error covariances, and to provide a basic set of sufficient, but overly conservative,

conditions guaranteeing the convergence of loopy BP.

More generally, researchers are beginning to develop a deeper theoretical under-

standing of loopy BP’s behavior. In particular, it has been shown that belief propaga-

tion is intimately connected to the Bethe approximation of statistical physics [82, 83].

Loopy BP can be seen as minimizing a particular approximation to the relative en-

tropy between the estimated beliefs and true pairwise marginal distributions [76].

The BP messages correspond to exponentiated sums of Lagrange multipliers that

enforce the pairwise marginalization constraints (e.g.
∑

xt
p (xs, xt) = p (xs) for all

(s, t) ∈ E) which any locally consistent inference solution must satisfy [83, 84]. This

connection has led to a much better understanding of the nature of the approxima-

tion made by loopy BP [76, 77], as well as a class of generalized belief propagation

algorithms [83, 84] with superior performance.

2.4 Iterative Solution of Linear Systems

As shown by equation (2.6) of §2.1, the conditional mean x̂ of a Gaussian inference

problem can be viewed as the solution of a linear system of equations. Thus, the

problem of calculating x̂ is equivalent to the general linear algebraic problem of solving

Ax = b (2.46)

for some symmetric positive definite matrix A. As discussed in §2.2.2, for the graph-
ical inference problems examined in this thesis A will typically be sparse. Similar

sparse, positive definite linear systems arise in many fields of science and engineer-

ing, perhaps most commonly from the discretization of elliptic partial differential

equations [25]. For this reason, they have been widely studied in the numerical lin-
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ear algebra community, and many different algorithms have been proposed for their

solution.

In this section, we briefly introduce a few of the most effective and relevant linear

algebraic techniques. We begin in §2.4.1 by showing how the simple notion of a

matrix splitting may be used to generate an entire family of iterative algorithms.

Then, in §2.4.2, we briefly present the conjugate gradient iteration, which is generally

considered to be the most effective method for solving sparse positive definite systems.

We conclude by discussing stopping criteria for iterative methods. Note that none of

the techniques presented in this section directly address the complementary inference

problem of calculating entries of the error covariance matrix P̂ .

2.4.1 Stationary Richardson Methods

In this section, we consider equation (2.46), assuming only that A > 0. The unique

solution x = A−1b must clearly satisfy the following equation:

x = x+ (b− Ax) (2.47)

Given some initial guess x0, equation (2.47) naturally suggests the generation of a

sequence of iterates {xn}∞n=1 according to the recursion

xn = xn−1 + (b− Axn−1) = xn−1 + rn−1 = (I − A)xn−1 + b (2.48)

where rn � (b − Axn) is the residual at the nth iteration. This recursion is known

as a Richardson iteration [46, 85]. It is stationary because the previous iterate is

multiplied by the same matrix (I − A) at each iteration.

The behavior of a linear system, like that defined by equation (2.48), is determined

by its eigenvalues. Let the set of all eigenvalues of a matrix A by denoted by {λi (A)}.
The spectral radius is then defined as ρ (A) � maxλ∈{λi(A)} |λ|. It is well known that

xn will converge to the unique fixed point x = A−1b, for arbitrary x0, if and only if

ρ (I − A) < 1. The asymptotic convergence rate is equal to ρ (I − A).
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The dynamic behavior of equation (2.48) depends heavily on A itself. In partic-

ular, convergence will be fastest when {λi (A)} are concentrated around 1, while the

iteration will diverge if ρ (A) > 2. To correct this problem, we can transform the

linear system (2.46) into an alternate system which has the same solution, but more

favorable spectral properties. In particular, for any invertible matrix M , we may

write

M−1Ax = M−1b (2.49)

The matrixM is known as a preconditioner [7, 25], and naturally leads to the following

preconditioned Richardson iteration:

xn = (I −M−1A)xn−1 +M−1b (2.50)

If M is chosen so that the eigenvalues of M−1A are closer to 1 than those of the

original system A, the preconditioned iteration (2.50) may converge after a smaller

number of iterations. However, each iteration is more costly, because it is necessary to

multiply Axn−1 by M−1, or equivalently to solve a linear system of the form Mx̄ = b̄.

Thus, in addition to well approximating A, an effective preconditioner must ensure

that each evaluation of equation (2.50) is not too difficult.

Preconditioners are frequently generated using a matrix splitting [25, 37, 46, 85]

A = M −K of the linear system A, whereK is chosen so thatM = A+K is invertible.

For any such splitting, the corresponding preconditioned Richardson iteration is

xn =
(
I − (A+K)−1A

)
xn−1 + (A+K)−1b

= (A+K)−1
(
Kxn−1 + b

)
(2.51)

Many classic iterative algorithms are generated by appropriately chosen splittings.

Let A = L+D+U where L, D, and U are lower triangular, diagonal, and upper tri-

angular, respectively. The Gauss–Jacobi method choosesM = D andK = −(L+ U).

The resulting preconditioner is particularly easy to apply, simply requiring Axn−1 to

be rescaled by D−1 at each iteration. However, unless A is strongly diagonally dom-
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inant, it is generally not very effective. A slightly more sophisticated splitting sets

M = (L + D) and K = −U . Because M is lower triangular, each iteration of the

resulting Gauss–Seidel preconditioner is easily found by back–substitution. Finally,

the successive overrelaxation (SOR) method attempts to accelerate the Gauss–Seidel

iteration by adjusting the step size. For more details on these stationary methods,

see [7, 25, 37, 85]. Note, however, that none of the classical stationary iterations are

competitive with the conjugate gradient method presented in the following section.

2.4.2 The Conjugate Gradient Iteration

Krylov subspace methods, of which the conjugate gradient (CG) iteration is a special

case, are a class of nonstationary iterative methods commonly used to solve sparse

linear systems. The Krylov subspace of dimension k generated by a matrix A and

vector r is defined as

Kk(A, r) � span
(
r, Ar,A2r, . . . , Ak−1r

)
(2.52)

Krylov subspace methods compute a sequence of iterates xn which optimize some

objective function over Krylov subspaces of successively increasing dimension. The

conjugate gradient method examined in this section is by far the most widely used

Krylov subspace method for positive definite systems. For more details on CG and

other Krylov subspace methods, see [7, 25, 37, 46].

The CG iteration is based on the Krylov subspaces generated by A and an initial

residual r0 = b−Ax0, where x0 is some initial guess for the solution of equation (2.46).

At the nth iteration, CG selects the vector xn as

xn = argmin
x̄∈x0⊕Kn(A,r0)

(Ax̄− b)T A−1 (Ax̄− b)

= argmin
x̄∈x0⊕Kn(A,r0)

||Ax̄− b||A−1 (2.53)

CG is particularly effective because the minimization in equation (2.53) can be per-

formed very efficiently, requiring only a few matrix–vector products involving the
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matrix A and some inner products (see [25] or [37] for explicit derivations). For

graph–structured inference problems like those introduced in §2.3, the cost of each

CG iteration on a graph with N nodes of dimension d is O(Nd2) operations. Note

that, ignoring finite precision effects, CG is guaranteed to converge after at most

dim(A) iterations. Typically, however, the magnitude ||rn|| of the normalized resid-

ual drops quite quickly, and fewer iterations are necessary.

The convergence rate of the conjugate gradient iteration may be analyzed using

matrix polynomials. As shown by [25, p. 313],

||rn||A−1

||r0||A−1

≤ min
pn∈Pn

max
λ∈{λi(A)}

|pn(λ)| (2.54)

where Pn is the set of all nth order polynomials pn such that pn(0) = 1. Therefore,

the convergence of the CG iteration is closely related to how well the eigenspectrum

may be fit by a polynomial. If we restrict Pn to the class of Chebyshev polynomials,

the following well–known bound is attained:

||rn||A−1

||r0||A−1

≤ 2

(√
κ− 1√
κ+ 1

)n

κ � λmax(A)

λmin(A)
(2.55)

Here, κ is the condition number of the matrix A. Note that CG’s performance is best

when the eigenvalues are tightly clustered so that κ is small.

To improve conjugate gradient’s convergence rate, we would like to consider a

preconditioned systemM−1Ax = M−1b as in §2.4.1. However, even ifM is symmetric,

M−1A will generally not be, and therefore apparently cannot be solved using CG.

Suppose instead that a square root decomposition M−1 = QTQ of the preconditioner

is available. We could then form a symmetric preconditioned system as

(QAQT )(Q−Tx) = QT b (2.56)

with the desired eigenspectrum (
{
λi

(
QAQT

)}
= {λi (M

−1A)}). Fortunately, in the

case of the CG iteration, it is not necessary to explicitly compute this square root

decomposition, because the method can be rewritten so that M−1 = QTQ is only
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applied in its entirety (see [25, 37]). Thus, any symmetric preconditioning matrix

may be easily integrated into the conjugate gradients algorithm.

Although CG computes the desired solution A−1b, it does not explicitly calcu-

late any entries of A−1 in the process, and thus does not directly provide error

covariance information. For inference problems defined by the standard normal

equations (2.1, 2.2), Schneider [65, 67] has developed a method for extracting the

error variances directly from the search directions generated by the CG iteration.

Similar methods may also be applied to the information form of the normal equa-

tions (2.6, 2.7) considered in this thesis [9, 57]. However, accurate error variances

cannot be obtained without reorthogonalization of the search directions, which may

greatly increase the computational cost of the CG iteration. In addition, the error

variances often converge quite slowly relative to the conditional mean estimates.

2.4.3 Stopping Criteria

When applying any of the iterative methods considered in the previous sections, it

is necessary to determine when to stop the iteration, i.e. to decide that xn is a

sufficiently close approximation to A−1b. Given a tolerance parameter ε, we would

ideally like to iterate until

||A−1b− xn||2 ≤ ε (2.57)

Unfortunately, because A−1b is unavailable, equation (2.57) cannot be evaluated.

However, the residual rn = b − Axn is available. Therefore, as suggested in [7], we

may instead iterate until
||rn||2
||b||2 ≤ ε (2.58)

Using the identity (A−1b− xn) = A−1rn, equation (2.58) is easily shown to yield the

following bound on the final error:

||A−1b− xn||2 ≤ εσmin(A)||b||2 (2.59)

All of the simulations in this thesis use this residual–based stopping criterion.
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Chapter 3

Embedded Trees

In this chapter, we develop a set of novel, iterative algorithms for exactly solving

Gaussian inference problems defined on graphs with cycles. These algorithms oper-

ate by exploiting the presence of tractable substructures within complex graphs. As

discussed in §2.3, estimation problems on acyclic, or tree–structured, graphs are easily

solved by direct recursive procedures. By removing edges from graphs with cycles, we

may reveal a wide variety of trees embedded within the original graph. We demon-

strate that this idea may be used to construct sequences of tractable subproblems

whose solution rapidly converges to that of the original loopy graph problem.

We begin in §3.1 by developing the idea of embedded trees in more detail. Then, in

§3.2, we show how such trees can be exploited to calculate iteratively the conditional

mean of a loopy Gaussian inference problem. For appropriately chosen spanning

trees, the resulting embedded trees algorithm [78] exhibits rapid convergence rates

which compare favorably with existing techniques. In the following section (§3.3), we
show how embedded trees may also be used to calculate error covariances correctly

for problems on graphs with cycles. Then, in §3.4, we provide a detailed analysis of

the convergence behavior of the algorithms presented in the previous two sections.

We conclude with a set of numerical experiments comparing the performance of the

proposed algorithms to existing techniques.
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3.1 Loopy Graphs and Spanning Trees

As discussed in §2.3, inference problems defined on acylic graphs may be efficiently

solved by direct recursive algorithms. These algorithms depend on the critical fact

that for tree–structured graphs, there is a single unique path between each pair of

nodes. This uniqueness allows the correlation between any two nodes to be expressed

as a simple function of the pairwise clique potentials associated with the edges con-

necting them. For graphs with cycles, however, there are many paths between pairs

of nodes, and correlations are a complex function of all of these paths. This pre-

vents the construction of a partial node ordering which maintains the conditional

independencies necessary for recursive inference.

Exact inference techniques for graphs with cycles, such as the junction tree algo-

rithm, apply recursive inference algorithms to an acyclic graph formed by clustering

nodes. By clustering nodes, these algorithms also implicitly cluster the many paths

connecting each pair of nodes, properly integrating the correlations produced by those

paths. Unfortunately, for complex graphs with many cycles, exactly considering the

full correlation structure in parallel is prohibitively costly.

In this thesis, we instead propose a set of inference algorithms which sequentially

consider different subsets of the correlation paths contained in the original graph.

Each iteration of these algorithms involves a set of exact computations on a span-

ning tree of the original graph. For a connected graph G = (V , E), a spanning tree

GT = (V , ET ) is defined to be a connected subgraph (ET ⊂ E) which has no cycles. As

Figure 3-1 illustrates, there are typically a large number of possible spanning trees

embedded within graphs with cycles.

For Gaussian graphical models, spanning trees are closely connected to the struc-

tural properties of the inverse covariance matrix. Consider a Gaussian stochastic pro-

cess x ∼ N−1(0, J) which is Markov with respect to an undirected graph G = (V , E).
By Theorem 2.2, for any s, t ∈ V such that s �= t, Js,t will be nonzero if and only if

(s, t) ∈ E . Thus, modifications of the edge set E are precisely equivalent to changes in

the locations of the nonzero off–diagonal entries of J . In particular, consider a mod-
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J = P−1 JT1 = J +KT1 JT2 = J +KT2

JT3 = J +KT3 JT4 = J +KT4 JT5 = J +KT5

Figure 3-1: Embedded trees produced by five different cutting matrices {KTi
}5i=1 for a nearest–

neighbor grid. Observation nodes are not shown.

ified stochastic process xT ∼ N−1(0, JT) which is Markov with respect to a spanning

tree GT = (V , ET ). For any such JT , there exists a symmetric matrix KT such that

JT = J +KT (3.1)

Because it acts to remove edges from the graph, KT is called a cutting matrix. As

Figure 3-1 illustrates, different cutting matrices may produce different spanning trees

of the original graph. Note that the cutting matrix KT also defines a matrix splitting

J = (JT −KT) as introduced in §2.4.1.
Certain elements of the cutting matrix are uniquely defined by the choice of span-

ning tree GT . For example, each discarded edge constrains the corresponding off–

diagonal blocks of KT :

(KT)s,t = −Js,t (s, t) ∈ E \ ET (3.2)
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However, other entries of KT , such as the diagonal elements, are not constrained by

graph structure. Consequently, there exist many different cutting matrices KT , and

associated inverse covariances JT , corresponding to a given spanning tree GT .
In later sections, it will be useful to define a restricted class of regular cutting

matrices. As with any cutting matrix, the off–diagonal entries corresponding to cut

edges are given by equation (3.2). However, all other off–diagonal entries of a regular

cutting matrix must be zero. In addition, the block diagonal entries for nodes from

which no edge is cut must be zero. Thus, for a given GT , the corresponding family

of regular cutting matrices differs only in the block diagonal entries corresponding to

nodes involved in at least one cut edge.

As discussed in the Introduction, many potentially interesting classes of graphi-

cal models are “nearly” tree–structured. For such models, it is possible to reveal an

embedded spanning tree by removing a small (relative to N) number of edges. Let

E � |E \ET | denote the number of discarded or “cut” edges. Clearly, any regular cut-

ting matrix KT removing E edges may have nonzero entries in at most 2Ed columns,

implying that rank(KT) ≤ O(Ed). Thus, for sparsely connected graphical models

where E � N , cutting matrices may always be chosen to have low rank. Many of

the algorithms developed later in this thesis explicitly exploit this property, leading

to drastically reduced computational costs for sufficiently sparse graphs.

In this section, we have focused on spanning trees as particular examples of sub-

graphs for which exact calculations are tractable. However, there exist many other

tractable options. For example, graphs with a single cycle, which are sometimes

known as boundary value systems, may be solved nearly as efficiently as acyclic

graphs [53]. More generally, we could consider triangulated graphs of bounded clique

size for which exact solution by the junction tree algorithm is feasible. In most cases,

the algorithms developed in this thesis do not depend on the details of the belief

propagation algorithm, and would extend equally well to these more general exact

inference subroutines. For concreteness, however, we will focus most of our attention

on tree–structured subgraphs.

54



3.2 Iterative Calculation of Conditional Means

In this section, we return to the graphical inference problem introduced in §2.3. For
the moment, we focus solely on the calculation of the mean x̂ of the conditional

distribution p (x | y) ∼ N
(
x̂, P̂

)
. As before, the prior model x ∼ N (0, P ) will

be parameterized by a sparse inverse covariance matrix J = P−1. The normal equa-

tions (2.6, 2.7) defining the conditional mean may be rewritten in terms of the inverse

error covariance matrix Ĵ � P̂−1 as follows:

Ĵ x̂ = CTR−1y (3.3)

Ĵ = J + CTR−1C (3.4)

Throughout this section, we let G = (V , E) denote the graph with respect to which

the conditional distribution p (x | y) is Markov. If the observations are local, as in

equation (2.18), then G will match the graphical structure of the prior model p (x).

More generally, however, non–local observations may introduce extra edges.

3.2.1 Exploiting Embedded Trees

As demonstrated in §2.3.2, Gaussian inference problems defined on tree–structured

graphs may be exactly solved using an efficient set of recursions. In this section, we

combine these recursions with the spanning trees introduced in §3.1 to develop an

iterative inference algorithm for graphs with cycles. Let GT = (V , ET ) be a spanning

tree of G, and ĴT the inverse covariance matrix of a stochastic process which is Markov

with respect to GT . Then, letting KT = (Ĵ− ĴT) be the cutting matrix corresponding

to ĴT , we may rewrite equation (3.3) as

(
Ĵ +KT

)
x̂ = KT x̂+ CTR−1y

ĴT x̂ = KT x̂+ CTR−1y (3.5)

55



By comparison to equation (3.3), we see that equation (3.5) corresponds to a tree–

structured Gaussian inference problem, with a set of perturbed observations given by

(KT x̂+ CTR−1y).

Because the “observations” (KT x̂+CTR−1y) depend on the conditional mean x̂,

equation (3.5) does not provide a direct solution to the original inference problem.

However, it does suggest a natural iterative solution. Let {GTn}∞n=1 be a sequence of

spanning trees of G, and {KTn}∞n=1 a corresponding sequence of cutting matrices such

that ĴTn = (Ĵ +KTn) is Markov with respect to GTn . Then, from some initial guess

x̂0, we may generate a sequence of iterates {x̂n}∞n=1 using the recursion

ĴTnx̂
n = KTnx̂

n−1 + CTR−1y (3.6)

If the cutting matrix KTn is chosen so that ĴTn is positive definite, equation (3.6)

is precisely equivalent to a Gaussian inference problem defined on a tree–structured

Markov random field. It can therefore be solved using the belief propagation recur-

sions introduced in §2.3.2, allowing x̂n to be calculated as

x̂n = Ĵ−1
Tn

(
KTnx̂

n−1 + CTR−1y
)

(3.7)

We will refer to the recursions defined by equation (3.7) as the embedded trees (ET)

algorithm [78]. Note that this recursion is similar to a Richardson iteration, as in-

troduced in §2.4.1, except that the preconditioning system ĴTn may change from

iteration to iteration. The cost of computing x̂n from x̂n−1, as in equation (3.7), is

O(Nd3 +Ed2), where N = |V| is the number of nodes, E = |E \ ETn| is the number of

cut edges, and d is the dimension of the hidden variables xs. Typically E is at most

O(N), and the overall cost of each iteration is O(Nd3).

In order to make a clear connection to tree–structured inference algorithms, the

preceding discussion has assumed that ĴTn is positive definite. In general, though, it

is sufficient to choose KTn so that ĴTn is invertible. In such cases, the probabilistic

interpretation of equations (3.6, 3.7) is no longer clear. However, the Gaussian BP

recursions (2.42, 2.43) will still produce the unique algebraic solution to equation (3.6),
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and take onlyO(Nd3) operations to do it. Note that determining whether an arbitrary

KTn leads to an invertible ĴTn is in general a difficult problem. See §3.4 for a variety

of easily checkable sufficient conditions which ensure invertibility.

There is an alternative form of the embedded trees mean recursion (3.7) which will

be useful in the subsequent analysis. By taking the difference between the relations

implied by equation (3.6) at subsequent iterations, we have

ĴTnx̂
n − ĴTn−1 x̂

n−1 = KTnx̂
n−1 −KTn−1x̂

n−2 (3.8)

Noting from equation (3.1) that ĴTn −KTn = ĴTn−1 −KTn−1 , we may rewrite (3.8) as

x̂n = x̂n−1 + Ĵ−1
Tn
KTn−1

(
x̂n−1 − x̂n−2

)
(3.9)(

x̂n − x̂n−1
)

= Ĵ−1
Tn
KTn−1

(
x̂n−1 − x̂n−2

)
(3.10)

where the initial condition (x̂1− x̂0) is determined according to equation (3.7). Equa-

tion (3.10) explicitly reveals the important fact that the dynamics of the ET algorithm

depend solely on the chosen set of cutting matrices KTn . The observations y act only

to set the initial conditions. This data independence allows us to analyze the converge

properties of the ET iterations solely in terms of the chosen cutting matrices.

