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Abstract

We develop statistical methods which allow effective visual detection, categorization,
and tracking of objects in complex scenes. Such computer vision systems must be robust
to wide variations in object appearance, the often small size of training databases, and
ambiguities induced by articulated or partially occluded objects. Graphical models
provide a powerful framework for encoding the statistical structure of visual scenes, and
developing corresponding learning and inference algorithms. In this thesis, we describe
several models which integrate graphical representations with nonparametric statistical
methods. This approach leads to inference algorithms which tractably recover high–
dimensional, continuous object pose variations, and learning procedures which transfer
knowledge among related recognition tasks.

Motivated by visual tracking problems, we first develop a nonparametric extension
of the belief propagation (BP) algorithm. Using Monte Carlo methods, we provide gen-
eral procedures for recursively updating particle–based approximations of continuous
sufficient statistics. Efficient multiscale sampling methods then allow this nonparamet-
ric BP algorithm to be flexibly adapted to many different applications. As a particular
example, we consider a graphical model describing the hand’s three–dimensional (3D)
structure, kinematics, and dynamics. This graph encodes global hand pose via the 3D
position and orientation of several rigid components, and thus exposes local structure in
a high–dimensional articulated model. Applying nonparametric BP, we recover a hand
tracking algorithm which is robust to outliers and local visual ambiguities. Via a set
of latent occupancy masks, we also extend our approach to consistently infer occlusion
events in a distributed fashion.

In the second half of this thesis, we develop methods for learning hierarchical models
of objects, the parts composing them, and the scenes surrounding them. Our approach
couples topic models originally developed for text analysis with spatial transformations,
and thus consistently accounts for geometric constraints. By building integrated scene
models, we may discover contextual relationships, and better exploit partially labeled
training images. We first consider images of isolated objects, and show that sharing
parts among object categories improves accuracy when learning from few examples.
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Turning to multiple object scenes, we propose nonparametric models which use Dirichlet
processes to automatically learn the number of parts underlying each object category,
and objects composing each scene. Adapting these transformed Dirichlet processes to
images taken with a binocular stereo camera, we learn integrated, 3D models of object
geometry and appearance. This leads to a Monte Carlo algorithm which automatically
infers 3D scene structure from the predictable geometry of known object categories.

Thesis Supervisors: William T. Freeman and Alan S. Willsky
Professors of Electrical Engineering and Computer Science
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Chapter 1

Introduction

IMAGES and video can provide richly detailed summaries of complex, dynamic envi-
ronments. Using computer vision systems, we may then automatically detect and

recognize objects, track their motion, or infer three–dimensional (3D) scene geome-
try. Due to the wide availability of digital cameras, these methods are used in a huge
range of applications, including human–computer interfaces, robot navigation, medical
diagnosis, visual effects, multimedia retrieval, and remote sensing [91].

To see why these vision tasks are challenging, consider an environment in which
a robot must interact with pedestrians. Although the robot will (hopefully) have
some model of human form and behavior, it will undoubtedly encounter people that it
has never seen before. These individuals may have widely varying clothing styles and
physiques, and may move in sudden and unexpected ways. These issues are not limited
to humans; even mundane objects such as chairs and automobiles vary widely in visual
appearance. Realistic scenes are further complicated by partial occlusions, 3D object
pose variations, and illumination effects.

Due to these difficulties, it is typically impossible to directly identify an isolated
patch of pixels extracted from a natural image. Machine vision systems must thus
propagate information from local features to create globally consistent scene interpre-
tations. Statistical methods are widely used to characterize this local uncertainty, and
learn robust object appearance models. In particular, graphical models provide a pow-
erful framework for specifying precise, modular descriptions of computer vision tasks.
Inference algorithms must then be tailored to the high–dimensional, continuous vari-
ables and complex distributions which characterize visual scenes. In many applications,
physical description of scene variations is difficult, and these statistical models are in-
stead learned from sparsely labeled training images.

This thesis considers two challenging computer vision applications which explore
complementary aspects of the scene understanding problem. We first describe a kine-
matic model, and corresponding Monte Carlo methods, which may be used to track 3D
hand motion from video sequences. We then consider less constrained environments,
and develop hierarchical models relating objects, the parts composing them, and the
scenes surrounding them. Both applications integrate nonparametric statistical meth-
ods with graphical models, and thus build algorithms which flexibly adapt to complex
variations in object appearance.

19



20 CHAPTER 1. INTRODUCTION

Figure 1.1. Visual tracking of articulated hand motion. Left: Representation of the hand as a
collection of sixteen rigid bodies (nodes) connected by revolute joints (edges). Right: Four frames from
a hand motion sequence. White edges correspond to projections of 3D hand pose estimates.

¥ 1.1 Visual Tracking of Articulated Objects

Visual tracking systems use video sequences to estimate object or camera motion. Some
of the most challenging tracking applications involve articulated objects, whose jointed
motion leads to complex pose variations. In particular, human motion capture is widely
used in visual effects and scene understanding applications [103, 214]. Estimates of
human, and especially hand, motion are also used to build more expressive computer
interfaces [333]. As illustrated in Fig. 1.1, this thesis develops probabilistic methods for
tracking 3D hand and finger motion from monocular image sequences.

Hand pose is typically described by the angles of the thumb and fingers’ joints,
relative to the wrist or palm. Even coarse models of the hand’s geometry have 26
continuous degrees of freedom: each finger has four rotational degrees of freedom, while
the palm may take any 3D position and orientation [333]. This high dimensionality
makes brute force search over all possible 3D poses intractable. Because hand motion
may be erratic and rapid, even at video frame rates, simple local search procedures are
often ineffective. Although there are dependencies among the hand’s joint angles, they
have a complex structure which, except in special cases [334], is not well captured by
simple global dimensionality reduction techniques [293].

Visual tracking problems are further complicated by the projections inherent in
the imaging process. Videos of hand motion typically contain many frames exhibiting
self–occlusion, in which some fingers partially obscure other parts of the hand. These
situations make it difficult to locally match hand parts to image features, since the
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global hand pose determines which local edge and color cues should be expected for
each finger. Furthermore, because the appearance of different fingers is typically very
similar, accurate association of hand components to image cues is only possible through
global geometric reasoning.

In some applications, 3D hand position must be identified from a single image. Sev-
eral authors have posed this as a classification problem, where classes correspond to
some discretization of allowable hand configurations [12, 256]. An image of the hand is
precomputed for each class, and efficient algorithms for high–dimensional nearest neigh-
bor search are used to find the closest 3D pose. These methods are most appropriate
in applications such as sign language recognition, where only a small set of poses is of
interest. When general hand motion is considered, the database of precomputed pose
images may grow unacceptably large. A recently proposed method for interpolating
between classes [295] makes no use of the image data during the interpolation, and thus
makes the restrictive assumption that the transition between any pair of hand pose
classes is highly predictable.

When video sequences are available, hand dynamics provide an important cue for
tracking algorithms. Due to the hand’s many degrees of freedom and nonlinearities
in the imaging process, exact representation of the posterior distribution over model
configurations is intractable. Trackers based on extended and unscented Kalman fil-
ters [204, 240, 270] have difficulties with the multimodal uncertainties produced by am-
biguous image evidence. This has motivated many researchers to consider nonpara-
metric representations, including particle filters [190, 334] and deterministic multiscale
discretizations [271, 293]. However, the hand’s high dimensionality can cause these
trackers to suffer catastrophic failures, requiring the use of constraints which severely
limit the hand’s motion [190] or restrictive prior models of hand configurations and
dynamics [293, 334].

Instead of reducing dimensionality by considering only a limited set of hand motions,
we propose a graphical model describing the statistical structure underlying the hand’s
kinematics and imaging. Graphical models have been used to track view–based human
body representations [236], contour models of restricted hand configurations [48] and
simple object boundaries [47], view–based 2.5D “cardboard” models of hands and peo-
ple [332], and a full 3D kinematic human body model [261, 262]. As shown in Fig. 1.1,
nodes of our graphical model correspond to rigid hand components, which we individ-
ually parameterize by their 3D pose. Via a distributed representation of the hand’s
structure, kinematics, and dynamics, we then track hand motion without explicitly
searching the space of global hand configurations.

¥ 1.2 Object Categorization and Scene Understanding

Object recognition systems use image features to localize and categorize objects. We
focus on the so–called basic level recognition of visually identifiable categories, rather
than the differentiation of object instances. For example, in street scenes like those
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Figure 1.2. Partial segmentations of street scenes highlighting four different object categories: cars
(red), buildings (magenta), roads (blue), and trees (green).

shown in Fig. 1.2, we seek models which correctly classify previously unseen buildings
and automobiles. While such basic level categorization is natural for humans [182, 228],
it has proven far more challenging for computer vision systems. In particular, it is often
difficult to manually define physical models which adequately capture the wide range
of potential object shapes and appearance. We thus develop statistical methods which
learn object appearance models from labeled training examples.

Most existing methods for object categorization use 2D, image–based appearance
models. While pixel–level object segmentations are sometimes adequate, many appli-
cations require more explicit knowledge about the 3D world. For example, if robots are
to navigate in complex environments and manipulate objects, they require more than
a flat segmentation of the image pixels into object categories. Motivated by these chal-
lenges, our most sophisticated scene models cast object recognition as a 3D problem,
leading to algorithms which partition estimated 3D structure into object categories.

¥ 1.2.1 Recognition of Isolated Objects

We begin by considering methods which recognize cropped images depicting individual
objects. Such images are frequently used to train computer vision algorithms [78, 304],
and also arise in systems which use motion or saliency cues to focus attention [315].
Many different recognition algorithms may then be designed by coupling standard ma-
chine learning methods with an appropriate set of image features [91]. In some cases,
simple pixel or wavelet–based features are selected via discriminative learning tech-
niques [3, 304]. Other approaches combine sophisticated edge–based distance metrics
with nearest neighbor classifiers [18, 20]. More recently, several recognition systems have
employed interest regions which are affinely adapted to locally correct for 3D object pose
variations [54, 81, 181, 266]. Sec. 5.1 describes these affine covariant regions [206, 207]
in more detail.
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Many of these recognition algorithms use parts to characterize the internal structure
of objects, identifying spatially localized modules with distinctive visual appearances.
Part–based object representations play a significant role in human perception [228],
and also have a long history in computer vision [195]. For example, pictorial structures
couple template–based part appearance models with spring–like spatial constraints [89].
More recent work provides statistical methods for learning pictorial structures, and
computationally efficient algorithms for detecting object instances in test images [80].
Constellation models provide a closely related framework for part–based appearance
modeling, in which parts characterize the expected location and appearance of discrete
interest points [77, 82, 318].

In many cases, systems which recognize multiple objects are derived from indepen-
dent models of each category. We believe that such systems should instead consider
relationships among different object categories during the training process. This ap-
proach provides several benefits. At the lowest level, significant computational savings
are possible if different categories share a common set of features. More importantly,
jointly trained recognition systems can use similarities between object categories to their
advantage by learning features which lead to better generalization [77, 299]. This trans-
fer of knowledge is particularly important when few training examples are available, or
when unsupervised discovery of new objects is desired.

¥ 1.2.2 Multiple Object Scenes

In most computer vision applications, systems must detect and recognize objects in
cluttered visual scenes. Natural environments like the street scenes of Fig. 1.2 often
exhibit huge variations in object appearance, pose, and identity. There are two com-
mon approaches to adapting isolated object classifiers to visual scenes [3]. The “sliding
window” method considers rectangular blocks of pixels at some discretized set of image
positions and scales. Each of these windows is independently classified, and heuris-
tics are then used to avoid multiple partially overlapping detections. An alternative
“greedy” approach begins by finding the single most likely instance of each object cat-
egory. The pixels or features corresponding to this instance are then removed, and
subsequent hypotheses considered until no likely object instances remain.

Although they constrain each image region to be associated with a single object,
these recognition frameworks otherwise treat different categories independently. In
complex scenes, however, contextual knowledge may significantly improve recognition
performance. At the coarsest level, the overall spatial structure, or gist, of an image
provides priming information about likely object categories, and their most probable
locations within the scene [217, 298]. Models of spatial relationships between objects
can also improve detection of categories which are small or visually indistinct [7, 88,
126, 300, 301]. Finally, contextual models may better exploit partially labeled training
databases, in which only some object instances have been manually identified.

Motivated by these issues, this thesis develops integrated, hierarchical models for
multiple object scenes. The principal challenge in developing such models is specifying
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tractable, scalable methods for handling uncertainty in the number of objects. Gram-
mars, and related rule–based systems, provide one flexible family of hierarchical repre-
sentations [27, 292]. For example, several different models impose distributions on mul-
tiscale, tree–based segmentations of the pixels composing simple scenes [2, 139, 265, 274].
In addition, an image parsing [301] framework has been proposed which explains an
image using a set of regions generated by generic or object–specific processes. While
this model allows uncertainty in the number of regions, and hence objects, its use of
high–dimensional latent variables require good, discriminatively trained proposal distri-
butions for acceptable MCMC performance. The BLOG language [208] provides another
promising method for reasoning about unknown objects, although the computational
tools needed to apply BLOG to large–scale applications are not yet available. In later
sections, we propose a different framework for handling uncertainty in the number of
object instances, which adapts nonparametric statistical methods.

¥ 1.3 Overview of Methods and Contributions

This thesis proposes novel methods for visually tracking articulated objects, and detect-
ing object categories in natural scenes. We now survey the statistical methods which
we use to learn robust appearance models, and efficiently infer object identity and pose.

¥ 1.3.1 Particle–Based Inference in Graphical Models

Graphical models provide a powerful, general framework for developing statistical mod-
els of computer vision problems [95, 98, 108, 159]. However, graphical formulations are
only useful when combined with efficient learning and inference algorithms. Computer
vision problems, like the articulated tracking task introduced in Sec. 1.1, are particularly
challenging because they involve high–dimensional, continuous variables and complex,
multimodal distributions. Realistic graphical models for such problems must represent
outliers, bimodalities, and other non–Gaussian statistical features. The correspond-
ing optimal inference procedures for these models typically involve integral equations
for which no closed form solution exists. It is thus necessary to develop families of
approximate representations, and corresponding computational methods.

The simplest approximations of intractable, continuous–valued graphical models are
based on discretization. Although exact inference in general discrete graphs is NP hard,
approximate inference algorithms such as loopy belief propagation (BP) [231, 306, 339]
often produce excellent empirical results. Certain vision problems, such as dense stereo
reconstruction [17, 283], are well suited to discrete formulations. For problems involv-
ing high–dimensional variables, however, exhaustive discretization of the state space is
intractable. In some cases, domain–specific heuristics may be used to dynamically ex-
clude those configurations which appear unlikely based upon the local evidence [48, 95].
In more challenging applications, however, the local evidence at some nodes may be
inaccurate or misleading, and these approximations lead to distorted estimates.

For temporal inference problems, particle filters [11, 70, 72, 183] have proven to be
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an effective, and influential, alternative to discretization. They provide the basis for
several of the most effective visual tracking algorithms [190, 260]. Particle filters approx-
imate conditional densities nonparametrically as a collection of representative elements.
Monte Carlo methods are then used to propagate these weighted particles as the tem-
poral process evolves, and consistently revise estimates given new observations.

Although particle filters are often effective, they are specialized to temporal prob-
lems whose corresponding graphs are simple Markov chains. Many vision applications,
however, are characterized by more complex spatial or model–induced structure. Mo-
tivated by these difficulties, we propose a nonparametric belief propagation (NBP) al-
gorithm which allows particle–based inference in arbitrary graphs. NBP approximates
complex, continuous sufficient statistics by kernel–based density estimates. Efficient,
multiscale Gibbs sampling algorithms are then used to fuse the information provided
by several messages, and propagate particles throughout the graph. As several com-
putational examples demonstrate, the NBP algorithm may be applied to arbitrarily
structured graphs containing a broad range of complex, non–linear potential functions.

¥ 1.3.2 Graphical Representations for Articulated Tracking

As discussed in Sec. 1.1, articulated tracking problems are complicated by the high
dimensionality of the space of possible object poses. In fact, however, the kinematic
and dynamic behavior of objects like hands exhibits significant structure. To exploit
this, we consider a redundant local representation in which each hand component is
described by its 3D position and orientation. Kinematic constraints, including self–
intersection constraints not captured by joint angle representations, are then naturally
described by a graphical model. By introducing a set of auxiliary occlusion masks, we
may also decompose color and edge–based image likelihoods to provide direct evidence
for the pose of individual fingers.

Because the pose of each hand component is described by a six–dimensional contin-
uous variable, discretized state representations are intractable. We instead apply the
NBP algorithm, and thus develop a tracker which propagates local pose estimates to
infer global hand motion. The resulting algorithm updates particle–based estimates
of finger position and orientation via likelihood functions which consistently discount
occluded image regions.

¥ 1.3.3 Hierarchical Models for Scenes, Objects, and Parts

The second half of this thesis considers the object recognition and scene understanding
applications introduced in Sec. 1.2. In particular, we develop a family of hierarchical
generative models for objects, the parts composing them, and the scenes surrounding
them. Our models share information between object categories in three distinct ways.
First, parts define distributions over a common low–level feature vocabularly, leading
to computational savings when analyzing new images. In addition, and more unusually,
objects are defined using a common set of parts. This structure leads to the discovery
of parts with interesting semantic interpretations, and can improve performance when
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few training examples are available. Finally, object appearance information is shared
between the many scenes in which that object is found.

This generative approach is motivated by the pragmatic need for learning algorithms
which require little manual supervision and labeling. While discriminative models often
produce accurate classifiers, they typically require very large training sets even for
relatively simple categories [304]. In contrast, generative approaches can discover large,
visually salient categories (such as foliage and buildings [266]) without supervision.
Partial segmentations can then be used to learn semantically interesting categories
(such as cars and pedestrians) which are less visually distinctive, or present in fewer
training images. Moreover, by employing a single hierarchy describing multiple objects
or scenes, the learning process automatically shares information between categories.

In the simplest case, our scene models assemble 2D objects in a “jigsaw puzzle”
fashion. To allow scale–invariant object recognition, we generalize these models to
describe the 3D structure and appearance of object categories. Binocular stereo training
images are used to approximately calibrate these geometric models. Because we consider
objects with predictable 3D structure, we may then automatically recover a coarse
reconstruction of the scene depths underlying test images.

¥ 1.3.4 Visual Learning via Transformed Dirichlet Processes

Our hierarchical models are adapted from topic models originally proposed for the
analysis of text documents [31, 289]. These models make the so–called bag of words
assumption, in which raw documents are converted to word counts, and sentence struc-
ture is ignored. While it is possible to develop corresponding bag of features models
for images [14, 54, 79, 266], which model the appearance of detected interest points and
ignore their location, we show that doing so neglects valuable information, and reduces
recognition performance. To consistently account for spatial structure, we augment
these hierarchies with transformation [97, 156, 210] variables describing the location of
each object in each training image. Through these transformations, we learn parts
which describe features relative to a “canonical” coordinate frame, without requiring
alignment of the training or test images.

To better learn robust, data–driven models which require few manually specified pa-
rameters, we employ the Dirichlet process (DP) [28, 83, 254]. In nonparametric Bayesian
statistics, DPs are commonly used to learn mixture models whose number of compo-
nents is not fixed, but instead inferred from data [10, 76, 222]. A hierarchical Dirichlet
process (HDP) [288, 289] models multiple related datasets by reusing a common set of
mixture components in different proportions. We extend the HDP framework by allow-
ing the global, shared mixture components to undergo a random set of transformations.
The resulting transformed Dirichlet process (TDP) produces models which automat-
ically learn the number of parts underlying each object category, and the number of
object instances composing each scene. Our use of continuous transformation vari-
ables then leads to efficient, Rao–Blackwellized Gibbs samplers which jointly recognize
objects and infer 3D scene structure.
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¥ 1.4 Thesis Organization

We now provide an overview of the methods and results which are considered by sub-
sequent thesis chapters. The introductory paragraphs of each chapter provide more
detailed outlines.

Chapter 2: Nonparametric and Graphical Models

We begin by reviewing a broad range of statistical methods upon which the models in
this thesis are based. This chapter first describes exponential families of probability dis-
tributions, and provides detailed computational methods for two families (the Dirichlet–
multinomial and normal–inverse–Wishart) used extensively in later chapters. We then
provide an introduction to graphical models, emphasizing the statistical assumptions
underlying these structured representations. Turning to computational issues, we dis-
cuss several different variational methods, including the belief propagation and expec-
tation maximization algorithms. We also discuss Monte Carlo methods, which provide
complementary families of learning and inference algorithms. The chapter concludes
with an introduction to the Dirichlet process, which is widely used in nonparametric
Bayesian statistics. We survey the statistical theory underlying these robust methods,
before discussing learning algorithms and hierarchical extensions.

Chapter 3: Nonparametric Belief Propagation

In this chapter, we develop an approximate inference algorithm for graphical models
describing continuous, non–Gaussian random variables. We begin by reviewing particle
filters, which track complex temporal processes via sample–based density estimates.
We then propose a nonparametric belief propagation (NBP) algorithm which extends
the Monte Carlo methods underlying particle filters to general graphical models. For
simplicity, we first describe the NBP algorithm for graphs whose potentials are Gaussian
mixtures. Via importance sampling methods, we then adapt NBP to graphs defined by
a very broad range of analytic potentials. NBP fuses information from different parts of
the graph by sampling from products of Gaussian mixtures. Using multiscale, KD–tree
density representations, we provide several efficient computational methods for these
updates. We conclude by validating NBP’s performance in simple Gaussian graphical
models, and a part–based model which describes the appearance of facial features.

Chapter 4: Visual Hand Tracking

The fourth chapter applies the NBP algorithm to visually track articulated hand mo-
tion. We begin with a detailed examination of the kinematic and structural constraints
underlying hand motion. Via a local representation of hand components in terms of
their 3D pose, we construct a graphical model exposing internal hand structure. Us-
ing a set of binary auxiliary variables specifying the occlusion state of each pixel, we
also locally factorize color and edge–based likelihoods. Applying NBP to this model,
we derive a particle–based hand tracking algorithm, in which quaternions are used to
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consistently estimate finger orientation. Via an efficient analytic approximation, we
may also marginalize occlusion masks, and thus infer occlusion events in a distributed
fashion. Simulations then demonstrate that NBP effectively refines coarse initial pose
estimates, and tracks hand motion in extended video sequences.

Chapter 5: Object Categorization using Shared Parts

The second half of this thesis focuses on methods for robustly learning object appear-
ance models. This chapter begins by describing the set of sparse, affinely adapted
image features underlying our recognition system. We then propose general families
of spatial transformations which allow consistent models of object and scene structure.
Considering images of isolated objects, we first develop a parametric, fixed–order model
which uses shared parts to describe multiple object categories. Monte Carlo methods
are used to learn this model’s parameters from training images. We then adapt Dirich-
let processes to this recognition task, and thus learn an appropriate number of shared
parts automatically. Empirical results on a dataset containing sixteen object categories
demonstrate the benefits of sharing parts, and the advantages of learning algorithms
derived from nonparametric models.

Chapter 6: Scene Understanding via Transformed Dirichlet Processes

In this chapter, we generalize our hierarchical object appearance models to more com-
plex visual scenes. We first develop a parametric model which describes objects via a
common set of shared parts, and contextual relationships among the positions at which
a fixed set of objects is observed. To allow uncertainty in the number of object instances
underlying each image, we then propose a framework which couples Dirichlet processes
with spatial transformations. Applying the resulting transformed Dirichlet process, we
develop Monte Carlo methods which robustly learn part–based models of an unknown
set of visual categories. We also extend this model to describe 3D scene structure, and
thus reconstruct feature depths via the predictable geometry of object categories. These
scene models are tested on datasets depicting complex street and office environments.

Chapter 7: Contributions and Recommendations

We conclude by surveying the contributions of this thesis, and outline directions for
future research. Many of these ideas combine aspects of our articulated object tracking
and scene understanding frameworks, which have complementary strengths.



Chapter 2

Nonparametric and

Graphical Models

STATISTICAL methods play a central role in the design and analysis of machine vi-
sion systems. In this background chapter, we review several learning and inference

techniques upon which our later contributions are based. We begin in Sec. 2.1 by de-
scribing exponential families of probability densities, emphasizing the roles of sufficiency
and conjugacy in Bayesian learning. Sec. 2.2 then shows how graphs may be used to im-
pose structure on exponential families. We contrast several types of graphical models,
and provide results clarifying their underlying statistical assumptions.

To apply graphical models in practical applications, computationally efficient learn-
ing and inference algorithms are needed. Sec. 2.3 describes several variational meth-
ods which approximate intractable inference tasks via message–passing algorithms. In
Sec. 2.4, we discuss a complementary class of Monte Carlo methods which use stochas-
tic simulations to analyze complex models. In this thesis, we propose new inference
algorithms which integrate variational and Monte Carlo methods in novel ways.

Finally, we conclude in Sec. 2.5 with an introduction to nonparametric methods
for Bayesian learning. These infinite–dimensional models achieve greater robustness
by avoiding restrictive assumptions about the data generation process. Despite this
flexibility, variational and Monte Carlo methods can be adapted to allow tractable
analysis of large, high–dimensional datasets.

¥ 2.1 Exponential Families

An exponential family of probability distributions [15, 36, 311] is characterized by the
values of certain sufficient statistics. Let x be a random variable taking values in some
sample space X , which may be either continuous or discrete. Given a set of statistics or
potentials {φa | a ∈ A}, the corresponding exponential family of densities is given by

p(x | θ) = ν(x) exp

{
∑

a∈A

θaφa(x) − Φ(θ)

}
(2.1)

29
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where θ ∈ R
|A| are the family’s natural or canonical parameters, and ν(x) is a non-

negative reference measure. In some applications, the parameters θ are set to fixed
constants, while in other cases they are interpreted as latent random variables. The log
partition function Φ(θ) is defined to normalize p(x | θ) so that it integrates to one:

Φ(θ) = log

∫

X
ν(x) exp

{
∑

a∈A

θaφa(x)

}
dx (2.2)

For discrete spaces, dx is taken to be counting measure, so that integrals become sum-
mations. This construction is valid when the canonical parameters θ belong to the set
Θ for which the log partition function is finite:

Θ ,

{
θ ∈ R

|A| | Φ(θ) < ∞
}

(2.3)

Because Φ(θ) is a convex function (see Prop. 2.1.1), Θ is necessarily convex. If Θ is also
open, the exponential family is said to be regular. Many classic probability distributions
form regular exponential families, including the Bernoulli, Poisson, Gaussian, beta, and
gamma densities [21, 107]. For example, for scalar Gaussian densities the sufficient
statistics are {x, x2}, ν(x) = 1, and Θ constrains the variance to be positive.

Exponential families are typically parameterized so that no linear combination of
the potentials {φa | a ∈ A} is almost everywhere constant. In such a minimal repre-
sentation,1 there is a unique set of canonical parameters θ associated with each density
in the family, whose dimension equals d , |A|. Furthermore, the exponential family
defines a d–dimensional Riemannian manifold, and the canonical parameters a coor-
dinate system for that manifold. By characterizing the convex geometric structure of
such manifolds, information geometry [6, 15, 52, 74, 305] provides a powerful framework
for analyzing learning and inference algorithms. In particular, as we discuss in Sec. 2.3,
results from conjugate duality [15, 311] underlie many algorithms used in this thesis.

In the following sections, we further explore the properties of exponential families,
emphasizing results which guide the specification of sufficient statistics appropriate to
particular learning problems. We then introduce a family of conjugate priors for the
canonical parameters θ, and provide detailed computational methods for two exponen-
tial families (the normal–inverse–Wishart and Dirichlet–multinomial) used extensively
in this thesis. For further discussion of the convex geometry underlying exponential
families, see [6, 15, 36, 74, 311].

¥ 2.1.1 Sufficient Statistics and Information Theory

In this section, we establish several results which motivate the use of exponential fam-
ilies, and clarify the notion of sufficiency. The following properties of the log partition
function establish its central role in the study of exponential families:

1We note, however, that overcomplete representations play an important role in recent theoretical
analyses of variational approaches to approximate inference [305, 306, 311].
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Proposition 2.1.1. The log partition function Φ(θ) of eq. (2.2) is convex (strictly so
for minimal representations) and continuously differentiable over its domain Θ. Its
derivatives are the cumulants of the sufficient statistics {φa | a ∈ A}, so that

∂Φ(θ)

∂θa
= Eθ[φa(x)] ,

∫

X
φa(x) p(x | θ) dx (2.4)

∂2Φ(θ)

∂θa∂θb
= Eθ[φa(x)φb(x)] − Eθ[φa(x)] Eθ[φb(x)] (2.5)

Proof. For a detailed proof of this classic result, see [15, 36, 311]. The cumulant gener-
ating properties follow from the chain rule and algebraic manipulation. From eq. (2.5),
∇2Φ(θ) is a positive semi–definite covariance matrix, implying convexity of Φ(θ). For
minimal families, ∇2Φ(θ) must be positive definite, guaranteeing strict convexity.

Due to this result, the log partition function is also known as the cumulant generating
function of the exponential family. The convexity of Φ(θ) has important implications
for the geometry of exponential families [6, 15, 36, 74].

Entropy, Information, and Divergence

Concepts from information theory play a central role in the study of learning and
inference in exponential families. Given a probability distribution p(x) defined on a
discrete space X , Shannon’s measure of entropy (in natural units, or nats) equals

H(p) = −
∑

x∈X

p(x) log p(x) (2.6)

In such diverse fields as communications, signal processing, and statistical physics,
entropy arises as a natural measure of the inherent uncertainty in a random variable [49].
The differential entropy extends this definition to continuous spaces:

H(p) = −
∫

X
p(x) log p(x) dx (2.7)

In both discrete and continuous domains, the (differential) entropy H(p) is concave,
continuous, and maximal for uniform densities. However, while the discrete entropy is
guaranteed to be non-negative, differential entropy is sometimes less than zero.

For problems of model selection and approximation, we need a measure of the
distance between probability distributions. The relative entropy or Kullback-Leibler
(KL) divergence between two probability distributions p(x) and q(x) equals

D(p || q) =

∫

X
p(x) log

p(x)

q(x)
dx (2.8)

Important properties of the KL divergence follow from Jensen’s inequality [49], which
bounds the expectation of convex functions:

E[f(x)] ≥ f(E[x]) for any convex f : X → R (2.9)
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Applying Jensen’s inequality to the logarithm of eq. (2.8), which is concave, it is eas-
ily shown that the KL divergence D(p || q) ≥ 0, with D(p || q) = 0 if and only if
p(x) = q(x) almost everywhere. However, it is not a true distance metric because
D(p || q) 6= D(q || p). Given a target density p(x) and an approximation q(x), D(p || q)
can be motivated as the information gain achievable by using p(x) in place of q(x) [49].
Interestingly, the alternate KL divergence D(q || p) also plays an important role in the
development of variational methods for approximate inference (see Sec. 2.3).

An important special case arises when we consider the dependency between two
random variables x and y. Let pxy(x, y) denote their joint distribution, px(x) and
py(y) their corresponding marginals, and X and Y their sample spaces. The mutual
information between x and y then equals

I(pxy) , D(pxy || pxpy) =

∫

X

∫

Y
pxy(x, y) log

pxy(x, y)

px(x)py(y)
dy dx (2.10)

= H(px) + H(py) − H(pxy) (2.11)

where eq. (2.11) follows from algebraic manipulation. The mutual information can be
interpreted as the expected reduction in uncertainty about one random variable from
observation of another [49].

Projections onto Exponential Families

In many cases, learning problems can be posed as a search for the best approximation
of an empirically derived target density p̃(x). As discussed in the previous section, the
KL divergence D(p̃ || q) is a natural measure of the accuracy of an approximation q(x).
For exponential families, the optimal approximating density is elegantly characterized
by the following moment–matching conditions:

Proposition 2.1.2. Let p̃ denote a target probability density, and pθ an exponential
family. The approximating density minimizing D(p̃ || pθ) then has canonical parameters
θ̂ chosen to match the expected values of that family’s sufficient statistics:

Eθ̂[φa(x)] =

∫

X
φa(x) p̃(x) dx a ∈ A (2.12)

For minimal families, these optimal parameters θ̂ are uniquely determined.

Proof. From the definition of KL divergence (eq. (2.8)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log

p̃(x)

p(x | θ)
dx

=

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x)

[
log ν(x) +

∑

a∈A

θaφa(x) − Φ(θ)

]
dx

= −H(p̃) −
∫

X
p̃(x) log ν(x) dx −

∑

a∈A

θa

∫

X
φa(x) p̃(x) dx + Φ(θ)
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Taking derivatives with respect to θa and setting ∂D(p̃ || pθ) /∂θa = 0, we then have

∂Φ(θ)

∂θa
=

∫

X
φa(x) p̃(x) dx a ∈ A

Equation (2.12) follows from the cumulant generating properties of Φ(θ) (eq. (2.4)).
Because Φ(θ) is strictly convex for minimal families (Prop. 2.1.1), the canonical param-
eters θ̂ satisfying eq. (2.12) achieve the unique global minimum of D(p̃ || pθ).

In information geometry, the density satisfying eq. (2.12) is known as the I–projection
of p̃(x) onto the e–flat manifold defined by the exponential family’s canonical param-
eters [6, 52]. Note that the optimal projection depends only the potential functions’
expected values under p̃(x), so that these statistics are sufficient to determine the clos-
est approximation.

In many applications, rather than an explicit target density p̃(x), we instead observe
L independent samples {x(`)}L

`=1 from that density. In this situation, we define the
empirical density of the samples as follows:

p̃(x) =
1

L

L∑

`=1

δ
(
x, x(`)

)
(2.13)

Here, δ
(
x, x(`)

)
is the Dirac delta function for continuous X , and the Kronecker delta

for discrete X . Specializing Prop. 2.1.2 to this case, we find a correspondence between
information projection and maximum likelihood (ML) parameter estimation.

Proposition 2.1.3. Let pθ denote an exponential family with canonical parameters θ.
Given L independent, identically distributed samples {x(`)}L

`=1, with empirical density

p̃(x) as in eq. (2.13), the maximum likelihood estimate θ̂ of the canonical parameters
coincides with the empirical density’s information projection:

θ̂ = arg max
θ

L∑

`=1

log p(x(`) | θ) = arg min
θ

D(p̃ || pθ) (2.14)

These optimal parameters are uniquely determined for minimal families, and charac-
terized by the following moment matching conditions:

Eθ̂[φa(x)] =
1

L

L∑

`=1

φa(x
(`)) a ∈ A (2.15)
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Proof. Expanding the KL divergence from p̃(x) (eq. (2.13)), we have

D(p̃ || pθ) =

∫

X
p̃(x) log p̃(x) dx −

∫

X
p̃(x) log p(x | θ) dx

= −H(p̃) −
∫

X

1

L

L∑

`=1

δ
(
x, x(`)

)
log p(x | θ) dx

= −H(p̃) − 1

L

L∑

`=1

log p(x(`) | θ)

Because H(p̃) does not depend on θ, the parameters minimizing D(p̃ || pθ) and maxi-
mizing the expected log–likelihood coincide, establishing eq. (2.14). The unique char-
acterization of θ̂ via moment–matching (eq. (2.15)) then follows from Prop. 2.1.2.

In principle, Prop. 2.1.2 and 2.1.3 suggest a straightforward procedure for learning ex-
ponential familes: estimate appropriate sufficient statistics, and then find correspond-
ing canonical parameters via convex optimization [6, 15, 36, 52]. In practice, however,
significant difficulties may arise. For example, practical applications often require semi-
supervised learning from partially labeled training data, so that the needed statistics
cannot be directly measured. Even when sufficient statistics are available, calculation
of the corresponding parameters can be intractable in large, complex models.

These results also have important implications for the selection of appropriate ex-
ponential families. In particular, because the chosen statistics are sufficient for param-
eter estimation, the learned model cannot capture aspects of the target distribution
neglected by these statistics. These concerns motivate our later development of non-
parametric methods (see Sec. 2.5) which extend exponential families to learn richer,
more flexible models.

Maximum Entropy Models

In the previous section, we argued that certain statistics are sufficient to characterize
the best exponential family approximation of a given target density. The following
theorem shows that if these statistics are the only available information about a target
density, then the corresponding exponential family provides a natural model.

Theorem 2.1.1. Consider a collection of statistics {φa | a ∈ A}, whose expectations
with respect to some target density p̃(x) are known:

∫

X
φa(x) p̃(x) dx = µa a ∈ A (2.16)

The unique distribution p̂(x) maximizing the entropy H(p̂), subject to these moment
constraints, is then a member of the exponential family of eq. (2.1), with ν(x) = 1 and
canonical parameters θ̂ chosen so that Eθ̂[φa(x)] = µa.
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Proof. The general form of eq. (2.1) can be motivated by a Lagrangian formulation of
this constrained optimization problem. Taking derivatives, the Lagrange multipliers
become the exponential family’s canonical parameters. Global optimality can then be
verified via a bound based on the KL divergence [21, 49]. A related characterization of
exponential families with reference measures ν(x) 6= 1 is also possible [21].

Note that eq. (2.16) implicitly assumes the existence of some distribution satisfying
the specified moment constraints. In general, verifying this feasibility can be extremely
challenging [311], relating to classic moment inequality [25, 176] and covariance exten-
sion [92, 229] problems. Also, given insufficient moment constraints for non–compact
continous spaces, the maximizing density may be improper and have infinite entropy.

Recall that the entropy measures the inherent uncertainty in a random variable.
Thus, if the sufficient statistics of eq. (2.16) are the only available characterization of
a target density, the corresponding exponential family is justified as the model which
imposes the fewest additional assumptions about the data generation process.

¥ 2.1.2 Learning with Prior Knowledge

The results of the previous sections show how exponential families use sufficient statis-
tics to characterize the likelihood of observed training data. Frequently, however, we
also have prior knowledge about the expected location, scale, concentration, or other
features of the process generating the data. When learning from small datasets, con-
sistent incorporation of prior knowledge can dramatically improve the accuracy and
robustness of the resulting model.

In this section, we develop Bayesian methods for learning and inference which treat
the “parameters” of exponential family densities as random variables. In addition to
allowing easy incorporation of prior knowledge, this approach provides natural confi-
dence estimates for models learned from noisy or sparse data. Furthermore, it leads
to powerful methods for transferring knowledge among multiple related learning tasks.
See Bernardo and Smith [21] for a more formal, comprehensive survey of this topic.

Analysis of Posterior Distributions

Given an exponential family p(x | θ) with canonical parameters θ, Bayesian analysis
begins with a prior distribution p(θ | λ) capturing any available knowledge about the
data generation process. This prior distribution is typically itself a member of a family
of densities with hyperparameters λ. For the moment, we assume these hyperparameters
are set to some fixed value based on our prior beliefs.

Given L independent, identically distributed observations {x(`)}L
`=1, two computa-

tions arise frequently in statistical analyses. Using Bayes’ rule, the posterior distribution



36 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

of the canonical parameters can be written as follows:

p(θ | x(1), . . . , x(L), λ) =
p(x(1), . . . , x(L) | θ, λ) p(θ | λ)∫

Θ p(x(1), . . . , x(L) | θ, λ) p(θ | λ) dθ
(2.17)

∝ p(θ | λ)
L∏

`=1

p(x(`) | θ) (2.18)

The proportionality symbol of eq. (2.18) represents the constant needed to ensure in-
tegration to unity (in this case, the data likelihood of eq. (2.17)). Recall that, for
minimal exponential families, the canonical parameters are uniquely associated with
expectations of that family’s sufficient statistics (Prop. 2.1.3). The posterior distribu-
tion of eq. (2.18) thus captures our knowledge about the statistics likely to be exhibited
by future observations.

In many situations, statistical models are used primarily to predict future observa-
tions. Given L independent observations as before, the predictive likelihood of a new
observation x̄ equals

p(x̄ | x(1), . . . , x(L), λ) =

∫

Θ
p(x̄ | θ) p(θ | x(1), . . . , x(L), λ) dθ (2.19)

where the posterior distribution over parameters is as in eq. (2.18). By averaging over
our posterior uncertainty in the parameters θ, this approach leads to predictions which
are typically more robust than those based on a single parameter estimate.

In principle, a fully Bayesian analysis should also place a prior distribution p(λ)
on the hyperparameters. In practice, however, computational considerations frequently
motivate an empirical Bayesian approach [21, 75, 107] in which λ is estimated by max-
imizing the training data’s marginal likelihood:

λ̂ = arg max
λ

p(x(1), . . . , x(L) | λ) (2.20)

= arg max
λ

∫

Θ
p(θ | λ)

L∏

`=1

p(x(`) | θ) dθ (2.21)

In situations where this optimization is intractable, cross–validation approaches which
optimize the predictive likelihood of a held–out data set are often useful [21].

More generally, the predictive likelihood computation of eq. (2.19) is itself in-
tractable for many practical models. In these cases, the parameters’ posterior dis-
tribution (eq. (2.18)) is often approximated by a single maximum a posteriori (MAP)
estimate:

θ̂ = arg max
θ

p(θ | x(1), . . . , x(L), λ) (2.22)

= arg max
θ

p(θ | λ)
L∏

`=1

p(x(`) | θ) (2.23)
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This approach is best justified when the training set size L is very large, so that the pos-
terior distribution of eq. (2.22) is tightly concentrated [21, 107]. Sometimes, however,
MAP estimates are used with smaller datasets because they are the only computation-
ally viable option.

Parametric and Predictive Sufficiency

When computing the posterior distributions and predictive likelihoods motivated in
the previous section, it is very helpful to have compact ways of characterizing large
datasets. For exponential families, the notions of sufficiency introduced in Sec. 2.1.1
can be extended to simplify learning with prior knowledge.

Theorem 2.1.2. Let p(x | θ) denote an exponential family with canonical parameters θ,
and p(θ | λ) a corresponding prior density. Given L independent, identically distributed
samples {x(`)}L

`=1, consider the following statistics:

φ(x(1), . . . , x(L)) ,

{
1

L

L∑

`=1

φa(x
(`))

∣∣∣ a ∈ A
}

(2.24)

These empirical moments, along with the sample size L, are then said to be parametric
sufficient for the posterior distribution over canonical parameters, so that

p(θ | x(1), . . . , x(L), λ) = p(θ | φ(x(1), . . . , x(L)) , L, λ) (2.25)

Equivalently, they are predictive sufficient for the likelihood of new data x̄:

p(x̄ | x(1), . . . , x(L), λ) = p(x̄ | φ(x(1), . . . , x(L)) , L, λ) (2.26)

Proof. Parametric sufficiency follows from the Neyman factorization criterion, which
is satisfied by any exponential family. The correspondence between parametric and
predictive sufficiency can then be argued from eqs. (2.18, 2.19). For details, see Sec.
4.5 of Bernardo and Smith [21].

This theorem makes exponential families particularly attractive when learning from
large datasets, due to the often dramatic compression provided by the statistics of
eq. (2.24). It also emphasizes the importance of selecting appropriate sufficient statis-
tics, since other features of the data cannot affect subsequent model predictions.

Analysis with Conjugate Priors

Theorem 2.1.2 shows that statistical predictions in exponential families are functions
solely of the chosen sufficient statistics. However, it does not provide an explicit char-
acterization of the posterior distribution over model parameters, or guarantee that the
predictive likelihood can be computed tractably. In this section, we describe an expres-
sive family of prior distributions which are also analytically tractable.
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Let p(x | θ) denote a family of probability densities parameterized by θ. A family of
prior densities p(θ | λ) is said to be conjugate to p(x | θ) if, for any observation x and
hyperparameters λ, the posterior distribution p(θ | x, λ) remains in that family:

p(θ | x, λ) ∝ p(x | θ) p(θ | λ) ∝ p
(
θ | λ̄

)
(2.27)

In this case, the posterior distribution is compactly described by an updated set of
hyperparameters λ̄. For exponential families parameterized as in eq. (2.1), conjugate
priors [21, 36] take the following general form:

p(θ | λ) = exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}
(2.28)

While this functional form duplicates the exponential family’s, the interpretation is
different: the density is over the space of parameters Θ, and determined by hyperpa-
rameters λ. The conjugate prior is proper, or normalizable, when the hyperparameters
take values in the space Λ where the log normalization constant Ω(λ) is finite:

Ω(λ) = log

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}
dθ (2.29)

Λ ,

{
λ ∈ R

|A|+1 | Ω(λ) < ∞
}

(2.30)

Note that the dimension of the conjugate family’s hyperparameters λ is one larger than
the corresponding canonical parameters θ.

The following result verifies that the conjugate family of eq. (2.28) satisfies the
definition of eq. (2.27), and provides an intuitive interpretation for the hyperparameters:

Proposition 2.1.4. Let p(x | θ) denote an exponential family with canonical param-
eters θ, and p(θ | λ) a family of conjugate priors defined as in eq. (2.28). Given L
independent samples {x(`)}L

`=1, the posterior distribution remains in the same family:

p(θ | x(1), . . . , x(L), λ) = p
(
θ | λ̄

)
(2.31)

λ̄0 = λ0 + L λ̄a =
λ0λa +

∑L
`=1 φa(x

(`))

λ0 + L
a ∈ A (2.32)

Integrating over Θ, the log–likelihood of the observations can then be compactly written
using the normalization constant of eq. (2.29):

log p(x(1), . . . , x(L) | λ) = Ω
(
λ̄
)
− Ω(λ) +

L∑

`=1

log ν(x(`)) (2.33)
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Proof. Expanding the posterior distribution as in eq. (2.18), we have

p(θ | x(1), . . . , x(L), λ) ∝ p(θ | λ)
L∏

`=1

p(x(`) | θ)

∝ exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ)

}
L∏

`=1

ν(x(`)) exp

{
∑

a∈A

θaφa(x
(`)) − Φ(θ)

}

∝ exp

{
∑

a∈A

θa

(
λ0λa +

L∑

`=1

φa(x
(`))

)
− (λ0 + L)Φ(θ)

}
L∏

`=1

ν(x(`))

∝ exp

{
∑

a∈A

θa (λ0 + L)

(
λ0λa +

∑L
`=1 φa(x

(`))

λ0 + L

)
− (λ0 + L) Φ(θ)

}

Note that the last line absorbs the reference measure terms, which are constant with
respect to θ, into the proportionality constant. The posterior hyperparameters of
eq. (2.32) can now be verified by comparison with eq. (2.28). Likelihoods are determined
by the following integral over Θ:

p(x(1), . . . , x(L) | λ) =

∫

Θ
p(θ | λ)

L∏

`=1

p(x(`) | θ) dθ

=

∫

Θ
exp

{
∑

a∈A

θaλ0λa − λ0Φ(θ) − Ω(λ)

}
L∏

`=1

ν(x(`)) exp

{
∑

a∈A

θaφa(x
(`)) − Φ(θ)

}
dθ

= exp{−Ω(λ)}
∫

Θ
exp

{
∑

a∈A

θa

(
λ0λa +

L∑

`=1

φa(x
(`))

)
− (λ0 + L)Φ(θ)

}
dθ

L∏

`=1

ν(x(`))

Identifying the second term as an unnormalized conjugate prior, with hyperparameters
λ̄, the log–likelihood of eq. (2.33) then follows from eq. (2.29).

Note that the predictive likelihood p(x̄ | x(1), . . . , x(L), λ) of eq. (2.19) arises as a special
case of Prop. 2.1.4, where eq. (2.33) is used to determine the likelihood of x̄ given
hyperparameters incorporating previous observations (eq. (2.32)). For many common
exponential families, the log normalization constant Ω(λ) can be determined in closed
form, and likelihoods are easily computed.

Examining eq. (2.32), we see that the posterior hyperparameters λ̄a are a weighted
average of the prior hyperparameters λa and the corresponding sufficient statistics of
the observations. Conjugate priors are thus effectively described by a set of synthetic
pseudo–observations, where λa is interpreted as the average of φa(x) with respect to
this synthetic data. Confidence in these prior statistics is expressed via the effective
size λ0 > 0 of this synthetic dataset, which need not be integral. This interpretation
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often makes it easy to select an appropriate conjugate prior, since hyperparameters
correspond to sufficient statistics with intuitive meaning.

When the number of observations L is large relative to λ0, the posterior distribution
of eq. (2.31) is primarily determined by the observed sufficient statistics. Thus, while
conjugate families do not always contain truly non–informative reference priors [21],
sufficiently uninformative, or vague, conjugate priors can typically be constructed when
desired. More often, however, we find the ability to tractably include informative prior
knowledge to be very useful. In cases where conjugate priors cannot adequately capture
prior beliefs, mixtures of conjugate priors are often effective [21].

In principle, Prop. 2.1.4 provides a framework for conjugate analysis with any ex-
ponential family. In practice, however, canonical parameters may not provide the most
convenient, computationally efficient representation. The following sections examine
two conjugate families used extensively in this thesis, and develop specialized learning
and inference methods with practical advantages.

¥ 2.1.3 Dirichlet Analysis of Multinomial Observations

Consider a random variable x taking one of K discrete, categorical values, so that
X = {1, . . . , K}. Any probability mass function, or distribution, p(x) is then parame-
terized by the probabilities πk , Pr[x = k] of the K discrete outcomes:

p(x | π1, . . . , πK) =
K∏

k=1

π
δ(x,k)
k δ(x, k) ,

{
1 x = k

0 x 6= k
(2.34)

Given L observations {x(`)}L
`=1, the multinomial distribution [21, 107, 229] gives the

total probability of all possible length L discrete sequences taking those values:

p(x(1), . . . , x(L) | π1, . . . , πK) =
L!∏
k Ck!

K∏

k=1

πCk

k Ck ,

L∑

`=1

δ(x(`), k) (2.35)

When K = 2, this is known as the binomial distribution. Through comparison with
eq. (2.1), we see that multinomial distributions define regular exponential families with
sufficient statistics φk(x) = δ(x, k) and canonical parameters θk = log πk. In a min-
imal representation, only the first (K − 1) statistics are necessary. The multinomial
distribution is valid when its parameters lie in the (K − 1)–simplex:

ΠK−1 ,

{
(π1, . . . , πK)

∣∣∣ πk ≥ 0,
K∑

k=1

πk = 1

}
(2.36)

=

{
(π1, . . . , πK−1, 1 − ∑K−1

k=1 πk)
∣∣∣ πk ≥ 0,

K−1∑

k=1

πk ≤ 1

}
(2.37)

Note that the minimal representation of eq. (2.37) implicitly defines πK as the comple-
ment of the probabilities of the other (K − 1) categories.
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Given L observations as in eq. (2.35), Prop. 2.1.3 shows that the maximum like-
lihood estimates of the multinomial parameters π = (π1, . . . , πK) equal the empirical
frequencies of the discrete categories:

π̂ = arg max
π

L∑

`=1

log p(x(`) | π) =

(
C1

L
, . . . ,

CK

L

)
(2.38)

However, when L is not much larger than K, the ML estimate may assign zero proba-
bility to some values, and produce misleading predictions. In the following section, we
describe a widely used family of conjugate priors which is useful in these situations.

Dirichlet and Beta Distributions

The Dirichlet distribution [21, 107] is the conjugate prior for the multinomial exponen-
tial family. Adapting the general form of eq. (2.28), the Dirichlet distribution with
hyperparameters α = (α1, . . . , αK) can be written as follows:

p(π | α) =
Γ(

∑
k αk)∏

k Γ(αk)

K∏

k=1

παk−1
k αk > 0 (2.39)

Note that the Dirichlet distribution’s normalization constant involves a ratio of gamma
functions. By convention, the exponents are defined to equal (αk − 1) so that the
density’s mean has the following simple form:

Eα[πk] =
αk

α0
α0 ,

K∑

k=1

αk (2.40)

We use Dir(α) to denote a Dirichlet density with hyperparameters α. Samples can
be drawn from a Dirichlet distribution by normalizing a set of K independent gamma
random variables [107].

Often, we have no prior knowledge distinguishing the categories, and the K hyper-
parameters are thus set symmetrically as αk = α0/K. The variance of the multinomial
parameters then equals

Varα[πk] =
K − 1

K2(α0 + 1)
αk =

α0

K
(2.41)

See [107] for other moments of the Dirichlet distribution. Because the variance is
inversely proportional to α0, it is known as the precision parameter. With a minor
abuse of notation, we sometimes use Dir(α0) to denote this symmetric prior.

When K = 2, the Dirichlet distribution is equivalent to the beta distribution [107].
Denoting the beta density’s two hyperparameters by α and β, let π ∼ Beta(α, β) indi-
cate that

p(π | α, β) =
Γ(α + β)

Γ(α) Γ(β)
πα−1(1 − π)β−1 α, β > 0 (2.42)
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Note that by convention, samples from the beta density are the probability π ∈ [0, 1]
of the first category, while the two–dimensional Dirichlet distribution is equivalently
expressed in terms of the probability vector (π, 1−π) (see eq. (2.39)). As in eqs. (2.40)
and (2.41), the beta density’s hyperparameters can be interpreted as setting the prior
mean and variance of the binomial parameter π.

In Fig. 2.1, we illustrate several beta distributions. When α = β = 1, it assigns
equal prior probability to all possible binomial parameters π. Larger hyperparameters
(smaller variances) lead to unimodal priors concentrated on the chosen mean. We
also show examples of Dirichlet distributions on K = 3 multinomial categories, using
the minimal 2–simplex representation of eq. (2.37). As with the beta density, setting
αk = 1 (α0 = K) defines a uniform prior on the simplex, while larger precisions lead
to unimodal priors. Interestingly, smaller values of the hyperparameters (αk < 1) favor
sparse multinomial distributions which assign most of their probability mass to a subset
of the categories.

When analyzing multinomial data, it is sometimes useful to consider aggregate distri-
butions defined by combining a subset of the categories. If π ∼ Dir(α), the multinomial
parameters attained by aggregation are also Dirichlet [107]. For example, combining
the first two categories, we have

(π1 + π2, π3, . . . , πK) ∼ Dir(α1 + α2, α3, . . . , αK) (2.43)

More generally, aggregation of any subset of the categories produces a Dirichlet dis-
tribution with hyperparameters summed as in eq. (2.43). In particular, the marginal
distribution of any single component of a Dirichlet distribution follows a beta density:

πk ∼ Beta(αk, α0 − αk) (2.44)

This representation leads to an alternative, sequential procedure for drawing random
Dirichlet samples [107, 147].

Conjugate Posteriors and Predictions

Consider a set of L observations {x(`)}L
`=1 from a multinomial distribution p(x | π), with

Dirichlet prior p(π | α). Via conjugacy, the posterior distribution is also Dirichlet:

p(π | x(1), . . . , x(L), α) ∝ p(π | α) p(x(1), . . . , x(L) | π)

∝
K∏

k=1

παk+Ck−1
k ∝ Dir(α1 + C1, . . . , αK + CK) (2.45)

Here, Ck is the number of observations of category k, as in eq. (2.35). If L is sufficiently
large, the mean of this posterior distribution (see eq. (2.40)) provides a useful summary
statistic. We see that αk is equivalent to a (possibly non–integral) number of pseudo–
observations of category k, and the precision α0 is the total size of the pseudo–dataset.
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Figure 2.1. Examples of beta and Dirichlet distributions. Top: Beta densities with large hyperpa-
rameters are unimodal (left), while small values favor biased binomial distributions (right). Bottom:

Dirichlet densities on K = 3 categories, visualized on the simplex Π2 = (π1, π2, 1−π1 −π2). We show a
uniform prior, an unbiased unimodal prior, a biased prior with larger precision α0, and a prior favoring
sparse multinomial distributions. Darker intensities indicate regions with higher probability.
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As discussed previously, the predictive likelihood of future observations x̄ (as in
eq. (2.19)) is often of interest. Using the Dirichlet normalization constant of eq. (2.39)
and cancelling terms, it can be shown that

p(x̄ = k | x(1), . . . , x(L), α) =
Ck + αk

L + α0
(2.46)

Note that Ck is the number of times category k was observed in the previous L ob-
servations (excluding x̄). Importantly, these observation counts provide easily updated
sufficient statistics which allow rapid predictive likelihood evaluation. Comparing this
prediction to that of eq. (2.38), we see that the raw frequencies underlying the ML
estimate have been smoothed by the pseudo–counts contributed by the Dirichlet prior.
More generally, Prop. 2.1.4 can be used to express the likelihood of multiple observations
as a ratio gamma functions [123].

¥ 2.1.4 Normal–Inverse–Wishart Analysis of Gaussian Observations

Consider a continuous–valued random variable x taking values in d–dimensional Eu-
clidean space X = R

d. A Gaussian or normal distribution [21, 107, 229] with mean µ
and covariance matrix Λ then has the following form:

p(x | µ,Λ) =
1

(2π)d/2|Λ|1/2
exp

{
−1

2
(x − µ)T Λ−1(x − µ)

}
(2.47)

This distribution, which we denote by N (µ,Λ), is normalizable if and only if Λ is positive
definite. Given L independent Gaussian observations {x(`)}L

`=1, their joint likelihood is

p(x(1), . . . , x(L) | µ,Λ) ∝ |Λ|−L/2 exp

{
−1

2

L∑

`=1

(x(`) − µ)T Λ−1(x(`) − µ)

}
(2.48)

The maximum likelihood estimates of the Gaussian’s parameters, based on this data,
are the sample mean and covariance:

µ̂ =
1

L

L∑

`=1

x(`) Λ̂ =
1

L

L∑

`=1

(x(`) − µ̂)(x(`) − µ̂)T (2.49)

Expanding the quadratic form of eq. (2.47), we see that Gaussian densities define a
regular exponential family, with canonical parameters proportional to the Gaussian’s
information parameterization (Λ−1, Λ−1µ). The sample mean and covariance, or equiv-
alently sums of the observations and their outer products, provide sufficient statistics.

Gaussian Inference

Suppose that x and y are two jointly Gaussian random vectors, with distribution
[
x
y

]
∼ N

([
µx

µy

]

,

[
Λx Λxy

Λyx Λy

])
(2.50)
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Assuming a fixed covariance, the conjugate prior for a Gaussian’s mean is another
Gaussian. The conditional distribution of x given y is thus also Gaussian [107, 167, 229],
with mean x̂ and covariance Λ̂x given by the normal equations:

x̂ = µx + ΛxyΛy
−1(y − µy) (2.51)

Λ̂x = Λx − ΛxyΛy
−1Λyx (2.52)

The conditional mean x̂ is the linear least squares estimate minimizing the mean squared
error E

[
(x − x̂)2 | y

]
, while the error covariance matrix Λ̂x measures the reliability of

x̂. Note that for Gaussian densities, Λ̂x is not a function of the observed vector y, but
does depend on the joint statistics of x and y.

In many problem domains, the observations y are naturally expressed as a noisy
linear function of the latent variables x:

y = Cx + v v ∼ N (µv, Λv) (2.53)

Assuming x and v are independent, the normal equations then become

x̂ = µx + ΛxCT
(
CΛxCT + Λv

)−1
(y − (Cµx + µv)) (2.54)

Λ̂x = Λx − ΛxCT
(
CΛxCT + Λv

)−1
CΛx (2.55)

Often, these equations are more conveniently expressed in an alternative information
form. Assuming Λx and Λv are both positive definite, the matrix inversion lemma [130]
allows eqs. (2.54, 2.55) to be rewritten as follows:

Λ̂−1
x x̂ = Λx

−1µx + CT Λv
−1(y − µv) (2.56)

Λ̂−1
x = Λx

−1 + CT Λv
−1C (2.57)

This information form plays an important role in the development of tractable compu-
tational methods for Gaussian graphical models (see Sec. 2.2.2).

Normal–Inverse–Wishart Distributions

Any distribution satisfying certain spherical symmetries has a representation as a con-
tinuous mixture of Gaussian densities, for some prior on that Gaussian’s covariance
matrix [21, Sec. 4.4]. The conjugate prior for the covariance matrix of a Gaussian
distribution with known mean is the inverse–Wishart distribution [107], a multivari-
ate generalization of the scaled inverse–χ2 density. The d–dimensional inverse–Wishart
density, with covariance parameter ∆ and ν degrees of freedom,2 equals

p(Λ | ν, ∆) ∝ |Λ|−( ν+d+1
2 ) exp

{
−1

2
tr(ν∆Λ−1)

}
(2.58)

2In some texts [107], inverse–Wishart distributions are instead parameterized by a scale matrix ν∆.
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We denote this density by W(ν, ∆). An inverse–Wishart prior is proper when ν > d,
and skewed towards larger covariances, so that its mean and mode equal

Eν [Λ] =
ν

ν − d − 1
∆ ν > d + 1 (2.59)

arg max
Λ

W(Λ; ν, ∆) =
ν

ν + d + 1
∆ (2.60)

The degrees of freedom ν acts as a precision parameter, and can be interpreted as
the size of a pseudo–dataset with sample covariance ∆. However, because the inverse–
Wishart density is rotationally invariant, it cannot model situations in which the degree
of prior knowledge varies across different covariance entries or subspaces. Inverse–
Wishart samples can be drawn via appropriate transformations of standard Gaussian
random variables [107].

If a multivariate Gaussian’s mean and covariance are both uncertain, the normal–
inverse–Wishart distribution [107] provides an appropriate conjugate prior. Following
eq. (2.58), the covariance matrix is assigned an inverse–Wishart prior Λ ∼ W(ν, ∆).
Conditioned on Λ, the mean µ ∼ N (ϑ, Λ/κ). Here, ϑ is the expected mean, for which
we have κ pseudo–observations on the scale of observations x ∼ N (µ,Λ). The joint
prior distribution, denoted by NW(κ, ϑ, ν, ∆), then takes the following form:

p(µ,Λ | κ, ϑ, ν, ∆) ∝ |Λ|−( ν+d
2

+1) exp

{
−1

2
tr(ν∆Λ−1) − κ

2
(µ − ϑ)T Λ−1(µ − ϑ)

}
(2.61)

Fig. 2.2 illustrates a normal–inverse–χ2 density, the special case arising when d = 1.
Note that the mean and variance are dependent, so that there is greater uncertainty in
the mean value for larger underlying variances. This scaling is often, but not always,
appropriate, and is necessary if conjugacy is desired [107]. Fig. 2.2 also shows several
Gaussian distributions drawn from a two–dimensional normal–inverse–Wishart prior.

Conjugate Posteriors and Predictions

Consider a set of L observations {x(`)}L
`=1 from a multivariate Gaussian distribu-

tion N (µ,Λ) with normal–inverse–Wishart prior NW(κ, ϑ, ν, ∆). Via conjugacy, the
posterior distribution p

(
µ,Λ | x(1), . . . , x(`), κ, ϑ, ν, ∆

)
is also normal–inverse–Wishart,

and thus compactly described by a set of updated hyperparameters NW
(
κ̄, ϑ̄, ν̄, ∆̄

)
.

Through manipulation of the quadratic form in eq. (2.61), it can be shown [107] that
these posterior hyperparameters equal

κ̄ϑ̄ = κϑ +
L∑

`=1

x(`) κ̄ = κ + L (2.62)

ν̄∆̄ = ν∆ +
L∑

`=1

x(`)x(`)T

+ κϑϑT − κ̄ϑ̄ϑ̄T ν̄ = ν + L (2.63)
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Figure 2.2. Examples of normal–inverse–Wishart distributions. Left: Joint probability density of a
scalar normal–inverse–χ2 distribution (µ, Λ) ∼ NW(2, 0, 4, 1). Right: Covariance ellipses corresponding
to ten samples from a two–dimensional normal–inverse–Wishart distribution (µ, Λ) ∼ NW(0.3, 0, 4, I2).