Consider the evolution of the error en � (x̂n−x̂) between the estimate x̂n at the nth

iteration and the solution x̂ of the original inference problem. Using equation (3.3),

we may rewrite the ET recursion (3.6) as

ĴTnx̂
n = KTnx̂

n−1 + Ĵ x̂ = KTnx̂
n−1 +

(
ĴTn −KTn

)
x̂ (3.11)

This equation may be rewritten to relate the errors at subsequent iterations:

en = Ĵ−1
Tn
KTne

n−1 (3.12)

Together, equations (3.12) and (3.10) lead to the following result.
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Proposition 3.1. For any starting point x̂0, the conditional mean x̂ of the original

inference problem (3.3) is the unique fixed point of the iterates {x̂n}∞n=1 generated

by the embedded trees recursion (3.7). The error en � (x̂n − x̂) and first difference

dn � (x̂n − x̂n−1) evolve according to

en =

[
n∏

j=1

Ĵ−1
Tj
KTj

]
e0 (3.13)

dn =

[
n∏

j=2

Ĵ−1
Tj
KTj−1

]
d1 (3.14)

Proof. The uniqueness of the fixed point x̂ follows directly from the invertibility of Ĵ

and ĴTn = Ĵ +KTn . Equations (3.13) and (3.14) may be derived by induction using

equations (3.12) and (3.10), respectively.

While Proposition 3.1 shows that the ET recursion has a unique fixed point at the

optimal solution x̂, it does not guarantee that x̂n will converge to that fixed point.

In fact, if the cutting matrices KTn are poorly chosen, x̂n may diverge from x̂ at a

geometric rate (see §3.2.3 for an example).

3.2.2 Embedded Trees as a Richardson Iteration

In this section, we examine the connections between the embedded trees algorithm

and the Richardson iterations introduced in §2.4.1. In the process, several standard

linear algebraic results are used to analyze the convergence of the ET iterations.

Throughout this section, we assume that the cutting matrices KTn are chosen so that

ĴTn is invertible, ensuring that each iterate may be unambiguously calculated using

equation (3.7).

One natural implementation of the embedded trees algorithm cycles through a

fixed set of T spanning trees {GTn}Tn=1 in a periodic order, so that

GTn+kT
= GTn k ∈ Z+ (3.15)
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In this case, both en and dn evolve as linear periodically varying systems whose

convergence can by analyzed as follows:

Theorem 3.2. Suppose the embedded trees mean recursion (3.7) is implemented by

periodically cycling through T embedded trees, as in equation (3.15). Then the error

en � x̂n − x̂ and first difference dn � x̂n − x̂n−1 evolve according to

eTn+T =

[
T∏

j=1

Ĵ−1
Tj
KTj

]
eTn � EeTn (3.16)

dTn+T+1 =

[
T∏

j=1

Ĵ−1
Tj+1

KTj

]
dTn+1 � DdTn+1 (3.17)

where ĴTT+1
= ĴT1 , and the matrices E andD have the same eigenvalues. If ρ (E) < 1,

then for arbitrary x̂0, en n→∞−→ 0 at an asymptotic rate of at most γ � ρ (E)
1
T . Alter-

natively, if ρ (E) > 1, then |en| n→∞−→ ∞ for almost all x̂0.

Proof. See Appendix C.1.

From this theorem, it follows that the convergence rate of the ET algorithm may be

optimized by choosing the cutting matrices KTn such that the spectral radius ρ (E)

is as small as possible.

When the ET iteration (3.7) uses the same cutting matrix KT at every iteration, it

is clearly exactly equivalent to the preconditioned Richardson iteration generated by

the matrix splitting Ĵ = ĴT −KT (see equation (2.51)). The following theorem shows

that when the recursion is implemented by periodically cycling through T > 1 cutting

matrices, we may still recover a stationary Richardson iteration by considering every

T th iterate.

Theorem 3.3. Suppose that the ET recursion (3.7) is implemented by periodically

cycling through T cutting matrices {KTn}Tn=1. Consider the subsampled sequence of

estimates {x̂nT}∞n=0 produced at every T th iteration. The ET procedure generating

these iterates is exactly equivalent to a preconditioned Richardson iteration

x̂Tn =
(
I −M−1

T Ĵ
)
x̂T (n−1) +M−1

T CTR−1y (3.18)
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where the preconditioner M−1
T is defined according to the recursion

M−1
n =

(
Ĵ +KTn

)−1

KTnM
−1
n−1 +

(
Ĵ +KTn

)−1

(3.19)

with initial condition M−1
1 =

(
Ĵ +KT1

)−1

.

Proof. We prove this theorem by induction. When T = 1, this result is easily seen to

hold by comparison of equations (2.51) and (3.7). Now suppose it holds for T = n−1,
so that

x̂n−1 =
(
I −M−1

n−1Ĵ
)
x̂0 +M−1

n−1C
TR−1y

Then, applying equation (3.7), the nth ET iterate is given by

x̂n =
(
Ĵ +KTn

)−1 (
KTnx̂

n−1 + CTR−1y
)

=
(
Ĵ +KTn

)−1

KTnx̂
0 −

(
Ĵ +KTn

)−1

KTnM
−1
n−1Ĵ x̂

0 + · · ·

· · ·+
(
Ĵ +KTn

)−1

KTnM
−1
n−1C

TR−1y +
(
Ĵ +KTn

)−1

CTR−1y

= x̂0 −
(
Ĵ +KTn

)−1

Ĵ x̂0 −
(
Ĵ +KTn

)−1

KTnM
−1
n−1Ĵ x̂

0 + · · ·

· · ·+
((

Ĵ +KTn

)−1

KTnM
−1
n−1 +

(
Ĵ +KTn

)−1
)
CTR−1y

=
(
I −M−1

n Ĵ
)
x̂0 +M−1

n CTR−1y

where M−1
n and M−1

n−1 are related as in equation (3.19).

Connections between the ET algorithm and other Richardson iterations are further

discussed in §3.2.5.

3.2.3 Motivating Examples

In this section, we provide some examples which serve several purposes. First, they

demonstrate that it is typically quite simple to select a set of spanning trees, and

a corresponding set of cutting matrices, that lead to a convergent ET iteration. In

addition, they show that if the trees are appropriately chosen, the resulting con-

vergence rate compares quite favorably with alternative inference methods. Finally,
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they demonstrate a variety of interesting qualitative features which motivate the sub-

sequent sections of this chapter. A more extensive set of simulation results, which

evaluate the ET algorithm’s performance on a wider range of problems, can be found

in §3.5.

Single Cycle Graphs

We begin by considering a very simple graph whose edges form a single 20–node cycle.

Although in practice such graphs can be easily solved by direct methods [53], they

provide a useful starting point for understanding the behavior of iterative methods.

To construct the inverse prior covariance J , for each edge (s, t) we assign a randomly

generated clique potential ψs,t (xs, xt) as in equation (2.15):

ψs,t (xs, xt) = exp

−12 [xs xt

] wst astwst

astwst wst

xs

xt

 (3.20)

= exp

{
−1
2
wst (xs + astxt)

2

}

For each edge, wst is sampled from an exponential distribution with mean 1, while

ast is set to +1 or −1 with equal probability.1 We then associate a measurement

ys = xs + vs, vs ∼ N (0, 1), with each node, so that the inverse error covariance

matrix is given by Ĵ = J + I. The example presented in this section is for a single

realization from this distribution of prior models. However, the characteristics we

discuss have been consistently observed across many empirical trials, and also hold

for other prior model distributions.

To reveal a spanning tree of a single cycle graph, the cutting matrix KT must only

remove a single edge. In this section, we restrict ourselves to regular cutting matrices,

so that all off–diagonal of entries of KT will be zero except for the pair of non–zero

entries fixed by equation (3.2). However, we are still free to choose the two diagonal

entries (KT)s,s, (KT)t,t corresponding to the nodes from which the single edge (s, t) is

cut. We consider three different methods for choosing these values:

1By construction, Js,s =
∑

t∈N(s) |Js,t| for all s ∈ V, ensuring that J is positive semidefinite.
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Positive Semidefinite By setting (KT)s,s = (KT)t,t = |(KT)s,t|, we guarantee that

KT is positive semidefinite. This ensures that ĴT = Ĵ +KT is positive definite,

allowing the probabilistic interpretation of the ET iteration discussed in §3.2.1.

Zero Diagonal If the diagonal of KT is set to zero, ĴT and Ĵ will have the same

diagonal values. If the cut edge is sufficiently weak, the resulting ĴT should well

approximate Ĵ .

Negative Semidefinite By setting (KT)s,s = (KT)t,t = −|(KT)s,t|, the cutting ma-

trix acts to entirely remove the clique potential ψs,t (xs, xt) from the graph.

More sophisticated choices of the diagonal entries are discussed in §4.1.
We begin by examining the convergence rate of the ET iteration (3.7) when the

same cutting matrix KT is used at every iteration. In this case, Theorem 3.2 shows

that this convergence rate is given by γ = ρ (E), where E = Ĵ−1
T KT . Figure 3-2(a)

plots γ as a function of the magnitude |Ĵs,t| of the off–diagonal error covariance entry
corresponding to the cut edge. Intuitively, convergence is fastest when the magnitude

of the cut edge is small. In addition, we see that the zero diagonal cutting matrices

always lead to the fastest convergence rates. Notice that for sufficiently strong edges,

negative definite cutting matrices lead to a divergent iteration. Thus, although cutting

edges by removing clique potentials makes sense from a probabilistic perspective, the

ET algorithm appears to perform best when cutting matrices are chosen so that the

overall inverse error covariance matrix Ĵ is perturbed as little as possible.

More interesting behavior is obtained when the ET algorithm is implemented

by periodically cycling between two cutting matrices KT1 , KT2 . Theorem 3.2 then

shows that the convergence rate is given by γ = ρ (E)1/2, where E = Ĵ−1
T2
KT2 Ĵ

−1
T1
KT1 .

Figures 3-2(b,c) plot these convergence rates when KT1 is chosen to cut the cycle’s

weakest edge, and KT2 is varied over all other edges. When plotted against the

magnitude of the second edge cut, as in Figure 3-2(b), the γ values display little

structure. Figure 3-2(c) shows these same γ values plotted against an index number

showing the ordering of edges in the cycle. Edge 7 is the weak edge removed by

KT1 . Notice that for the zero diagonal case, cutting the same edge at every iteration
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Figure 3-2: Behavior of the ET algorithm on a single 20–node cycle. (a) Single–tree conver-
gence rate versus edge strength. (b) Two–tree convergence rate versus edge strength. (c) Two–tree
convergence rate versus edge index. (d) Comparison of zero diagonal single–tree and two–tree itera-
tions. (e) Comparison to belief propagation (BP) and conjugate gradient (CG). (f) Two individually
divergent cuts produce a convergent two–tree iteration.
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is the worst possible choice, despite the fact that every other edge in the graph is

stronger and leads to slower single–tree iterations. The best performance is obtained

by choosing the second cut edge to be as far from the first edge as possible.

In Figures 3-2(d,e), we examine the convergence behavior of the zero diagonal

two–tree iteration corresponding to edges 7 and 19 in more detail. For both figures,

the error at each iteration is measured using the normalized residual introduced in

§2.4.3. Figure 3-2(d) shows that even though the single–tree iteration generated

by edge 19 converges rather slowly relative to the edge 7 iteration, the composite

iteration is orders of magnitude faster. In Figure 3-2(e), we compare the performance

of the parallel belief propagation (BP) and unpreconditioned conjugate gradient (CG)

iterations, showing that for this problem the ET algorithm is much faster.

The previous plots suggest that a two–tree ET iteration may exhibit features

quite different from those observed in the corresponding single–tree iterations. This

is dramatically demonstrated by Figure 3-2(f), which considers the negative definite

cutting matrices corresponding to the two strongest edges in the graph. As predicted

by Figure 3-2(a), the single–tree iterations corresponding to these edges are diver-

gent. However, because these strong edges are widely separated in the original graph

(indexes 1 and 12), they lead to a two–tree iteration which outperforms even the best

single–tree iteration.

Nearest–Neighbor Grids

In this section, we apply the ET algorithm to a 25× 25 nearest–neighbor grid, anal-

ogous to the 5 × 5 grid in Figure 3-1. The prior model J was created by randomly

generating clique potentials exactly as in the previous example, and we again asso-

ciate measurements of uniform quality with each node so that Ĵ = J + I. From the

previous example, we expect the ET iteration to perform best when implemented with

multiple trees cutting widely separated edges. Therefore, we consider two different

choices of spanning trees corresponding to the first two cutting matrices of Figure 3-

1. For the presented results, we set the diagonal entries of the cutting matrices to

zero. We also examined the positive semidefinite and negative semidefinite conditions
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Figure 3-3: Convergence of the ET algorithm on a 25× 25 nearest–neighbor grid. (a) Two single–
tree iterations (ET(1) and ET(2)) are compared to the corresponding two–tree iteration (ET(1,2)).
(b) Comparison to the belief propagation (BP) and conjugate gradient (CG) methods.

introduced in the last section, but found that they again led to inferior performance.

Figure 3-3(a) compares the performance of the two single–tree ET iterations (de-

noted by ET(1) and ET(2)) to the two–tree iteration (denoted by ET(1,2)). We

see that using multiple trees again leads to dramatic improvements. Figure 3-3(b)

shows that for this problem, the ET algorithm converges faster than CG, but at an

asymptotically slower rate than BP. Thus, the ET algorithm can lead to competitive

performance even when large numbers of edges must be removed to reveal spanning

trees. The performance of the ET algorithm on nearest–neighbor grids is examined

in more detail in §3.5.3.

3.2.4 Geometric Analysis

In the Introduction, we saw that many interesting classes of graphical models are

“nearly” tree–structured, in the sense that only a small number of edges must be

removed to reveal an embedded spanning tree. As discussed in §3.1, the rank of

the cutting matrices KT associated with such spanning trees is small compared to

the total number of nodes in the graph. Motivated by this fact, in this section we

demonstrate that low–rank cutting matrices place a set of geometric constraints on

the dynamics of the embedded trees recursions. In particular, we show that the errors
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en = (x̂n − x̂) are constrained to lie in a particular subspace of dimension rank(KT).

Theorem 3.2 demonstrates that, for a given set of cutting matrices {KTn}Tn=1,

the ET error dynamics are determined by the Ĵ−1
Tn
KTn matrices featured in equa-

tion (3.16). From basic linear algebra, we know that rank(Ĵ−1
Tn
KTn) ≤ rank(KTn).

The following lemma provides a decomposition which explicitly reveals the important

role played by the eigenstructure of KTn .

Lemma 3.4. Given two inverse covariance matrices Ĵ and ĴTn of dimension Nd, let

KTn = (ĴTn − Ĵ) be the associated symmetric cutting matrix. Defining r � rank(KTn),

the reduced–rank diagonalization ofKTn is given byKTn = UnDnU
T
n , whereDn ∈ Rr×r

is a diagonal matrix containing the nonzero eigenvalues of KTn and the columns of

Un ∈ RNd×r are the corresponding eigenvectors (UT
n Un = Ir). We then have

Ĵ−1
Tn
KTn =

(
P̂−1 +KTn

)−1

KTn = P̂Un

(
D−1

n + UT
n P̂Un

)−1

UT
n (3.21)

Proof. See Appendix C.2.

Suppose that the ET algorithm is implemented using a single cutting matrix KT1 .

Lemma 3.4 then shows that at each iteration, the error vector en must reside within

the subspace spanned by U1, the eigenvectors associated with the nonzero eigenvalues

of KT1 . When multiple trees are used, the specific subspace in which the error resides

is always defined by the most recently applied cutting matrix, and will therefore

change from iteration to iteration. However, because each cutting matrix removes

the same number of edges to reveal a spanning tree, the dimension of these subspaces

will always be O(Ed).
In §3.2.3, we showed that there can be important interactions between the different

spanning trees chosen for a particular periodic implementation of the ET algorithm.

The following proposition examines the relationship between different orderings of a

given, fixed set of cutting matrices.
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Proposition 3.5. Let {KTn}Tn=1 be a fixed set of T cutting matrices. Consider the

family of circular permutation functions σk(n) defined by

σk(n) = 1 + ((n+ k − 1) mod T ) k = 0, 1, . . . , T − 1 (3.22)

Then any such circular permutation leaves the eigenvalues of the ET error dynamics

matrix E, as defined by equation (3.16), unchanged:

{
λi

(
T∏

n=1

Ĵ−1
Tn
KTn

)}
=

{
λi

(
T∏

n=1

Ĵ−1
Tσk(n)

KTσk(n)

)}
(3.23)

In addition, the reversal of any such permutation retains the same eigenvalues:

{
λi

(
Ĵ−1
Tσk(1)

KTσk(1)
Ĵ−1
Tσk(2)

KTσk(2)
· · · Ĵ−1

Tσk(T )
KTσk(T )

)}
=
{
λi

(
Ĵ−1
Tσk(T )

KTσk(T )
Ĵ−1
Tσk(T−1)

KTσk(T−1)
· · · Ĵ−1

Tσk(1)
KTσk(1)

)}
(3.24)

Proof. Equation (3.23) can be easily shown be repeated application of the eigenvalue

identity {λi (AB)} = {λi (BA)}. To show equation (3.24), we note from Lemma 3.4

that Ĵ−1
Tn
KTn = P̂GTn for an appropriately chosen symmetric matrix GTn . Then,

applying the same eigenvalue identities used in the proof of Theorem 3.2, we have

{
λi

(
P̂GTT

· · · P̂GT2P̂GT1

)}
=

{
λi

((
P̂GTT

· · · P̂GT2P̂
)T

GT1

)}
=
{
λi

(
P̂GT2P̂GT3 · · · P̂GTT

P̂GT1

)}
=
{
λi

(
P̂GT1P̂GT2 · · · P̂GTT−1

P̂GTT

)}
Equation (3.24) then follows from equation (3.23).

Note that this proposition shows that all permutations of at most three cutting ma-

trices will lead to ET recursions with completely equivalent dynamical properties.

More generally, the set of all permutations of T ≥ 3 cutting matrices may be divided

into (T − 1)!/2 classes such that each of the 2T permutations within each class are

spectrally equivalent.

Proposition 3.5 shows that the eigenvalues governing the ET algorithm’s dynamics
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are invariant to permutations that leave the set of adjacent pairs of cutting matrices{
(KTn , KTn+1)

}
unchanged. The following theorem provides a decomposition of the

ET error dynamics matrix which explicitly shows the mechanism by which adjacent

cutting matrices interact.

Theorem 3.6. Let {KTn}Tn=1 be a set of T cutting matrices, each with a reduced–

rank eigendecomposition KTn = UnDnU
T
n as defined in Lemma 3.4. Then the nonzero

eigenvalues of the ET error dynamics matrix E, as defined by equation (3.16), are

equal to the eigenvalues of the reduced–dimension matrix Er defined by

Er =
T∏

n=1

UT
n+1P̂Un

(
D−1

n + UT
n P̂Un

)−1

(3.25)

where UT+1 � U1.

Proof. This equation follows immediately if we use equation (3.21) to rewrite equa-

tion (3.16), and then use the identity {λi (AB)} = {λi (BA)} to switch the position

of the UT
1 term.

Note that the dimension of Er is equal to the rank of KT1 . Thus, when combined

with Proposition 3.5, equation (3.25) demonstrates that the dynamics of the errors en

may be expressed by a matrix of dimension r � min1≤n≤T rank(KTn). This is possible

because en is constrained to lie within an r–dimensional subspace of RNd at least once

during each period of the ET recursions.

3.2.5 Connections to Previous Work

As discussed in §3.2.2, in certain cases the embedded trees recursion can be viewed

as a Richardson iteration. Consequently, although the ET iteration is novel, it has a

number of interesting connections to other algorithms in the numerical linear algebra

literature. In this section, we provide a brief introduction to the most relevant related

techniques.
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Single Tree Splittings

The discussion in §3.1 focused on spanning tree approximations of graphs with cycles

because they lead to the smallest number of cut edges, and therefore hopefully the

best approximations. However, the BP inference algorithm may be used to solve a

problem defined on a disconnected set of trees, known as a forest, just as easily. The

simplest such forest is the graph in which every edge is cut, so that the maximal

cliques are single nodes. The ET algorithm, when applied to this trivial spanning

forest, is exactly equivalent to the classic Gauss–Jacobi iteration presented in §2.4.1.
Although more general tree–structured graph splittings are not as common, they

have been investigated by a few authors. Sjogren [68] defines a tree splitting, and

uses the resulting Richardson iteration to solve non–negative linear systems arising

in the analysis of Markov chains. However, his analysis uses many of the special

properties of such non–negative systems, and is not directly applicable to the positive

definite systems we consider. He never considers an alternation between different tree

splittings. More recently, several authors have investigated the use of a single tree

splitting as a preconditioner for the conjugate gradient iteration [8, 16, 17, 19]. This

work is discussed in more detail in §4.3.3.

Parallel Multisplittings

The ET algorithm differs from standard Richardson iterations because it may employ

a different matrix splitting at each iteration. O’Leary and White [54] also employ

multiple matrix splittings to form a single composite iteration. However, they combine

their splittings in a parallel rather than a sequential fashion. In particular, given a

set of T splittings Ĵ = Mt −Kt, t = 1, . . . , T , they generate a sequence of iterates x̂n

according to

x̂n =
T∑

t=1

DtM
−1
t Ktx̂

n−1 +
T∑

t=1

DtM
−1
t CTR−1y (3.26)

where Dt are diagonal matrices chosen so that
∑

t Dt = I. This iteration is motivated

by the fact that each of the splittings may be independently applied at each iteration,

allowing easy parallelization.
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Ĵ ĴT1 = Ĵ +KT1 ĴT2 = Ĵ +KT2

Figure 3-4: Spanning forests employed by the ADI method. KT1 is chosen to remove all horizontal
edges, while KT2 removes vertical edges.

As shown in [81], parallel multi–splittings may often be shown to be equivalent

to a single appropriately chosen splitting. This contrasts with the ET algorithm, as

the sequential multiple splitting preconditioners derived in Theorem 3.3 are generally

not equivalent to any single splitting. Also, note that no mention of tree–structured

splittings is made in any of the existing parallel multi–splitting literature. More re-

cently, parallel multi–splittings have been used as preconditioners for Krylov subspace

methods [40].