To efficiently represent these posterior parameters, we can cache the observations’ sum
(eq. (2.62)), and the Cholesky decomposition [63, 118] of the sum of observation outer
products (eq. (2.63)). Cholesky decompositions are numerically robust, can be recur-
sively updated as observations are added or removed, and allow fast likelihood evalua-
tion through the solution of triangulated linear systems.

Integrating over the parameters of the normal–inverse–Wishart posterior distribu-
tion, the predictive likelihood of a new observation x̄ is multivariate Student–t with
(ν̄ − d + 1) degrees of freedom [107]. Assuming ν̄ > (d + 1), this posterior density has
finite covariance, and can be approximated by a moment–matched Gaussian:

p(x̄ | x(1), . . . , x(L), κ, ϑ, ν, ∆) ≈ N
(

x̄; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
∆̄

)
(2.64)

As illustrated in Fig. 2.3, Student–t distributions have heavier tails than Gaussians, due
to integration over uncertainty in the true covariance. However, the KL divergence plot
of Fig. 2.3 shows that, for small d, the Gaussian approximation is accurate unless ν̄ is
very small. Examining eqs. (2.62, 2.63), we see that the predictive likelihood depends
on regularized estimates of the mean and covariance of previous observations.

¥ 2.2 Graphical Models

Many practical applications, including the computer vision tasks investigated in this
thesis, involve very large collections of random variables. In these situations, direct
application of the classic exponential families introduced in the previous section is
typically infeasible. For example, a multinomial model of the joint distribution of
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Figure 2.3. Approximation of Student–t predictive distributions by a Gaussian with moments matched
as in eq. (2.64). We compare one–dimensional Gaussian and heavier–tailed Student–t densities with
ν = 4 (left) and ν = 10 (center) degrees of freedom. For moderate ν, the Gaussian approximation
becomes very accurate (see plot of KL divergence versus ν, right).

100 binary variables has 2100 ≈ 1030 parameters. Even if such a density could be
stored and manipulated, reliable parameter estimation would require an unrealistically
massive dataset. Similarly, in fields such as image processing [85, 95, 189, 285] and
oceanography [86, 330], estimation of random fields containing millions of continuous
variables is not uncommon. However, explicit computations with large, unstructured
covariance matrices are extremely difficult [63], typically requiring specialized, parallel
hardware.

Probabilistic graphical models provide a powerful, flexible framework which ad-
dresses these concerns [40, 50, 159, 177, 231, 249, 311, 339]. Graphs are used to decom-
pose multivariate, joint distributions into a set of local interactions among small subsets
of variables. These local relationships produce conditional independencies which lead
to efficient learning and inference algorithms. Moreover, their modular structure pro-
vides an intuitive language for expressing domain–specific knowledge about variable
relationships, and facilitates the transfer of modeling advances to new applications.

In the following sections, we introduce and compare several different families of
graphical models, including directed Bayesian networks, undirected Markov random
fields, and factor graphs. We then relate these models to classic notions of exchange-
ability, motivating a family of hierarchical models used extensively in this thesis.

¥ 2.2.1 Brief Review of Graph Theory

We begin by reviewing definitions from graph theory which are useful in describing
graphical models. For more detailed surveys of these concepts, see [50, 177].

A graph G = (V, E) consists of a set of nodes or vertices V, and a corresponding set of
edges E . Each edge (i, j) ∈ E connects two distinct nodes i, j ∈ V. For directed graphs,
an edge (i, j) connects a parent vertex i to its child j, and is pictorially represented by
an arrow (see Fig. 2.4(a)). The set of all parents Γ(j) of node j is then given by

Γ(j) , {i ∈ V | (i, j) ∈ E} (2.65)

In undirected graphs, an edge (i, j) ∈ E if and only if (j, i) ∈ E , as depicted by an
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arrowless line (see Fig. 2.4(c)). For such graphs, Γ(j) are known as the neighbors of
node j, since i ∈ Γ(j) whenever j ∈ Γ(i). It is also possible to define chain graphs
which mix undirected and directed edges [37, 50, 177], but we do not use them in this
thesis. Within any graph, a clique is a set of nodes for which all pairs are connected by
an edge. If the entire graph forms a clique, it is said to be complete.

When describing the statistical properties of graphical models, the structural prop-
erties of the underlying graph play an important role. A path between nodes i0 6= iT
is a sequence of distinct nodes (i0, i1, . . . , iT ) such that (i`−1, i`) ∈ E for ` = 1, . . . , T .
A cycle, or loop,3 is a path which starts and ends with the same node i0 = iT , and for
which all internal nodes (i1, . . . , iT−1) are distinct. If there is a path (in either direc-
tion) between every pair of nodes, G is connected. If an edge joins two non–consecutive
vertices within some cycle, it is called a chord. When the undirected version of G (ob-
tained by replacing all directed edges with undirected ones) has no cycles, the graph
is tree–structured. Within any tree, a leaf node has at most one neighbor. Note that
it is easy to construct acyclic, directed graphs which are not trees. For any graph, the
diameter equals the number of edges in the longest path between any two nodes.

Hypergraphs extend graphs by introducing hyperedges connecting subsets with more
than two vertices [177]. We denote a hypergraph by H = (V,F), where V are vertices as
before, and each hyperedge f ∈ F is some subset of those vertices (f ⊂ V). Pictorially,
we represent hypergraphs by bipartite graphs with circular nodes for each vertex i ∈ V,
and square nodes for each hyperedge f ∈ F (see Fig. 2.4(b)). Lines are then used to
connect hyperedge nodes to their associated vertex set [175].

¥ 2.2.2 Undirected Graphical Models

Given a graph G = (V, E) or hypergraph H = (V,F), graphical models represent
probability distributions by associating each node i ∈ V with a random variable xi ∈ Xi.
The structure of the joint distribution p(x), where x , {xi | i ∈ V} takes values in
the joint sample space X = X1 × · · · × XN , is then determined by the corresponding
(hyper)edges. In this section, we introduce three closely related families of graphical
models which use edges to encode local, probabilistic constraints.

Factor Graphs

Hypergraphs H = (V,F) provide an intuitive means of describing probability distribu-
tions p(x). For any f ∈ F , let xf , {xi | i ∈ f} denote the corresponding set of random
variables. A factor graph then defines the joint distribution as a normalized product of
local potential functions defined on these hyperedges:

p(x) ∝
∏

f∈F

ψf (xf ) (2.66)

3In graph theoretic terminology, a loop is an edge connecting a node to itself [177]. However, as
graphical models do not have self–connections, in this thesis we use the terms loop and cycle inter-
changeably, as is standard in the graphical inference literature [219, 319].
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Figure 2.4. Three graphical representations of a distribution over five random variables (see [175]).
(a) Directed graph G depicting a causal, generative process. (b) Factor graph expressing the factoriza-
tion underlying G. (c) A “moralized” undirected graph capturing the Markov structure of G.

For example, in the factor graph of Fig. 2.5(c), there are 5 variable nodes, and the joint
distribution has one potential for each of the 3 hyperedges:

p(x) ∝ ψ123(x1, x2, x3)ψ234(x2, x3, x4)ψ35(x3, x5)

Often, these potentials can be interpreted as local dependencies or constraints. Note,
however, that ψf (xf ) does not typically correspond to the marginal distribution pf (xf ),
due to interactions with the graph’s other potentials.

In many applications, factor graphs are used to impose structure on an exponential
family of densities. In particular, suppose that each potential function is described by
the following unnormalized exponential form:

ψf (xf | θf ) = νf (xf ) exp





∑

a∈Af

θfaφfa(xf )



 (2.67)

Here, θf , {θfa | a ∈ Af} are the canonical parameters of the local exponential family
for hyperedge f . From eq. (2.66), the joint distribution can then be written as

p(x | θ) =

( ∏

f∈F

νf (xf )

)
exp





∑

f∈F

∑

a∈Af

θfaφfa(xf ) − Φ(θ)



 (2.68)

Comparing to eq. (2.1), we see that factor graphs define regular exponential fami-
lies [104, 311], with parameters θ = {θf | f ∈ F}, whenever local potentials are chosen
from such families. The results of Sec. 2.1 then show that local statistics, computed
over the support of each hyperedge, are sufficient for learning from training data. This
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Figure 2.5. An undirected graphical model, and three factor graphs with equivalent Markov properties.
(a) Undirected graph G representing five random variables. (b) Factor graph interpreting G as a pairwise
MRF. (c) Factor graph corresponding to the maximal cliques of G. (d) Another possible factorization
which is Markov with respect to G. In all cases, single-node factors are omitted for clarity.

guarantee can be extremely useful for large graphs with many variables. Note, however,
that interactions among overlapping potential functions induce global dependencies in
the parameters. Thus, as we discuss in more detail in Sec. 2.3, learning can be compu-
tationally difficult even when the potentials take simple forms.

Many widely used graphical models correspond to a particular choice of the ex-
ponential families in eq. (2.68). For example, any distribution on discrete spaces
Xi = {1, . . . , Ki} can be expressed in terms of a set of indicator potential functions which
enumerate all possible configurations of the variables within each factor [311]. Alter-
natively, jointly Gaussian random fields take potentials to be local quadratic functions.
The graph structure of these covariance selection models is then expressed via an inverse
covariance matrix which is sparse, with many entries equaling zero [64, 177, 268, 276].

The exponential family representation of eq. (2.68) is convenient for learning and
parameter estimation. In many applications, however, a model has already been deter-
mined (perhaps via MAP estimation as in Sec. 2.1.2), and we are instead interested in
inference problems. In such cases, we prefer the representation of eq. (2.66), since it
highlights the factorization underlying efficient computational methods.

Markov Random Fields

Undirected graphical models, or Markov random fields (MRFs), characterize distribu-
tions p(x) via a set of implied conditional independencies. In this section, we describe
these Markov properties, and relate them to an algebraic factorization similar to that
underlying factor graphs.

Given an undirected graph G = (V, E), let f , g and h denote three disjoint subsets
of V. Set h is said to separate sets f and g if every path between f and g passes through
some node in h. A stochastic process x is globally Markov with respect to G if xf and
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xg are independent conditioned on the variables xh in any separating set:

p(xf , xg | xh) = p(xf | xh) p(xg | xh) if h separates f from g (2.69)

This property generalizes temporal Markov processes, for which the past and future
are independent conditioned on the present. For example, the undirected graph of
Fig. 2.5(a) implies the following conditional independencies, among others:

p(x1, x2, x5 | x3, x4) = p(x1, x2 | x3, x4) p(x5 | x3)

p(x1, x4, x5 | x2, x3) = p(x1 | x2, x3) p(x4 | x2, x3) p(x5 | x3)

An important special case of eq. (2.69) guarantees that conditioned on its immediate
neighbors, the random variable at any node is independent of the rest of the process:

p
(
xi | xV\i

)
= p

(
xi | xΓ(i)

)
(2.70)

As we discuss in later sections, this local Markov property plays an important role in
the design of efficient learning and inference algorithms.

The following theorem, due to Hammersley and Clifford, shows that Markov random
fields are naturally parameterized via potential functions defined on the cliques of the
corresponding undirected graph.

Theorem 2.2.1 (Hammersley-Clifford). Let C denote the set of cliques of an undi-
rected graph G. A probability distribution defined as a normalized product of non-
negative potential functions on those cliques is then always Markov with respect to G:

p(x) ∝
∏

c∈C

ψc(xc) (2.71)

Conversely, any strictly positive density (p(x) > 0 for all x) which is Markov with
respect to G can be represented in this factored form.

Proof. There are a variety of ways to prove this result; see [26, 35, 43] for examples and
further discussion. For a degenerate Markov distribution which cannot be factored as
in eq. (2.71), see Lauritzen [177].

Comparing eq. (2.71) to eq. (2.66), we see that Markov random fields can always be
represented by a factor graph with one hyperedge for each of the graph’s cliques [175,
339]. This representation is also known as the clique hypergraph corresponding to
G [177]. Note that it is possible, but not necessary, to restrict this factorization to
maximal cliques which are not a strict subset of any other clique (see Fig. 2.5(c)).

In practice, Markov properties are used in two complementary ways. If a stochastic
process is known to satisfy certain conditional independencies, the Hammersley–Clifford
Theorem then motivates models parameterized by local sufficient statistics. Conversely,
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given any graphical model, the implied Markov properties can be exploited to design
more efficient learning and inference algorithms.

While undirected graphs fully specify a probability density’s Markov structure, they
do not unambigously determine that density’s factorization into potential functions. For
example, in Fig. 2.5 we show three different factor graphs, all of which are Markov with
respect to the same undirected graph. Because the differences among these factor-
izations have implications for learning and inference, the more detailed factor graph
representation is often preferable [96, 98, 175].

Pairwise Markov Random Fields

In many applications, it is convenient to consider a restricted class of pairwise Markov
random fields. Given an undirected graph G = (V, E), a pairwise MRF expresses the
joint distribution as a product of potential functions defined on that graph’s edges:

p(x) ∝
∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi) (2.72)

Because pairs of neighboring nodes always define cliques, the Hammersley–Clifford The-
orem guarantees that pairwise MRFs are Markov with respect to G. The inclusion of
single–node potentials ψi(xi) is not strictly necessary, but is often convenient. Pairwise
MRFs containing only binary variables are known as Ising models in the statistical
physics literature [337].

Fig. 2.5(b) shows the factor graph corresponding to a pairwise MRF, and contrasts
it with models incorporating higher order cliques. To avoid ambiguities, in this thesis we
only use undirected graphs to depict pairwise MRFs. For graphical models containing
interactions among three or more variables, we instead use a factor graph representation
which explicitly reveals the underlying factorization.

Many inference tasks can be posed as the estimation of a set of latent or hidden
variables x based on noisy observations y. In such cases, pairwise MRFs are sometimes
used to express the internal structure of the desired posterior distribution:

p(x | y) =
p(x, y)

p(y)
∝

∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi, y) (2.73)

Frequently, observations also decompose into local measurements y = {yi | i ∈ V}, so
that ψi(xi, y) = ψi(xi, yi). Fig. 2.6 shows two examples of pairwise MRFs used widely
in practice: a multiscale tree–structured graph [34, 41, 85, 86, 189, 330], and a nearest–
neighbor grid [26, 95, 108, 196, 285]. In both cases, shaded nodes represent noisy local
observations yi.

¥ 2.2.3 Directed Bayesian Networks

We now introduce a different family of graphical models derived from directed graphs
G = (V, E). As before, Bayesian networks associate each node i ∈ V with a random
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Figure 2.6. Sample pairwise Markov random fields, where open nodes represent hidden variables xi

and shaded nodes are local observations yi. Left: A multiscale tree–structured graph, in which coarse

scale nodes capture dependencies among an observed fine scale process. Right: A nearest–neighbor
grid in which each hidden variable is connected to its four closest spatial neighbors.

variable xi. However, in place of potential functions, directed models decompose p(x)
via the conditional density of each child node i given its parents Γ(i):

p(x) =
∏

i∈V

p
(
xi | xΓ(i)

)
(2.74)

For nodes i without parents (Γ(i) = ∅), we define p
(
xi | xΓ(i)

)
= p(xi). This factor-

ization is consistent whenever G is a directed acyclic graph, so that its edges specify a
valid partial ordering of the random variables [50, 128, 231]. For example, the directed
graph of Fig. 2.4(a) implies the following conditional densities:

p(x) = p(x1) p(x2) p(x3 | x1, x2) p(x4 | x3) p(x5 | x3)

Bayesian networks effectively define a causal generative process, beginning with nodes
without parents and proceeding from parent to child throughout the graph. In contrast,
direct sampling from undirected graphical models is often intractable (see Sec. 2.4).

The Markov properties of directed Bayesian networks are slightly different from
those of undirected graphical models. In particular, a random variable xi is condition-
ally independent of the remaining process given its parents xΓ(i), children {xj | i ∈ Γ(j)},
and its children’s parents. These relationships are captured by a corresponding moral
graph in which parents are connected (“married”) by additional undirected edges [50],
as in Fig. 2.4(c). Although factor graphs can express this Markov structure (see
Fig. 2.4(b)), doing so obscures the underlying causal, generative process. A directed
generalization of factor graphs has been proposed [96, 98], but we focus on simpler
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Figure 2.7. Directed graphical representation of a hidden Markov model (HMM) for T = 8 samples
of a temporal process. The hidden states xt capture dependencies among the observations yt.

Bayesian network representations. For a discussion of transformations allowing conver-
sion between undirected, directed, and factor graphs, see [175, 339].

In many applications, exponential families provide convenient parameterizations of
the conditional densities composing a Bayesian network. In general, directed models de-
fine curved exponential families [74], because conditional densities with multiple parents
may impose constraints on the set of achievable canonical parameters [104]. However,
this subtlety does not arise in the particular models considered by this thesis.

Hidden Markov Models

Directed graphical models provide the basis for a family of hidden Markov models
(HMMs) which are widely used to model temporal stochastic processes [8, 70, 163, 235].
Let y = {yt}T−1

t=0 denote observations of a temporal process collected at T discrete time
points. We assume that each observation yt is independently sampled conditioned on an
underlying hidden state xt. If we further assume that these states x = {xt}T−1

t=0 evolve
according to a first–order temporal Markov process, the joint distribution equals

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (2.75)

Fig. 2.7 shows a directed graphical representation of this density. In later chapters, we
extend this model to develop methods for visual tracking of articulated objects.

Historically, models equivalent to HMMs were independently developed in several
different domains. For example, in speech recognition the hidden states typically take
values on some finite, discrete set, and statistical methods are used to learn dynamics
from speech waveforms [235]. In contrast, control theorists often use continuous state
space models to characterize the position, velocity, and other properties of physical
systems [8, 163]. Graphical models unify these disparate approaches, and allow advances
in learning and inference methods to be transferred between domains [50, 159, 249].

¥ 2.2.4 Model Specification via Exchangeability

In some applications, a graphical model’s structure is determined by the physical data
generation process. For example, HMMs (see Fig. 2.7) are often derived from a known
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dynamical system, while grid–structured MRFs (see Fig. 2.6) can arise from the dis-
cretization of stochastic partial differential equations. For other learning tasks, however,
the generative process may be unknown, or too complex to characterize explicitly. In
this section, we show how simple assumptions about the indistinguishability of different
observations lead naturally to a family of hierarchical, directed graphical models.

Consider a set of N random variables {xi}N
i=1. These variables are said to be ex-

changeable if every permutation, or reordering, of their indices has equal probability:

p(x1, . . . , xN ) = p
(
xτ(1), . . . , xτ(N)

)
for any permutation τ(·) (2.76)

This expression formalizes the concept of an unordered collection of random variables,
for which the chosen indices are purely notational. When no auxiliary information is
available, this assumption is usually reasonable. Extending this definition, a sequence
{xi}∞i=1 is infinitely exchangeable if every finite subsequence is exchangeable [21, 107].

As shown by the following theorem, exchangeable observations can always be rep-
resented via a prior distribution over some latent parameter space.

Theorem 2.2.2 (De Finetti). For any infinitely exchangeable sequence of random
variables {xi}∞i=1, xi ∈ X , there exists some space Θ, and corresponding density p(θ),
such that the joint probability of any N observations has a mixture representation:

p(x1, x2, . . . , xN ) =

∫

Θ
p(θ)

N∏

i=1

p(xi | θ) dθ (2.77)

When X is a K–dimensional discrete space, Θ may be chosen as the (K − 1)–simplex.
For Euclidean X , Θ is an infinite–dimensional space of probability measures.

Proof. De Finetti’s original proof for binary X dates to the 1930’s; see [127] for a simpler
proof of that case, and [21, Sec. 4.5] for generalizations and additional references.

Technically, the representation of eq. (2.77) is only guaranteed to exist when {xi}N
i=1

are part of an infinitely exchangeable sequence. However, for moderate N , the distor-
tion induced by assuming infinite exchangeability, when only finite exchangeability is
guaranteed, cannot be significant [21, Prop. 4.19].

De Finetti’s theorem is often taken as a justification for Bayesian methods, since
the infinite mixture representation of eq. (2.77) corresponds precisely with the marginal
likelihood of eq. (2.21). We see that exchangeability does not imply independence of
the observations, but conditional independence given a set of latent parameters θ. Note
also that for continuous sample spaces, these parameters are infinite–dimensional, since
there is no finite parameterization for the space of continuous densities. This motivates
a class of nonparametric methods which we discuss further in Sec. 2.5.

When applying the representation of eq. (2.77), it is common to assume some family
of prior distributions with hyperparameters λ, so that

p(x1, . . . , xN , θ | λ) = p(θ | λ)
N∏

i=1

p(xi | θ) (2.78)
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Figure 2.8. De Finetti’s representation of N exchangeable random variables {xi}
N
i=1 as a hierarchical

model. Each observation is independently sampled from a density with parameters θ, which are in turn
assigned a prior distribution with hyperparameters λ. Left: Explicit model for N = 7 variables. Right:

Compact plate representation of the N–fold replication of the observations xi.

This generative process can be described by the Bayesian network of Fig. 2.8, where
plates are used to compactly denote replicated variables [37, 159]. In Bayesian statistics,
this is known as a hierarchical model [21, 107] due to the layering by which observations
depend on parameters, which are in turn related to hyperparameters. Note that we have
explicitly included the parameters θ and hyperparameters λ (depicted by a rounded box)
in the graphical structure. While not strictly necessary, this approach is often useful in
learning problems where the parameters are of particular interest [50].

Finite Exponential Family Mixtures

Standard exponential family densities can be too inflexible to accurately describe many
complex, multimodal datasets. In these situations, data are often modeled via a fi-
nite mixture distribution [107, 203, 239, 249]. A K component mixture model takes the
following general form:

p(x | π, θ1, . . . , θK) =
K∑

k=1

πkf(x | θk) π ∈ ΠK−1 (2.79)

Each mixture component, or cluster, belongs to a parameterized family of probability
densities f(x | θ), whose distribution we equivalently denote by F (θ). Each data point
xi is generated by independently selecting one of K clusters according to the multinomial
distribution π, and then sampling from the chosen cluster’s data distribution:

zi ∼ π

xi ∼ F (θzi
)

(2.80)
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Figure 2.9. Directed graphical representations of a K component mixture model. Mixture weights
π ∼ Dir(α), while cluster parameters are assigned independent priors θk ∼ H(λ). Left: Indicator
variable representation, in which zi ∼ π is the cluster that generates xi ∼ F (θzi). Right: Alternative
distributional form, in which G is a discrete distribution on Θ taking K distinct values. θ̄i ∼ G are the
parameters of the cluster that generates xi ∼ F (θ̄i). We illustrate with a mixture of K = 4 Gaussians,
where cluster variances are known (bottom) and H(λ) is a Gaussian prior on cluster means (top).
Sampled cluster means θ̄1, θ̄2, and corresponding Gaussians, are shown for two observations x1, x2.

The unobserved indicator variable zi ∈ {1, . . . , K} specifies the unique cluster associated
with xi. Mixture models are widely used for unsupervised learning, where clusters are
used to discover subsets of the data with common attributes.

In most applications of mixture models, f(x | θk) is chosen to be an appropriate
exponential family. For example, Euclidean observations are often modeled via Gaus-
sian mixtures, so that the parameters θk = (µk, Λk) specify each cluster’s mean µk

and covariance Λk. When learning mixtures from data, it is often useful to place an
independent conjugate prior H, with hyperparameters λ, on each cluster’s parameters:

θk ∼ H(λ) k = 1, . . . , K (2.81)

Similarly, in the absence of prior knowledge distinguishing the clusters, the mixture
weights π can be assigned a symmetric Dirichlet prior with precision α:

π ∼ Dir
( α

K
, . . . ,

α

K

)
(2.82)

Fig. 2.9 shows a directed graphical model summarizing this generative process. As in
Fig. 2.8, plates are used to compactly denote the K cluster parameters {θk}K

k=1 and
N data points {xi}N

i=1. In Fig. 2.10, we illustrate several two–dimensional Gaussian
mixtures sampled from a conjugate, normal–inverse–Wishart prior.

Mixture models can equivalently be expressed in terms of a discrete distribution G
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Figure 2.10. Two randomly sampled mixtures of K = 5 two–dimensional Gaussians. Mixture pa-
rameters are generated from conjugate, normal–inverse–Wishart priors. For each mixture, we plot one
standard deviation covariance ellipses Λk with intensity proportional to their probability π ∼ Dir(α0),
α0 = 10. In each case, we also show N = 200 randomly sampled observations.

on the space Θ of cluster parameters:

G(θ) =
K∑

k=1

πkδ(θ, θk)
π ∼ Dir(α)

θk ∼ H(λ) k = 1, . . . , K
(2.83)

We generate each data point xi by sampling a set of parameters θ̄i from G:

θ̄i ∼ G

xi ∼ F
(
θ̄i

) (2.84)

This representation, which is statistically equivalent to the indicator variables used in
eq. (2.80), plays an important role in later hierarchical extensions. Note that G can
be seen as a discrete, K component approximation to the infinite–dimensional measure
arising in De Finetti’s Theorem. Fig. 2.9 shows a graphical representation of this
alternative form, and illustrates the generative process for a simple one–dimensional
Gaussian mixture with known variance.

The mixture models of Fig. 2.9 assume the number of clusters K to be a fixed, known
constant. In general, determining an appropriate mixture size is a difficult problem,
which has motivated a wide range of model selection procedures [46, 87, 203, 314]. In
Sec. 2.5, we discuss an alternative nonparametric approach which controls complexity
by placing prior distributions on infinite mixtures.
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Analysis of Grouped Data: Latent Dirichlet Allocation

In many domains, there are several groups of data which are thought to be produced by
related, but distinct, generative processes. For example, medical studies often combine
data collected at multiple sites, which examine a common treatment but may have
location–specific idiosyncrasies [75, 107]. In text analysis, the words composing a text
corpus are typically separated into different documents [31, 123, 140, 289]. Similarly,
computer vision systems like those developed in this thesis learn appearance models
from visual features detected in different training images [14, 79, 81, 266, 280, 282].

While it is simplest to analyze each group independently, doing so neglects critical
information when groups are individually ambiguous. Conversely, combining groups in
a single exchangeable dataset may lead to inappropriately biased estimates, and ob-
scures features distinguishing particular groups. By sharing random parameters among
groups, hierarchical Bayesian models provide an elegant compromise [21, 107, 216]. Pos-
terior dependencies between parameters then effectively transfer information between
related experiments, documents, or objects. Estimates based on these distributions are
“shrunk” together, so that groups share the strength of other datasets while retaining
distinctive features. For example, the classic James–Stein estimator, which uniformly
dominates the ML estimate of a multivariate Gaussian’s mean, can be derived via an
empirical Bayesian analysis of a particular hierarchical model [75].

Latent Dirichlet allocation (LDA) [31] extends mixture models (as in Fig. 2.9) to
learn clusters describing several related sets of observations. Given J groups of data, let
xj = (xj1, . . . , xjNj

) denote the Nj data points in group j, and x = (x1, . . . ,xJ). LDA
assumes that the data within each group are exchangeable, and independently sampled
from one of K latent clusters with parameters {θk}K

k=1. Letting πj ∈ ΠK−1 denote the
mixture weights for the jth group, we have

p(xji | πj , θ1, . . . , θK) =
K∑

k=1

πjkf(xji | θk) i = 1, . . . , Nj (2.85)

Comparing to eq. (2.79), we see that for individual groups LDA is equivalent to a finite
mixture model. LDA extends standard mixture models by sharing a common set of
clusters among several related groups. These shared parameters θk allow learning algo-
rithms to transfer information, while distinct mixture weights πj capture the particular
features of each group. Because the data within each group are always observed, an
explicit generative model for Nj is unnecessary.

To complete this hierarchical model, we must assign a distribution to the mixture
weights {πj}J

j=1. LDA assumes groups have no distinguishing features beyond the data
they contain, and are thus exchangeable. De Finetti’s Theorem then implies that these
mixture weights are independently sampled from some common prior distribution. For
computational simplicity, LDA chooses a conjugate Dirichlet prior:

πj ∼ Dir(α) j = 1, . . . , J (2.86)
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Figure 2.11. The latent Dirichlet allocation (LDA) model for sharing K clusters θk among J groups
of exchangeable data xj = (xj1, . . . , xjNj ). Left: LDA as a directed, hierarchical model. Each group’s
mixture weights πj ∼ Dir(α), while cluster parameters are assigned independent priors θk ∼ H(λ).
zji ∼ πj indicates the shared cluster that generates xji ∼ F

`
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´
. Right: When observations are one

of W discrete words, LDA can be seen as a probabilistically constrained factorization of the matrix
describing the bag of words composing each group, or document. The number K of latent clusters, or
topics, determines the factorization’s rank. The hyperparameters λ and α define Dirichlet priors for
the columns of the word and topic distribution matrices, respectively.

The resulting hierarchical model is illustrated in Fig. 2.11. The Dirichlet hyperparam-
eters α may be either chosen symmetrically (as in eq. (2.41)) to encode prior knowl-
edge [123], or learned from training data in an empirical Bayesian fashion [31]. Often,
robustness is improved by assigning conjugate priors θk ∼ H(λ) to the cluster param-
eters, as in standard mixture models (see eq. (2.81)). The resulting model is said to
be partially exchangeable [21], since observations are distinguished only by their associ-
ated group. As we demonstrate later, hierarchical graphical models provide a powerful
framework for describing dependencies within richly structured datasets.

LDA was originally used to analyze text corpora, by associating groups with docu-
ments and data xji with individual words. The exchangeability assumption treats each
document as a “bag of words,” incorrectly ignoring the true sentence structure. By
doing so, however, LDA leads to tractable algorithms which automatically learn topics
(clusters) from large, unlabeled document collections [31, 123, 211]. These topics are
alternatively known as aspects, and LDA as the generative aspect model [211].

For discrete data, LDA effectively determines a low–rank factorization of the matrix
containing the frequency of each word in each document (see Fig. 2.11). As discussed in
detail by Blei et. al. [31], LDA’s globally consistent generative model provides concep-
tual and practical advantages over earlier factorization methods such as latent semantic
analysis [140]. Importantly, however, LDA can also be generalized to continuous data
by associating clusters with appropriate exponential families F (θ). For example, in
later sections of this thesis we use Gaussian “topics” to model spatial data.
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As with finite mixture models, the number of clusters or topics K used by LDA is a
fixed constant. In practice, learning algorithms are sensitive to this parameter [31, 123],
and computationally expensive cross–validation schemes are often needed. Motivated by
this issue, Sec. 2.5.4 discusses the hierarchical Dirichlet process [289], a nonparametric
generalization of LDA which automatically infers the number of topics needed to explain
a given training corpus.

¥ 2.2.5 Learning and Inference in Graphical Models

In most applications of graphical models, inference and learning can be posed in terms
of a few canonical computational tasks. We divide the random variables composing the
graphical model into three sets: observations y, latent or hidden variables x, and pa-
rameters θ. While the form of this parameterization differs for directed and undirected
graphs, the objectives outlined below arise in both cases.

Inference Given Known Parameters

We begin by assuming the graph’s parameters θ are fixed to known, constant values
via some previous modeling procedure. The posterior distribution p(x | y, θ) then fully
captures available information about the hidden variables x. However, for most realistic
graphs the joint sample space X is far too large to characterize explicitly. For example,
given N binary hidden variables, |X | = 2N . We must thus develop efficient methods to
infer statistics summarizing this posterior density.

Given global observations y, the joint density p(x | y, θ) is often effectively summa-
rized by the following posterior marginal distributions:

p(xi | y, θ) =

∫

XV\i

p(x | y, θ) dxV\i i ∈ V (2.87)

Here, V \ i denotes all nodes except that corresponding to xi. The mean of this con-
ditional density is the Bayes’ least squares estimate [167, 229], while its mode is the
maximizer of the posterior marginals (MPM) [196] minimizing the expected number
of misclassified variables. In addition, the variance or entropy of p(xi | y, θ) measure
the posterior uncertainty in these estimates, which can be critical in practical applica-
tions [98, 231, 285, 330].

In some cases, hidden variables are instead inferred via a global MAP estimate:

x̂ = arg max
x

p(x | y, θ) (2.88)

While MAP estimates desirably optimize the joint posterior probability [108], they do
not directly provide confidence measures. Furthermore, when observations are noisy
or ambiguous, MAP estimation is often less robust than the MPM criterion [196]. For
these reasons, we focus primarily on the computation of posterior marginals.
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Learning with Hidden Variables

Criteria for learning in graphical models directly generalize those proposed for exponen-
tial families in Sec. 2.1.2. Let p(θ | λ) denote a prior distribution, with hyperparameters
λ, on the graphical model’s parameters. In the simplest case, we use the given obser-
vations y to determine a single MAP parameter estimate:

θ̂ = arg max
θ

p(θ | y, λ) (2.89)

= arg max
θ

p(θ | λ)

∫

X
p(x, y | θ) dx (2.90)

This optimization is complicated by a marginalization over hidden variables x, a dif-
ficulty which did not arise with fully observed exponential families (see eq. (2.23)).
Inference problems analogous to the posterior marginal computation of eq. (2.87) thus
also play a role when learning with hidden variables.

In many situations, the parameters themselves are of interest, and characterizations
of their posterior uncertainty are useful. Given some decomposition θ = {θa | a ∈ A}
of the joint parameter space, the posterior marginal distributions of these parameters,
and the corresponding hidden variables, equal

p(θa | y, λ) =

∫

X

∫

ΘA\a

p(x | y, θ) p(θ | y, λ) dθA\a dx a ∈ A (2.91)

p(xi | y, λ) =

∫

Θ

∫

XV\i

p(x | y, θ) p(θ | y, λ) dxV\i dθ i ∈ V (2.92)

Here, θa typically parameterizes an individual potential function in undirected graphs,
or the conditional distribution of a single variable in directed graphs. Integrating over
all parameters and hidden variables, we recover the observations’ marginal likelihood:

p(y | λ) =

∫

X

∫

Θ
p(x, y | θ) p(θ | λ) dθ dx (2.93)

The marginal likelihood is central to Bayesian approaches to model selection, where in-
tegration over parameters provides a form of Occam’s razor penalizing overly complex
models [154, 238]. It also arises in classification problems, for which posterior prob-
abilities are used to determine the most likely explanation of the given observations.
Furthermore, maximizing eq. (2.93) with respect to hyperparameters λ provides an
empirical Bayesian estimate of the prior distribution (see eq. (2.21)).

Computational Issues

Unfortunately, for many graphical models arising in practice, exact solution of these
learning and inference tasks is computationally intractable. Consider, for example, the
posterior marginal computation of eq. (2.87). Given N variables, each taking one of
K discrete states, this expression leads to a summation containing KN−1 terms, which
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for arbitrary graphs is NP hard [45]. Optimization of the MAP criterion (eq. (2.88))
is equally challenging [258]. For continuous X , we face a high–dimensional integration
which is usually also intractable. A notable exception occurs when all variables are
jointly Gaussian, so that linear algebraic connections allow exact inference in O(N3)
operations [63, 118]. However, even this computation may be extremely difficult for
large graphs [285, 330]. Typically, learning problems are no more tractable, since they
involve integrations like those arising in inference.

In the following sections, we discuss two general frameworks which provide ap-
proximate solutions to learning and inference tasks. We begin in Sec. 2.3 by outlining
variational methods which pose these computations as deterministic optimization prob-
lems. In Sec. 2.4, we then describe a complementary family of Monte Carlo methods
which explore posterior distributions via efficient numerical simulations.

¥ 2.3 Variational Methods and Message Passing Algorithms

In this section, we introduce a class of deterministic approximations to the problems
of learning and inference posed in Sec. 2.2.5. A variational method [98, 161, 251, 311]
begins by expressing a statistical inference task as the solution to a mathematical opti-
mization problem. By approximating or relaxing this objective function, one can derive
computationally tractable algorithms which bound or approximate the statistics of in-
terest. Often, these algorithms inherit the graphical model’s local structure, and can
be implemented via the calculation of messages passed between neighboring nodes.

We begin our development by considering the marginal log–likelihood of the ob-
served variables y, integrating over hidden states x and parameters θ (see eq. (2.93)).
Let q(x, θ) denote some approximation to the joint posterior density p(x, θ | y, λ). Via
Jensen’s inequality (see eq. (2.9)), any such approximation then provides a lower bound
on the marginal likelihood:

log p(y | λ) = log

∫

Θ

∫

X
p(x, y, θ | λ) dx dθ

= log

∫

Θ

∫

X
q(x, θ)

p(x, y, θ | λ)

q(x, θ)
dx dθ

≥
∫

Θ

∫

X
q(x, θ) log

p(x, y, θ | λ)

q(x, θ)
dx dθ (2.94)

= −D(q(x, θ) || p(x, θ | y, λ)) + log p(y | λ) (2.95)

The final equality follows by using Bayes’ rule to decompose p(x, y, θ | λ). Given some
family of approximating densities Q, the best lower bound is achieved by the distribution
minimizing the KL divergence from the true posterior:

q̂(x, θ) = arg min
q∈Q

D(q(x, θ) || p(x, θ | y, λ)) (2.96)

Of course, if Q is unrestricted the optimum is trivially q̂(x, θ) = p(x, θ | y, λ). Vari-
ational methods instead choose Q to be a simpler density representation for which
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computations are tractable.
The following sections explore two classes of variational methods. In Sec. 2.3.1,

we discuss mean field methods which use tractable families Q to derive a simplifying
decomposition of D(q || p). This representation is used to develop iterative methods
guaranteed to converge to a local optimum of eq. (2.96). Sec. 2.3.2 then describes
loopy belief propagation (BP), which uses properties of tree–structured graphical mod-
els to motivate intuitive approximations of Q and D(q || p). While loopy BP leads to
approximations, rather than bounds, on the marginal likelihood, it is often more accu-
rate in practice. Importantly, for either method the optimizing density q̂(x, θ) provides
estimates of the posterior marginal densities motivated in Sec. 2.2.5.

For simplicity, we focus on algorithms which infer conditional marginal densities
in pairwise Markov random fields. However, similar variational methods may also be
derived for directed [161] and factor [98, 324] graphs. In Sec. 2.3.3, we then show
how the expectation–maximization (EM) algorithm extends inference methods to learn
parameters from partially labeled data.

¥ 2.3.1 Mean Field Approximations

Given some fixed, undirected graph G = (V, E), consider a pairwise Markov random
field as introduced in Sec. 2.2.2:

p(x | y) =
1

Z

∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi, y) (2.97)

= exp

{
−

∑

(i,j)∈E

φij(xi, xj) −
∑

i∈V

φi(xi, y) − Φ

}
(2.98)

Here, Φ = log Z is the log partition function, and eq. (2.98) expresses the joint density
via the negative logarithms of the potential functions:

φij(xi, xj) , − log ψij(xi, xj) φi(xi, y) , − log ψi(xi, y) (2.99)

This representation is related to Boltzmann’s law from statistical mechanics [337], which
says that for a system in equilibrium at temperature T , a state x with energy φ(x) has
probability p(x) ∝ exp{−φ(x) /T}. For a pairwise MRF, the energy thus equals

φ(x) =
∑

(i,j)∈E

φij(xi, xj) +
∑

i∈V

φi(xi, y) (2.100)

We assume that the parameters θ defining the graph’s potentials have been fixed by
some previous modeling procedure, and do not denote them explicitly. Instead, we
focus on estimating the posterior marginal densities p(xi | y) for all nodes i ∈ V.

To develop the mean field method, we decompose the KL divergence (see eq. (2.96))
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between an approximate posterior q(x) and the target pairwise MRF as follows:

D(q || p) =

∫

X
q(x) log q(x) dx −

∫

X
q(x) log p(x | y) dx (2.101)

= −H(q) +

∫

X
φ(x) q(x) dx + Φ (2.102)

The first term of this decomposition is the negative entropy, while by analogy with
Boltzmann’s law the second term is known as the average energy. Excluding the log
partition function Φ, which is constant assuming fixed parameters, eq. (2.102) is some-
times called the Gibbs free energy [337]. Minimizing this free energy with respect to
q(x), we recover the true posterior of eq. (2.98). For an alternative interpretation of
this relationship, in which the negative entropy arises as the conjugate dual of the log
partition function, see [161, 311].

Naive Mean Field

Mean field methods are derived by choosing a restricted family of approximating den-
sities Q for which minimization of eq. (2.102) is tractable. By appropriately parame-
terizing Q, fixed points of this minimization also give estimates qi(xi) ≈ p(xi | y) of the
desired marginals. In the simplest case, the so–called naive mean field [98, 161, 311, 337]
approximation takes Q to be the set of fully factorized densities:

q(x) =
∏

i∈V

qi(xi) (2.103)

Recall that the joint entropy of a set of independent random variables equals the sum
of their individual entropies [49]. Inserting the factorization of eq. (2.103) into the free
energy of eq. (2.102) and simplifying, we then have

D(q || p) = −
∑

i∈V

H(qi) +
∑

i∈V

∫

Xi

φi(xi, y) qi(xi) dxi

· · · +
∑

(i,j)∈E

∫

Xi

∫

Xj

φij(xi, xj) qi(xi) qj(xj) dxj dxi + Φ (2.104)

Here, we have used eq. (2.100) to decompose the average energy according to the pair-
wise MRF’s graphical structure.

To minimize the mean field free energy of eq. (2.104), we construct a Lagrangian
constraining each approximating marginal distribution to integrate to one:

L(q, γ) = D(q || p) +
∑

i∈V

γi

(
1 −

∫

Xi

qi(xi) dxi

)
(2.105)

Differentiating L(q, γ) with respect to qi(xi) and simplifying, we find that the optimal
marginals are related by the following fixed point equations:

log qi(xi) = −φi(xi, y) −
∑

j∈Γ(i)

∫

Xj

φij(xi, xj) qj(xj) dxj + γ̄i i ∈ V (2.106)
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xi

y

xi

y

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) mij(xj) ∝ exp

{
−

∫

Xi

φji(xj , xi) qi(xi) dxi

}

Figure 2.12. Message passing implementation of the naive mean field method. Left: Approximate
marginal densities are determined from the normalized product of the local observation potential with
messages sent from neighboring nodes. Right: Given an updated marginal estimate, new messages are
calculated and transmitted to all neighbors.

Here, γ̄i is a constant chosen to satisfy the marginalization constraint. Due to the
pairwise relationships in the free energy of eq. (2.104), the marginal qi(xi) at node i
depends directly on the corresponding marginals at neighboring nodes Γ(i). Thus, even
though Q is fully factorized, the corresponding mean field solution desirably propagates
information from local potentials throughout the graph.

To implement the mean field method, we must have a tractable representation
for the marginal densities qi(xi), and a corresponding algorithm for updating these
marginals. Consider the following decomposition of the mean field fixed point equation
(eq. (2.106)):

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) i ∈ V (2.107)

mji(xi) ∝ exp

{
−

∫

Xj

φij(xi, xj) qj(xj) dxj

}
j ∈ Γ(i) (2.108)

We interpret mji(xi) as a message sent from j to its neighboring node i. As illustrated
in Fig. 2.12, mean field algorithms alternate between updating a local marginal estimate
(eq. (2.107)), and using this new marginal to calculate an updated message for each
neighbor (eq. (2.108)). If marginals are updated sequentially, the mean field algorithm
is a form of coordinate descent which converges to a local minimum of the free energy
(eq. (2.104)). Parallel updates are also possible, but do not guarantee convergence.

If Xi takes K discrete values, we can represent messages and marginals by K–
dimensional vectors. The integration of eq. (2.108) then becomes a summation, allowing
direct message computation in O(K2) operations. For hidden variables defined on
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continuous spaces Xi, implementation of the mean field method is more complicated. In
jointly Gaussian random fields, the integral message updates can be rewritten in terms
of the posterior means [311], leading to an algorithm equivalent to the classic Gauss–
Seidel iteration for linear systems [63]. More generally, for directed or undirected graphs
where all potentials are defined by exponential families, the mean field marginals are
finitely parameterized by the corresponding sufficient statistics [110]. From eq. (2.108),
we see that messages then become exponentiated expectations of these statistics with
respect to neighboring nodes. This approach can be extended to infer approximate
marginal distributions for parameters θa (see eq. (2.91)) when all priors p(θa | λa) are
conjugate [110, 331]. The VIBES software package exploits this flexibility, along with
the local structure of message–passing updates, to automatically generate mean field
inference code for directed graphical models [331].

While exponential families are somewhat flexible, many applications involve more
complex, continuous potentials which lack sufficient statistics. In such cases, there
is no finite representation for the marginal densities qi(xi), and message updates are
typically intractable. Sometimes, however, the mean field algorithm can be reasonably
approximated by Monte Carlo methods which represent qi(xi) via a collection of random
samples [332]. We discuss these methods in more detail in Sec. 2.4.

Information Theoretic Interpretations

In information theory, the KL divergence D(p || q) arises as a measure of the asymptotic
inefficiency, or information loss [49], incurred by assuming that a stochastic process x
has distribution q(x) when its true distribution is p(x | y). From this perspective,
given an approximating family Q, it seems more appropriate to minimize D(p || q) over
q ∈ Q rather than the “backwards” divergence D(q || p) underlying mean field methods.
Indeed, for fully factorized Q as in eq. (2.103), D(p || q) has an intuitive form:

D(p || q) =

∫

X
p(x | y) log p(x | y) dx −

∫

X
p(x | y) log

∏

i∈V

qi(xi) dx

= −H(p) −
∑

i∈V

∫

Xi

p(xi | y) log qi(xi) dxi

=
∑

i∈V

H(pi) − H(p) +
∑

i∈V

D(pi || qi) (2.109)

The first two terms, which do not depend on q(x), capture the fundamental information
loss incurred by any approximation neglecting depencies among the hidden variables.
The last term is uniquely minimized by taking qi(xi) = p(xi | y), so that the true
posterior marginals are exactly recovered. Interestingly, mean field methods can also
be derived via a first–order Taylor series expansion of this divergence [166].

While the decomposition of eq. (2.109) shows that the marginals p(xi | y) provide
an appropriate summary of p(x | y), it does not provide a computational method for
determining these marginals. Conversely, while mean field methods do not generally
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(a) (b) (c) (d)

Figure 2.13. Tractable subgraphs underlying different variational methods for approximate inference.
(a) Original nearest–neighbor grid (observation nodes not shown). (b) Fully factored model employed
by the naive mean field method. (c) An embedded tree, as might be exploited by a structured mean
field method. (d) Another of this grid’s many embedded trees.

recover the true posterior marginals, minimization of D(q || p) leads to tractable al-
gorithms providing potentially useful approximations. Indeed, as we discuss in later
sections, this variational approach provides a flexible framework for developing richer
approximations with increased accuracy. See [161, 311] for an alternative motivation of
mean field methods based on conjugate duality.

Structured Mean Field

Results from the statistical physics literature guarantee that, for certain densely con-
nected models with sufficiently homogeneous potentials, the naive mean field approxi-
mation becomes exact as the number of variables N approaches infinity [337]. However,
for sparse, irregular graphs like those considered by this thesis, its marginal estimates
qi(xi) can be extremely overconfident, underestimating the uncertainty of the true pos-
terior p(xi | y). In addition, the mean field iteration of eqs. (2.107, 2.108) often gets
stuck in local optima which differ substantially from the true posterior [98, 320]. Geo-
metrically, these local optima arise because the set of pairwise marginals achievable via
fully factorized densities is not convex [311].

Motivated by these issues, researchers have developed a variety of variational meth-
ods which extend and improve the naive mean field approximation [98, 161, 251, 311]. In
particular, fully factorized approximations effectively remove all of the target graphical
model’s edges. However, one can also consider structured mean field methods based on
approximating families which directly capture more of the original graph’s structure (see
Fig. 2.13). Optimization of these approximations is possible assuming exact inference
in the chosen subgraphs is tractable [111, 252, 327, 335]. As we show in the following
section, Markov chains and trees allow fast, exact recursive inference algorithms which
form the basis for a variety of higher–order variational methods.

¥ 2.3.2 Belief Propagation

As discussed in Sec. 2.2.5, direct solution of learning and inference problems arising in
graphical models is typically intractable. Sometimes, however, global inference tasks
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xi

xk

xj

xl

xj\i

xk\i

xl\i

Figure 2.14. For a tree–structured graph, each node i partitions the graph into |Γ(i)| disjoint subtrees.
Conditioned on xi, the variables x

j\i
in these subtrees are independent.

can be efficiently decomposed into a set of simpler, local computations. In particular,
for tree–structured graphical models a generalization of dynamic programming known
as belief propagation (BP) [178, 231, 255] recursively computes exact posterior marginals
in linear time. In the following sections, we provide a brief derivation of BP, and discuss
issues arising in its implementation. We then present a variational interpretation of BP
which justifies extensions to graphs with cycles.

Message Passing in Trees

Consider a pairwise MRF, parameterized as in Sec. 2.3.1, whose underlying graph
G = (V, E) is tree–structured. As shown in Fig. 2.14, any node i ∈ V divides such
a tree into |Γ(i)| disjoint subsets:

j \ i , {j} ∪ {k ∈ V | no path from k → j intersects i} (2.110)

By the Markov properties of G, the variables x
j\i

in these sub–trees are conditionally in-

dependent given xi. The BP algorithm exploits this structure to recursively decompose
the computation of p(xi | y) into a series of simpler, local calculations.

From the Hammersley–Clifford Theorem, Markov properties are expressed through
the algebraic structure of the pairwise MRF’s factorization into clique potentials. As
illustrated in Fig. 2.15, tree–structured graphs allow multi–dimensional integrals (or
summations) to be decomposed into a series of simpler, one–dimensional integrals. As
in dynamic programming [24, 90, 303], the overall integral can then be computed via a
recursion involving messages sent between neighboring nodes. This decomposition is an
instance of the same distributive law underlying a variety of other algorithms [4, 50, 255],
including the fast Fourier transform. Critically, because messages are shared among sim-
ilar decompositions associated with different nodes, BP efficiently and simultaneously
computes the desired marginals for all nodes in the graph.
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x2x1

x3

x4

p(x1) ∝
∫∫∫

ψ1(x1)ψ12(x1, x2)ψ2(x2)ψ23(x2, x3)ψ3(x3)ψ24(x2, x4)ψ4(x4) dx4 dx3 dx2

∝ ψ1(x1)

∫∫∫
ψ12(x1, x2)ψ2(x2)ψ23(x2, x3)ψ3(x3)ψ24(x2, x4)ψ4(x4) dx4 dx3 dx2

∝ ψ1(x1)

∫
ψ12(x1, x2)ψ2(x2)

[∫∫
ψ23(x2, x3)ψ3(x3)ψ24(x2, x4)ψ4(x4) dx4 dx3

]
dx2

∝ ψ1(x1)

∫
ψ12(x1, x2)ψ2(x2)

[∫
ψ23(x2, x3)ψ3(x3) dx3

]

︸ ︷︷ ︸
m32(x2)

·
[∫

ψ24(x2, x4)ψ4(x4) dx4

]

︸ ︷︷ ︸
m42(x2)

dx2

︸ ︷︷ ︸
m21(x1) ∝

∫
ψ12(x1, x2)ψ2(x2)m32(x2)m42(x2) dx2

Figure 2.15. Example derivation of the BP message passing recursion through repeated application
of the distributive law. Because the joint distribution p(x) factorizes as a product of pairwise clique
potentials, the joint integral can be decomposed via messages mji(xi) sent between neighboring nodes.

To derive the BP algorithm, we begin by considering the clique potentials corre-
sponding to particular subsets of the full graph:

ΨA(xA) ,
∏

(i,j)∈E(A)

ψij(xi, xj)
∏

i∈A

ψi(xi, y) A ⊂ V (2.111)

Here, E(A) , {(i, j) ∈ E | i, j ∈ A} are the edges contained in the node–induced sub-
graph [50] corresponding to A. Using the partitions illustrated in Fig. 2.14, we can then
write the marginal distribution of any node as follows:

p(xi | y) ∝
∫

XV\i

ψi(xi, y)
∏

j∈Γ(i)

ψij(xi, xj) Ψ
j\i

(x
j\i

) dxV\i (2.112)

∝ ψi(xi, y)
∏

j∈Γ(i)

∫

X
j\i

ψij(xi, xj)Ψ
j\i

(x
j\i

) dx
j\i

(2.113)
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To verify eq. (2.112), note that it simply regroups the pairwise MRF’s potentials ac-
cording to Fig. 2.14. Because the variables in the subgraphs separated by node i share
no potentials, the joint integral then decomposes accordingly. Interpreting the integrals
in eq. (2.113) as messages mji(xi) sent to node i from each of its neighbors, we have

p(xi | y) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) (2.114)

The message mji(xi) is a function providing the value of the corresponding integral for
each possible xi ∈ Xi. Note that in a graph with cycles, node i would not necessarily
disjointly partition the potentials, so the decomposition of eqs. (2.112, 2.113) is invalid.

In some applications, the joint distributions p(xi, xj | y) of pairs of nodes are also
of interest [324]. In tree–structured graphs, neighboring nodes (i, j) ∈ E partition the
global set of clique potentials as follows:

p(x | y) ∝ ψij(xi, xj) ψi(xi, y) ψj(xj , y)
∏

`∈Γ(i)\j

Ψ
`\i

(x
`\i

)
∏

k∈Γ(j)\i

Ψ
k\j

(x
k\j

) (2.115)

The corresponding subgraphs are illustrated in Fig. 2.16. Applying this decomposition
as in eq. (2.112), and integrating over all variables except xi and xj , we then have

p(xi, xj | y) ∝ ψij(xi, xj)ψi(xi, y)ψj(xj , y)
∏

`∈Γ(i)\j

m`i(xi)
∏

k∈Γ(j)\i

mkj(xj) (2.116)

The messages decomposing this pairwise marginal density are defined identically to
those used in eq. (2.114) to compute single–node marginals.

As defined in eq. (2.113), the messages may still be complex functions of large
groups of variables. To derive an efficient recursive decomposition, we consider the
marginalization constraint relating the single–node and pairwise marginal distributions:

p(xi | y) =

∫

Xj

p(xi, xj | y) dxj (2.117)

ψi(xi, y)
∏

`∈Γ(i)

m`i(xi) ∝ ψi(xi, y)
∏

`∈Γ(i)\j

m`i(xi) (2.118)

· · · ×
∫

Xj

ψij(xi, xj) ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) dxj

Note that all but one of the terms on the left hand side of eq. (2.118) have identical
functions of xi on the right hand side. Cancelling these terms, as illustrated graphically
in Fig. 2.16 (see [339]), the marginalization constraint is always satisfied when the
remaining message mji(xi) is defined as follows:

mji(xi) ∝
∫

Xj

ψij(xi, xj) ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) dxj (2.119)
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This recursion expresses one outgoing message from node j in terms of the other
(|Γ(j)| − 1) incoming messages. At the leaves of the tree, eq. (2.119) and our initial
message definition (eq. (2.113)) coincide:

mji(xi) ∝
∫

Xj

ψij(xi, xj)ψj(xj , y) dxj Γ(j) = {i} (2.120)

Thus, by recursively computing the messages along every edge according to eq. (2.119),
we may then easily find any single–node (eq. (2.114)) or pairwise (eq. (2.116)) marginal
of interest. For more formal derivations of this algorithm, see [4, 255].

Fig. 2.16 summarizes the BP message update recursion, and the corresponding mes-
sage products which provide marginal densities. These posterior marginals are some-
times called beliefs, by analogy with expert systems developed in the artificial intelli-
gence community [50, 178, 231]. Anticipating later extensions of BP which only provide
approximate posterior marginals, we denote the beliefs for individual and pairs of nodes
by qi(xi) and qij(xi, xj), respectively. This form of the BP algorithm is due to Shafer
and Shenoy [255], who emphasized the central role of factorization in recursive infer-
ence. Several other variants of BP have been proposed [50, 158, 306], including versions
adapted to directed Bayesian networks [178, 231] and factor graphs [175, 324].

To implement the BP algorithm, a schedule by which the messages are updated
must be selected. In tree–structured graphs, an appropriate ordering of these updates
requires each message to be computed only once, so that all N marginals may be
determined in O(N) operations. One possible efficient schedule chooses some node as
the root of the tree. This induces a partial ordering of the nodes in scale according to
their distance from the root (see Fig. 2.6). Messages are then computed in two stages:
an upward sweep proceeding from leaves to the root, followed by a downward sweep
propagating information from the root throughout the graph [34, 41, 330]. Alternatively,
an efficient decentralized schedule begins by passing outward messages from all leaf
nodes. Internal message mji(xi) is then computed once node j has received messages
from all (|Γ(j)| − 1) of its other neighbors [175].

One can also consider a parallel form of the BP algorithm, in which every node
recomputes all outgoing messages at each iteration, based on messages received from
its neighbors in the previous iteration [231]. After T iterations, local marginal estimates
will then optimally incorporate information from all nodes within distance T [4]. Con-
vergence to the optimal posterior marginals occurs once the number of iterations equals
the tree’s diameter (at most (N−1)). While parallel BP updates are typically inefficient
on a serial computer, they are useful in distributed implementations [100, 245].

Representing and Updating Beliefs

As with the mean field algorithm, implementations of BP require a tractable represen-
tation of the beliefs, and corresponding computational methods for the message updates
of eq. (2.119). In the simplest case, where each variable xi takes one of K discrete val-
ues (|Xi| = K), messages and marginals can be represented by K–dimensional vectors.
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Figure 2.16. Message passing recursions underlying the BP algorithm. Top: Approximate marginal
densities are determined from the normalized product of the local observation potential with messages
sent from neighboring nodes. Middle: Pairwise marginal densities are derived from a similar message
product. Bottom: A new outgoing message (red) is computed from all other incoming messages (blue).
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The message update integral then becomes a matrix–vector product, which in general
requires O(K2) operations:

mji(xi) ∝
∑

xj∈Xj

ψij(xi, xj)ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) (2.121)

For an N node tree, BP can then compute all marginals in O(NK2) operations, a dra-
matic savings versus the O(KN ) cost of brute–force summation. When the pairwise
potentials ψij(xi, xj) are sufficiently regular, techniques such as FFTs can further reduce
costs to O(K log K), or O(K) with additional approximations [80]. By analogy with
the form of eq. (2.121), BP is sometimes called the sum–product algorithm [175]. Spe-
cializing discrete BP to temporal HMMs (see Fig. 2.7), we recover the forward–backward
algorithm, which is widely used for speech processing [235]. More generally, recursions
equivalent to BP are often applied to multiscale discrete–state quadtree models arising
in image processing [34, 330].

Inference in HMMs with continuous hidden variables has been extensively studied
in the context of state space representations for dynamical systems [8, 164]. For linear
systems with Gaussian dynamics and observation noise, the posterior distribution of
the states is jointly Gaussian, and marginals are thus determined by their mean and
covariance. In such models, BP is equivalent to fixed–interval smoothing algorithms
which combine the Kalman filter with a complementary reverse–time recursion [8, 163,
164, 249]. These algorithms are readily generalized to any tree–structured graphical
model with Gaussian potentials [41, 330]. In undirected Gaussian MRFs, BP messages
are most easily updated in information form, via inverse covariance matrices [276, 321].

In contrast to the Gaussian case, continuous state space models containing non–
linear or non–Gaussian interactions typically lead to message updates which lack a
closed analytic form [8, 153]. Even in cases where all potentials are drawn from expo-
nential families, the corresponding posterior densities may not have finite–dimensional
sufficient statistics [326]. These difficulties have motivated a wide range of methods
which approximate the true posterior by a tractable analytic form. For example, the ex-
tended Kalman filter fits a Gaussian posterior via a gradient–based linearization [8, 153],
while the unscented Kalman filter uses a more accurate quadrature method [162]. More
generally, given any exponential family, expectation propagation (EP) [135, 213] uses
the moment matching conditions of Sec. 2.1.1 to approximate the beliefs produced by
each message update. Note, however, that determining the sufficient statistics for such
projections can itself be a challenging problem [344].

For many graphical models, the true posterior marginals are multimodal, or ex-
hibit other features poorly approximated by standard exponential families. In some
cases, a fixed K–point discretization leads to an effective histogram approximation of
the true continuous beliefs [11, 80, 95, 169]. However, as K must in general grow ex-
ponentially with the dimension of Xi, computation of the discrete messages underlying
this approach can be extremely demanding. This has motivated approaches which use
online message computations to dynamically discretize the belief space. In some cases,
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deterministic rules are used to prune discretization grids [47, 48] or Gaussian mixture
approximations [5, 94, 267]. Alternatively, Monte Carlo methods can be used to itera-
tively improve stochastic approximations to the true beliefs [9, 197, 224]. In particular,
Chap. 3 describes and extends a family of particle filters [11, 70] which approximate
messages and beliefs by a set of weighted samples.

Message Passing in Graphs with Cycles

Our earlier derivation of the BP algorithm assumed a tree–structured graph. The
junction tree algorithm extends BP to allow exact inference in arbitrary graphs [178,
255]. Let G be an undirected graph (directed graphs are first moralized as in Fig. 2.4(c)).
In the first of three stages, G is triangulated by adding edges so that all cycles of length
four or greater contain a chord. Then, a tree is formed from the maximal cliques
of the triangulated graph. Finally, a variant of BP performs exact inference on the
resulting junction tree (for more details, see [4, 50, 158, 177]). The triangulation step
ensures that any variables shared by two cliques are also members of other cliques along
their connecting path. This running intersection property must be satisfied for local
junction tree computations to produce globally consistent estimates. For many graphs,
however, triangulation greatly increases the size of the resulting cliques. In such cases,
the number of states associated with these cliques grows exponentially, and inference
in the junction tree can become intractable [45].

For graphs in which exact inference is infeasible, we can still use the BP algorithm to
develop improved variational methods. As mentioned in Sec. 2.3.1, one approach uses
embedded trees (as in Fig. 2.13) to develop structured mean field bounds with increased
accuracy [111, 252, 327]. In this thesis, we focus on an alternative method known as
loopy belief propagation [231]. As summarized in Fig. 2.16, the BP algorithm proceeds
entirely via a series of local message updates. Given a graph with cycles, loopy BP
iterates a parallel form of these message updates. Remarkably, in many applications
this seemingly heuristic method converges to beliefs which very closely approximate the
true posterior marginals [101, 219].

The traditional dynamic programming derivation of BP provides no justification for
loopy BP, other than the vague intuition that it should work well for graphs whose cycles
are “long enough.” In the following section, we provide a variational interpretation
which places loopy BP on firmer conceptual ground. We then briefly survey known
theoretical results and extensions.

Loopy BP and the Bethe Free Energy

Unsurprisingly, variational analyses of loopy BP are closely related to the Markov struc-
ture of tree–structured graphical models. The following proposition provides a local
factorization which is valid for any tree–structured joint distribution, and derives a
corresponding entropy decomposition.
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Proposition 2.3.1. Let G = (V, E) be a tree–structured undirected graph. Any joint
distribution p(x) which is Markov with respect to G factorizes according to marginal
distributions defined on the graph’s nodes and edges:

p(x) =
∏

(i,j)∈E

pij(xi, xj)

pi(xi)pj(xj)

∏

i∈V

pi(xi) (2.122)

The joint entropy H(p) then decomposes according to the graphical structure:

H(p) =
∑

i∈V

H(pi) −
∑

(i,j)∈E

I(pij) (2.123)

Proof. The factorization of eq. (2.122) is a special case of the junction tree decomposi-
tion, and can be formally verified using an induction argument [50, 177, 178]. In Markov
chains, for example, it is easily derived from the standard representation via one–step
transition probabilities. The entropy decomposition of eq. (2.123) then follows directly
from the definitions of entropy (eq. (2.7)) and mutual information (eq. (2.11)).