Alternating Direction Implicit Methods

The Alternating Direction Implicit (ADI) method was originally proposed by Peace-

man and Rachford [58] as an iterative technique for the numerical solution of elliptic

and parabolic differential equations. They focus exclusively on problems defined on

nearest–neighbor grids, as in Figure 3-4. In the first half of each ADI iteration, the

horizontal PDE constraints are ignored, allowing the decoupled tridiagonal systems

corresponding to the vertical constraints to be easily solved. The second half of the

iteration neglects the vertical constraints to solve the horizontal systems. Although

the original notation and formulation is somewhat different, the ADI method is easily

shown to be completely equivalent to a two–tree embedded trees iteration where the

first and second cutting matrices are chosen to remove the horizontal and vertical

edges, respectively. The resulting spanning forests are shown in Figure 3-4.

Most extensions of the ADI method have focused on the calculation of acceleration
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parameters to optimize the algorithm’s convergence rate [73, 75]. Such optimizations

are equivalent to modifications of the diagonal entries of the cutting matrices. How-

ever, as discussed in [14], these analyses require that the spanning tree distributions

ĴT1 and ĴT2 share a common set of eigenvectors, a condition which only holds for an

extremely limited set of linear systems Ĵ . Thus, these techniques are not applicable to

the irregular, inhomogeneous MRFs which motivated the ET algorithm. It does not

appear that anyone has yet considered extending the ADI iteration to more general

graphs and spanning trees, as proposed in this thesis.

Practical implementations of the ADI method typically employ it not as a Richard-

son iteration, but as a preconditioner for a Krylov subspace method [7, 74]. Although

very good empirical performance has often been observed, the theory is mostly lim-

ited to homogeneous problems. For more information and references concerning ADI

methods, see [7, 85].

3.3 Iterative Calculation of Error Covariances

In the previous section, we developed an iterative algorithm to calculate the condi-

tional mean of a Gaussian inference problem defined on a graph with cycles. However,

as discussed in §2.1 and §2.3, we would also like to calculate the error variances P̂s

of the conditional marginal distributions p (xs | y) ∼ N
(
x̂s, P̂s

)
. Due to the linear

algebraic structure underlying Gaussian inference problems, any procedure for calcu-

lating x̂ may be easily adapted to the calculation of error variances. In particular,

suppose that the full error covariance matrix P̂ is partitioned into columns:

P̂ =


| | |
p̂1 p̂2 · · · p̂Nd

| | |

 (3.27)
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Then, letting ei be an Nd dimensional vector of zeros with a one in the ith position,

the ith column of P̂ is given by

p̂i = P̂ ei

Ĵ p̂i = ei (3.28)

By comparison to equation (3.3), we see that p̂i is equal to the conditional mean of

a particular inference problem defined by the synthetic observation vector ei. Thus,

given an inference procedure like the ET algorithm which calculates conditional means

at a cost of O(Nd3) per iteration, we may calculate a series of approximations to P̂

using O(N2d4) operations per iteration.

While the procedure described in the previous paragraph is theoretically sound,

the computational cost may be too large for many applications. We would ideally like

to find an algorithm which only calculates the N desired marginal error variances P̂s,

avoiding the O(N2) cost which any algorithm calculating all of P̂ must require. In

this section, we show that for graphs which are sufficiently sparse, one can do much

better. In particular, if E edges must be removed to reveal an embedded spanning

tree, {P̂s}s∈V may be calculated using only O(NEd4) operations per iteration. As

the algorithm depends on the relationship between cutting matrix rank and the num-

ber of cut edges introduced in §3.1, we begin by presenting techniques for explicitly

constructing rank–revealing decompositions of cutting matrices. Numerical examples

demonstrating the performance of the proposed method are given in §3.5.
Throughout the following sections, all cutting matrices are assumed to be regular

(see §3.1). In addition, in all cases where cutting matrices are used to implement the

ET mean recursion, we assume that the resulting iteration converges for all observa-

tion vectors y. Finally, for notational simplicity we will always assume that the initial

condition of the ET mean recursion is x̂0 = 0.
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3.3.1 Low–Rank Decompositions of Cutting Matrices

For any regular cutting matrix KT , there exist a wide variety of additive decomposi-

tions into rank–one terms:

KT =
∑

i

ωiuiu
T
i ui ∈ RNd (3.29)

For example, because any symmetric matrix has an orthogonal set of eigenvectors, the

eigendecomposition KT = UDUT introduced in §3.2.4 is of this form. Often, however,

it may not be tractable to calculate this decomposition, since direct eigenanalysis

algorithms require O(N3d3) operations. In this section, we demonstrate that it is

always possible to construct such a decomposition using only O(Ed) vectors ui. The

cost of the explicit construction procedure is at most O(Ed3).

Consider a cutting matrix KT that acts to remove the edges E \ET from the graph,

and let E = |E \ET |. Our decomposition starts by associating the cut edges with local

interaction matrices, analogous to the pairwise clique potentials introduced in §2.2.3.
Let Ks,t denote the (s, t)th block entry of KT . For each (s, t) ∈ E \ ET , we define a

local cut matrix κs,t given by

κs,t =

Ks(t) Ks,t

Kt,s Kt(s)

 (3.30)

where the Ks(t) terms are chosen so that for all s ∈ V,

∑
(s,t)∈E\ET

Ks(t) = Ks,s (3.31)

Note that the dimension of κs,t is 2d× 2d. We may compute an eigendecomposition

of κs,t in O(d3) operations, which can be written as

κs,t =

Us(t)

Ut(s)

Ωs,t

[
UT

s(t) UT
t(s)

]
(3.32)
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This decomposition of κs,t also provides a partial additive decomposition of the cutting

matrix. Letting {ωi}2d
i=1 denote the eigenvalues defining the diagonal of Ωs,t, we have

. . . 0 0 0 0

0 Ks(t) 0 Ks,t 0

0 0
. . . 0 0

0 Kt,s 0 Kt(s) 0

0 0 0 0
. . .


=

2d∑
i=1

ωiuiu
T
i


| |
u1 · · · u2d

| |

 =



0

Us(t)

0

Ut(s)

0


(3.33)

where the zero blocks 0 are chosen so that the blocks of κs,t are aligned with the node

ordering used to define KT . By repeating this procedure for each cut edge, we may

obtain an additive decomposition of the form defined by equation (3.29) which uses

a total of 2Ed vectors. The cost of constructing this decomposition is O(Ed3). The

following example illustrates the decomposition procedure in more detail.

Example 3.7. Consider the five–node undirected graphical model, and corresponding

spanning tree, shown in Figure 3-5. Suppose that the inverse error covariance matrix

Ĵ , and desired cutting matrix KT , are given by



3 1 −2 0 0

1 2 0 1 −2
−2 0 3 −1 0

0 1 −1 5 −3
0 −2 0 −3 4


Ĵ

+



0 −1 0 0 0

−1 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 2 0 0 0


KT

=



3 0 −2 0 0

0 2 0 1 0

−2 0 3 −1 0

0 1 −1 5 −3
0 0 0 −3 4


ĴT

(3.34)

Note that KT cuts two edges. Since the diagonal entries of KT are zero, the local cut

interaction matrices {κ1,2, κ2,5}, and their corresponding eigendecompositions, may
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Ĵ ĴT = Ĵ +KT

Figure 3-5: An undirected graphical model with inverse error covariance Ĵ , and the corresponding
spanning tree produced by the cutting matrix KT .

be written as

κ1,2 =

 0 −1
−1 0

 =

 1√
2

1√
2

1√
2
− 1√

2

−1 0

0 1

 1√
2

1√
2

1√
2
− 1√

2

T

(3.35)

κ2,5 =

0 2

2 0

 =

 1√
2

1√
2

1√
2
− 1√

2

2 0

0 −2

 1√
2

1√
2

1√
2
− 1√

2

T

(3.36)

Then, using equation (3.33), we see that KT may be represented as in equation (3.29)

using the four rank–one terms given by


| | | |
u1 u2 u3 u4

| | | |

 =
1√
2



1 1 0 0

1 −1 1 1

0 0 0 0

0 0 0 0

0 0 1 −1




ω1

ω2

ω3

ω4

 =


−1
1

2

−2

 (3.37)

The preceding construction may be used to decompose an arbitrary cutting matrix

into a sum of 2Ed rank–one terms. However, if the block diagonal entries of the

cutting matrix are chosen so that rank(κs,t) = d, the number of terms may be reduced

to only Ed. This reduction may be achieved for scalar hidden variables by simply

setting Ks(t) = Kt(s) = |Ks,t|, as illustrated below:
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Example 3.8. Consider the same graphical model, inverse error covariance Ĵ , and

cut edges used in Example 3.7. We begin by modifying the local cut interaction

matrices from equations (3.35, 3.36) so that they have rank one:

κ1,2 =

 1 −1
−1 1

 = 2

 1√
2

− 1√
2

[ 1√
2
− 1√

2

]
(3.38)

κ2,5 =

2 2

2 2

 = 4

 1√
2

1√
2

[ 1√
2

1√
2

]
(3.39)

Then, again using equation (3.33), we may transform these local decompositions into

a two–vector representation of the cutting matrix:


| |
u1 u2

| |

 =
1√
2



1 0

−1 1

0 0

0 0

0 1


ω1

ω2

 =

2
4

 (3.40)

From equation (3.29), it is straightforward to show that these vectors lead to the

following alternative spanning tree distribution ĴT :

3 1 −2 0 0

1 2 0 1 −2
−2 0 3 −1 0

0 1 −1 5 −3
0 −2 0 −3 4


Ĵ

+



1 −1 0 0 0

−1 3 0 0 2

0 0 0 0 0

0 0 0 0 0

0 2 0 0 2


KT

=



4 0 −2 0 0

0 5 0 1 0

−2 0 3 −1 0

0 1 −1 5 −3
0 0 0 −3 6


ĴT

(3.41)

Thus, by modifying the diagonal entries of KT , we have halved the number of terms

in the cutting matrix decomposition.

When more than one edge is cut from the same node, there may be interactions

which cause rank(KT) to be less than Ed. In such cases, it may be desirable to
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further reduce the number of terms in the additive decomposition (3.29). This can be

done by replacing the pairwise interaction matrices (3.30) with matrices combining

the effects of several different cut edges. The resulting eigendecompositions, whose

cost is cubic in the number of edges simultaneously considered, may sometimes reveal

linear dependencies between the pairwise interactions, allowing a reduction in the

number of terms. For densely connected graphs such as nearest–neighbor grids, such

linear dependencies occur generically, and considering groups of edges may provide

noticeable gains. However, for more sparse random fields like those discussed in

the Introduction, the number of linear dependencies is typically negligible, and the

method in this section is nearly optimal.

3.3.2 Embedded Trees as a Series Expansion

In order to apply the low–rank decompositions constructed in the previous section, we

return to the embedded trees mean recursion (3.7) derived in §3.2.1. For simplicity,

in this section we focus on the ET iteration generated by a single cutting matrix

KT chosen so that ρ
(
Ĵ−1
T KT

)
< 1. We will return to the multiple tree case in the

following section.

When x̂0 = 0, the subsequent iterations x̂n of the ET algorithm may be expressed

as a series of linear function of the observation vector y. By repeated application of

equation (3.7), it is straightforward to show that these functions are given by

x̂1 = Ĵ−1
T CTR−1y

x̂2 =
[
Ĵ−1
T + Ĵ−1

T KT Ĵ
−1
T

]
CTR−1y

x̂3 =
[
Ĵ−1
T + Ĵ−1

T KT Ĵ
−1
T + Ĵ−1

T KT Ĵ
−1
T KT Ĵ

−1
T

]
CTR−1y (3.42)

...

x̂ = P̂CTR−1y

Using an induction argument similar to that found in the proof of Theorem 3.3, the
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linear function defining the nth iterate x̂n can be shown to equal

x̂n =
[
Ĵ−1
T + Fn

]
CTR−1y (3.43)

where the matrix Fn satisfies the recursion

Fn = Ĵ−1
T KT

[
Ĵ−1
T + Fn−1

]
(3.44)

with the initial condition F1 = 0. Since we are assuming convergence, which from

Theorem 3.2 guarantees that x̂n n→∞−→ x̂ for any observation vector y, the sequence of

matrices defined by equation (3.42), or equivalently by equations (3.43, 3.44), must

converge to P̂ :

P̂ =
∞∑

n=0

Ĵ−1
T

[
KT Ĵ

−1
T

]n

= lim
n→∞

Ĵ−1
T + Fn (3.45)

In fact, these matrices correspond exactly to the series expansion of P̂ generated by

the following fixed–point equation:

(
P̂−1 +KT

)
P̂ = I +KTP̂

P̂ = Ĵ−1
T + Ĵ−1

T KTP̂ (3.46)

The matrix sequence defined by equation (3.45) may be derived by repeatedly using

equation (3.46) to expand itself.

Clearly, if we could somehow track the terms generated by the ET series expan-

sion (3.45), we could recover the desired error covariance matrix P̂ . Equation (3.43)

suggests a natural method for doing this. In particular, since the diagonal entries

of Ĵ−1
T are calculated by the BP algorithm, we may calculate {P̂s}s∈V by tracking

the evolution of Fn. Note that equation (3.44) shows that rank(Fn) ≤ rank(KT). In

the following section, we show how a low–rank decomposition of KT , as derived in

§3.3.1, may be used to track a similar low–rank decomposition of Fn. The computa-

tional cost of such a direct tracking procedure is O(NE2d5) operations per iteration.

Then, in §3.3.4 we discuss a related, but not entirely equivalent, algorithm which
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reduces the cost to O(NEd4) operations per iteration by exploiting the fixed point

equation (3.46).

3.3.3 A Direct Tracking Approach to Error Covariances

In this section, we provide a direct method for tracking the sequence of linear functions

implicitly generated by the ET mean recursion (3.7). We begin by extending the series

expansion equations derived in the previous section to cases where the cutting matrix

is allowed to vary from iteration to iteration. In general, the nth iterate x̂n is given

by the following analogs of equations (3.43, 3.44):

x̂n =
[
Ĵ−1
Tn

+ Fn

]
CTR−1y (3.47)

Fn = Ĵ−1
Tn
KTn

[
Ĵ−1
Tn−1

+ Fn−1

]
F1 = 0 (3.48)

Because we have assumed the ET iteration is convergent, Proposition 3.1 ensures that

lim
n→∞

(
Ĵ−1
Tn

+ Fn

)
= P̂ (3.49)

From equation (3.48), we see immediately that rank(Fn) ≤ rank(KTn). The following

theorem uses this fact, combined with the low–rank cutting matrix decomposition

presented in §3.3.1, to efficiently track an analogous decomposition of Fn.

Theorem 3.9. Consider a sequence of regular cutting matrices {KTn}∞n=1 chosen

so that the corresponding embedded trees recursion (3.7) converges for any initial

condition x̂0. Assuming each matrix cuts E edges, it may be decomposed into NK =

O(Ed) rank–one terms as

KTn =

NK∑
i=1

ωn,iun,iu
T
n,i (3.50)

Using this decomposition, the matrices Fn defined by equation (3.48) may be similarly

decomposed as

Fn =

NK∑
i=1

ωn,i

(
Ĵ−1
Tn
un,i

)
fT

n,i (3.51)
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where the vectors fn,i, 1 ≤ i ≤ NK , may be recursively updated according to

fn,i = Ĵ−1
Tn−1

un,i +

NK∑
j=1

ωn−1,j

(
uT

n−1,jĴ
−1
Tn−1

un,i

)
fn−1,j (3.52)

The total cost of updating {fn,i}NK
i=1 is O(NE2d5) operations per iteration.

Proof. We show that the desired decomposition (3.51) holds by induction. Clearly, F1

may be represented in this form by taking f1,i = 0. Now assume such a decomposition

holds for Fn−1, and consider the calculation of Fn according to equation (3.48):

Fn = Ĵ−1
Tn
KTn

[
Ĵ−1
Tn−1

+ Fn−1

]
= Ĵ−1

Tn

(
NK∑
i=1

ωn,iun,iu
T
n,i

)[
Ĵ−1
Tn−1

+

NK∑
j=1

ωn−1,j

(
Ĵ−1
Tn−1

un−1,j

)
fT

n−1,j

]

=

NK∑
i=1

ωn,i

(
Ĵ−1
Tn
un,i

)[
Ĵ−1
Tn−1

un,i +

NK∑
j=1

ωn−1,jfn−1,j

(
uT

n−1,jĴ
−1
Tn−1

un,i

)]T

Therefore, decomposition (3.51) holds assuming fn,i are defined as in equation (3.52).

The computational cost of equation (3.52) is dominated by the summation. There

are O(Ed) terms in the sum, each of which requires the solution of a tree–structured

linear system, which in turn takes O(Nd3) operations. Thus, each fn,i vector may

be updated in O(NEd4) operations. Because there are a total of O(Ed) vectors to
update, the total cost per iteration is O(NE2d5).

Suppose that equation (3.52) has been used to track the {fn,i}NK
i=1 vectors defining

a reduced–rank representation of Fn. The block diagonal elements of Fn may then be

calculated in O(NEd3) operations using equation (3.51). By adding these elements

to the block diagonal elements of Ĵ−1
Tn

, which are calculated in O(Nd3) operations

by the BP algorithm, we may find the block diagonals of (Ĵ−1
Tn

+ Fn). Thus, by

equation (3.49), the recursion in Theorem 3.9 may be used to iteratively calculate the

desired marginal error variances {P̂s}s∈V at a cost of O(NE2d5) per iteration.

If the ET algorithm is implemented by cycling periodically through a fixed set of

trees, as in equation (3.15), many of the terms in equation (3.52) may be precom-
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puted and reused from iteration to iteration. However, there will still be O(E2d2)

weighted inner products (uT
n−1,jĴ

−1
Tn−1

un,i) to precompute at a cost of O(Nd3) each.

In addition, at each iteration it is still necessary to compute O(Ed) weighted sums

of Nd–dimensional vectors fn−1,j to find each of the O(Ed) new fn,i vectors. Thus,

the overall order of the tracking procedure will still be O(NE2d5) per iteration.

When the ET algorithm is implemented with only a single tree, further simplifi-

cations are possible. In particular, there will be only O(Ed) distinct weighted inner

products (uT
n−1,jĴ

−1
Tn−1

un,i) to precompute, since un−1,i = un,i. Unfortunately, the need

to take O(E2d2) weighted sums of Nd–dimensional vectors remains, and thus the

O(NE2d5) cost per iteration of equation (3.52) will not change. In the following sec-

tion, however, we show that a different view of the single–tree expansion does indeed

lead to a more efficient error covariance algorithm.

3.3.4 A Fixed Point Approach to Error Covariances

In this section, we present an alternative iterative algorithm for the calculation of

error covariances. The direct tracking algorithm of §3.3.3 was based on the idea of

tracking the ET series expansion generated by a sequence of cutting matrices. In

contrast, the algorithm presented in this section solves a set of synthetic inference

problems derived from a single cutting matrix KT . These synthetic problems may

be solved using any of the iterative inference algorithms presented in this thesis,

including an ET iteration which uses cutting matrices different from KT .

We begin by considering the fixed point equation (3.46) characterizing the ET

series expansion for the case of a single embedded tree KT . Using the low–rank

decomposition of KT presented in §3.3.1, we have

P̂ = Ĵ−1
T + Ĵ−1

T KTP̂

= Ĵ−1
T + Ĵ−1

T

(∑
i

ωiuiu
T
i

)
P̂

= Ĵ−1
T +

∑
i

ωi

(
Ĵ−1
T ui

)(
P̂ ui

)T

(3.53)
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As discussed in §3.3.1, the decomposition of KT may always be chosen to have at

most O(Ed) vectors ui. Consider the terms in equation (3.53) individually:

Ĵ−1
T =⇒ Block diagonal elements may be computed by the BP algorithm

in O(Nd3) operations

Ĵ−1
T ui =⇒ Each of these O(Ed) products may be found by the BP algo-

rithm in a total of O(NEd4) operations

P̂ ui =⇒ Each of theseO(Ed) products may be found using any algorithm
for calculating conditional means on the original graph

Combining these observations leads to the following result:

Theorem 3.10. Consider the decomposition of P̂ = Ĵ−1 defined by equation (3.53),

where the regular cutting matrix KT cuts E edges. Suppose that an iterative algo-

rithm is available which can solve systems of the form Ĵ x̄ = b̄ at a cost of O(Nd3)

operations per iteration. Then, following a one–time computation requiringO(NEd4)

operations, a sequence of approximations P̂ n
s to the marginal error variances P̂s may

be found at a total cost of O(NEd4) operations per iteration.

There are many options for the iterative inference algorithm assumed in Theo-

rem 3.10. If the ET recursion is implemented using the same single cutting matrix

KT used in the fixed point decomposition (3.53), it is straightforward to show that

the approximation sequence P̂ n
s will exactly equal that produced by the direct track-

ing algorithm presented in §3.3.3. In general, however, faster convergence will be

attained by using multiple trees, or even an alternate inference algorithm like belief

propagation or conjugate gradients. In such cases, no precise correspondence with

the direct tracking procedure can be made.

Although equation (3.53) was motivated by the ET algorithm, nothing about

this equation requires that the cutting matrix produce a tree–structured graph. All

that is necessary is that the remaining edges form a structure for which exact error

covariance calculation is tractable. In addition, note that equation (3.53) gives the

correct perturbation of Ĵ−1
T for calculating the entire error covariance P̂ , not just the

block diagonals P̂s. Thus, if the BP algorithm is extended to calculate a particular

set of off–diagonal elements of Ĵ−1
T , the exact values of the corresponding entries of
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P̂ may be found in the same manner.

3.4 Further Convergence Analysis

In §3.2.1 and §3.2.2, we provided a basic characterization of the convergence prop-

erties of the embedded trees mean recursion (3.7). For the important special case

where the algorithm is implemented by cycling through a fixed set of T cutting ma-

trices {KTn}Tn=1, Theorem 3.2 completely characterizes its behavior. In particular, the

algorithm’s dynamics are determined by the eigenvalues of E �
∏T

n=1 ĴTnKTn . Con-

vergence of x̂n to the solution x̂ of the original estimation problem (3.3), for arbitrary

x̂0, will be achieved if and only if ρ (E) < 1.

Unfortunately, while the conditions of Theorem 3.2 are precise, they are not di-

rectly useful in most applications of the ET algorithm. The problem is that the matrix

E is never explicitly calculated by the ET recursion. In principle, given a particu-

lar set of cutting matrices, we could form E and compute its eigenvalues. However,

any direct implementation of this calculation would require O(N3) operations, and

would be intractably complex for the large–scale graphical inference problems which

originally motivated the ET algorithm.

In this section, we present a variety of more tractable criteria for checking whether

a given set of cutting matrices, when applied periodically as in equation (3.15), lead

to a convergent ET recursion. For the special case of a single spanning tree, there

exists a very simple necessary and sufficient condition which allows convergence to be

much more easily verified. When using multiple trees, tractable necessary conditions

are difficult to derive. However, we present a variety of sufficient conditions which

provide guidance for the types of cutting matrices which we should expect to perform

well in practice.
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3.4.1 A Single Spanning Tree

In this section, we examine the ET algorithm when the same cutting matrix KT is

used at every iteration. In this case, the recursion defined by equation (3.7) becomes

x̂n = Ĵ−1
T
(
KTx̂

n−1 + CTR−1y
)

(3.54)

where ĴT = (Ĵ+KT) is assumed to be nonsingular. As discussed in §3.2.2, the single–
tree ET recursion is exactly equivalent to a standard stationary Richardson iteration

with preconditioner ĴT . The matrix E governing convergence is given by

E = Ĵ−1
T KT =

(
Ĵ +KT

)−1

KT (3.55)

We would like to find conditions which ensure that ρ (E) < 1. The following theorem,

taken from [1], provides a simple necessary and sufficient condition for the convergence

of iteration (3.54).

Theorem 3.11. Let A be a symmetric positive definite matrix, andK be a symmetric

cutting matrix such that (A+K) is nonsingular. Then

ρ
(
(A+K)−1K

)
< 1 if and only if A+ 2K > 0

Proof. See Appendix C.3.

This result is very closely related to the P–regular splitting theorem of Ortega [55,

pp. 122–123], as well as the classic Householder–John theorem [56].

When specialized to the single–tree embedded trees iteration (3.54), Theorem 3.11

gives the following important corollaries:

Corollary 3.12. If the embedded trees algorithm is implemented with a single posi-

tive semidefinite cutting matrix KT , the resulting iteration will be convergent for any

positive definite inverse error covariance Ĵ .

Proof. If Ĵ is positive definite and KT is positive semidefinite, then
(
Ĵ + 2KT

)
will

clearly be positive definite.
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Corollary 3.13. Suppose that Ĵ is diagonally dominant, so that

Ĵs,s >
∑

t∈N(s)

∣∣∣Ĵs,t

∣∣∣ (3.56)

for all s ∈ V. Then any regular cutting matrix with non–negative diagonal entries

will produce a convergent embedded trees iteration.

Proof. From the definition in §3.1, regular cutting matrices only modify the off–

diagonal entries of Ĵ by setting certain elements to zero. Therefore, the entries set

to zero in
(
Ĵ +KT

)
will simply have their signs flipped in

(
Ĵ + 2KT

)
, leaving the

summation in equation (3.56) unchanged. Then, by the assumption that KT has non–

negative diagonal entries, we are assured that
(
Ĵ + 2KT

)
is diagonally dominant, and

hence positive definite.

Note that Corollary 3.13 ensures that if Ĵ is diagonally dominant, setting the diagonal

entries of KT to zero, as suggested in §3.2.3, will give a convergent iteration.

Although Theorem 3.11 completely characterizes the conditions under which the

single tree ET iteration converges, it says nothing about the resulting convergence

rate. The following theorem, adapted from results in [6], allows the convergence rate

ρ (E) to be bounded in certain circumstances.

Theorem 3.14. When implemented with a single positive semidefinite cutting matrix

KT , the convergence rate of the embedded trees algorithm is bounded by

λmax(KT)

λmax(KT) + λmax(Ĵ)
≤ ρ

(
Ĵ−1
T KT

)
≤ λmax(KT)

λmax(KT) + λmin(Ĵ)

Proof. Because Ĵ−1
T is positive definite and KT is positive semidefinite, by Lemma

2.2(c) of Axelsson [6] we have

λmin(Ĵ
−1
T KT) ≥ λmin(Ĵ

−1
T )λmin(KT) ≥ 0

This implies that ρ
(
Ĵ−1
T KT

)
= λmax

(
Ĵ−1
T KT

)
. The desired result then follows by

applying the bounds of Axelsson Theorem 2.2 to the maximal eigenvalue.
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Note that increasing the diagonal entries of KT will also increase the upper bound on

ρ
(
Ĵ−1
T KT

)
provided by Theorem 3.14. This matches the observation made in §3.2.3

that positive semidefinite cutting matrices tend to produce slower convergence rates.

Unfortunately, Theorem 3.14 does not address the indefinite cutting matrices which

led to the best empirical convergence rates in §3.2.3.

3.4.2 Multiple Spanning Trees

In this section, we examine the behavior of the ET algorithm when it is implemented

by periodically cycling through a fixed set of spanning trees, as in equation (3.15).

We begin by considering the case where the algorithm alternates between a pair of

spanning trees, so that the ET iteration equation (3.7) becomes

x̂2n+1 = Ĵ−1
T1

(
KT1x̂

2n + CTR−1y
)

(3.57a)

x̂2n+2 = Ĵ−1
T2

(
KT2x̂

2n+1 + CTR−1y
)

(3.57b)

The matrix E governing convergence is then given by

E = Ĵ−1
T2
KT2 Ĵ

−1
T1
KT1 =

(
Ĵ +KT2

)−1

KT2

(
Ĵ +KT1

)−1

KT1 (3.58)

When multiple trees are used, it is difficult to determine a simple set of necessary and

sufficient convergence conditions. However, the following theorem, which is a slight

generalization of results in [75], provides a simple set of sufficient conditions which

ensure that ρ (E) < 1.

Theorem 3.15. Consider the embedded trees iteration generated by a pair of cutting

matrices {KT1 , KT2}, as in equation (3.57). Suppose that the following three matrices

are positive definite:

Ĵ +KT1 +KT2 > 0 Ĵ +KT1 −KT2 > 0 Ĵ −KT1 +KT2 > 0

Then the resulting iteration is convergent (ρ (E) < 1).
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Proof. See Appendix C.4.

The conditions of this theorem show that in the multiple tree case, there may be

important interactions between the cutting matrices which effect the convergence of

the composite iteration. Note that it is not necessary for the cutting matrices to be

individually convergent, as characterized by Theorem 3.11, in order for the conditions

of Theorem 3.15 to be satisfied.

More generally, we would like to be able to ensure that the ET iteration is conver-

gent when implemented using an arbitrary number of spanning trees. The following

theorem employs a singular value analysis of the ET convergence matrix E to provide

such a set of conditions:

Theorem 3.16. Suppose that the ET iteration (3.7) is implemented by periodically

cycling through a set of T spanning trees defined by the cutting matrices {KTj
}Tj=1.

Define KTT+1
� KT1 . Then if any of the following three sets of non–equivalent condi-

tions holds for j = 1, . . . , T , we are guaranteed that ρ (E) < 1:

σmax

(
(Ĵ +KTj

)−1KTj

)
< 1 ⇐⇒ (Ĵ +KTj

)2 > K2
Tj

σmax

(
(Ĵ +KTj+1

)−1KTj

)
< 1 ⇐⇒ (Ĵ +KTj+1

)2 > K2
Tj

σmax

(
(Ĵ +KTj

)−1KTj+1

)
< 1 ⇐⇒ (Ĵ +KTj

)2 > K2
Tj+1

Proof. See Appendix C.5.

Unfortunately, in comparison to the conditions presented for the two–tree case in

Theorem 3.15, Theorem 3.16 is quite weak. For example, if all cutting matrices

are chosen to be the same, Theorem 3.15 reduces to the tight eigenvalue condition

presented in §3.4.1. In contrast, all three conditions in Theorem 3.16 reduce to the

singular value bound σmax

(
(Ĵ +KT)

−1KT

)
< 1, which is overly conservative. We

hypothesize that a stronger set of conditions, analogous to those of Theorem 3.15,

hold in the multitree case. Thus far, however, we have been unable to generalize the

derivation presented in Appendix C.4.
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3.5 Numerical Examples

In this section, we present a variety of numerical simulations chosen to provide insight

into the behavior of the algorithms developed in this chapter. We consider both the

embedded trees algorithm for computing conditional means developed in §3.2, and the

fixed point error covariance algorithm presented in §3.3.4. The results demonstrate

the important performance gains produced by the use of multiple spanning trees. In

addition, they help to characterize the types of problems for which the ET iteration

provides the greatest gains relative to alternate inference techniques.

We begin in §3.5.1 with a discussion of the techniques used to construct and test

the random problems which provide most of this section’s examples. Then, in §3.5.2,
we present a set of simulations on augmented multiscale trees similar to the model

presented in the Introduction. We also examine inference algorithm performance on

the specific model of §1.1, which provides a more numerically stressing test case. To

contrast with the sparsely connected multiscale models, §3.5.3 shows a complemen-

tary set of simulations on nearest–neighbor grids. We conclude in §3.5.4 with some

observations motivated by these results.

3.5.1 Simulation Conditions

Prior and Measurement Model Construction

With the exception of a set of tests on the multiscale model from §1.1, all of the sim-

ulations in the following sections are performed on graphs with fixed structures but

randomly chosen distributions. The random variables at each of the nodes in the ran-

domly generated models have dimension d = 1. The inverse prior covariance matrix

J is constructed by assigning a clique potential ψs,t (xs, xt), as in equation (2.15), to

each edge (s, t). We have empirically examined a wide range of methods for choosing

these potentials. For the results presented here, however, we focus on two extreme

cases which serve to demonstrate a wide range of qualitatively interesting phenomena.
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Homogeneous Potentials In the first case, we create a homogeneous prior

model by associating the following fixed clique potential with each edge:

ψs,t (xs, xt) = exp

−12 [xs xt

] 1 −1
−1 1

xs

xt

 = exp

{
−1
2
(xs − xt)

2

}
(3.59)

By construction, for every node s ∈ V, Js,s =
∑

t∈N(s) |Js,t|, ensuring that the result-

ing inverse prior covariance matrix J is positive semidefinite. We focus on positive

semidefinite potentials, rather than positive definite ones, because they lead to the

strongest correlations, and therefore the most interesting test cases.

This prior is attractive in the sense that neighboring xs and xt are more likely to

have similar values. In applications, priors like this are commonly used to enforce

smoothness constraints. Note that, if the underlying graph is sufficiently regular

(for example, a nearest–neighbor grid with dense measurements of uniform quality),

homogeneous models of this form are most efficiently solved through non–iterative

methods [25]. However, homogeneous test cases are still useful because they may

reveal aspects of iterative methods which are not immediately apparent with more

disordered priors. In addition, many of the examples we consider have irregular graphs

or sparse measurements, and therefore cannot be solved via direct decomposition.

Disordered Potentials For the second class of prior models, we create a disor-

dered inverse covariance matrix by choosing random clique potentials. For each edge,

the clique potential is of the form considered for the examples in §3.2.3:

ψs,t (xs, xt) = exp

−12 [xs xt

] wst astwst

astwst wst

xs

xt

 (3.60)

= exp

{
−1
2
wst (xs + astxt)

2

}

Here, wst is sampled from an exponential distribution with mean 1, while ast is set

to +1 or −1 with equal probability. As in the homogeneous case, the construction

procedure ensures that Js,s =
∑

t∈N(s) |Js,t| for all s ∈ V, so that J is positive semidef-
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inite.

While the average strength of these potentials is the same as for the homogeneous

case, the exponential distribution leads to a large degree of variability. When ast = −1
the potential is attractive, while when ast = +1 it is repulsive, favoring neighboring

nodes with opposite signs. For the examples we have examined, we have found that

nearly all samples from this class of prior models lead to very similar performance

curves for each of the iterative methods. Thus, in each case we only present results

for a single typical sample from this class.

Measurements We examine both types of prior models under different mea-

surement conditions. In all cases, each measurement is of the form ys = xs + vs,

vs ∼ N (0, σ2), where σ2 is constant across the graph. In some examples, however,

measurements are only available at a sparse subset of the nodes. We consider both

moderate (σ2 = 1) and high (σ2 = 10) levels of noise. We do not examine the low–

noise case, because for such models Ĵ is strongly diagonally dominant and inference

is extremely easy.

Convergence Rates

For each test case, we examine several methods for computing conditional means. For

the ET algorithm (see §3.2), we consider two spanning trees for each graph, and com-

pare the corresponding pair of single–tree iterations (denoted by ET(1) and ET(2)) to

the two–tree iteration (denoted by ET(1,2)) created by alternating between trees. In

all cases, we present results for regular cutting matrices with zero diagonals, because

the positive semidefinite and negative semidefinite cases introduced in §3.2.3 lead to

inferior performance. We compare the ET algorithm’s performance to the parallel

belief propagation (BP) and unpreconditioned conjugate gradient (CG) methods (see

Chapter 2) by plotting the evolution of the normalized residual introduced in §2.4.3.
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Error Covariances

The error covariance simulations focus on the performance of the fixed point algorithm

developed in §3.3.4. An implementation of this algorithm requires two components: a

cutting matrix decomposition to generate the terms in the fixed point equation (3.53),

and an iterative algorithm for computing conditional means on the original graph with

cycles. For the iterative algorithm, we use the same ET(1,2) iteration employed for

the convergence rate examples. The cutting matrix decomposition is constructed by

modifying the diagonal entries of the ET(1) cutting matrix, as in Example 3.8, so

that only a single term is required for each cut edge.

For each simulation, we compare the fixed point method to the results produced

by direct iterative calculation of each column of the error covariance matrix (see

§3.3), where ET(1,2) is again used as the iterative method. We also show the approx-

imate error covariances calculated by the loopy belief propagation algorithm, in order

to provide an indication of the accuracy gained by using an exact error covariance

method. Note that we do not present simulations for the direct tracking error covari-

ance method of §3.3.3, because although this algorithm played an important role in

motivating the development of the fixed point method, its quadratic dependence on

E, the number of cut edges, makes it clearly inferior.

Comparisons of the three error covariance methods are made by plotting the

normalized error metric (∑
s∈V

∣∣∣P̂ n
s − P̂s

∣∣∣2) 1
2

(∑
s∈V

∣∣∣P̂s

∣∣∣2) 1
2

(3.61)

where P̂s are the true error variances, and P̂
n
s the approximations at the nth iteration.

To compare the different methods fairly, these errors are plotted as a function of the

number of equivalent BP iterations. For an N node graph where E edges are removed

to reveal a spanning tree, each iteration of the fixed point method has a cost equivalent

to E BP iterations. In contrast, the unstructured calculation of the columns of P̂ has

a per–iteration cost equivalent to N BP iterations.
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3.5.2 Augmented Multiscale Trees

Inspired by the modeling example presented in the Introduction, in this section we

examine the performance of our inference algorithms on graphs created by adding a

few additional fine–scale edges to a multiscale tree. We refer to the resulting graphs

as augmented multiscale models. All of the randomly generated models have a prior

covariance with the structure shown in Figure 3-6. The same figure also shows the two

spanning trees used for all implementations of the ET algorithm. In every presented

example, measurements are only available at the 32 finest scale nodes. At the end of

each of the following two subsections, we also discuss inference algorithm performance

on the particular multiscale model of §1.1.

Convergence Rates

Figure 3-7 compares the various inference algorithms on the multiscale model of Fig-

ure 3-6 with the homogeneous potentials of equation (3.59). At both noise levels, the

two–tree ET iteration significantly outperforms both of the single–tree iterations. We

hypothesize that the ET(1) iteration improves over the ET(2) iteration because the

first spanning tree is better balanced. At moderate noise levels (σ2 = 1), ET(1,2)

clearly outperforms both CG and BP. At higher noise levels (σ2 = 10), all of the

algorithms take longer. Note that CG completely fits the eigenspectrum of this ho-

mogeneous graph after 43 iterations, leading to superlinear convergence. However,

the ET(1,2) algorithm is able to achieve a residual on the order of 10−10 after only

28 iterations.

In Figure 3-8, we show results for the same graphical structure, but with disor-

dered potentials chosen as in equation (3.60). The ET(1,2) iteration again provides

dramatic gains over the single–tree iterations, especially in the high–noise case. In-

terestingly, both ET and BP are more effective on this disordered problem, while

CG performed much better in the homogeneous case. Note that ET(1,2) significantly

outperforms BP, most likely because the tree–structured updates allow information

to be transmitted across the graph much more rapidly. In addition, we observe that
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Ĵ

ĴT1 = Ĵ +KT1

ĴT2 = Ĵ +KT2

Figure 3-6: Augmented multiscale model with three extra fine scale edges, and the two spanning
trees used to implement the ET algorithm. Observations (not shown) are only available at the 32
finest scale nodes.
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Figure 3-7: Convergence rates for an augmented multiscale model with homogeneous potentials.
Fine scale measurements of two different noise levels are compared.

for this problem, the BP and CG algorithms make fairly erratic iteration–by–iteration

progress, greatly reducing the residual on some iterations but increasing it on oth-

ers. In contrast, as predicted by Theorem 3.2, the ET iteration reduces the error by

roughly a constant factor at each iteration.

In addition to the simulations on randomly generated multiscale models, we

have compared the same inference algorithms on the multiscale prior constructed

in §1.1. To do this, we associated a two–dimensional observation vector ys = xs + vs,

vs ∼ N
(
0,
[

1
0

0
1

])
, with each of the 16 finest scale nodes, and assumed no observations

of the coarser scale nodes were available. Note that all of the randomly generated

models we have considered in this section are nearly diagonally dominant and nu-
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Figure 3-8: Convergence rates for an augmented multiscale model with disordered potentials. Fine
scale measurements of two different noise levels are compared.

merically well–conditioned. In contrast, because the introductory modeling example

was constructed by perturbing a singular tree–structured model, the resulting inverse

covariance matrix is fairly ill–conditioned (κ = 7.4× 104).

As shown in Figure 3-9, the larger condition number leads to problems for both

the BP and CG methods. In particular, the BP algorithm never fully converges, while

CG converges very erratically, taking 215 iterations to reach a normalized residual

of 10−10. In contrast, the ET algorithm leads to extremely rapid convergence, and

produces a consistent decrease in the error after every iteration. To produce the

displayed results, we employed cutting matrices with zero diagonals which alternated

between cutting the two weakest edges (see Figure 1-2) in the multiscale model’s single
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Figure 3-9: Convergence rates for the augmented multiscale model of §1.1.
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Figure 3-10: Error covariance methods applied to augmented multiscale models. The left column
shows the results for homogeneous potentials, and the right for disordered potentials.
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cycle. We also tested two–tree iterations which cut stronger edges, and found that

the ET algorithm always converged, in most cases nearly as quickly as the iteration

presented here.

Error Covariances

Figure 3-10 compares the performance of the different error covariance algorithms on

the same augmented multiscale models examined in the previous subsection. Each it-

eration of the fixed point and unstructured error covariance methods improves the er-

ror covariance estimates by approximately the same amount that the ET(1,2) method

improved the conditional mean estimates on the corresponding model. However, be-

cause only 3 of the edges connecting this model’s 63 nodes must be removed to reveal

a spanning tree, the fixed point algorithm’s per–iteration cost is approximately 21

times lower. For these models, the ET fixed point method is also clearly superior to

the BP algorithm, because after each iteration, it gives a better estimate of the error

variances than the BP algorithm can produce in an equivalent computational time.

For the high–noise models in particular, the BP algorithm’s final error variances are

fairly inaccurate, while the ET fixed point method can provide much higher accuracy

with a small amount of additional computation.

We also applied the ET fixed point error covariance algorithm to the multiscale

model of §1.1. The resulting iteration converged at a rate very similar to that dis-

played by the embedded trees conditional mean iteration for this graph (see Fig-

ure 3-9). Because only a single edge had to be cut, the total cost of each fixed point

iteration was quite small, providing significant gains over the unstructured calculation

of the entire error covariance matrix. Due to the BP algorithm’s irregular conver-

gence for this model, it again gave inferior error variance estimates at each iteration.

The asymptotic normalized error (see equation (3.61)) of the BP error variance esti-

mates was 7.0×10−3, while the ET fixed point method produced more accurate error

variances after only a single iteration.

97



Ĵ ĴT1 = Ĵ +KT1 ĴT2 = Ĵ +KT2

Figure 3-11: 25×25 nearest–neighbor grid, and the two spanning trees used to implement the ET
algorithm. Observations are not explicitly shown.

3.5.3 Nearest–Neighbor Grids

In order to contrast with the sparsely connected multiscale models examined in the

previous section, we now compare the various inference methods on a set of 25× 25

nearest neighbor grids. Figure 3-11 shows this graph, as well as the two spanning trees

used for all implementations of the ET algorithm. For each of the two prior model

clique potential types, we show inference results for a set of dense measurements at

both moderate (σ2 = 1) and high (σ2 = 10) noise levels. We also examine inference

performance when moderately noisy measurements are only available at a randomly

chosen 20% of the nodes.

Convergence Rates

Figure 3-12 compares the various inference algorithms on a 25 × 25 grid with the

homogeneous potentials of equation (3.59). In contrast with the multiscale model

results, there is very little difference between the single–tree and two–tree ET it-

erations. Both the ET and BP algorithms have asymptotic convergence rates that

compare quite poorly with CG, especially when noise is high or measurements are

sparse. Interestingly, however, ET and BP perform better on the first few iterations

before being overtaken by CG.