Interestingly, eq. (2.122) shows that the marginal distributions of tree–structured graphs
can be inferred via a reparameterization operation which transforms arbitrary clique
potentials (as in eq. (2.97)) to this particular canonical form [306].

Given any tree–structured undirected graph G = (V, E), consider a pairwise MRF
p(x | y) parameterized as in eq. (2.98). Using the entropy decomposition of eq. (2.123),
the KL divergence D(q || p) from any tree–structured approximation q(x) equals

D(q || p) = −
∑

i∈V

H(qi) +
∑

(i,j)∈E

I(qij) +
∑

i∈V

∫

Xi

φi(xi, y) qi(xi) dxi

· · · +
∑

(i,j)∈E

∫

Xi

∫

Xj

φij(xi, xj) qij(xi, xj) dxj dxi + Φ (2.124)

This divergence depends solely on the pairwise marginals qij(xi, xj), not on other non–
local aspects of q(x). To arrive at the loopy BP algorithm, we assume that the KL di-
vergence of eq. (2.124) is approximately correct even for graphs with cycles. The beliefs
qi(xi) and qij(xi, xj) are then pseudo–marginals, which differ from the true marginals
of p(x | y). In statistical physics, this approximation is known as the Bethe free en-
ergy [337, 340]. Note that for pairwise MRFs, the average energy term can be exactly
written in terms of pairwise marginals. The approximation thus involves incorrectly
applying the tree–based entropy of eq. (2.123) to cyclic graphs.

As with our earlier mean field derivation, loopy BP is derived by using Lagrangian
methods to minimize the Bethe free energy of eq. (2.124). First, each edge (i, j) ∈ E
is associated with a set of Lagrange multipliers constraining qij(xi, xj) to consistently
marginalize to qi(xi):

qi(xi) =

∫

Xj

qij(xi, xj) dxj for all xi ∈ Xi (2.125)
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Adding additional normalization constraints (as in eq. (2.105)) and taking derivatives,
we recover a set of fixed point equations relating Lagrange multipliers and beliefs. Fi-
nally, as derived in detail by [340], the BP equations of Fig. 2.16 are exactly recovered by
identifying messages as particular monotonic transformations of Lagrange multipliers.

The correspondence between loopy BP and the Bethe free energy has several im-
portant implications. First, the derivation sketched above shows that loopy BP fixed
points correspond to stationary points of the Bethe free energy.4 A more refined analy-
sis shows that stable BP fixed points must be local minima [132]. Furthermore, because
the Bethe free energy is bounded below, every graphical model has at least one BP
fixed point [338, 340].

In general, the Bethe free energy is not convex, so there may be multiple BP so-
lutions, and convergence is not guaranteed. However, for single cycles [133, 319] or
graphs with sufficiently weak potentials [133, 143, 286], BP is guaranteed to have a sin-
gle, unique global fixed point. In models where loopy BP exhibits instability, message
schedules which pass messages along embedded chains or trees (as in Fig. 2.13), or step–
size rules which damp message updates, can improve convergence [306]. Convergence
dynamics are sometimes analyzed via the computation tree corresponding to the chosen
message schedule [143, 155, 286, 319, 321]. Alternatively, double–loop algorithms have
been developed which directly minimize the Bethe free energy at greater computational
cost [134, 290, 341].

This derivation of loopy BP approximates the variational objective of eq. (2.96) in
two ways. First, as mentioned earlier, the Bethe free energy (eq. (2.124)) uses an entropy
approximation which is incorrect on graphs with cycles, and thus does not strictly
bound the marginal likelihood. Second, the marginalization constraints of eq. (2.125)
are insufficient to ensure that the estimated pseudo–marginals {qij(xi, xj) | (i, j) ∈ E}
correspond to some valid global q(x). For example, the constraint that every joint
distribution has a positive definite covariance matrix is in general not implied by these
marginalization conditions [311, 312]. Nevertheless, in many practical applications loopy
BP produces accurate, effective belief estimates [101, 219, 320].

Theoretical Guarantees and Extensions

In the artificial intelligence community, the loopy BP algorithm was originally sug-
gested by Pearl [231] (see [219] for a historical discussion). Then in 1993, turbo codes
were independently discovered to achieve outstanding error–correction performance by
coupling two randomly interleaved convolutional codes with an iterative decoder [23].
In the following years, the equivalence of this iterative approach and loopy BP was
recognized [101, 201]. Graphical representations were then used to extend turbo (or
sum–product) decoding to many other code families [175], rediscovering a class of low
density parity check (LDPC) codes proposed in Gallager’s 1960 doctoral thesis [102].
Subsequent refinements have led to long block–length codes which practically achieve

4Note that subtleties can arise with free energy analyses in graphical models containing hard con-
straints, for which potentials are not strictly positive [340].
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the capacity of memoryless channels [22, 42]. This performance is theoretically un-
derstood through results which show that loopy BP becomes exact as cycles become
arbitrarily long, and a corresponding density evolution algorithm which computes ca-
pacity thresholds for random code ensembles [244].

Inspired by its successes in iterative decoding, researchers have successfully applied
loopy BP to a wide range of challenging learning and inference tasks [48, 95, 99, 219,
245, 283, 336]. Concurrently, the variational interpretation provided by the Bethe free
energy has led to several important theoretical results and extensions. In particular,
BP can be seen as a reparameterization algorithm which attempts to transform the
given clique potentials into the canonical form of Prop. 2.3.1 [306]. Except in certain
degenerate cases, this is impossible for graphs with cycles, and loopy BP will thus not
provide exact posterior marginals. Interestingly, however, any loopy BP fixed point
is consistent with respect to every tree embedded in the original graph (for examples,
see Fig. 2.13). This analysis can be extended to bound the error in BP’s approximate
marginals [305, 306]. These results are stronger than those available for the mean field
method, and support the empirical observation that loopy BP is typically more accurate
and less prone to local optima [320].

Additional performance guarantees are available for Gaussian MRFs. If Gaussian
BP converges, several different techniques can be used to guarantee exactness of the pos-
terior means [155, 250, 306, 321]. However, the estimated variances are incorrect because
correlations due to the graph’s cycles are neglected. Intuitively, when all potentials
are positively correlated or attractive, these variance estimates are over–confident [321].
Furthermore, convergence is guaranteed for a wide class of walk–summable models [155],
or equivalently any graph whose pairwise potentials are normalizable.

More generally, variational interpretations of BP have led to the development of sev-
eral extensions with improved accuracy. For example, the Bethe entropy of eq. (2.124)
can be seen as the first terms of an expansion based on the Möbius inversion for-
mula [125, 248]. Higher order terms directly account for relationships among larger
groups of variables. Exploiting this, a region graph framework has been proposed which
leads to better entropy approximations, and a corresponding family of generalized be-
lief propagation algorithms [202, 338, 339, 340]. This approach generalizes the Kikuchi
free energies [337] developed in the statistical physics community. The expectation
propagation algorithm [135, 212, 213] provides a closely related method of incorporating
higher–order dependencies (see [305] and [323] for unifying comparisons). In addition,
a family of robust reweighted belief propagation algorithms have been derived from
convex upper bounds on the log partition function [307, 310, 328, 329].

Finally, we note that the distributive structure underlying the BP algorithm can be
generalized to any commutative semiring [4, 50, 255, 303]. In particular, a max–product
variant of BP generalizes the Viterbi algorithm [90, 235] to efficiently compute optimal
MAP estimates in tree–structured graphs [175, 231]. For graphs with cycles, there are
some guarantees on max–product’s accuracy [308, 322], and a reweighted extension can
sometimes assure an optimal MAP solution [172, 309]. See [311] for an introduction
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emphasizing variational interpretations of these methods.

¥ 2.3.3 The Expectation Maximization Algorithm

In this section, we consider the MAP parameter estimation criterion motivated in
Sec. 2.2.5. Given a model with parameters θ, and prior distribution p(θ | λ), we seek

θ̂ = arg max
θ

p(θ | y, λ) = arg max
θ

p(θ | λ)

∫

X
p(x, y | θ) dx (2.126)

As before, y are observations and x are latent variables. The Expectation Maximiza-
tion (EM) algorithm [65] is an iterative parameter estimation scheme which tractably
handles hidden or missing data x. We derive EM using the previously introduced varia-
tional framework, and discuss its application to learning in graphical models. For other
introductions to the EM algorithm, see [98, 107, 161, 225].

As with other variational methods, the EM algorithm uses a distribution q(x) over
hidden variables to bound an otherwise intractable integral. Using Bayes’ rule to expand
the posterior distribution of eq. (2.126), we have

log p(θ | y, λ) = log

∫

X
p(x, y | θ) dx + log p(θ | λ) − log p(y | λ) (2.127)

≥
∫

X
q(x) log

p(x, y | θ)

q(x)
dx + log p(θ | λ) − log p(y | λ) (2.128)

Here, we have applied Jensen’s inequality as in our earlier variational bound on the
marginal likelihood (eq. (2.94)). Regrouping terms and neglecting the final normal-
ization constant, which does not depend on θ, we arrive at the following functional:

L(q, θ) = H(q) +

∫

X
q(x) log p(x, y | θ) dx + log p(θ | λ) (2.129)

Comparing to eq. (2.102), we see that L(q, θ) equals a negative free energy [225] plus
another term incorporating prior knowledge about the unknown parameters [107].

As in [225, 227], we derive the EM algorithm as a coordinate ascent iteration on
L(q, θ). In the expectation or E–step, the parameters θ are fixed and the optimal
variational distribution q(x) is determined. Then in the maximization or M–step, the
lower bound defined by q(x) is maximized with respect to the parameters:

q(t) = arg max
q

L(q, θ(t−1)) (2.130)

θ(t) = arg max
θ

L(q(t), θ) (2.131)

It can be shown that the posterior probability of eq. (2.126) increases monotonically with
each EM iteration, converging to some local maximum [65, 107, 225]. In the following
sections, we discuss the implementation of these steps in greater detail.
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Expectation Step

Fixing the parameters to some value θ(t−1), provided either by the previous M–step or
an initialization θ(0), the E–step objective of eq. (2.130) becomes

q(t) = arg max
q

[
H(q) +

∫

X
q(x) log p(x, y | θ(t−1)) dx

]
(2.132)

Note the similarity of this equation to the variational objective underlying the mean
field method (eq. (2.102)). Adding a Lagrange multiplier ensuring that q(x) is properly
normalized (as in eq. (2.105)) and taking derivatives, it is easily shown that

q(t)(x) = p(x | y, θ(t−1)) (2.133)

See [225] for a detailed derivation. We see that the E–step simply infers the posterior
distribution of the hidden variables given the current parameters.

If p(x, y | θ) defines an exponential family, the expected values of that family’s statis-
tics are sufficient for the subsequent M–step. In graphical models, the E–step thus
reduces to the problem of computing the posterior marginal distribution of each hidden
variable (see Sec. 2.2.5). The variational derivation of the EM algorithm also justifies
incremental E–steps, in which the expectations of only some variables are updated at
each iteration [225]. In graphs where exact inference is intractable, mean field meth-
ods are commonly used to further bound the log–likelihood [161, 311, 331]. It is also
tempting to use higher order variational methods, such as loopy BP, as approximate
E–steps [98, 136]. In such cases, however, L(q, θ) no longer strictly bounds the true
posterior probability [311], and the resulting iteration may be unstable or inaccurate.

Maximization Step

Given the posterior distribution q(t)(x) determined in the previous E–step, the M–step
objective of eq. (2.131) equals

θ(t) = arg max
θ

[
log p(θ | λ) +

∫

X
q(t)(x) log p(x, y | θ) dx

]
(2.134)

Up to an additive constant independent of θ, the likelihood term in eq. (2.134) equals
−D

(
q(t) || pθ

)
. If θ parameterizes an exponential family and the prior distribution is un-

informative, Prop. 2.1.2 then shows that θ(t) should be chosen to match the appropriate
sufficient statistics of q(t). Similarly, conjugate priors p(θ | λ) are easily handled by ap-
propriately biasing these statistics (see Prop. 2.1.4). More generally, partial M–steps can
be used which increase, but do not maximize, the current likelihood bound [107, 225].

In directed Bayesian networks, the M–step can often be computed in closed form [37,
50, 98, 128]. Consider the following directed factorization:

p(x | θ) =
∏

i∈V

p
(
xi | xΓ(i), θi

)
(2.135)



82 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

Here, θi parameterizes the transition distribution for the ith node, and we have not
explicitly indicated which nodes correspond to observations y. If each transition is
assigned a meta independent [50, 59] prior p(θi | λi), the objective of eq. (2.134) equals

θ(t) = arg max
θ

∑

i∈V

∫∫
q(t)(xi, xΓ(i)) log p

(
xi | xΓ(i), θi

)
dxi dxΓ(i) + log p(θi | λi)

(2.136)
The parameters associated with different nodes are thus decoupled, and can be estimated
independently. This optimization is similarly tractable for many models in which pa-
rameters are shared among multiple transition densities [235].

In undirected graphical models, parameter estimation is more challenging. Consider
a factor graph parameterized as in eq. (2.68), and assume for simplicity that the refer-
ence measure ν(x) = 1. Then, if each clique potential is assigned a meta independent
prior p(θf | λf ), the M–step objective equals

θ(t) = arg max
θ

∑

f∈F




∑

a∈Af

θfa

∫
q(t)(xf )φfa(xf ) dxf + log p(θf | λf )


 − Φ(θ) (2.137)

In contrast with eq. (2.136), the log partition function Φ(θ) induces non–local depen-
dencies among the parameters. When the corresponding graph is decomposable or
triangulated, junction tree representations can be used to efficiently estimate parame-
ters [59, 177]. Otherwise, computationally demanding numerical methods are required,
often implemented via one of several iterative scaling algorithms [53, 56, 62, 177, 227,
268, 290]. A recently proposed family of convex upper bounds on the log partition
function can be used for approximate undirected parameter estimation [307, 310].

¥ 2.4 Monte Carlo Methods

By using random samples to simulate probabilistic models, Monte Carlo methods [9,
107, 192] provide complementary solutions to the learning and inference tasks described
in Sec. 2.2.5. In contrast with variational approaches, they are guaranteed to give
arbitrarily precise estimates with sufficient computation. In practice, however, care
must be taken to design efficient algorithms so that reliable, accurate estimates can be
obtained at a tractable computational cost.

Let p(x) denote some target density with sample space X . Many inference tasks,
including the calculation of marginal densities and sufficient statistics, can be expressed
as the expected value Ep[f(x)] of an appropriately chosen function [9, 192]. Suppose
that p(x) is difficult to analyze explicitly, but that L independent samples {x(`)}L

`=1 are
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available. The desired statistic can then be approximated as follows:

Ep[f(x)] =

∫

X
f(x)p(x) dx (2.138)

≈ 1

L

L∑

`=1

f(x(`)) = Ep̃[f(x)] (2.139)

Here, p̃(x) is the empirical density (see eq. (2.13)) corresponding to the L samples, as
illustrated in Fig. 2.17(a). This estimate is unbiased, and converges to Ep[f(x)] almost
surely as L → ∞. Furthermore, its error is asymptotically Gaussian, with variance
determined by Ep

[
f2(x)

]
rather than the dimensionality of the sample space [9].

In graphical models, exact samples can be drawn from the posterior distribution
p(x | y) using a variant of the junction tree algorithm (see Sec. 2.3.2). First, some clique
is chosen as the tree’s root, and a sample is drawn from its corresponding marginal.
The values of neighboring cliques are then recursively sampled from the appropriate
conditional densities [50]. For many graphs, however, the junction tree’s cliques are too
large, and exact sampling is intractable. The following sections describe several Monte
Carlo methods which allow approximate samples to be drawn more efficiently.

¥ 2.4.1 Importance Sampling

Importance sampling provides an alternative to direct Monte Carlo approximation in
cases where sampling from p(x) is difficult. We assume that it is possible to evaluate
p(x) = p̄(x)/Z up to some normalization constant Z. Let q(x) denote a proposal
distribution which is absolutely continuous with respect to p(x), so that p(x̄) = 0
whenever q(x̄) = 0. The expectation of eq. (2.138) can then be rewritten as follows:

Ep[f(x)] =

∫
X f(x)w(x)q(x) dx∫

X w(x)q(x) dx
w(x) =

p̄(x)

q(x)
(2.140)

The denominator of eq. (2.140) implicitly defines the unknown normalization constant
via the weight function w(x). Given L independent samples {x(`)}L

`=1 from the proposal
density q(x), we approximate this expectation as

Ep[f(x)] ≈
L∑

`=1

w(`)f(x(`)) w(`) ,
w(x(`))

∑L
m=1 w(x(m))

(2.141)

Importance sampling thus estimates the target expectation via a collection of weighted
samples {(x(`), w(`))}L

`=1 from the proposal density q(x). Under mild assumptions, this
estimate is asymptotically consistent [9], and its variance is smallest when the pro-
posal density q(x) ∝ |f(x)|p(x). Fig. 2.17 illustrates weighted samples drawn from two
different importance approximations to a bimodal target distribution.

The practical effectiveness of importance sampling critically depends on the chosen
importance density. When q(x) assigns low probability to likely regions of the tar-
get sample space, importance estimates can be extremely inaccurate. For example,
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Figure 2.17. Monte Carlo estimates based on 30 samples (arrows) from one–dimensional proposal
distributions (left column), and corresponding kernel density estimates (right column) constructed via
likelihood cross–validation. (a) Target density (solid), and unweighted direct samples. (b) Kernel
density (thick blue line) estimated from Gaussian kernels (thin black lines). (c) A mixture proposal
distribution (solid) closely matched to the target density (dashed), and importance weighted samples.
(d) Kernel density estimated from weighted Gaussian kernels. (e) A Gaussian proposal distribution
(solid) with mean and variance matching the target density (dashed), and weighted samples. (f) Kernel
density with artifacts from the Gaussian proposal’s widely varying importance weights.
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the poorly matched proposal distribution of Fig. 2.17(e) causes many samples to have
negligible weight, greatly reducing the effective sample size. Heavy–tailed proposal dis-
tributions, which are more dispersed than the target density, typically provide greater
robustness [107, 192]. For high–dimensional problems, however, designing good propos-
als is extremely challenging, since even minor discrepancies can produce widely varying
importance weights. In graphical models, importance sampling is thus typically used
as a building block within more sophisticated Monte Carlo methods.

¥ 2.4.2 Kernel Density Estimation

In some applications of Monte Carlo methods, an explicit estimate p̂(x) of the target
density p(x) is desired, rather than a summary statistic as in eq. (2.138). Nonparametric
density estimators avoid choosing a particular form for p̂(x), and allow the complexity
of the estimated density to grow as more samples are observed. Given L independent
samples {x(`)}L

`=1, the corresponding kernel or Parzen window density estimate [230,
263] can be written as follows:

p̂(x) =

L∑

`=1

w(`)N (x; x(`), Λ) (2.142)

This estimator uses a Gaussian kernel function to smooth the raw sample set, intuitively
placing more probability mass in regions with many samples. Other kernel functions
may also be considered [263], but we focus on the Gaussian case. If these samples are
drawn from the target density p(x), the weights are set uniformly to w(`) = 1/L. More
generally, they could come from an importance sampling scheme [220] as in eq. (2.141).

The kernel density estimate of eq. (2.142) depends on the bandwidth or covariance
Λ of the Gaussian kernel function. There is an extensive literature on methods for
automatic bandwidth selection [263]. For example, the simple “rule of thumb” method
combines a robust covariance estimate with an asymptotic formula which assumes the
target density is Gaussian. While fast to compute, it often oversmooths multimodal
distributions. In such cases, more sophisticated cross–validation schemes can improve
performance [263]. Fig. 2.17 illustrates kernel density estimates constructed from three
different proposal distributions, with bandwidth automatically selected via likelihood
cross–validation. Note that inaccurate importance densities produce less reliable density
estimators (compare Fig. 2.17(d) and Fig. 2.17(f)).

¥ 2.4.3 Gibbs Sampling

We now describe a family of iterative, Markov chain Monte Carlo (MCMC) methods
which draw samples from an otherwise intractable target density p(x). Starting from
some initial global configuration x(0) ∈ X , subsequent states are determined via a first–
order Markov process:

x(t) ∼ q(x | x(t−1)) t = 1, 2, . . . (2.143)
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The transition distribution q (· | ·) is designed so that the resulting Markov chain is
irreducible and aperiodic, with p(x) as its unique equilibrium distribution [9]. Thus,
after many iterations T the state will be approximately distributed as x(T ) ∼ p(x),
providing a sample from the desired target density.

The Metropolis–Hastings algorithm [9, 107] provides a flexible, general framework
for constructing Markov chains with a desired equilibrium distribution p(x). In this
section, we describe the Gibbs sampler [106, 108, 196], a special case that is particularly
well suited to state spaces with internal structure. Let x = (x1, . . . , xN ) denote a
decomposition of the joint sample space into N variables. Gibbs samplers assume that
it is tractable to sample from the conditional distribution of one of these variables given
the other (N − 1). At iteration t, a particular variable i(t) is selected for resampling,
and the rest are held constant:

x
(t)
i ∼ p(xi | x

(t−1)
j , j 6= i) i = i(t) (2.144)

x
(t)
j = x

(t−1)
j j 6= i(t) (2.145)

If these sampling updates are iterated so that all variables are resampled infinitely often,
mild conditions ensure x(t) will converge to a sample from p(x) as t → ∞ [9, 108, 186].
Randomly permuting the order in which variables are resampled, rather than repeating
a single fixed order, often improves the rate of convergence [246].

Although there exist polynomial bounds on the time required for some MCMC
methods to mix to the target equilibrium distribution [9, 186], it can be difficult to
guarantee or diagnose convergence in high–dimensional models [192]. In practice, it
is often useful to run the sampler from several random initializations, and compare
problem–dependent summary statistics. If slow mixing is observed, one can consider
blocked Gibbs samplers which, rather than sampling individual variables, jointly resam-
ple small groups of variables which are thought to be strongly correlated [9, 185, 246].

For some models, Gibbs samplers are best implemented via auxiliary variable meth-
ods [9]. These algorithms are based on a joint distribution p(x, z) which is designed to
marginalize to the target density p(x). In the simplest case, auxiliary variables z are
chosen so that the following conditional densities are tractable:

x(t) ∼ p(x | z(t−1)) (2.146)

z(t) ∼ p(z | x(t)) (2.147)

More generally, eq. (2.146) may be replaced by several Gibbs sampling steps as in
eqs. (2.144, 2.145). Any joint sample (x(T ), z(T )) from the resulting Markov chain then
also provides an approximate sample x(T ) from the target density of interest. Some
auxiliary variable methods, such as the hybrid Monte Carlo algorithm [9, 107, 192], are
designed to improve the convergence rate of the resulting Markov chain. Alternatively,
auxiliary variable methods sometimes lead to tractable Gibbs samplers for models in
which direct conditional densities lack simple forms [222]. Several algorithms developed
in this thesis exploit this technique.
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Sampling in Graphical Models

The Gibbs sampler’s use of partitioned state spaces is ideally suited for inference in
graphical models [98, 108, 196, 231]. For example, consider a pairwise MRF p(x | y)
parameterized as in eq. (2.97). By the Markov properties discussed in Sec. 2.2.2, the
posterior distribution of xi depends only on the values at neighboring nodes:

p
(
xi | xV\i, y

)
= p

(
xi | xΓ(i), y

)
∝ ψi(xi, y)

∏

j∈Γ(i)

ψij(xi, xj) (2.148)

When the clique potentials are drawn from exponential families, it is typically easy to
sample from this conditional density. Iterating such resampling as in eqs. (2.144, 2.145),
we obtain a Gibbs sampler providing Monte Carlo estimates of the posterior marginals
motivated in Sec. 2.2.5. Alternatively, the related simulated annealing method [9, 108]
can be used to search for approximate MAP estimates.

Gibbs sampling is also used to estimate posterior distributions for model parame-
ters θ (see eq. (2.91)). First, hidden variables are sampled given fixed parameters as
in eq. (2.148). Then, conditioned on these hidden variables, conjugate priors p(θ | λ)
typically allow individual parameters to be tractably resampled [37, 50, 106, 128]. Al-
ternating between sampling x(t) ∼ p

(
x | θ(t−1), y

)
and θ(t) ∼ p

(
θ | x(t), y, λ

)
, we can

estimate statistics of the joint posterior p(x, θ | y, λ). The BUGS software package uses
this method to do Bayesian learning and inference in directed graphical models [115].

Gibbs Sampling for Finite Mixtures

To illustrate the Gibbs sampler, we consider a K–component exponential family mixture
model, as introduced in Sec. 2.2.4 (see Fig. 2.9). While the data x = {xi}N

i=1 are directly
observed, the latent cluster zi ∈ {1, . . . , K} associated with each data point is unknown.
The simplest mixture model Gibbs sampler thus alternates between sampling cluster
indicators z = {zi}N

i=1, mixture weights π, and cluster parameters {θk}K
k=1. We assume

the hyperparameters α and λ are set to fixed, known constants.
Given fixed cluster weights and parameters, the indicator variables are conditionally

independent. Let z\i denote the set of all cluster assignments excluding zi. Applying
Bayes’ rule to the generative model of eq. (2.79), we then have

p(zi = k | z\i, x, π, θ1, . . . , θK) = p(zi = k | xi, π, θ1, . . . , θK) (2.149)

∝ πkf(xi | θk) (2.150)

Here, the simplification of eq. (2.149) follows from the Markov properties of the directed
graph in Fig. 2.9. By evaluating the likelihood of xi with respect to each current cluster,
we may thus resample zi in O(K) operations.

As discussed in detail by [96], the mixture weights π and parameters {θk}K
k=1 are

mutually independent conditioned on the indicator variables z:

p(π, θ1, . . . , θK | z, x, α, λ) = p(π | z, α)
K∏

k=1

p(θk | {xi | zi = k} , λ) (2.151)
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Given mixture weights π(t−1) and cluster parameters {θ(t−1)
k }K

k=1 from the previous iteration,
sample a new set of mixture parameters as follows:

1. Independently assign each of the N data points xi to one of the K clusters by sampling
the indicator variables z = {zi}N

i=1 from the following multinomial distributions:

z
(t)
i ∼ 1

Zi

K∑

k=1

π
(t−1)
k f(xi | θ

(t−1)
k ) δ(zi, k) Zi =

K∑

k=1

π
(t−1)
k f(xi | θ

(t−1)
k )

2. Sample new mixture weights according to the following Dirichlet distribution:

π(t) ∼ Dir(N1 + α/K, . . . , NK + α/K) Nk =

N∑

i=1

δ(z
(t)
i , k)

3. For each of the K clusters, independently sample new parameters from the conditional
distribution implied by those observations currently assigned to that cluster:

θ
(t)
k ∼ p(θk | {xi | z

(t)
i = k} , λ)

When λ defines a conjugate prior, this posterior distribution is given by Prop. 2.1.4.

Algorithm 2.1. Direct Gibbs sampler for a K component exponential family mixture model, as
defined in Fig. 2.9. Each iteration resamples the cluster assignments for all N observations x = {xi}

N
i=1

once, and uses these updated assignments to choose new mixture parameters.

Assuming α is the precision of a symmetric Dirichlet prior, the posterior distribution of
the mixture weights π is also Dirichlet (see eq. (2.45)), with hyperparameters determined
by the number of observations Nk currently assigned to each cluster:

p(π | z, α) = Dir(N1 + α/K, . . . , NK + α/K) Nk =
N∑

i=1

δ(zi, k) (2.152)

Standard methods may then be used to sample new cluster weights [107]. Intuitively,
eq. (2.151) shows that the posterior distribution of the kth cluster’s parameters θk de-
pends only on those observations currently assigned to it. If λ parameterizes a conjugate
prior, Prop. 2.1.4 provides a closed form for this posterior. For example, when clusters
are Gaussian, θk = (µk, Λk) follows a normal–inverse–Wishart density (see Sec. 2.1.4).

Algorithm 2.1 summarizes the Gibbs sampler implied by these conditional distri-
butions. We initialize the mixture parameters according to their priors π(0) ∼ Dir(α),
θ
(0)
k ∼ H(λ). At each iteration, O(NK) operations are needed to resample all N in-

dicator variables. Note that because these indicators are mutually independent given
known parameters, the order of this resampling is unimportant. To allow fast parame-
ter resampling, we cache sufficient statistics (as in Thm. 2.1.2) of the data assigned to
each cluster, and recursively update these statistics as assignments change.

In Fig. 2.18, we use the Gibbs sampler of Alg. 2.1 to fit a mixture of K = 4 two–
dimensional Gaussians to N = 300 observations. Each Gaussian cluster is assigned a
weakly informative normal–inverse–Wishart prior, so that the posterior distribution of
θk = (µk, Λk) can be determined as described in Sec. 2.1.4. The columns of Fig. 2.18



log p(x | π, θ) = −539.17 log p(x | π, θ) = −497.77

log p(x | π, θ) = −404.18 log p(x | π, θ) = −454.15

log p(x | π, θ) = −397.40 log p(x | π, θ) = −442.89

Figure 2.18. Learning a mixture of K = 4 Gaussians using the Gibbs sampler of Alg. 2.1. Columns
show the current parameters after T=2 (top), T=10 (middle), and T=50 (bottom) iterations from two
random initializations. Each plot is labeled by the current data log–likelihood.
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compare two different random initializations. Because we use vague priors, the data
log–likelihood provides a reasonable convergence measure:

log p(x | π, θ1, . . . , θK) =
N∑

i=1

log

(
K∑

k=1

πkf(xi | θk)

)
(2.153)

We see that the Gibbs sampler effectively implements a random walk, which grad-
ually moves towards parameters with higher posterior probability. Although the in-
duced Markov chain may converge quickly (left column), it sometimes remains trapped
in locally optimal regions of the parameter space for many iterations (right column).
Fig. 2.20 compares this behavior to a more sophisticated Rao–Blackwellized sampler
developed in the following section.

¥ 2.4.4 Rao–Blackwellized Sampling Schemes

In models which impose structured dependencies on multiple latent variables, we can
often construct tractable Monte Carlo procedures which improve on the basic estimator
of eq. (2.139). Let p(x, z) denote a target distribution on two random variables x ∈ X ,
z ∈ Z. Given L independent samples {(x(`), z(`))}L

`=1 from this joint distribution, the
simplest approximation of a statistic f(x, z) equals

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x, z) dx dz (2.154)

≈ 1

L

L∑

`=1

f(x(`), z(`)) = Ep̃[f(x, z)] (2.155)

Suppose, however, that the conditional density p(x | z) has a tractable analytic form.
In this case, we can consider the following alternative estimator:

Ep[f(x, z)] =

∫

Z

∫

X
f(x, z)p(x | z) p(z) dx dz (2.156)

=

∫

Z

[∫

X
f(x, z)p(x | z) dx

]
p(z) dz (2.157)

≈ 1

L

L∑

`=1

∫

X
f(x, z(`))p(x | z(`)) dx = Ep̃[Ep[f(x, z) | z]] (2.158)

The estimators of eqs. (2.155) and (2.158) are both unbiased, and converge to Ep[f(x, z)]
almost surely as L → ∞. Intuitively, however, the marginalized estimate of eq. (2.158)
should be more reliable [9, 39, 106], because the underlying sample space Z is smaller
than the original space X × Z.

In classical statistics, the Rao–Blackwell Theorem [167, 242] establishes the impor-
tance of sufficient statistics in parameter estimation. In particular, it allows minimum
variance unbiased estimators to be designed by conditioning simpler estimators with
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respect to appropriate statistics. The Rao–Blackwell Theorem is derived from the fol-
lowing relationship between conditional and unconditional variance, which is also more
broadly applicable.

Theorem 2.4.1 (Rao-Blackwell). Let x and z be dependent random variables, and
f(x, z) a scalar statistic. Consider the marginalized statistic Ex[f(x, z) | z], which is a
function solely of z. The unconditional variance Varxz[f(x, z)] is then related to the
variance of the marginalized statistic as follows:

Varxz[f(x, z)] = Varz[Ex[f(x, z) | z]] + Ez[Varx[f(x, z) | z]] (2.159)

≥ Varz[Ex[f(x, z) | z]] (2.160)

Proof. Using the iterated expectations [229, 242] induced by the conditional factoriza-
tion p(x, z) = p(x | z) p(z), the unconditional variance of f(x, z) equals

Varxz[f(x, z)] = Exz

[
f(x, z)2

]
− Exz[f(x, z)]2

= Ez

[
Ex

[
f(x, z)2 | z

]]
− Ez[Ex[f(x, z) | z]]2

Subtracting and adding Ez[Ex[f(x, z) | z]2] and regrouping terms, we may then verify
eq. (2.159). Equation (2.160) follows from the non–negativity of Varx[f(x, z) | z].

As established by eq. (2.160), analytic marginalization of some variables from a joint
distribution always reduces the variance of later estimates. Applying this result, the so–
called Rao–Blackwellized Monte Carlo estimator [9, 39] of eq. (2.158) has lower variance
than the direct estimator of eq. (2.155). Intuitively, eq. (2.159) shows that marginal-
ization of x is most useful when the average conditional variance of x is large.

Rao–Blackwellization also plays an important role in other, more sophisticated
Monte Carlo methods. In particular, the variance inequality of Thm. 2.4.1 can be gen-
eralized to bound the variance of marginalized importance estimators (see Sec. 2.4.1).
As we discuss in Chap. 3, this approach has been used to design Rao–Blackwellized
improvements of standard particle filters [71, 73]. Similarly, Rao–Blackwellization may
dramatically improve the efficiency and accuracy of Gibbs samplers [39, 106, 185]. In
particular, for hierarchical models based on conjugate priors, Prop. 2.1.4 can often
be used to integrate over latent parameters in closed form. Importantly, the variance
reduction guaranteed by Thm. 2.4.1 generalizes to estimates based on the correlated
samples produced by a Gibbs sampler [185].

Rao–Blackwellized Gibbs Sampling for Finite Mixtures

To illustrate the design of Rao–Blackwellized samplers, we revisit the mixture model
Gibbs sampler summarized in Alg. 2.1. Given fixed cluster indicators z, we show that
conjugate priors allow mixture weights π and parameters {θk}K

k=1 to be analytically
marginalized. We may then directly determine the predictive distribution of zi given
the other cluster assignments z\i, and construct a more efficient sampler.
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Consider the K–component exponential family mixture model of Fig. 2.9, and as-
sume H(λ) specifies a conjugate prior for the clusters θk. Integrating over the param-
eters π and {θk}K

k=1, the model’s Markov structure implies the following factorization:

p(zi | z\i, x, α, λ) ∝ p(zi | z\i, α) p(xi | z, x\i, λ) (2.161)

The first term arises from the marginalization of the mixture weights π. Because
these weights have a symmetric Dirichlet prior, this predictive distribution is given
by eq. (2.46) of Sec. 2.1.3, so that

p(zi = k | z\i, α) =
N−i

k + α/K

N − 1 + α
N−i

k =
∑

j 6=i

δ(zj , k) (2.162)

Note that N−i
k counts the number of observations currently assigned to the kth clus-

ter excluding xi, the datum whose assignment zi is being resampled. Similarly, the
likelihood term of eq. (2.161) depends on the current assignments z\i as follows:

p(xi | zi = k, z\i, x\i, λ) = p(xi | {xj | zj = k, j 6= i} , λ) (2.163)

For each of the K possible values of zi, eq. (2.163) equals the predictive likelihood (as in
eq. (2.19)) of xi given the other data currently assigned to that cluster. Because H(λ) is
conjugate to θk, these likelihoods can be analytically determined from Prop. 2.1.4. For
example, Gaussian clusters lead to Student–t predictive distributions (see Sec. 2.1.4),
which can usually be approximated by the moment–matched Gaussian of eq. (2.64).

Algorithm 2.2 provides one possible Rao–Blackwellized Gibbs sampler based on
these predictive distributions. As with the direct Gibbs sampler of Alg. 2.1, O(NK)
operations are required to resample N cluster assignments. To improve the Markov
chain’s convergence rate, each iteration resamples indicator variables in a different,
randomly chosen order [246]. Fast predictive likelihood evaluation is achieved by caching
the sufficient statistics φ(x) (as in Thm. 2.1.2) associated with each cluster. When an
observation xi is reassigned, these statistics are easily updated by subtracting φ(xi)

from the previous cluster z
(t−1)
i , and adding φ(xi) to the newly chosen cluster z

(t)
i . We

initialize the sampler by sequentially choosing z
(0)
i conditioned on {z(0)

1 , . . . , z
(0)
i−1}.

In Fig. 2.19, we use the Rao–Blackwellized Gibbs sampler of Alg. 2.2 to fit a mixture
of K = 4 two–dimensional Gaussians to N = 300 observations. Compared to the direct
Gibbs sampler of Alg. 2.1 (tested on identical data in Fig. 2.18), the Rao–Blackwellized
sampler has less random variation from iteration to iteration. Fig. 2.20 compares the
data log–likelihoods (eq. (2.153)) produced by these two algorithms from 100 different
random initializations. Typically, the Rao–Blackwellized sampler much more rapidly
reaches parameters with high posterior probability. Intuitively, this happens because
marginalized, predictive likelihoods implicitly update the model’s parameters after every
indicator reassignment, rather than once per iteration as in Alg. 2.1. However, the two
samplers have similar worst case performance, and may occasionally remain in local



log p(x | π, θ) = −399.06 log p(x | π, θ) = −461.94

log p(x | π, θ) = −397.38 log p(x | π, θ) = −449.23

log p(x | π, θ) = −396.53 log p(x | π, θ) = −448.68

Figure 2.19. Learning a mixture of K = 4 Gaussians using the Rao–Blackwellized Gibbs sampler of
Alg. 2.2. Columns show the current parameters after T=2 (top), T=10 (middle), and T=50 (bottom)
iterations from two random initializations. Each plot is labeled by the current data log–likelihood.
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Given previous cluster assignments z(t−1), sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, sequentially resample zi as follows:

(a) For each of the K clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j 6= i} , λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.

(b) Sample a new cluster assignment zi from the following multinomial distribution:

zi ∼
1

Zi

K∑

k=1

(N−i
k + α/K)fk(xi)δ(zi, k) Zi =

K∑

k=1

(N−i
k + α/K)fk(xi)

N−i
k is the number of other observations assigned to cluster k (see eq. (2.162)).

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via steps 2–3 of Alg. 2.1.

Algorithm 2.2. Rao–Blackwellized Gibbs sampler for a K component exponential family mixture
model, as defined in Fig. 2.9. Each iteration sequentially resamples the cluster assignments for all N

observations x = {xi}
N
i=1 in a different random order. Mixture parameters are integrated out of the

sampling recursion using cached sufficient statistics of the parameters assigned to each cluster.
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Figure 2.20. Comparison of standard (Alg. 2.1, dark blue) and Rao–Blackwellized (Alg. 2.2, light red)
Gibbs samplers for a mixture of K = 4 two–dimensional Gaussians. We compare data log–likelihoods at
each of 1000 iterations for the single N = 300 point dataset of Figs. 2.18 and 2.19. Left: Log–likelihood
sequences for 20 different random initializations of each algorithm. Right: From 100 different random
initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed), and 0.05 and 0.95
quantiles (thin dashed) of the resulting log–likelihood sequences. The Rao–Blackwellized sampler has
superior typical performance, but occasionally remains trapped in local optima for many iterations.

optima for many iterations (see right columns of Figs. 2.18 and 2.19). These results
suggest that while Rao–Blackwellization can usefully accelerate mixing, convergence
diagnostics are still important.
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¥ 2.5 Dirichlet Processes

It is often difficult to find simple parametric models which adequately describe com-
plex, realistic datasets. Nonparametric statistical methods avoid assuming restricted
functional forms, and thus allow the complexity and accuracy of the inferred model
to grow as more data is observed. Strictly speaking, nonparametric models are rarely
free of parameters, since they must have a concrete, computationally tractable repre-
sentation. In Bayesian statistics, nonparametric methods typically learn distributions
on function spaces, and thus effectively involve infinitely many parameters [21, 109,
113, 160, 216, 238]. Complexity is controlled via appropriate prior distributions, so that
small datasets produce simple predictions, while additional observations induce richer
posteriors.

To motivate nonparametric statistical methods, consider De Finetti’s representation
(see Thm. 2.2.2) of N infinitely exchangeable random variables:

p(x1, x2, . . . , xN ) =

∫

Θ
p(θ)

N∏

i=1

p(xi | θ) dθ (2.164)

In general, this decomposition is only guaranteed when Θ is an infinite–dimensional
space of probability measures. Many Bayesian nonparametric methods thus involve
families of computationally tractable distributions on probability measures [84]. In
particular, the Dirichlet process [28, 83, 254] provides a distribution on distributions
with many attractive properties, and is widely used in practice [60, 76, 105, 160, 289].

The following sections establish several representations of the Dirichlet process,
which characterize its behavior and lead to computationally tractable learning and in-
ference algorithms. We then show that Dirichlet processes provide an elegant alternative
to parametric model selection, and discuss extensions to structured, hierarchical models.
For other introductions to Dirichlet processes, see [84, 109, 113, 160, 216, 289, 313].

¥ 2.5.1 Stochastic Processes on Probability Measures

Because nonparametric methods use stochastic processes to model infinite–dimensional
spaces, they are often implicitly characterized by the distributions they induce on certain
finite statistics. For example, Gaussian processes provide a distribution over real–valued
functions which is widely used for non–linear regression and classification [1, 109, 229,
253]. By definition, a function f : X → R is distributed according to a Gaussian
process if and only if p(f(x1), . . . , f(xN )), the density of that function’s values at any
N points xi ∈ X , is jointly Gaussian. This allows Gaussian processes to be tractably
parameterized by a mean function and a covariance kernel specifying the correlations
within any finite point set.

While Gaussian processes define distributions on random functions, a Dirichlet
process defines a distribution on random probability measures, or equivalently non–
negative functions which integrate to one. Let Θ denote a measurable space, as in
the parameter space underlying De Finetti’s mixture representation (eq. (2.164)). A
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Dirichlet process is then parameterized by a base measure H on Θ, and a positive
scalar concentration parameter α. Analogously to the Gaussian case, Dirichlet pro-
cesses are characterized by the distributions they induce on finite measurable partitions
(see Fig. 2.21) of the parameter space.

Theorem 2.5.1. Let H be a probability distribution on a measurable space Θ, and α a
positive scalar. Consider a finite partition (T1, . . . , TK) of Θ:

K⋃

k=1

Tk = Θ Tk ∩ T` = ∅ k 6= ` (2.165)

A random probability distribution G on Θ is drawn from a Dirichlet process if its mea-
sure on every finite partition follows a Dirichlet distribution:

(G(T1), . . . , G(TK)) ∼ Dir(αH(T1), . . . , αH(TK)) (2.166)

For any base measure H and concentration parameter α, there exists a unique stochastic
process satisfying these conditions, which we denote by DP(α, H).

Proof. For a characterization as in eq. (2.166) to be valid, probabilities must appropri-
ately add when a partition’s cells are combined. The aggregation property of the finite
Dirichlet distribution (see eq. (2.43)) is one way to guarantee this. Ferguson originally
established the existence of the Dirichlet process via Kolmogorov’s consistency condi-
tions [83]. Later, Sethuraman provided a simpler, constructive definition [254] which
we describe in Sec. 2.5.2.

Fig. 2.21 illustrates the consistency requirements relating different partitions of the
parameter space Θ. Combining eqs. (2.40) and (2.166), for any region T ⊂ Θ the
expected measure of a random sample from a Dirichlet process equals

E[G(T )] = H(T ) G ∼ DP(α, H) (2.167)

The base measure H thus specifies the mean of DP(α, H). As we show in Sec. 2.5.3, the
concentration parameter α is similar to the precision of a finite Dirichlet distribution,
and determines the average deviation of samples from the base measure.

Posterior Measures and Conjugacy

Let G ∼ DP(α, H) be sampled from a Dirichlet process, and θ̄ ∼ G be a sample from
that distribution. Consider the finite Dirichlet distribution induced by a fixed partition,
as in eq. (2.166). Via the conjugacy of the Dirichlet distribution (see eq. (2.45)), the
posterior distribution is also Dirichlet:

p
(
(G(T1), . . . , G(TK)) | θ̄ ∈ Tk

)
= Dir(αH(T1), . . . , αH(Tk) + 1, . . . , αH(TK)) (2.168)

Note that the observation θ̄ only affects the Dirichlet parameter of the unique, arbi-
trarily small cell Tk containing it [160]. Formalizing this analysis, it can be shown that
the posterior distribution has a Dirac point mass δθ̄ centered on each observation.
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Figure 2.21. Dirichlet processes induce Dirichlet distributions on every finite, measurable partition.
Left: An example base measure H on a bounded, two–dimensional space Θ (darker regions have higher
probability). Center: A partition with K = 3 cells. The weight that a random measure G ∼ DP(α, H)
assigns to these cells follows a Dirichlet distribution (see eq. (2.166)). We shade each cell Tk according
to its mean E[G(Tk)] = H(Tk). Right: Another partition with K = 5 cells. The consistency of G

implies, for example, that (G(T1) + G(T2)) and G( eT1) follow identical beta distributions.

Proposition 2.5.1. Let G ∼ DP(α, H) be a random measure distributed according to
a Dirichlet process. Given N independent observations θ̄i ∼ G, the posterior measure
also follows a Dirichlet process:

p
(
G | θ̄1, . . . , θ̄N , α, H

)
= DP

(
α + N,

1

α + N

(
αH +

N∑

i=1

δθ̄i

))
(2.169)

Proof. As shown by Ferguson [83], this result follows directly from the conjugate form
of finite Dirichlet posterior distributions (see eq. (2.45)). See Sethuraman [254] for an
alternative proof.

There are interesting similarities between eq. (2.169) and the general form of conjugate
priors for exponential families (see Prop. 2.1.4). The Dirichlet process effectively defines
a conjugate prior for distributions on arbitrary measurable spaces. In some contexts,
the concentration parameter α can then be seen as expressing confidence in the base
measure H via the size of a pseudo–dataset (see [113] for further discussion).

Neutral and Tailfree Processes

The conjugacy of Prop. 2.5.1, which leads to tractable computational methods discussed
later, provides one practical motivation for the Dirichlet process. In this section, we
show that Dirichlet processes are also characterized by certain conditional independen-
cies. These properties reveal both strengths and weaknesses of the Dirichlet process,
and have motivated several other families of stochastic processes.

Let G be a random probability measure on a parameter space Θ. The distribution
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of G is neutral [69, 84] with respect to a finite partition (T1, . . . , TK) of Θ if and only if

G(Tk) is independent of

{
G(T`)

1 − G(Tk)

∣∣∣ ` 6= k

}
(2.170)

given that G(Tk) < 1. Thus, for a neutral process, the probability mass assigned to
some cell Tk affects the weight of other cells only through the normalization constraint.
The relative probabilities assigned to those cells are independent random variables. As
shown by the following theorem, the Dirichlet process is characterized by its neutrality
with respect to every measurable partition.

Theorem 2.5.2. Consider a distribution P on probability measures G for some space
Θ. Assume that P assigns positive probability to more than one measure G, and that
with probability one samples G ∼ P assign positive measure to at least three distinct
points θ ∈ Θ. The following conditions are then equivalent:

(i) P = DP(α, H) is a Dirichlet process for some base measure H on Θ.

(ii) P is neutral with respect to every finite, measurable partition of Θ.

(iii) For every measurable T ⊂ Θ, and any N observations θ̄i ∼ G, the posterior
distribution p

(
G(T ) | θ̄1, . . . , θ̄N

)
depends only on the number of observations that

fall within T (and not their particular locations).

Proof. This result was derived by Doksum and Fabius via related characterizations of
the finite Dirichlet distribution. See [69, 84] for a more precise description of degenerate
cases, and additional references.

This theorem shows that Dirichlet processes effectively ignore the topology of the pa-
rameter space Θ. Observations provide information only about those cells which di-
rectly contain them. In addition, an observation near the boundary of a cell provides
the same amount of information as an observation in its center. Thus, while neutrality
simplifies the structure of posterior distributions, it also limits the expressiveness of the
corresponding prior.

For problems in which Θ = R is the real line, a less restrictive form of neutrality
has been proposed. A random cumulative distribution F (t) = Pr[θ ≤ t] is neutral to
the right (NTR) [69, 84] if, for any K times t1 < · · · < tK , the normalized increments

{
F (t1),

F (t2) − F (t1)

1 − F (t1)
, . . . ,

F (tK) − F (tK−1)

1 − F (tK−1)

}
(2.171)

are mutually independent. This condition is strictly weaker than that of eq. (2.170),
and several NTR generalizations of the Dirichlet process have been suggested [69, 313].
Any NTR stochastic process can be expressed as F (t) = 1−exp{−Y (t)} for some mono-
tonically increasing, independent increments process Y (t). For the Dirichlet process,
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increments of Y (t) are exponentially distributed [84, 150]. In addition, NTR processes
are tailfree, so that the posterior distribution p

(
F (t) | θ̄

)
is independent of observa-

tions at later times θ̄ > t. Generalizing the conjugacy of Prop. 2.5.1, the posterior
distribution of F (t) given an observation θ̄ ≤ t remains neutral to the right [69].

While NTR processes can more flexibly model temporal structure than the Dirichlet
process, they are limited to the real line. A recently proposed class of spatial neutral
to the right processes [152] provides one extension to general parameter spaces. Al-
ternatively, tailfree processes can be generalized to define conditional independencies
on arbitrary sequences of nested partitions [69, 84]. Analogously to Thm. 2.5.2, only
Dirichlet processes are tailfree with respect to every hierarchical partition. However,
a broader class of Pólya tree distributions [84, 179, 200] can be defined via particular,
possibly inhomogeneous partition trees. While this tree structure can encode detailed
prior knowledge [180], its use of a fixed discretization scales poorly to high–dimensional
spaces, and can produce spurious discontinuities. Dirichlet diffusion trees [223] address
these issues by using a branching process to sample hierarchical dependency structures.

¥ 2.5.2 Stick–Breaking Processes

The preceding section provides several implicit characterizations of the Dirichlet pro-
cess, including a desirable conjugacy property. However, these results do not directly
provide a mechanism for sampling from Dirichlet processes, or predicting future ob-
servations. In this section, we describe an explicit stick–breaking construction [254]
which shows that Dirichlet measures are discrete with probability one. This leads to
a simple Pólya urn model for predictive distributions known as the Chinese restaurant
process [28, 233]. These representations play a central role in computational methods
for Dirichlet processes.

Consider Prop. 2.5.1, which provides an expression for the posterior distribution of
a Dirichlet distributed random measure G ∼ DP(α, H) given N observations θ̄i ∼ G.
From eq. (2.167), the expected measure of any set T ⊂ Θ then equals

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

1

α + N

(
αH(T ) +

N∑

i=1

δθ̄i
(T )

)
(2.172)

For any finite concentration parameter α, this implies that

lim
N→∞

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

∞∑

k=1

πkδθk
(T ) (2.173)

where {θk}∞k=1 are the unique values of the observation sequence {θ̄i}∞i=1, and πk is the
limiting empirical frequency of θk. Assuming the posterior distribution concentrates
about its mean, eq. (2.173) suggests that Dirichlet measures are discrete with probability
one [160]. The following theorem verifies this hypothesis, and provides an explicit
construction for the infinite set of mixture weights.
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Theorem 2.5.3. Let π = {πk}∞k=1 be an infinite sequence of mixture weights derived
from the following stick–breaking process, with parameter α > 0:

βk ∼ Beta(1, α) k = 1, 2, . . . (2.174)

πk = βk

k−1∏

`=1

(1 − β`) = βk

(
1 −

k−1∑

`=1

π`

)
(2.175)

Given a base measure H on Θ, consider the following discrete random measure:

G(θ) =
∞∑

k=1

πkδ(θ, θk) θk ∼ H (2.176)

This construction guarantees that G ∼ DP(α, H). Conversely, samples from a Dirichlet
process are discrete with probability one, and have a representation as in eq. (2.176).

Proof. The consistency of eq. (2.175) follows from an induction argument. Manipulating
this expression, it can be shown that

1 −
K∑

k=1

πk =

K∏

k=1

(1 − βk) −→ 0

with probability one as K → ∞, so that eq. (2.176) defines a valid probability mea-
sure. Ferguson established the almost sure discreteness of G using a normalized gamma
process representation [83, 168]. Sethuraman later derived the explicit stick–breaking
construction for the mixture weights [254]. The beta distribution of eq. (2.174) arises
from the form of marginal distributions of finite Dirichlet densities (see eq. (2.44)).

The stick–breaking interpretation of this construction is illustrated in Fig. 2.22. Mixture
weights π partition a unit–length “stick” of probability mass among an infinite set of
random parameters. The kth mass πk is a random proportion βk of the stick remaining
after sampling the first (k − 1) mixture weights. As is standard in the statistics litera-
ture [150, 233, 289], we use π ∼ GEM(α) to indicate a set of mixture weights sampled
from this process, named after Griffiths, Engen, and McCloskey.

This representation of the Dirichlet process provides another interpretation of the
concentration parameter α. Because the stick–breaking proportions βk ∼ Beta(1, α),
standard moment formulas (see eq. (2.40)) show that

E[βk] =
1

1 + α
(2.177)

For small α, it follows that the first few mixture components are typically assigned the
majority of the probability mass. As α → ∞, samples G ∼ DP(α, H) approach the
base measure H by assigning small, roughly uniform weights to a densely sampled set of
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Figure 2.22. Sequential stick–breaking construction of the infinite set of mixture weights π ∼ GEM(α)
corresponding to a measure G ∼ DP(α, H). Left: The first weight π1 ∼ Beta(1, α). Each subsequent
weight πk (red) is some random proportion βk (blue) of the remaining, unbroken “stick” of probability
mass. Right: The first K = 20 weights generated by four random stick–breaking constructions (two
with α = 1, two with α = 5). Note that the weights πk do not monotonically decrease.

discrete parameters {θk}∞k=1. For a given α and dataset size N , there are strong bounds
on the accuracy of particular finite truncations of this stick–breaking process [147],
which are often used in approximate computational methods [29, 147, 148, 289].

Several other stick–breaking processes have been proposed which sample the pro-
portions βk from different distributions [147, 148, 233]. For example, the two–parameter
Poisson–Dirichlet, or Pitman–Yor, process [234] can produce heavier–tailed weight dis-
tributions which better match power laws arising in natural language processing [117,
287]. As we show next, these stick–breaking processes sometimes lead to predictive
distributions with simple Pólya urn representations.

Prediction via Pólya Urns

Because Dirichlet processes produce discrete random measures G, there is a strictly
positive probability of multiple observations θ̄i ∼ G taking identical values. Given N
observations {θ̄i}N

i=1, suppose that they take K ≤ N distinct values {θk}K
k=1. The

posterior expectation of any set T ⊂ Θ (see eq. (2.172)) can then be written as

E
[
G(T ) | θ̄1, . . . , θ̄N , α, H

]
=

1

α + N

(
αH(T ) +

K∑

k=1

Nkδθk
(T )

)
(2.178)

Nk ,

N∑

i=1

δ(θ̄i, θk) k = 1, . . . , K (2.179)

Note that Nk is defined to be the number of previous observations equaling θk, and
that K is a random variable [10, 28, 233]. Analyzing this expression, the predictive
distribution of the next observation θ̄N+1 ∼ G can be explicitly characterized.
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Theorem 2.5.4. Let G ∼ DP(α, H) be distributed according to a Dirichlet process,
where the base measure H has corresponding density h(θ). Consider a set of N obser-
vations θ̄i ∼ G taking K distinct values {θk}K

k=1. The predictive distribution of the next
observation then equals

p
(
θ̄N+1 = θ | θ̄1, . . . , θ̄N , α, H

)
=

1

α + N

(
αh(θ) +

K∑

k=1

Nkδ(θ, θk)

)
(2.180)

where Nk is the number of previous observations of θk, as in eq. (2.179).

Proof. Letting Tk be an arbitrarily small set containing θk, eq. (2.178) suggests that
Pr

[
θ̄N+1 = θk

]
∝ Nk, while the base measure is assigned total posterior probability

α/(α + N). For a formal argument, see Blackwell and MacQueen [28].

Dirichlet processes thus lead to simple predictive distributions, which can be evaluated
by caching the number of previous observations taking each distinct value.

The generative process defined by Thm. 2.5.4 can be interpreted via a generalized
Pólya urn model [28]. Consider an urn containing one ball for each preceding ob-
servation, with a different color for each distinct θk. For each ball drawn from the
urn, we replace that ball and add one more of the same color. There is also a special
“weighted” ball which is drawn with probability proportional to α normal balls, and
has some new, previously unseen color θk̄ ∼ H. This procedure can be used to sample
observations from a Dirichlet process, without explicitly constructing the underlying
mixture G ∼ DP(α, H).

Chinese Restaurant Processes

As the Dirichlet process assigns observations θ̄i to distinct values θk, it implicitly parti-
tions the data. Let zi indicate the subset, or cluster, associated with the ith observation,
so that θ̄i = θzi

. The predictive distribution of eq. (2.180) then shows that

p(zN+1 = z | z1, . . . , zN , α) =
1

α + N

(
K∑

k=1

Nkδ(z, k) + αδ(z, k̄)

)
(2.181)

where k̄ denotes a new, previously empty cluster. Inspired by the seemingly infinite seat-
ing capacity of restaurants in San Francisco’s Chinatown, Pitman and Dubins called this
distribution over partitions the Chinese restaurant process [233]. The restaurant’s infi-
nite set of tables are analogous to clusters, and customers to observations (see Fig. 2.23).
Customers are social, so that the ith customer sits at table k with probability propor-
tional to the number of already seated diners Nk. Sometimes, however, customers
(observations) choose a new table (cluster). Note that there is no a priori distinction
between the unoccupied tables. Dirichlet processes extend this construction by serving
each table a different, independently chosen dish (parameter) θk.
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Figure 2.23. Chinese restaurant process interpretation of the partitions induced by the Dirichlet
process DP(α, H). Tables (circles) are analogous to clusters, and customers (diamonds) to a series of
observations. Top row: A starting configuration, in which seven customers occupy three tables. Each
table is labeled with the probability that the next customer sits there. Middle row: New customers sit
at occupied table k with probability proportional to the number of previously seated diners Nk. In this
example, the eighth customer joins the most popular, and hence likely, table. Bottom row: Customers
may also sit at one of the infinitely many unoccupied tables. The ninth diner does this.

Importantly, the Chinese restaurant process induces an exchangeable distribution on
partitions, so that the joint distribution is invariant to the order in which observations
are assigned to clusters. Exchangeability follows from De Finetti’s Theorem [28], given
the connection to Dirichlet processes established by Thm. 2.5.4. Alternatively, it can
be directly verified via an analysis of eq. (2.181). There are a variety of combinatorial
characterizations of the partition structure produced by the Chinese restaurant pro-
cess [10, 121, 232, 233]. In particular, the number of occupied tables K almost surely
approaches α log(N) as N → ∞. This shows that the Dirichlet process is indeed a
nonparametric prior, as it favors models whose complexity grows with the dataset size.

Generalizations of the Chinese restaurant process can be constructed for certain
other stick–breaking processes, including the Pitman–Yor process [147, 233]. Impor-
tantly, the simple predictive distributions induced by these processes lead to efficient
Monte Carlo algorithms for learning and inference [76, 222, 237]. In contrast, other al-
ternatives such as neutral to the right processes may have posterior distributions which
lack simple, explicit forms [152].
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¥ 2.5.3 Dirichlet Process Mixtures

Using nonparametric methods, we now revisit De Finetti’s representation (Thm. 2.2.2)
of exchangeable random variables {xi}N

i=1. To apply this theory when xi ∈ X is con-
tinuous, we need a tractable framework for learning infinite–dimensional probability
measures. As shown in previous sections, Dirichlet processes lead to posterior distri-
butions with simple, explicit forms. However, because it assigns probability one to
discrete measures (Thm. 2.5.3), a Dirichlet process prior expects multiple observations
to take identical values. Furthermore, Thm. 2.5.2 shows that the posterior measure
assigned to xi would never be influenced by observations xj 6= xi, regardless of their
proximity. In many applications, Dirichlet processes are thus too restrictive to directly
model continuous observations [216, 232].

To address these issues, we consider a hierarchical model in which observations
are sampled from some parameterized family F (θ). As in finite mixture models (see
Fig. 2.9), each observation xi is based on an independently sampled parameter θ̄i:

θ̄i ∼ G

xi ∼ F
(
θ̄i

) (2.182)

For greater flexibility and robustness, we place a nonparametric, Dirichlet process prior
on the latent parameter distribution G ∼ DP(α, H). The stick–breaking construction
of Thm. 2.5.3 then implies that

G(θ) =
∞∑

k=1

πkδ(θ, θk)
π ∼ GEM(α)

θk ∼ H(λ) k = 1, 2, . . .
(2.183)

Fig. 2.24 shows a graphical representation of the resulting Dirichlet process mixture
model [10, 76, 187]. Typically, F (θ) is some exponential family of densities, and H(λ) a
corresponding conjugate prior. Note that this construction allows differing observations
to be associated with the same underlying cluster. The likelihood F (θ) effectively
imposes a notion of distance on X , and thus allows observations to be extrapolated
to neighboring regions. By using a Dirichlet process, however, we avoid constraining
these predictions with a global parametric form. Fig. 2.25 illustrates Dirichlet process
mixtures in which θk = (µk, Λk) parameterizes a two–dimensional Gaussian.

The Chinese restaurant process provides another useful representation of Dirichlet
process mixtures [76, 237]. Letting zi denote the unique cluster, or table, associated
with xi, the generative process of eq. (2.182) can be equivalently expressed as

zi ∼ π

xi ∼ F (θzi
)

(2.184)

As summarized in Fig. 2.24, marginalizing these indicator variables reveals an infinite
mixture model with the following form:

p(x | π, θ1, θ2, . . .) =
∞∑

k=1

πkf(x | θk) (2.185)
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Figure 2.24. Directed graphical representations of an infinite, Dirichlet process mixture model. Mix-
ture weights π ∼ GEM(α) follow a stick–breaking process, while cluster parameters are assigned in-
dependent priors θk ∼ H(λ). Left: Indicator variable representation, in which zi ∼ π is the cluster
that generates xi ∼ F (θzi). Right: Alternative distributional form, in which G is an infinite discrete
distribution on Θ. θ̄i ∼ G are the parameters of the cluster that generates xi ∼ F (θ̄i). We illustrate
with an infinite Gaussian mixture, where cluster variances are known (bottom) and H(λ) is a Gaussian
prior on cluster means (top). Sampled cluster means θ̄1, θ̄2, and corresponding Gaussians, are shown
for two observations x1, x2.

Rather than choose a finite model order K, Dirichlet process mixtures use the stick–
breaking prior to control complexity (see Fig. 2.22). As we discuss later, this relaxation
leads to algorithms which automatically infer the number of clusters exhibited by a
particular dataset. Importantly, the predictive distribution implied by the Chinese
restaurant process (eq. (2.181)) has a clustering bias, and favors simpler models in
which observations (customers) share parameters (dishes). Additional clusters (tables)
appear as more observations are generated (see Fig. 2.25).