In Figure 3-13, we show results for a 25 × 25 grid with disordered potentials

chosen as in equation (3.60). Unlike the homogeneous case, for this problem the
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Figure 3-12: Convergence rates for a 25× 25 nearest–neighbor grid with homogeneous potentials.
Three measurement models are compared: dense measurements with moderate and high noise levels,
and sparse measurements with moderate noise.
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Figure 3-13: Convergence rates for a 25 × 25 nearest–neighbor grid with disordered potentials.
Three measurement models are compared: dense measurements with moderate and high noise levels,
and sparse measurements with moderate noise.
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ET(1,2) iteration does provide significant gains relative to the single–tree iterations.

With dense measurements, all three algorithms lead to similar asymptotic conver-

gence rates, with BP performing moderately better. In the sparse measurement case,

however, BP performs significantly better.

Error Covariances

Figure 3-14 compares the performance of the different error covariance algorithms on

the 25×25 grid. As with the multiscale model, each iteration of the fixed point method

improves the error covariance estimates by an amount comparable to the conditional

mean improvement produced by the corresponding ET(1,2) iteration. However, be-

cause the grid is very densely connected, each iteration of the fixed point method has

a cost equivalent to 242 = 576 BP iterations. This is only marginally better than the

N = 625 relative cost of the unstructured, column–by–column, iterative calculation

of the entire error covariance matrix.

Asymptotically, O(N) edges must be cut from a grid to reveal a spanning tree, and

the fixed point method will provide no gains. Also, note that the BP approximations

to the error covariances, while quickly computed, are relatively inaccurate. Thus,

none of these algorithms can efficiently and accurately calculate error variances on

large grids.

3.5.4 Observations

From the preceding simulations, several features of the embedded trees algorithm are

immediately apparent. Clearly, the ET iteration converges fastest when it is possible

to choose spanning trees which well approximate the full graph’s structure. In partic-

ular, for the sparsely augmented multiscale models, the ET algorithm’s convergence

is dramatically faster than either BP or CG. Even for more densely connected models,

however, the two–tree ET iteration is often competitive with other techniques. The

two–tree case is especially intriguing, because for models where there is irregularity

in either the graph structure or the potential strengths, it typically converges much
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Figure 3-14: Error covariance methods applied to a 25×25 nearest–neighbor grid. The left column
shows the results for homogeneous potentials, and the right for disordered potentials.
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faster than either of the corresponding single–tree iterations.

Although the ET algorithm’s performance is somewhat effected by numerical po-

tential values, it is far more dependent on the structure of the underlying graph. In

contrast, as suggested by the convergence rate bounds in §2.4.2, the conjugate gradi-
ent iteration is relatively robust to graph structure variations, but is more sensitive

to the numerical properties of the overall inverse error covariance matrix. Thus, the

ET algorithm may provide an attractive alternative for the ill–conditioned problems

which CG finds most difficult.

Unlike the conditional mean iteration, the embedded tree–based error covariance

algorithm is only effective for sparsely connected models. Unfortunately, for graphs

whereO(N) edges must be cut, the per–iteration cost is simply too large. However, for

augmented multiscale models such as that presented in the Introduction and examined

at the end of §3.5.2, it rapidly converges to error covariance approximations which

are typically much more accurate than those provided by loopy belief propagation.

103



104



Chapter 4

Accelerated Tree–Based Iterations

In the preceding chapter, we presented and analyzed an embedded tree–based algo-

rithm for solving Gaussian inference problems defined on graphs with cycles. In this

chapter, we present a series of increasingly sophisticated techniques which use the

basic ET algorithm to develop more rapidly convergent iterations. Throughout, we

focus solely on methods for calculating conditional means. Note, however, that any

of the accelerated iterations we propose may also be easily integrated into the error

covariance algorithm of §3.3.4, leading to similar performance improvements.

We begin in §4.1 by considering the relationship between the ET algorithm and

the diagonal entries of the corresponding cutting matrices. We demonstrate a simple

method for setting these diagonal values which often leads to accelerated convergence

relative to the zero–diagonal cutting matrices considered in Chapter 3. Then, in

§4.2, we show that the dynamics of the ET iteration reveal information about the

subspace containing the errors in the current estimate. This observation leads to the

development of a rank–one correction procedure which first estimates the principal

error direction, and then cancels those errors on subsequent iterations.

Although the rank–one procedure is effective in some cases, we show that it does

not make full use of the error information revealed by the ET iterates. This motivates

the use of the ET algorithm as a preconditioner for the conjugate gradient iteration,

which we consider in §4.3. We demonstrate that for graphs which are nearly tree–

structured, preconditioning by a single spanning tree can be guaranteed to provide
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good performance. For more densely connected graphs, we show experimental results

which suggest that both single and multiple tree preconditioners can be effective. The

chapter concludes with a discussion of connections to existing preconditioning theory.

4.1 Diagonal Acceleration

As discussed in §3.1, associated with any spanning tree GT of a Gaussian graphi-

cal model, there is an entire family of tree–structured inverse covariances JT , each

corresponding to a particular choice of cutting matrix KT . Later sections of Chap-

ter 3 demonstrated that in the context of the embedded trees algorithm, it is often

desirable to choose cutting matrices that are as sparse as possible. This constraint

naturally motivated the class of regular cutting matrices (see §3.1), which minimize

the number of nonzero off–diagonal entries.

Within the class of regular cutting matrices, however, we are still free to set the

diagonal entries corresponding to nodes from which edges are cut. In the exam-

ples of §3.2.3, we briefly examined three intuitive choices for these diagonal entries,

and concluded that among these options, setting the diagonals to zero consistently

gave the best performance. This choice was partially justified by theoretical results

in §3.4 which showed that for diagonally dominant models, cutting matrices with

non–negative diagonals are guaranteed to produce a convergent ET iteration. In ad-

dition, ET iterations based on two zero–diagonal cutting matrices led to very rapid

convergence for most (but not all) of the simulations presented in §3.5.
In this section, we examine the relationship between cutting matrix diagonals

and the ET algorithm in more detail. We begin by revisiting some of the more

difficult problems from §3.5. We demonstrate that by choosing cutting matrices with

relatively small negative diagonal values, we may often produce two–tree iterations

with dramatically improved convergence rates. We then discuss connections to other

linear algebraic acceleration techniques, and provide some guidance for how effective

diagonal values should be chosen.
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4.1.1 Numerical Examples

In this section, we empirically investigate the properties of a single–parameter family

of regular cutting matrices. Given a fixed spanning tree GT , and the corresponding

uniquely defined off–diagonal cutting matrix entries, we set the diagonal entries of

KT according to the following equation:

(KT)s,s = β
∑

t∈N(s)

∣∣∣(KT)s,t

∣∣∣ (4.1)

Here, β is a scalar parameter indexing the elements of this family, which we will refer

to as the diagonal acceleration parameter. When β = 0, we recover the zero–diagonal

case used for most of the simulations in Chapter 3. Similarly, the choices β = +1

and β = −1 correspond to the positive semidefinite and negative semidefinite cases

considered in §3.2.3. We have also experimented with other methods for setting the

diagonal entries of KT , such as adding multiples of the identity matrix, but have

found that equation (4.1) provides the most consistent, effective results.

Although we have examined the effects of diagonal acceleration on all of the mod-

els from §3.5, we focus here on the high–noise cases for which the zero–diagonal ET

iteration performed most poorly. Figure 4-1 presents the simulation results for the

augmented multiscale models considered in §3.5.2 in both the homogeneous and dis-

ordered potential cases. Recall from Theorem 3.2 that the asymptotic convergence

rate of the ET algorithm is determined by the normalized spectral radius ρ (E)
1
T . As

shown in Figure 4-1(a), this convergence rate depends strongly on the value of β.

For all values of β ≥ 0, both the single–tree and two–tree iterations are convergent.

However, as β is increased the convergence rate becomes increasingly slow. Note that

in the single–tree case, this convergence is guaranteed by the diagonal dominance of

Ĵ (see Corollary 3.13).

As β is decreased below zero, the spectral radius for the single–tree iterations

rapidly increases, so that they quickly become divergent. In the two–tree case,

however, the spectral radius monotonically decreases for small negative values of

β, leading to more rapid convergence. For both potential types, there is an optimal
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Figure 4-1: Diagonal acceleration of the ET algorithm for the augmented multiscale model of
Figure 3-6 (σ2 = 10) with homogeneous potentials (left column) or disordered potentials (right
column). (a) Convergence rates for different diagonal acceleration parameters β. (b) Divergent
single–tree iterations lead to rapidly convergent two–tree iterations. (c) Comparison of the diagonally
accelerated ET iteration to the zero–diagonal iteration, BP, and CG.
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value of the diagonal acceleration parameter which produces the fastest convergence

(β ≈ −0.70/− 0.40 for homogeneous/disordered potentials). Beyond this point, con-

vergence rate decreases again. For values of β < −1 (not shown), the iteration is

either divergent or very slowly convergent.

In Figure 4-1(b), we show the convergence behavior of the ET iteration for the

diagonal acceleration parameter values which led to the fastest two–tree iteration.

Interestingly, the single–tree iterations are actually divergent for these β values, im-

plying that each tree must effectively cancel the complementary tree’s worst error

modes. Figure 4-1(c) plots the diagonally accelerated two–tree iteration against the

results presented for these models in §3.5.2. In the homogeneous case, acceleration

reduces the number of iterations by nearly 40% relative to the zero–diagonal iteration.

However, in the mixed potential case, both ET iterations converge too rapidly for the

asymptotic gains predicted by Figure 4-1(a) to be observed.

In Figure 4-2, we examine the effects of diagonal acceleration on the 25× 25 grids

of §3.5.3 with dense measurements and high noise levels. Note that the qualitative

relationship between β and the ET algorithm’s convergence rate, as shown in Figure 4-

2(a), is very similar to that observed for the multiscale models. In particular, for

β values between −1 and 0, we again observe two divergent single–tree iterations

combining to create a two–tree iteration which converges more rapidly than the zero

diagonal case. In Figure 4-2(b), we explicitly see the way in which each tree cancels the

other’s error modes, as at every other iteration the overall residual actually increases.

Although it would seem that such oscillatory behavior would be inefficient, Figure 4-

2(c) shows that it actually leads to an overall convergence rate which is significantly

faster than the zero–diagonal ET iteration. Note that the diagonally accelerated two–

tree iteration provides the best performance for the disordered potential case, and is

nearly as fast as CG in the homogeneous case.

4.1.2 Discussion

For all of the examples in the previous section, the convergence rate of the ET itera-

tion became progressively slower as β was increased above zero. To understand this
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Figure 4-2: Diagonal acceleration of the ET algorithm for a 25×25 nearest–neighbor grid (σ2 = 10)
with homogeneous potentials (left column) or disordered potentials (right column). (a) Convergence
rates for different diagonal acceleration parameters β. (b) Divergent single–tree iterations lead to
rapidly convergent two–tree iterations. (c) Comparison of the diagonally accelerated ET iteration
to the zero–diagonal iteration, BP, and CG.
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behavior, consider the single–tree ET iteration equation (3.7) when a multiple δI of

the identity matrix is added to the cutting matrix:

x̂n =
(
Ĵ +KT + δI

)−1 (
δx̂n−1 +KT x̂

n−1 + CTR−1y
)

(4.2)

We see that as δ becomes large, each iteration will place greater emphasis on the

previous iterate x̂n−1, and will therefore effectively take a smaller “step” towards the

solution. In fact, Corollary 3.12 guarantees that once δ becomes large enough so

that KT + δI is positive semidefinite, the step size will be small enough to ensure

a convergent iteration regardless of the numerical structure of Ĵ . However, such

decreases in the step size will also naturally slow the convergence rate.

In contrast, negative β values can be seen as taking a larger step away from the

current estimate. As demonstrated by the previous simulations, somewhat larger

step sizes can improve the convergence rate, but if the step size becomes too large the

iteration may become unstable. Note that in some ways, the diagonally accelerated

embedded trees iterations are similar to the successive overrelaxation (SOR) method,

which adjusts the step size of the Gauss–Seidel iteration to speed convergence (see

§2.4.1). However, the precise mechanisms by which the accelerated ET and SOR

methods implement their step size adjustments are not equivalent.

Diagonal acceleration methods similar to those considered here have also been

examined in the context of the ADI method (see §3.2.5). For homogeneous prob-

lems on regular grids, effective techniques have been developed which change the

cutting matrix diagonals at each iteration, in the process minimizing a Chebyshev

polynomial–based upper bound on the convergence rate [73, 75]. However, as dis-

cussed in detail by Birkhoff and Varga [14], these analyses only apply to problems

for which all cutting matrices and spanning tree distributions share a common set of

eigenvectors, and are thus very limited.

Although we have not been able to derive a theoretically optimal method for

selecting the diagonal acceleration parameters, the experimental results of the previ-

ous section suggest some natural heuristics. In particular, for every model we have
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examined, improvements over the zero–diagonal convergence rate are attained for a

fairly broad range of β ∈ (−1, 0). Thus, on large–scale problems one could perform a

small number of ET iterations with a few different β values in this range, and then

complete the calculation with the fastest of the trial parameters. It might also be

possible to develop methods which monitor the current convergence rate and adapt

the acceleration parameter accordingly, as is done in sophisticated implementations

of the SOR method [7]. However, we do not explore such possibilites further here.

4.2 Rank–One Corrections

In this section, we consider the dynamics of the embedded trees algorithm in more

detail. Using the geometric properties derived in §3.2, we demonstrate that the se-

quence of past ET iterates {x̂k}nk=0 reveals important information about the error

(x̂n − x̂) in the current estimate. We then present a rank–one correction algorithm

which uses this information to accelerate the ET algorithm’s convergence. We con-

clude with a set of numerical examples demonstrating this algorithm, and a discussion

of its strengths and limitations.

4.2.1 Geometry and Inference on Single Cycle Graphs

In order to demonstrate the intuition behind the rank–one correction procedure, we

begin by examining the evolution of the ET algorithm on a single–cycle graph where

each node represents a scalar Gaussian random variable. Suppose that the ET al-

gorithm is implemented by cutting the same edge at every iteration with a positive

semidefinite cutting matrix KT chosen so that rank(KT) = 1. From equation (3.10),

we see that the difference (x̂2 − x̂1) between the first and second iterates is given by

(x̂2 − x̂1) = Ĵ−1
T KT(x̂

1 − x̂0) (4.3)

Note that rank(Ĵ−1
T KT) ≤ rank(KT) = 1. Therefore, (x̂2−x̂1) must be the eigenvector

corresponding to the single nonzero eigenvalue of Ĵ−1
T KT . Let v � (x̂2−x̂1) denote this
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eigenvector, and λ its associated eigenvalue. Then, again applying equation (3.10),

we have

(x̂3 − x̂2) = Ĵ−1
T KT(x̂

2 − x̂1) = Ĵ−1
T KTv = λv (4.4)

We may explicitly calculate λ by dividing any non–zero entry of (x̂3− x̂2) by the cor-

responding entry of v. Alternatively, λ may be determined from the normal equations

as

λ =
vT (x̂3 − x̂2)

vTv
(4.5)

This least squares view arises again in the subsequent analysis.

Because KT is positive semidefinite, we know from Corollary 3.12 that the ET

iteration must be convergent, or equivalently |λ| < 1. This in turn allows us to

immediately calculate the conditional mean x̂ as follows:

x̂ = lim
n→∞

x̂n = x̂2 +
∞∑

n=3

(x̂n − x̂n−1)

= x̂2 +
∞∑

n=1

(
Ĵ−1
T KT

)n

(x̂2 − x̂1) = x̂2 +
∞∑

n=1

(
Ĵ−1
T KT

)n

v

= x̂2 +
∞∑

n=1

λnv = x̂2 +
λ

1− λ
v (4.6)

Therefore, using only the information provided by the first three iterations of the

ET algorithm, we can directly compute the exact conditional mean for the single

cycle graph. Fundamentally, the reason we are able to perform this calculation is

that, as shown by Theorem 3.6, the error (x̂n − x̂) is constrained to lie in a subspace

whose dimension is upper–bounded by the minimal cutting matrix rank. Thus, when

rank(KT) = 1, we can cancel these errors by adding an appropriately chosen multiple

of the single vector v which defines that subspace.

There is an alternate way to perform the previous calculation which leads more

naturally to the rank–one algorithm derived in the following section. Using the fact

that the conditional mean x̂ satisfies the fixed point relationship of equation (3.5),
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we may rewrite equation (4.6) as

x̂ = Ĵ−1
T

(
KT

(
x̂2 +

λ

1− λ
v

)
+ CTR−1y

)
= Ĵ−1

T
(
KTx̂

2 + CTR−1y
)
+

λ

1− λ
Ĵ−1
T KTv

= x̂3 + δ̂Ĵ−1
T KTv (4.7)

where we have defined δ̂ � (λ/(1 − λ)). Then, because equation (4.7) must equal

equation (4.6), we see that δ̂ may be determined directly as

δ̂ = argmin
δ

∣∣∣∣∣∣(x̂2 + δv)− (x̂3 + δĴ−1
T KTv)

∣∣∣∣∣∣
=

(v − Ĵ−1
T KTv)

T (x̂3 − x̂2)∣∣∣∣∣∣v − Ĵ−1
T KTv

∣∣∣∣∣∣2 (4.8)

Note that equation (4.8) allows us to compute the optimal perturbation factor δ̂

without explicitly determining the eigenvalue λ.

4.2.2 An Automatic Correction Procedure

When the cutting matrix rank is larger than one, as it must be for any graph with

multiple cycles, we cannot directly calculate x̂ from the first three ET iterates as in

the previous section. However, as we demonstrate below, a very similar method can

be used to reduce the dimension of the subspace in which the errors (x̂n− x̂) evolve by
one. If the direction of reduction is chosen to match a dominant error mode, this can

greatly accelerate the convergence of the resulting rank–one corrected ET iteration.1

The rank–one procedure we consider here applies to ET iterations which periodi-

cally cycle through a fixed set of T cutting matrices {KTj
}Tj=1. Because multiple–tree

iterations are already intended to internally cancel the worst error modes of the cor-

responding single–tree iterations, we will work directly with the subsampled sequence

of estimates {x̂nT}∞n=0 when applying our rank–one perturbations. To simplify the

1Multiple rank correction procedures are also possible, but the computational cost is cubic in the
dimension of the subspace in which the correction is to be made. See §4.2.4 for more details.
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presentation, it will be helpful to define some new notation. Let FT (x) be the func-

tion which applies the standard ET iteration equation (3.7) T times, using the cutting

matrices {KTj
}Tj=1, from the initial condition x̂0 = x.2 Using Theorem 3.3, we may

then express every T th iterate of the standard (uncorrected) ET iteration as

x̂Tn = FT

(
x̂T (n−1)

)
= ET x̂

T (n−1) +M−1
T CTR−1y (4.9)

where M−1
T is the ET preconditioner matrix of equation (3.19), and ET is the matrix

whose spectral radius determines the asymptotic convergence rate of the ET iteration

(see Theorem 3.2).

The rank–one correction procedure we examine is directly motivated by the geo-

metric single–cycle correction procedure of equations (4.7, 4.8). In particular, given

a vector v defining the desired direction of error cancellation, the rank–one corrected

ET iteration is given by

x̂Tn = HT

(
x̂T (n−1), v

)
� FT

(
x̂T (n−1) + δ̂n−1v

)
= FT

(
x̂T (n−1)

)
+ δ̂n−1ETv (4.10)

where at each iteration, δ̂n−1 is calculated according to

δ̂n−1 =
(v − ETv)

T (FT

(
x̂T (n−1)

)− x̂T (n−1)
)

||v − ETv||2
(4.11)

Note that for fixed v, HT (x, v) is a linear function of x. Also, it is straightforward

to show that the accelerated iteration has a fixed point HT (x̂, v) = x̂ at the correct

conditional mean. Computationally, the implementation of equations (4.10, 4.11) is

little different from the standard ET algorithm. The vector ETv can be precomputed

at a cost slightly less than T standard ET iterations, and then stored and reused at

every acceleration step. Thus, at each accelerated iteration, only a single extra inner

2Note that FT (x) uses the cutting matrices {KTj
}Tj=1, inverse error covariance matrix Ĵ , and ob-

servation vector y to perform the ET iterations. However, because only the estimate x̂n changes from
iteration to iteration, for notational simplicity we do not explicitly denote these other dependencies.
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product (to determine δ̂n−1) is required.

Rank–one corrections like those defined in the preceding paragraph have been

proposed and studied by Bertsekas [11, 12] as a means of accelerating the value iter-

ation method for solving infinite–horizon optimal control problems.3 The following

theorem, which is adapted from his results, justifies the form of the acceleration

procedure.

Theorem 4.1. Consider the modified ET iteration defined by equations (4.10, 4.11),

where the correction is performed along the vector v. Let {λ1, λ2, . . . , λn} be the

eigenvalues of the matrix ET which governs the convergence of the standard ET

iteration (see Theorem 3.2). Then if v is an eigenvector of ET corresponding to λ1,

the eigenvalues governing the convergence of the linear operator HT (x, v) are equal

to {0, λ2, . . . , λn}.

Proof. This result follows directly from Proposition 1 of Bertsekas [12].

Thus, if v is chosen as an eigenvector corresponding to the dominant mode of ET ,

all errors parallel to v will indeed be cancelled. The convergence rate of the rank–

one corrected iteration is then determined by the magnitude of the subdominant

eigenvalue.