Learning via Gibbs Sampling

Given N observations x = {xi}N
i=1 from a Dirichlet process mixture as in Fig. 2.24, we

would like to infer the number of latent clusters underlying those observations, and their
parameters θk. As with finite mixture models, the exact posterior distribution p(π, θ | x)
contains terms corresponding to each possible partition z of the observations [10, 187].
While the Chinese restaurant process tractably specifies the prior probability of indi-
vidual partitions (see eq. (2.181)), explicit enumeration of the exponentially large set of
potential partitions is intractable. There is thus an extensive literature on approximate
computational methods for Dirichlet process mixtures [29, 76, 121, 147, 148, 151, 222].

In this section, we generalize the Rao–Blackwellized Gibbs sampler of Alg. 2.2
from finite to infinite mixture models. As before, we sample the indicator variables
z = {zi}N

i=1 assigning observations to latent clusters, marginalizing mixture weights π



Figure 2.25. Each column shows an observation sequence from a Dirichlet process mixture of 2D
Gaussians, with concentration α = 1. We show the existing clusters (covariance ellipses, intensity pro-
portional to probability) after N = 50 (top), N = 200 (middle), and N = 1000 (bottom) observations.
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and parameters {θk}∞k=1. The resulting collapsed Gibbs sampler [222] is typically more
efficient than alternatives which explicitly sample parameters [76, 237]. For simplic-
ity, we assume that cluster priors H(λ) are conjugate to the chosen likelihood F (θ).
Non–conjugate priors can be handled via auxiliary variable methods [222].

Given fixed cluster assignments z\i for other observations, Fig. 2.24 implies that the
posterior distribution of zi factors as follows:

p(zi | z\i, x, α, λ) ∝ p(zi | z\i, α) p(xi | z, x\i, λ) (2.186)

The first term expresses the prior on partitions implied by the Chinese restaurant
process. Recall that the Dirichlet process induces an exchangeable distribution on
partitions, which is invariant to the order of observations. In evaluating eq. (2.186),
we may thus equivalently think of zi as the last in a sequence of N observations. If
z\i instantiates K clusters, and assigns N−i

k observations to the kth cluster, eq. (2.181)
then implies that

p(zi | z\i, α) =
1

α + N − 1

(
K∑

k=1

N−i
k δ(zi, k) + αδ(zi, k̄)

)
(2.187)

As before, k̄ denotes one of the infinitely many unoccupied clusters.
For the K clusters to which z\i assigns observations, the likelihood of eq. (2.186)

follows the expression (eq. (2.163)) derived for the finite mixture Gibbs sampler:

p(xi | zi = k, z\i, x\i, λ) = p(xi | {xj | zj = k, j 6= i} , λ) (2.188)

This term is the predictive likelihood of xi, as determined by Prop. 2.1.4, given the
other observations which z\i associates with that cluster. Similarly, new clusters k̄ are
based upon the predictive likelihood implied by the prior hyperparameters λ:

p
(
xi | zi = k̄, z\i, x\i, λ

)
= p(xi | λ) =

∫

Θ
f(xi | θ)h(θ | λ) dθ (2.189)

Assuming H(λ) specifies a proper, conjugate prior, eq. (2.189) has a closed form similar
to that of eq. (2.188).

Combining these expressions, we arrive at the Gibbs sampler of Alg. 2.3. As in
Alg. 2.2, we cache and recursively update statistics of each cluster’s associated observa-
tions (see Thm. 2.1.2). Because the infinite set of potential clusters have identical priors,
we only explicitly store a randomly sized list of those clusters to which at least one ob-
servation is assigned. Standard data structures then allow clusters to be efficiently
created when needed (Alg. 2.3, step 2(c)), and deleted if all associated observations are
reassigned (Alg. 2.3, step 4). Comparing Algs. 2.2 and 2.3, we see that even though
Dirichlet process mixtures have infinitely many parameters, learning is possible via a
simple extension of algorithms developed for finite mixture models.

Cluster assignments z(t) produced by the Gibbs sampler of Alg. 2.3 provide esti-
mates K(t) of the number of clusters underlying the observations x, as well as their
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Given the previous concentration parameter α(t−1), cluster assignments z(t−1), and cached
statistics for the K current clusters, sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , N}.
2. Set α = α(t−1) and z = z(t−1). For each i ∈ {τ(1), . . . , τ(N)}, resample zi as follows:

(a) For each of the K existing clusters, determine the predictive likelihood

fk(xi) = p(xi | {xj | zj = k, j 6= i} , λ)

This likelihood can be computed from cached sufficient statistics via Prop. 2.1.4.
Also determine the likelihood fk̄(xi) of a potential new cluster k̄ via eq. (2.189).

(b) Sample a new cluster assignment zi from the following (K + 1)–dim. multinomial:

zi ∼
1

Zi

(
αfk̄(xi)δ(zi, k̄) +

K∑

k=1

N−i
k fk(xi)δ(zi, k)

)
Zi = αfk̄(xi) +

K∑

k=1

N−i
k fk(xi)

N−i
k is the number of other observations currently assigned to cluster k.

(c) Update cached sufficient statistics to reflect the assignment of xi to cluster zi. If
zi = k̄, create a new cluster and increment K.

3. Set z(t) = z. Optionally, mixture parameters for the K currently instantiated clusters
may be sampled as in step 3 of Alg. 2.1.

4. If any current clusters are empty (Nk = 0), remove them and decrement K accordingly.

5. If α ∼ Gamma(a, b), sample α(t) ∼ p(α | K,N, a, b) via auxiliary variable methods [76].

Algorithm 2.3. Rao–Blackwellized Gibbs sampler for an infinite, Dirichlet process mixture model, as
defined in Fig. 2.24. Each iteration sequentially resamples the cluster assignments for all N observa-
tions x = {xi}

N
i=1 in a different random order. Mixture parameters are integrated out of the sampling

recursion using cached sufficient statistics. These statistics are stored in a dynamically resized list of
those clusters to which observations are currently assigned.

associated parameters. Dirichlet processes thus effectively allow integrated exploration
of models with different complexity. Predictions based on these samples average over
mixtures of varying size, avoiding the difficulties inherent in selecting a single model.
The computational cost of each sampling update is proportional to the number of cur-
rently instantiated clusters K(t), and thus varies randomly from iteration to iteration.
Asymptotically, K → α log(N) as N → ∞ (see [10, 233]), so each iteration of Alg. 2.3
requires approximately O(αN log(N)) operations to resample all assignments. For prac-
tical datasets, however, the number of instantiated clusters depends substantially on
the structure and alignment of the given observations.

While predictions derived from Dirichlet process mixtures are typically robust to the
concentration parameter α, the number K of clusters with significant posterior proba-
bility shows greater sensitivity [76]. In many applications, it is therefore useful to choose
a weakly informative prior for α, and sample from its posterior while learning cluster
parameters. If α ∼ Gamma(a, b) is assigned a gamma prior [107], its posterior is a sim-
ple function of K, and samples are easily drawn via an auxiliary variable method [76].
Incorporating this technique in our Gibbs sampler (Alg. 2.3, step 5), we empirically
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find that it converges more reliably, and matches the performance of procedures which
tune α via computationally demanding cross–validation.

In Fig. 2.26, we use the Gibbs sampler of Alg. 2.3 to fit a Dirichlet process mix-
ture of Gaussians to N = 300 two–dimensional observations. Placing a vague gamma
prior α ∼ Gamma(0.2, 0.1) on the concentration parameter, initial iterations frequently
create and delete mixture components. However, the sampler quickly stabilizes (see
Fig. 2.27), and discovers that with high probability the data was generated by K = 4
Gaussians. Fig. 2.27 also compares this Dirichlet process model to a 4–component mix-
ture estimated via the Rao–Blackwellized sampler of Alg. 2.2. Despite having to search
over mixtures of varying order, the Dirichlet process sampler typically converges faster.
In particular, by creating redundant clusters in early iterations, it avoids local optima
which trap the 4–component Gibbs sampler. This behavior is reminiscent of methods
which iteratively prune clusters from finite mixtures [87], but arises directly from the
Dirichlet process prior rather than complexity–based model selection criteria.

An Infinite Limit of Finite Mixtures

The graphical representation of the Dirichlet process mixture model (see Fig. 2.24)
exhibits striking similarities to the finite, K–component mixture model of Fig. 2.9.
In this section, we show that the Dirichlet process is indeed the limit as K → ∞ of a
particular sequence of finite Dirichlet distributions. This result provides intuition about
the assumptions and biases inherent in Dirichlet processes, and leads to alternative
computational methods for Dirichlet process mixtures.

As in Sec. 2.2.4, we begin by placing a symmetric Dirichlet prior, with precision α,
on the weights π assigned to the K components of a finite mixture model:

(π1, . . . , πK) ∼ Dir
( α

K
, . . . ,

α

K

)
(2.190)

Consider the Rao–Blackwellized Gibbs sampler for this finite mixture, as summarized
in Alg. 2.2. Given cluster assignments z\i for all observations except xi, the Dirichlet
prior implies the following predictive distribution (see eq. (2.162)):

p(zi = k | z\i, α) =
N−i

k + α/K

α + N − 1
N−i

k =
∑

j 6=i

δ(zj , k) (2.191)

In the limit as K → ∞ with fixed precision α, the predictive probability of clusters k
to which observations are assigned (N−i

k > 0) approaches

lim
K→∞

p(zi = k | z\i, α) =
N−i

k

α + N − 1
(2.192)

Similarly, the probability of any particular unoccupied cluster approaches zero as K
becomes large. However, the total probability assigned to all unoccupied clusters is



log p(x | π, θ) = −462.25 log p(x | π, θ) = −399.82

log p(x | π, θ) = −398.32 log p(x | π, θ) = −399.08

log p(x | π, θ) = −397.67 log p(x | π, θ) = −396.71

Figure 2.26. Learning a mixture of Gaussians using the Dirichlet process Gibbs sampler of Alg. 2.3.
Columns show the parameters of clusters currently assigned to observations, and corresponding data
log–likelihoods, after T=2 (top), T=10 (middle), and T=50 (bottom) iterations from two initializations.
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Figure 2.27. Comparison of Rao–Blackwellized Gibbs samplers for a Dirichlet process mixture
(Alg. 2.3, dark blue) and a finite, 4–component mixture (Alg. 2.2, light red). We compare data log–
likelihoods at each of 1000 iterations for the single N = 300 point dataset of Fig. 2.26. Top left:

Log–likelihood sequences for 20 different random initializations of each algorithm. Top Right: From
100 different random initializations, we show the median (solid), 0.25 and 0.75 quantiles (thick dashed),
and 0.05 and 0.95 quantiles (thin dashed) of the resulting log–likelihood sequences. Bottom: Num-
ber of mixture components with at least 2% of the probability mass at each iteration (left, intensity
proportional to posterior probability), and averaging across the final 900 iterations (right).

positive, and determined by the complement of existing cluster weights as follows:

p(zi 6= zj for all j 6= i | z\i, α) = 1 −
∑

k|N−i
k

>0

p(zi = k | z\i, α) (2.193)

lim
K→∞

p(zi 6= zj for all j 6= i | z\i, α) = 1 −
∑

k

N−i
k

α + N − 1
=

α

α + N − 1
(2.194)

Note that if zi is not assigned to an occupied cluster, it must be associated with a new
cluster k̄. Comparing to eq. (2.187), we then see that the limits of eqs. (2.192, 2.194)
are equivalent to the predictive distributions implied by the Chinese restaurant process.
The Dirichlet process Gibbs sampler of Alg. 2.3 can thus be directly derived as an
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infinite limit of Alg. 2.2, without explicitly invoking the theory underlying Dirichlet
processes [221, 237].

The relationships suggested by the preceding arguments can be made more precise.
In particular, a combinatorial analysis [121, 150] shows that the finite Dirichlet prior of
eq. (2.190) induces a joint distribution on partitions z which approaches the Chinese
restaurant process as K → ∞. In this limit, predictions based on the finite mixture
model also approach those of the corresponding Dirichlet process.

Theorem 2.5.5. Let H denote a probability measure on Θ, and f : Θ → R a measurable
function which is integrable with respect to H. Consider the K–component discrete
distribution GK, as in eq. (2.83), corresponding to a mixture model with weights following
the finite Dirichlet prior Dir(α) of eq. (2.190). As K → ∞, expectations with respect to
GK then converge in distribution to a corresponding Dirichlet process:

∫

Θ
f(θ) dGK(θ)

D−→
∫

Θ
f(θ) dG(θ) G ∼ DP(α, H) (2.195)

Proof. This result was derived via a stick–breaking representation of the Dirichlet pro-
cess by Ishwaran and Zarepour (see Thm. 2 of [150]).

Given the correspondence implied by Thm. 2.5.5, the mixture weights (π1, . . . , πK) of
eq. (2.190) should, in some sense, converge to π ∼ GEM(α) as K → ∞. As discussed
in Sec. 2.1.3, finite Dirichlet distributions with small precisions are biased towards
sparse multinomial distributions (see Fig. 2.1). It can be shown that the stick–breaking
construction of Thm. 2.5.3 induces a random, size–biased permutation [233] in which the
largest weights are typically assigned to earlier clusters (for examples, see Fig. 2.22). By
rank ordering π ∼ GEM(α), we recover the Poisson–Dirichlet distribution [233, 234],
which is also the limiting distribution of reordered, finite Dirichlet samples [168].

Given the limiting behavior of finite mixture models with Dirichlet priors as in
eq. (2.190), they provide a natural mechanism for approximating Dirichlet processes.
Indeed, a Gibbs sampler similar to those of Algs. 2.1 and 2.2 has been suggested for
approximate learning of Dirichlet process mixtures [148]. In general, however, this
finite mixture approximation converges slowly with K, and a large number of poten-
tial clusters may be required [148, 150]. More accurate approximations, whose error
decreases exponentially with K, are obtained by truncating the stick–breaking repre-
sentation of Thm. 2.5.3. This approach has been used to develop alternative Gibbs
samplers [147, 148], as well as a deterministic, variational approximation [29] which
adapts the mean field method described in Sec. 2.3.1.

Model Selection and Consistency

Dirichlet process mixture models provide a popular Bayesian alternative to the kernel
density estimators described in Sec. 2.4.2. In such applications, clusters are usually
associated with Gaussian kernels [76, 187]. The base measure H(λ) may then be used to
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encode domain–specific knowledge about the observations’ expected location, scale, and
variability. For target distributions with sufficiently small tail probabilities, Dirichlet
process mixtures of Gaussians provide strongly consistent density estimates [112, 113].
In addition, by allowing posterior covariances to vary across clusters, Dirichlet processes
often provide more robust predictions than classic, asymptotically motivated bandwidth
selection schemes [263]. Importantly, the Gibbs sampler of Alg. 2.3 also characterizes
the posterior uncertainty in the estimated density.

Many other applications of Dirichlet process mixtures involve data generated from
some finite, but unknown, number of latent factors [76, 121, 149, 289]. In such cases, the
parameters corresponding to different clusters are typically of interest. Several differ-
ent complexity criteria [87, 203, 314], including Bayesian formulations which optimize
predictive likelihoods [46], have been proposed in this context. For applications involv-
ing high–dimensional data, however, there may be inherent ambiguities which prevent
reliable selection of a single “best” model. Dirichlet process mixtures avoid this issue
via an infinite model encompassing finite mixtures of varying order. Mild conditions
then guarantee that the Dirichlet process posterior, as characterized by Prop. 2.5.1,
asymptotically concentrates on the true set of finite mixture parameters [149].

Other models for finite mixtures place an explicit prior on the number of clus-
ters K, and then separately parameterize mixtures of each order [121, 208, 243]. When
mixture weights follow finite Dirichlet distributions, this approach produces the Dirich-
let/multinomial allocation (DMA) model [121]. In some applications, complex priors
p(K) can then be used to encode detailed prior knowledge. However, when less is known
about the underlying generative process, these priors involve nuisance parameters which
are difficult to specify uninformatively [243, 272]. Indeed, in some applications where
the Dirichlet process has favorable asymptotic properties, apparently uninformative
finite Dirichlet priors lead to inconsistent parameter estimates [149].

Computational considerations also practically motivate Dirichlet process priors.
DMA models are typically learned via Monte Carlo methods which use Metropolis–
Hastings moves to step between models of varying order [243, 272]. Such algorithms,
including variants of reversible jump MCMC [9, 243], require proposal distributions
which split, merge, and otherwise transform cluster parameters. Effective proposals
must usually be tuned to particular applications, and can be difficult to formulate
for hierarchical models of complex, high–dimensional data. While split–merge MCMC
methods are readily generalized to Dirichlet process mixtures [55, 121, 151], the simple
but effective collapsed Gibbs sampler (Alg. 2.3) has no direct analog for DMA models.
For realistic datasets, differences between Dirichlet process and DMA models are often
small, with Dirichlet processes exhibiting a slight posterior bias towards mixtures with
a few additional, low–weight components [121].

Finally, we note that while Bayesian estimators derived from finite–dimensional
models are usually consistent, the asymptotic behavior of nonparametric methods is
more subtle [68, 113, 160, 317]. For example, Diaconis and Freedman [68] considered a
semiparametric model in which a latent location parameter θ ∼ N (0, Λ), and the un-



114 CHAPTER 2. NONPARAMETRIC AND GRAPHICAL MODELS

known measurement distribution underlying independent observations has a Dirichlet
process prior DP(α, H). They demonstrated that a heavy–tailed, Student–t base mea-
sure H may then lead to inconsistent estimates of θ. As predicted by more recent
theoretical results [113], consistency is regained for log–concave base measures. This
and other examples [68, 317] demonstrate the need for careful empirical and, where
possible, theoretical validation of nonparametric methods.

¥ 2.5.4 Dependent Dirichlet Processes

Many applications involve complex, structured datasets, and cannot be directly posed
as standard density estimation problems. In this section, we describe a framework
for dependent Dirichlet processes (DDPs) [191] which extends nonparametric Bayesian
methods to a rich family of hierarchical models.

Consider a continuous or discrete covariate space Ω capturing the temporal, spatial,
or categorical structure associated with a given dataset. As in many hierarchical mod-
els, we associate each ω ∈ Ω with a latent parameter θ(ω), whose marginal distribution
equals Gω. Let θ = {θ(ω) | ω ∈ Ω}, θ ∈ Θ, denote a global configuration of the param-
eters. We would like to design a flexible, nonparametric prior for the joint distribution
G(θ). Generalizing the stick–breaking representation of Thm. 2.5.3, a DDP prior takes
the following form:

G(θ(ω)) =
∞∑

k=1

πk(ω)δ(θ(ω), θk(ω)) θk ∼ H (2.196)

In this construction, the base measure H is a stochastic process on Θ. For example, if
parameters θk(ω) are assigned Gaussian marginals Hω, a Gaussian process provides a
natural joint measure [105]. The infinite set of mixture weights then follow a generalized
stick–breaking process:

πk(ω) = βk(ω)
k−1∏

`=1

(1 − β`(ω)) βk ∼ B (2.197)

If the stochastic process B is chosen so that its marginals βk(ω) ∼ Beta(1, α), Thm. 2.5.3
shows that Gω ∼ DP(α, Hω). However, for appropriately chosen H and B, there will be
interesting dependencies in the joint distribution G, implicitly coupling the measures
for parameters θ(ω) associated with different covariates. See MacEachern [191] for a
discussion of conditions ensuring the existence of DDP models.

In the simplest case, the stick–breaking weights of eq. (2.197) are set to the same,
constant value βk(ω) = β̄k ∼ Beta(1, α) for all covariates ω ∈ Ω. The resulting DDP
models capture dependency by sampling joint parameters θk from an appropriately
chosen stochastic process [60, 105, 191]. More generally, B may be designed to encourage
mixture weights which vary to capture local features of the covariate space [122, 342]. In
the following section, we describe a model which uses hierarchically dependent Dirichlet
processes to choose weights distinguishing several groups of observations.
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Hierarchical Dirichlet Processes

As in Sec. 2.2.4, consider a dataset with J related groups x = (x1, . . . ,xJ), where
xj = (xj1, . . . , xjNj

) contains Nj observations. Just as the LDA model [31] shares a
finite set of clusters among such groups (see Fig. 2.11), the hierarchical Dirichlet process
(HDP) [288, 289] provides a nonparametric approach to sharing infinite mixtures.

To construct an HDP, a global probability measure G0 ∼ DP(γ, H) is first used to
define a set of shared clusters:

G0(θ) =
∞∑

k=1

βkδ(θ, θk)
β ∼ GEM(γ)

θk ∼ H(λ) k = 1, 2, . . .
(2.198)

Group–specific mixture distributions Gj ∼ DP(α, G0) are then independently sampled
from a Dirichlet process with discrete base measure G0, so that

Gj(θ) =
∞∑

t=1

π̃jtδ(θ, θ̃jt)
π̃j ∼ GEM(α)

θ̃jt ∼ G0 t = 1, 2, . . .
(2.199)

Each local cluster in group j has parameters θ̃jt copied from some global cluster θkjt
,

which we indicate by kjt ∼ β. As summarized in the graph of Fig. 2.28, data points in
group j are then independently sampled according to this parameter distribution:

θ̄ji ∼ Gj

xji ∼ F (θ̄ji)
(2.200)

For computational convenience, we typically define F (θ) to be an appropriate expo-
nential family, and H(λ) a corresponding conjugate prior. As with standard mixtures,
eq. (2.200) can be equivalently expressed via a discrete variable tji indicating the cluster
associated with the ith observation:

tji ∼ π̃j

xji ∼ F (θ̃jtji
)

(2.201)

Fig. 2.29 shows an alternative graphical representation of the HDP, based on these
explicit assignments of observations to local clusters, and local clusters to global clusters.

Because G0 is discrete, each group j may create several different copies θ̃jt of the
same global cluster θk. Aggregating the probabilities assigned to these copies, we can
directly express Gj in terms of the distinct global cluster parameters:

Gj(θ) =
∞∑

k=1

πjkδ(θ, θk) πjk =
∑

t|kjt=k

π̃jt (2.202)

Groups then reuse a common set of global clusters in different proportions. Using
Thm. 2.5.1, it can be shown that πj ∼ DP(α,β), where β and πj are interpreted as
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Figure 2.28. Directed graphical representations of a hierarchical Dirichlet process (HDP) mixture
model. Global cluster weights β ∼ GEM(γ) follow a stick–breaking process, while cluster parameters
are assigned independent priors θk ∼ H(λ). Left: Explicit stick–breaking representation, in which
each group reuses the global clusters with weights πj ∼ DP(α, β). zji ∼ πj indicates the cluster
that generates xji ∼ F (θzji). Right: Alternative distributional form, in which G0 ∼ DP(γ, H) is an
infinite discrete distribution on Θ, and Gj ∼ DP(α, G0) a reweighted, group–specific distribution.
θ̄ji ∼ Gj are then the parameters of the cluster that generates xji ∼ F (θ̄ji). We illustrate with a
shared, infinite Gaussian mixture, where cluster variances are known (bottom) and H(λ) is a Gaussian
prior on cluster means (top). Sampled cluster means θ̄j1, θ̄j2, and corresponding Gaussians, are shown
for two observations xj1, xj2 in each of two groups G1, G2.

measures on the positive integers [289]. Thus, β determines the average weight of local
clusters (E[πjk] = βk), while α controls the variability of cluster weights across groups.
Note that eq. (2.202) suggests the alternative graphical model of Fig. 2.28, in which
zji ∼ πj directly indicates the global cluster associated with xji. In contrast, Fig. 2.29
indirectly determines global cluster assignments via local clusters, taking zji = kjtji

.
Comparing these representations to Fig. 2.11, we see that HDPs share clusters as

in the LDA model, but remove the need for model order selection. In terms of the
DDP framework, the global measure G0 provides a particular, convenient mechanism
for inducing dependencies among the mixture weights in different groups. Note that
the discreteness of G0 plays a critical role in this construction. If, for example, we had
instead taken Gj ∼ DP(α, H) with H continuous, the stick–breaking construction of
Thm. 2.5.3 shows that groups would learn independent sets of disjoint clusters.

Extending the analogy of Fig. 2.23, we may alternatively formulate the HDP rep-
resentation of Fig. 2.29 in terms of a Chinese restaurant franchise [289]. In this inter-
pretation, each group defines a separate restaurant in which customers (observations)
xji sit at tables (clusters) tji. Each table shares a single dish (parameter) θ̃t, which is
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Figure 2.29. Chinese restaurant franchise representation of the HDP model of Fig. 2.28. Left: Global
cluster parameters are assigned independent priors θk ∼ H(λ), and reused by groups with frequencies
β ∼ GEM(γ). Each group j has infinitely many local clusters (tables) t, which are associated with a
single global cluster kjt ∼ β. Observations (customers) xji are independently assigned to some table
tji ∼ eπj , and thus indirectly associated with the global cluster (dish) θzji , where zji = kjtji . Right:

Example in which a franchise menu with dishes θk (squares, center) is shared among tables (circles, top
and bottom) in two different restaurants (groups). All customers (diamonds) seated at a given table
share the same dish (global cluster parameter).

ordered from a menu G0 shared among restaurants (groups). As before, let kjt indicate
the global parameter θkjt

assigned to table t in group j, and kj the parameters for all
of that group’s tables. We may then integrate over G0 and Gj (as in eq. (2.181)) to
find the conditional distributions of these indicator variables:

p(tji | tj1, . . . , tji−1, α) ∝
∑

t

Njtδ(tji, t) + αδ(tji, t̄) (2.203)

p(kjt | k1, . . . ,kj−1, kj1, . . . , kjt−1, γ) ∝
∑

k

Mkδ(kjt, k) + γδ(kjt, k̄) (2.204)

Here, Mk is the number of tables previously assigned to θk, and Njt the number of
customers already seated at the tth table in group j. As before, customers prefer tables t
at which many customers are already seated (eq. (2.203)), but sometimes choose a new
table t̄. Each new table is assigned a dish kjt̄ according to eq. (2.204). Popular dishes
are more likely to be ordered, but a new dish θk̄ ∼ H may also be selected.

The stick–breaking (Fig. 2.28) and Chinese restaurant franchise (Fig. 2.29) repre-
sentations provide complementary perspectives on the HDP. In particular, they have
each been used to design Monte Carlo methods which infer shared clusters from training
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data [289]. In Chap. 5, we describe and extend a Gibbs sampler based on the Chinese
restaurant franchise, generalizing the Dirichlet process sampler of Alg. 2.3.

Temporal and Spatial Processes

Models derived from, or related to, the DDP framework have been applied to several
application domains. For example, an analysis of densities [296, 297] approach has
been used to determine multiple related density estimates. This model is similar to
the HDP of Fig. 2.28, except that the base measure G0 is convolved with a Gaussian
kernel to construct a continuous, global density estimate. Alternatively, for applications
involving observed covariates, the DDP construction of eq. (2.196) has been used to
design nonparametric models in which each cluster parameterizes a standard, Gaussian
ANOVA model [60]. This method more robustly describes datasets which mix several
different global correlation structures.

Related methods have been used to model temporal processes. In particular, time–
sensitive Dirichlet process mixtures [342] consider applications where each observation
has an associated time stamp. A generalization of the Chinese restaurant process
then encourages observations at similar times to be associated with the same cluster.
Dirichlet processes have also been used to develop an infinite hidden Markov model [16],
avoiding explicit selection of a finite set of discrete states. The infinite HMM can be
seen as a special case of the HDP, in which the global measure G0 is used to couple the
transition distributions associated with different latent states [289].

Gaussian processes provide a standard, widely used framework for modeling spatial
data [285, 330]. Generalizing this approach, dependent Dirichlet processes have been
used to construct infinite mixtures of Gaussian processes [105]. The marginal distri-
bution at each spatial location is then a Dirichlet process mixture of Gaussians, but
the Gaussian parameters associated with nearby sites are correlated. Like DDP models
based on ANOVA clusters [60], these mixtures of Gaussian processes implicitly assume
absolute spatial locations are statistically meaningful, and require replicated observa-
tions at identical sites. In Chap. 6, we develop a transformed Dirichlet process [282]
adapted to datasets with different forms of spatial structure.



Chapter 3

Nonparametric Belief Propagation

IN FIELDS such as computer vision, graphical models are often used to describe com-
plex, multimodal relationships among high–dimensional, continuous variables. For

example, the articulated models used in visual tracking applications typically have
dozens of degrees of freedom. Realistic graphical models for such problems must rep-
resent outliers, bimodalities, and other non–Gaussian statistical features. The optimal
inference procedures associated with these models typically involve integral equations
which lack closed, analytic forms. It is thus necessary to develop families of approximate
representations, and corresponding computational methods.

We begin in Sec. 3.1 by reviewing particle filters, which use sample–based density
estimates to track complex temporal processes. Sec. 3.2 then generalizes these sequential
Monte Carlo methods to inference problems defined on arbitrary graphs. The resulting
nonparametric belief propagation (NBP) algorithm uses importance sampling techniques
to recursively approximate continuous, non–Gaussian distributions. As described in
Sec. 3.3, NBP makes few assumptions about the potentials defining the underlying
model, and can thus be flexibly applied in many different application domains.

At each iteration of the NBP algorithm, we sample from a product of Gaussian
mixtures, and thereby fuse information from different parts of the graph. Sec. 3.4
develops several algorithms for this sampling step, including a pair of efficient samplers
derived from multiscale, KD–tree density representations. In Sec. 3.5, we then validate
NBP using Gaussian graphical models, and describe a simple part–based model which
allows reconstruction of occluded facial features.

This chapter describes results developed in collaboration with Dr. Alexander Ihler.
Portions of this work were presented at the 2003 IEEE Conference on Computer Vi-
sion and Pattern Recognition [277], and the 2003 Conference on Neural Information
Processing Systems [144].

¥ 3.1 Particle Filters

Consider a temporal stochastic process described by a first–order hidden Markov model
(HMM), as introduced in Sec. 2.2.3. Let x = {xt}T−1

t=0 denote the hidden states at each
of T time points, and y = {yt}T−1

t=0 a corresponding observation sequence. As expressed

119
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by the graph of Fig. 2.7, the joint distribution factors as

p(x, y) = p(x0) p(y0 | x0)
T−1∏

t=1

p(xt | xt−1) p(yt | xt) (3.1)

In this section, we suppose that the hidden states take values in some continuous space
xt ∈ Xt, and develop computational methods which tractably approximate their poste-
rior distribution.

In Markov chains and other tree–structured graphs, the belief propagation (BP)
algorithm [178, 231, 255, 339] can be used to efficiently infer the posterior distributions
p(xt | y) of the state variables. As described in Sec. 2.3.2, BP is based on a series of
messages passed between neighboring nodes. For an HMM factorized as in eq. (3.1), the
“forward” BP message passed to subsequent time steps is computed via the following
recursion:

mt,t+1(xt+1) ∝
∫

Xt

p(xt+1 | xt) p(yt | xt)mt−1,t(xt) dxt (3.2)

For such HMMs, these BP messages have an interesting probabilistic interpretation. In
particular, the outgoing message from the starting timepoint equals

m0,1(x1) ∝
∫

X0

p(x1 | x0) p(x0) p(y0 | x0) dx0 ∝ p(x1 | y0) (3.3)

Letting yt = {y0, y1, . . . , yt} denote those observations seen up to time t, a simple
induction argument then shows that

mt−1,t(xt) ∝ p
(
xt | yt−1

)
(3.4)

mt−1,t(xt) p(yt | xt) ∝ p(xt | yt) (3.5)

Forward messages thus equal the predictive distribution of the next hidden state, given
all preceding observations. Rescaling these messages by the current observation’s likeli-
hood p(yt | xt), as in eq. (3.5), we then recover filtered estimates of the state variables.
This approach is widely used in online tracking applications, where causal processing
of an observation sequence is required.

As discussed in Sec. 2.3.2, analytic evaluation of BP’s message update integral is
typically intractable for non–linear or non–Gaussian dynamical systems. For high–
dimensional state spaces, like those arising in visual tracking problems, fixed dis-
cretizations of Xt are also computationally infeasible. In these applications, particle
filters [11, 70, 72, 183] provide a popular method of approximate inference. In their sim-
plest form, particle filters approximate the forward BP messages via a collection of L
weighted samples, or particles:

mt−1,t(xt) ≈
L∑

`=1

w
(`)
t−1,tδ(xt, x

(`)
t )

L∑

`=1

w
(`)
t−1,t = 1 (3.6)
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Importance sampling methods (see Sec. 2.4.1) are then used to update the particles x
(`)
t ,

and corresponding weights w
(`)
t−1,t, as the dynamical system evolves. Given these sample–

based density estimates, any statistic ft(xt) of the filtering distribution may be approx-
imated as in eq. (2.141).

Particle filters were independently proposed in several different research communi-
ties, and variants are alternatively known as bootstrap filters [119], the condensation
algorithm [146], and survival of the fittest [165]. However, all of these sequential Monte
Carlo methods [70, 72] share the use of importance sampling, possibly coupled with
additional MCMC iterations [114, 183], to recursively update nonparametric density
estimates. In the following sections, we describe the basic structure of particle filters,
and discuss various extensions.

¥ 3.1.1 Sequential Importance Sampling

Examining the message update integral of eq. (3.2), we see that it can be conceptu-
ally decomposed into two stages. First, the measurement update p(yt | xt) mt−1,t(xt)
combines information from preceding observations with the evidence provided by the
new observation yt. The resulting posterior distribution (see eq. (3.5)) is then convolved
with the state transition density p(xt+1 | xt), optimally propagating information to sub-
sequent times. Particle filters stochastically approximate these two stages, and thereby
compute consistent nonparametric estimates of the exact filtering distributions.

Throughout this section, we use mt−1,t(xt) to denote a sample–based approximation,
as in eq. (3.6), of the exact BP message function. We then let qt(xt) indicate a corre-
sponding nonparametric estimate of the filtering distribution p(xt | yt) (see eq. (3.5)).

Measurement Update

Suppose that mt−1,t(xt), the BP message from the preceding point in time, is rep-
resented by L weighted samples as in eq. (3.6). At time t = 0, the algorithm may
be initialized by drawing L independent samples x

(`)
0 ∼ p(x0) from the prior. From

eq. (3.5), the posterior distribution of xt then equals

qt(xt) ∝ mt−1,t(xt) p(yt | xt) ∝
L∑

`=1

w
(`)
t−1,t p(yt | x

(`)
t ) δ(xt, x

(`)
t ) (3.7)

Normalizing these importance weights, which are determined by evaluating the likeli-
hood of yt with respect to each particle, we then have

qt(xt) =

L∑

`=1

w
(`)
t δ(xt, x

(`)
t ) w

(`)
t ,

w
(`)
t−1,t p(yt | x

(`)
t )

∑L
m=1 w

(m)
t−1,t p(yt | x

(m)
t )

(3.8)

This update equation is motivated by the general importance sampling framework
described in Sec. 2.4.1. In particular, if mt−1,t(xt) defines an unbiased estimate of
p
(
xt | yt−1

)
, it is easily shown [72, 183] that qt(xt) also leads to unbiased importance

estimates for statistics of p(xt | yt).
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Sample Propagation

Given a particle–based filtering distribution qt(xt), we may predict likely values of
subsequent states by simulating the dynamical system underlying the HMM. In the
simplest case, particle filters use this approach to compute outgoing messages:

mt,t+1(xt+1) =
L∑

`=1

w
(`)
t,t+1δ(xt+1, x

(`)
t+1)

x
(`)
t+1 ∼ p(xt+1 | x

(`)
t )

w
(`)
t,t+1 = w

(`)
t

(3.9)

Given that x
(`)
t+1 is sampled from the prior, these weights w

(`)
t,t+1 can be justified as an

importance estimate of the joint distribution p(xt, xt+1 | yt). Discarding x
(`)
t , which by

the model’s Markov structure is not needed for subsequent simulation steps, we then
arrive at eq. (3.9).

Depletion and Resampling

By iterating the predictions and measurement updates of eqs. (3.8, 3.9), we recursively
compute unbiased estimates qt(xt) of the filtering densities p(xt | yt). The practical
reliability of this sequential Monte Carlo method depends critically on the variability
of these estimates, which is characterized by the variance of the importance weights [9].
Although exact performance evaluation is typically intractable, the effective sample
size [11, 72] can be estimated as follows:

Leff =

(
L∑

`=1

(
w(`)

)2
)−1

(3.10)

For uniform weights w(`) = 1/L, the effective sample size Leff = L, the number of
particles. In contrast, when one particle is allocated most of the posterior probability
mass, Leff → 1.

Due to accumulation of the approximations underlying subsequent message updates,
the expected variance of the importance weights increases over time [72]. For any finite
sample size L, the number of effective particles Leff thus approaches one after sufficiently
many iterations. In practice, the resulting sample depletion is avoided via a resampling
operation. Given the discrete filtering distribution qt(xt) of eq. (3.8), L new particles

x̃
(`)
t are resampled, and then propagated to subsequent timesteps:

x̃
(`)
t ∼ qt(xt)

x
(`)
t+1 ∼ p(xt+1 | x̃

(`)
t )

` = 1, . . . , L (3.11)

After such resampling, outgoing message particles are equally weighted as w
(`)
t,t+1 = 1/L.

Because new samples x̃
(`)
t are drawn with replacement, they typically repeat those x

(m)
t

with large weights w
(m)
t multiple times, and ignore some low weight samples entirely.
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Resampling thus focuses the particle filter’s computational resources on the most prob-
able regions of the state space. For HMMs with non–degenerate dynamics, the outgoing
message propagation shifts these particles to distinct values, restoring sample diversity.
Mild conditions then guarantee that this iteration almost surely converges to the true
filtering distribution as the number of particles L approaches infinity [51].

In many applications of particle filters, the resampling operation of eq. (3.11) is
applied prior to each message update. Alternatively, the effective sample size Leff can
be monitored, and resampling performed whenever it drops below some pre–specified
threshold [11, 72, 183]. This approach reduces the algorithm’s Monte Carlo variability,
and may lead to more robust state estimates [183].

¥ 3.1.2 Alternative Proposal Distributions

The basic particle filter described in Sec. 3.1.1 is widely used because it is typically
simple to implement. It assumes only that it is possible to simulate the underlying
dynamical model, and evaluate the observations’ likelihood up to some normalization
constant. In some applications, however, extremely large sample sizes L are needed for
adequate performance. This is particularly true in models where the prior dynamics
are highly variable, as many samples are needed to robustly “guess” those states with
high likelihood.

As discussed in Sec. 2.4.1, the efficiency of importance sampling algorithms can be
improved via a carefully chosen proposal distribution. Applying this idea, more effective
sequential Monte Carlo methods arise from integrations of the sample propagation
and measurement update stages [11, 70, 72, 183]. In the general case, a filtered density
estimate qt(xt) as in eq. (3.8) is propagated as follows:

x̃
(`)
t ∼ qt(xt)

x
(`)
t+1 ∼ r(xt+1 | x̃

(`)
t , yt+1)

` = 1, . . . , L (3.12)

Here, the proposal distribution r (· | ·) may also incorporate the subsequent observation
yt+1. To retain an unbiased importance estimate, the weights are then set as

w
(`)
t+1 ∝ p(yt+1 | x

(`)
t+1) p(x

(`)
t+1 | x̃

(`)
t )

r(x
(`)
t+1 | x̃

(`)
t , yt+1)

L∑

`=1

w
(`)
t+1 = 1 (3.13)

This expression specializes to the measurement update of eq. (3.8) when the proposal
distribution equals the prior dynamics p(xt+1 | xt), and particles are resampled at each
iteration as in eq. (3.11).

Through simple manipulations of eq. (3.13), it can be shown that p(xt+1 | x̃
(`)
t , yt+1)

provides an optimal proposal distribution, which minimizes the conditional variance
of the importance weights [11, 72]. In certain special cases, such as when observa-
tions are Gaussian noise–corrupted linear functions of the state, this optimal proposal
is tractable. More generally, deterministic approximations such as the extended or



124 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

unscented Kalman filter [8, 153, 162] lead to proposals which partially incorporate ob-
servations when sampling new particles [72].

In applications where the state space Xt has internal structure, we can often tractably
marginalize some variables conditioned on another set of “difficult” variables. For exam-
ple, switching linear dynamical systems [73] have state variables which are conditionally
Gaussian given a discrete model–selection state. One can then design sequential Monte
Carlo algorithms which only sample these difficult variables, and treat the remaining
states analytically. Adapting results in Sec. 2.4.4, such Rao–Blackwellized particle fil-
ters [71, 72, 73, 183] are guaranteed to provide state estimates with smaller variance.

¥ 3.1.3 Regularized Particle Filters

Standard particle filters rely on the mixing provided by temporal dynamics to ensure
diversity among the sampled particles. In some high–dimensional tracking applications,
however, these raw particles may not adequately capture the true posterior uncertainty.
This is particularly true when the dynamics contain a deterministic component, or the
state is augmented to also include static parameters. In some cases, MCMC moves
which are invariant to the target posterior may be used to perturb particles [114, 183]. In
applications like those considered in this thesis, however, regularized particle filters [11,
220, 325] provide a simpler, but still effective, alternative.

In a regularized particle filter, the discrete filtering distribution of eq. (3.8) is con-
volved with a continuous kernel function, thus constructing an explicit nonparametric
density estimate [263]. For a Gaussian kernel, we then have

qt(xt) =
L∑

`=1

w
(`)
t N (xt; x

(`)
t , Λt) (3.14)

The covariance Λt is typically chosen via a standard bandwidth selection method (see
Sec. 2.4.2). Given this kernel density estimate, particles are propagated with resam-
pling as in eq. (3.11). By using a continuous kernel function, we ensure that the re-
sampled particles are distinct, regardless of the underlying temporal dynamics. At the
subsequent time step, particle weights are updated as before to incorporate the latest
observation, and a bandwidth for the smoothing kernels is then selected.

Although regularized particle filters no longer provide unbiased state estimates, they
are often more robust in practice. In addition, the kernel density estimate of eq. (3.14)
better characterizes the state’s true posterior uncertainty. We note that Gaussian sum
filters [5, 8, 267] are based on a similar density representation, but use deterministic
approximations to update and prune mixture components over time.

The algorithm just described is known as a post–regularized particle filter, because
the particles are smoothed after the observation likelihood is incorporated. Each Gaus-

sian kernel then receives a single, constant weight w
(`)
t . One can also consider pre–

regularized particle filters [220], which use rejection sampling to implicitly multiply
each kernel by the spatially varying likelihood function. However, this approach is more
computationally intensive, and requires likelihoods with convenient analytic forms.
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¥ 3.2 Belief Propagation using Gaussian Mixtures

Although particle filters can be adapted to an extremely wide range of dynamical mod-
els and observation types, they are specialized to the structure of temporal filtering
problems. Conversely, loopy belief propagation can in principle be applied to graphs of
any structure, but is only analytically tractable when all hidden variables are discrete or
jointly Gaussian. In this chapter, we propose a nonparametric belief propagation (NBP)
algorithm [277] which generalizes sequential Monte Carlo methods to arbitrary graphs.
As in regularized particle filters, we approximate the true BP messages and beliefs by
nonparametric density estimates. Importance sampling methods, combined with effi-
cient local MCMC iterations, then update these sample–based messages, propagating
information from local observations throughout the graph.

To simplify our exposition, we focus on pairwise Markov random fields specified by
undirected graphs G = (V, E). As described in Sec. 2.2.2, given observations y of hidden
variables x = {xi | i ∈ V}, the joint distribution takes the following form:

p(x | y) ∝ p(x, y) ∝
∏

(i,j)∈E

ψij(xi, xj)
∏

i∈V

ψi(xi, y) (3.15)

The general form of the BP algorithm for such models is summarized in Fig. 2.16. As
we discuss in Sec. 3.6, however, the computational methods underlying NBP could also
be adapted to message–passing in directed or factor graphs [175, 178, 231, 324].

In this section, we assume that the potential functions defining the pairwise MRF
of eq. (3.15) are finite Gaussian mixtures (see Sec. 2.2.4). Such representations arise
naturally from learning–based approaches to model identification [95]. Sec. 3.3 then
generalizes NBP to accomodate potentials specified by more general analytic functions.

¥ 3.2.1 Representation of Messages and Beliefs

As derived in Sec. 2.3.2, BP approximates the posterior marginal distribution p(xi | y)
via the following belief update equation:

qi(xi) ∝ ψi(xi, y)
∏

j∈Γ(i)

mji(xi) (3.16)

Directly generalizing the particle filter of Sec. 3.1.1, suppose that incoming messages
mji(xi) are represented by a set of discrete samples, as in eq. (3.9). If xi ∈ Xi takes
values in a continuous sample space, and these messages are constructed from indepen-
dent, absolutely continuous proposal distributions, their particles will be distinct with
probability one. The product of eq. (3.16) is then guaranteed to be zero everywhere,
and thus provide an invalid belief estimate.

In practice, importance sampling methods like particle filters implicitly assume that
the target distribution is well approximated by its values on a finite sample set. Mak-
ing the regularities inherent in this assumption explicit, we construct smooth, strictly
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positive messages by convolving raw particle sets with a Gaussian kernel:

mji(xi) =
L∑

`=1

w
(`)
ji N (xi; x

(`)
ji , Λji) (3.17)

As we discuss later, we use methods from the nonparametric density estimation litera-
ture to construct these estimates [263]. As in regularized particle filters [11, 220, 325],
belief estimates are similarly approximated as

qi(xi) =
L∑

`=1

w
(`)
i N (xi; x

(`)
i , Λi) (3.18)

Gaussian kernels are strictly positive, and thus ensure that message products are always
non–degenerate. In addition, the product of two Gaussians is itself a scaled Gaussian
distribution, a fact which facilitates our later computational methods. For these reasons,
we focus exclusively on density estimates derived from mixtures of Gaussians.

The NBP algorithm is based on Monte Carlo methods which sequentially update
nonparametric message approximations as in eq. (3.17). For notational simplicity, we
let mji(xi) and qi(xi) denote sample–based estimates as in eqs. (3.17, 3.18), which we
do not explicitly distinguish from the “ideal” outputs of integral BP message updates.

¥ 3.2.2 Message Fusion

We begin by considering the BP belief update of eq. (3.16), where incoming messages are
specified nonparametrically as in eq. (3.17). Combined with the observation potential
ψi(xi, y), the belief qi(xi) is then defined by a product of d = (|Γ(i)| + 1) Gaussian
mixtures. As detailed in Sec. 3.4.1, the product of d Gaussian mixtures, each containing
L components, is itself a mixture of Ld Gaussians. In principle, this belief update could
thus be performed exactly. In practice, however, exponential growth in the number of
mixture components necessitates approximations.

As suggested by the example of Fig. 3.1, products of Gaussian mixtures often take a
simple form, which can be well approximated by far fewer components. If the product
mixture were explicitly available, a wide range of methods [116, 141] could be used to
construct reduced order models. For practical sample sizes, however, enumeration of
all Ld components is intractable. One alternative method begins by simplifying the
product of a single pair of Gaussian mixtures, and then successively approximates that
density’s product with other mixtures [94]. However, this approach is sensitive to the
order in which mixtures are incorporated, and can sometimes lead to significant errors.

The NBP algorithm takes a simpler approach, approximating the product mixture
via a collection of L independent samples:

x
(`)
i ∼ 1

Zi
ψi(xi, y)

∏

j∈Γ(i)

mji(xi) ` = 1, . . . , L (3.19)
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Figure 3.1. A product of three mixtures of L = 4 one–dimensional Gaussian distributions. Although
the 43 = 64 components in the product density (thin lines) vary widely in their position and weight
(rescaled for visibility), their normalized sum (thick line) has a simple form.

Given these samples, the nonparametric belief estimate of eq. (3.18) is constructed
via one of the automatic bandwidth selection methods described in Sec. 2.4.2. For
sufficiently large L, standard density estimation asymptotics [263] guarantee that these
samples accurately characterize the true product distribution. Sec. 3.4 develops efficient
Monte Carlo methods which draw such samples without explicitly constructing the
corresponding product density.

¥ 3.2.3 Message Propagation

For pairwise Markov random fields, BP messages are updated according to the following
integral equation:

mji(xi) ∝
∫

Xj

ψij(xi, xj)ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) dxj (3.20)

Conceptually, this message update naturally decomposes into two stages. First, the
message product operation combines information from neighboring nodes with the local
observation potential:

qj\i(xj) ∝ ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) (3.21)

This partial belief estimate summarizes all available evidence about xj , excluding the
incoming message from node i. Convolving these beliefs with the pairwise potential
relating xj to xi, we then have

mji(xi) ∝
∫

Xj

ψij(xi, xj) qj\i(xj) dxj (3.22)

The NBP algorithm stochastically approximates these two stages, and thus provides a
consistent nonparametric estimate (as in eq. (3.17)) of the outgoing message.

Algorithm 3.1 summarizes the general form of NBP message updates, including
extensions which handle analytic potential functions (see Sec. 3.3). To derive this
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Given input messages mkj(xj) for each k ∈ Γ(j)\i, which may be either analytic functions or

kernel densities mkj(xj) = {x(`)
kj , w

(`)
kj ,Λ

(`)
kj }L

`=1, construct an output message mji(xi) as follows:

1. Determine the marginal influence function ϕij(xj) defined by eq. (3.26):

(a) If ψij(xi, xj) is a Gaussian mixture, ϕij(xj) is the marginal distribution of xj .

(b) For analytic ψij(xi, xj), determine ϕij(xj) by symbolic or numeric integration.

2. Draw L independent, importance weighted samples from the product distribution

(x̃
(`)
j , w̃

(`)
j ) ∼ 1

Zj

ϕij(xj) ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) ` = 1, . . . , L

As in Sec. 3.4, sample particles x̃
(`)
j from the product of those terms which are Gaussian

mixtures, and evaluate the remaining terms to determine importance weights w̃
(`)
j .

3. Evaluate the effective sample size Leff of these auxiliary particles via eq. (3.10). If Leff is
small, resample by drawing L particles with replacement according to Pr[x̃

(`)
j ] ∝ w̃

(`)
j .

4. If ψij(xi, xj) satisfies the normalization condition of eq. (3.31), construct a kernel–based

output message mji(xi) = {x(`)
ji , w

(`)
ji ,Λ

(`)
ji }L

`=1 as follows:

(a) For each auxiliary particle x̃
(`)
j , sample an outgoing particle

x
(`)
ji ∼ ψij(xi, xj = x̃

(`)
j ) ` = 1, . . . , L

For Gaussian mixture potentials, we sample from the conditional distribution of xi

given x̃
(`)
j . More generally, importance sampling or MCMC methods may be used.

(b) Set w
(`)
ji to account for any importance weights generated by steps 2, 3, & 4(a).

(c) Choose {Λ(`)
ji }L

`=1 using any appropriate bandwidth selection method (see [263]).

5. Otherwise, treat mji(xi) as an analytic function in subsequent message updates:

mji(xi) ∝
L∑

`=1

w̃
(`)
j ψij(xi, x̃

(`)
j )

In this case, mji(xi) is parameterized by the auxiliary particles {x̃(`)
j , w̃

(`)
j }L

`=1.

Algorithm 3.1. Nonparametric BP update for the message mji(xi) sent from node j to node i as
in eq. (3.20). Input and output messages may be either kernel density estimates or analytic functions,
depending on the form of the corresponding pairwise potentials.

algorithm, we first decompose the pairwise potential function ψij(xi, xj), separating its
marginal influence on xj from the conditional relationship it defines between xi and xj .
We then propose Monte Carlo approximations to the belief fusion and propagation
updates of eqs. (3.21, 3.22).

Pairwise Potentials and Marginal Influence

In hidden Markov models as in eq. (3.1), the joint distribution of the hidden states x
is factored via a series of one–step transition distributions p(xt+1 | xt). The particle
filter of Sec. 3.1.1 then propagates belief estimates to subsequent time steps by sam-
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pling x
(`)
t+1 ∼ p(xt+1 | x

(`)
t ). The consistency of this procedure depends critically on the

HMM’s factorization into properly normalized conditional distributions, so that
∫

Xt+1

p(xt+1 | xt) dxt = 1 for all xt ∈ Xt (3.23)

By definition, this conditional distribution places no biases on xt. In contrast, for
pairwise MRFs the clique potential ψij(xi, xj) is an arbitrary non–negative function. It
may thus strongly influence the values assumed by either associated hidden variable.

To develop a consistent propagation scheme for arbitrary pairwise potentials, we
consider the derivation of the BP message update equation presented in Sec. 2.3.2. As
illustrated in Fig. 2.16, the BP message mji(xi) arises as a marginal of the following
joint distribution:

q̃ij(xi, xj) ∝ ψij(xi, xj) qj\i(xj) (3.24)

We can thus approximate the outgoing message by marginalizing joint samples (x
(`)
ji , x̃

(`)
j )

drawn according to eq. (3.24). Here, we denote x
(`)
ji ∈Xi by double subscripts to indicate

that it is distributed as x
(`)
ji ∼ mji(xi), rather than according to the marginal belief at

node i. To draw these samples, we consider the marginal distribution of xj :

q̃j(xj) ∝
∫

Xi

ψij(xi, xj) qj\i(xj) dxi ∝
[∫

Xi

ψij(xi, xj) dxi

]
qj\i(xj) (3.25)

The marginal influence of ψij(xi, xj) on xj is then quantified by the following function:

ϕij(xj) =

∫

Xi

ψij(xi, xj) dxi (3.26)

If ψij(xi, xj) is specified by a Gaussian mixture, ϕij(xj) is simply the mixture attained
by marginalizing each component. We discuss more general cases in Sec. 3.3.3.

Marginal and Conditional Sampling

Given the preceding analysis, NBP approximates the message update of eq. (3.20) in

two stages. We first draw L independent samples x̃
(`)
j from the partial belief estimate

of eq. (3.21), reweighted by the marginal influence function of eq. (3.26):

x̃
(`)
j ∼ 1

Zj
ϕij(xj) qj\i(xj) =

1

Zj
ϕij(xj)ψj(xj , y)

∏

k∈Γ(j)\i

mkj(xj) (3.27)

For clique potentials which are mixtures of Gaussians, this density is a product of
Gaussian mixtures, similar to that arising in the belief update of eq. (3.19). Samples
may thus be efficiently drawn via the Monte Carlo methods of Sec. 3.4. We then
propagate these auxiliary particles to node i via the pairwise clique potential:

x
(`)
ji ∼ 1

Z`
i

ψij(xi, xj = x̃
(`)
j ) Z`

i =

∫

Xi

ψij(xi, xj = x̃
(`)
j ) dxi (3.28)
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This message update treats the clique potential as a joint distribution, and samples

particles x
(`)
ji ∈ Xi from the conditional densities induced by each fixed auxiliary par-

ticle x̃
(`)
j . Because the clique potential’s marginal influence on xj is incorporated into

eq. (3.27), these particles consistently approximate the target message mji(xi). When
ψij(xi, xj) is a mixture of K Gaussians, the conditional distribution of eq. (3.28) is
another, reweighted K–component mixture.

Bandwidth Selection

Given L particles x
(`)
ji sampled as in eq. (3.28), a nonparametric estimate of the updated

message mji(xi) is constructed via eq. (3.17). In applications considered by this the-
sis, we determine the bandwidth Λji of this density estimate via one of the automatic
methods described in Sec. 2.4.2. When ψij(xi, xj) is a Gaussian mixture with few com-
ponents, alternative methods are possible which replace the Monte Carlo propagation
of eq. (3.28) by a set of deterministically placed kernels [141, 145, 261, 262].

¥ 3.2.4 Belief Sampling Message Updates

As illustrated in Fig. 2.16, the BP update of message mji(xi) is most often expressed as
a transformation of the incoming messages from all other neighboring nodes k ∈ Γ(j)\i.
In some situations, however, it is useful to consider the following alternative form:

mji(xi) ∝
∫

Xj

ψij(xi, xj) ψj(xj , y)
∏

k∈Γ(j)\i

mkj(xj) dxj (3.29)

∝
∫

Xj

ψij(xi, xj)
qj(xj)

mij(xj)
dxj (3.30)

If the message update integral is evaluated exactly, the equivalence of these expres-
sions follow directly from eq. (3.16). However, eq. (3.30) suggests an alternative belief
sampling form of the NBP algorithm, in which the latest belief estimate provides a

proposal distribution for auxiliary particles x̃
(`)
j ∼ qj(xj). As summarized in Alg. 3.2,

overcounting of the incoming message mij(xj) may be avoided via importance weights

w̃
(`)
j ∝ 1/mij(x̃

(`)
j ). These weighted samples are then propagated as in the message

sampling NBP algorithm described in Sec. 3.2.3.
Computationally, the belief sampling form of the NBP algorithm offers clear advan-

tages. In particular, for a node with d neighbors, computation of new outgoing mes-
sages via Alg. 3.1 requires L samples drawn from each of d different products of (d− 1)
Gaussian mixtures. Depending on the selected sampling algorithm (see Sec. 3.4), these
sampling updates typically require either O(d2L) or O(d2L2) operations. In contrast,
belief sampling NBP updates share a single set of L samples, drawn from a product
of d Gaussian mixtures, among all outgoing messages (Alg. 3.2, steps 1–2). The compu-
tational cost is then reduced to O(dL) or O(dL2) operations, a potentially substantial
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Given input messages mkj(xj) for every k ∈ Γ(j), which may be either analytic functions or

kernel densities mkj(xj) = {x(`)
kj , w

(`)
kj ,Λ

(`)
kj }L

`=1, construct an output message mji(xi) as follows:

1. Draw L independent, importance weighted samples from the product distribution

(x̃
(`)
j , w̃

(`)
j ) ∼ 1

Zj

ψj(xj , y)
∏

k∈Γ(j)

mkj(xj) ` = 1, . . . , L

As in Sec. 3.4, sample particles x̃
(`)
j from the product of those terms which are Gaussian

mixtures, and evaluate the remaining terms to determine importance weights w̃
(`)
j .

2. Evaluate the effective sample size Leff of these auxiliary particles via eq. (3.10). If Leff

is small, construct a kernel–based density estimate qj(xj) = {x̃(`)
j , w̃

(`)
j ,Λ

(`)
j }L

`=1 via any
bandwidth selection method (see [263]), and draw L new auxiliary particles from qj(xj).

3. Determine the marginal influence function ϕij(xj) defined by eq. (3.26):

(a) If ψij(xi, xj) is a Gaussian mixture, ϕij(xj) is the marginal distribution of xj .

(b) For analytic ψij(xi, xj), determine ϕij(xj) by symbolic or numeric integration.

4. Reweight the auxiliary particles from steps 1–2 as follows:

w̃
(`)
j ← w̃

(`)
j ·

ϕij

(
x̃

(`)
j

)

mij

(
x̃

(`)
j

)

5. Using these weighted auxiliary particles {x̃(`)
j , w̃

(`)
j }L

`=1, determine an outgoing message
mji(xi) as in steps 4–5 of Alg. 3.1.

Algorithm 3.2. Belief sampling variant of the nonparametric BP update for the message mji(xi)
sent from node j to node i as in eq. (3.30). Input and output messages may be either kernel density
estimates or analytic functions, depending on the form of the corresponding pairwise potentials. If
desired, the auxiliary particles sampled in steps 1–2 may be reused when updating outgoing messages
mji(xi) for several neighbors i ∈ Γ(j).

savings even for moderately sized neighborhoods. Belief sampling offers further advan-
tages in distributed implementations of NBP, where communications constraints favor
algorithms which share a common message among all neighboring nodes [142].

Statistically, the relative merits of the message and belief sampling forms of NBP
are less clear. When discussing algorithms related to NBP, several authors have ar-
gued that belief sampling better concentrates particles in important regions of the state
space [145, 171]. In particular, consider the sequences of forward and backward mes-
sages computed when applying BP to an HMM. Using the message sampling form of
NBP, these messages are computed independently, and future observations cannot af-
fect messages sent from past times. In contrast, belief sampling NBP updates allow
the latest belief estimates to guide forward message construction, focusing particles on
those states most relevant to future observations. This approach is heuristically simi-
lar to the expectation propagation (EP) algorithm [135, 213], which iteratively projects
belief estimates, rather than messages, to tractable exponential families.

While these arguments are intuitively compelling, the empirical behavior of NBP is
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more subtle. In particular, when NBP uses few particles L to approximate messages,
errors in early belief estimates may inappropriately bias the messages computed by
Alg. 3.2, and lead to inferior performance [142]. Later sections discuss this issue, and
potential solutions, in more detail.

¥ 3.3 Analytic Messages and Potentials

In many of the applications motivating the NBP algorithm, the graphical model’s po-
tentials are not Gaussian mixtures, but more general analytic functions. Adapting
importance sampling methods, we now extend the NBP updates of Sec. 3.2 to this
case. As with particle filters, we assume that observation potentials ψi(xi, y) can be

evaluated, up to some normalization constant, at any particle location x
(`)
i . We discuss

analogous conditions for pairwise potentials ψij(xi, xj) in Sec. 3.3.3.
Particle–based representations are only meaningful when the corresponding BP mes-

sages mji(xi) are finitely integrable. As discussed in Sec. 3.1, the causal factorization
underlying HMMs leads to messages which take the form of conditional densities (see
eq. (3.4)). However, for more general parameterizations like that of Prop. 2.3.1, BP
messages instead equal likelihood functions [276]. In such models, uninformative or
weakly informative messages with infinite measure are possible.

In the simplest case, we assume that the pairwise MRF of eq. (3.15) is parameterized
by clique potentials satisfying

∫

Xi

ψi,j(xi, xj = x̄) dxi < ∞ for all (i, j) ∈ E (3.31)

∫

Xi

ψi(xi, y = ȳ) dxi < ∞ for all i ∈ V (3.32)

A simple induction argument then shows that all messages are finitely integrable, and
hence normalizable. Heuristically, eqs. (3.31, 3.32) require each potential to be suffi-
ciently informative to localize variables given observations of their neighbors. In many
applications, these conditions are easily satisfied by constraining all variables to a (possi-
bly large) bounded range. The following sections also describe methods for constructing
analytic NBP messages, which relax these normalization conditions.

¥ 3.3.1 Representation of Messages and Beliefs

As motivated in Sec. 3.2, we again estimate beliefs via a weighted mixture of Gaussian
kernels (eq. (3.18)). For NBP messages, however, we consider two complementary rep-
resentations. As before, messages corresponding to edges satisfying the normalization
condition of eq. (3.31) are described nonparametrically (eq. (3.17)). In some models,
however, there are weakly informative potentials which are not normalizable, but never-
theless encode important constraints. For example, in the NBP hand tracker developed
in Chap. 4, pairwise potentials are used to prevent two fingers from occupying the same
three–dimensional space. Related potentials, which encode the constraint that certain
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hidden variables do not take similar values, also arise in algorithms for distributed
sensor network localization [141, 142].

In high–dimensional spaces, mixture models provide an extremely inefficient repre-
sentation of messages encoding such dissimilarities. The NBP algorithm thus describes
these messages implicitly, as analytic functions. As we show next, belief updates are
then feasible assuming these message functions are easily evaluated.

¥ 3.3.2 Message Fusion

Consider the marginal belief estimate qi(xi), which is determined according to eq. (3.16).
Of the d = (|Γ(i)| + 1) messages and potentials composing this product, some are rep-
resented by Gaussian mixtures, and others via analytic functions. Using the efficient

algorithms developed in Sec. 3.4, we first draw L samples x
(`)
i from the product distribu-

tion determined solely by the Gaussian mixtures. Any analytic messages or potentials

are then evaluated at these particle locations, providing importance weights w
(`)
i . Fi-

nally, a bandwidth selection method (see Sec. 2.4.2) is used to construct a nonparametric
density estimate, as in eq. (3.18).

This belief update procedure assumes that at least one message or observation po-
tential is a Gaussian mixture, to provide a proposal distribution for importance sam-
pling. In many applications, this can be guaranteed via an appropriate message sched-
ule. More generally, an application–specific importance distribution could be used.
For high–dimensional problems, however, good proposal design can be extremely chal-
lenging. Indeed, one of NBP’s strengths is that message proposal distributions are
automatically refined as information propagates thoughout the graph.

¥ 3.3.3 Message Propagation

To update the NBP message mji(xi) associated with an analytic pairwise potential,
we must determine the marginal influence function ϕij(xj) of eq. (3.26). In many
applications, pairwise potentials depend only on the difference in their arguments, so
that ψij(xi, xj) = ψ̃ij(xi − xj). For such models, the marginal influence function is
constant and may be neglected:

ϕij(xj) =

∫

Xi

ψ̃ij(xi − xj) dxi =

∫

Xi

ψ̃ij(xi) dxi for all xj ∈ Xj (3.33)

More generally, symbolic or numeric integration may be required, depending on the
particular form of ψij(xi, xj).

Given this influence function, we first draw L auxiliary samples x̃
(`)
j according to the

product distribution of eq. (3.27). As in Sec. 3.3.2, we use the product of those messages
which are Gaussian mixtures as a proposal distribution, and reweight by any analytic
messages, observation potentials, or marginal influences. For normalizable pairwise
potentials, we then sample outgoing message particles via the conditional distribution
of eq. (3.28). If needed, additional importance sampling or MCMC methods may be
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used in this propagation step. Finally, a bandwidth Λji is determined as described in
Sec. 2.4.2, producing the nonparametric message estimate of eq. (3.17). See Alg. 3.1 for
a summary of these computations, which also includes an optional resampling update
(step 3) to avoid propagating low–weight auxiliary particles.

If ψij(xi, xj) does not satisfy the normalization condition of eq. (3.31), we instead

treat mji(xi) as an analytic function. Using L auxiliary particles x̃
(`)
j sampled as before,

with associated importance weights w̃
(`)
j , the outgoing message equals

mji(xi) ∝
∫

Xj

ψij(xi, xj)

[
L∑

`=1

w̃
(`)
j δ(xj , x̃

(`)
j )

]
dxj ∝

L∑

`=1

w̃
(`)
j ψij(xi, x̃

(`)
j ) (3.34)

In subsequent message and marginal updates, we evaluate this analytic message to
determine importance weights for each candidate value of xi.

We note that in principle, eq. (3.34) could be used to treat every NBP message
analytically. However, we would then have the difficult task of hand–designing pro-
posal distributions for each message and belief update. By instead representing most
messages as Gaussian mixtures, we develop efficient sampling algorithms which directly
fuse information, and avoid unnecessary reliance on potentially inaccurate importance
sampling schemes.

¥ 3.3.4 Belief Sampling Message Updates

The preceding approach to analytic message updates may also be applied to the be-
lief sampling form of the NBP algorithm (see Sec. 3.2.4). As summarized in Alg. 3.2,
we first use importance sampling methods to draw particles from the marginal be-

lief qj(xj), as in Sec. 3.3.2. These auxiliary particles x̃
(`)
j are then assigned weight

w̃
(`)
j ∝ ϕij(x̃

(`)
j ) /mij(x̃

(`)
j ), correcting for the overcounted input message mij(xj) as well

as the marginal influence of ψij(xi, xj). Once appropriately reweighted, the conditional
propagation of these particles proceeds exactly as in Sec. 3.3.3.

¥ 3.3.5 Related Work

Several authors have used junction tree representations (see Sec. 2.3.2) to develop struc-
tured approximate inference methods for general graphs. These algorithms begin by
grouping nodes into cliques chosen to break the original graph’s cycles. In many ap-
plications, the high dimensionality of these cliques makes exact manipulation of their
true marginal distributions intractable. However, a wide range of algorithms can be
developed by coupling an approximate clique representation with corresponding local
computational methods [58, 131, 171]. For example, distributions over large discrete
cliques can be approximated by a set of weighted point samples, and then related to
neighboring nodes using standard message–passing recursions [170]. Koller et al. [171]
propose a more sophisticated framework in which current marginal estimates are used
to guide message computations, as in the “belief sampling” form of NBP (Alg. 3.2).



Sec. 3.4. Efficient Multiscale Sampling from Products of Gaussian Mixtures 135

However, the sample algorithm they provide is limited to networks containing discrete
or conditionally Gaussian latent variables.

The NBP algorithm differs from these previous approaches in three key ways. First,
for graphs with cycles we do not form a junction tree, but instead iterate local mes-
sage updates as in loopy BP. This advantageously leads to beliefs defined in lower–
dimensional spaces, where nonparametric density estimation is more reliable. Second,
NBP message updates can be adapted to graphs containing an extremely broad range
of continuous, non–Gaussian potentials. The particle message passing (PAMPAS) al-
gorithm [145] provides a related extension of particle filters to general graphs, which
was developed concurrently with NBP. However, its message updates are specialized to
graphs whose potentials are small Gaussian mixtures, rather than the general analytic
functions considered by Sec. 3.3.3. More recently, particle–based message updates have
also been applied in factor graphs arising in digital communications [57].

A final advantage of NBP is provided by our use of Gaussian kernel density estimates
to approximate continuous beliefs. As we show in the following section, efficient multi-
scale sampling methods may then be used to accurately fuse the information provided
by several NBP messages. In contrast, the density tree representations considered by
several other approximation frameworks [171, 294] seem limited to simpler, importance
sampling–based message updates.

¥ 3.4 Efficient Multiscale Sampling from Products of Gaussian Mixtures

In many applications, NBP’s computations are dominated by the cost of sampling from
the product of several Gaussian mixtures. These mixture products are the mechanism
by which NBP fuses information from different messages, and arise in the computation
of both belief updates and message updates (see Alg. 3.1). In this section, we describe
several algorithms for sampling from such products, including multiscale methods de-
rived from KD–tree density representations. We conclude with an empirical comparison
indicating the situations in which each approach is most effective.

We begin by considering a set of d Gaussian mixtures {p1(x), . . . , pd(x)}, whose
components we denote by

pi(x) =
∑

`i∈Li

w`i
N (x; µ`i

, Λi) (3.35)

Here, `i is an abstract label indexing the set Li of mixture components composing pi(x),
and w`i

equals the normalized weight of component `i. For notational simplicity, we
assume that all input mixtures are of equal size L, and that the diagonal covariance
matrices Λi are uniform within each mixture. However, the algorithms which follow may
be readily extended to problems where this is not the case. Our goal is to efficiently
sample from the Ld component mixture density p(x) ∝ ∏d

i=1 pi(x). As in NBP message
updates, we assume that L samples from this product distribution are desired.
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¥ 3.4.1 Exact Sampling

The task of sampling from the product distribution can be decomposed into two stages:
randomly select one of the product density’s Ld components, and then draw a sample
from the corresponding Gaussian. Note that there is a single Gaussian in the product
density for each combination of input density labels. Throughout this section, we use
lowercase script `i to label input density components, and capital script L = [`1, . . . , `d]
to indicate corresponding members of the product distribution. The relative weights
assigned to components of the product distribution can be shown to equal

wL ∝
∏d

i=1 w`i
N (x; µ`i

, Λi)

N (x; µL, ΛL)
Λ−1
L =

d∑

i=1

Λ−1
i Λ−1

L µL =
d∑

i=1

Λ−1
i µ`i

(3.36)

where µL and ΛL are the mean and covariance of product component L. The weight
wL is constant, and may be evaluated at any x (the value x = µL may be numerically
convenient). Furthermore, when all input mixtures share a common covariance Λi = Λ,
additional simplifications are possible. To form the product distribution, these weights
are normalized by the weight partition function Z ,

∑
L wL.

Determining Z exactly takes O(Ld) operations. Given this constant, we can draw
L samples from the product distribution in O(Ld) time and O(L) storage. To do this,
we first sample and sort L independent variables which are uniformly distributed on
the unit interval. We then compute the cumulative distribution of p(L) = wL/Z to
determine which, if any, samples are drawn from each component L. Finally, samples
are drawn from the chosen Gaussians, whose mean and covariance are as in eq. (3.36).

¥ 3.4.2 Importance Sampling

While the previous section’s exact sampler is accurate, its exponential cost is often
intractable. To develop more efficient algorithms, we consider the importance sampling
framework described in Sec. 2.4.1. To draw L approximate samples from the mixture
product p(x), an importance sampler first draws M > L auxiliary samples x̃(m) from
some proposal distribution r(x). The mth sample is then given importance weight

w̃(m) ∝ p(x̃(m))

r(x̃(m))
m = 1, . . . , M (3.37)

Normalizing these weights, L output samples x(`) are generated by taking x(`) = x̃(m)

with probability proportional to w̃(m). Note that unless M À L, this importance sam-
pler is likely to choose some auxiliary samples multiple times.

The accuracy of such importance samplers depends critically on the chosen proposal
distribution [192]. For products of Gaussian mixtures, we consider two canonical im-
portance densities. The first, which we refer to as mixture importance sampling, draws
each sample by randomly selecting one of the d input mixtures, and sampling from its
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Given d Gaussian mixtures, where {µ`i
, w`i

,Λi} denote the components of the ith mixture:

1. For each i ∈ {1, . . . , d}, choose a starting label `i by sampling p(`i = `) ∝ w` , ` ∈ Li.

2. Fixing the input mixture labels `i, use eq. (3.36) to draw a single sample x from the
corresponding component L of the product mixture:

x ∼ N (µL,ΛL) L = [`1, . . . , `d]

3. Fixing x, independently sample a new label `i for each i ∈ {1, . . . , d}:
p(`i = ` | x) ∝ w`N (x;µ` ,Λi) ` ∈ Li

4. Repeat steps 2–3 for T iterations, and output the sample x from the final iteration.

Algorithm 3.3. Parallel Gibbs sampling from the product of d Gaussian mixtures. Accuracy is
implicitly determined by the number of sampling iterations, T . If the input mixtures have L components,
each iteration requires O(Ld) operations.

L components. This procedure is equivalent to the following proposal distribution:

r(x) =
1

d

d∑

i=1

pi(x) (3.38)

The importance weight of each sample x̃(m) ∼ r(x) then equals

w̃(m) ∝
∏

i pi(x̃
(m))∑

i pi(x̃(m))
(3.39)

A similar approach was used to combine density trees in [294]. Alternatively, we can
approximate each input mixture pi(x) by a single Gaussian density ri(x), and choose

r(x) ∝
d∏

i=1

ri(x) ri(x) = N (x; Epi
[x], Covpi

[x]) (3.40)

We call this procedure Gaussian importance sampling. While this proposal distribu-
tion desirably interpolates among input mixtures, we expect it to be ineffective for
multimodal product distributions (see, for example, Fig. 2.17).

¥ 3.4.3 Parallel Gibbs Sampling

Direct sampling from Gaussian mixture products is difficult because the distribution
of product density labels L, as defined by eq. (3.36), has a complex form. In this
section, we instead consider the joint distribution of the input mixture labels `i and a
corresponding output sample x:

p(x, `1, . . . , `d) ∝
d∏

i=1

∑

`i∈Li

w`i
N (x; µ`i

, Λi) (3.41)



138 CHAPTER 3. NONPARAMETRIC BELIEF PROPAGATION

Figure 3.2. Parallel Gibbs sampling from a product of three mixtures of L = 4 Gaussian kernels. Top:

Fixing the values for all mixture labels (solid red), we sample a single observation x (red, center). We
then independently sample a new label `i for each mixture according to weights (arrows) determined
by x. Bottom: After T iterations, the final labeled Gaussians for each mixture (right, solid red) are
multiplied together to identify one (left, solid red) of the 43 components (left, thin black) of the product
density (left, dashed blue).

Given fixed values for the input labels, x follows the Gaussian distribution of prod-
uct component L = [`1, . . . , `d] (see eq. (3.36)). Conversely, given x the labels are
conditionally independent, with posterior distributions of the following form:

p(`i = ` | x) ∝ w`N (x; µ` , Λi) ` ∈ Li (3.42)

As summarized by Alg. 3.3, we may thus define a parallel Gibbs sampler which alternates
between choosing an output sample x conditioned on the current input mixture labels,
and parallel sampling of the mixture labels given x.

Figure 3.2 illustrates the parallel Gibbs sampler for a product of three Gaussian
mixtures. In this approach, the input labels are treated as auxiliary variables [9] which
reveal tractable structure in the product distribution (see Sec. 2.4.3). Each parallel
sampling iteration requires O(dL) operations, so that the complexity of choosing L
product density samples is O(dL2). We note that a similar Gibbs sampler has been
used to train product of experts models [137, 138].

Although formal verification of the Gibbs sampler’s convergence is difficult, our
empirical results indicate that accurate Gibbs sampling typically requires far fewer
computations than direct sampling. Note that NBP uses the Gibbs sampling method
differently from classic simulated annealing algorithms [108]. In particular, those ap-
proaches update a single Markov chain whose state dimension is proportional to the
size of the graph. In contrast, NBP uses a variational approximation to define many
local Gibbs samplers, each involving only a few nodes.



Given d Gaussian mixtures, where {µ`i
, w`i

,Λi} denote the components of the ith mixture:

1. For each i ∈ {1, . . . , d}, choose a starting label `i by sampling p(`i = `) ∝ w` , ` ∈ Li.

2. Incrementally resample the label `i associated with each input mixture i ∈ {1, . . . , d}:
(a) Using eq. (3.36), determine the mean µ̄ and covariance Λ̄ of the product distribution

N
(
x; µ̄, Λ̄

)
∝

∏

j 6=i

N
(
x;µ`j

,Λj

)

(b) Using any convenient x, determine the unnormalized probability of each `i ∈ Li:

w̄`i
= w`i

N (x;µ`i
,Λi)N

(
x; µ̄, Λ̄

)

N (x;µL,ΛL)
L = [`1, . . . , `d]

(c) Sample a new label `i according to p(`i = `) ∝ w̄` , ` ∈ Li.

3. Repeat step 2 for T iterations.

4. Draw a single sample x ∼ N (µL,ΛL), where L = [`1, . . . , `d] indicates the product mixture
component selected on the final incremental sampling iteration.

Algorithm 3.4. Sequential Gibbs sampling from the product of d Gaussian mixtures. Accuracy is
implicitly determined by the number of sampling iterations, T . If the input mixtures have L components,
each iteration requires O(Ld) operations.

Figure 3.3. Sequential Gibbs sampling from a product of three mixtures of L = 4 Gaussian kernels.
Top: Mixture labels are resampled according to weights (arrows) determined by the two fixed com-
ponents (solid red). The Gibbs sampler iteratively chooses a new label `i for one density conditioned
on the Gaussians selected by the other labels {`j}j 6=i. Bottom: After T iterations, the final labeled
Gaussians for each mixture (right, solid red) are multiplied together to identify one (left, solid red) of
the 43 components (left, thin black) of the product density (left, dashed blue).
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(a) (b)
Figure 3.4. Two KD-tree representations of the same one–dimensional point set (finest scale not
shown). (a) Each node maintains a bounding box containing all associated data points. Label sets l are
shown in braces. (b) Each node maintains mean and variance statistics for all associated data points.

¥ 3.4.4 Sequential Gibbs Sampling

We can also construct an alternative, sequential Gibbs sampler by marginalizing the
output sample x from the joint distribution of eq. (3.41). Given fixed labels {`j | j 6= i}
for all but one input mixture, the conditional distribution of the remaining label `i

is given by eq. (3.36). As detailed in Alg. 3.4, we may thus sequentially resample
all d input labels in O(dL) operations. After a fixed number of Gibbs iterations, a
single output sample x is drawn from the product mixture component L = [`1, . . . , `d]
corresponding to the chosen input mixture labels.

Figure 3.3 illustrates the sequential Gibbs sampler for the same Gaussian mix-
ture product considered in Fig. 3.2. Both Gibbs samplers require O(dL) operations
per iteration. Note that the sequential Gibbs sampler can be interpreted as a Rao–
Blackwellized [9, 39] modification of the parallel sampler (see Sec. 2.4.4). As we confirm
empirically in Sec. 3.4.8, it should thus provide improved sampling accuracy.

¥ 3.4.5 KD Trees

A KD–tree is a hierarchical data structure which caches statistics of subsets of a collec-
tion of points, thereby making later computations more efficient [19, 66]. KD–trees are
typically binary trees constructed by successively splitting the data along cardinal axes,
grouping points by spatial location. A variety of heuristics have been proposed for find-
ing trees which best capture the coarse–scale structure of a given dataset. Empirically,
the fast sampling algorithms developed in the following sections seem insensitive to the
details of the chosen KD–tree. Our simulations employ a simple top–down construction
algorithm, recursively partitioning points along the highest–variance dimension [226].

Each leaf node of the KD–tree is associated with a single observation, which as
before we index by a label ` ∈ L. As illustrated in Fig. 3.4, coarser scale nodes are then
associated with subsets of these observations, denoted by corresponding label sets l. In
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the KD–tree of Fig. 3.4(a), coarse scale nodes maintain a bounding box containing the
corresponding fine scale observations; similar trees are used in Sec. 3.4.7. Alternatively,
the KD–tree of Fig. 3.4(b) caches the mean and variance of point clusters, providing a
multi–scale Gaussian mixture representation used in Sec. 3.4.6. In either case, cached
statistics may be efficiently computed via a simple bottom–up recursion [66].

¥ 3.4.6 Multiscale Gibbs Sampling

Although the pair of Gibbs samplers discussed in Sec. 3.4.3 and 3.4.4 are often effective,
they sometimes require a very large number of iterations to produce accurate samples.
The most difficult densities are those for which there are multiple widely separated
modes, each of which is associated with disjoint subsets of the input mixture labels. In
this case, conditioned on a set of labels corresponding to one mode, it is very unlikely
that a label or data point corresponding to a different mode will be sampled, leading
to slow convergence.

Similar problems have been observed with Gibbs samplers on Markov random
fields [108]. In these cases, convergence can often be accelerated by constructing a
series of “coarser scale” approximate models in which the Gibbs sampler can move be-
tween modes more easily [184]. The primary challenge in developing these algorithms
is to determine procedures for constructing accurate coarse scale approximations. For
products of Gaussian mixtures, KD–trees provide a simple, intuitive, and easily con-
structed set of coarser scale models.

As in Fig. 3.4(b), we describe each input mixture by a KD–tree storing the mean and
variance (biased by kernel size) of subsets of that density’s Gaussian kernels. We start
at the same coarse scale for all input mixtures, and perform standard Gibbs sampling
on that scale’s summary Gaussians. After several iterations, we condition on a data
sample (as in the parallel Gibbs sampler of Alg. 3.3) to infer labels at the next finest
scale. Repeating this process, we eventually arrive at the finest scale, and draw an
output sample from the chosen Gaussian component of the product distribution.

Intuitively, by gradually moving from coarse to fine scales, multiscale sampling can
better explore all of the product density’s important modes. As the number of sampling
iterations approaches infinity, multiscale samplers have the same asymptotic properties
as standard Gibbs samplers. Unfortunately, there is no guarantee that multiscale sam-
pling will improve performance. However, our simulation results indicate that it is
usually very effective (see Sec. 3.4.8).

¥ 3.4.7 Epsilon–Exact Sampling

As illustrated in Fig. 3.5, KD–trees may be used to efficiently bound the minimum and
maximum pairwise distance separating sets of summarized observations. This approach
has been previously used to develop dual–tree algorithms for fast evaluation of multi-
variate kernel density estimates [120]. In this section, we adapt these ideas to efficiently
compute an approximation to the weight partition function Z. This leads to an ε-exact
sampler for which a label L = [`1, . . . , `d], with true probability pL, is guaranteed to be
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Figure 3.5. KD–tree representations of two sets of points (crosses and circles) may be combined
to efficiently bound the maximum (Dmax) and minimum (Dmin) pairwise distance separating subsets
(bold) of the summarized observations.

sampled with some probability p̂L ∈ [pL − ε, pL + ε].
We begin by constructing a KD–tree representation of each input mixture pi(x). As

in Fig. 3.4(a), each coarse–scale node is associated with some subset li of the observation
labels `i. To implement the proposed multi–tree recursion, we cache bounding boxes for
each set {µ`i

| `i ∈ li} of summarized input kernels, as well as their associated weight
wli

,
∑

`i∈li
w`i

. Choosing a coarse–scale node in each of these KD–trees then identifies
some subset of the product density labels, which we denote by L = l1×· · ·×ld.

The approximate sampling procedure is structurally similar to the exact sampler
of Sec. 3.4.1, but uses bounds derived from the KD–trees to reduce computation. We
first use a multi–tree recursion to identify sets of product density components L whose
elements L ∈ L have nearly constant weight ŵL. Summarizing all product density
components in this fashion, we may then approximate the weight partition function as
Ẑ =

∑
ŵL, where ŵL =

∑
L∈L

ŵL. Finally, we compute the cumulative distribution of

these same sets of labels, assigning total probability ŵL/Ẑ to those components L ∈ L.

Approximate Evaluation of the Weight Partition Function

We first note that the weights assigned to components of the product distribution
(eq. (3.36)) can be expressed using terms which involve only pairwise distances:

wL =
( d∏

i=1

w`i

)
·

∏

(`i,`j>i)

N
(
µ`i

; µ`j
, Λ(i,j)

)
where Λ(i,j) = ΛiΛ

−1
L Λj (3.43)

This equation may be divided into two parts: a weight contribution
∏

i w`i
, and a

distance contribution (which we denote by KL) expressed in terms of the pairwise
distances between kernel centers. We use the KD-trees’ bounding boxes to compute
bounds on each of these pairwise distance terms for a collection of labels L = l1×· · ·×ld.
The product of these upper (lower) pairwise bounds is itself an upper (lower) bound
on the total distance contribution for any label L ∈ L. Let these bounds by denoted
by K+

L
and K−

L
, respectively. We could also use multipole methods such as the Fast

Gauss Transform [275] to efficiently compute other, potentially tighter bounds on these
pairwise interactions.

By using the mean K∗
L

= 1
2

(
K+

L
+ K−

L

)
to approximate KL, we incur an error of at

most 1
2

(
K+

L
− K−

L

)
for any label L ∈ L. Let δ be a small tolerance parameter, whose



Sec. 3.4. Efficient Multiscale Sampling from Products of Gaussian Mixtures 143

relationship to ε is quantified by Thm. 3.4.1. If this error is less than Zδ (which we
ensure by comparing to a running lower bound Zmin on Z), we treat it as constant over
the set L and approximate the contribution to Z by

ŵL =
∑

L∈L

ŵL = K∗
L

∑

L∈L

( ∏

i

w`i

)
= K∗

L

∏

i

( ∑

`i∈li

w`i

)
= K∗

L

∏

i

wli
(3.44)

This quantity is easily calculated via cached statistics of the weight contained in each
point set. If the error is larger than Zδ, we need to refine at least one of the label
sets. We use a simple heuristic to do this, finding the pair of trees with the largest
discrepancy in their upper and lower pairwise distance bounds.

This recursion is summarized in Alg. 3.5. Note that all of the quantities required
by this algorithm may be stored within the KD–trees, avoiding searches over the label
sets li. At the algorithm’s termination, the total error is bounded by

|Z − Ẑ| ≤
∑

L

|wL − ŵL| ≤
∑

L

1

2

(
K+

L
− K−

L

) ∏

i

w`i
≤ Zδ

∑

L

∏

i

w`i
≤ Zδ (3.45)

where the last inequality follows because each input mixture’s weights are normalized.
This guarantees that our estimate Ẑ is within a fractional tolerance δ of its true value.

Approximate Sampling from the Cumulative Distribution

To use the partition function estimate Ẑ for approximate sampling, we repeat the multi–
tree recursion in a manner analogous to the exact sampler. In particular, we first draw
L sorted uniform random variables, and then locate these samples in the cumulative
distribution. We do not explicitly construct the cumulative distribution, but instead
use the same approximate partial weight sums used to determine Ẑ (see eq. (3.44)) to
find the block of labels L = l1×· · ·×ld associated with each sample. Since all labels L ∈ L

within this block have nearly equal distance contribution KL ≈ K∗
L
, we independently

sample labels `i ∈ li for each input mixture according to their weights w`i
.

This multi–tree sampling algorithm is summarized in Alg. 3.6. Note that, to be
consistent about when approximations are made and thus produce weights ŵL which
still sum to Ẑ, we repeat the procedure for computing Ẑ exactly, including recomput-
ing the running lower bound Zmin. The accuracy of this sampling algorithm is then
characterized by the following result.

Theorem 3.4.1. Consider a sample from a product of Gaussian mixtures drawn via
Alg. 3.6, using a partition function estimate Ẑ determined from Alg. 3.5 with tolerance
parameter δ. This sample is then guaranteed to be drawn from product component L
with probability p̂L ∈ [pL − ε, pL + ε], where

|p̂L − pL| =

∣∣∣∣
ŵL

Ẑ
− wL

Z

∣∣∣∣ ≤
2δ

1 − δ
, ε (3.46)
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MultiTree(l1, . . . , ld)

1. For each pair of distributions (i, j > i), use their bounding boxes to compute

K(i,j)
max ≥ max

`i∈li,`j∈lj

N
(
µ`i

;µ`j
,Λ(i,j)

)

K
(i,j)
min ≤ min

`i∈li,`j∈lj

N
(
µ`i

;µ`j
,Λ(i,j)

)

2. Determine overall upper and lower bounds on the pairwise distance weights:

Kmax =
∏

(i,j>i)

K(i,j)
max Kmin =

∏

(i,j>i)

K
(i,j)
min

3. If 1
2 (Kmax − Kmin) ≤ Zminδ, approximate this combination of label sets as follows:

(a) ŵL = 1
2 (Kmax + Kmin)

(∏
wli

)
where wli

=
∑

`i∈li
w`i

is cached by the KD-trees.

(b) Zmin = Zmin + Kmin

(∏
wli

)

(c) Ẑ = Ẑ + ŵL

4. Otherwise, refine one of the given label sets:

(a) Find arg max(i,j) K
(i,j)
max /K

(i,j)
min such that range(li) ≥ range(lj).

(b) Recursively call the following methods:

MultiTree(l1, . . . ,Nearer(Left(li),Right(li), lj), . . . , ld)

MultiTree(l1, . . . ,Farther(Left(li),Right(li), lj), . . . , ld)

Here, Nearer(Farther) returns the nearer (farther) of the first two arguments to the third.

Algorithm 3.5. Recursive multi-tree algorithm for approximately evaluating the partition function Z

for a product of d Gaussian mixtures represented by KD–trees. Zmin denotes a running lower bound
on the partition function, while Ẑ is the current estimate. Initialize by setting Zmin = Ẑ = 0.

Proof. From the bound of eq. (3.45) on the error associated with K∗
L
, it follows that

ŵL

Z
− ŵL

Ẑ
=

ŵL

Z

(
1 − 1

Ẑ/Z

)
≤ ŵL

Z

(
1 − 1

1 + δ

)
≤ ŵL

Z

(
δ

1 + δ

)
≤ δ

where the last inequality uses ŵL ≤ Ẑ ≤ Z(1+ δ). A comparable lower bound can then
be determined as follows:

ŵL

Z
− ŵL

Ẑ
≥ ŵL

Z

(
1 − 1

1 − δ

)
≥ ŵL

Z

( −δ

1 − δ

)
≥ −1 + δ

1 − δ
δ

Combining these expressions, it then follows that
∣∣∣∣
ŵL

Z
− ŵL

Ẑ

∣∣∣∣ ≤
1 + δ

1 − δ
δ

Thus, the estimated probability of choosing label L has at most error
∣∣∣∣
wL

Z
− ŵL

Ẑ

∣∣∣∣ ≤
∣∣∣∣
wL

Z
− ŵL

Z

∣∣∣∣ +

∣∣∣∣
ŵL

Z
− ŵL

Ẑ

∣∣∣∣ ≤
2δ

1 − δ
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Given the final partition function estimate Ẑ, repeat Alg. 3.5 with the following modifications:

3. (c) If ĉ ≤ Ẑum < ĉ + ŵL for any m, draw L ∈ L by sampling `i ∈ li with weight w`i
/wli

3. (d) ĉ = ĉ + ŵL

Algorithm 3.6. Recursive multi-tree algorithm for approximate sampling from a product of d Gaussian
mixtures. We let ĉ denote the cumulative sum of weights ŵL . Initialize by sorting L uniform [0, 1]
random variables {um}L

m=1, and set Zmin = ĉ = 0.

which matches the definition of eq. (3.46).

In contrast with the Gibbs samplers of Algs. 3.3 and 3.4, this epsilon–exact sampler
provides explicit guarantees on the quality of its generated samples. However, its com-
putation time is implicitly determined by the structure of the input Gaussian mixtures,
and may vary widely depending on their complexity and dimensionality. The empirical
examples of the following section examine these issues in more detail.

¥ 3.4.8 Empirical Comparisons of Sampling Schemes

In this section, we compare the proposed sampling methods on three one–dimensional
examples, each involving products of mixtures of 100 Gaussians (see Fig. 3.6). We mea-
sure performance by drawing 100 approximate samples, constructing a kernel density
estimate using likelihood cross–validation [263], and calculating the KL divergence from
the true product density. We repeat this test 250 times for each of a range of parame-
ter settings of each algorithm, and plot the average KL divergence versus computation
time. We focus on one–dimensional test cases so that discretization may be used to
efficiently evaluate these KL divergence scores.

Exact sampling from products of Gaussian mixtures is typically very slow, due to
the exponential number of components in the product density (see Sec. 3.4.1). Thus,
for all examples except the two–mixture product of Fig. 3.6(c), the computation time
of exact sampling is too large to be shown on our result plots. In these cases, we use
a horizontal line to indicate the accuracy of exact sampling, and list the corresponding
computation time in the caption. Note that, because we estimate the product density
from 100 samples, even exact sampling has a non–zero KL divergence score.

For the product of three mixtures in Fig. 3.6(a), the multiscale (MS) Gibbs samplers
dramatically outperform standard Gibbs sampling. In addition, we see that sequential
Gibbs sampling is more accurate than parallel. Both of these differences can be at-
tributed to the bimodal product density. However, the most effective algorithm is the
ε–exact sampler, which matches exact sampling’s performance in far less time (0.05
versus 2.75 seconds). For a product of five densities (Fig. 3.6(b)), the cost of exact
sampling increases to 7.6 hours, but the ε–exact sampler matches its performance in
less than one minute. Even faster, however, is the sequential MS Gibbs sampler, which
takes only 0.3 seconds.
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Figure 3.6. Comparison of average sampling accuracy versus computation time for different algorithms
(see text). (a) Product of 3 mixtures (exact requires 2.75 sec). (b) Product of 5 mixtures (exact requires
7.6 hours). (c) Product of 2 mixtures (exact requires 0.02 sec). All computation times measured on an
800 MHz Intel Pentium III workstation.
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For the previous two examples, mixture importance sampling (IS) is nearly as accu-
rate as the best multiscale methods (Gaussian IS seems ineffective). However, in cases
where all of the input densities have little overlap with the product density, mixture IS
performs very poorly (see Fig. 3.6(c)). In contrast, multiscale samplers perform very
well in such situations, because they can discard large numbers of low weight product
density kernels.

¥ 3.5 Applications of Nonparametric BP

This section considers a pair of simple applications which explore the accuracy and
effectiveness of the NBP algorithm. In all cases, we sample from Gaussian mixture
products via the multiscale, sequential Gibbs sampler of Sec. 3.4.6, and update NBP
messages as in Alg. 3.1. Chap. 4 explores the belief sampling updates of Alg. 3.2 in the
context of a more challenging visual tracking application.

¥ 3.5.1 Gaussian Markov Random Fields

Gaussian graphical models provide one of the only families of continuous distributions
for which the BP algorithm may be implemented exactly [276, 321]. For this reason,
Gaussian models may be used to test the accuracy of the nonparametric approximations
made by NBP. Note that we cannot hope for NBP to outperform algorithms, like
Gaussian BP, designed to take advantage of the linear structure underlying Gaussian
problems. Instead, our goal is to verify NBP’s accuracy in a situation where exact
comparisons are possible.

We consider NBP’s performance on a 5×5 nearest–neighbor grid, as in Fig. 2.13(a),
with randomly chosen inhomogeneous potentials. We note, however, that qualita-
tively similar results have also been observed on tree–structured graphs. Exploiting
the tractable form of Gaussian potentials, we could use a simplified, analytic message
propagation step [145]. To allow a more general comparison, however, we instead de-
fine our test model using Gaussian mixture potentials, which are in turn kernel density
estimates based on samples drawn from true, correlated Gaussian potentials.

For each node i ∈ V, Gaussian BP converges to a steady–state estimate of the
marginal mean µi and variance σ2

i after about 15 iterations. To evaluate NBP, we
performed 15 iterations of the NBP message updates (see Alg. 3.1) using several different
particle set sizes L ∈ [10, 400]. We then found the marginal mean µ̂i and variance σ̂2

i

estimates implied by the final NBP density estimates. For each tested particle set size,
the NBP comparison was repeated 100 times.

Combining the data from these NBP trials, we computed the error in the mean and
variance estimates, normalized so each node behaved like a unit–variance Gaussian:

µ̃i =
µ̂i − µi

σi
σ̃2

i =
σ̂2

i − σ2
i√

2σ2
i

(3.47)

Figure 3.7 shows the mean and variance of these error statistics, across all nodes and
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Figure 3.7. NBP performance on a 5 × 5 nearest–neighbor grid with Gaussian potentials. Plots
show the mean (solid) and standard deviation (dashed) of the normalized error measures of eq. (3.47),
following 15 iterations of NBP using different particle set sizes L.

trials, for different particle set sizes L. The NBP algorithm always provides unbiased
mean estimates, but overly large variances. This bias, which decreases as more particles
are used, is due to the smoothing inherent in kernel–based density estimates. As ex-
pected for samples drawn from Gaussian distributions, the standard deviation of both
error measures falls as L−1/2.

¥ 3.5.2 Part–Based Facial Appearance Models

In this section, we use NBP to infer relationships among the PCA coefficients defining
a part–based model of the human face. Several related facial appearance models have
demonstrated robustness to partial occlusions [80, 215, 318]. We propose a richer model
which captures statistical dependencies induced by facial expressions, and thus allows
NBP to infer the appearance of occluded parts.

Model Construction

We begin by using training data to construct a nonparametric graphical prior for the
location and appearance of five different facial features (see Fig. 3.9). A 10–dimensional
linear basis for each feature’s appearance is first determined via principal components
analysis (PCA) [215]. The hidden variable xi at each of the graphical model’s five
nodes is then defined to be a 12–dimensional (10 PCA coefficients plus image position)
representation of the corresponding feature. We assume that the face’s orientation
and scale are known, although the model could be easily extended to describe other
alignment parameters [61].

Our appearance model is based on training images from the AR face database [198].
For each of 94 people, we chose four poses showing a range of expressions and light-
ing conditions (see Fig. 3.8). Five manually selected feature points (eyes, nose and
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Figure 3.8. Two of the 94 training subjects from the AR face database [198]. Each was photographed
in these four poses, which show neutral and smiling expressions and three lighting conditions.

mouth corners) were used to align each image and position the feature masks shown in
Fig. 3.9(a). Subtracting the mean features shown in Fig. 3.9(b), a PCA basis for each
feature’s appearance may then be determined via a singular value decomposition [215].

Using the PCA representation of each training subject, we determined a kernel–
based nonparametric density estimate of the joint probability of those pairs of facial
features which are adjacent in the graph of Figure 3.9(c). Figure 3.10 shows several
marginalizations of these 20–dimensional densities, each relating a pair of PCA coeffi-
cients (e.g., the first nose and second left mouth coefficients). Clearly, simple Gaussian
approximations would obscure most of this dataset’s structure. Finally, we approxi-
mate the true pairwise potentials relating neighboring PCA coefficients by correspond-
ing pairwise kernel density estimates [95]. Differences in the positions of neighboring
features are then modeled by a two–dimensional Gaussian distribution, with mean and
covariance estimated from the training set.

Estimation of Occluded Features

In this section, we apply the graphical model of Fig. 3.9 to the simultaneous location and
reconstruction of partially occluded faces. Given an input image, we first identify the
region most likely to contain a face using a standard eigenface detector [215] trained
on partial face images. This step helps to prevent spurious detection of background
detail by the individual components. Chap. 5 describes other representations of visual
features which are more discriminant than linear PCA bases. For each part, we scan
this region with the feature mask, producing the best PCA reconstruction v̂ of each
pixel window v. The observation potential is created by defining a Gaussian mixture
component, with mean v̂ and weight exp

{
−||v − v̂||2/2σ2

}
, for each v. To allow for

outliers due to occlusion, the observation potential is augmented by a zero mean, high–
variance Gaussian weighted to represent 20% of the total likelihood.

We tested the NBP algorithm on images of individuals not found in the training set.



(a) (b) (c)

Figure 3.9. Part–based model of the position and appearance of five facial features. (a) Masks defining
the pixel regions corresponding to each feature. Note that the two mouth masks overlap. (b) Mean
intensities of each feature, used to construct a PCA–based appearance model. (c) Graphical prior
relating the position and PCA coefficients of different features.

Figure 3.10. Empirical joint distributions of six different pairs of PCA coefficients. Each plot shows
the corresponding marginal distributions along the bottom and right edges. Note the multimodal,
non–Gaussian relationships underlying these facial features.
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Each message was represented by L = 100 particles. Due to the high dimensionality
of the variables in this model, and the presence of the occlusion process, discretization
is intractable. We instead compare NBP’s position and appearance estimates to the
closed form solution obtained by fitting a single Gaussian to each of the nonparametric
prior and observation potentials.

Figure 3.11 shows inference results for two images of a man concealing his mouth.
In one image he is smiling, while in the other he is not. Using the relationships between
eye and mouth shape learned from the training set, NBP correctly infers the concealed
mouth’s expression. In contrast, the Gaussian approximation distorts the relationships
shown in Fig. 3.10, and produces results which are indistinguishable from the mean
mouth shape. Note that these results were obtained in an unsupervised fashion, without
any manual labeling of the training image expressions.

Figure 3.12 shows inference results for two images of a woman concealing one eye.
In one image, she is seen under normal illumination, while in the second she is illu-
minated from the left by a bright light. In both cases, the structure of the concealed
eye mirrors the visible eye. In addition, NBP correctly modifies the illumination of the
occluded eye to match the intensity of the corresponding mouth corner. This example
shows NBP’s ability to integrate information from multiple nodes, producing globally
consistent estimates.

¥ 3.6 Discussion

This chapter developed a nonparametric, sampling–based extension of the belief prop-
agation algorithm for graphical models containing continuous, non–Gaussian random
variables. Via importance sampling methods, we have shown how NBP may be flexibly
adapted to a broad range of analytic potential functions. Multiscale sampling methods
then improve the accuracy and efficiency of message updates. Motivated by NBP’s
success in using part–based models to estimate facial appearance, Chap. 4 considers a
more challenging application to the visual tracking of articulated hand motion. Chap. 5
then revisits object recognition problems, and develops methods for robustly learning
nonparametric, part–based models.



Gaussian Neutral NBP Gaussian Smiling NBP

Figure 3.11. Simultaneous estimation of location (top row) and appearance (bottom row) of an oc-
cluded mouth. Results for the Gaussian approximation are on the left of each panel, and for NBP
on the right. By observing the squinting eyes of the subject (right), and exploiting the feature inter-
relationships represented in the trained graphical model, the NBP algorithm correctly infers that the
occluded mouth should be smiling. A parametric Gaussian model fails to capture these relationships.

Gaussian Ambient
Lighting

NBP Gaussian Lighted
from Left

NBP

Figure 3.12. Simultaneous estimation of location (top row) and appearance (bottom row) of an
occluded eye. NBP combines information from the visible eye and mouth to determine both shape and
illumination of the occluded eye, correctly inferring that the left eye should brighten under the lighting
conditions shown at right.



Chapter 4

Visual Hand Tracking

ACCURATE visual tracking of articulated objects is a challenging problem with ap-
plications in human–computer interfaces, motion capture, and scene understand-

ing [103, 214]. In this chapter, we develop probabilistic methods for estimating three–
dimensional hand motion from video sequences. Even coarse models of the hand’s
geometry have 26 continuous degrees of freedom [333], making direct search over all
possible 3D poses intractable. Instead, we adapt the nonparametric belief propagation
(NBP) algorithm developed in Chap. 3 to this hand tracking task.

To develop a graphical model describing the hand tracking problem, we consider a
redundant local representation in which each hand component is described by its global
3D position and orientation. Sec. 4.1 shows that the model’s kinematic constraints,
including self–intersection constraints not captured by joint angle representations, take
a simple form in this local representation. In Sec. 4.2, we then develop an appearance
model which incorporates color and edge–based image evidence. In cases where there
is no self–occlusion among the hand’s fingers, this appearance model factorizes across
the hand’s components. As we show in Sec. 4.3, efficient distributed inference is then
possible using the NBP algorithm. To consistently estimate 3D orientations, our tracker
adapts quaternion representations to density estimation on the rotation group.

Realistic hand motion typically induces significant self–occlusion. To address this,
we introduce a set of binary auxiliary variables specifying the occlusion state of each
pixel. Sec. 4.4 then uses an analytic approximation to marginalize these occlusion
masks, producing an NBP hand tracker which infers occlusion events in a distributed
fashion. We conclude in Sec. 4.5 with simulations demonstrating refinement of coarse
initial pose estimates, and tracking of extended motion sequences. Portions of these
results were presented at the 2004 CVPR Workshop on Generative Model Based Vi-
sion [278], and the 2004 Conference on Neural Information Processing Systems [279].

¥ 4.1 Geometric Hand Modeling

Structurally, the hand is composed of sixteen approximately rigid components: three
phalanges or links for each finger and thumb, as well as the palm [333]. As proposed
by [240, 270], we model each rigid body by one or more truncated quadrics (ellipsoids,
cones, and cylinders) of fixed size. These geometric primitives are well matched to the

153



154 CHAPTER 4. VISUAL HAND TRACKING

Figure 4.1. Projected edges (top row) and silhouettes (bottom row) for two configurations (left and
right blocks) of the 3D structural hand model. To aid visualization, the model joint angles are set to
match the images (left), and then also projected following rotations by 35◦ (center) and 70◦ (right)
about the vertical axis.

true geometry of the hand, and in contrast to 2.5D “cardboard” models [332, 334], allow
tracking from arbitrary orientations. Furthermore, they permit efficient computation
of projected boundaries and silhouettes [32, 270].

Figure 4.1 shows the edges and silhouettes corresponding to a sample hand model
configuration. Because our model is designed for estimation, not visualization, precise
modeling of all parts of the hand is unnecessary. As our tracking results demonstrate,
it is sufficient to capture the coarse structural features which are most relevant to the
observation model described in Sec. 4.2.

¥ 4.1.1 Kinematic Representation and Constraints

The kinematic constraints between different hand model components are well described
by revolute joints [333]. Figure 4.2(a) shows a graph depicting this kinematic structure,
in which nodes correspond to rigid bodies and edges to joints. The two joints connecting
the phalanges of each finger and thumb have a single rotational degree of freedom, while
the joints connecting the base of each finger to the palm have two degrees of freedom
(corresponding to grasping and spreading motions). These twenty angles, combined
with the palm’s global position and orientation, provide 26 degrees of freedom.

To determine the image evidence for a given hand configuration, the 3D position
and orientation, or pose, of each hand component must be determined. This forward
kinematics problem may be solved via a series of transformations derived from the
position and orientation of each joint axis, along with the corresponding joint angles
(see, for example, [204] for details). While most model–based hand trackers use this
joint angle parameterization, we instead explore a redundant representation in which
the ith rigid body is described by its position ui and orientation ri (a unit quaternion).
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(a) (b) (c)

Figure 4.2. Graphs describing the hand model’s constraints. (a) Kinematic constraints (EK) de-
rived from revolute joints. (b) Structural constraints (ES) preventing 3D component intersections.
(c) Dynamics relating two consecutive time steps (structural edges not shown for clarity).

Let xi = (ui, ri) denote this local description of each component, and x = {x1, . . . , x16}
the overall hand configuration. Sec. 4.3.1 discusses quaternion representations of 3D
orientation in more detail.

Clearly, there are dependencies among the elements of x implied by the kinematic
constraints. Let EK be the set of all pairs of rigid bodies which are connected by
joints, or equivalently the edges in the kinematic graph of Fig. 4.2(a). For each joint
(i, j) ∈ EK , define an indicator function ψK

i,j(xi, xj) which is equal to one if the pair
(xi, xj) are valid rigid body configurations associated with some setting of the angles
of joint (i, j), and zero otherwise. Viewing the component configurations xi as random
variables, the following prior explicitly enforces all constraints implied by the original
joint angle representation:

pK(x) ∝
∏

(i,j)∈EK

ψK
i,j(xi, xj) (4.1)

Equation (4.1) shows that pK(x) is defined by an undirected graphical model, whose
Markov structure is described by the graph representing the hand’s kinematic structure
(Fig. 4.2(a)). Intuitively, this graph expresses the fact that conditioned on the pose of
the palm, the position and orientation of each finger are determined by an independent
set of joint angles, and are thus statistically independent.

At first glance, the local representation described in this section may seem unattrac-
tive: the state dimension has increased from 26 to 96, and inference algorithms must
now explicitly deal with the prior constraints encoded by pK(x). However, as we show
in the following sections, local encoding of the model state greatly simplifies many other
aspects of the tracking problem.
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¥ 4.1.2 Structural Constraints

In reality, the hand’s joint angles are coupled because different fingers can never occupy
the same physical volume. This constraint is complex in a joint angle parameterization,
but simple in our local representation: the position and orientation of every pair of
rigid bodies must be such that their component quadric surfaces do not intersect.

We approximate this ideal constraint in two ways. First, we only explicitly constrain
those pairs of rigid bodies which are most likely to intersect, corresponding to the
edges ES of the graph in Fig. 4.2(b). Furthermore, we note that the kinematic prior
pK(x) implicitly constrains the quadrics composing each finger to have similar relative
orientations. We may thus detect most intersections based on the distance between
object centroids ui, so that the structural prior becomes

pS(x) ∝
∏

(i,j)∈ES

ψS
i,j(xi, xj) ψS

i,j(xi, xj) =

{
1 ||ui − uj || > εi,j

0 otherwise
(4.2)

Here, εi,j is determined from the fixed dimensions of the quadrics composing rigid bodies
i and j. Empirically, we find that this constraint helps prevent different fingers from
tracking the same image data.

¥ 4.1.3 Temporal Dynamics

In order to exploit the temporal information encoded in video sequences, we construct a
simple model of the hand’s dynamics. Let xt

i denote the position and orientation of the
ith hand component at time t, and xt = {xt

1, . . . , x
t
16}. For each component at time t,

our dynamical model adds a Gaussian potential connecting it to the corresponding
component at the previous time step (see Fig. 4.2(c)):

pT

(
xt | xt−1

)
=

16∏

i=1

N
(
xt

i; x
t−1
i , Λi

)
(4.3)

Although this temporal model is factorized, the kinematic constraints at the following
time step implicitly couple the corresponding random walks. Via results in Sec. 2.1.1,
these dynamics can be justified as the maximum entropy model given observations of
the marginal variance Λi of each hand component.

¥ 4.2 Observation Model

Our hand tracking system is based on a set of efficiently computed edge and color cues.
Previous work has demonstrated the effectiveness of similar features in visual tracking
applications [260, 333]. For notational simplicity, we focus on a single video frame for
the remainder of this section, and denote the hand’s pose by x = {x1, . . . , x16}. We
then let v represent the color and intensity of an individual pixel, and v = {v | v ∈ Υ}
the full image defined by some rectangular pixel lattice Υ.
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(a) (b)

Figure 4.3. Image evidence used for visual hand tracking. (a) Likelihood ratios for a color–based skin
model (dark pixels are likely to be skin). (b) Likelihood ratios for derivative of Gaussian filter response
magnitudes (dark pixels are likely hand boundaries).

¥ 4.2.1 Skin Color Histograms

Skin colored pixels have predictable statistics, which we model using a histogram distri-
bution pskin estimated from manually labeled training patches. Following [157], the red,
green, and blue color channels were each discretized to 32 levels. A small positive con-
stant, corresponding to a Dirichlet prior biased towards sparse appearance distributions
(see Sec. 2.1.3), was added to each bin total to avoid overfitting. Images not depicting
hands or skin were then used to create a comparably binned background histogram
model pbkgd. Empirically, we find that these histograms better capture saturation and
lighting effects than Gaussian color models [278].

As in Fig. 4.1, let Ω (x) denote the set of pixels in the projected silhouette of 3D
hand pose x. For simplicity, we assume that the colors associated with different pixels
v ∈ Υ are independent given x, so that an image v has color likelihood

pC(v | x) =
∏

v∈Ω(x)

pskin(v)
∏

v∈Υ\Ω(x)

pbkgd(v) ∝
∏

v∈Ω(x)

pskin(v)

pbkgd(v)
(4.4)

The final expression neglects the proportionality constant
∏

v∈Υ pbkgd(v), which is in-
dependent of x, and thereby limits computation to the silhouette region [48, 260]. To
make likelihood evaluation efficient, we precompute the cumulative sum of log likelihood
ratios along each row of pixels. Analogously to the integral images widely used for ob-
ject detection [304], we may then quickly determine the likelihood of each hypothesized
silhouette given only its boundary. Figure 4.3(a) shows the value of this likelihood ratio
for the pixels in a typical test image.

The silhouette Ω (x) of the overall hand is formed from the union of the silhouettes of
individual hand components Ω (xi). For 3D poses x in which there is no self–occlusion,
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these component silhouettes are disjoint, and the overall color likelihood factorizes as

pC(v | x) ∝
16∏

i=1

∏

v∈Ω(xi)

pskin(v)

pbkgd(v)
=

16∏

i=1

pC(v | xi) (4.5)

Note that this decomposition, which provides independent evidence for each hand com-
ponent, is not possible in the original joint angle representation.

To allow a similar decomposition, and hence distributed inference, when there is
occlusion, we augment the configuration xi of each node with a set of binary hidden
variables zi = {zi(v) | v ∈ Υ}. Letting zi(v) = 0 if pixel v in the projection of rigid body i
is occluded by any other body, and 1 otherwise, the color likelihood may be written as

pC(v | x, z) ∝
16∏

i=1

∏

v∈Ω(xi)

(
pskin(v)

pbkgd(v)

)zi(v)

=
16∏

i=1

pC(v | xi, zi) (4.6)

Assuming they are set consistently with the hand configuration x, the hidden occlusion
variables z ensure that the likelihood of each pixel in Ω(x) is counted exactly once.

¥ 4.2.2 Derivative Filter Histograms

As a hand is moved in front of a camera, it occludes the background scene, often
producing intensity gradients along its boundary (see Fig. 4.3(b)). In an earlier version
of our tracker [278], we used the Chamfer distance [271] to match candidate hand poses
to the output of an edge detector. However, we have found it to be more efficient and
effective to match hand boundaries using histograms of edge filter responses [173, 260].

Using boundaries labeled in training images, we estimated a histogram pon of the
response of a derivative of Gaussian filter steered to the edge’s orientation [93, 260]. A
similar histogram poff was estimated for filter outputs at randomly chosen image loca-
tions. Let Π (x) denote the oriented edges in the projection of 3D model configuration x.
Then, again neglecting dependencies among pixels, image v has edge likelihood

pE(v | x, z) ∝
∏

v∈Π(x)

pon(v)

poff(v)
=

16∏

i=1

∏

v∈Π(xi)

(
pon(v)

poff(v)

)zi(v)

=
16∏

i=1

pE(v | xi, zi) (4.7)

Slightly abusing notation, we do not explicitly denote the dependence of pon and poff

on derivative filter responses, rather than raw pixel intensities. As with the color model
of eq. (4.6), our use of occlusion masks z leads to a local likelihood decomposition.

¥ 4.2.3 Occlusion Consistency Constraints

For the occlusion–sensitive color and edge likelihood decompositions of eqs. (4.6, 4.7) to
be valid, the occlusion masks z must be chosen consistently with the 3D hand pose x.
These consistency constraints can be expressed by the following potential function:

η(xj , zi(v); xi) =

{
0 if xj occludes xi, v ∈ Ω(xj) , and zi(v) = 1
1 otherwise

(4.8)
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xj

v

 ϒ xk

zi(v) xi

Figure 4.4. Constraints allowing distributed occlusion reasoning. Left: Factor graph showing the local
appearance likelihoods pC(v | xi, zi) · pE(v | xi, zi) for rigid body i, and the occlusion constraints placed
on xi by two other hand components, xj and xk. Dashed lines denote weak dependencies. Variables
and potentials within the plate are replicated once per pixel. Right: Pairs of hand components EO for
which occlusion relationships are explicitly considered.

Note that because the quadric surfaces defining our hand model are convex and non-
intersecting, no two rigid bodies can ever take mutually occluding configurations. The
constraint η(xj , zi(v); xi) is zero precisely when pixel v in the projection of xi should be
occluded by xj , but zi(v) is in the unoccluded state.

The following potential encodes all of the occlusion relationships between rigid bod-
ies i and j:

ψO
i,j (xi, zi, xj , zj) =

∏

v∈Υ

η(xj , zi(v); xi) η(xi, zj(v); xj) (4.9)

These occlusion constraints exist between all pairs of nodes. However, as with the
structural prior, we enforce only those pairs EO (see Fig. 4.4) most prone to occlusion:

pO(x, z) ∝
∏

(i,j)∈EO

ψO
i,j (xi, zi, xj , zj) (4.10)

Figure 4.4 shows a factor graph for the occlusion relationships between xi and its
neighbors, as well as the observation potential pC(v | xi, zi) · pE(v | xi, zi). Note that
the occlusion potential η(xj , zi(v); xi) depends only on whether xi is behind xj relative
to the camera, not on the precise 3D pose of xi. We exploit this weak dependence in
our algorithm for distributed occlusion reasoning.

¥ 4.3 Graphical Models for Hand Tracking

In the previous sections, we have shown that a redundant, local representation of the
geometric hand model’s configuration xt allows p

(
xt | vt

)
, the posterior distribution of
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the hand model at time t given observed image vt, to be expressed as

p
(
xt | vt

)
∝ pK

(
xt

)
pS

(
xt

)
pC

(
vt | xt

)
pE

(
vt | xt

)
(4.11)

where pK

(
xt

)
and pS

(
xt

)
are the kinematic and structural prior models. For simplicity,

we begin by assuming that there is no self–occlusion among the fingers. In this case, as
in eq. (4.5), the color and edge likelihoods factorize:

p
(
xt | vt

)
∝ pK

(
xt

)
pS

(
xt

) 16∏

i=1

pC

(
vt | xt

i

)
pE

(
vt | xt

i

)
(4.12)

When τ video frames are observed, the overall posterior distribution then equals

p(x | v) ∝
τ∏

t=1

p
(
xt | vt

)
pT

(
xt | xt−1

)
(4.13)

Equation (4.13) is an example of a pairwise Markov random field, which as described
in Sec. 2.2.2 takes the following general form:

p(x | v) ∝
∏

(i,j)∈E

ψi,j(xi, xj)
∏

i∈V

ψi(xi,v) (4.14)

Here, the nodes V correspond to the sixteen components of the hand model at each point
in time, and the edges E arise from the union of the graphs encoding kinematic, struc-
tural, and temporal constraints. Visual hand tracking can thus be posed as inference
in a graphical model.

As discussed in Sec. 2.3.2, the loopy belief propagation algorithm often provides
accurate state estimates in graphs with cycles. However, for our hand tracking appli-
cation, the 3D pose xi of each rigid hand component is described by a six–dimensional
continuous variable. Because accurate discretization of such spaces is intractable, and
the BP message update integral has no closed form for the potentials composing our
hand model, exact implementation of BP is infeasible. Instead, we employ particle–
based approximations to these messages using the nonparametric belief propagation
(NBP) algorithm developed in Chap. 3. The following sections adapt the NBP message
and belief updates to the specific potentials arising in this visual tracking application.

¥ 4.3.1 Nonparametric Estimation of Orientation

The hand tracking application is complicated by the fact that the orientation ri of rigid
body xi = (ui, ri) is an element of the three–dimensional rotation group SO(3). Previ-
ous work on planar, affine transformations has shown that density estimates based on
a manifold’s true, non–Euclidean metric lead to improved accuracy and better general-
ization [209]. In this section, we develop kernel density estimates of orientation which
respect the intrinsic geometry of SO(3).
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Three–Dimensional Orientation and Unit Quaternions

Unit–length quaternions provide a representation for 3D rotations and orientations with
many attractive properties [259]. Like complex numbers, a quaternion r = (a, b) has two
components: a scalar, real part a, and a three–dimensional vector, imaginary part b.
The quaternion representing a rotation θ about unit vector n is given by

r = (a, b) = (cos(θ/2), sin(θ/2)n) (4.15)

Note that, because rotating by −θ about −n produces the same result, the quaternions
−r and r represent the same 3D rotation. The unit sphere S3 (embedded in four–
dimensional Euclidean space) thus provides a double cover of the rotation group SO(3),
where antipodal points represent the same rotation.

Unlike Euler angles, quaternions do not suffer from the singularities which lead to
the “gimbal lock” phenomenon [259]. More importantly, because S3 and SO(3) share
the same metric structure, quaternions provide an appropriate space for interpolation
and estimation of 3D orientations. The distance between two quaternions r1 and r2 is
equal to the angle between them:

d(r1, r2) = arccos(r1 · r2) (4.16)

In the following sections, we describe a computationally efficient framework for non-
parametric estimation of orientation which respects this distance metric.

Density Estimation on the Circle

Because it is difficult to visualize S3, we begin by assuming that two of the 3D object’s
rotational degrees of freedom are known. The remaining rotational direction is diffeo-
morphic to the unit circle, and can be represented by a single angle θ. Just as Gaussian,
or normal, distributions play a central role in Euclidean space, the folded or wrapped
normal distribution is natural for circular data:

Nw

(
θ; µ, σ2

)
=

1√
2πσ2

∞∑

k=−∞

exp

{−(θ − µ + 2πk)2

2σ2

}
(4.17)

This density, which is intuitively constructed by wrapping a Euclidean normal distri-
bution around the unit circle, arises from a version of the central limit theorem [194].
When σ ≤ π/3, as is typical for kernel density estimation applications, all but one of
the terms in the sum of eq. (4.17) are negligible. Using the unit vector representation
of angles, it is straightforward to verify that the wrapped normal respects the distance
metric of eq. (4.16).

In many applications involving circular data, it is more convenient to work with the
von Mises distribution [194]:

M(θ; µ, κ) =
1

2πI0(κ)
exp {κ cos(θ − µ)} (4.18)
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Figure 4.5. Three different wrapped normal distributions, and the corresponding von Mises distribu-
tions with moments matched according to eq. (4.19).

Here, Ij(κ) denotes the modified Bessel function of the first kind and order j, while κ is
known as the concentration parameter. Matching trigonometric moments, the von Mises
and wrapped normal distributions are most closely aligned when the concentration
parameter is set so that

σ2 = −2 log
I1(κ)

I0(κ)
(4.19)

Figure 4.5 plots several wrapped normal distributions, and the best matching von
Mises distributions. When σ2 is small, as in applications of kernel density estima-
tion, eq. (4.19) chooses κ ≈ σ−2, and the densities are nearly identical. Even for larger
variances, the two densities are statistically indistinguishable from moderate sample
sizes [44].

Interestingly, the von Mises distribution can also be derived from a bivariate Eu-
clidean Gaussian distribution. In particular, consider a Gaussian random vector (x1, x2)
with mean (cos µ, sin µ) and covariance κ−1I2. If we transform to polar coordinates
(r, θ), we find that the conditional distribution of θ given ||r|| = 1 is von Mises [194],
as in eq. (4.18).

Density Estimation on the Rotation Group

The von Mises distribution (eq. (4.18)) may be directly generalized to points r on the
unit sphere S3:

M(r; µ, κ) =
κ

2I1(κ)
exp {κµ·r} (4.20)

Here, the mean direction µ is a unit quaternion, and κ is a scalar concentration param-
eter as before. This generalization, which is known as the von Mises–Fisher distribu-
tion [194], closely approximates a wrapped normal distribution based on the spherical
metric of eq. (4.16). Furthermore, as with the circular von Mises distribution, we may
obtain eq. (4.20) by conditioning an appropriate four–dimensional Euclidean Gaussian
to have unit length. Note also that the von Mises–Fisher distribution defines a regular
exponential family with canonical parameters κµ, and thus has a maximum entropy
characterization as in Thm. 2.1.1.
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Given these properties, the von Mises–Fisher distribution provides a natural kernel
for nonparametric density estimation on the sphere:

p̂(r) =
L∑

`=1

w(`)M(r; r(`), κ) (4.21)

As in the Euclidean estimator of Sec. 2.4.2, w(`) is the weight associated with the von
Mises–Fisher kernel centered on the `th sample r(`). Density estimates of this form have
been shown to share the same strong asymptotic consistency guarantees as Euclidean
kernel density estimators [13]. Furthermore, the asymptotic convergence rate attained
by von Mises–Fisher kernels is the best among a wide class of candidate kernels [124],
and Euclidean kernel size selection rules may be adapted to choose the concentration
parameter κ.

Because we are interested in the rotation group SO(3), we must account for the fact
that antipodal points on S3 represent the same rotation. One possibility would be to
replace data points ri by their negation −ri as necessary to cluster all points on a single
hemisphere. However, this requires cumbersome logic, and may introduce distortions
for distributions which are not tightly concentrated. Instead, as suggested by [273], we
split the probability mass evenly between the two quaternion representations using a
mixture of von Mises–Fisher kernels:

p̂(r) =
L∑

`=1

w(`)

[
1

2
M(r; r(`), κ) +

1

2
M(r;−r(`), κ)

]

∝
L∑

`=1

w(`) cosh (κr ·r(`)) (4.22)

This construction ensures that different sources of orientation information are consis-
tently combined, even when the underlying densities have high variance.

To compute NBP message updates, we must be able to sample from our orien-
tation density estimates. To derive an efficient sampling rule, we represent each von
Mises–Fisher kernel by a Gaussian in the ambient four–dimensional Euclidean space
(see Sec. 4.3.1). It is then straightforward to sample from the projection of these Eu-
clidean Gaussians onto the unit sphere: draw a sample in Euclidean space, and then
divide by its length. We use importance weighting, as computed by numerical inte-
gration along the radial projection direction, to account for discrepancies between this
projection and the von Mises–Fisher density obtained by conditioning samples to have
unit length. When the concentration parameter κ is large, these weights are nearly
uniform and may be neglected.