To apply equations (4.10, 4.11), we must first determine a direction vector v

along which to perform the rank–one correction. Although the dominant eigenvector

of ET is not directly available, we can obtain an estimate of it from the standard ET

iterations. From equation (4.9), we see that

(
x̂Tn − x̂T (n−1)

)
= ET

(
x̂T (n−1) − x̂T (n−2)

)
(4.12)

Let {vi}mi=1 be the eigenvectors of ET , and {λi}mi=1 their corresponding eigenvalues. If

the initial difference is given by
(
x̂T − x̂0

)
=
∑

i ηivi, the difference after n subsampled

3The classical value iteration procedure [11] is a non–linear version of the Gauss–Jacobi iteration
described in §2.4.1.
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iterations will be (
x̂Tn − x̂T (n−1)

)
=

m∑
i=1

ηiλ
n−1
i vi (4.13)

Thus, if |λ1| > |λj| for all j �= 1,
(
x̂Tn − x̂T (n−1)

)
will become increasingly aligned

with the dominant eigenvector v1 as n −→∞.

Based on the preceding discussion, we have implemented the rank–one correction

procedure using the following two–phase algorithm, as suggested by Bertsekas [12]:

1. From some starting vector x̂0, iterate the standard ET recursion (4.9). After

every T th iteration, calculate the change
(
x̂Tn − x̂T (n−1)

)
in the estimate values,

and compute the cosine of its angle θ with the previous first difference:

cos θ =

(
x̂Tn − x̂T (n−1)

)T (
x̂T (n−1) − x̂T (n−2)

)
||x̂Tn − x̂T (n−1)|| · ||x̂T (n−1) − x̂T (n−2)|| (4.14)

2. On the first iteration where (1 − cos θ) becomes smaller than ε = 10−4, set

v =
(
x̂Tn − x̂T (n−1)

)
. Subsequent estimates are then calculated using the rank–

one corrected ET recursion (4.10), where the same fixed error direction vector

v is used at every iteration.

Note that the phase one iterations used to estimate the correction direction are not

wasted, as they improve the estimate of the conditional mean as well.

The two–phase rank one correction algorithm makes the implicit assumption that

ET has a real eigenvalue of largest magnitude. When the ET algorithm is implemented

with a single tree, the following lemma guarantees that all of the eigenvalues of

E1 = Ĵ−1
T KT are real:

Lemma 4.2. Let Ĵ be symmetric positive definite, and KT be a symmetric matrix

such that (Ĵ+KT) is invertible. Then all of the eigenvalues of (Ĵ+KT)
−1KT are real.

Proof. Let λ be any eigenvalue of (Ĵ+KT)
−1KT , and v its corresponding eigenvector.

Since λv = (Ĵ +KT)
−1KTv, we clearly have λvT (Ĵ +KT)v = vTKTv. Then, since the

invertibility of (Ĵ + KT) ensures that v
T (Ĵ + KT)v �= 0, λ = vTKTv/v

T (Ĵ + KT)v.

The result then follows from the symmetry of KT and (Ĵ +KT).
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Figure 4-3: Rank one correction of the ET algorithm applied to the augmented multiscale model
of Figure 3-6 (σ2 = 10) with homogeneous potentials (left) or disordered potentials (right).

Thus, in the single–tree case, the acceleration procedure will only fail when there are

two or more real eigenvalues of equal, and largest, magnitude. In the multi–tree case,

ET will generally have complex eigenvalues. However, for all of the models of §3.5,
the eigenvalues of largest magnitude are real. For this reason, in the following section,

we examine rank–one acceleration of both the single–tree and two–tree iterations.

4.2.3 Numerical Examples

In this section, we apply the rank–one correction procedure of §4.2.2 to some of the

sample models from §3.5. As in §4.1.1, we present results only for the high–noise

cases where the standard ET iteration was least effective. For each model, we use the

same spanning trees employed in §3.5. In all cases, we employ zero–diagonal cutting

matrices rather than the diagonally accelerated iterations of §4.1 in order to separate

the effects of the two types of acceleration.

Figure 4-3 presents the simulation results for the augmented multiscale model of

Figure 3-6 in both the homogeneous and disordered potential cases. Unsurprisingly,

the effectiveness of the rank one correction procedure is strongly dependent on the

difference in magnitude between the largest and second–largest eigenvalues of ET .

The most impressive results are seen in the homogeneous case. For the two–tree

iteration, the first and second largest eigenvalues are 0.2234 and 0.0410, respectively.

After six subsampled iterations, the first–difference vectors are sufficiently aligned (as
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measured by equation (4.14)) to begin the rank–one correction procedure. This leads

to a sudden drop in the residual as most of the dominant error mode is eliminated,

followed by faster convergence in subsequent iterations. In the single–tree case, the

dominant and subdominant eigenvalues are less separated (λ = 0.7685,−0.7097).
Thus, more iterations are required to determine the dominant eigenvector, and the

acceleration produced by rank one correction is noticeably smaller.

For the disordered multiscale model, acceleration is much less effective. The largest

single–tree eigenvalues (λ = −0.7307, 0.7153) are close enough that a satisfactory es-

timate of the dominant eigenvector is never attained. In the two–tree case, rank one

correction does produce improvements, but the standard ET iteration is already very

efficient for this model so the gains are minor. It is likely that on larger augmented

multiscale models with mixed potentials, rank one acceleration would be more effec-

tive.

Figure 4-4 shows the results of applying the rank one corrections to the 25 × 25

nearest–neighbor grids of §3.5.3. When applied to the single–tree iteration for any

of the grid models, the rank one correction procedure was unable to identify the

dominant eigenvector. This behavior is explained by Figure 4-4(a), where we plot the

magnitudes of the eigenvalues of the matrix ET which determines the ET algorithm’s

rate of convergence. In the single–tree case, there are many subdominant eigenvalues

whose magnitudes nearly equal the spectral radius. Thus, even though the single–

tree iterations are quite slow for these problems, they still converge before a single

dominant error mode develops.

In the two–tree case, Figure 4-4(a) shows that there are fewer very large subdomi-

nant eigenvalues. Thus, as shown in Figure 4-4(b), the rank one correction algorithm

does identify a dominant eigenvector. In the homogeneous case, moderate gains are

observed, but the resulting convergence rate is still far less than that of CG. For the

mixed potential case, the accelerated iteration leads to performance comparable to

BP and CG.
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Figure 4-4: Rank one correction of the ET algorithm applied to a 25 × 25 nearest–neighbor
grid (σ2 = 10) with homogeneous potentials (left column) or disordered potentials (right column).
(a) Eigenspectrum of the ET convergence matrix ET in the single–tree and two–tree cases. (b)
Comparison of the rank one correction procedure with other inference algorithms.

4.2.4 Discussion

In the numerical experiments of the previous subsection, the rank one correction

procedure proved to be ineffective when applied to single–tree iterations. Even though

acceleration was possible in one case, the modified iteration was still far slower than

the standard two–tree iteration. In the two–tree case, however, the results were better.

In particular, for the multiscale models, noticeable gains were observed, especially in

the homogeneous case where the standard two–tree iteration was least effective.

For the nearest–neighbor grids, the gains produced by rank one correction were

fairly minor. From Figure 4-4(a), we see that this should be expected, because there
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are a few subdominant eigenvalues only slightly smaller than the spectral radius.

Note, however, that only a small percentage of the 625 eigenvalues are within even

half of the spectral radius. Thus, for these problems, a multiple–rank correction

procedure which removed the top 10 or 20 largest error modes would be quite effective.

As suggested by Bertsekas [12], if we had available a matrix V whose columns spanned

the subspace defining these error modes, we could perform a similar correction using a

multidimensional least squares procedure analogous to equation (4.11). The matrix V

could be estimated online by successively orthogonalizing blocks of differences between

the iterates generated by the ET algorithm. However, the computational cost of such

a procedure would grow as the cube of the number of corrected dimensions.

Although a multiple rank correction algorithm would address some of the rank

one algorithm’s limitations, there is a more fundamental problem with both of these

two–phase procedures. Even though information about the principal error direction

is available during phase one, it is not used at all to improve the convergence rate.

Then, once the switch to phase two is made, the information provided by subsequent

iterations is not used to further refine the estimate of the dominant eigenvector.

Furthermore, the transition between these two phases is not done in any sort of

optimal manner, but is controlled by an arbitrarily chosen threshold parameter.

To improve the rank one algorithm, we would like to incorporate more effectively

the information provided by successive iterations of the ET algorithm. From equa-

tion (4.12), we see that at the nth subsampled iteration, the set of vectors used by

the rank one procedure to estimate the dominant eigenvector is given by

{
x̂Tk − x̂T (k−1)

}n

k=1
=
{
Ek−1

T (x̂T − x̂0)
}n

k=1
(4.15)

By comparison to equation (2.52), we see that this is precisely the Krylov subspace

Kn

(
ET , x̂

T − x̂0
)
. Thus, the natural way to make use of this information would be to

use a Krylov subspace method (see §2.4.2). In the following section, we show that the

embedded trees algorithm can indeed be naturally integrated with Krylov subspace

techniques through the concept of preconditioning.

121



4.3 Spanning Tree Preconditioners

In §3.2.2, we demonstrated that whenever the embedded trees algorithm is imple-

mented by periodically cycling through a fixed set of T cutting matrices, it is equiv-

alent to a preconditioned Richardson iteration. An explicit formula for the implicitly

generated preconditioning matrix is given in Theorem 3.3. By simply applying the

standard ET iteration equation (3.7) T times, once for each cutting matrix, we can

compute the product of the ET preconditioning matrix with any vector in O(TNd3)

operations. Thus, from the discussion in §2.4.2, we see that the ET iteration can be

directly used as a preconditioner for Krylov subspace methods.

In this section, we briefly explore the theoretical and empirical properties of em-

bedded tree–based preconditioners. As discussed in §2.4.2, conjugate gradients (CG)
is by far the most widely used Krylov subspace method for positive definite systems.

However, for a preconditioning matrix to be used with CG, it must be symmetric.

While any single–tree ET iteration leads to a symmetric preconditioner, the precon-

ditioners associated with multiple–tree iterations are in general nonsymmetric. Thus,

we begin in §4.3.1 by investigating preconditioners based on a single spanning tree.

Then, in §4.3.2, we suggest some methods for creating preconditioners using multiple

trees.

4.3.1 Single Tree Preconditioners

In this section, we consider the application of preconditioners based on a single span-

ning tree, or equivalently on a single iteration of the ET algorithm, to the conjugate

gradient method. If the spanning tree is created by cutting matrix KT , the resulting

preconditioned system which CG effectively solves is given by

(
Ĵ +KT

)−1

Ĵ x̂ =
(
Ĵ +KT

)−1

CTR−1y (4.16)

The convergence rate of the conjugate gradient method is determined by how well the

eigenspectrum of the preconditioned system
(
Ĵ +KT

)−1

Ĵ can be fit by a polynomial
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(see §2.4.2). Effective preconditioners produce smoother, flatter eigenspectra which

are accurately fit by a lower order polynomial.

As discussed in §3.1, for graphical models where a relatively small number of

edges must be cut to reveal an embedded tree, the cutting matrix KT will be low

rank. The following theorem shows that the rank of KT has important implications

for the convergence of the preconditioned CG method.

Theorem 4.3. Suppose that the conjugate gradient algorithm is used to solve the

N–dimensional preconditioned linear system given by equation (4.16). Then if the

cutting matrix KT has rank(KT) = m, the preconditioned CG method will converge

to the exact solution in at most m+ 1 iterations.

Proof. Let λ be any eigenvalue of
(
Ĵ +KT

)−1

Ĵ , and v its corresponding eigenvector.

We then clearly have

(
Ĵ +KT

)−1

Ĵv = λv

Ĵv = λ
(
Ĵ +KT

)
v

(1− λ)Ĵv = KTv (4.17)

Since rank(KT) = m, there exist N − m linearly independent eigenvectors in the

nullspace of KT . Each one of these eigenvectors satisfies equation (4.17) when λ = 1.

Thus, λ = 1 is an eigenvalue of
(
Ĵ +KT

)−1

Ĵ , and its multiplicity is at least N −m.

Let {λi}mi=1 denote the m eigenvalues of
(
Ĵ +KT

)−1

Ĵ not constrained to equal

one. Consider the (m+ 1)st order polynomial pm+1(λ) defined as

pm+1(λ) =

(1− λ)
m∏

i=1

(λi − λ)

m∏
i=1

λi

(4.18)

By construction, pm+1(0) = 1. Let A �
(
Ĵ +KT

)−1

Ĵ . Then, by equation (2.54)
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(see [25, p. 313]),
||rm+1||A−1

||r0||A−1

≤ max
λ∈{λi(A)}

|pm+1(λ)| (4.19)

where rm+1 is the residual at iteration m+1. Since pm+1(λ̄) = 0 for all λ̄ ∈ {λi (A)},
we must have rm+1 = 0. Therefore, CG must converge by iteration m+ 1.

Thus, when the cutting matrix rank is smaller than the dimension of Ĵ , the precon-

ditioned conjugate gradient iteration can be guaranteed to converge in strictly fewer

iterations than the unpreconditioned method.

When combined with the results of Chapter 3, Theorem 4.3 has a number of

interesting implications. In particular, from §3.3.1 we know that a cutting matrix KT

which cuts E edges from a graph can always be chosen so that rank(KT) ≤ O(Ed).
Then, if this cutting matrix is used to precondition the CG iteration, we see that the

conditional mean can be exactly (non–iteratively) calculated in O(NEd4) operations.

Similarly, if single–tree preconditioned CG is used as the inference method for the

fixed point error covariance algorithm of §3.3.4, error covariances can be exactly

calculated in O(NE2d5) operations. Note that in problems where E is reasonably

large, we typically hope that iterative methods will converge in less than O(Ed)
iterations. Nevertheless, it is useful to be able to provide such guarantees of worst–

case computational cost.

To illustrate Theorem 4.3, we applied the single–tree preconditioned conjugate

gradient (PCG) iteration to the augmented multiscale model of §3.5.2. The results

are shown in Figure 4-5. Recall that only three edges must be cut from this graph

to reveal a spanning tree. Thus, a zero–diagonal KT for this graph will have rank 6,

while a positive semidefinite KT will have rank 3. As predicted by Theorem 4.3, the

zero–diagonal and positive semidefinite PCG iterations converge to machine precision

after 7 and 4 iterations, respectively. For comparison, we have also plotted the one

and two tree Richardson iterations, as well as the unpreconditioned CG method. Note

that the single–tree PCG iterations are dramatically more effective than either ET(1)

or CG are by themselves.

For a 25× 25 grid, too many edges must be cut for the bounds of Theorem 4.3 to
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Figure 4-5: Single–tree preconditioning of the CG algorithm applied to the augmented multiscale
model of Figure 3-6 (σ2 = 10) with homogeneous potentials (left) or disordered potentials (right).

be directly useful. Nevertheless, as shown in Figure 4-6, single–tree preconditioners

still perform very well. We again consider single–tree preconditioning using both

zero–diagonal and positive semidefinite cutting matrices. Figure 4-6(a) compares the

eigenvalues of the preconditioned and unpreconditioned systems. We see that both the

tree–based preconditioners significantly flatten the original eigenspectrum. Although

the positive semidefinite preconditioner leads to a smaller condition number, the

spectrum is no smoother than the zero–diagonal case. This is reflected by their nearly

identical performance in Figure 4-6(b). Note that preconditioning is most effective

when applied to the more irregular disordered model. For both of these models, the

single–tree PCG iterations converge more rapidly than any of the methods considered

earlier in this thesis, including BP and the accelerated two–tree ET iterations of §4.1
and §4.2.

4.3.2 Multiple Tree Preconditioners

In this section, we briefly explore the properties of multiple–tree preconditioners.

As discussed earlier, the preconditioning matrix corresponding to a multiple–tree

ET iteration will in general by nonsymmetric. However, as shown by the following

proposition, if the cutting matrices are appropriately chosen, symmetric multi–tree

preconditioners can indeed be constructed.
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Figure 4-6: Single–tree preconditioning of the CG algorithm applied to a 25×25 nearest–neighbor
grid (σ2 = 10) with homogeneous potentials (left column) or disordered potentials (right column).
(a) Eigenspectra of the unpreconditioned and preconditioned linear systems. (b) Comparison of
single–tree preconditioning with other inference algorithms.

Proposition 4.4. Suppose that the ET iteration (3.7) is implemented by periodi-

cally cycling through a fixed set of T cutting matrices {KTn}Tn=1. Assume that the

reversal of this sequence of cutting matrices equals the original sequence, i.e. that

KTn = KTT+1−n
for n = 1, . . . , T . Then the corresponding preconditioning matrix

M−1
T , as defined by Theorem 3.3, is symmetric.

Proof. From Theorem 3.3, it is straightforward to show that reversing the cutting

matrix order generates a new preconditioning matrix which equals the transpose of

the original preconditioner. Thus, if the reversed cutting matrix sequences are equal,

the resulting preconditioner must be symmetric.
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For example, the preconditioners corresponding to the cutting matrix sequences

{KT1 , KT2 , KT1}, {KT1 , KT2 , KT2 , KT1}, and {KT1 , KT2 , KT3 , KT2 , KT1} are all symmet-

ric.

In general, multiple–tree preconditioned systems generated by low rank cutting

matrices are not guaranteed to converge in a small number of iterations as ensured by

Theorem 4.3 in the single–tree case. Thus, for very sparse problems, any convergence

rate gains attained through the use of multiple trees are typically more than offset

by the dramatic superlinear convergence demonstrated in the previous subsection. In

particular, when applied to the augmented multiscale models of §3.5.2, multiple–tree

preconditioners converged more slowly than the single–tree case shown in Figure 4-5.

For more densely connected models such as nearest–neighbor grids, the situation

is more complicated. Figure 4-7(a) investigates the performance of the symmetric

multiple–tree preconditioners suggested by Proposition 4.4 when used to precondition

the CG algorithm. The tests were performed on the same high–noise 25 × 25 grids

considered in the previous sections, and zero diagonal cutting matrices were used

to generate the preconditioners. The computational cost of applying a multiple–

tree preconditioner based on T cutting matrices is O(TNd3). Therefore, in order

to make the comparison fair, we plot the residuals generated by each multiple–tree

preconditioned iteration versus the total number of single–tree iterations (T ) which

could be performed for the same computational cost.

From the plots in Figure 4-7(a), we see that when scaled for computational cost,

none of the symmetric multi–tree preconditioners are as effective as the single–tree

preconditioner examined in the previous subsection. In addition, as the number

of preconditioning matrices increases, performance generally degrades. This is not

surprising, because as the preconditioner length grows the convergence rate must

approach that of the two–tree Richardson iteration, which was less effective than

single–tree preconditioned CG for these problems.

For the embedded trees Richardson iteration, symmetric preconditioners like those

investigated above are much less effective than the alternating two–tree iteration

considered in earlier sections of this thesis. Intuitively, after performing an iteration
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Figure 4-7: Multiple–tree preconditioning applied to a 25 × 25 nearest–neighbor grid (σ2 = 10)
with homogeneous potentials (left column) or disordered potentials (right column). (a) CG pre-
conditioned by different symmetric multiple–tree preconditioners. (b) Krylov subspace methods for
nonsymmetric matrices preconditioned by two trees.

with some tree, the best error cancellation occurs when the subsequent iteration uses

a different tree. Thus, it seems likely that we could obtain better performance if we

could find a way to use the nonsymmetric two–tree preconditioner which provided

the most effective Richardson iteration.

Although CG cannot be preconditioned with a nonsymmetric matrix, there exist

other Krylov subspace methods which can be. Unfortunately, for reasons beyond the

scope of this discussion, there does not exist a nonsymmetric Krylov subspace method

which shares CG’s combination of performance and efficiency. Some methods, like

generalized minimum residual (GMRES), minimize an explicit error metric at each
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iteration, but the cost of the kth iteration is O(Nk), which is much worse than CG’s

O(N). Others, such as conjugate gradient squared (CGS) and BiConjugate Gradient

Stabilized (Bi-CGSTAB), retain CG’s O(N) cost, but do not explicitly minimize any

error metric and may diverge from the correct solution. For more information on

these and other nonsymmetric Krylov subspace methods, see [7, 37].

Figure 4-7(b) shows the results of applying the three non–symmetric methods

mentioned in the previous paragraph to the two–tree preconditioned system. Bi-

CGSTAB and GMRES are both inferior to the single–tree preconditioner. However,

the two–tree preconditioned CGS iteration does converge noticeably faster than the

single–tree preconditioned CG, albeit somewhat more irregularly. Certainly, far more

extensive studies are needed to determine whether such nonsymmetric methods can

be stable and effective enough for general use with symmetric linear systems like the

estimation problems considered in this thesis.

4.3.3 Discussion

For very sparsely connected graphical models like the augmented multiscale model,

the single–tree preconditioned conjugate gradient iteration is by far the most effective

inference procedure presented in this thesis. For such small models, the benefits of

the regular eigenstructure guaranteed by Theorem 4.3 outweigh the gains normally

provided by multiple–tree iterations. However, it is not clear which techniques will

be most effective for graphs where E is much smaller than N , but still quite large. If

a multiple–tree based method can consistently converge in less than O(E) iterations,
it may still provide an attractive alternative to the guarantees of the single–tree

preconditioned conjugate gradient iteration.

The experimental results concerning multiple tree preconditioners raise a num-

ber of interesting questions. In particular, given the huge gains which multiple–tree

ET iterations consistently provide relative to single–tree ET iterations, it is somewhat

surprising that multiple–tree preconditioners were generally slightly less effective than

their single–tree counterparts. One possibility is that since CG is much more sophis-

ticated than a basic Richardson iteration, the extra spectral smoothing provided by
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multiple tree preconditioners is not justified by their additional computational cost.

However, a more interesting alternative is that we are simply not making a sufficiently

intelligent choice for the spanning trees. The spanning trees used in our experiments

were chosen heuristically by attempting to separate cut edges widely within each

tree, while at the same time minimizing overlap of cut edges between successive trees.

However, they were not at all optimized for the potentials of the underlying graph.

For very inhomogeneous models in particular, such optimizations could potentially

prove quite effective.