Comparison to Tangent Space Approximations

Riemannian manifolds are sometimes analyzed using the Euclidean space tangent to
a specified linearization point. For S3, the exponential mapping from vectors b in the
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Figure 4.6. Visualization of two different kernel density estimates on S2 using a tangent space:
Gaussian kernels placed directly in the tangent space (left), and a tangent space mapping of von Mises–
Fisher kernels defined on the sphere (right). The top row shows more likely points in darker gray, while
the bottom row shows corresponding contour plots.

space tangent to the identity quaternion (1, 0, 0, 0) to the sphere is

exp(b) =

(
cos(||b||), b

||b|| sin(||b||)
)

(4.23)

The corresponding logarithmic mapping from the unit sphere, excluding the antipode
(−1, 0, 0, 0), to the tangent space equals

log((a, b)) =
b

||b|| arctan

( ||b||
a

)
(4.24)

Approximations of this mapping have been used for automatic camera calibration [67],
and to estimate limb orientation in a graphical model–based person tracker [261, 262].
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While tangent space approximations are effective for some applications, they may
also significantly distort the underlying Riemannian metric (eq. (4.16)). To visualize
these distortions, we consider a plane tangent to S2, the sphere obtained from S3

by fixing one rotational degree of freedom. In Fig. 4.6, we show two kernel density
estimates based on four data points. The first places Gaussian kernels directly in
the space tangent to the central data point, while the second places von Mises–Fisher
kernels on the sphere. Because it is difficult to plot densities on the sphere, we visualize
these densities by projecting them to the same tangent plane. Although the central
kernel is similar in both densities, the other von Mises–Fisher kernels are significantly
distorted by the tangent mapping. Of course, on the true manifold S2, the von Mises–
Fisher kernels are symmetric, and the tangent space estimate is distorted. Among
other effects, the tangent plane density estimate causes the two lower–right kernels to
be improperly separated, potentially leading to generalization errors.

The distortion shown in this example is inevitable with tangent space approxima-
tions whenever the overall density is not tightly concentrated. In contrast, the proposed
von Mises–Fisher kernel density estimates apply equally well to highly dispersed den-
sities. Furthermore, we avoid having to choose a linearization point, and thus do not
introduce boundary artifacts when fusing orientation estimates.

¥ 4.3.2 Marginal Computation

As illustrated in Fig. 2.16, BP’s belief estimate qi(xi) of the marginal pose of rigid
body i combines all incoming messages with the local observation potential. For our
geometric hand model, the belief update equation is then

qi(xi) ∝ pC(v | xi) pE(v | xi)
∏

j∈ΓT (i)

mji(xi)
∏

k∈ΓK(i)

mki(xi)
∏

h∈ΓS(i)

mhi(xi) (4.25)

where the three products contain messages from temporal, kinematic, and structural
neighbors, respectively. As we describe in Sec. 4.3.3, our NBP hand tracker employs
Gaussian mixtures for some messages (along kinematic and temporal edges), and an-
alytic functions for others (structural edges). To perform this belief update, we thus
adapt the importance sampling procedure described in Sec. 3.3.2.

Alg. 4.1 summarizes the update procedure for the belief estimate qi(xi). First, L

samples {x(`)
i }L

`=1 are drawn directly from the product of the kinematic and temporal
Gaussian mixture messages. As discussed in Sec. 3.4, there are a variety of computa-
tional approaches to this sampling step. Empirically, importance samplers are typically
ineffective in the six–dimensional space of rigid body poses, and the epsilon–exact multi-
scale sampler of Alg. 3.6 requires too much computation for nodes with many neighbors.
The simulations presented in this chapter thus use the sequential multiscale Gibbs sam-
pler of Sec. 3.4.6, as it had the highest accuracy in the experiments of Sec. 3.4.8.

Using the Euclidean embedding described in Sec. 4.3.1, we may directly adapt our
multiscale samplers to the von Mises–Fisher kernels used to estimate orientation. Fol-

lowing normalization of the rotational component, each sample x
(`)
i is assigned a weight
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Given input messages mji(xi) from kinematic neighbors ΓK(i), structural neighbors ΓS(i), and
temporal neighbors ΓT (i):

1. Draw L independent samples from the product distribution

x
(`)
i ∼

∏

j∈ΓT (i)

mji(xi)
∏

k∈ΓK(i)

mki(xi)

using the multiscale sampling methods developed in Sec. 3.4.

2. For each x
(`)
i = (u

(`)
i , r

(`)
i ), normalize the orientation r

(`)
i .

3. Compute an importance weight for each sample x
(`)
i :

w
(`)
i ∝ pC(v | x

(`)
i ) pE(v | x

(`)
i )

∏

j∈ΓS(i)

mji(x
(`)
i )

4. Use a bandwidth selection method (see [263]) to construct a kernel density estimate qi(xi)

from {x(`)
i , w

(`)
i }L

`=1.

Algorithm 4.1. Nonparametric BP update of the estimated 3D pose qi(xi) for the rigid body corre-
sponding to the ith hand component.

w
(`)
i equal to the product of the color and edge likelihoods with any messages along

structural edges. Finally, the computationally efficient “rule of thumb” heuristic [263]
is used to set the bandwidth of Gaussian smoothing kernels placed around each sample.
The modes of qi(xi) then provide good estimates of the 3D pose xi, while samples may
be used to gauge the uncertainty in these estimates.

The preceding algorithm assumes that at least one of the incoming messages is a
Gaussian mixture. For the hand tracker, this is true except for the initial message up-
dates on the first frame, when the only incoming message is the local analytic likelihood
function. For the simulations presented in this chapter, we initialized the tracker by
manually specifying a high variance Gaussian proposal distribution centered roughly
around the true starting hand configuration. In the future, we hope to replace this
manual initialization by automatic image–based feature detectors [261].

¥ 4.3.3 Message Propagation and Scheduling

To derive the message propagation rule, we consider the belief sampling form of NBP
summarized by Alg. 3.2. In this method, outgoing messages from rigid body j are
determined directly from the latest belief estimate at that node:

mji(xi) ∝
∫

Xj

ψij(xi, xj)
qj(xj)

mij(xj)
dxj (4.26)

This explicit use of the current marginal estimate qj(xj) helps focus particles on the
most important regions of the state space.

Consider first the case where (i, j) ∈ EK , so that ψK
ij corresponds to a kinematic

constraint. The message propagation step makes direct use of the particles {x(`)
j }L

`=1
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Given L weighted particles {x(`)
j , w

(`)
j }L

`=1 from qj(xj), and the incoming message mij(xj) used
to construct qj(xj):

1. Reweight each particle as w̃
(`)
j ∝ w

(`)
j /mij(x

(`)
j ), thresholding any small weights to avoid

producing an overly low effective sample size.

Kinematic Edges:

2. Resample by drawing L particles {x̃(`)
j }L

`=1 with replacement according to Pr[x̃
(`)
j ] ∝ w̃

(`)
j .

3. For each x̃
(`)
j , sample uniformly from the allowable angles for joint (i, j). Determine the

corresponding x
(`)
i via forward kinematics.

4. Use a bandwidth selection method to construct a kernel density estimate mji(xi) from the

unweighted samples {x(`)
i }L

`=1.

Temporal Edges:

2. Construct a kernel density estimate mji(xi) with centers {x(`)
j }L

`=1, weights {w̃(`)
j }L

`=1, and
uniform bandwidths Λi.

Structural Edges:

2. For any xi = (ui, ri), let L =
{

` | ||u(`)
j − ui|| > εi,j

}
.

3. Calculate mji(xi) =
∑

`∈L w̃
(`)
j .

Algorithm 4.2. Nonparametric BP update of the message mji(xi) sent from hand component j to
component i as in eq. (4.26), for each of three pairwise potential types.

sampled during the last marginal belief update. To avoid overcounting information

from neighboring node i, we reweight each particle x
(`)
j as follows:

w̃
(`)
j ∝

w
(`)
j

mij

(
x

(`)
j

) (4.27)

As observed in other applications [142], belief sampling message updates sometimes
exhibit instability given small sample sizes L. In particular, our hand tracker’s belief

updates may produce samples x
(`)
j which have very low probability with respect to

some incoming message. When a new outgoing message is constructed, this particle

is then assigned extremely large weight w̃
(`)
j by eq. (4.27). To avoid instabilities from

these outlier particles, our hand tracker heuristically thresholds all such weights to be
at least 10% of the most probable particle’s weight. More principled solutions to this
issue are an area for future research.

Given these thresholded particle weights, we first resample to produce L unweighted

particles {x̃(`)
j }L

`=1 (see Alg. 4.2). We must then sample candidate xi configurations from

the conditional distribution ψK
ij (xi, xj = x̃

(`)
j ). Because ψK

ij is an indicator potential,
this sampling has a particularly appealing form: first sample uniformly among allowable

joint angles, and then use forward kinematics to find the x
(`)
i corresponding to each x̃

(`)
j .
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Figure 4.7. Scheduling of the kinematic constraint message updates for NBP: messages are first
passed from fingertips to the palm (left), and then back to the fingertips (right). Structural constraint
messages (not shown) are updated whenever the originating belief estimates change.

Finally, the “rule of thumb” bandwidth selection method [263] is used to construct the
outgoing message.

Because the temporal constraint potentials are Gaussian, the sampling associated
with kinematic message updates is unnecessary. Instead, as suggested by [145], we
simply adjust the bandwidths of the current marginal estimate qj(xj) to match the
temporal covariance Λi (see Alg. 4.2). This update implicitly assumes that the band-
width of qj(xj) is much smaller than Λi, which will hold for sufficiently large L.

For structural constraint edges ES , a different approach is needed. In particular,
from eq. (4.2) we see that the pairwise potential equals 1 for all state configurations
outside some ball, and therefore the outgoing message will not be finitely integrable. For
structural edges, messages must then take the form of analytic functions. In principle, at
some point xi = (ui, ri) the message mji(xi) should equal the integral of qj(xj) /mij(xj)
over all configurations outside some ball centered at ui. We approximate this quantity
by the sum of the weights of all kernels in qj(xj) outside that ball (see Alg. 4.2).

For NBP, the message update order affects the outcome of each local Monte Carlo
approximation, and may thus influence the quality of the final belief estimates. Given a
single frame, we iterate the tree–based message schedule of Fig. 4.7, in which messages
are passed from fingertips to the palm, and then back to the fingertips. Structural
messages mji(xi), which for clarity are not shown, are also updated whenever the belief
estimate qj(xj) of the originating node changes. For video, we process the frames in
sequence, updating temporal messages to the next frame following a fixed number of
kinematic/structural message sweeps. This message schedule is similar to that used in
the factored frontier algorithm for dynamic Bayesian networks [218]. We note, how-
ever, that the tracker could be easily extended to produce smoothed estimates, which
incorporate information from future video frames, using reverse–time messages.
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¥ 4.3.4 Related Work

The NBP algorithm has also recently been used to develop a multiple camera, 3D
person tracker [261, 262]. However, this tracker uses a “loose–limbed” formulation of
the kinematic constraints which represents the conditional distribution of each limb’s
location, given its neighbor, via a Gaussian mixture estimated from training data. The
pair of conditional densities associated with each joint are learned independently, and do
not necessarily match any global generative model. The 2D tracking results of [145, 332]
are also based on explicit (and sometimes inconsistent) kinematic relaxations.

In contrast, we have shown that an NBP tracker may be built around the local
structure of the true kinematic constraints. Conceptually, this has the advantage of
providing a clearly specified, globally consistent, generative model whose properties
can be analyzed. Practically, our formulation avoids the need to explicitly approximate
the kinematic constraints, and allows us to build a functional tracker without the need
for precise, labeled training data.

¥ 4.4 Distributed Occlusion Reasoning

The hand tracking algorithm developed in the previous section assumed the fingers being
tracked did not occlude each other. However, most realistic hand motion sequences
contain significant self–occlusion. To develop a tracker for these cases, we use the
occlusion masks introduced in Sec. 4.2.1 to locally decompose the color (eq. (4.6)) and
edge (eq. (4.7)) likelihoods. The posterior distribution over hand pose at time t is then

p
(
xt | vt

)
∝

∑

zt

pK

(
xt

)
pS

(
xt

)
pO

(
xt, zt

) 16∏

i=1

pC

(
vt | xt

i, z
t
i

)
pE

(
vt | xt

i, z
t
i

)
(4.28)

where the summation marginalizes over occlusion masks zt. Given a video sequence,
the overall posterior distribution p(x | v) is again given by eq. (4.13).

¥ 4.4.1 Marginal Computation

To derive BP updates for the occlusion masks zi, we first group (xi, zi) for each hand
component so that p

(
xt, zt | vt

)
has a pairwise form (as in eq. (4.14)). In principle, NBP

could manage occlusion constraints by sampling candidate occlusion masks zi along
with rigid body configurations xi. However, due to the exponentially large number of
possible occlusion masks, we employ a more efficient analytic approximation.

Consider the BP message sent from xj to (zi, xi), calculated by applying eq. (4.26) to
the occlusion potential

∏
v η(xj , zi(v); xi). We assume that likely 3D poses in qj(xj) are

well separated from any candidate xi, a situation typically ensured by the kinematic and
structural constraints. The occlusion constraint’s weak dependence on xi (see Fig. 4.4)
then separates the message computation into two cases. If xi lies in front of typical
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xj configurations, the BP message m̄j,i(v)(zi(v)) is uninformative. If xi is occluded, the
message approximately equals

m̄j,i(v)(zi(v) = 0) = 1 m̄j,i(v)(zi(v) = 1) = 1 − Pr [v ∈ Ω(xj)] (4.29)

where we have neglected correlations among pixel occlusion states, and where the prob-
ability is computed with respect to qj(xj). The derivation of eq. (4.29) follows directly
from the form of the occlusion constraints (eq. (4.8)).

By taking the product of these messages m̄k,i(v)(zi(v)) from all potential occluders
xk and normalizing, we may determine an approximation to the marginal occlusion
probability ϑi(v) , Pr[zi(v) = 0]. Because the color likelihood pC(v | xi, zi) factorizes
across pixels v ∈ Υ, the BP approximation to pC(v | xi) may be written in terms of
these marginal occlusion probabilites:

pC(v | xi) ∝
∏

v∈Ω(xi)

[
ϑi(v) + (1 − ϑi(v))

(
pskin(v)

pbkgd(v)

)]
(4.30)

Intuitively, this equation downweights the color evidence at pixel v as the probability
of that pixel’s occlusion increases. The edge likelihood pE(v | xi) averages over zi

similarly:

pE(v | xi) ∝
∏

v∈Π(xi)

[
ϑi(v) + (1 − ϑi(v))

(
pon(v)

poff(v)

)]
(4.31)

The NBP estimate of qi(xi) is then determined by Alg. 4.1 as before, but now using the
occlusion–sensitive likelihood functions of eqs. (4.30, 4.31) in step 3.

¥ 4.4.2 Message Propagation

When occlusion masks are considered, the BP message update (eq. (4.26)) for non–
occlusion edges takes the following form:

mji(xi) ∝
∫

Xj

∑

zj

ψij(xi, xj)
qj(xj , zj)

mij(xj)
dxj

∝
∫

Xj

ψij(xi, xj)
qj(xj)

mij(xj)
dxj (4.32)

Because kinematic, structural, and kinematic potentials do not directly depend on the
occlusion mask zj , messages sent along those edges depend only on the belief qj(xj)
following marginalization over all possible occlusion masks. Thus, no modifications
to the updates of Sec. 4.3.3, as summarized by Alg. 4.2, are necessary for occlusion–
sensitive tracking.
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¥ 4.4.3 Relation to Layered Representations

For some video sequences, the observed images are well described by a set of depth–
ordered, smoothly deforming textured regions, or layers [156, 316]. Each layer is de-
scribed by an intensity image, a motion field, and an alpha map indicating the pixel
region occupied by that layer. Combined with a depth ordering of the layers, the al-
pha maps specify occlusion relationships, and thus determine which layer defines the
observed intensity at each pixel.

Although our occlusion masks z share some heuristic similarities with layered rep-
resentations, there are important differences. Alpha maps determine which pixels each
layer occludes, while occlusion masks determine which pixels are occluded by one
or more other hand components. Furthermore, layered representations are typically
learned by aggregating consistent image motions in a bottom–up fashion, while our
tracker uses the hand model’s known 3D geometry to infer proper occlusion masks.
Most importantly, to determine a pixel’s observed intensity in a layered representation,
the globally ordered alpha maps must be jointly considered. In contrast, occlusion
masks allow each hand component to independently determine the pixels in its silhou-
ette, and thereby efficiently compute image likelihoods in a distributed fashion.

¥ 4.5 Simulations

We now examine the empirical performance of the NBP hand tracker. All results are
based on 720 × 480 images (or video sequences) recorded by a calibrated camera. The
physical dimensions of the quadrics composing the hand model were measured offline.
All messages were represented by L = 200 particles, and updated via the procedures
summarized in Algs. 4.1 and 4.2.

NBP estimates the marginal distribution qi(xi) of each hand component’s 3D posi-
tion and orientation xi. To visualize these belief estimates, we first use gradient ascent
to find the five most significant modes of the Gaussian mixture defining qi(xi). We then
project the edges of these 3D hand configurations, with intensity proportional to the
corresponding mode’s posterior probability. As illustrated in Fig. 4.8, the variability of
these projections indicates the current uncertainty in the hand’s 3D pose.

¥ 4.5.1 Refinement of Coarse Initializations

Given a single image, NBP may be used to progressively refine a coarse, user–supplied
initialization into an accurate estimate of the hand’s 3D pose. See Fig. 4.8 for two
examples of such a refinement. In the second example, note that the initial finger
positions are not only misaligned, but the user has supplied no information about
the grasping configuration of the hand. By the fourth NBP iteration, however, the
system has aligned all of the joints properly. In both images, a poorly aligned palm
is eventually attracted to the proper location by well–fit fingers. For these examples,
each NBP iteration (a complete update of all messages in the graph) requires about 1
minute on a Pentium IV workstation.
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Figure 4.8. Two examples (columns) in which NBP iteratively refines coarse initial hand pose es-
timates. We show projections of the estimated 3D hand pose following 1, 2, and 4 iterations of the
sequential message schedule illustrated in Fig. 4.7.



Occlusions Neglected Distributed Occlusion Reasoning

Figure 4.9. Refinement of a coarse hand pose estimate via NBP assuming independent likelihoods
for each finger (left), and using distributed occlusion reasoning (right). We display the middle finger’s
estimated pose in yellow, and the fourth (ring) finger’s pose in magenta. When occlusions are neglected,
NBP produces multimodal beliefs in which both fingers explain the same image data. When occlusions
are considered, however, these fingers are properly separated.

Figure 4.10. Four frames from a video sequence showing extrema of the hand’s rigid motion, and
projections of the NBP tracker’s 3D pose estimates.



174 CHAPTER 4. VISUAL HAND TRACKING

In Fig. 4.9, we show an initialization example with significant self–occlusion. When
occlusion constraints are neglected, NBP improperly explains two fingers with the same
image features, producing bimodal belief estimates. Via the distributed occlusion rea-
soning procedure of Sec. 4.4, however, NBP properly disambiguates these fingers, and
produces a globally consistent hand pose estimate.

¥ 4.5.2 Temporal Tracking

Several video sequences demonstrating the NBP hand tracker are available online from
the author’s homepage.1 For all sequences, the initial frame’s hand pose was manually
initialized. Total computation time for each video sequence, including all likelihood
calculations, is approximately 4 minutes per frame. The first shows the hand rigidly
moving in 3D space. End points of the hand’s motion are shown in Fig. 4.10. NBP’s
pose estimates closely track the hand throughout the sequence, but are noisiest when
the fingers point towards the camera because the sharp projection angle reduces the
amount of image evidence. Note, however, that the estimates quickly lock back onto
the true hand configuration when the hand rotates away from the camera.

The second video sequence exercises the hand model’s joints, containing both in-
dividual finger motions and coordinated grasping motions (see Fig. 4.11). Our model
supports all of these degrees of freedom, and maintains accurate estimates even when
the ring finger is partially occluded by the middle finger (third row of Fig. 4.11). For
this sequence, rough tracking is possible without occlusion reasoning [278], since all
fingers are the same color and the background is unambiguous. However, we find that
stability improves when occlusion reasoning is used to properly discount obscured edges
and silhouettes.

¥ 4.6 Discussion

We have described the graphical structure underlying a 3D kinematic model of the
hand, and used this model to build a tracking algorithm based on nonparametric belief
propagation (NBP). Rather than estimating joint angles, our tracker directly infers
the 3D pose of each hand component. This modular state representation allows edge
and color cues to be independently evaluated for each finger, and then combined via
the model’s structural, kinematic, and temporal constraints. By introducing occlusion
masks, NBP may consistently evaluate local image evidence even when the hand takes
on self–occluding poses. Chap. 7 discusses potential generalizations of these methods,
and implications for other vision applications, in more detail.

1As of May 2006, hand tracking videos are available at http://ssg.mit.edu/nbp/.

http://ssg.mit.edu/nbp/


Figure 4.11. Eight frames from a video sequence in which the hand makes grasping motions and
individual finger movements, and projections of the NBP tracker’s 3D pose estimates. Note that the
ring finger is accurately tracked through a partial occlusion by the middle finger (third row).
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Chapter 5

Object Categorization

using Shared Parts

VISUAL object recognition is complicated by wide variations in object appearance,
and the paucity of large, representative datasets. This chapter develops hierarchi-

cal models which consider relationships among object categories during training. At
the lowest level, this approach leads to significant computational savings by sharing a
common set of features. More importantly, we show that integrated representations of
multiple objects produce more robust predictions given few training images.

We begin in Sec. 5.1 by describing the sparse, affinely adapted image features under-
lying our recognition system. Several previous methods for object categorization discard
the spatial locations of such interest points, treating the image as an unstructured “bag
of features” [54, 266]. In Sec. 5.2, we describe a family of spatial transformations which
allow flexible, consistent models for feature positions. Later results (Sec. 5.4 and 5.6)
confirm that the spatial structure of image features is highly informative, and can sig-
nificantly improve recognition performance.

Our hierarchical object appearance models are adapted from topic models originally
used to analyze text documents [31, 289]. By incorporating spatial transformations, we
construct robust part–based models for the visual appearance of object categories. In
Sec. 5.3, we describe a parametric, fixed–order model which describes multiple object
categories via a common set of shared parts. Sec. 5.5 then adapts the hierarchical
Dirichlet process [289] to this task, and thus allows the number of latent parts to be
learned automatically. We test both models on a dataset containing sixteen visual object
categories (Sec. 5.4 and 5.6). Our results demonstrate the benefits of sharing parts, and
show that nonparametric, Dirichlet process priors elegantly avoid potentially difficult
model selection issues. Preliminary versions of these models, which were developed in
collaboration with Dr. Antonio Torralba, were presented at the 2005 IEEE International
Conference on Computer Vision [280].

¥ 5.1 From Images to Invariant Features

Images can be stored, manipulated, and analyzed via a wide range of low–level formats.
Rectangular grids of pixels provide one of the simplest, and most common, representa-

177
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tions. While they are well matched to the sensors employed by modern digital cameras,
raw pixels are often cumbersome for image analysis. In particular, the intensities of
individual pixels are strongly dependent on nearby image regions, and unstable with
respect to variations in three–dimensional (3D) viewpoint or lighting [91]. We thus
consider alternative representations in which individual features are more informative.

Multiscale image descriptions, including wavelets [193] and steerable pyramids [93,
264], provide a popular framework for low–level image processing. Because wavelet
coefficients derived from natural images have predictable statistical properties, they lead
to effective denoising algorithms [269]. Steerable pyramids also provide some invariance
to image–based translations, rotations, and scalings [264]. However, they do not directly
compensate for more complex transformations induced by 3D pose changes. In addition,
there are typically strong non–local dependencies among wavelet coefficients [269], due
to the spatial structure of visual scenes.

In this chapter, we instead employ sparser, feature–based image representations.
Interest points are first detected via criteria which are robust to changes in scale and
lighting, and affinely adapted to correct for 3D pose variations [205, 207]. Unlike wavelet
representations, the number and location of these features is adapted to the particular
details of each individual scene. This approach reduces the dimensionality of the image
representation, and also leads to features which are less directly inter–dependent. Cou-
pled with a family of gradient–based appearance descriptors [188, 206], these features
simplify the modeling of object categories by focusing on the most salient, repeatable
image structures.

We emphasize that our object appearance models could be adapted to any image
representation involving a finite set of interest points. In particular, while the features
we employ are known to perform well in geometric correspondence tasks [206, 207], it
is likely that other approaches will prove more suitable for object categorization.

¥ 5.1.1 Feature Extraction

For each grayscale training or test image, we begin by detecting a set of affinely adapted
interest regions. The shape of each region is described by a 2D ellipse, as illustrated in
Fig. 5.1. We consider three different criteria for region detection, which emphasize com-
plementary aspects of visual scenes. In particular, Harris–affine invariant regions [205]
detect corner–like image structure by finding points whose surrounding intensities have
significant second derivatives. A characteristic scale for each corner is then determined
via a Laplacian of Gaussian operator [188, 205]. Finally, region shape is adapted ac-
cording to the second moments of neighboring image pixels.

We also consider a set of maximally stable extremal regions [199], which are derived
from a watershed segmentation algorithm. For each of several intensity thresholds,
the connected components of the corresponding binary image are determined. Those
components which are stable across a wide range of threshold values are then selected.
As illustrated in Fig. 5.1, this approach favors larger, more homogeneous image regions.
Software for the detection of maximally stable and Harris–affine regions is available from
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Figure 5.1. Three types of interest operators applied to two office scenes: Harris–affine corners (left),
maximally stable extremal regions (center), and clustered Canny edges (right).

the Oxford University Visual Geometry Group [343].
The preceding features were originally designed to determine accurate geometric

correspondences across multiple 3D views. For object recognition tasks, however, sim-
pler edge–based features are often highly informative [18, 20]. To exploit this, we first
find candidate edges via a standard Canny detector [38, 91]. Edges at adjacent pixels
are then linked into segments, and lines determined by dividing these segments at points
of high curvature [174]. These lines then form the major axes of elliptical edge shape
descriptors, whose minor axes are taken to be 10% of that length. Given the density
at which interest regions are detected (see Fig. 5.1), these features essentially provide
a multiscale over–segmentation of the image [241].

Note that greedy, low–level interest operators are inherently noisy: even state–of–
the–art detectors sometimes miss salient regions, and select features which do not align
with real 3D scene structure (see Fig. 5.1 for examples). We handle this issue by
extracting large feature sets, so that many regions are likely to be salient. It is then
important to design recognition algorithms which exploit this redundancy, rather than
relying on a small set of key features.

¥ 5.1.2 Feature Description

Following several recent papers [54, 79, 81, 181, 266], we use SIFT descriptors [188] to
characterize the appearance of each elliptical interest region. This approach provides
some invariance to lighting and pose changes, and was more effective than raw pixel
patches [302] in our experiments.

For each interest region, a Gaussian window is first used to estimate an orientation
histogram, the peak of which provides a reference orientation for that region. This
orientation, and the corresponding feature’s scale, are then used to define a four–by–
four grid of image pixels. Within each block in this grid, a histogram of gradient
magnitudes at each of eight orientations is constructed. The overall SIFT descriptor
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Figure 5.2. A subset of the affine covariant features (ellipses) detected in images of office scenes. In
five different colors, we show the features corresponding to the five discrete vocabulary words which
most frequently align with computer screens in the training images.

then equals these 4 × 4 × 8 = 128 orientation energies, suitably normalized to correct
for contrast and saturation effects [188]. We note that this approach is closely related
to the shape context descriptor [18].

To simplify learning algorithms, we convert each raw, 128–dimensional SIFT de-
scriptor to a vector quantized discrete value [79, 266]. In particular, for each training
database, we use K–means clustering to identify a finite dictionary of W appearance
patterns, where each of the three feature types is mapped to a disjoint set of visual
“words”. We set the total dictionary size via cross–validation; typically, W ≈ 1,000
seems appropriate for object categorization tasks. In some experiments, we further im-
prove discriminative power by dividing the affinely adapted regions according to their
shape. In particular, we separate edges by orientation (horizontal versus vertical), while
Harris–affine and maximally stable regions are divided into three groups (roughly cir-
cular, versus horizontally or vertically elongated). An expanded dictionary then jointly
encodes the appearance and coarse shape of each feature.

Using this visual dictionary, the ith interest region in image j is described by its de-
tected image position vji, and the discrete appearance word wji with minimal Euclidean
distance [188]. Let wj and vj denote the appearance and two–dimensional position, re-
spectively, of the Nj features in image j. Fig. 5.2 illustrates some of the appearance
words extracted from a database of office scenes.

¥ 5.1.3 Object Recognition with Bags of Features

Using image features similar to those described in Sec. 5.1.1 and 5.1.2, discriminative
machine learning methods have been used for visual object recognition [54]. In addition,
the latent Dirichlet allocation model [31] has been adapted to discover object categories
from images of single objects [266], categorize natural scenes [79], and (with a slight
extension) parse presegmented captioned images [14]. However, following an initial
stage of low–level feature extraction [54, 79, 266] or segmentation [14], these methods
ignore spatial information, discarding feature positions vj and treating the image as
an unstructured bag of words wj . In this chapter, we develop richer models which
consistently incorporate spatial relationships.
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Figure 5.3. Twelve office scenes in which computer screens have been highlighted (yellow). Note the
large variability in the image locations and scales at which objects are observed.

¥ 5.2 Capturing Spatial Structure with Transformations

Figure 5.3 shows several images which illustrate the challenges in developing visual
scene models incorporating feature positions. Due to variability in three–dimensional
object location and pose, the absolute position at which features are observed provides
little information about their corresponding category. Nevertheless, there is clearly
significant, predictable spatial structure in natural scenes. For example, many object
categories have regular internal geometries and textures. More generally, contextual
relationships among objects, like the desks supporting the monitors depicted in Fig. 5.3,
lend global structure to visual scenes.

This chapter adapts hierarchical topic models, including latent Dirichlet allocation
(LDA) [31] and the hierarchical Dirichlet process (HDP) [289] (see Secs. 2.2.4 and 2.5.4),
to model visual object categories. Recall that the LDA and HDP models describe dif-
ferent groups of data by reusing identical cluster parameters θk in varying proportions.
Thus, applied directly to features incorporating both position and appearance, these
topic models would need a separate global cluster for every possible location of each ob-
ject category. This approach does not sensibly describe the spatial structure underlying
scenes like those in Fig. 5.3, and would not adequately generalize to images captured
in new environments.

A more effective model of visual scenes would allow the same global cluster to de-
scribe objects at many different locations. To accomplish this, we augment topic models
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with transformation variables, thereby shifting global clusters from a “canonical” coor-
dinate frame to the object positions underlying a particular image. Let τ(θ; ρ) denote
a family of transformations of the parameter vector θ, indexed by ρ. For computa-
tional reasons, we assume that parameter transformations are invertible, and have a
complementary data transformation τ̃(v; ρ) defined so that

f(v | τ(θ; ρ)) =
1

Z(ρ)
f(τ̃(v; ρ) | θ) (5.1)

The normalization constant Z(ρ), which is determined by the transformation’s Jaco-
bian [229], is assumed independent of the underlying parameters θ. Using eq. (5.1),
model transformations τ(θ; ρ) are equivalently expressed by a change τ̃(v; ρ) of the
observations’ coordinate system. The following sections provide specific examples of
transformations satisfying these conditions.

¥ 5.2.1 Translations of Gaussian Distributions

Consider the mean and covariance parameters θ = (µ,Λ) of a d–dimensional Gaussian
distribution. In the simplest case, we consider transformations ρ which translate that
Gaussian’s mean:

τ(µ,Λ; ρ) = (µ + ρ, Λ) (5.2)

From the general form of Gaussian densities (see eq. (2.47)), we then have

N (v; µ + ρ, Λ) =
1

(2π)d/2|Λ|1/2
exp

{
−1

2
(v − (µ + ρ))T Λ−1(v − (µ + ρ))

}

=
1

(2π)d/2|Λ|1/2
exp

{
−1

2
((v − ρ) − µ)T Λ−1((v − ρ) − µ)

}
(5.3)

= N (v − ρ; µ,Λ)

Translations are thus equivalent to an opposing shift of the observations, so that the
data transformation corresponding to eq. (5.2) equals

τ̃(v; ρ) = v − ρ (5.4)

In later sections, we use this relationship to tractably combine information from objects
observed at different absolute image positions.

¥ 5.2.2 Affine Transformations of Gaussian Distributions

Generalizing the translation of eq. (5.2), we consider arbitrary affine transformations
v = Bu + ρ, B ∈ R

d×d, of a latent Gaussian random variable u ∼ N (µ,Λ). For any
such transformation, the corresponding mean and covariance parameters equal

τ(µ,Λ; ρ, B) = (Bµ + ρ, BΛBT ) (5.5)
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This parameterization arises naturally in computer vision applications [91], and ensures
that the transformed covariance matrix remains positive semidefinite.

Suppose that the affine transformation is specified by an invertible matrix B. Ex-
panding the Gaussian distribution corresponding to the transformed parameters of
eq. (5.5), we then have

N
(
v; Bµ + ρ, BΛBT

)

∝ 1

|BΛBT |1/2
exp

{
−1

2

(
v − (Bµ + ρ)

)T (
BΛBT

)−1(
v − (Bµ + ρ)

)}

∝ 1

|B| · |Λ|1/2
exp

{
−1

2

(
(v − ρ) − Bµ

)T
B−T Λ−1B−1

(
(v − ρ) − Bµ

)}

∝ 1

|B|N
(
B−1(v − ρ); µ,Λ

)

(5.6)

The data transform induced by the affine transformation of eq. (5.5) thus equals

τ̃(v; ρ, B) = B−1(v − ρ) (5.7)

In this case, the normalization constant of eq. (5.6) could also be derived from the
determinant |B| of the Jacobian corresponding to the affine map v = Bu + ρ (see [229]).
More generally, however, one can consider parameter transformations τ(θ; ρ) which do
not directly correspond to a simple mapping of an underlying random variable.

In many applications, specializations of the general affine transformation of eq. (5.5)
are of interest. For example, rigid body motion is described by orthogonal rotation
matrices satisfying B−1 = BT . Alternatively, homogeneous scalings B = βI often arise
in image–based approaches to object recognition [82]. Such restricted transformation
families may also lead to simpler forms for the prior distributions over transformations
employed in later sections.

¥ 5.2.3 Related Work

Transformations have been previously used to learn mixture models which encode the
objects in a video sequence using a fixed number of layers [97, 156]. In contrast, the
hierarchical models developed in this thesis allow transformed mixture components
to be shared among different object and scene categories, improving generalization
performance. Nonparametric density estimates of transformations [209], coupled with
template–based appearance models, have also been used to transfer knowledge between
related object (in particular, digit) recognition tasks [210]. By embedding transforma-
tions in a nonparametric hierarchical model, we consider more complex tasks in which
the number of objects in a visual scene, or the number of shared parts underlying an
object’s appearance, is uncertain.
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Figure 5.4. A parametric, fixed–order model which describes the visual appearance of L object
categories via a common set of K shared parts. The jth image depicts an instance of object category
oj , whose position is determined by the reference transformation ρj . The appearance wji and position
vji, relative to ρj , of visual features are determined by assignments zji ∼ πoj to latent parts.

¥ 5.3 Learning Parts Shared by Multiple Objects

We begin by developing a parametric, hierarchical model for images dominated by a
single object [280]. The representation of objects as a collection of spatially constrained
parts has a long history in vision [89]. In the directed graphical model of Fig. 5.4, parts
are formalized as groups of features that are spatially clustered, and have predictable
appearances. Each of the L object categories is in turn characterized by a probability
distribution π` over a common set of K shared parts. For this fixed–order object
appearance model, K is set to some known, constant value.

Consider the generative process for image j, which depicts object oj and contains
Nj features (wj ,vj). As described in Sec. 5.1, the ith feature in image j is represented
by a two–dimensional image position vji, and an appearance wji drawn from one of W
discrete categories. We model feature positions relative to an image–specific reference
transformation, or coordinate frame, ρj . Lacking other information distinguishing the
images of category oj , De Finetti’s Theorem (see Sec. 2.2.4) implies that these trans-
formations are independently sampled from some common prior distribution. The form
of this distribution must be adapted to the chosen family of transformations τ(· ; ρj)
(see Sec. 5.2). In the datasets considered by this chapter, objects are roughly scale–
normalized and centered, so we assign the image positions of each category unimodal,
Gaussian transformation densities:

ρj ∼ N
(
ζoj

, Υoj

)
j = 1, . . . , J (5.8)

As shown in Fig. 5.4, these transformation distributions are regularized by conjugate,
normal–inverse–Wishart priors (ζ`, Ὺ ) ∼ R.



Sec. 5.3. Learning Parts Shared by Multiple Objects 185

To capture the internal structure of objects, we define K distinct parts which gen-
erate features with different typical appearance wji and position vji, relative to ρj . The
particular parts zj = (zj1, . . . , zjNj

) associated with each feature are independently
sampled from a category–specific multinomial distribution:

zji ∼ πoj
i = 1, . . . , Nj (5.9)

When learning object appearance models from training data, we assign conjugate
Dirichlet priors π` ∼ Dir(α) to these part association probabilities. Each part is then
defined by a multinomial distribution ηk ∈ ΠW−1 on the discrete set of appearance
descriptors, and a Gaussian distribution N (µk, Λk) on feature positions:

wji ∼ ηzji
(5.10)

vji ∼ N (τ(µzji
, Λzji

; ρj)) (5.11)

As discussed in Sec. 5.2, the transformation of eq. (5.11) models feature positions rel-
ative to the object’s pose in each particular image. For datasets which have been
normalized to account for orientation and scale variations, transformations are defined
as in eq. (5.2) to shift the part’s mean:

vji ∼ N
(
µzji

+ ρj , Λzji

)
(5.12)

However, in principle the model could be easily generalized to capture more complex
object pose variations.

Marginalizing the unobserved assignments zji of features to parts, we find that the
graph of Fig. 5.4 defines object appearance via a finite mixture model:

p(wji, vji | ρj , oj = `) =
K∑

k=1

π̀ kηk(wji)N (vji; µk + ρj , Λk) (5.13)

In this construction, parts are latent variables which capture predictable dependencies
between the location and appearance of observed features. Reference transformations
then allow a common set of parts to model datasets which are not spatially aligned.
Like latent Dirichlet allocation (LDA) [31], which shares topics among related groups,
these parts are shared among multiple object categories.

As with other mixture models (see Sec. 2.2.4), it is sometimes useful to express
this object model via a set of discrete distributions on the space of part parameters.
Letting θk = (ηk, µk, Λk) denote the appearance and position parameters of the kth

part, object ` then has the following representation:

G`(θ) =

K∑

k=1

π̀ kδ(θ, θk) (5.14)
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Figure 5.5. Alternative, distributional form of the fixed–order object model of Fig. 5.4. Left: An
integrated model of L object categories, in which G` is a discrete distribution on the common set of
K shared parts θk = (ηk, µk, Λk). θ̄ji ∼ G` are the part parameters used to generate feature (wji, vji).
Reference transformations ρj have object–specific priors parameterized by ϕ` = (ζ`, Ὺ ). Right: A
related model in which each of the L object categories is described by an independent set of K` parts.

Images of this object are generated by choosing a reference transformation ρj ac-
cording to eq. (5.8), and then sampling each feature (wji, vji) via part parameters
θ̄ji = (η̄ji, µ̄ji, Λ̄ji) independently drawn from G`:

(η̄ji, µ̄ji, Λ̄ji) ∼ G`

wji ∼ η̄ji

vji ∼ N
(
µ̄ji + ρj , Λ̄ji

) (5.15)

Fig. 5.5 provides a directed graphical model summarizing this equivalent, alternative
form, and contrasts it with a similar model in which parts are not shared among object
categories. Note that these graphs represent object categories implicitly by grouping
the J` training images of each category, rather than via an explicit indicator variable
oj as in Fig. 5.4. In later sections, we provide experimental results which evaluate the
benefits of shared parts when learning from small datasets.

¥ 5.3.1 Related Work: Topic and Constellation Models

If reference transformations are removed from the graphical models of Figs. 5.4 and 5.5,
we recover a variant of the author–topic model [247], where objects correspond to au-
thors, features to words, and parts to the latent topics underlying a given text corpus.
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The LDA model [31] (see Sec. 2.2.4) is in turn a special case in which each document
has its own topic distribution, and authors (objects) are not explicitly modeled. This
hierarchical structure shares information in two distinct ways: parts combine the same
features in different spatial configurations, and objects reuse the same parts in different
proportions. The learning algorithms developed in the following sections are free to give
each object category its own parts, or “borrow” parts from other objects, depending on
which better explains the training images. As we demonstrate in Sec. 5.4, this sharing
can significantly improve detection performance.

When modeling a single object category, our model also shares many features with
constellation models [82, 89, 318], particularly recent extensions which use Bayesian pri-
ors when learning from few examples [77, 78]. The principal difference is that constel-
lation models assume that each part generates at most one observed feature, creating a
combinatorial data association problem for which greedy approximations are needed to
learn more than a few parts [129]. In contrast, our model associates parts with expected
proportions of the observed features. This allows several different features to provide
evidence for a given part, and thus seems better matched to the dense, overlapping
feature detectors described in Sec. 5.1.1. Furthermore, by not placing hard constraints
on the number of features assigned to each part, we are able to develop simple learning
algorithms which scale linearly, rather than exponentially, with the number of parts.

¥ 5.3.2 Monte Carlo Feature Clustering

We now develop a Monte Carlo method which learns the parameters of our fixed–
order object appearance model. We assume that all hyperparameters (rounded boxes
in Fig. 5.4) have fixed, known values, and that training images are labeled by the single
object oj they depict. To simplify the learning process, we also employ prior distri-
butions for the part and transformation densities that have a conjugate form [21, 107]
(see Sec. 2.1.2). In particular, the multinomial appearance distributions are assigned
symmetric Dirichlet priors Hw = Dir(λ), while the Gaussian part and reference trans-
formation densities have normal–inverse–Wishart priors Hv and R.

We begin by assuming that all objects occur at roughly the same position in each
image, so that the reference transformations ρj may be neglected. Certain standard
object recognition datasets [78], as well as systems which use motion or saliency cues
to focus attention [315], satisfy this assumption. In this case, the model is similar to
the author–topic model [247], except that an additional observation (the position vji)
is associated with each part indicator zji. Following [123, 247], we learn this model’s
parameters by iteratively sampling part assignments z using likelihoods which ana-
lytically marginalize part probabilities π and parameters θ = {ηk, µk, Λk}K

k=1. This
Rao–Blackwellized Gibbs sampler, which generalizes the mixture model Gibbs sampler
of Alg. 2.2, provides approximate samples from the posterior distribution p(z | w,v,o)
which may then be used to estimate the underlying parameters.

Let z\ji denote all part assignments excluding zji, and define w\ji and v\ji similarly.
The Gibbs sampler iteratively fixes the part assignments z\ji for all but one feature,
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and then samples a part zji for the remaining feature from the induced conditional
distribution. From the object model’s Markov properties (see Fig. 5.4), the posterior
distribution over part assignments factors as follows:

p(zji | z\ji,w,v,o) ∝ p(zji | z\ji, oj) p(wji | z,w\ji) p(vji | z,v\ji) (5.16)

Let C−i
kw denote the number of times appearance descriptor w is assigned to part k

by z\ji, and N−i
`k the number of features in images of object ` assigned to part k.

Using standard expressions for the predictive likelihoods induced by Dirichlet priors
(see Sec. 2.1.3), the first two terms of eq. (5.16) can be written as

p(zji = k | z\ji, oj = `) =
N−i

`k + α/K
∑

k′ N
−i
`k′ + α

(5.17)

p(wji = w | zji = k, z\ji,w\ji) =
C−i

kw + λ/W
∑

w′ C
−i
kw′ + λ

(5.18)

Note that these probabilities are simply the raw proportions defined by the part as-
signments z\ji, regularized by the pseudo–counts contributed by the Dirichlet priors.
Similarly, the position likelihood depends on the set of features which z\ji currently
assigns to the same part:

p(vji | zji = k, z\ji,v\ji) = p
(
vji |

{
vj′i′ | zj′i′ = k, (j′, i′) 6= (j, i)

})
(5.19)

≈ N (vji; µ̂k, Λ̂k) (5.20)

As discussed in Sec. 2.1.4, normal–inverse–Wishart prior distributions induce multi-
variate Student-t predictive likelihoods. The Gaussian likelihood of eq. (5.20) provides
an accurate approximation when the mean µ̂k and covariance Λ̂k are determined by
regularized moment–matching of that part’s assigned features, as in eq. (2.64).

Combining eqs. (5.17, 5.18, 5.20), we may evaluate eq. (5.16) for each of the K
candidate assignments zji, and sample a new part for that feature. Alg. 5.1 summarizes
one possible Rao–Blackwellized Gibbs sampler based on these predictive distributions.
As in eq. (5.20), we use (µ̂k, Λ̂k) to denote the Gaussian likelihood determined via
eq. (2.64) from the features currently assigned to part k. For compactness, we define
(µ̂k, Λ̂k)⊕vji to be an operator which updates a normal–inverse–Wishart posterior based
on a new feature vji (see eqs. (2.62, 2.63)). Similarly, (µ̂k, Λ̂k)ªvji is defined to remove
vji from the posterior statistics of part k. To efficiently determine these updates, our
implementation caches the sum of the positions of the features assigned to each part,
as well as the Cholesky decomposition of their outer products (see Sec. 2.1.4).

Given a training set with J images, each containing N features, a Gibbs sampling
update of every feature assignment requires O(KJN) operations. These assignments
also implicitly define posterior distributions for the part parameters, which can be easily
inferred if desired (see Alg. 5.1, step 3). Convergence is improved by resampling features
in a different, randomly chosen order at each iteration [246].
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Given previous part assignments z
(t−1)
j for the Nj features in image j, which depicts object

category oj = `, sequentially sample new assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , Nj}.
2. Set zj = z

(t−1)
j . For each i ∈ {τ(1), . . . , τ(Nj)}, sequentially resample zji as follows:

(a) Remove feature (wji, vji) from the cached statistics for its current part k = zji:

N`k ← N`k − 1

Ckw ← Ckw − 1 w = wji

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ª vji

(b) For each of the K parts, determine the predictive likelihood

fk(wji = w, vji) =

(
Ckw + λ/W∑

w′ Ckw′ + λ

)
· N (vji; µ̂k, Λ̂k)

(c) Sample a new part assignment zji from the following multinomial distribution:

zji ∼
1

Zi

K∑

k=1

(N`k + α/K)fk(wji, vji)δ(zji, k) Zi =

K∑

k=1

(N`k + α/K)fk(wji, vji)

(d) Add feature (wji, vji) to the cached statistics for its new part k = zji:

N`k ← N`k + 1

Ckw ← Ckw + 1 w = wji

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ⊕ vji

3. Set z
(t)
j = zj . Optionally, part weights and parameters may be sampled as follows:

π
(t)
` ∼ Dir(N`1 + α/K, . . . , N`K + α/K)

η
(t)
k ∼ Dir(Ck1 + λ/W, . . . , CkW + λ/W ) k = 1, . . . ,K

Position parameters {µ(t)
k ,Λ

(t)
k }K

k=1 follow normal–inverse–Wishart distributions, with
parameters determined from currently assigned features via eqs. (2.62, 2.63).

Algorithm 5.1. Rao–Blackwellized Gibbs sampler for the K part, fixed–order object model of Fig. 5.4,
excluding reference transformations. We illustrate the sequential resampling of all feature assignments
zj in the jth training image. A full iteration of the Gibbs sampler applies these updates to all images
in a randomly chosen order. For efficiency, we cache and recursively update counts N`k of the features
assigned to each part, as well as statistics {Ckw, µ̂k, Λ̂k}

K
k=1 of those features’ appearance and position.

¥ 5.3.3 Learning Part–Based Models of Facial Appearance

To provide intuition for the part–based object appearance model of Fig. 5.4, we consider
a set of 64 manually cropped and aligned images of faces from the Caltech database [318].
Fig. 5.6 shows two sample training images. We examine a more complex dataset con-
taining multiple object categories in Sec. 5.4. For each training image, we first extracted
interest regions as described in Sec. 5.1.1. SIFT descriptors [188] of these interest points
were then mapped to one of W = 600 appearance words. Qualitatively, results for
this dataset seem relatively insensitive to the part–based model’s hyperparameters (see
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Fig. 5.4), which were set as described in Sec. 5.4.1.
We compare models with K = 10 and K = 25 parts, as learned via the Gibbs

sampler of Alg. 5.1. In Fig. 5.6, we illustrate parts corresponding to the 300th sampling
iteration, based on subsets of the training images of varying size. For the 10–part model,
4 training images are sufficient to learn a coarse description of facial appearance, while
additional images lead to slightly refined segmentations. Given 64 training images,
the 25–part model produces a more detailed segmentation which intuitively aligns with
natural facial features. However, with only 4 training images the 25–part model is very
irregular, and provides segmentations which seem worse than the corresponding 10–part
model. In Sec. 5.4.3, we show that object recognition performance also suffers when
there is too little training data to reliably estimate the chosen number of parts.

¥ 5.3.4 Gibbs Sampling with Reference Transformations

Returning to the full, fixed–order object model of Fig. 5.4, we now develop learning
algorithms which account for reference transformations. In this section, we describe a
generalized Gibbs sampler which alternates between sampling reference transformations
and assignments of features to parts. Sec. 5.3.5 then develops an alternative, variational
approximation based on incremental EM updates.

Part Assignment Resampling

Given a fixed set of reference transformations ρ = {ρj}J
j=1, the posterior distribution

needed to resample part assignment zji factors as follows:

p(zji | z\ji,w,v,o, ρ) ∝ p(zji | z\ji, oj) p(wji | z,w\ji) p(vji | z,v\ji, ρ) (5.21)

While the first two terms are unchanged from eqs. (5.17, 5.18), the predictive posi-
tion likelihood now depends on the current transformations ρ for all training images.
Expanding this term, which marginalizes latent position parameters (µk, Λk), we have

p(vji | zji = k, z\ji,v\ji, ρ) =

∫∫
Hv(µk, Λk)

∏

j′i′|zj′i′=k

N
(
vj′i′ ; µk + ρj′ , Λk

)
dµk dΛk

=

∫∫
Hv(µk, Λk)

∏

j′i′|zj′i′=k

N
(
vj′i′ − ρj′ ; µk, Λk

)
dµk dΛk (5.22)

The equivalence of eq. (5.22) follows from eq. (5.3). Because Hv(µk, Λk) is normal–
inverse–Wishart, Sec. 2.1.4 shows that this likelihood is approximately Gaussian, with
mean µ̂k and covariance Λ̂k computed from eq. (2.64) based on data transformed by
the current reference positions:

p(vji | zji = k, z\ji,v\ji, ρ) = p
(
vji − ρj |

{
(vj′i′ − ρj′) | zj′i′ = k, (j′, i′) 6= (j, i)

})

≈ N (vji − ρj ; µ̂k, Λ̂k) (5.23)



10 parts

J = 4 J = 16 J = 64

25 parts

Figure 5.6. Visualization of single category, fixed–order facial appearance models (see Fig. 5.4), with
K = 10 (top) and K = 25 (bottom) parts. We plot the Gaussian position distributions N (µk, Λk)
for each part (center rows), with intensity proportional to their posterior probability πk. For each
model, we also show two color–coded segmentations of image features according to their most likely
corresponding part. Columns show models learned from J = 4, 16, or 64 training images. Note that
additional training images allow more robust learning of richer models with additional parts.
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Thus, if each part caches feature position sums and outer products relative to the
current reference transformations ρ, sampling updates of assignment zji still require
only O(K) operations. Note that a similar approach could be applied to any family
of reference transformations τ(θk; ρj) for which a complementary data transformation
τ̃(vji; ρj), as in eq. (5.1), is available.

Reference Transformation Resampling

As demonstrated for standard mixture models in Sec. 2.4.4, Gibbs samplers which
integrate over latent parameters more rapidly mix to the true posterior distribution.
While we have shown that such Rao–Blackwellization leads to tractable part assignment
updates, it complicates transformation resampling. To handle this issue, we employ an
auxiliary variable method [9, 222], as described in Sec. 2.4.3. Conditioned on all current
assignments z, we draw a single sample from the posterior distribution of each part’s
position parameters:

(µ̂k, Λ̂k) ∼ p(µk, Λk | {(vji − ρj) | zji = k}) k = 1, . . . , K (5.24)

Sampling from these normal–inverse–Wishart distributions (see Sec. 2.1.4) is straight-
forward [107]. For datasets with many training images, these densities are typically
tightly concentrated, and the auxiliary samples of eq. (5.24) are closely approximated
by the corresponding posterior modes.

Conditioned on part parameters sampled as in eq. (5.24), the graph of Fig. 5.4 shows
that the posterior reference transformation distribution factors as follows:

p
(
ρj | ρ\j ,o, z,v, {µ̂k, Λ̂k}K

k=1

)
∝ p

(
ρj | ρ\j ,o

) K∏

k=1

∏

i|zji=k

N (vji − ρj ; µ̂k, Λ̂k) (5.25)

p
(
ρj | ρ\j ,o

)
= p

(
ρj |

{
ρj′ | oj′ = oj

})
≈ N (ρj ; ζ̂oj

, Υ̂oj
) (5.26)

The Gaussian distribution of eq. (5.26) approximates the Student-t predictive likeli-
hood implied by the current transforms for other images of object oj (see eq. (2.64) of
Sec. 2.1.4). Examining eq. (5.25), we see that the reference transformations for other
images act as a Gaussian prior for ρj , while the feature assignments in image j ef-
fectively provide Gaussian noise–corrupted observations. The posterior transformation
distribution is thus also Gaussian, with mean and covariance given by the following
information form (see eqs. (2.56, 2.57)):

p
(
ρj | ρ\j ,o, z,v, {µ̂k, Λ̂k}K

k=1

)
≈ N (ρj ; χj , Ξj) (5.27)

Ξ−1
j = Υ̂−1

oj
+

K∑

k=1

∑

i|zji=k

Λ̂−1
k Ξ−1

j χj = Υ̂−1
oj

ζ̂oj
+

K∑

k=1

∑

i|zji=k

Λ̂−1
k (vji − µ̂k)

Note that all features assigned to part k induce the same observation covariance Λ̂k,
so that Ξ−1

j adds one multiple of Λ̂−1
k for each such feature. The only approximation
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underlying eq. (5.27) is the replacement of a Student-t prior by a moment–matched
Gaussian (eq. (5.26)); given this, the posterior transformation distribution is avail-
able in closed form. After resampling ρj according to eq. (5.27), the part parameter
auxiliary variables {µ̂k, Λ̂k}K

k=1 are discarded. This auxiliary variable approach allows
us to consistently update reference transformations, while retaining the advantages of
Rao–Blackwellization when sampling assignments of features to parts.

In Alg. 5.2, we summarize a Rao–Blackwellized Gibbs sampler based on the pre-
ceding analysis. In our experiments, we have found the auxiliary variables sampled in
eq. (5.24) to be well approximated by the mode of the corresponding normal–inverse–
Wishart posterior (see Alg. 5.2, step 4(b)). Recall that parts model feature positions
relative to reference transformations. Any cached statistics based on those features
must then be updated whenever a reference transformation is resampled. Step 5 of
Alg. 5.2 provides a simple form for such updates which is easily generalized to other
families of transformations. In practice, the computation time of this sampler is dom-
inated by the resampling of part assignments (Alg. 5.2, step 2), and accounting for
reference transformations takes little time beyond that already required by Alg. 5.1.

¥ 5.3.5 Inferring Likely Reference Transformations

In this section, we describe an alternative method for learning shared parts from un-
aligned datasets. Rather than sampling reference transformations as in Alg. 5.2, we use
a variational approximation to integrate over these transformations, and only explicitly
sample the assignments z of features to parts. An incremental form of the EM algo-
rithm [225] then efficiently updates variational parameters as features are reassigned.

As before, consider the graphical model of Fig. 5.4. The posterior distribution of zji,
given the observed image features and other part assignments z\ji, factors as follows:

p(zji | z\ji,w,v,o) ∝ p(zji | z\ji, oj) p(wji | z,w\ji) p(vji | z,v\ji,o) (5.28)

The first two terms are unchanged from eqs. (5.17, 5.18), but uncertainty in the position
parameters {µk, Λk}K

k=1 causes the predictive position likelihood to depend on the latent
reference positions, and hence object labels, of all training images. In Sec. 5.3.4, we
simplified this term by conditioning on the reference transformation ρj . The likelihood
of eq. (5.28) instead marginalizes over transformations. Letting θ = {µk, Λk}K

k=1 denote
part position parameters and ϕ = {ζ`, Ὺ }L

`=1 transformation parameters, we have

p(vji | z,v\ji,o) =

∫∫ [∫
p(vji | zji, ρj , θ) p(ρj | zj\i,vj\i, oj , ϕ) dρj

]

· · · × p(θ, ϕ | z\ji,v\ji,o) dθ dϕ (5.29)

Here, vj\i denotes the set vj of position features in image j, excluding vji. If this
marginalized likelihood could be evaluated, the Rao–Blackwell Theorem (see Sec. 2.4.4)
guarantees that the resulting sampler would have lower variance than that of Alg. 5.2.



Given a previous reference transformation ρ
(t−1)
j , and part assignments z

(t−1)
j for the Nj features

in an image depicting object category oj = `, resample these variables as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , Nj}.
2. Set zj = z

(t−1)
j . For each i ∈ {τ(1), . . . , τ(Nj)}, sequentially resample zji as follows:

(a) Remove feature (wji, vji) from the cached statistics for its current part k = zji:

N`k ← N`k − 1

Ckw ← Ckw − 1 w = wji

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ª (vji − ρ
(t−1)
j )

(b) For each of the K parts, determine the predictive likelihood

fk(wji = w, vji) =

(
Ckw + λ/W∑

w′ Ckw′ + λ

)
· N (vji − ρ

(t−1)
j ; µ̂k, Λ̂k)

(c) Sample a new part assignment zji from the following multinomial distribution:

zji ∼
1

Zi

K∑

k=1

(N`k + α/K)fk(wji, vji)δ(zji, k) Zi =

K∑

k=1

(N`k + α/K)fk(wji, vji)

(d) Add feature (wji, vji) to the cached statistics for its new part k = zji:

N`k ← N`k + 1

Ckw ← Ckw + 1 w = wji

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ⊕ (vji − ρ
(t−1)
j )

3. Set z
(t)
j = zj . Optionally, part weights π

(t)
` and parameters {η(t)

k , µ
(t)
k ,Λ

(t)
k }K

k=1 may be
sampled as in step 3 of Alg. 5.1.

4. Sample a new reference transformation ρ
(t)
j as follows:

(a) Remove ρ
(t−1)
j from cached transformation statistics for object `:

(ζ̂`, Υ̂̀ ) ← (ζ̂`, Υ̂̀ ) ª ρ
(t−1)
j

(b) Sample ρ
(t)
j ∼ N (χj ,Ξj), a posterior distribution determined via eq. (5.27) from the

prior N (ρj ; ζ̂`, Υ̂̀ ), cached part statistics {µ̂k, Λ̂k}K
k=1, and feature positions vj .

(c) Add ρ
(t)
j to cached transformation statistics for object `:

(ζ̂`, Υ̂̀ ) ← (ζ̂`, Υ̂̀ ) ⊕ ρ
(t)
j

5. For each i ∈ {1, . . . , Nj}, update cached statistics for part k = zji as follows:

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ª (vji − ρ
(t−1)
j )

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ⊕ (vji − ρ
(t)
j )

Algorithm 5.2. Rao–Blackwellized Gibbs sampler for the K part, fixed–order object model of Fig. 5.4,
including reference transformations. We illustrate the sequential resampling of all feature assignments
zj in the jth training image, as well as that image’s coordinate frame ρj . A full iteration of the Gibbs
sampler applies these updates to all images in random order. For efficiency, we cache and recursively
update statistics {ζ̂`, Υ̂̀ )}L

`=1 of each object’s reference transformations, counts N`k of the features
assigned to each part, and statistics {Ckw, µ̂k, Λ̂k}

K
k=1 of those features’ appearance and position. The

final step ensures consistency of these part statistics following reference transformation updates.
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Unfortunately, however, due to posterior dependency between the part parameters θ

and transformation parameters ϕ, eq. (5.29) lacks a closed analytic form.
Note that the likelihood of eq. (5.29) depends on the posterior distribution of the

parameters given fixed assignments z\ji of all other features to parts. This distribution
combines information from many training images, and is often tightly concentrated. We
therefore propose to approximate this likelihood via the parameters’ posterior mode:

(θ̂, ϕ̂) = arg max
θ,ϕ

p(θ, ϕ | z\ji,v\ji,o) (5.30)

Given these parameters, the predictive likelihood of eq. (5.29) reduces to an easily
evaluated Gaussian integral. Direct optimization of eq. (5.30) is complicated by the
latent, unobserved reference transformations. We therefore use a variant of the EM
algorithm [107, 161] (see Sec. 2.3.3), in which the E–step determines Gaussian poste-
riors for reference transformations, and the M–step provides corresponding parameter
estimates. Using incremental updates [225], we may efficiently track transformation
statistics as the Gibbs sampler reassigns features to new parts.

Expectation Step

In the E–step, we assume fixed values for the transformation parameters ϕ̂ = {ζ̂`, Υ̂̀ }L
`=1

and part position parameters θ̂ = {µ̂k, Λ̂k}K
k=1, and determine posterior distributions

for the reference transformations ρ = {ρj}J
j=1. From the graph of Fig. 5.4, these

distributions take the following form:

p(ρj | oj = `, zj ,vj , θ̂, ϕ̂) ∝ N (ρj ; ζ̂`, Υ̂̀ )
K∏

k=1

∏

i|zji=k

N (vji − ρj ; µ̂k, Λ̂k) (5.31)

This expression is identical to that arising in the auxiliary variable Gibbs sampler of
Sec. 5.3.4 (see eq. (5.25)). Reference transformation ρj thus has a Gaussian posterior
distribution N (χj , Ξj), with mean and covariance as in eq. (5.27). While Alg. 5.2 uses
this posterior to sample a new transformation, the variational approach of this section
instead estimates parameters analytically in the subsequent M–step.

Maximization Step

In the M–step, we use Gaussian reference transformation distributions ρj ∼ N (χj , Ξj)
from the previous E–step to lower bound the posterior distribution of eq. (5.30). Let
NW(κo, ϑo, νo, ∆o) denote the hyperparameters of the normal–inverse–Wishart prior R
on transformation parameters, as defined in Sec. 2.1.4. Constructing a likelihood bound
as in eq. (2.134) and taking derivatives, we find that the maximizing transformation
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parameters equal

ζ̂` =
1

κo + J`

(
κoϑo +

∑

j|oj=`

χj

)
(5.32)

Υ̂̀ =
(κo + J` + 1)

(κo + J`)(νo + J` + d + 1)

(
νo∆o +

∑

j|oj=`

Ξj + (χj − ζ̂`)(χj − ζ̂`)
T

)
(5.33)

Here, J` is the number of training images of object `, and d = 2 is the dimension of the
reference transformation ρj . Intuitively, eq. (5.32) sets the transformation mean ζ̂` to a
regularized average of the current transformations χj in images of object `. Similarly,

eq. (5.33) combines outer products of transformations (χj − ζ̂`) with their uncertainties
Ξj to determine Υ̂̀ . The factor of (d + 1) in the denominator of eq. (5.33) arises from
the skew inherent in inverse–Wishart distributions (see eq. (2.60)).

Let NW(κv, ϑv, νv, ∆v) denote the hyperparameters of the normal–inverse–Wishart
prior Hv on part position parameters. Via a similar derivation, the likelihood bound is
maximized when these parameters are set as follows:

µ̂k =
1

κv + Nk

(
κvϑv +

J∑

j=1

∑

i|zji=k

(vji − χj)

)
(5.34)

Λ̂k =
(κv + Nk + 1)

(κv + Nk)(νv + Nk + d + 1)

· · · ×
(

νv∆v +
J∑

j=1

∑

i|zji=k

Ξj + (vji − χj − µ̂k)(vji − χj − µ̂k)
T

)
(5.35)

In this expression, Nk is the total number of features which z\ji currently assigns to
part k. As in the Gibbs sampler of Alg. 5.2, part statistics depend on the relative dis-
placements (vji−χj) of image features from current reference transformation estimates.

Likelihood Evaluation and Incremental EM Updates

Given fixed assignments z\ji of features to parts, the preceding EM updates converge
to a local maximum of the posterior distribution of eq. (5.30). Conditioned on the
parameters ϕ̂ = {ζ̂`, Υ̂̀ }L

`=1 and θ̂ = {µ̂k, Λ̂k}K
k=1 computed in the final M–step, the

reference transformation follows the Gaussian posterior ρj ∼ N (χj , Ξj) determined in
the E–step via eq. (5.27). Integrating over ρj , the feature position likelihood of eq. (5.29)
then has the following closed–form approximation:

p(vji | zji = k, z\ji,v\ji,o) ≈ N (vji; χj + µ̂k, Ξj + Λ̂k) (5.36)

This approximation will be accurate when the posterior distribution of eq. (5.30) is
concentrated around a single mode. Empirically, this is usually true given “consistent”
feature assignments z\ji which have high joint posterior probability.
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Given a previous transformation posterior N (ρj ;χj ,Ξj), and part assignments z
(t−1)
j for the Nj

features in an image of object category oj = `, sequentially resample assignments as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , Nj}.
2. Set zj = z

(t−1)
j . For each i ∈ {τ(1), . . . , τ(Nj)}, sequentially resample zji as follows:

(a) Remove feature (wji, vji) from the cached statistics for its current part k = zji:

N`k ← N`k − 1

Ckw ← Ckw − 1 w = wji

Update (µ̂k, Λ̂k) by subtracting (vji − χj) from mean statistics (eq. (5.34)), and
Ξj + (vji − χj − µ̂k)(vji − χj − µ̂k)T from covariance statistics (eq. (5.35)).

(b) E–Step: Update the reference transformation’s Gaussian posterior distribution
N (ρj ;χj ,Ξj) using eq. (5.27), excluding the currently unassigned feature vji.

(c) M–Step: Compute new transformation parameters (ζ̂`, Υ̂̀ ) using eqs. (5.32, 5.33),
and new part position parameters {µ̂k, Λ̂k}K

k=1 using eqs. (5.34, 5.35).

(d) For each of the K parts, determine the predictive likelihood

fk(wji = w, vji) =

(
Ckw + λ/W∑

w′ Ckw′ + λ

)
· N (vji;χj + µ̂k,Ξj + Λ̂k)

(e) Sample a new part assignment zji from the following multinomial distribution:

zji ∼
1

Zi

K∑

k=1

(N`k + α/K)fk(wji, vji)δ(zji, k) Zi =
K∑

k=1

(N`k + α/K)fk(wji, vji)

(f) Add feature (wji, vji) to the cached statistics for its new part k = zji:

N`k ← N`k + 1

Ckw ← Ckw + 1 w = wji

Update (µ̂k, Λ̂k) by adding (vji − χj) to mean statistics (eq. (5.34)), and
Ξj + (vji − χj − µ̂k)(vji − χj − µ̂k)T to covariance statistics (eq. (5.35)).

3. Set z
(t)
j = zj . Optionally, part weights π

(t)
` and parameters {η(t)

k , µ
(t)
k ,Λ

(t)
k }K

k=1 may be
sampled as in step 3 of Alg. 5.1.

Algorithm 5.3. Rao–Blackwellized Gibbs sampler for the K part, fixed–order object model of Fig. 5.4,
using a variational approximation to marginalize reference transformations. We illustrate the sequential
resampling of all feature assignments zj in the jth training image, based on incremental EM updates
of the model’s position parameters. A full iteration of the Gibbs sampler applies these updates to
all images in random order. For efficiency, we cache and recursively update statistics {ζ̂`, Υ̂̀ )}L

`=1 of
each object’s reference transformations, counts N`k of the features assigned to each part, and statistics
{Ckw, µ̂k, Λ̂k}

K
k=1 of those features’ appearance and position.

To apply this analysis, we extend the Rao–Blackwellized Gibbs sampler of Alg. 5.1
to recompute the parameters’ posterior mode following each feature reassignment. As
summarized in Alg. 5.3, we initialize these EM updates with parameters induced by pre-
vious assignments. The newly updated position parameters then determine likelihoods
of features vji as in eq. (5.36), allowing a new assignment zji to be sampled. Because
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the posterior mode is not dramatically changed by the reassignment of one feature, a
single EM iteration per sample is usually sufficient for accurate mode tracking.

Note that feature reassignments in one image alter the expected reference trans-
formations in other images via shared part parameters. Direct implementation of the
preceding EM updates thus requires O(JK) operations per iteration. Alg. 5.3 reduces
the cost of each iteration to O(K) using incremental EM updates [225]. In partic-
ular, when sampling a feature assignment for image j, we fix the E–step’s posterior
transformation distributions (eq. (5.31)) for all other images. By caching statistics of
other reference transformation estimates, the M–step may also be performed efficiently
(see [225] for further discussion). Although we no longer find the exact posterior mode,
the dependence between zj and transformations ρ\j in other training images is very
weak, so this approximation is extremely accurate. Empirically, incremental updates
produce dramatic computational gains with comparable sampling accuracy.

¥ 5.3.6 Likelihoods for Object Detection and Recognition

To use our fixed–order object appearance model for detection or recognition, we must
compute the likelihood that a test image j, with Nj features (wj ,vj), is generated by
each candidate object category oj . Because each image’s features are independently
sampled from a common parameter set, we have

p(wj ,vj | oj ,J ) =

∫
p(wj ,vj | oj , π, θ, ϕ) p(π, θ, ϕ | J ) dπdθdϕ

In this expression, J denotes the set of training images, θ = {ηk, µk, Λk}K
k=1 the part

position and appearance parameters, and ϕ = {ζ`, Ὺ }L
`=1 the reference transformation

parameters. The sequence of part assignments produced by the Gibbs sampler provides
samples z(a) approximately distributed according to p(z | J ). Given A such samples,
we approximate the test image likelihood as

p(wj ,vj | oj ,J ) ≈ 1

A

A∑

a=1

p(wj ,vj | oj , π
(a), θ(a), ϕ(a)) (5.37)

In this expression, (π(a), θ(a), ϕ(a)) denote parameters sampled from the posterior dis-
tribution induced by z(a) (see Alg. 5.1, step 3).

When reference transformations are neglected, as in Sec. 5.3.2, image features are
conditionally independent given model parameters. Test image likelihoods may then be
efficiently computed as follows:

p(wj ,vj | oj = `,π(a), θ(a)) =

Nj∏

i=1

K∑

k=1

π̂̀ kη̂k(wji)N (vji; µ̂k, Λ̂k) (5.38)

Here, π(a) = {π̂`}L
`=1 and θ(a) = {η̂k, µ̂k, Λ̂k}K

k=1 denote the parameters corresponding
to z(a). This expression calculates the likelihood of Nj features in O(NjK) operations.
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To account for reference transformations, we first run the Gibbs sampler of Alg. 5.2

on the test image, extracting several samples ρ
(b)
j ∼ p(ρj | oj , π

(a), θ(a), ϕ(a)). We then
average the feature likelihoods implied by these B samples:

p(wj ,vj | oj = `,π(a), θ(a), ϕ(a)) ≈ 1

B

B∑

b=1

Nj∏

i=1

K∑

k=1

π̂̀ kη̂k(wji)N (vji; µ̂k + ρ
(b)
j , Λ̂k) (5.39)

By marginalizing assignments zj of test features to parts, this Rao–Blackwellized esti-
mator has lower variance than one which directly incorporates assignments z

(b)
j from

the Gibbs sampler. In some cases, extracting these samples from multiple independent
MCMC trials better avoids local optima and improves results [192]. Alternatively, the
incremental EM updates of Alg. 5.3 can be combined with eq. (5.36) to form a different
likelihood estimator for test images.

¥ 5.4 Fixed–Order Models for Sixteen Object Categories

The hierarchical model developed in the preceding section describes the appearance of
several object categories via a common set of shared parts. To explore the benefits of
sharing parts, we consider a collection of 16 categories with noticeable visual similarities.
Fig. 5.7 shows images from each category, which can be divided into three groups:
seven animal faces, five animal profiles, and four objects with wheels. While training
images are labeled with their corresponding category, we do not explicitly modify our
part–based models to reflect these coarser groupings. As object recognition systems
scale to applications involving hundreds or thousands of categories, the inter–category
similarities exhibited by this dataset will become increasingly common.

¥ 5.4.1 Visualization of Shared Parts

Given 30 training images from each of the 16 categories, we first extracted Harris–
affine invariant regions [205], and maximally stable extremal regions [199], as described
in Sec. 5.1.1. SIFT descriptors [188] for these interest points were then mapped to
one of W = 600 appearance words, using a vocabulary determined as in Sec. 5.1.2.
Given these features, we used the Gibbs sampler of Alg. 5.1 to fit a fixed–order object
model (see Fig. 5.4) with 32 shared parts. Because our 16–category dataset contains
approximately aligned images, the reference transformation updates of Algs. 5.2 or 5.3
were not needed. Chap. 6 considers generalizations of these algorithms in more detail.

For our Matlab implementation, each sampling iteration requires roughly 0.1 sec-
onds per training image on a 3.0 GHz Intel Xeon processor. Empirically, the learning
procedure is fairly robust to the hyperparameters Hw and Hv associated with part ap-
pearance and position. We chose Hv to provide a weak (ν = 6 prior degrees of freedom)
bias towards moderate covariances, and Hw = Dir(W/10) to favor sparse appearance
distributions. The Dirichlet prior Dir(α) for object–specific part distributions π` was
set via cross–validation as described in Sec. 5.4.2.
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Figure 5.7. Example images from a dataset containing 16 object categories (rows). These categories
combine images collected from web searches with the Caltech 101 [78], Weizmann Institute [33, 302],
and MIT-CSAIL [299, 300] databases. Including a complementary background category (bottom), there
are a total of 1,885 images used for training and testing, with at least 50 images for each category.



Sec. 5.4. Fixed–Order Models for Sixteen Object Categories 201

Following 500 iterations of the Gibbs sampler, we used the final assignments z
to estimate each part’s posterior distribution over feature appearance and position
(Alg. 5.1, step 3). In Fig. 5.8, we visualize these distributions for seven parts. Several
parts are shared among the different animal face categories, modeling common features
of the mouth region, as well as corresponding vertical contours. Other parts describe the
left and right wheels of the vehicle categories, along with textural features associated
with animal legs. We also show one of several parts which model background clutter
around image boundaries, and are widely shared among categories.

To further investigate these shared parts, we used the symmetrized KL divergence,
as in [247], to compute a distance between all pairs of object–specific part distributions:

D(π`, πm) =
K∑

k=1

π̀ k log
π̀ k

πmk
+ πmk log

πmk

π̀ k
(5.40)

In Fig. 5.9, we show the two–dimensional embedding of these distances produced by
metric multidimensional scaling (MDS), as well as a greedy, agglomerative cluster-
ing [257]. Interestingly, there is significant sharing of parts within each of the three
coarse–level groups underlying this dataset. The animal faces are fairly well separated,
while there is more overlap between the animal profiles and vehicles.

¥ 5.4.2 Detection and Recognition Performance

To evaluate our fixed–order, part–based object appearance model, we consider two sets
of experiments. In the detection task, we use 100 images of cluttered, natural scenes (see
Fig. 5.8) to train a 30–part background appearance model. We then use probabilities
computed as in Sec. 5.3.6 to classify test images as object or background. To facilitate
comparisons, we also consider a recognition task in which test images are classified
as either their true category, or one of the 15 other categories. For both tasks, we
compare a shared model of all object categories to a set of 16 unshared models trained
on individual categories (see Fig. 5.5). We also consider versions of both models which
neglect the spatial location of features, as in the “bag of features” approaches [54, 266]
discussed in Sec. 5.1.3. Performance curves are based on a randomly chosen training
set of the specified size, and use all other images for testing.

In Fig. 5.10, we examine detection and recognition performance given training sets
containing between 4 and 30 images per category. All models are allocated two parts
per category (32 shared parts versus 16 unshared two–part models), and likelihoods are
estimated from 10 samples extracted across 500 iterations of Alg. 5.1 (see Sec. 5.3.6).
We see that shared parts lead to significant improvements in detection performance,
particularly when few training examples are available. Even with 30 training images,
the unshared models incorporating feature positions exhibit significant overfitting, per-
forming worse than corresponding models based solely on feature appearance. As shown
by the scatter plots of Fig. 5.10, all 16 categories benefit from the use of shared parts.

For the recognition task, the shared and unshared appearance–only models behave



Figure 5.8. Seven of the 32 shared parts (columns) learned by a fixed–order, hierarchical model for
16 object categories (rows). Using two images from each category, we display those features with the
highest posterior probability of being generated by each part. For comparison, we show six of the parts
which are specialized to the fewest object categories (left, yellow), as well as one of several widely shared
parts (right, cyan), which seem to model texture and background clutter. The bottom row plots the
Gaussian position densities corresponding to each part. Interestingly, several parts have rough semantic
interpretations, and are shared within the coarse–level object groupings underlying this dataset.
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Figure 5.9. Two visualizations of learned part distributions π` for the fixed–order, 32–part object
appearance model depicted in Fig. 5.8. Top: Two–dimensional embedding computed by metric MDS,
in which coordinates for each object category are chosen to approximate pairwise KL distances as in
eq. (5.40). Animal faces are clustered on the left, vehicles in the upper right, and animal profiles
in the lower right. Bottom: Dendrogram illustrating a greedy, hierarchical clustering, where branch
lengths are proportional to inter–category distances. The four most significant clusters, which with the
exception of the leopard body have intuitive interpretations, are highlighted in color.
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Figure 5.10. Performance of fixed–order object appearance models with two parts per category for
the detection (top block) and recognition (bottom block) tasks. Left: Area under average ROC curves
for different numbers of training images per category. Top Right: Average of ROC curves across all
categories (6 versus 30 training images). Bottom Right: Scatter plot of areas under ROC curves for the
shared and unshared models of individual categories (6 versus 30 training images).
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Figure 5.11. Performance of fixed–order object appearance models with six parts per category for
the detection (top block) and recognition (bottom block) tasks. Left: Area under average ROC curves
for different numbers of training images per category. Top Right: Average of ROC curves across all
categories (6 versus 30 training images). Bottom Right: Scatter plot of areas under ROC curves for the
shared and unshared models of individual categories (6 versus 30 training images).
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similarly. However, the performance of the shared feature position model saturates
given 15 or more training images, and is less effective than a comparable set of un-
shared models. Confusion matrices (not shown) confirm that this small performance
degradation is due to errors involving pairs of object categories with similar part distri-
butions (see Fig. 5.9). For both tasks, feature positions contain important information,
and neglecting them reduces performance.

Given few training images, the Dirichlet part association prior π` ∼ Dir(α) affects
the characteristics of the inferred object model. In particular, small α values reduce
sharing and slightly increase recognition performance, while large α values increase
sharing, leading to improved detection accuracy. The results in Fig. 5.10 use symmetric
Dirichlet priors with precision α0 = 10, a value selected via cross–validation.

¥ 5.4.3 Model Order Determination

The performance of the fixed–order object appearance model is appreciably affected by
the chosen number of parts. In Fig. 5.11, we examine higher–order models with six
parts per category (96 shared parts versus 16 unshared six–part models), trained as in
Sec. 5.4.2. Using more parts significantly improves the unshared models’ performance,
although their detection accuracy is still inferior to the shared model. It also slightly
improves the shared model’s recognition accuracy. Note, however, that using six rather
than two parts per category triples the computational cost of both training and testing
(see discussion in Secs. 5.3.2 and 5.3.6).

To further explore these issues, we examined fixed–order object appearance models
with between two and thirty parts per category (32–480 shared parts versus 16 unshared
2–30 part models). For each model order, we ran the Gibbs sampler of Alg. 5.1 for
200 iterations, and categorized test images via probabilities derived from six posterior
samples. We first considered part association probabilities π` learned using the following
symmetric Dirichlet prior:

(π̀ 1, . . . , π̀ K) ∼ Dir(ᾱ, . . . , ᾱ) = Dir(ᾱK) (5.41)

Our experiments set ᾱ = 5, inducing a small bias towards distributions which assign
non–negligible weight to each of the K parts. Fig. 5.12 shows the average detection and
recognition performance, as measured by the area under the ROC curve, for varying
model orders. Even with 15 training images of each category, shared models with more
than 4–6 parts per category (64–96 total parts) overfit and exhibit reduced accuracy.
Similar issues arise when learning finite mixture models, where priors as in eq. (5.41)
may produce inconsistent parameter estimates if K is not selected with care [149].

In some applications of the LDA model, the number of topics K is determined via
cross–validation [31, 123]. This approach is also possible with the fixed–order object ap-
pearance model, but in practice requires extensive computational effort. Alternatively,
model complexity can be regulated by the following modified part association prior:

(π̀ 1, . . . , π̀ K) ∼ Dir
(α0

K
, . . . ,

α0

K

)
= Dir(α0) (5.42)
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Figure 5.12. Performance of fixed–order object appearance models with varying numbers of parts K.
Part association priors π` ∼ Dir(ᾱK) are biased towards uniform distributions (eq. (5.41)). We compare
detection and recognition performance given 4 (top) or 15 (bottom) training images per category.

For a fixed precision α0, this prior becomes biased towards sparse part association
distributions π` as K grows large (see Sec. 2.1.3). Fig. 5.13 illustrates the behavior of
this prior when α0 = 10. In contrast with the previously observed overfitting, eq. (5.42)
produces stable recognition results across a wider range of model orders K.

As described in Sec. 2.5.3 (see Thm. 2.5.5), predictions based on Dirichlet priors
scaled as in eq. (5.42) approach a corresponding Dirichlet process as K → ∞. However,
if we apply this limit directly to the model of Fig. 5.4, objects asymptotically associate
features with disjoint sets of parts, and the benefits of sharing are lost. We see the
beginnings of this trend in Fig. 5.13, which shows a slow decline in detection performance
as K increases. As discussed in Sec. 2.5.4, the hierarchical Dirichlet process (HDP) [289]
provides an elegant solution to this problem, by using a global Dirichlet process to share
clusters among related groups. The following section adapts the HDP to our object
categorization task, and shows that it cleanly avoids these model selection issues.

¥ 5.5 Sharing Parts with Dirichlet Processes

We now revisit the parametric, fixed–order object appearance model of Fig. 5.4. By
adapting the hierarchical Dirichlet process (HDP) [289], we develop tractable, nonpara-
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Figure 5.13. Performance of fixed–order object appearance models with varying numbers of parts K.
Part association priors π` ∼ Dir(α0) are biased towards sparse distributions (eq. (5.42)). We compare
detection and recognition performance given 4 (top) or 15 (bottom) training images per category.

metric models which automatically determine an appropriate number of latent parts.
As in the fixed–order object model, we augment the HDP with image–specific spatial
transformations, and thus model datasets which are not spatially aligned.

Let Hw denote a Dirichlet prior on feature appearance distributions, Hv a normal–
inverse–Wishart prior on feature position distributions, and Hw×Hv the corresponding
product measure. As in the standard HDP model described in Sec. 2.5.4, a global
probability measure G0 ∼ DP(γ, Hw×Hv) constructs an infinite set of shared parts:

G0(θ) =
∞∑

k=1

βkδ(θ, θk)
β ∼ GEM(γ)

(ηk, µk, Λk) = θk ∼ Hw×Hv
(5.43)

Object categories are then defined by reweighted distributions G` ∼ DP(α, G0), which
reuse these global parts in varying proportions:

G`(θ) =
∞∑

t=1

π̃̀ tδ(θ, θ̃`t)
π̃` ∼ GEM(α)

θ̃`t ∼ G0

(5.44)

=
∞∑

k=1

π̀ kδ(θ, θk) π` ∼ DP(α,β) (5.45)
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As discussed in Sec. 2.5.4, each local part t (eq. (5.44)) has parameters θ̃`t copied from
some global part θk`t

, indicated by k`t ∼ β. Aggregating the probabilities associated
with these copies, eq. (5.45) then directly expresses each object’s appearance via the
common set of shared, global parts.

Consider the generative process for image j, which depicts object oj and contains Nj

features (wj ,vj). As before, each image has a corresponding reference transformation ρj ,
whose category–specific Gaussian prior equals

ρj ∼ N
(
ζoj

, Υoj

)
j = 1, . . . , J (5.46)

Each feature (wji, vji) is then independently sampled from some part of object oj :

(η̄ji, µ̄ji, Λ̄ji) ∼ Goj

wji ∼ η̄ji

vji ∼ N
(
µ̄ji + ρj , Λ̄ji

) (5.47)

As before, we assume that the reference transformation ρj induces a simple translation
of the observed features. Generalizations involving more complex transformations, like
those discussed in Sec. 5.2.2, are also possible.

In Fig. 5.14, we provide a directed graphical representation of our HDP object
appearance model. Marginalizing the unobserved assignments of features to latent
parts, object appearance is defined by the following infinite mixture model:

p(wji, vji | ρj , oj = `) =
∞∑

k=1

π̀ kηk(wji)N (vji; µk + ρj , Λk) (5.48)

This approach generalizes the parametric, fixed–order object model of Fig. 5.5 by defin-
ing an infinite set of potential global parts, and using the Dirichlet process’ stick–
breaking prior to automatically choose an appropriate model order. It also extends the
HDP of Fig. 2.28 by associating a different reference transformation with each training
image. Fig. 5.14 shows a related model in which each object’s parts are defined by an
independent Dirichlet process prior, and thus not shared among categories.

¥ 5.5.1 Gibbs Sampling for Hierarchical Dirichlet Processes

To develop a learning algorithm for the nonparametric object appearance model of
Fig. 5.14, we consider the “Chinese restaurant franchise” description of the HDP (see
Sec. 2.5.4). This representation was previously used to develop a Rao–Blackwellized
HDP Gibbs sampler [289]. In this section, we generalize this approach to also resample
reference transformations, using methods similar to those underlying the fixed–order
Gibbs sampler of Alg. 5.2.

As illustrated in Fig. 2.29, the Chinese restaurant franchise involves two sets of
assignment variables. Object categories ` have infinitely many local parts (tables) t,
which are assigned to global parts k`t. Each observed feature, or customer, (wji, vji) is
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Figure 5.14. Nonparametric, Dirichlet process models for the visual appearance of L object categories.
Each of the J` images of object ` has a reference transformation ρj ∼ N (ζ`, Ὺ ), where ϕ` = (ζ`, Ὺ ).
Left: Integrated, HDP model in which G0 ∼ DP(γ, Hw×Hv) defines an infinite set of global parts,
and objects reuse those parts via the reweighted distribution G` ∼ DP(α, G0). θ̄ji ∼ G` are then the
part parameters used to generate feature (wji, vji). Right: A related model in which each category is
described by an independent, infinite set of parts, with DP prior G` ∼ DP(α, Hw×Hv).

then assigned to some table tji. The proposed Gibbs sampler thus has three sets of state
variables: assignments t of features to tables, assignments k of tables to global parts,
and reference transformations ρ for each training image. Given these variables, the
weights associated with the global (eq. (5.43)) and local (eq. (5.44)) part distributions
can be analytically marginalized, as in the DP mixture Gibbs sampler of Alg. 2.3.

To avoid cumbersome notation, we let zji = kojtji
denote the global part associated

with feature (wji, vji). Note that zji is uniquely determined by that feature’s table
assignment tji = t, and the corresponding table’s part assignment k`t.

Table Assignment Resampling

We first consider the posterior distribution of the table assignment tji for feature
(wji, vji), given all other state variables. Letting t\ji denote all table assignments ex-
cluding tji, the Markov properties of the HDP (see Figs. 2.29 and 5.14) imply that

p(tji | t\ji,k,w,v,o, ρ) ∝ p(tji | t\ji, oj) p(wji | t,k,w\ji) p(vji | t,k,v\ji, ρ) (5.49)

Let N−i
`t denote the number of features in images of object ` assigned to each of the

T` tables currently instantiated by t\ji. The clustering bias induced by the Chinese
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restaurant process (see eq. (2.203)) then implies that

p(tji | t\ji, oj = `) ∝
T∑̀

t=1

N−i
`t δ(tji, t) + αδ(tji, t̄) (5.50)

where t̄ denotes an assignment to a new, previously unoccupied table. For existing
tables, the appearance likelihood depends on those features currently assigned to the
same global, shared part:

p(wji = w | zji = k, t\ji,k,w\ji) =
C−i

kw + λ/W
∑

w′ C
−i
kw′ + λ

(5.51)

Here, C−i
kw is the number of times appearance descriptor w is assigned to part k by

(t\ji,k). The position likelihood similarly equals

p(vji | zji = k, t\ji,k,v\ji, ρ) = p
(
vji − ρj |

{
(vj′i′ − ρj′) | zj′i′ = k, (j′, i′) 6= (j, i)

})

≈ N (vji − ρj ; µ̂k, Λ̂k) (5.52)

This predictive likelihood, whose derivation follows eqs. (5.22, 5.23), depends on the
transformed positions of all other features currently assigned to the same global part.

For new tables t̄, we improve sampling efficiency by integrating over potential as-
signments k`t̄ to global parts:

p(wji = w, vji | tji = t̄, t\ji,k,w\ji,v\ji, ρ)

∝
∑

k

p(k`t̄ = k | k) ·
(

C−i
kw + λ/W

∑
w′ C

−i
kw′ + λ

)
· N (vji − ρj ; µ̂k, Λ̂k) (5.53)

As in eq. (2.204), the probability of each of the K existing global parts depends on the
number of other tables Mk which k assigns to that part:

p(k`t̄ | k) ∝
K∑

k=1

Mkδ(k`t̄, k) + γδ(k`t̄, k̄) (5.54)

In this expression, k̄ indicates a potential new global part, to which no tables or features
are currently assigned. As in the DP mixture sampler of Alg. 2.3, our implementation
maintains a dynamically resized list of those parts associated with at least one feature.

To sample according to eq. (5.49), we first evaluate the likelihoods of eqs. (5.51, 5.52)
for each candidate table t and global part k`t̄. Combining these likelihoods with the
Dirichlet process clustering biases of eqs. (5.50, 5.54), we sample a new table assignment
tji, and if a new table tji = t̄ is chosen, a corresponding part assignment k`t̄.
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Global Part Assignment Resampling

We now consider the assignments k`t of tables to global parts, given fixed associations t
between features and tables. Although each object category ` has infinitely many tables,
we only explicitly resample assignments for the T` tables currently occupied by at least
one feature (N`t > 0).

Because k`t determines the part associated with all features assigned to table t, its
posterior distribution depends on their joint likelihood. Let ẁ t = {wji | tji = t, oj = `}
denote the appearance features assigned to table t, and w\`t all other appearance fea-
tures. Defining v̀ t and v\`t similarly, we then have

p(k`t | k\`t, t,w,v, ρ) ∝ p(k`t | k\`t) p(ẁ t | t,k,w\`t) p(v̀ t | t,k,v\`t, ρ) (5.55)

Here, the prior clustering bias is as in eq. (5.54), except that k`t is excluded when
counting the number of tables M−t

k assigned to each global part. The joint likelihood
of ẁ t is then determined by those features assigned to the same part:

p(ẁ t | k`t = k, t,k\`t,w\`t)

∝
∫

p
(
ηk |

{
wj′i′ | zj′i′ = k, tj′i′ 6= t

}) ∏

j,i|tji=t

p(wji | ηk) dηk (5.56)

This expression equals the predictive likelihood of the N`t appearance features occu-
pying table t, as given by Prop. 2.1.4. The likelihood of v̀ t has a similar form, except
that part statistics are determined by transformed feature positions as in eq. (5.52).
Evaluating these likelihoods for each of the K currently instantiated parts, as well as a
potential new global part k̄, we may then sample a new part assignment via eq. (5.55).

Reference Transformation Resampling

Fixing the values of all assignment variables (t,k), each feature is associated with a
unique global part. Given these associations, the posterior distribution of ρj is identical
to that arising in a fixed–order object model (see Fig. 5.5) with matching assignments.
Thus, as in Sec. 5.3.4, we may efficiently resample reference transformations via an
auxiliary variable method.

Suppose that (t,k) assign at least one feature to each of K different global parts.
For each instantiated part, we sample a single set of feature position parameters from
their resulting posterior distribution:

(µ̂k, Λ̂k) ∼ p(µk, Λk | {(vji − ρj) | zji = k}) k = 1, . . . , K (5.57)

As before, these auxiliary samples are often closely approximated by their corresponding
posterior modes. The posterior distribution of reference transformation ρj then factors
exactly as in eq. (5.25), and has the closed Gaussian form of eq. (5.27).
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Concentration Parameter Resampling

The preceding sampling equations assumed fixed values for the concentration parame-
ters γ and α defining the HDP’s stick–breaking priors (see eqs. (5.43, 5.44)). In practice,
these parameters noticeably impact the number of global and local parts learned by the
Gibbs sampler. As with standard Dirichlet process mixtures (see Alg. 2.3), it is thus
preferable to choose weakly informative gamma priors for these concentration param-
eters. Auxiliary variable methods may then be used to resample α and γ following
each Gibbs iteration [76, 289]. Our incorporation of reference transformations does not
change the form of these resampling steps, which are described in detail by [289].

¥ 5.5.2 Learning Dirichlet Process Facial Appearance Models

To illustrate the use of Dirichlet processes in learning part–based object appearance
models, we revisit the Caltech face database [318] considered in Sec. 5.3.3. We assign
a gamma prior α ∼ Gamma(0.1, 0.1) to the DP concentration parameter, and set the
hyperparameters defining part distributions as before. Because this example involves
a single object category, the global part distribution G0 is unnecessary. We thus let
γ → ∞, so that G0 = Hw×Hv as in the unshared model of Fig. 5.14. The resulting
Gibbs sampler is similar to methods for standard DP mixtures (see Alg. 2.3).

In Fig. 5.15, we show the parts instantiated by the 300th iteration of the Gibbs
sampler of Sec. 5.5.1. Interestingly, the number of parts learned by the model grows
with the number of available training images. Given 4 training images, roughly ten parts
are used, avoiding the overfitting exhibited by the fixed–order, 25 part model of Fig. 5.6.
When more training images become available, additional parts are created, thus allowing
more detailed segmentations. As discussed in Sec. 2.5.2, the Dirichlet process prior
encourages models whose complexity grows as data is observed. By resampling α, we
allow a data–driven growth rate to be determined automatically.

¥ 5.6 Nonparametric Models for Sixteen Object Categories

We now examine the sixteen category dataset of Fig. 5.7 using our HDP object appear-
ance model. Part distribution hyperparameters Hw and Hv were set as in Sec. 5.4.1, and
concentration parameters are assigned weakly informative priors γ ∼ Gamma(5, 0.1),
α ∼ Gamma(0.1, 0.1). We then learn an appropriate number of global parts, and their
corresponding parameters, via the Gibbs sampler of Sec. 5.5.1.

¥ 5.6.1 Visualization of Shared Parts

Given 30 training images from each of the 16 categories, we extracted features as in
Sec. 5.4.1, and ran the Gibbs sampler of Sec. 5.5.1 for 1000 iterations. After an initial
burn–in phase, there were typically between 120 and 140 global parts associated with at
least one observation (see Fig. 5.16). As observed with standard Dirichlet process mix-
tures, however, some of these parts have very small posterior probability (see Sec. 2.5.3).



214 CHAPTER 5. OBJECT CATEGORIZATION USING SHARED PARTS

20 40 60
0

5

10

15

20

25

30

Training Images

N
um

be
r 

of
 P

ar
ts

J = 4 J = 16 J = 64

Figure 5.15. Visualization of single category, Dirichlet process facial appearance models (see Fig. 5.14).
For different training set sizes J (columns), we plot the posterior mean and variance in the number of
model parts (center row, left), and Gaussian position distributions N (µk, Λk) for those parts accounting
for 95% of the observed features (center row, right). For each model, we also show two color–coded
segmentations of image features according to their most likely corresponding part. Dirichlet processes
make robust predictions by estimating simple models from small training sets, and creating more parts
as additional images are observed.

In Fig. 5.17, we visualize the feature distributions corresponding to seven of the more
significant parts. A few seem specialized to distinctive features of individual categories,
such as the spots appearing on the leopard’s forehead. Many other parts are shared
among several categories, modeling common aspects such as ears, mouths, and wheels.
Compared to the fixed–order model illustrated in Fig. 5.8, the HDP’s parts model fewer
features, and cover smaller spatial areas. Note that the specific number of parts, and
corresponding granularity of the appearance model, are determined automatically via
the Dirichlet process prior.

As with the fixed–order object model, we also visualize pairwise distances between
the object–specific part distributions π` learned by the Gibbs sampler. We again mea-
sure distance via the symmetrized KL divergence of eq. (5.40), using only those parts
associated with at least one feature. Fig. 5.18 shows the two–dimensional metric MDS
embedding of these distances, and a corresponding agglomerative clustering [257]. Note
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Figure 5.16. Mean (thick lines) and variance (thin lines) of the number of global parts created by the
HDP Gibbs sampler (Sec. 5.5.1), given training sets of varying size. Left: Number of global parts used
by HDP object models (blue), and the total number of parts instantiated by sixteen independent DP
object models (green). Right: Expanded view of the parts instantiated by the HDP object models.

that the coarse–level object groups underlying this dataset (animal faces, animal pro-
files, vehicles) are more accurately identified than they were by the fixed–order model
(see Fig. 5.9). In addition, the similarities among the three categories of cat faces, and
among those animals with elongated faces, are reflected in the learned, shared parts.

¥ 5.6.2 Detection and Recognition Performance

To evaluate our HDP object appearance model, we consider the same detection and
recognition tasks examined in Sec. 5.4.2. We compare the HDP model to a set of
16 independent DP models (see Fig. 5.14), and also consider corresponding “bag of
features” models based solely on feature appearance. In Fig. 5.16, we illustrate the
number of global parts instantiated by the Gibbs samplers for the HDP models. The
appearance–only HDP model learns a consistent number of parts given between 10 and
30 training images, while the HDP model of feature positions uses additional parts as
more images are observed. We also show the considerably larger number of total parts
(roughly 25 per category) employed by the independent DP models of feature positions.
Because we use multinomial appearance distributions, estimation of the number of parts
defining a single–category, appearance–only model is ill–posed, and sensitive to the
concentration parameter α We thus do not show this model in Fig. 5.16.

Fig. 5.19 shows detection and recognition performance given training sets contain-
ing between 4 and 30 images per category. Likelihoods are estimated from 40 samples
extracted across 1000 iterations of the Gibbs sampler. As with the fixed–order model,
sharing significantly improves detection performance when few training images are avail-
able. In this case, however, the independent DP models of each category come closer to
the HDP’s accuracy by using more parts, and hence computation. As expected, these
nonparametric models perform similarly to fixed–order object models employing equal
numbers of parts (see Sec. 5.4). In some cases, however, the HDP Gibbs sampler dis-
covers a more appropriate number of parts than those we examined for the fixed–order



Figure 5.17. Seven of the 135 shared parts (columns) learned by an HDP model for 16 object
categories (rows). Using two images from each category, we display those features with the highest
posterior probability of being generated by each part. For comparison, we show six of the parts which
are specialized to the fewest object categories (left, yellow), as well as one of several widely shared parts
(right, cyan), which seem to model texture and background clutter. The bottom row plots the Gaussian
position densities corresponding to each part. Compared to the parametric model of Fig. 5.8, the HDP
uses additional parts to create more detailed appearance models. These parts also more closely align
with the coarse–level object groupings underlying this dataset.
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Figure 5.18. Two visualizations of learned part distributions π` for the HDP object appearance
model depicted in Fig. 5.17. Top: Two–dimensional embedding computed by metric MDS, in which
coordinates for each object category are chosen to approximate pairwise KL distances as in eq. (5.40).
Bottom: Dendrogram illustrating a greedy, hierarchical clustering, where branch lengths are propor-
tional to inter–category distances. The four most significant clusters, which very intuitively align with
semantic relationships among these categories, are highlighted in color.
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Figure 5.19. Performance of Dirichlet process object appearance models for the detection (top block)
and recognition (bottom block) tasks. Left: Area under average ROC curves for different numbers of
training images per category. Top Right: Average of ROC curves across all categories (6 versus 30
training images). Bottom Right: Scatter plot of areas under ROC curves for the shared and unshared
models of individual categories (6 versus 30 training images).
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model, and thus performs better.
For the recognition task, the HDP model of feature positions is slightly less effective

than the independent DP models. However, it improves on our earlier fixed–order
model by using more parts, and thus better differentiating the most similar pairs of
object categories. This improvement is reflected by the more uniform object spacings
in the MDS embedding of Fig. 5.18. For both detection and recognition, we again find
that the spatial structure of visual features provides important information, and leads
to more effective object appearance models.

¥ 5.7 Discussion

The preceding results demonstrate the potential benefits of transferring information
among object categories when learning from few examples. Interestingly, while shared
parts lead to substantial gains in distinguishing objects from background clutter, they
may slightly reduce the discriminability of very similar categories; Chap. 7 discusses
this tradeoff in more detail. Our results further show that nonparametric, Dirichlet
process priors lead to learning algorithms which cleanly avoid model selection issues.
Motivated by these advantages, Chap. 6 develops richer nonparametric models which
analyze multiple object scenes.



220 CHAPTER 5. OBJECT CATEGORIZATION USING SHARED PARTS



Chapter 6

Scene Understanding via

Transformed Dirichlet Processes

COMPUTER vision systems are most challenged by the interpretation of uncon-
strained, dynamic environments. In some cases, models of individual object ap-

pearance are directly adapted to scene understanding tasks. However, doing so ne-
glects valuable contextual information which can disambiguate unexpected or partially
occluded visual features. In this chapter, we instead design integrated, hierarchical
models for multiple object scenes. Extending the nonparametric methods employed in
previous chapters, we develop algorithms which robustly discover the number of parts
composing each object, and objects depicted in each image.

As in Chap. 5, we describe images via a collection of affinely adapted interest re-
gions. We begin in Sec. 6.1 by developing a parametric, fixed–order model which de-
scribes known sets of objects using a common set of shared parts. While this model
desirably captures contextual relationships among objects, it restrictively assumes that
the number of object instances depicted in each scene is known. To address this issue,
Sec. 6.2 develops a nonparametric framework which couples Dirichlet processes with
spatial transformations. The resulting transformed Dirichlet process (TDP) then pro-
vides a consistent, generative model for scenes in which the numbers of depicted object
instances, and total object categories, are uncertain.

We provide two sample applications of the TDP to scene understanding tasks.
Sec. 6.3 first develops a two–dimensional model which uses image–based translations to
learn part–based object appearance models. Generalizing this approach, Sec. 6.4 then
introduces a hierarchical description of the three–dimensional structure and appearance
of visual scenes. We calibrate this model with binocular stereo training images, and
thereby simultaneously recognize objects and reconstruct scene geometry. Both TDP
models employ efficient Monte Carlo algorithms which analytically marginalize many
parameters, and thus achieve robust learning with few manually specified parameters.

This chapter describes models developed in collaboration with Dr. Antonio Torralba.
Some results were presented at the 2005 IEEE International Conference on Computer
Vision [280], the 2005 Conference on Neural Information Processing Systems [282], and
the 2006 IEEE Conference on Computer Vision and Pattern Recognition [281].

221



222 CHAPTER 6. SCENE UNDERSTANDING VIA TRANSFORMED DIRICHLET PROCESSES

¥ 6.1 Contextual Models for Fixed Sets of Objects

We begin by revisiting the parametric, fixed–order object appearance model developed
in Sec. 5.3. As summarized in Fig. 5.4, this model describes several object categories
via a common set of shared parts. However, it restrictively assumes that each training
or test image depicts a single object. In this section, we generalize this framework to
describe visual scenes containing multiple objects. Retaining the fixed–order object
model’s parametric form, we assume that scenes contain fixed, known sets of objects.
For example, a simple office scene might be defined by one computer screen, one key-
board, and one mouse. Later sections consider more flexible scene models, in which the
number of object instances is also uncertain.

In Fig. 6.1, we summarize the proposed fixed–order model of visual scenes. The
scene sj associated with image j is defined by a fixed collection of L object categories.
Conditioned on sj , one of S possible scenes, the scene transformation ρj provides a
reference frame for each object. For simplicity, we consider scale–normalized datasets,
so that ρj is a 2L–dimensional vector specifying each object’s image coordinates. Each
scene category is then given a different Gaussian transformation prior:

ρj ∼ N
(
ζsj

, Υsj

)
j = 1, . . . , J (6.1)

Because this Gaussian distribution has a full, 2L–dimensional covariance matrix, we
may learn contextual, scene–specific correlations in the locations at which objects are
observed. As before, we regularize these transformation distributions with conjugate,
normal–inverse–Wishart priors (ζs, Υs) ∼ R.

Each visual scene is also associated with a discrete distribution βs, which specifies
the proportion of observed features generated by each object. Each feature is generated
by sampling an object category oji, and then a corresponding part zji:

oji ∼ βsj

zji ∼ πoji

i = 1, . . . , Nj (6.2)

Conditioned on these part assignments, the discrete appearance wji of each feature is
independently sampled as in Sec. 5.3. Similarly, the feature position vji is determined
by the chosen part, relative to the associated object’s reference transformation:

wji ∼ ηzji

vji ∼ N
(
µzji

+ ρj`, Λzji

)
oji = `

(6.3)

Here, ρj` is the subvector of ρj corresponding to the reference transformation for ob-
ject `. While eq. (6.3) transforms objects via image–based translations, more complex
pose variations could be modeled using richer transformation families (see Sec. 5.2).

Marginalizing the unobserved assignments zji of features to parts, we find that each
object’s appearance is defined by a different finite mixture model:

p(wji, vji | ρj , oji = `) =
K∑

k=1

π̀ kηk(wji)N (vji; µk + ρj`, Λk) (6.4)
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Figure 6.1. A parametric model for visual scenes containing fixed sets of objects. The jth image
depicts visual scene sj , which combines L object categories at locations determined by the vector ρj of
reference transformations. Each object category is in turn defined by a distribution π` over a common
set of K shared parts. The appearance wji and position vji of visual features, relative to the position
of associated object oji, are then determined by assignments zji ∼ πoji to latent parts.

For scenes containing a single object, this model is equivalent to the fixed–order model
of Sec. 5.3. More generally, however, eq. (6.4) faithfully describes images contain-
ing several objects, which differ in their observed locations and underlying part–based
decompositions. The graph of Fig. 6.1 generalizes the author–topic model [247] by
incorporating reference transformations, and by not constraining objects (authors) to
generate equal proportions of image features (words).

¥ 6.1.1 Gibbs Sampling for Multiple Object Scenes

Learning and inference in the scene–object–part hierarchy of Fig. 6.1 is possible via di-
rect generalizations of the algorithms developed in Sec. 5.3. Extending Alg. 5.2, we first
describe a Gibbs sampler which alternatively samples assignments (oji, zji) of features
to objects and parts, and corresponding reference transformations ρj . This method gen-
eralizes a Rao–Blackwellized Gibbs sampler previously proposed for the author–topic
model [247]. Sec. 6.1.2 then develops an alternative, variational approximation based
on incremental EM updates.

Object and Part Assignment Resampling

To improve convergence, we consider a blocked Gibbs sampler which jointly resamples
the object oji and part zji associated with each feature. Given a fixed set of reference
transformations ρ = {ρj}J

j=1, the posterior distribution of these assignment variables
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factors as follows:

p(oji, zji | o\ji, z\ji,w,v, s, ρ) ∝
p(oji | o\ji, sj) p(zji | z\ji, oji) p(wji | z,w\ji) p(vji | z,v\ji,o, ρ) (6.5)

Let M−i
s` denote the number of times o\ji assigns features to object ` in images of

scene s. Because βs ∼ Dir(γ) is assigned a symmetric Dirichlet prior, we then have

p(oji = ` | o\ji, sj = s) =
M−i

s` + γ/L
∑

`′ M
−i
s`′ + γ

(6.6)

Similarly, the Dirichlet priors assigned to each object’s part distribution π` ∼ Dir(α),
and each part’s appearance distribution ηk ∼ Dir(λ), imply that

p(zji = k | z\ji, oji = `) =
N−i

`k + α/K
∑

k′ N
−i
`k′ + α

(6.7)

p(wji = w | zji = k, z\ji,w\ji) =
C−i

kw + λ/W
∑

w′ C
−i
kw′ + λ

(6.8)

As in the fixed–order object model (see eqs. (5.17, 5.18)), C−i
kw denotes the number of

times appearance descriptor w is assigned to part k by z\ji, and N−i
`k the number of

features simultaneously assigned to object ` and part k. Note that features associated
with different objects contribute to a common set of K shared parts.

The position likelihood of eq. (6.3) models features vji relative to the position of
the currently associated object oji. Via an argument analogous to that used for the
single–object model in Sec. 5.3.4 (see eq. (5.22)), the posterior distribution of (µk, Λk) is
normal–inverse–Wishart, and depends on features transformed by the assigned objects’
reference positions. The predictive likelihood of eq. (6.5) then equals

p(vji | zji = k, oji = `, z\ji,o\ji,v\ji, ρ)

∝ p
(
vji − ρj` |

{
(vj′i′ − ρj′`′) | zj′i′ = k, oj′i′ = `′, (j′, i′) 6= (j, i)

})

≈ N (vji − ρj`; µ̂k, Λ̂k)
(6.9)

As discussed in Sec. 2.1.4, this expression approximates the Student–t predictive likeli-
hood with a moment–matched Gaussian. Each part then caches feature position sums
and outer products relative to the assigned objects’ reference transformations. Com-
bining these expressions, we may evaluate eq. (6.5) for all potential object and part
assignments in O(LK) operations, and thus jointly resample (oji, zji).

Reference Transformation Resampling

As discussed in Sec. 5.3.4, while marginalization of the parameters defining each part
improves performance, it also complicates transformation resampling. To address this
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issue, we again employ an auxiliary variable method. Fixing all assignments (o, z) of
features to objects and parts, we draw a single sample from the normal–inverse–Wishart
posterior distribution of each part’s position parameters:

(µ̂k, Λ̂k) ∼ p(µk, Λk | {(vji − ρj`) | zji = k, oji = `}) k = 1, . . . , K (6.10)

Given these parameters, the posterior distribution of the reference transformation ρj

for the visual scene in image j equals

p
(
ρj | ρ\j , s,o, z,v, {µ̂k, Λ̂k}K

k=1

)
∝p

(
ρj | ρ\j , s

) K∏

k=1

∏

i|zji=k

N
(
vji−ρjoji

; µ̂k, Λ̂k

)
(6.11)

Recall that ρj is a 2L–dimensional vector, which defines a reference position for each
of the L objects in scene sj . The first term of eq. (6.11) is an approximately Gaussian
prior implied by the current transformations in other images of the same scene:

p
(
ρj | ρ\j , s

)
= p

(
ρj |

{
ρj′ | sj′ = sj

})
≈ N (ρj ; ζ̂sj

, Υ̂sj
) (6.12)

This expression again approximates a Student–t predictive distribution by an appropri-
ately moment–matched Gaussian.

Examining eq. (6.11), we see that each feature vji effectively provides a Gaussian
observation of the 2–dimensional subvector of ρj corresponding to the currently assigned
object oji. The posterior transformation distribution is then also Gaussian, with mean
and covariance given by the following information form:

p
(
ρj | ρ\j , s,o, z,v, {µ̂k, Λ̂k}K

k=1

)
≈ N (ρj ; χj , Ξj) (6.13)

Ξ−1
j = Υ̂−1

sj
+ blkdiag

{
K∑

k=1

∑

i|zji=k
oji=1

Λ̂−1
k , . . . ,

K∑

k=1

∑

i|zji=k
oji=L

Λ̂−1
k

}

Ξ−1
j χj = Υ̂−1

sj
ζ̂sj

+

[
K∑

k=1

∑

i|zji=k
oji=1

Λ̂−1
k (vji − µ̂k) , . . . ,

K∑

k=1

∑

i|zji=k
oji=L

Λ̂−1
k (vji − µ̂k)

]T

By caching the statistics required by this expression, we may then sample a new ref-
erence transformation in O(L3) operations. Note that the influence of each feature on
the posterior distribution of eq. (6.13) depends on the covariance of its associated part.
After resampling ρj , the auxiliary part parameters {µ̂k, Λ̂k}K

k=1 are discarded to allow
Rao–Blackwellized assignment sampling.

Alg. 6.1 summarizes a Gibbs sampler based on the preceding analysis. As in Chap. 5,
we define (µ̂k, Λ̂k) ⊕ vji to be an operator which updates a normal–inverse–Wishart
posterior based on a new feature vji (see eqs. (2.62, 2.63)). Similarly, (µ̂k, Λ̂k)ª vji re-
moves vji from the posterior statistics of part k. Like the single–object Gibbs sampler



Given a previous reference transformation ρ
(t−1)
j , and object and part assignments (o

(t−1)
j , z

(t−1)
j )

for the Nj features in an image depicting scene sj = s, resample these variables as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , Nj}.
2. Set (oj , zj) = (o

(t−1)
j , z

(t−1)
j ). For i ∈ {τ(1), . . . , τ(Nj)}, sequentially resample (oji, zji):

(a) Remove feature (wji, vji) from the cached statistics for its current part and object:

Ms` ← Ms` − 1 ` = oji

N`k ← N`k − 1 k = zji

Ckw ← Ckw − 1 w = wji

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ª (vji − ρ
(t−1)
j` )

(b) For each of the L · K pairs of objects and parts, determine the predictive likelihood

f`k(wji = w, vji) =

(
Ckw + λ/W∑

w′ Ckw′ + λ

)
· N (vji − ρ

(t−1)
j` ; µ̂k, Λ̂k)

(c) Sample new object and part assignments from the following multinomial distribution:

(oji, zji) ∼
1

Zi

L∑

`=1

K∑

k=1

(Ms` + γ/L)

(
N`k + α/K∑

k′ N`k′ + α

)
f`k(wji, vji)δ(oji, `)δ(zji, k)

(d) Add feature (wji, vji) to the cached statistics for its new object and part:

Ms` ← Ms` + 1 ` = oji

N`k ← N`k + 1 k = zji

Ckw ← Ckw + 1 w = wji

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ⊕ (vji − ρ
(t−1)
j` )

3. Set (o
(t)
j , z

(t)
j ) = (oj , zj). Optionally, part parameters {η(t)

k , µ
(t)
k ,Λ

(t)
k }K

k=1 may be sampled
as in step 3 of Alg. 5.1. Object and part probabilities follow Dirichlet distributions.

4. Sample a new reference transformation ρ
(t)
j as follows:

(a) Remove ρ
(t−1)
j from cached transformation statistics for scene s:

(ζ̂s, Υ̂s) ← (ζ̂s, Υ̂s) ª ρ
(t−1)
j

(b) Sample ρ
(t)
j ∼ N (χj ,Ξj), a posterior distribution determined via eq. (6.13) from the

prior N (ρj ; ζ̂s, Υ̂s), cached part statistics {µ̂k, Λ̂k}K
k=1, and feature positions vj .

(c) Add ρ
(t)
j to cached transformation statistics for scene s:

(ζ̂s, Υ̂s) ← (ζ̂s, Υ̂s) ⊕ ρ
(t)
j

5. For each i ∈ {1, . . . , Nj}, update cached statistics for part k = zji as follows:

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ª (vji − ρ
(t−1)
j` )

(µ̂k, Λ̂k) ← (µ̂k, Λ̂k) ⊕ (vji − ρ
(t)
j` )

` = oji

Algorithm 6.1. Rao–Blackwellized Gibbs sampler for the fixed–order visual scene model of Fig. 6.1.
We illustrate the sequential resampling of all object and part assignments (oj , zj) in the jth training
image, as well as that image’s coordinate frame ρj . A full iteration of the Gibbs sampler applies
these updates to all images in random order. For efficiency, we cache and recursively update statistics
{ζ̂s, Υ̂s)}

S
s=1 of each scene’s reference transformations, counts Ms`, N`k of the features assigned to each

object and part, and statistics {Ckw, µ̂k, Λ̂k}
K
k=1 of those features’ appearance and position.
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of Sec. 5.3.4, we update cached statistics whenever reference transformations are resam-
pled to ensure consistency (Alg. 6.1, step 5). Given a training set with J images, each
containing N features, a Gibbs sampling update of every object and part assignment
requires O(LKJN) operations.

¥ 6.1.2 Inferring Likely Reference Transformations

In this section, we describe an alternative method for learning hierarchical models of vi-
sual scenes. Extending methods developed in Sec. 5.3.5, we use a variational approxima-
tion to integrate over reference transformations, and only explicitly sample assignments
(o, z) of features to objects and parts. An incremental form of the EM algorithm [225]
then efficiently updates variational parameters as features are reassigned.

From the graphical model of Fig. 6.1, the posterior distribution of (oji, zji) given
observed image features, and other assignments (o\ji, z\ji), factors as follows:

p(oji, zji | o\ji, z\ji,w,v, s) ∝
p(oji | o\ji, sj) p(zji | z\ji, oji) p(wji | z,w\ji) p(vji | z,v\ji,o, s) (6.14)

The first three terms are unchanged from eqs. (6.6, 6.7, 6.8), but uncertainty in the
position parameters {µk, Λk}K

k=1 causes the predictive position likelihood to depend on
the latent object positions, and hence scene labels, of all training images. Sec. 6.1.1
simplified this term by conditioning on the reference transformation ρj . The likelihood
of eq. (6.14) instead marginalizes over transformations. Letting θ = {µk, Λk}K

k=1 denote
part position parameters and ϕ = {ζs, Υs}S

s=1 transformation parameters, we have

p(vji | z,v\ji,o, s) =

∫∫ [∫
p(vji | zji, oji, ρj , θ) p(ρj | zj\i,vj\i,oj\i, sj , ϕ) dρj

]

· · · × p(θ, ϕ | z\ji,v\ji,o\ji, s) dθ dϕ (6.15)

Here, oj\i denotes the set oj of object assignments for features in image j, excluding
oji. As in Sec. 5.3.5, dependency between the part and transformation parameters
makes this marginalized likelihood intractable. We therefore approximate it via the
parameters’ posterior mode:

(θ̂, ϕ̂) = arg max
θ,ϕ

p(θ, ϕ | z\ji,v\ji,o\ji, s) (6.16)

Given these parameters, the predictive likelihood of eq. (6.15) reduces to a simple
Gaussian integral. We optimize parameters via a variant of the EM algorithm [107,
161] (see Sec. 2.3.3), in which the E–step determines Gaussian posteriors for reference
transformations, and the M–step provides corresponding parameter estimates.

Expectation Step

In the E–step, we assume fixed values for the transformation parameters ϕ̂ = {ζ̂s, Υ̂s}S
s=1

and part position parameters θ̂ = {µ̂k, Λ̂k}K
k=1, and determine posterior distributions
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for the reference transformations ρ = {ρj}J
j=1. From the graph of Fig. 6.1, these

distributions take the following form:

p(ρj | sj = s,oj , zj ,vj , θ̂, ϕ̂) ∝ N (ρj ; ζ̂s, Υ̂s)
K∏

k=1

∏

i|zji=k

N
(
vji − ρjoji

; µ̂k, Λ̂k

)
(6.17)

This expression is identical to that arising in the auxiliary variable Gibbs sampler of
Sec. 6.1.1 (see eq. (6.11)). Reference transformation ρj thus has a Gaussian posterior
distribution N (χj , Ξj), with mean and covariance as in eq. (6.13). While Alg. 6.1 uses
this posterior to sample a new transformation, the variational approach of this section
instead estimates parameters analytically in the subsequent M–step.

Maximization Step

In the M–step, we use Gaussian reference transformation distributions ρj ∼ N (χj , Ξj)
from the previous E–step to lower bound the posterior distribution of eq. (6.16). Let
NW(κs, ϑs, νs, ∆s) denote the hyperparameters of the normal–inverse–Wishart prior R
on transformation parameters, as defined in Sec. 2.1.4. Constructing a likelihood bound
as in eq. (2.134) and taking derivatives, we find that the maximizing transformation
parameters equal

ζ̂s =
1

κs + Js

(
κsϑs +

∑

j|sj=s

χj

)
(6.18)

Υ̂s =
(κs + Js + 1)

(κs + Js)(νs + Js + 2L + 1)

(
νs∆s +

∑

j|sj=s

Ξj + (χj − ζ̂s)(χj − ζ̂s)
T

)
(6.19)

Here, Js is the number of training images of visual scene s, and 2L is the dimension
of the reference transformation ρj . Intuitively, eq. (5.32) sets the transformation mean

ζ̂s to a regularized average of the current transformations χj in images of scene s.

Similarly, eq. (5.33) combines outer products of transformations (χj − ζ̂s) with their
uncertainties Ξj to determine Υ̂s.

Let NW(κv, ϑv, νv, ∆v) denote the hyperparameters of the normal–inverse–Wishart
prior Hv on part position parameters. The M–step’s part parameter estimates depend
on the marginal distributions ρj` ∼ N (χj`, Ξj`) of individual object transformations.
Note that χj` is a subvector of χj , while Ξj` is a block diagonal submatrix of Ξj . The



Given a previous transformation posterior N (ρj ;χj ,Ξj), and assignments (o
(t−1)
j , z

(t−1)
j ) for the

Nj features in an image depicting scene sj = s, resample objects and parts as follows:

1. Sample a random permutation τ(·) of the integers {1, . . . , Nj}.
2. Set (oj , zj) = (o

(t−1)
j , z

(t−1)
j ). For i ∈ {τ(1), . . . , τ(Nj)}, sequentially resample (oji, zji):

(a) Remove feature (wji, vji) from the cached statistics for its current part and object:

Ms` ← Ms` − 1 ` = oji

N`k ← N`k − 1 k = zji

Ckw ← Ckw − 1 w = wji

Update (µ̂k, Λ̂k) by subtracting (vji − χj`) from mean statistics (eq. (6.20)), and
Ξj` + (vji − χj` − µ̂k)(vji − χj` − µ̂k)T from covariance statistics (eq. (6.21)).

(b) E–Step: Update the reference transformation’s Gaussian posterior distribution
N (ρj ;χj ,Ξj) using eq. (6.13), excluding the currently unassigned feature vji.

(c) M–Step: Compute new transformation parameters (ζ̂s, Υ̂s) using eqs. (6.18, 6.19),
and new part position parameters {µ̂k, Λ̂k}K

k=1 using eqs. (6.20, 6.21).

(d) For each of the L · K pairs of objects and parts, determine the predictive likelihood

f`k(wji = w, vji) =

(
Ckw + λ/W∑

w′ Ckw′ + λ

)
· N (vji;χj` + µ̂k,Ξj` + Λ̂k)

(e) Sample new object and part assignments from the following multinomial distribution:

(oji, zji) ∼
1

Zi

L∑

`=1

K∑

k=1

(Ms` + γ/L)

(
N`k + α/K∑

k′ N`k′ + α

)
f`k(wji, vji)δ(oji, `)δ(zji, k)

(f) Add feature (wji, vji) to the cached statistics for its new object and part:

Ms` ← Ms` + 1 ` = oji

N`k ← N`k + 1 k = zji

Ckw ← Ckw + 1 w = wji

Update (µ̂k, Λ̂k) by adding (vji − χj`) to mean statistics (eq. (6.20)), and
Ξj` + (vji − χj` − µ̂k)(vji − χj` − µ̂k)T to covariance statistics (eq. (6.21)).

3. Set (o
(t)
j , z

(t)
j ) = (oj , zj). Optionally, part parameters {η(t)

k , µ
(t)
k ,Λ

(t)
k }K

k=1 may be sampled
as in step 3 of Alg. 5.1. Object and part probabilities follow Dirichlet distributions.

Algorithm 6.2. Rao–Blackwellized Gibbs sampler for the fixed–order visual scene model of Fig. 6.1,
using a variational approximation to marginalize reference transformations. We illustrate the sequential
resampling of all object and part assignments (oj , zj) in the jth training image, based on incremental EM
updates of the model’s position parameters. A full iteration of the Gibbs sampler applies these updates
to all images in random order. For efficiency, we cache and recursively update statistics {ζ̂s, Υ̂s)}

S
s=1

of each scene’s reference transformations, counts Ms`, N`k of the features assigned to each object and
part, and statistics {Ckw, µ̂k, Λ̂k}

K
k=1 of those features’ appearance and position.
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likelihood bound is then maximized by the following parameter estimates:

µ̂k =
1

κv + Nk

(
κvϑv +

J∑

j=1

∑

i|zji=k

(vji − χjoji
)

)
(6.20)

Λ̂k =
(κv + Nk + 1)

(κv + Nk)(νv + Nk + 3)

· · · ×
(

νv∆v +
J∑

j=1

∑

i|zji=k

Ξjoji
+ (vji − χjoji

− µ̂k)(vji − χjoji
− µ̂k)

T

)
(6.21)

In this expression, Nk is the total number of features which z\ji currently assigns to
part k. As in the Gibbs sampler of Alg. 6.1, part statistics depend on the relative dis-
placements (vji −χjoji

) of image features from the reference positions of their currently
associated objects.

Likelihood Evaluation and Incremental EM Updates

Given fixed assignments (o\ji, z\ji) of features to objects and parts, the preceding EM
updates converge to a local maximum of the posterior distribution of eq. (6.16). Con-
ditioned on the parameters ϕ̂ = {ζ̂s, Υ̂s}S

s=1 and θ̂ = {µ̂k, Λ̂k}K
k=1 computed in the final

M–step, the reference transformation follows the Gaussian posterior ρj ∼ N (χj , Ξj) de-
termined in the E–step via eq. (6.13). Integrating over ρj , the feature position likelihood
of eq. (6.15) then has the following closed–form approximation:

p(vji | oji = `, zji = k,o\ji, z\ji,v\ji, s) ≈ N (vji; χj` + µ̂k, Ξj` + Λ̂k) (6.22)

This approximation will be accurate when the posterior distribution of eq. (6.16) is
concentrated around a single mode. Empirically, this is usually true given “consistent”
feature assignments (o\ji, z\ji) which have high joint posterior probability.

To apply this analysis, we extend the single–object Gibbs sampler of Alg. 5.3. At
each iteration, we sample new object and part assignments (oji, zji) for some feature,
and then update our estimate of the parameters’ posterior mode. As summarized in
Alg. 6.2, we again use incremental EM updates [225] to reduce the cost of each iteration
to O(LK) operations. See Sec. 5.3.5 for further discussion of this approximation.

¥ 6.1.3 Street and Office Scenes

To evaluate the contextual scene model of Fig. 6.1, we perform experiments with the
two datasets of visual scenes depicted in Fig. 6.2. The first set contains 613 street
scenes depicting four “objects”: buildings, cars (side views), roads, and trees. To align
with the assumptions underlying our 2D scene model, images were normalized so that
cars appear at comparable scales. As shown in Fig. 6.2, some of these street scenes
have labels for all four categories, while others are only partially segmented. Note that
it is straightforward to incorporate such semi–supervised training data into the Gibbs



Figure 6.2. Scale–normalized images used to evaluate two–dimensional models for visual scenes. Top:

Ten of 613 images from a partially labeled dataset of street scenes, and segmented regions corresponding
to cars (red), buildings (magenta), roads (blue), and trees (green). Bottom: Twelve of 315 images from
a fully labeled dataset of office scenes, and segmented regions corresponding to computer screens (red),
keyboards (green), and mice (blue). Note the large variability in the image positions at which objects
are observed, and in the number of instances of each object. Images available through the MIT-CSAIL
Database of Objects and Scenes [299, 300].
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sampler. In particular, we use these manual segmentations to fix the object category
assignments oji of labeled features. For unlabeled features, object assignments are left
unconstrained, and sampled as described in the preceding section.