In the search for principled ways to construct good multiple–tree preconditioners,

single–tree preconditioning theory may provide a useful starting point. In particular,

several authors have recently rediscovered [8], analyzed [19], and extended [16, 17]

a technique called support graph theory which provides powerful methods for con-

structing effective preconditioners from maximum–weight spanning trees. Support

graph theory is especially interesting because it provides a set of results guaranteeing

the effectiveness of the resulting preconditioners. However, extending support theory

to the multiple–tree case would almost certainly require non–trivial graph theoretic

developments, and is beyond the scope of this thesis.
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Chapter 5

Recommendations and Conclusions

This thesis has proposed and analyzed a family of tree–based algorithms for itera-

tively solving Gaussian inference problems defined by graphs with cycles. The pre-

vious chapters have presented a variety of theoretical and empirical results which

demonstrate the effectiveness of these methods. In this chapter, we begin by high-

lighting the most significant of these contributions. We then discuss a variety of open

research problems naturally motivated by our results. These open questions involve

not only the design and analysis of more efficient inference algorithms, but also the

investigation of an interesting new class of graphical models.

5.1 Contributions

In the Introduction to this thesis, we presented a multiscale modeling example which

suggested that very sparsely connected graphs with cycles may offer significant mod-

eling advantages relative to their tree–structured counterparts. The primary goal of

the remainder of this thesis has been to develop inference algorithms which could

efficiently and accurately solve inference problems defined on such graphs. In the

process, we have developed several techniques which yield good results when applied

to densely connected graphical models. However, the proposed algorithms are most

effective when a spanning tree may be revealed by removing a relatively small number

of edges.
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5.1.1 Embedded Trees Estimation Algorithm

The basis for most of the results in this thesis is an embedded trees (ET) algorithm

which iteratively calculates the conditional mean of a Gaussian inference problem

defined by a graph with cycles. Each step of the ET algorithm involves the removal

of a subset of the full graph’s edges to reveal a spanning tree. An exact inference

procedure is performed on this spanning tree, the results of which provide a starting

point for the subsequent iteration’s calculations. Intuitively, the ET algorithm is most

effective when different spanning trees are used at each iteration, so that constraints

neglected in one iteration are directly enforced in the following iteration’s calculation.

We have presented a variety of theoretical results analyzing the convergence be-

havior of this algorithm. These results provide a set of easily verifiable sufficient con-

ditions which can often be used to verify the algorithm’s convergence. In addition,

they partially explain the dramatic empirical performance gains obtained through

the use of multiple spanning trees. The convergence results are complemented by a

geometric analysis which reveals the structure underlying the ET iterations. This

structure is particularly interesting in the context of the sparsely connected mod-

els motivated in the introduction, as it shows that this sparsity places very specific

constraints on the errors made at each iteration.

In addition to these theoretical results, the ET algorithm’s performance was tested

on an representative set of synthetic problems. These experiments showed that on

sparsely connected graphs with cycles, the ET algorithm is extremely effective in

comparison with other standard techniques such as loopy belief propagation and

conjugate gradient. On more densely connected graphs, its performance is typically

comparable to other methods.

5.1.2 Embedded Trees Error Covariance Algorithm

In addition to the ET algorithm for calculating conditional means, this thesis has pro-

posed and analyzed a tree–based algorithm for exact calculation of error variances.

This algorithm depends on the fact that if a graphical model is nearly tree–structured,
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its error variances will be closely related to a set of easily calculated tree–based er-

ror variances. To calculate the appropriate perturbation of these tree variances, the

algorithm iteratively solves a set of carefully chosen synthetic estimation problems.

These problems may be solved using the ET algorithm for the calculation of condi-

tional means. This in turn allows most of the ET algorithm’s theoretical analyses to

be applied directly to the error covariance method.

The error covariance method has been evaluated on the same problems used to

test the ET algorithm. For sparsely connected graphs, the error covariance method

provides significant gains over other techniques in terms of both accuracy and compu-

tational cost. For more densely connected models, however, the computational cost

of calculating the resulting high–dimensional perturbation is in general intractable.

5.1.3 Accelerated Tree–Based Iterations

Although the ET iteration is very effective for many problems, its convergence rate

is not always competitive with other techniques. Thus, this thesis has proposed

and analyzed three methods for constructing more rapidly convergent tree–based

iterations. The first method is a diagonal acceleration technique which is based on

a simple modification of the numerical structure underlying the tree–based inference

problems solved at each iteration. This acceleration procedure depends on a single

parameter. Although optimally setting this parameter is difficult, our simulations

indicate that it is relatively simple to numerically determine a value which leads to

good performance. For the most difficult test problems, diagonal acceleration was

shown to provide modest performance gains with no additional computational cost.

The second acceleration procedure perturbs each iteration of the standard ET

algorithm by a rank one correction designed to cancel the most significant errors in the

current estimate. The derivation and analysis of this algorithm relies heavily on earlier

results in this thesis concerning the geometry of the ET iteration. Unfortunately,

because this algorithm can only cancel a one–dimensional subspace of the current

errors, it is not effective for many test problems. Although higher dimensional variants

are possible, the computational cost grows quickly with the dimension of the subspace
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in which errors are to be cancelled.

Motivated by an analysis of the rank one correction procedure’s weaknesses, we

conclude the thesis with a study of tree–based preconditioners for Krylov subspace

methods. When a single tree is used as a preconditioner for a sparsely connected

graph, we provide a result which guarantees that the preconditioned iteration will

quickly converge to the exact answer. We present a set of simulations which show that

even for more densely connected graphs, single–tree preconditioners often perform

extremely well. In contrast with the standard ET algorithm, however, preconditioners

based on multiple trees do not appear to provide significant advantages.

5.2 Extensions

There are a wide variety of open research problems naturally suggested by the results

of this thesis. Some involve the development of new and more efficient inference

algorithms, while others explore the class of augmented multiscale models suggested

by the introductory example. We present some of the most interesting questions

below, organized by topic.

5.2.1 Inference Algorithms for Graphs with Cycles

Structural Optimization of Embedded Trees

For all of the experimental results in this thesis, the spanning trees were chosen

heuristically by attempting to separate cut edges widely within each tree, while at the

same time minimizing overlap of cut edges between successive trees. As demonstrated

by the effectiveness of many of the resulting ET iterations, these heuristics have

some merit. However, for inhomogeneous problems in particular, it seems certain

that improved performance could be attained by matching the spanning trees to the

potentials underlying the graph.

One natural idea for finding a good tree is to use a maximum weight spanning tree

algorithm. However, in this case it is not entirely clear what weight should be assigned
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to each edge. One option is the magnitude of the off–diagonal entry being cut; another

is the conditional correlation coefficient associated with that edge (equation (2.12)).

More generally, however, the experimental results show that the interactions between

multiple trees are extremely important, and would need to be handled by any effective

tree selection procedure. This could potentially be accomplished by greedily selecting

one max–weight tree, and then penalizing the second tree for discarding the same

edges. However, the development of a reasonable means for assigning such penalties

is an open problem.

In understanding the relationships between multiple spanning trees, the decompo-

sition provided by Theorem 3.6 may be of some use. Letting KTn = UnDnU
T
n be the

eigendecomposition of the nth cutting matrix, the ET algorithm’s convergence rate is

determined by the eigenvalues of

Er =
T∏

n=1

UT
n+1P̂Un

(
D−1

n + UT
n P̂Un

)−1

The terms of this equation have intuitive interpretations. The
(
D−1

n + UT
n P̂Un

)−1

term seems to measure the strength of the discarded edges relative to the loopy graph

distribution P̂ . To a first approximation, this term will be made small when Dn is

small, or equivalently when the cut edges are weak. However, the UT
n P̂Un term shows

that there may be important interactions between discarded edges. Similarly, the

UT
n+1P̂Un term measures the interactions between subsequent spanning trees. It will

be smallest when KTn and KTn+1 cut edges which are connected to weakly correlated

nodes.

It seems likely that the terms in the preceding discussion could be adapted to

determine good edge weights for use in the tree optimization procedure. The main

problem is in determining how to deal with the entries of P̂ , which are not explicitly

available, and are often the variables we would most like to calculate.
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Adaptive Error Covariance Calculation

In the examples employing our error covariance method in this thesis, we assumed

that a spanning tree was used to provide the base structure from which perturbations

are calculated. However, exact error covariance calculation is also possible for more

general graphs, as long as the maximal cliques in the triangulated graph are not overly

large. One interesting exact inference algorithm would be an adaptive triangulation

procedure which throws away the “worst” edges which lead to the largest growth in

clique size. The effects of these worst edges could then be exactly calculated using

the techniques of this thesis, potentially with much lower total cost than if the graph

was pruned all the way to a tree. However, the means by which these problem edges

could be identified is an open problem.

Inference Algorithms for Non–Gaussian Graphical Models

While this thesis has focused on Gaussian graphical models, it seems likely that tree–

based procedures could also lead to efficient inference algorithms for non–Gaussian

models. In related work inspired by the ET algorithm, a set of powerful tree–based

reparameterization algorithms [76, 77] for the inference of discrete–valued processes

have been proposed and analyzed. In addition, the Gaussian inference procedures of

this thesis may provide a starting point for solving continuous, non–Gaussian inference

problems on graphs with cycles.

5.2.2 Multiscale Modeling using Graphs with Cycles

The example in the Introduction of this thesis suggested that adding small numbers

of edges to multiscale tree–structured models may greatly increase their effectiveness,

in particular alleviating the commonly encountered boundary artifact problem. The

inference algorithms developed in this thesis demonstrate that it is indeed possible

to perform efficient, exact inference on such augmented multiscale models. However,

these inference algorithms have also raised some new concerns about this class of

models. In particular, our results demonstrate that it is critical to determine how
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quickly the number of “extra” edges E must grow as a function of the number of fine

scale nodes N . If effective models can be constructed with E = O(logN) edges, this

may be an extremely powerful model class. However, if E = O(N), exact inference,

in particular the calculation of error variances, may be intractable.

More generally, there are a number of interesting questions associated with the

realization of graphical models with cycles. For example, existing multiscale model

stochastic realization theory [31] explicitly depends on the fact that the primary prob-

abilistic function of each coarse scale node is to decorrelate the subtrees it separates.

For graphs with cycles, however, coarse scale nodes may not decorrelate anything by

themselves, but need to fulfill several different decorrelation roles in combination with

their neighbors. Determining the hidden graphical structure which best balances the

goals of model accuracy and computational efficiency is a quite interesting, and quite

poorly understood, open problem.
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Appendix A

Linear Algebraic Identities

A.1 Inversion of Partitioned Matrices

When working with Gaussian random variables, it is often necessary to calculate the

inverse of a partitioned matrix. Consider the 2× 2 block matrix

M =

 A B

C D

 (A.1)

which is assumed to be invertible. Assuming that the matrices A and D are square

and invertible, the following equations can be verified by direct calculation:

M−1 =

 (A−BD−1C)
−1 − (A−BD−1C)

−1
BD−1

−D−1C (A−BD−1C)
−1

D−1 +D−1C (A−BD−1C)
−1
BD−1

 (A.2)

=

 A−1 + A−1B (D − CA−1B)
−1
CA−1 −A−1B (D − CA−1B)

−1

− (D − CA−1B)
−1
CA−1 (D − CA−1B)

−1

 (A.3)

By equating entries in equations (A.2) and (A.3), we may also derive the following

expressions:

(
A−BD−1C

)−1
= A−1 + A−1B

(
D − CA−1B

)−1
CA−1 (A.4)(

A−BD−1C
)−1

BD−1 = A−1B
(
D − CA−1B

)−1
(A.5)
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Equations (A.4) and (A.5) are often useful because they allow expressions involving

the inverse of A to be converted into expressions involving the inverse of D, and vice

versa. Equation (A.4) is sometimes called the matrix inversion lemma [38, 44].

A.2 Eigenvalue Identities

When analyzing the convergence of many iterative algorithms, it is necessary to de-

termine whether the spectral radius of a particular matrix is less than one. The

following theorem provides a set of equivalent, necessary and sufficient conditions

which are often easier to evaluate.

Theorem A.1. Let A be a real, square matrix. Then ρ (A) < 1 if and only if any

one of the following conditions holds:

1. There exists a real positive definite matrix G such that

G− ATGA > 0 (A.6)

2. There exists a real positive definite matrix R such that

σmax(RAR
−1) < 1 (A.7)

3. (I − A) is nonsingular, and the matrix H defined by

H = (I − A)−1(I + A) (A.8)

has eigenvalues with positive real parts. This will hold if and only if there exists

a real positive definite matrix Q such that

HQ+QHT > 0 (A.9)

Proof. The first condition is originally due to Stein [70]. Proofs of the remaining
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conditions can be found in the text by Young [85, pp. 80–84].

Note that the conditions of Theorem A.1 are very closely related to techniques which

arise in the analysis of Riccati equations associated with Kalman filtering algorithms

for linear state space models [44].
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Appendix B

Gaussian Random Vectors

B.1 Information Parameters

Let x ∼ N (µ,P) be an N -dimensional Gaussian random vector with mean µ � E [x]

and positive definite covariance P � E
[
(x− µ) (x− µ)T

]
. The probability distribu-

tion p (x) of x, as a function of the moment parameters µ and P, is given by

p (x) =
1√

(2π)N detP exp

{
−1
2
(x− µ)T P−1 (x− µ)

}
(B.1)

Although the mean µ and covariance P provide the most common parameterization

of a Gaussian random vector, they are not the only possibility. In particular, one can

define a set of information parameters (ϑ,Λ) by

ϑ = P−1µ Λ = P−1 (B.2)

Note that the Gaussian information parameterization is a special case of the expo-

nential parameterization commonly used in the information geometry literature [4].

Using these information parameters, p (x) may be rewritten as

p (x) = α exp

{
ϑTx− 1

2
xTΛx

}
(B.3)
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where α is a normalization constant. We use the notation x ∼ N−1(ϑ,Λ) to indicate

that x is a Gaussian random vector with information parameters ϑ and Λ.

In principle, equation (B.2) may be used to convert between the moment and

information parameterizations at will. In many situations, however, the information

parameters provide a more natural form for performing calculations. In the following

subsections, we provide a set of formulas for performing various common statistical

operations on Gaussian densities parameterized in the information form (B.3).

Conditional Densities

Let x1 and x2 be two jointly Gaussian random vectors with distribution p (x1, x2) =

N−1
([

ϑ1

ϑ2

]
,
[

Λ11

Λ21

Λ12

Λ22

])
. Then the conditional distribution p (x1 | x2) = N−1

(
ϑ1|2,Λ1|2

)
is also Gaussian, with information parameters given by

ϑ1|2 = ϑ1 − Λ12x2 (B.4)

Λ1|2 = Λ11 (B.5)

These equations may be derived by transforming the moment parameter conditional

distribution equations (2.1, 2.2) using the formulas for the inversion of partitioned

matrices given in Appendix A.1.

Marginal Densities

Let x1 and x2 be two jointly Gaussian random vectors with distribution p (x1, x2) =

N−1
([

ϑ1

ϑ2

]
,
[

Λ11

Λ21

Λ12

Λ22

])
. Then the marginal distribution p (x1) = N−1(ϑm

1 ,Λ
m
1 ) is also

Gaussian, with information parameters given by

ϑm
1 = ϑ1 − Λ12Λ

−1
22 ϑ2 (B.6)

Λm
1 = Λ11 − Λ12Λ

−1
22 Λ21 (B.7)

These equations may be derived by using the partitioned matrix inversion formu-

las (A.2, A.3) to express µ and P in terms of the joint information parameters.
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Product Densities

Let p1(x) = N−1(ϑ1,Λ1) and p2(x) = N−1(ϑ2,Λ2) be two different distributions on

the same random Gaussian random vector x, and consider the product density

p12(x) = αp1(x)p2(x)

A product density of this form arises, for example, when conditional distributions

representing two independent observations of x are combined. From equation (B.3),

we see immediately that p12(x) = N−1(ϑ12,Λ12) is also Gaussian, with information

parameters given by

ϑ12 = ϑ1 + ϑ2 (B.8)

Λ12 = Λ1 + Λ2 (B.9)

Similarly, the quotient p1(x)
p2(x)

produces an exponentiated quadratic form with param-

eters (ϑ1 − ϑ2,Λ1 − Λ2). However, this quotient will define a valid (normalizable)

probability density only if (Λ1 − Λ2) is positive definite.

B.2 Canonical Correlations

In this section, we briefly introduce canonical correlations analysis as a general

method for understanding the joint statistics of a pair of Gaussian random vectors. In

the case of scalar random variables, canonical correlations coincides with the standard

correlation coefficient. In the following three sections, we first show how the canoni-

cal correlation coefficients may be calculated using the singular value decomposition.

Then, we discuss some of the properties that make them useful, including their con-

nection to mutual information. Finally, we provide a proof of Proposition 2.1, which

shows the important role that canonical correlations plays in the interpretation of the

parameters of Gaussian Markov random fields.
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B.2.1 Calculation of Canonical Correlation Coefficients

Canonical correlations is a general multivariate statistical analysis technique origi-

nally developed by Hotelling [39] in 1936. However, its important connections to the

singular value decomposition, which provides a numerically stable method for cal-

culating the canonical coefficients and vectors, were not made until 1973 by Björck

and Golub [15, 37]. For an interesting tutorial introduction to canonical correlations,

emphasizing connections to Wiener filtering and communications theory, see [63, 64].

Let x = [x1 . . . xm]
T ∈ Rm and y = [y1 . . . yn]

T ∈ Rn be two jointly Gaussian

random vectors with distribution p (x, y) = N
([

0
0

]
,
[

Px

PT
xy

Pxy

Py

])
, where we have as-

sumed for convenience that x and y are zero mean.1 We may view the random

variables xi and yj as elements of a vector space H with associated inner product

〈xi, yj〉 � E [xiyj]. The random vectors x and y then define subspaces Hx and Hy of

H, each spanned by linear combinations of the corresponding scalar random variables.

Let x̃ = P− 1
2

x x and ỹ = P− 1
2

y y be the whitened random vectors corresponding to

x and y, so that E
[
x̃x̃T

]
= Im and E

[
ỹỹT

]
= In. Geometrically, x̃ and ỹ define

orthonormal bases for the subspaces Hx and Hy. The covariance of x̃ and ỹ is given

by Px̃ỹ = P− 1
2

x PxyP−T
2

y . Let the singular value decomposition [37] of Px̃ỹ be given by

Px̃ỹ = P− 1
2

x PxyP−T
2

y = URV T (B.10)

where UTU = Im, V
TV = In, and R is an m × n matrix whose entries are all

zero except for the principal diagonal, which contains the p = min(m,n) singular

values {σi (Px̃ỹ)} � {ri}pi=1. We assume the singular values are ordered so that

r1 ≥ r2 ≥ · · · ≥ rp ≥ 0, where r1 ≤ 1 as we demonstrate in the following section.

The singular vectors U and V may then be used to define a set of canonical random

variables x̄ = UT x̃ and ȳ = V T ỹ with covariance

Px̄ȳ = UTPx̃ỹV = UTURV TV = R (B.11)

1The canonical correlation coefficients of two random vectors x and y depend only on their
covariance

[
Px

PT
xy

Pxy

Py

]
, not on their means E [x] and E [y].
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We see that the canonical vectors x̄ and ȳ are aligned so that E [x̄iȳj] = 0 for i �= j.

The singular values ri = E [x̄iȳi] are known as the canonical correlation coefficients

of the random vectors x and y.

The preceding construction has also implicitly defined a canonical decomposi-

tion of the covariance matrix
[

Px

PT
xy

Pxy

Py

]
. In particular, if we let Tx = UTP− 1

2
x and

Ty = V TP− 1
2

y , we have

Tx 0

0 Ty

Px Pxy

PT
xy Py

Tx 0

0 Ty

T

=

Im R

RT In

 (B.12)

The matrices Tx, Ty, and R are sometimes called the canonical correlation matrices.

The purpose of the singular value decomposition step (B.10) is to choose, out of the

many possible square root matrices P
1
2
x and P

1
2
y , a pair of square roots Tx and Ty which

produce the canonical alignment (B.11). Interestingly, such a pair always exists.

In many applications of canonical correlations analysis, one is interested in the

properties of conditional probability distributions. Suppose that x, y, and z are three

jointly Gaussian random vectors, and that cov (x, y| z) =

[
Px|z
PT

xy|z

Pxy|z
Py|z

]
. Then the

conditional canonical correlation coefficients of x and y, conditioned on z, are given

by {ri} =
{
σi

(
P− 1

2

x|z Pxy|zP−T
2

y|z

)}
. All of the properties discussed in the following

section apply equally well to both conditional and unconditional canonical correlation

coefficients.

B.2.2 Interpretation of Canonical Correlation Coefficients

The canonical correlation coefficients may be interpreted both statistically and geo-

metrically. Both interpretations depend on a variational characterization [37] of the

singular value decomposition. Let U = [u1 · · ·um] and V = [v1 · · · vn] denote the sin-

gular vectors associated with the decomposition (B.10). The singular values {ri}pi=1
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may then be found using the following sequential optimization procedure:

ri = max
uT

i uj=0, vT
i vj=0

1≤j≤i−1

uT
i P− 1

2
x PxyP−T

2
y vi

(uT
i ui)

1/2
(vT

i vi)
1/2

= max
uT

i Pxuj=0, vT
i Pyvj=0

1≤j≤i−1

uT
i Pxyvi

(uT
i Pxui)

1/2
(vT

i Pyvi)
1/2

(B.13)

Using the definition of the expectation operator, we may rewrite equation (B.13) as

ri = max
E[(uT

i x)(uT
j x)]=0, E[(vT

i y)(vT
j y)]=0

1≤j≤i−1

E
[
(uT

i x)(v
T
i y)
]

E [(uT
i x)

2]
1/2

E [(vT
i y)

2]
1/2

= max
E[(uT

i x)(uT
j x)]=0, E[(vT

i y)(vT
j y)]=0

1≤j≤i−1

r
(
uT

i x, v
T
i y
)

(B.14)

where r
(
uT

i x, v
T
i y
)
is the standard correlation coefficient between the scalar random

variables uT
i x and vT

i y. Thus, the first canonical correlation coefficient r1 is equal

to the largest possible correlation coefficient between two scalar random variables

(uT
1 x and vT

1 y) formed from linear combinations of the random vectors x and y. The

next canonical correlation coefficient r2 is the largest possible correlation coefficient

between scalar random variables uT
2 x and vT

2 y, subject to the additional constraint

that uT
2 x and vT

2 y are independent of u
T
1 x and vT

1 y, respectively. Subsequent canonical

correlation coefficients are defined similarly.

The canonical correlation coefficients have an important geometric interpretation

which complements their statistical association with the scalar correlation coefficient.

In particular, using the inner product 〈xi, yj〉 = E [xiyj] defined earlier, we may

rewrite equation (B.14) as

ri = max
〈uT

i x,uT
j x〉=0, 〈vT

i y,vT
j y〉=0

1≤j≤i−1

〈uT
i x, v

T
i y〉

〈uT
i x, u

T
i x〉1/2〈vT

i y, v
T
i y〉1/2

= cosαi (B.15)

Here, αi is the angle between uT
i x and vT

i y, when viewed as elements of an inner

product space. The angles {αi}pi=1 are known as the principal angles [15, 37] between
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the subspaces Hx and Hy. From the variational characterization, it follows that

α1 is the smallest possible angle between one-dimensional subspaces of Hx and Hy.

Similarly, α2 is the angle between the most closely aligned subspaces which are also

orthogonal to those subspaces defining α1. Thus, the canonical correlation coefficients

depend only on the relative orientation of the subspaces defined by the random vectors

x and y, not on the magnitude of their variation within those subspaces.

In addition to their important geometric properties, canonical correlation coeffi-

cients are also deeply connected to the mutual information [22] between the random

vectors x and y, defined as

I (x; y) =

∫ ∫
p (x, y) log

p (x, y)

p (x) p (y)
dx dy (B.16)

For Gaussian probability densities (B.1), it is straightforward to show that the mutual

information is given by [35]

I (x; y) = −1
2
log

 det
[

Px

PT
xy

Pxy

Py

]
detPx detPy

 (B.17)

If x and y are scalar Gaussian random variables, equation (B.17) may be simply

expressed using the correlation coefficient r (x, y):

I (x; y) = −1
2
log
[
1− r2 (x, y)

]
r (x, y) =

cov (x, y)√
var (x) var (y)

(B.18)

Using the basic properties of mutual information [22], it can be shown that because

the transformations Tx and Ty defined in §B.2.1 are invertible, I (x; y) = I (Txx;Tyy).

In addition, from equation (B.11) we know that Txx and Tyy define p independent

pairs of random variables such that r ((Txx)i, (Tyy)i) = ri. The mutual informa-

tion of independent pairs of variables is simply the sum of their individual mutual

informations:

I (x; y) = −1
2

p∑
i=1

log
[
1− r2

i

]
(B.19)
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Thus, the canonical correlation coefficients {ri}pi=1 completely characterize the mu-

tual information between the random vectors x and y. For more details, including

extensions to infinite–dimensional random processes, see [35].

In many application areas, canonical correlations analysis is used as an approxi-

mation tool. For example, one would often like to find a matrix L ∈ Rm×k, k < m,

such that I
(
LTx; y

)
is as large as possible. The optimal solution to this problem

chooses the columns of L to span the subspace of Hx corresponding to the k largest

canonical correlation coefficients between x and y. Similarly, such an L defines the

k–dimensional subspace of Hx which minimizes the conditional mutual information

I
(
x; y|LTx

)
. This latter property has led to the extensive use of canonical correla-

tions in algorithms for the approximate stochastic realization of state space models

for time series [3, 5, 27]. These stochastic realization algorithms have been extended

to the design of multiscale tree–structured graphical models [41, 42]. In addition,

canonical correlations has played an integral role in the design of subspace methods

for system identification [49, 71, 72].

B.2.3 Proof of Proposition 2.1

Proposition. For any s ∈ V, the conditional covariance matrix var
(
xs

∣∣xN(s)

)
may

be directly calculated from the corresponding block diagonal entry of J = P−1:

var
(
xs

∣∣xN(s)

)
= (Js,s)

−1 (B.20)

In addition, for any s, t ∈ V, the conditional canonical correlation coefficients of xs

and xt, conditioned on their local neighborhood xN(s,t), may be calculated from

{
σi

(
var
(
xs

∣∣xN(s,t)

)− 1
2 cov

(
xs, xt

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

)− 1
2

)}
=
{
σi

(
(Js,s)

− 1
2 Js,t (Jt,t)

− 1
2

)}
(B.21)

Proof. Suppose a Gaussian random vector x with inverse covariance matrix J is

partitioned into two sets x =
[

x1

x2

]
. If the inverse covariance is partitioned in the
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same way as J =
[

J11

J21

J12

J22

]
, then from equation (B.5) we see that var (x1 |x2 ) = J−1

11 .

If we choose x1 = xs, this implies that var
(
xs

∣∣xV\s ) = (Js,s)
−1. Equation (B.20)

then follows directly from the Markov properties of the graph.

Alternatively, if we choose x1 =
[

xs

xt

]
for some s, t ∈ V, we have

Js,s Js,t

Jt,s Jt,t

−1

=

 var
(
xs

∣∣xV\{s,t} ) cov
(
xs, xt

∣∣xV\{s,t} )
cov

(
xt, xs

∣∣xV\{s,t} ) var
(
xt

∣∣xV\{s,t} )


=

 var
(
xs

∣∣xN(s,t)

)
cov

(
xs, xt

∣∣xN(s,t)

)
cov

(
xt, xs

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

)
 (B.22)

where the second line follows from the Markov properties of the graph. Using the block

matrix inversion formulas (A.2, A.3) to evaluate the left-hand side of equation (B.22),

we have

var
(
xs

∣∣xN(s,t)

)− 1
2 =

(
Js,s − Js,t(Jt,t)

−1Jt,s

) 1
2 (B.23a)

var
(
xt

∣∣xN(s,t)

)− 1
2 =

(
Jt,t − Jt,s(Js,s)

−1Js,t

) 1
2 (B.23b)

cov
(
xs, xt

∣∣xV\{s,t} ) = − (Js,s − Js,t(Jt,t)
−1Jt,s

)−1
Js,t(Jt,t)

−1 (B.23c)

= −(Js,s)
−1Js,t

(
Jt,t − Jt,s(Js,s)

−1Js,t

)−1
(B.23d)

Combining these four equations, and using the fact that {σi (A)} =
{
λi

(
AAT

)}
for

any matrix A, we have

{
σi

(
var
(
xs

∣∣xN(s,t)

)− 1
2 cov

(
xs, xt

∣∣xN(s,t)

)
var
(
xt

∣∣xN(s,t)

)− 1
2

)}
=
{
λi

((
Js,s − Js,t(Jt,t)

−1Jt,s

)− 1
2 Js,t(Jt,t)

−1Jt,s(Js,s)
−1
(
Js,s − Js,t(Jt,t)

−1Jt,s

)T
2

)}
=
{
λi

(
(Js,s)

− 1
2Js,t(Jt,t)

−1Jt,s(Js,s)
−T

2

)}
=
{
σi

(
(Js,s)

− 1
2 Js,t (Jt,t)

− 1
2

)}
(B.24)

where the second equality follows from the identity {λi (AB)} = {λi (BA)}. This

proves the desired result.
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Appendix C

Proofs for Chapter 3

In this appendix, we provide proofs for two results from §3.2 which establish basic

properties of the embedded trees algorithm, as well as theorems in §3.4 which examine

the conditions under which the embedded trees algorithm converges.

C.1 Proof of Theorem 3.2

Theorem. Suppose the embedded trees mean recursion (3.7) is implemented by pe-

riodically cycling through T embedded trees, as in equation (3.15). Then the error

en � x̂n − x̂ and first difference dn � x̂n − x̂n−1 evolve according to

eTn+T =

[
T∏

j=1

Ĵ−1
Tj
KTj

]
eTn � EeTn (C.1)

dTn+T+1 =

[
T∏

j=1

Ĵ−1
Tj+1

KTj

]
dTn+1 � DdTn+1 (C.2)

where ĴTT+1
= ĴT1 , and the matrices E andD have the same eigenvalues. If ρ (E) < 1,

then for arbitrary x̂0, en n→∞−→ 0 at an asymptotic rate of at most γ � ρ (E)
1
T . Alter-

natively, if ρ (E) > 1, then |en| n→∞−→ ∞ for almost all x̂0.

Proof. Equations (C.1, C.2) are direct specializations of equations (3.13, 3.14) for

the case of periodically varying cutting matrices. The statements connecting the

convergence of en to the spectral radius ρ (E) then follow from basic linear algebra.
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To show that {λi (E)} = {λi (D)}, we note from Lemma 3.4 (see §3.2.4) that

Ĵ−1
Tn
KTn = P̂GTn for some symmetric matrix GTn , where P̂ = Ĵ−1. Recall that for ar-

bitrary square matrices A and B, {λi (A)} =
{
λi

(
AT
)}

and {λi (AB)} = {λi (BA)}.
Therefore, if A is symmetric, {λi (AB)} = {λi

(
ABT

)}
. Applying these basic prop-

erties, we have

{λi (D)} =
{
λi

(
Ĵ−1
T1
KTT

Ĵ−1
TT
KTT−1

· · · Ĵ−1
T3
KT2 Ĵ

−1
T2
KT1

)}
=
{
λi

(
Ĵ−1
T1
KT1 Ĵ

−1
T2
KT2 · · · Ĵ−1

TT−1
KTT−1

Ĵ−1
TT
KTT

)}
=
{
λi

(
Ĵ−1
T2
KT2 Ĵ

−1
T3
KT3 · · · Ĵ−1

TT
KTT

Ĵ−1
T1
KT1

)}
=
{
λi

(
P̂GT2P̂GT3 · · · P̂GTT

P̂GT1

)}
=
{
λi

(
P̂GTT

P̂GTT−1
· · · P̂GT2P̂GT1

)}
=
{
λi

(
Ĵ−1
TT
KTT

Ĵ−1
TT−1

KTT−1
· · · Ĵ−1

T2
KT2 Ĵ

−1
T1
KT1

)}
= {λi (E)}

C.2 Proof of Lemma 3.4

Lemma. Given two inverse covariance matrices Ĵ and ĴTn of dimension Nd, let

KTn = (ĴTn − Ĵ) be the associated symmetric cutting matrix. Defining r � rank(KTn),

the reduced–rank diagonalization ofKTn is given byKTn = UnDnU
T
n , whereDn ∈ Rr×r

is a diagonal matrix containing the nonzero eigenvalues of KTn and the columns of

Un ∈ RNd×r are the corresponding eigenvectors (UT
n Un = Ir). We then have

Ĵ−1
Tn
KTn =

(
P̂−1 +KTn

)−1

KTn = P̂Un

(
D−1

n + UT
n P̂Un

)−1

UT
n

Proof. Using the matrix inversion lemma (A.4), we have

Ĵ−1
Tn

=
(
P̂−1 + UnDnU

T
n

)−1

= P̂ − P̂Un

(
D−1

n + UT
n P̂Un

)−1

UT
n P̂

154



The desired result then follows from algebraic manipulation:

Ĵ−1
Tn
KTn =

[
P̂ − P̂Un

(
D−1

n + UT
n P̂Un

)−1

UT
n P̂

]
UnDnU

T
n

= P̂Un

[
I −

(
D−1

n + UT
n P̂Un

)−1

UT
n P̂Un

]
DnU

T
n

= P̂Un

(
D−1

n + UT
n P̂Un

)−1 [
D−1

n + UT
n P̂Un − UT

n P̂Un

]
DnU

T
n

= P̂Un

(
D−1

n + UT
n P̂Un

)−1

UT
n

C.3 Proof of Theorem 3.11

Theorem. Let A be a symmetric positive definite matrix, and K be a symmetric

cutting matrix such that (A+K) is nonsingular. Then

ρ
(
(A+K)−1K

)
< 1 if and only if A+ 2K > 0

Proof. Suppose that ρ ((A+K)−1K) < 1. By Theorem A.1, the matrix H defined

below must have positive eigenvalues:

H =
(
I − (A+K)−1K

)−1 (
I + (A+K)−1K

)
=

(
(A+K)−1A

)−1 (
(A+K)−1(A+K +K)

)
= A−1(A+K)(A+K)−1(A+ 2K) = A−1(A+ 2K)

Algebraic manipulation of this equation then gives

A− 1
2 (A+ 2K)A

1
2 = A

1
2HA

1
2

A− 1
2 (A + 2K)A

1
2 is a similarity transform of (A + 2K), and therefore has the same

eigenvalues. A
1
2HA

1
2 is congruent to H, and therefore must have positive eigenvalues.

Since (A + 2K) is symmetric, it follows that it must have positive real eigenvalues,

and hence be positive definite.

Alternatively, suppose that (A + 2K) > 0. By Theorem A.1, to verify that
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ρ ((A+K)−1K) < 1 it is sufficient to show that

Q = A− ((A+K)−1K
)T
A
(
(A+K)−1K

)
> 0

Using the identity (A+K)−1K = I − (A+K)−1A, we have

Q = A− (I − A(A+K)−1
)
A
(
I − (A+K)−1A

)
= A− [A− 2A(A+K)−1A+ A(A+K)−1A(A+K)−1A

]
= A(A+K)−1 [2(A+K)− A] (A+K)−1A

=
(
(A+K)−1K

)T
(A+ 2K)

(
(A+K)−1K

)
Because (A+ 2K) > 0, it follows that Q > 0, and hence ρ ((A+K)−1K) < 1.

C.4 Proof of Theorem 3.15

Theorem. Consider the embedded trees iteration generated by a pair of cutting

matrices {KT1 , KT2}, as in equation (3.57). Suppose that the following three matrices

are positive definite:

Ĵ +KT1 +KT2 > 0 Ĵ +KT1 −KT2 > 0 Ĵ −KT1 +KT2 > 0

Then the resulting iteration is convergent (ρ (E) < 1).

Proof. For simplicity in notation, we letKT1 = K1 andKT2 = K2. From Theorem 3.2,

we know that E has the same eigenvalues as the first–difference matrix D given by

D =
(
Ĵ +K1

)−1

K2

(
Ĵ +K2

)−1

K1

Because (Ĵ + K1 + K2) is positive definite, it has a symmetric square root matrix

(Ĵ +K1 +K2)
1
2 . Using this square root to form a similarity transform, we see that
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{λi (D)} = {λi(D̃)}, where D̃ is given by

D̃ =
[
(Ĵ +K1 +K2)

1
2 (Ĵ +K1)

−1K2(Ĵ +K1 +K2)
− 1

2

]
×
[
(Ĵ +K1 +K2)

1
2 (Ĵ +K2)

−1K1(Ĵ +K1 +K2)
− 1

2

]
Through straightforward algebraic manipulation, it follows that D̃ = Q1Q2, where

Qi = I − (Ĵ +K1 +K2)
1
2 (Ĵ +Ki)

−1(Ĵ +K1 +K2)
1
2

From basic properties of eigenvalues and singular values, we know that

ρ (Q1Q2) ≤ σmax(Q1Q2) ≤ σmax(Q1)σmax(Q2)

Therefore, in order to verify that ρ (E) < 1, it is sufficient to show that σmax(Qi) < 1

for i = 1, 2. Recall that {σi (Qi)} =
{
λi

(
QiQ

T
i

)}
. Through algebraic manipulation

of the expression for Q1, it can be shown that

Q1Q
T
1 = I − (Ĵ +K1 +K2)

1
2 (Ĵ +K1)

−1(Ĵ +K1 −K2)(Ĵ +K1)
−1(Ĵ +K1 +K2)

1
2

= I − S1(Ĵ +K1 −K2)S
T
1

where S1 � (Ĵ +K1 +K2)
1
2 (Ĵ +K1)

−1. From this formula, we see that the eigenval-

ues of Q1Q
T
1 , which must all be positive, are equal to one minus the eigenvalues of

S1(Ĵ +K1 −K2)S
T
1 . Thus, ρ

(
Q1Q

T
1

)
< 1 if and only if S1(Ĵ+K1−K2)S

T
1 is positive

definite, or equivalently if and only if (Ĵ + K1 − K2) > 0. A similar argument for

ρ
(
Q2Q

T
2

)
establishes the (Ĵ −K1 +K2) > 0 condition.

C.5 Proof of Theorem 3.16

Theorem. Suppose that the ET iteration (3.7) is implemented by periodically cycling

through a set of T spanning trees defined by the cutting matrices {KTj
}Tj=1. Define

KTT+1
� KT1 . Then if any of the following three sets of non–equivalent conditions
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holds for j = 1, . . . , T , we are guaranteed that ρ (E) < 1:

σmax

(
(Ĵ +KTj

)−1KTj

)
< 1 ⇐⇒ (Ĵ +KTj

)2 > K2
Tj

σmax

(
(Ĵ +KTj+1

)−1KTj

)
< 1 ⇐⇒ (Ĵ +KTj+1

)2 > K2
Tj

σmax

(
(Ĵ +KTj

)−1KTj+1

)
< 1 ⇐⇒ (Ĵ +KTj

)2 > K2
Tj+1

Proof. We begin by proving the first set of conditions. Recall that ĴTj
� (Ĵ +KTj

).

Using standard properties of eigenvalues and singular values, the spectral radius of

the ET convergence matrix E (see Theorem 3.2) may be bounded as

ρ (E) = ρ

(
T∏

j=1

Ĵ−1
Tj
KTj

)
≤ σmax

(
T∏

j=1

Ĵ−1
Tj
KTj

)
≤

T∏
j=1

σmax

(
Ĵ−1
Tj
KTj

)

Thus, if σmax

(
Ĵ−1
Tj
KTj

)
< 1 for every cutting matrix, we must have ρ (E) < 1.

To prove the alternate statement of the first condition set, we note that

{
σi

(
Ĵ−1
Tj
KTj

)}
=

{
λi

((
Ĵ−1
Tj
KTj

)(
Ĵ−1
Tj
KTj

)T
)}

=
{
λi

(
Ĵ−1
Tj
K2

Tj
Ĵ−1
Tj

)}

Thus, σmax

(
Ĵ−1
Tj
KTj

)
< 1 if and only if ρ

(
Ĵ−1
Tj
K2

Tj
Ĵ−1
Tj

)
< 1, or equivalently

Ĵ−1
Tj
K2

Tj
Ĵ−1
Tj

< I ⇐⇒ K2
Tj
< Ĵ2

Tj

which is the desired condition.

To prove the second set of conditions, we employ the first difference matrix D

defined in Theorem 3.2:

ρ (E) = ρ (D) = ρ

(
T∏

j=1

Ĵ−1
Tj+1

KTj

)
≤ σmax

(
T∏

j=1

Ĵ−1
Tj+1

KTj

)
≤

T∏
j=1

σmax

(
Ĵ−1
Tj+1

KTj

)

The alternate statement follows from arguments identical to those above. Finally, the

third set of conditions may be obtained by using Proposition 3.5 to reverse the order

of the cutting matrices, and then again applying the same bounds.

158



Bibliography

[1] L. Adams. m–Step preconditioned conjugate gradient methods. SIAM Journal
on Scientific and Statistical Computing, 6(2):452–463, April 1985.

[2] S. M. Aji and R. J. McEliece. The generalized distributive law. IEEE Transac-
tions on Information Theory, 46(2):325–343, March 2000.

[3] H. Akaike. Markovian representation of stochastic processes by canonical vari-
ables. SIAM Journal on Control, 13(1):162–173, January 1975.

[4] S. Amari. Information geometry on hierarchy of probability distributions. IEEE
Transactions on Information Theory, 47(5):1701–1711, July 2001.

[5] K. S. Arun and S. Y. Kung. Balanced approximation of stochastic systems.
SIAM Journal on Matrix Analysis and Applications, 11(1):42–68, January 1990.

[6] O. Axelsson. Bounds of eigenvalues of preconditioned matrices. SIAM Journal
on Matrix Analysis and Applications, 13(3):847–862, July 1992.

[7] R. Barrett et al. Templates for the Solution of Linear Systems: Building Blocks
for Iterative Methods. SIAM, Philadelphia, 1994.

[8] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo. Support–
graph preconditioners. SIAM Journal on Matrix Analysis and Applications, Jan-
uary 2001. Submitted.

[9] J. G. Berryman. Analysis of approximate inverses in tomography II: Iterative
inverses. Optimization and Engineering, 1:437–473, 2000.

[10] D. P. Bertsekas. Dynamic Programming and Optimal Control: Volume I. Athena
Scientific, Belmont, Massachusetts, 1995.

[11] D. P. Bertsekas. Dynamic Programming and Optimal Control: Volume II. Athena
Scientific, Belmont, Massachusetts, 1995.

[12] D. P. Bertsekas. Generic rank-one corrections for value iteration in Markovian
decision problems. Operations Research Letters, 17:111–119, 1995.

[13] J. Besag. Spatial interaction and the statistical analysis of lattice systems. Jour-
nal of Royal Statistical Society, Series B, 36:192–223, 1974.

159



[14] G. Birkhoff and R. S. Varga. Implicit alternating direction methods. Transactions
of the AMS, 92(1):13–24, July 1959.

[15] A. Björck and G. H. Golub. Numerical methods for computing angles between
linear subspaces. Mathematics of Computation, 27(123):579–594, July 1973.

[16] E. Boman, D. Chen, B. Hendrickson, and S. Toledo. Maximum–weight–basis
preconditioners. Journal on Numerical Linear Algebra, June 2001. Submitted.

[17] E. Boman and B. Hendrickson. Support theory for preconditioning. SIAM
Journal on Matrix Analysis and Applications, 2001. Submitted.
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