The second dataset illustrated in Fig. 6.2 includes 315 pictures of office scenes con-
taining four objects: computer screens (frontal views), keyboards, mice, and background
clutter. In this case, images were normalized so that computer screens appeared at
comparable scales. Also, all object instances were identified, so that the object assign-
ment oji for every feature is fixed during training. For both datasets, we represent train-
ing and test images by interest regions extracted using the three operators described
in Sec. 5.1.1. We then characterize each region’s appearance by a vector quantized
SIFT descriptor [188]. Each dataset used a separate appearance dictionary, which after
expansion to encode region shape (see Sec. 5.1.2) contained W = 1,600 visual words.

Learning Part–Based Scene Models

For both datasets, we learn model parameters using the auxiliary variable Gibbs sampler
of Alg. 6.1. The performance of the marginalized Gibbs sampler of Alg. 6.2 is similar,
but it is slower due to the computational overhead of performing an incremental EM
update after each feature reassignment. For training, we used 400 street scenes and
250 office scenes; the remaining images then provide a segmented test set. To estimate
model parameters, we first ran the Gibbs sampler for 500 iterations using only the
training images. Each scene model employed thirty shared parts, and Dirichlet precision
parameters set as γ = 4, α = 15 via cross–validation. The sampler assumed normal–
inverse–Wishart priors Hv which weakly favored parts covering 10% of the image range,
and appearance priors Hw ∼ Dir(W/10) biased towards sparse distributions.

Figs. 6.3 and 6.4 illustrate the part–based models that were learned for street and
office scenes. Although objects share a common set of parts within each scene model,
we can approximately count the number of parts used by each object by thresholding
the posterior part distributions π` (see Fig. 6.1). For street scenes, cars are allocated
roughly four parts, while buildings and roads use large numbers of parts to uniformly
tile regions which correspond to their typical size. Several parts are shared between
the tree and building categories, presumably due to the many training images in which
buildings are only partially occluded by foliage.

The office scene model describes computer screens with roughly ten parts, which
primarily align with their edges and corners. Due to their smaller size, keyboards are
described by five parts, and mice by two. The background clutter category then uses
several parts, which move little from scene to scene, to distribute features across the full
image. Most parts are unshared, although the screen and keyboard categories reuse a
few parts to describe similar edge–like features. Fig. 6.4 also illustrates the contextual
relationships learned by this scene model. Intuitively, the keyboard is typically located
beneath the monitor, and the mouse to the keyboard’s right.



Car

Road

Building

Tree

Figure 6.3. Learned contextual, fixed–order model of street scenes containing four objects. Left:

Gaussian distributions over building (magenta), road (blue), and tree (green) positions conditioned on
the car’s location (red). Right: Parts (solid) generating at least 5% of each category’s features, with
intensity proportional to probability. Parts are tranlated by that object’s mean position, while the
dashed ellipses indicate each object’s marginal transformation covariance.

Clutter

Screen

MouseKeyboard

Figure 6.4. Learned contextual, fixed–order model of office scenes containing three objects and
background clutter. Left: Gaussian distributions over keyboard (green) and mouse (blue) positions
conditioned on the computer screen’s location (red). Right: Parts (solid) generating at least 5% of each
category’s features, with intensity proportional to probability. Parts are translated by that object’s
mean position, while the dashed ellipses indicate each object’s marginal transformation covariance.
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Segmentation of Novel Visual Scenes

To analyze test images, we fix the part and object assignments corresponding to the
final Gibbs sampling iteration on the training set. To avoid local optima, we then
run the test image Gibbs sampler for 20 iterations from each of ten different random
initializations. Given reference transformations sampled in this fashion, we used the
conditional likelihoods of Sec. 6.1.1 to estimate the posterior probability that test fea-
tures were generated by each candidate object category. Analogously to the approach
of Sec. 5.3.6, we then averaged the probabilities corresponding to different sampled
transformations to determine an overall segmentation.

In Fig. 6.5, we illustrate feature segmentations for several typical test street scenes,
and transformed parts corresponding to the highest likelihood iteration of the Gibbs
sampler. Segmentations of building and road features are typically very accurate, as
the contextual model learns the vertical layering inherent in street scenes. Note that a
number of test images violate our parametric model’s assumption that a single reference
transformation explains all of each object’s observed features. To partially correct
for this, the model learns horizontally elongated car parts which extend beyond an
average car. Although this allows better segmentations for pairs of adjacent cars, nearby
background clutter is often mislabeled. In images containing widely separated cars, one
car is usually missed entirely. The assumption that every image contains one tree is
also problematic, since some features are typically classified as foliage even when no
trees are present.

Figure 6.6 shows similar segmentation results for office scenes. Because most test
images do indeed contain a single computer screen, the model’s use of a fixed, parametric
transformation causes fewer errors for office scenes. Contextual information is especially
important for detecting computer mice (see Fig. 6.6). Very few features are detected
in the region corresponding to the mouse, and they are not very distinctive. However,
as the screen can be reliably located, this provides a strong constraint on the expected
location of the mouse. In fact, for test images in which no mouse is present the system
often hallucinates one in other appropriately positioned clutter.

For comparison, Fig. 6.7 shows segmentation results for a “bag of features” model.
This model was derived from the full contextual model of Fig. 6.1 by ignoring feature
positions, and thus the latent reference transformation. As confirmed by the ROC
curves of Fig. 6.8, the appearance–only model is substantially less accurate for all
categories except trees. For street scenes, the full, position–based model recognizes
car features reasonably well despite employing a single reference position, and roads
are very accurately segmented. For office scenes, it exploits contextual relationships to
detect mice and keyboards with accuracy comparable to the more visually distinctive
computer screens. These improvements over the bag of features model highlight the
importance of spatial structure in visual scene understanding.



Figure 6.5. Feature segmentations produced by a contextual, fixed–order model of street scenes
containing cars (red), buildings (magenta), roads (blue), and trees (green). Each block of four rows
depicts five test images (first row). Feature segmentations (second row) assign each feature to the object
category with the highest posterior probability. We also show model parts translated according to each
image’s reference transformation (third row), and color–coded assignments of features to the different
parts associated with cars (fourth row).



Figure 6.6. Feature segmentations produced by a contextual, fixed–order model of office scenes
containing computer screens (red), keyboards (green), mice (blue), and background clutter (gray).
Each block of four rows depicts six test images (first row). Feature segmentations (second row) assign
each feature to the object category with the highest posterior probability. We also show model parts
translated according to each image’s reference transformation (third row), and color–coded assignments
of features to the different parts associated with computer screens (fourth row).



Figure 6.7. Segmentations produced by a “bag of features” model which neglects spatial structure,
and learns histogram models of feature appearance. Top rows: Street scenes containing cars (red),
buildings (magenta), roads (blue), and trees (green). Bottom rows: Office scenes containing computer
screens (red), keyboards (green), mice (blue), and background clutter (gray).
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Figure 6.8. ROC curves summarizing segmentation performance for the features composing street
scenes (top) and office scenes (bottom). We compare a bag of features model based solely only local
appearance (dashed lines) to the full, fixed–order scene model (solid lines) of Fig. 6.1.
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¥ 6.2 Transformed Dirichlet Processes

As demonstrated by the preceding experimental results, the fixed–order visual scene
model of Fig. 6.1 provides a characterization of spatial structure which improves on “bag
of features” approximations. Its incorporation of contextual relationships is particularly
effective for small, visually indistinct objects. However, the assumption that each image
depicts a known set of objects is obviously unrealistic. In particular, the results of
Sec. 6.1.3 demonstrate the fixed–order model’s inability to detect multiple instances of
structured objects like cars and computer screens.

To address these limitations, we now develop a family of hierarchical scene models
based on the Dirichlet process [28, 76, 83, 254]. In Sec. 5.5, we adapted the hierarchical
Dirichlet process (HDP) [289] to allow uncertainty in the number of parts underlying
a set of object categories. Extending this approach, we now develop models which
capture the uncertain number of object instances depicted in each image. We begin
by describing a transformed Dirichlet process (TDP), which generalizes the HDP by
applying a random set of transformations to each global cluster. Sec. 6.3 then uses the
TDP to develop robust nonparametric models for visual scenes.

¥ 6.2.1 Sharing Transformations via Stick–Breaking Processes

To simplify our presentation of the TDP, we revisit the hierarchical clustering framework
described in Sec. 2.5.4. Let θ ∈ Θ denote the parameters defining a cluster or topic
distribution F (θ). To more flexibly share these clusters among related groups of data,
we consider a family of transformations τ(θ; ρ) of these parameters, indexed by ρ ∈ ℘.
See Sec. 5.2 for examples of transformations adapted to clusters of spatial data.

The TDP is derived by considering distributions over transformations ρ ∼ Q(ϕ),
indexed by ϕ ∈ Φ. For example, if ρ is a vector defining a translation as in Sec. 5.2.1,
ϕ could parameterize a family of Gaussian distributions Q(·). We equivalently denote
the transformation density corresponding to this distribution by q(ρ | ϕ). Finally, to
define consistent hierarchical models, we also consider a prior measure R on the space
of transformation distributions Φ. Similarly, we let H denote a prior measure on the
space of cluster parameters Θ.

We begin by augmenting the Dirichlet process’ stick–breaking construction [254],
as in eq. (2.198), to define a global measure describing both cluster parameters θ and
transformations ρ:

G0(θ, ρ) =
∞∑

`=1

β` δ(θ, θ`)q(ρ | ϕ`)

β ∼ GEM(γ)

θ` ∼ H

ϕ` ∼ R

(6.23)

Note that each cluster θ` is associated with a different, continuous transformation distri-
bution Q(ϕ`). As in the HDP, we then independently sample a measure Gj ∼ DP(α, G0)
for each of J related groups of data. Because samples from Dirichlet processes are dis-
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Figure 6.9. Directed graphical representation of a transformed Dirichlet process (TDP) mixture
model. Each group is assigned an infinite discrete distribution Gj ∼ DP(α, G0), which is sampled from
a global distribution G0(θ, ρ) over transformations ρ of cluster parameters θ. (θ̄ji, ρ̄ji) ∼ Gj are then
the transformed cluster parameters which generate an observation vji ∼ F

`
τ

`
θ̄ji; ρ̄ji

´´
. We illustrate

the TDP with a model of two–dimensional spatial data. G0 is composed of a collection of 2D Gaussian
distributions (green covariance ellipses), and a corresponding Gaussian prior (blue dashed ellipses) on
translations of each cluster. For each of three groups, we show transformed Gaussian mixtures Gj which
make a random set of copies of each global cluster, and resulting observations vj .

crete with probability one (see Thm. 2.5.3), the joint measure for group j equals

Gj(θ, ρ) =

∞∑

t=1

π̃jtδ(θ, θ̃jt)δ(ρ, ρjt)
π̃j ∼ GEM(α)

(θ̃jt, ρjt) ∼ G0

(6.24)

Each local cluster in group j has parameters θ̃jt, and a corresponding transformation ρjt,
derived from some global cluster. Anticipating our later identification of global clusters
with object categories, we let ojt ∼ β indicate this correspondence, so that θ̃jt = θojt

.
As summarized in the graph of Fig. 6.9, each observation vji in group j is then

independently sampled according to the transformed parameters of some local cluster:

(θ̄ji, ρ̄ji) ∼ Gj

vji ∼ F
(
τ
(
θ̄ji; ρ̄ji

)) (6.25)

For computational convenience, we typically define F (θ) to be an appropriate expo-
nential family, and H a corresponding conjugate prior. As with standard mixtures,
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Figure 6.10. Chinese restaurant franchise representation of the TDP model of Fig. 6.9. Left: Global
cluster parameters are assigned independent priors θk ∼ H, and reused by groups with frequencies
β ∼ GEM(γ). Each group j has infinitely many local clusters (tables) t, which are associated with
a transformation ρjt ∼ Q(ϕojt) of some global cluster (dish) ojt ∼ β. Observations (customers) vji

are independently assigned to some table tji ∼ eπj , and thus indirectly associated with that table’s
transformed (seasoned) global cluster τ

`
θzji ; ρjtji

´
, where zji = ojtji . Right: Example in which a

franchise menu with dishes θ` (squares, center) is shared among tables (ovals, top and bottom) in two
different restaurants (groups). All customers (diamonds) seated at a given table share the same dish
(global cluster parameter), which is uniquely seasoned (transformed) each time it is ordered.

eq. (6.25) can be equivalently expressed via a discrete variable tji indicating the trans-
formed cluster associated with the ith observation:

tji ∼ π̃j

vji ∼ F
(
τ
(
θ̃jtji

; ρjtji

)) (6.26)

Fig. 6.10 shows an alternative graphical representation of the TDP, based on these ex-
plicit assignments of observations to local clusters, and local clusters to transformations
of particular global clusters.

As discussed in Sec. 2.5.4, the HDP models groups by reusing an identical set of
global clusters in different proportions. In contrast, the TDP modifies the shared, global
clusters via a set of group–specific stochastic transformations. As we demonstrate in
later sections, this allows us to model richer datasets in which only a subset of the
global clusters’ properties are naturally shared.
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¥ 6.2.2 Characterizing Transformed Distributions

Recall that the global measure G0 underlying the TDP (see eq. (6.23)) defines a discrete
distribution over cluster parameters θ`. In contrast, the distributions Q(ϕ`) associated
with transformations of these clusters are continuous. Each group j will thus create
many different copies θ̃jt of a global cluster θ`, but associate each with a different
transformation ρjt. Aggregating the probabilities assigned to these copies, we can
directly express Gj in terms of the distinct global cluster parameters:

Gj(θ, ρ) =

∞∑

`=1

πj`δ(θ, θ`)

[
∞∑

s=1

ωj`sδ(ρ, ρ̌j`s)

]
πj` =

∑

t|ojt=`

π̃jt (6.27)

In this expression, we have grouped the infinite set of transformations which group j
associates with each global cluster `:

{ρ̌j`s | s = 1, 2, . . .} = {ρjt | ojt = `} (6.28)

The weights ωj` = (ωj`1, ωj`2, . . .) then equal the proportion of the total cluster proba-
bility πj` contributed by each transformed cluster π̃jt satisfying ojt = `.

The following proposition provides a direct probabilistic characterization of the
transformed measures arising in the TDP.

Proposition 6.2.1. Let G0(θ, ρ) be a global measure constructed as in eq. (6.23), and
Gj(θ, ρ) ∼ DP(α, G0(θ, ρ)) be expressed as in eq. (6.27). The marginal distributions of
Gj with respect to parameters and transformations then also follow Dirichlet processes:

Gj(θ) ∼ DP(α, G0(θ)) G0(θ) =
∞∑

`=1

β`δ(θ, θ`) (6.29)

Gj(ρ) ∼ DP(α, G0(ρ)) G0(ρ) =
∞∑

`=1

β`Q(ϕ`) (6.30)

Proof. Consider the base measure G0(θ, ρ) of eq. (6.23), where θ ∈ Θ and ρ ∈ ℘.
Let (Θ1, . . . ,ΘK) be any finite, measurable partition of Θ. Because Gj(θ, ρ) follows a
Dirichlet process, Thm. 2.5.1 then implies that

(Gj(Θ1, ℘), . . . , Gj(ΘK , ℘)) ∼ Dir(αG0(Θ1, ℘), . . . , αG0(ΘK , ℘))

(Gj(Θ1), . . . , Gj(ΘK)) ∼ Dir(αG0(Θ1), . . . , αG0(ΘK))

The second line follows from the definition of a marginal distribution G0(θ) , G0(θ, ℘).
Again invoking Thm. 2.5.1, this expression shows that Gj(θ) ∼ DP(α, G0(θ)), establish-
ing eq. (6.29). Eq. (6.30) then follows from a complementary argument using measurable
partitions (℘1, . . . , ℘K) of ℘.
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Examining eq. (6.29), we see that the TDP induces discrete marginal distributions on
parameters exactly like those arising in the HDP [289]. The HDP can thus be seen as
a limiting case of the TDP in which transformations are insignificant or degenerate.

Of course, the TDP is intended for applications in which transformations facilitate
information transfer. The following proposition considers the dependencies between
parameters and transformations induced by the TDP’s hierarchical construction.

Proposition 6.2.2. Let G0(θ, ρ) be a global measure constructed as in eq. (6.23), and
Gj(θ, ρ) ∼ DP(α, G0(θ, ρ)) be expressed as in eq. (6.27). Assume that Θ is a Hausdorff
space. Given any discrete parameter θ` from the global measure, we then have

Gj(ρ | θ = θ`) ∼ DP(αβ`, Q(ϕ`)) (6.31)

The weights associated with different transformations of θ` thus follow a stick–breaking
process, so that ωj` ∼ GEM(αβ`).

Proof. Let ∆` denote a set containing θ`, and excluding {θ`′ | `′ 6= `}. The existence of
∆` is guaranteed by the Hausdorff condition. Define ∆̄` = Θ \∆`, and let (℘1, . . . , ℘K)
be any partition of the transformation space ℘. From Thm. 2.5.1, we then have

(
Gj(∆`, ℘1),.., Gj(∆`, ℘K), Gj(∆̄`, ℘)

)
∼ Dir

(
αG0(∆`, ℘1),.., αG0(∆`, ℘K), αG0(∆̄`, ℘)

)
(

πj`

∑

s∈S1

ωj`s,.., πj`

∑

s∈SK

ωj`s, 1−πj`

)
∼ Dir(αβ`Q(℘1; ϕ`),.., αβ`Q(℘K ; ϕ`), α(1−β`))

In this expression, Sk = {s | ρ̌j`s ∈ ℘k}, the discrete subset of the transformations of θ`

contained within ℘k. Marginalizing the last element of this probability vector via the
formulas of Sec. 2.1.3, we then have

1

πj`

(
πj`

∑

s∈S1

ωj`s, . . . , πj`

∑

s∈SK

ωj`s

)
∼ Dir(αβ`Q(℘1; ϕ`), . . . , αβ`Q(℘K ; ϕ`))

Gj(ρ | θ = θ`) ∼ DP(αβ`, Q(ϕ`))

The last line again follows from Thm. 2.5.1, and the one–to–one correspondence between
partitions {℘k}K

k=1 of the transformation space and discrete subsets {Sk}K
k=1 of the

sampled transformations ρ̌j`s. A related argument was used to establish properties of
the hierarchical Dirichlet process [289].

Recall that Dirichlet processes approach the base measure by assigning roughly uniform
weights to a large number of discrete samples (see Sec. 2.5.2). This result shows that
parameters θ` with small weight β` will also have greater variability in their transforma-
tion distributions, because (on average) they are allocated fewer samples. Intuitively,
the concentration parameters {αβ`}∞`=1 associated with transformations of all global
clusters sum to α, the overall concentration of Gj around G0.
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As discussed in Sec. 2.5.4, the HDP is a special case of a very general dependent
Dirichlet process (DDP) [191] framework. Viewing cluster parameters and transforma-
tions as one augmented parameter vector, TDPs are also a special case of the DDP
framework. However, this perspective obscures the interplay between the discrete and
continuous portions of the TDP base measure, and the manner in which transformations
modify parameters to achieve a very rich class of dependencies.

¥ 6.2.3 Learning via Gibbs Sampling

To develop computational methods for learning transformed Dirichlet processes, we con-
sider a generalization of the HDP’s Chinese restaurant franchise representation [289]. As
in the HDP analogy described in Sec. 2.5.4, customers (observations) vji sit at tables tji
according to the clustering bias of eq. (2.203), and new tables choose dishes according
to their popularity across the franchise (eq. (2.204)). As illustrated in Fig. 6.10, how-
ever, the dish (parameter) θojt

at table t is now seasoned (transformed) according to
ρjt ∼ Q(ϕojt

). Each time a dish is ordered, the recipe is seasoned differently, and every
dish θ` has different typical seasonings Q(ϕ`).

Using this representation, we extend the HDP Chinese restaurant franchise Gibbs
sampler detailed in [289], which is in turn based on standard methods for DP mixture
models [222]. In Sec. 5.5.1, we adapted this sampler to our nonparametric object ap-
pearance model. While that model associated a single reference transformation with
each image, the TDP instead describes groups via a set of randomly transformed clus-
ters. The proposed Gibbs sampler thus has three sets of state variables: assignments t
of observations to tables (transformed clusters), assignments o of tables to global clus-
ters, and the transformations ρ associated with each table. Given these variables, the
weights associated with the global (eq. (6.23)) and local (eq. (6.24)) cluster distributions
can be analytically marginalized.

To avoid cumbersome notation, we let zji = ojtji
denote the global cluster associated

with observation vji. Note that zji is uniquely determined by that observation’s table
assignment tji = t, and the corresponding table’s cluster assignment ojt. As in Sec. 5.2,
we assume that the chosen family of parameter transformations has a complementary
data transformation defined so that f(v | τ(θ; ρ)) ∝ f(τ̃(v; ρ) | θ).

Table Assignment Resampling

We first consider the posterior distribution of the table assignment tji for observation vji,
given all other state variables. Letting t\ji denote all table assignments excluding tji,
the Markov properties of the TDP (see Fig. 6.10) imply that

p(tji | t\ji,o,v, ρ) ∝ p(tji | t\ji) p(vji | t,o,v\ji, ρ) (6.32)

Let N−i
jt denote the number of observations assigned to each of the Tj tables which t\ji

currently instantiates in group j. The clustering bias induced by the Chinese restaurant
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process (see eq. (2.203)) then implies that

p(tji | t\ji) ∝
Tj∑

t=1

N−i
jt δ(tji, t) + αδ(tji, t̄) (6.33)

where t̄ denotes an assignment to a new, previously unoccupied table. For existing
tables, the likelihood term of eq. (6.32) depends on those observations currently assigned
to the same global, shared cluster:

p(vji | zji = `, t\ji,o,v\ji, ρ) =

∫

Θ
h(θ`)

∏

j′i′|zj′i′=`

f
(
vj′i′ | τ(θ`; ρj′tj′i′

)
)

dθ`

∝
∫

Θ
h(θ`)

∏

j′i′|zj′i′=`

f
(
τ̃
(
vj′i′ ; ρj′tj′i′

)
| θ`

)
dθ`

(6.34)

Here, we have used eq. (5.1) to reexpress the posterior distribution of θ` in terms of
a transformed dataset. If H(θ) is conjugate to F (θ), this likelihood may be evaluated
in closed form (see Prop. 2.1.4). For efficiency, we base this computation on cached
sufficient statistics of the relative offset of each observation vj′i′ from its associated
table’s transformation ρj′tj′i′

.
For new tables t̄, we improve sampling efficiency by integrating over potential assign-

ments ojt̄ to global parts. Because the transformations associated with these tables are
uncertain, exact evaluation of Rao–Blackwellized predictive likelihoods (as in eq. (6.34))
is intractable. We thus begin by using the current transformations and assignments for
other observations to sample auxiliary parameters [222] for each of the L currently
instantiated global clusters:

θ̂` ∼ h(θ`)
∏

j′i′|zj′i′=`

f
(
τ̃
(
vj′i′ ; ρj′tj′i′

)
| θ`

)
(6.35)

ϕ̂` ∼ r(ϕ`)
∏

j′t′|oj′t′=`

q
(
ρj′t′ | ϕ`

)
(6.36)

As in Sec. 5.5.1, we typically approximate these auxiliary samples by the corresponding
posterior modes. The observation likelihood for new tables then equals

p(vji | tji = t̄,o, θ̂, ϕ̂) ∝
∑

`

p
(
ojt̄ = ` | o

) ∫

℘
f(τ̃(vji; ρ) | θ̂`) q(ρ | ϕ̂`) dρ (6.37)

From eq. (2.204), the probability of each of the L existing global clusters depends on
the number of other tables M` which o assigns to that part:

p
(
ojt̄ | o

)
∝

L∑

`=1

M`δ(ojt̄, `) + γδ(ojt̄, ¯̀) (6.38)
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In this expression, ¯̀ indicates a potential new global cluster, to which no tables are
currently assigned. As in the DP mixture sampler of Alg. 2.3, our implementation
maintains a dynamically resized list of likelihood statistics for those clusters associated
with at least one observation.

To sample according to eq. (6.32), we first evaluate the transformed likelihood of
eq. (6.34) for all existing tables, and the integral likelihood of eq. (6.37) for all global
clusters. In the simplest case, suppose that θ̂` = (µ̂`, Λ̂`) parameterizes a Gaussian dis-
tribution, and that ϕ̂` = (ζ̂`, Υ̂̀ ) defines a corresponding Gaussian prior on translations
as in Sec. 5.2.1. The marginalized position likelihood then equals

∫

℘
N (vji − ρ; µ̂`, Λ̂`)N (ρ; ζ̂`, Υ̂̀ ) dρ = N (vji; µ̂` + ζ̂`, Λ̂` + Υ̂̀ ) (6.39)

For more complex transformation families, further numerical or Monte Carlo approxi-
mations may be needed. Finally, combining these likelihoods with the Dirichlet process
clustering biases of eqs. (6.33, 6.38), we sample a new table assignment tji, and if a new
table tji = t̄ is chosen, a corresponding cluster assignment ojt̄ and transformation ρjt̄.

Global Cluster and Transformation Resampling

We now consider the assignments ojt of tables to global clusters, and corresponding
transformations ρjt, given fixed associations t between observations and tables. Al-
though each group of observations j has infinitely many tables, we only explicitly
resample variables associated with the Tj tables currently occupied by at least one
observation (Njt > 0).

For the TDP, the global cluster assignment ojt and transformation ρjt associated
with any particular table t are strongly dependent. In particular, to adequately ex-
plain the same set of data with a different cluster ōjt, a complementary change of the
transformation ρ̄jt is typically needed. For this reason, we achieve much more rapid con-
vergence via a blocked Gibbs sampler [9, 185, 246] which considers the joint distribution
over both assignments and transformations:

p
(
ojt = `, ρjt | o\jt, ρ\jt, t, θ̂, ϕ̂

)
∝ p(` | o\jt) q(ρjt | ϕ̂`)

∏

i|tji=t

f(τ̃(vji; ρjt) | θ̂`) (6.40)

Here, we have again used auxiliary parameters, as in eqs. (6.35, 6.36), to provide a more
tractable likelihood function. The prior clustering bias is as in eq. (6.38), except that ojt

is excluded when counting the number of tables M−t
` assigned to each global cluster. To

sample from this distribution, we first choose a new cluster ōjt by marginalizing potential
transformations, and then sample ρ̄jt from the resulting conditional distribution. For
Gaussian priors on translations τ̃(vji; ρjt) = (vji−ρjt), this likelihood has a closed form
which generalizes that of eq. (6.39).
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HDP

TDP

Figure 6.11. Learning HDP and TDP models from a toy set of 2D spatial data. Left: Eight of fifty
training “images” containing diagonally oriented bars and round blobs. Upper right: Global distribution
G0(θ, ρ) over Gaussian clusters (solid) and translations (dashed) learned by the TDP Gibbs sampler.
Lower right: Global distribution G0(θ) over Gaussian clusters (intensity proportional to probability β`)
learned by the HDP Gibbs sampler.

Concentration Parameter Resampling

The preceding sampling equations assumed fixed values for the concentration param-
eters γ and α defining the TDP’s stick–breaking priors (see eqs. (6.23, 6.24)). These
parameters have intuitive interpretations: γ controls the expected number of global
clusters, while α determines the average number of transformed clusters instantiated
in each group. In many applications, these statistics are unknown, and it would be
preferable to also learn them from training data. As is common with Dirichlet process
models [76], we thus use vague gamma priors to resample concentration parameters fol-
lowing each Gibbs sampling iteration. The posterior distributions of these parameters
depend only on the number of currently instantiated clusters, so that auxiliary variable
methods developed for the HDP [289] can be applied unchanged to the TDP.

¥ 6.2.4 A Toy World: Bars and Blobs

To provide intuition for the spatial structure captured by the TDP, we consider a toy
world in which “images” depict a collection of two–dimensional points. As illustrated
in Fig. 6.11, the training images we consider typically depict one or more diagonally
oriented “bars” in the upper right portion of the image frame. Frequently, round “blobs”
of points also appear in the lower left. As in more realistic datasets, the exact locations
of these “objects” vary from image to image.

We compare the descriptions of this dataset learned by the previously described TDP
Gibbs sampler, as well as a corresponding HDP sampler. Both models use global clusters
θ` = (µ`, Λ`) which parameterize Gaussian distributions, and choose H to be a vague
normal–inverse–Wishart prior. For the TDP, transformations ρ define translations of
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global cluster means, as in Sec. 5.2.1, and R is taken to be an inverse–Wishart prior on
zero–mean Gaussians. For both models, we run the Gibbs sampler for 100 iterations,
and resample concentration parameters at each iteration.

As shown in Fig. 6.11, the TDP sampler learns a global distribution G0(θ, ρ) which
parsimoniously describes these images via translations of two bar and blob–shaped
global clusters. In contrast, because the HDP models absolute feature positions, it de-
fines a large set of global clusters which discretize the range of observed object positions.
Because a smaller number of features are used to estimate the shape of each cluster,
they less closely approximate the true shapes of bars and blobs. More importantly,
the HDP model cannot predict the appearance of these objects in new image positions.
We thus see that the TDP’s use of transformations is needed to adequately transfer
information among different object instances, and generalize to novel spatial scenes.

¥ 6.3 Modeling Scenes with Unknown Numbers of Objects

The transformed Dirichlet process developed in the preceding section defines global
clusters via a parametric, exponential family F (θ). As suggested by the toy example of
Fig. 6.11, this approach could be directly used to construct simple, weakly structured
models of object geometry [282]. However, realistic objects have complex internal struc-
ture, and signicant local appearance variations. In this section, we thus extend the basic
TDP of Fig. 6.9 to learn richer, part–based descriptions of object categories.

As in the nonparametric model of isolated objects developed in Sec. 5.5, we as-
sociate parts with clusters of features (vji, wji) which have a distinctive, predictable
appearance. In particular, each part θ`k = (η`k, µ`k, Λ`k) of object category ` is defined
by a Gaussian position distribution N (µ`k, Λ`k), and a multinomial appearance distri-
bution η`k. Letting H denote a prior measure on part parameters θ`k ∈ Θ, we then take
F` ∼ DP(κ, H) to be a discrete distribution characterizing the potentially infinite set
of parts underlying the `th visual category:

F`(θ) =

∞∑

k=1

ὲ kδ(θ, θ`k)
ὲ ∼ GEM(κ)

(η`k, µ`k, Λ`k) = θ`k ∼ H
(6.41)

The Gaussian parameters (µ`k, Λ`k) associated with each part model feature positions
in an object–centered coordinate frame. In the visual scenes considered by this chapter,
we expect there to be little direct overlap in the appearance of different categories. For
simplicity, eq. (6.41) thus describes categories using independent parts, rather than
hierarchically sharing parts as in Sec. 5.5. As in previous sections, we choose H to
define a Dirichlet prior η`k ∼ Dir(λ) on each part’s discrete appearance distribution,
and a normal–inverse–Wishart prior on the corresponding Gaussian shape parameters.

The TDP model of Sec. 6.2.1 employed a global measure G0 modeling transforma-
tions ρ of an infinite set of cluster parameters. Generalizing this construction, we allow
infinitely many potential visual object categories o, and characterize transformations
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of these part–based models as follows:

G0(o, ρ) =
∞∑

`=1

β`δ(o, `)q(ρ | ϕ`)
β ∼ GEM(γ)

ϕ` ∼ R
(6.42)

In this distribution, the random variable o indicates the part–based model, as in
eq. (6.41), corresponding to some category. The appearance of the jth image is then
determined by a set of randomly transformed objects Gj ∼ DP(α, G0), so that

Gj(o, ρ) =
∞∑

t=1

π̃jtδ(o, ojt)δ(ρ, ρjt)
π̃j ∼ GEM(α)

(ojt, ρjt) ∼ G0
(6.43)

In this expression, t indexes the set of object instances in image j, which are associated
with visual categories ojt.

Each of the Nj features in image j is independently sampled from some object
instance tji ∼ π̃j . As summarized in the graph of Fig. 6.12, this process can be equiva-
lently expressed as follows:

(ōji, ρ̄ji) ∼ Gj (6.44)

Here, ōji is the global category corresponding to the chosen instance, and the transfor-
mation ρ̄ji specifies that instance’s location. Parameters corresponding to one of this
object’s parts are then chosen, and used to generate the observed feature:

(η̄ji, µ̄ji, Λ̄ji) = θ̄ji ∼ Fōji

wji ∼ η̄ji

vji ∼ N
(
µ̄ji + ρ̄ji, Λ̄ji

) (6.45)

In later sections, we let kji ∼ ε̄oji
indicate the part underlying the ith feature. As

in Sec. 6.1, we consider scale–normalized datasets, and thus associate reference trans-
formations with image–based translations. Generalizations involving more complex
transformations, like those discussed in Sec. 5.2.2, are also possible.

The hierarchical, TDP scene model of Fig. 6.12 employs three different stick–
breaking processes, allowing uncertainty in the number of visual categories (GEM(γ)),
parts composing each category (GEM(κ)), and object instances depicted in each image
(GEM(α)). It thus generalizes the parametric model of Fig. 6.1, which assumed fixed,
known sets of parts and objects. In the limit as κ → 0, each category uses a single part,
and we recover a variant of the simpler TDP model developed in Sec. 6.2.

¥ 6.3.1 Learning Transformed Scene Models

To learn the parameters of the visual scene model depicted in Fig. 6.12, we generalize
the TDP Gibbs sampler described in Sec. 6.2.3. As before, we maintain a dynamically
resized list of the instantiated object instances in each image. Recall that each instance t
is defined by a transformation ρjt of some global object category ojt. Features (wji, vji)
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Figure 6.12. TDP model for 2D visual scenes (left), and cartoon illustration of the generative process
(right). Global mixture G0 describes the expected frequency and image position of visual categories,
whose internal structure is represented by part–based appearance models {F`}

∞
`=1. Each image distri-

bution Gj instantiates a randomly chosen set of objects at transformed locations ρ. Image features with
appearance wji and position vji are then sampled from transformed parameters τ

`
θ̄ji; ρ̄ji

´
correspond-

ing to different parts of object ōji. The cartoon example defines three color–coded object categories,
which are composed of one (blue), two (green), and four (red) Gaussian parts, respectively. Dashed
ellipses indicate transformation priors for each category.

are then characterized by a pair of assignment variables, which identify some part kji of
their associated object instance tji. Using a blocked Gibbs sampler, we resample these
four sets of variables, and thus simultaneously segment and recognize objects.

Resampling Assignments to Object Instances and Parts

Because each object category is defined by an independent set of parts, it is critical
to develop a blocked Gibbs sampler which jointly considers the instance and part as-
signments (tji, kji) associated with each feature. Let t\ji denote all object instance
assignments except tji, and define k\ji similarly. The Markov properties of the TDP
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scene model (see Fig. 6.12) then imply that

p(tji, kji | t\ji,k\ji,w,v,o, ρ)

∝ p(tji | t\ji) p(kji | k\ji, t,o) p(wji | t,k,o,w\ji) p(vji | t,k,o,v\ji, ρ) (6.46)

The first term encourages assignments to object instances associated with many other
features, exactly as in eq. (6.33). Similarly, the second term is derived from the stick–
breaking prior ὲ ∼ GEM(κ) on the probabilities associated with each object’s parts:

p(kji | tji = t, ojt = `,k\ji, t\ji,o\jt) ∝
K∑̀

k=1

B−i
`k δ(kji, k) + κδ(kji, k̄) (6.47)

Here, B−i
`k denotes the number of other features currently assigned to each of the K`

instantiated parts of object `. An assignment to one of the infinitely many equivalent,
unoccupied parts is then tractably represented by k̄.

The likelihood terms of eq. (6.46) are determined by the global object category
associated with each instance tji, which as before we denote by zji = ojtji

. For existing
object instances, or tables, our use of Dirichlet priors induces the following predictive
appearance likelihood:

p(wji = w | zji = `, kji = k, t\ji,k\ji,o,w\ji) =
C−i

`kw + λ/W
∑

w′ C
−i
`kw′ + λ

(6.48)

Here, C−i
`kw is the number of times appearance descriptor w is assigned to part k of

visual category ` by (t\ji,k\ji,o). If we similarly specialize eq. (6.34), we find that the
position likelihood depends on the transformed locations of those features assigned to
the same object and part:

p(vji | zji = `, kji = k, t\ji,k\ji,o,v\ji, ρ)

∝ p
(
vji − ρjtji

|
{
(vj′i′ − ρj′tj′i′

) | zj′i′ = `, kj′i′ = k, (j′, i′) 6= (j, i)
})

≈ N
(
vji − ρjtji

; µ̂`k, Λ̂`k

) (6.49)

Aside from the bookkeeping associated with indexing both object and part assignments,
these expressions are equivalent to those arising in our earlier transformed Dirichlet
process models. Efficient likelihood evaluation is thus possible by caching transformed
statistics of the features associated with each part of every global object category.

To sample according to eq. (6.46), we first evaluate these likelihoods for every ex-
isting part, and a potential new part, of each instantiated object. We also determine
the likelihood of creating a new object instance by marginalizing potential category
assignments and transformations as in eqs. (6.37, 6.39). Combining these likelihoods
with the Dirichlet process clustering biases of eqs. (6.33, 6.47), we jointly sample a new
instance and part assignments (tji, kji). If a new object tji = t̄ is chosen, its corre-
sponding visual category ojt̄ and transformation ρjt̄ are then sampled as described in
the following section.
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Global Object and Transformation Resampling

In the second phase of each Gibbs sampling iteration, we fix object assignments t,
and consider potential reinterpretations of each instance t using a new global object
category ojt. Because parts and transformations are defined with respect to particular
categories, blocked resampling of (ojt, ρjt, {kji | tji = t}) is necessary. As in earlier
sections, we resample transformations using auxiliary parameters:

η̂`k ∼ p(η`k | {wji | zji = `, kji = k})
(µ̂`k, Λ̂`k) ∼ p

(
µ`k, Λ`k |

{
(vji − ρjtji

) | zji = `, kji = k
}) (6.50)

A single sample is drawn for each part of every global category which is associated with
at least one feature.

Suppose first that ojt = ` is fixed. Due to the exponentially large number of joint
assignments of this instance’s features to parts, the marginal distribution of ρjt is in-
tractable. However, given ρjt, part assignments kji are conditionally independent:

p(kji = k | wji, vji, tji = t, ojt = `, ρjt,k\ji, t\ji,o\jt)

∝ p(k | k\ji, t,o) η̂`k(wji)N (vji − ρjt; µ̂`k, Λ̂`k) (6.51)

Here, the Dirichlet clustering bias is as in eq. (6.47). Alternatively, given fixed part
assignments for all features, ρjt has a Gaussian posterior:

p(ρjt | ojt = `, {kji, vji | tji = t})∝N (ρjt; ζ̂`, Υ̂̀ )

K∏̀

k=1

∏

i|kji=k

N (vji − ρjt; µ̂`k, Λ̂`k) (6.52)

The Gaussian parameters ϕ̂` = (ζ̂`, Υ̂̀ ) of this transformation prior, and the resulting
posterior, follow equations identical to those derived for the isolated–object Dirichlet
process model in Sec. 5.5.1. Intuitively, fixing t effectively segments the scene’s features
into individual objects.

For each candidate visual category ojt, we first perform a small number of aux-
iliary Gibbs iterations which alternatively sample eqs. (6.51, 6.52). Fixing the final
transformations, part assignments may then be directly marginalized to compute the
likelihood of ojt. Typically, the posterior distribution of ρjt is tightly concentrated
given fixed t, and 3–5 auxiliary iterations provide an accurate approximation. Com-
bining this likelihood with the Dirichlet clustering bias of eq. (6.38), we resample ojt,
and then conditionally choose (ρjt, {kji | tji = t}) via eqs. (6.51, 6.52).

Concentration Parameter Resampling

As in the simpler TDP model of Sec. 6.2.3, we place vague gamma priors on our vi-
sual scene model’s concentration parameters, and resample them following each Gibbs
sampling iteration [76, 289]. This leads to a robust model which makes very weak prior
assumptions regarding the true numbers of object categories, parts per object, and
objects per scene.
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¥ 6.3.2 Street and Office Scenes

To evaluate the TDP scene model of Fig. 6.12, we revisit the datasets of street and
office scenes illustrated in Fig. 6.2. We consider the same training and test images, and
image features, that were used to test the fixed–order scene model in Sec. 6.1.3. During
training, we distinguish the manually labeled object categories from the visual categories
composing the TDP’s global distribution G0. We restrict the Gibbs sampler from
assigning different objects to the same visual category, but multiple visual categories
may be used to describe different forms of a particular object.

When learning TDP scene models, it is also useful to distinguish rigid objects (e.g.,
computer screens, keyboards, mice, and cars) from textural objects such as buildings,
roads, trees, and office clutter. For rigid objects, we restrict all features composing
each labeled training instance to be associated with the same transformed global cluster.
This constraint, which is enforced by fixing the table assignments tji for features of rigid
objects, ensures that the TDP learns descriptions of complete objects rather than object
pieces. For textural categories, we allow the sampler to partition labeled training regions
into transformed object instances, and thus automatically discover smaller regions with
consistent, predictable structure.

Learning TDP Models of 2D Scenes

For both datasets, we learn model parameters using the Rao–Blackwellized Gibbs sam-
pler developed in Sec. 6.3.1. As before, we used 400 street scenes and 250 office scenes
for training, and evaluated recognition performance with the remaining images. To esti-
mate model parameters, we first ran the Gibbs sampler for 500 training iterations using
only those features with manually specified object category labels. For street scenes,
we then ran another 100 Gibbs sampling iterations using all features. Empirically, this
sequential training converges faster because it initializes visual categories with cleanly
segmented objects. For each dataset, we compare the full TDP scene model of Fig. 6.12
to a simplified model which constrains each visual category to a single part [282]. This
single–part TDP is similar to the model illustrated in Fig. 6.9, except that each visual
category also has an associated multinomial appearance distribution.

One of the strengths of the TDP is that the learning process is reasonably insensitive
to the particular values of the hyperparameters. The prior distribution H character-
izing object parts was set as in Sec. 6.1.3, while the inverse–Wishart transformation
prior R weakly favored zero–mean Gaussians covering the full image range. The con-
centration parameters defining the numbers of visual categories γ ∼ Gamma(1.0, 0.1)
and parts per category κ ∼ Gamma(1.0, 0.1) were then assigned vague gamma priors,
and resampled during the learning process. To encourage the learning of larger global
clusters for textural categories, the concentration parameter controlling the number of
object instances was more tightly constrained as α ∼ Gamma(1.0, 1.0).

In Fig. 6.13, we illustrate the global, visual categories that were learned from the
dataset of street scenes. The single–part TDP uses compact global categories, and
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Figure 6.13. Learned TDP models for street scenes containing cars (red), buildings (magenta), roads
(blue), and trees (green). Top: Simplified, single–part TDP in which the shape of each visual category
is described by a single Gaussian (solid ellipses). We show the 11 most common visual categories at their
mean positions, and also plot their transformation covariances (dashed ellipses). Bottom: Multiple–part
TDP in which the number of parts (solid ellipses, intensity proportional to probability) underlying each
category is learned automatically. We again show the 11 most probable categories, and their Gaussian
transformation distributions (dashed ellipses).
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Figure 6.14. Learned TDP models for office scenes containing computer screens (red), keyboards
(green), mice (blue), and background clutter (black). Left: Simplified, single–part TDP in which
the shape of each visual category is described by a single Gaussian (solid ellipses). We show the 7
most common visual categories at their mean positions, and also plot their transformation covariances
(dashed ellipses). Right: Multiple–part TDP in which the number of parts (solid ellipses, intensity
proportional to probability) underlying each category is learned automatically. We show the 10 most
probable categories, and their Gaussian transformation distributions (dashed ellipses).

many transformed object instances, to more uniformly spread features across the image.
Buildings, roads, and trees are each split into several visual categories, which describe
different characteristic structural features. The full TDP scene model creates a more
detailed, 9–part car appearance model. It also learns extended, multiple–part models
of the large building and road regions which appear in many training images. The
full part–based model thus captures some of the coarse–scale structure of street scenes,
while the simpler single–part TDP is limited to modeling local feature dependencies.

As shown in Fig. 6.14, the single–part TDP model of office scenes is qualitatively
similar to the street scene model: images are described by large numbers of compact
transformed clusters. The multiple–part TDP, however, reveals interesting differences
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in the global structure of these scene categories. Due to their internal regularities,
computer screens and keyboards are each described by detailed visual categories with
many parts. To model background clutter, the TDP learns several small clusters of parts
which uniformly distribute features within image regions. Because the TDP currently
lacks an explicit occlusion model, it also defines a frame–like visual category which
captures the background features often found at image boundaries.

Segmentation of Novel Visual Scenes

To analyze test images, we fix the part and object assignments corresponding to the
final Gibbs sampling iteration on the training set. To avoid local optima, we then
run the test image Gibbs sampler for 50 iterations from each of ten different random
initializations. Given the transformed object instances created at each test iteration,
the conditional likelihoods of Sec. 6.3.1 were used to estimate the posterior probability
that test features were generated by each candidate object category. Analogously to the
approaches of Secs. 5.3.6 and 6.1.3, we then averaged the probabilities corresponding
to different sampled scene interpretations to determine an overall segmentation.

In Figs. 6.15 and 6.16, we illustrate feature segmentations for several typical test
street scenes, and transformed object instances corresponding to one iteration of the
Gibbs sampler. In contrast to the fixed–order model of Sec. 6.1, TDPs allow each object
category to occur at multiple locations within a single image. This allows the TDP to
correctly find multiple cars in several scenes where the fixed–order model only detects
a single car. Conversely, because the TDP does not model object relationships, it
sometimes incorrectly detects cars in textured regions of buildings. For the fixed–order
model, the contextual Gaussian prior suppresses these false alarms by forcing cars to
lie beneath the transformed building region.

We show similar segmentation results for office scenes in Figs. 6.17 and 6.18. Com-
puter screens are typically reliably detected, particularly by the multiple–part TDP
model. Perhaps surprisingly, mice are also detected with reasonable accuracy, although
there are more false alarms than with the contextual model. In addition to accurately
segmenting screen features, the part–based TDP model correctly associates a single
transformed object cluster with most screen instances. In contrast, the weaker appear-
ance model of the single–part TDP causes it to create several transformed clusters for
many computer screens, and thereby incorrectly label adjacent background features.

As confirmed by the ROC curves of Fig. 6.19, both TDP models provide segmenta-
tions which improve substantially on a model based solely on feature appearance (see
Fig. 6.7). For large, rigid objects like computer screens and keyboards, including parts
substantially improves recognition performance. The two TDP models perform sim-
ilarly when segmenting cars, perhaps due to their lower typical resolution. However,
the street scene interpretations illustrated in Figs. 6.15 and 6.16 show that the part–
based TDP does a better job of counting the true number of car instances depicted
in each image. While including parts leads to more intuitive global models of textural
categories, for these simple datasets it does not improve segmentation accuracy.



Figure 6.15. Feature segmentations produced by TDP models of street scenes containing cars (red),
buildings (magenta), roads (blue), and trees (green). We compare a simplified TDP model which
describes object shape via a single Gaussian cluster (top rows) to the full, multiple–part TDP model
(bottom rows) of Fig. 6.12. Row 4: Five test images. Rows 3 & 5: Segmentations for each model, in
which features are assigned to the object category with the highest posterior probability. Rows 2 & 6:

Parts corresponding to the objects instantiated at a single Gibbs sampling iteration. Rows 1 & 7:

Color–coded assignments of features to different parts and instances of the screen category.



Figure 6.16. Additional feature segmentations produced by TDP models of street scenes containing
cars (red), buildings (magenta), roads (blue), and trees (green). We compare a simplified TDP model
which describes object shape via a single Gaussian cluster (top rows) to the full, multiple–part TDP
model (bottom rows) of Fig. 6.12. Row 4: Five test images. Rows 3 & 5: Segmentations for each model,
in which features are assigned to the object category with the highest posterior probability. Rows 2 &

6: Parts corresponding to the objects instantiated at a single Gibbs sampling iteration. Rows 1 & 7:

Color–coded assignments of features to different parts and instances of the screen category.



Figure 6.17. Feature segmentations produced by TDP models of office scenes containing computer
screens (red), keyboards (green), mice (blue), and background clutter (gray). We compare a simplified
TDP model which describes object shape via a single Gaussian cluster (top rows) to the full, multiple–
part TDP model (bottom rows) of Fig. 6.12. Row 4: Six test images. Rows 3 & 5: Segmentations for
each model, in which features are assigned to the object category with the highest posterior probability.
Rows 2 & 6: Parts corresponding to the objects instantiated at a single Gibbs sampling iteration
(background clutter not shown). Rows 1 & 7: Color–coded assignments of features to different parts
and instances of the screen category.



Figure 6.18. Additional feature segmentations produced by TDP models of office scenes containing
computer screens (red), keyboards (green), mice (blue), and background clutter (gray). We compare
a simplified TDP model which describes object shape via a single Gaussian cluster (top rows) to the
full, multiple–part TDP model (bottom rows) of Fig. 6.12. Row 4: Six test images. Rows 3 & 5:

Segmentations for each model, in which features are assigned to the object category with the highest
posterior probability. Rows 2 & 6: Parts corresponding to the objects instantiated at a single Gibbs
sampling iteration (background clutter not shown). Rows 1 & 7: Color–coded assignments of features
to different parts and instances of the screen category.
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Figure 6.19. ROC curves summarizing segmentation performance for the features composing street
scenes (top) and office scenes (bottom). We compare the full TDP scene model of Fig. 6.12 (solid lines)
to a simplified, single–part TDP model (dashed lines, colored) and a bag of features model based solely
on local appearance (dashed lines, black).
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Comparing the TDP’s performance to results for the fixed–order, contextual scene
model (see Fig. 6.8), we find that their complementary strengths are useful in different
situations. For example, the fixed–order model’s very strong spatial prior leads to
improved building and road detection, but worse performance for the less structured
features composing trees. The TDP more cleanly segments individual cars from the
background, but also makes additional false alarms in contextually implausible regions
of buildings; the overall performance of the two models is comparable. For computer
screens, the TDP’s allowance for multiple instances, and creation of additional parts
to form a stronger appearance model, leads to substantial performance improvements.
Finally, we emphasize that the TDP also estimates the number of objects composing
each scene, a task which is beyond the scope of the fixed–order model.

¥ 6.4 Hierarchical Models for Three–Dimensional Scenes

The preceding scene models decompose images via translations of 2D object appearance
models, and thus implicitly assume they have been normalized to account for scale
and viewpoint variations. Many algorithms relax these assumptions by considering
more complex image–based transformations [3, 82, 181]. In this section, we instead
propose a hierarchical model which describes object categories via their 3D structure
and appearance. Scale–invariant recognition is then achieved via the translation of 3D
objects, and the perspective projections underlying the imaging process.

We first discuss methods for depth estimation from binocular stereo images, which
we use to calibrate our 3D scene models. We then extend the TDP to model 3D object
structure, and develop Monte Carlo methods which simultaneously recognize objects
and reconstruct scene geometry.

¥ 6.4.1 Depth Calibration via Stereo Images

Binocular stereo vision systems employ a pair of adjacent cameras. Each point in an
image taken by one camera corresponds to some point on an epipolar line in the second
camera’s image. If the relative position and orientation of the cameras is known, the
displacement or disparity between matching points can then be used to infer the 3D
locations of observed features [91].

Let u = (ux, uy, uz) denote the world coordinates of a 3D point. For simplicity, we
assume that the z-axis has been chosen to align with the camera’s optical axis. Then,
indexing pixels (vx, vy) from the optical center, the perspective projection of u equals

vx = ξ
ux

uz
vy = ξ

uy

uz
(6.53)

where ξ denotes the magnification, in pixels, corresponding to the camera’s focal length.
Other coordinate systems are easily accomodated by appropriate transformations [91].

The training images used in Sec. 6.4.4 were captured by a calibrated stereo camera
(the MEGA-D, by Videre Design). As in recent approaches to sparse wide baseline
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Figure 6.20. Stereo likelihoods for an office scene depicting a computer screen, desk, and bookshelf
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right stereo image, and corresponding depth likelihoods. Bottom row: Greedy depth estimates are
independently chosen for each feature. In the frontal view (center), close features are green and distant
red. The overhead view (right) colors features according to their associated object (left).

stereo [199], we begin by extracting regions of interest in both the left and right im-
ages. For each interest point in the reference (left) image, we then search for the best
matching regions along the corresponding epipolar line (see Fig. 6.20). Match quality
is measured via the Euclidean distance between SIFT descriptors [188]. Let vd denote
the disparity, in pixels, corresponding to a candidate pair of matching features. Each
match corresponds to some set of world coordinates:

ux =
vx

ξ
uz uy =

vy

ξ
uz uz =

ξD

vd
(6.54)

Here, D is the baseline distance between cameras (in our case, 89 mm). Note that we
have written the world ux and uy in terms of the unknown depth uz, rather than the
disparity vd. This form emphasizes our primary interest in the underlying 3D geometry,
and is more easily incorporated with our generative model of visual scenes.

Robust Disparity Likelihoods

Because we represent images by a sparse set of interest regions, we must only estimate
scene depths at these points. While this problem is simpler than the estimation of
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dense depth maps, it is still ill–posed based solely on local feature correspondences. In
particular, repetitive scene structures and occlusion effects near object boundaries often
lead to inaccurate disparity estimates for some features. In Fig. 6.20, we illustrate the
noisy depth estimates produced by local matching in stereo images of office scenes. Wide
baseline stereo algorithms typically employ a geometric validation stage to discard such
outliers [199]. This approach would work poorly for our application, however, because
features near object boundaries are often the most informative for recognition tasks.
We instead propose a probabilistic model which robustly converts approximate disparity
matches to depth distributions. The learning algorithms developed in Sec. 6.4.3 then use
geometric models of objects to impose a scene structure which resolves local ambiguities.

Consider a feature which has candidate stereo matches at C different disparities
{v̄d

c}C
c=1, and let v̄s

c denote the matching score (distance between SIFT descriptors)
for v̄d

c . Features with no matches induce an uniformative likelihood on the underlying
scene depth uz. Otherwise, at most one match can correspond to the true scene depth,
and the others must be outliers. Let a be an unobserved random variable indicating
which of the C matches is not an outlier, and take a = 0 if all matches are outliers.
Neglecting possible correlations due to scene structure, we assume that inlier and outlier
matches are independently sampled as

p
(
{v̄d

c , v̄s
c}C

c=1 | uz
)

=
C∑

a=0

p
(
{v̄d

c , v̄s
c}C

c=1, a | uz
)

∝
C∑

a=0

p(a)
C∏

c=1

p(v̄d
c | a, uz) p(v̄s

c | a) (6.55)

Let ε denote the prior probability that all observations are outliers (a = 0), so that
all other outlier hypotheses have equal probability (1 − ε)/C. We assume that correct
matches are corrupted by Gaussian noise, while outlier disparities are sampled uniformly
over a range determined by the camera geometry:

p(v̄d
c | a = c, uz) = N

(
v̄d
c ;

ξD

uz
, σ2

d

)
(6.56)

p(v̄d
c | a 6= c, uz) = U

(
v̄d
c ; Dmin, Dmax

)
(6.57)

We also assign the inlier and outlier matching scores v̄s
c log–normal densities with dif-

fering mean and variance.

Parameter Estimation using the EM Algorithm

To estimate the parameters of this likelihood function, we collected disparity matches for
16,000 monitor and bookshelf features from the stereo training images used in Sec. 6.4.4.
Because each selected object was approximately orthogonal to the optical axis, the
median depth of each instance’s raw stereo matches provides an accurate estimate of
true depth for all features. We may then compute maximum likelihood parameter
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estimates by extending standard EM updates for mixture models [107]. The E–step
averages over possible outlier hypotheses a, producing a lower bound on the likelihood
which is maximized in the M–step.

From our training set, we estimated the probability that all matches are outliers
to be ε = 0.22, and the noise level for correct matches as σd = 2.4 pixels. Fig. 6.20
illustrates depth likelihoods correponding to three sample features. Intuitively, matches
with small disparities lead to greater depth uncertainty, due to the inversion induced
by the perspective projection of eq. (6.54). When there are many conflicting matches,
the likelihood becomes uniform.

¥ 6.4.2 Describing 3D Scenes using Transformed Dirichlet Processes

To develop a model for 3D scene features, we generalize the 2D TDP scene model of
Sec. 6.3. As illustrated in Fig. 6.21, our part–based model for the `th object category
is again defined by an infinite discrete distribution, whose complexity is controlled by
a stick–breaking prior:

F`(θ) =
∞∑

k=1

ὲ kδ(θ, θ`k)
ὲ ∼ GEM(κ)

(η`k, µ`k, Λ`k) = θ`k ∼ H
(6.58)

As before, η`k ∼ Dir(λ) defines a multinomial appearance distribution for the kth part
of object `. Now, however, (µ`k, Λ`k) parameterizes a 3D Gaussian distribution, which
specifies the expected world coordinates of object features, relative to the camera.

Given these part–based, 3D object models, the global distribution G0 defining visual
object categories, and local distributions Gj specifying each image’s object instances,
are sampled as in eqs. (6.42, 6.43). Each feature in image j is then independently
sampled in three stages. First, a visual category ōji and transformation ρ̄ji are chosen
from Gj , selecting a particular object instance. Second, parameters corresponding to
one of that objects’ parts are selected, and a 3D feature position sampled relative to
that instance’s location:

(η̄ji, µ̄ji, Λ̄ji) = θ̄ji ∼ Fōji

uji ∼ N (τ(µ̄ji, Λ̄ji; ρ̄ji)) = N
(
µ̄ji + ρ̄ji, Λ̄ji

) (6.59)

While the simulations of this chapter transform objects via 3D translations, more gen-
eral rigid body motion could be incorporated as described in Sec. 5.2.2. Finally, we
observe a 2D feature with appearance wji ∼ η̄ji, and position vji determined from uji

through the deterministic perspective projection of eq. (6.53). See Fig. 6.21 for an
example illustrating this generative process.

Given a feature at image location vji, the corresponding world coordinates uji have
a single remaining degree of freedom, which can be expressed in terms of the unknown
depth uz

ji (see eq. (6.54)). When stereo cameras are available, the disparity likelihoods
depicted in Fig. 6.20 provide noisy depth estimates. Otherwise, other cues must be used
to resolve uncertain scene structure. As we demonstrate in the following sections, the
identification of known object categories can provide a powerful geometric constraint.
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Figure 6.21. TDP model for 3D visual scenes (left), and cartoon illustration of the generative process
(right). Global mixture G0 describes the expected frequency and 3D position of visual categories, whose
internal structure is represented by part–based appearance models {F`}

∞
`=1. Each image mixture Gj

instantiates a randomly chosen set of objects at transformed locations ρ. 3D feature positions uji are
then sampled from transformed parameters τ

`
θ̄ji; ρ̄ji

´
corresponding to parts of object ōji. The camera

observes projections vji of these features, with part–dependent appearance wji. The cartoon example
defines three color–coded object categories, which are composed of one (blue), two (green), and four
(red) Gaussian parts, respectively. For clarity, Gaussian transformation priors are not explicitly shown.

¥ 6.4.3 Simultaneous Depth Estimation and Object Categorization

To learn the parameters of our 3D TDP scene model, we extend the Rao–Blackwellized
Gibbs sampler developed in Sec. 6.3.1. For each observed feature (wji, vji), we resample
the corresponding 3D depth uz

ji, as well as the assignments (tji, kji) of that feature to
object instances t and parts k. Then, for each instance t in image j, we jointly resample
assignments ojt to visual categories with corresponding transformations ρjt and part
assignments {kji | tji = t}. Iterating these steps, we approximately sample from the
model’s posterior distribution over scene interpretations, simultaneously recognizing
objects and reconstructing 3D geometry.

Intuitively, the most likely depth uz
ji for a particular feature is strongly dependent

on the 3D object instance tji, and corresponding part kji, generating that feature. For
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adequate convergence of the Gibbs sampler, we thus employ blocked sampling updates
of (tji, kji, u

z
ji). By the Markov properties of the TDP, we then have

p
(
tji, kji, u

z
ji | vji, t\ji,k\ji,w,u\ji,o, ρ

)
∝ p(tji | t\ji) p(kji | k\ji, t,o)

· · · × p(wji | t,k,o,w\ji) p(vx
ji, v

y
ji, u

z
ji | t,k,o,u\ji, ρ) p

(
vd
ji | uz

ji

)
(6.60)

The first three terms are unchanged from Sec. 6.3.1. However, the position likelihood for
feature (vx

ji, v
y
ji) is complicated by the imaging process. In particular, each candidate

depth uz
ji selects a different 3D point ṽuz

ji along a ray ṽ defined by eq. (6.54). The
fourth term of eq. (6.60) is then the probability that the transformed 3D Gaussian
corresponding to the chosen instance and part (see Fig. 6.21) assigns to this point:

p(vx
ji, v

y
ji, u

z
ji | tji = t, kji = k, t\ji,k\ji,o,u\ji, ρ) ∝ N

(
ṽuz

ji; µ̂ojtk + ρjt, Λ̂ojtk

)
(6.61)

Here, (µ̂`k, Λ̂`k) denote the regularized mean and covariance induced by the features
currently assigned to those parts. Letting µ̃tk = µ̂ojtk + ρjt denote the transformed
position for part k of instance t, and conditioning this 3D Gaussian to the projection
ray ṽ, we recover a scaled 1D Gaussian distribution in depth:

p
(
uz

ji | kji = k, tji = t, ojt = `
)
∝ ωtkN

(
uz

ji; ζtk, χtk

)

χ−1
tk = ṽT Λ̂−1

`k ṽ χ−1
tk ζtk = ṽT Λ̂−1

`k µ̃tk (6.62)

log ωtk =
1

2
log

χtk

|Λ̂`k|
− 1

2
(ṽζtk − µ̃tk)

T Λ̂−1
`k (ṽζtk − µ̃tk)

Note that transformed parts whose mean is farther from the projection ray are given
lower overall weight ωtk. To evaluate the likelihood of new object instances t̄, we
integrate over potential transformations ρjt̄ as in eq. (6.39), and evaluate eq. (6.62)
with an appropriately inflated 3D covariance.

The final term of eq. (6.60) is the depth likelihood corresponding to stereo–based
disparity matches. For monocular images, we jointly resample (tji, kji, u

z
ji) by using the

Dirichlet process clustering biases, and appearance likelihood, to reweight the Gaussian
mixture of eq. (6.62). For stereo training images, we evaluate the likelihood learned in
Sec. 6.4.1 on a uniformly spaced grid determined by the largest expected scene geometry.
We then evaluate eq. (6.62) on the same grid for each candidate instance and part, and
resample from that discrete distribution. Given Z depths, and Tj object instances with
(on average) K parts, this resampling step requires O(ZTjK) operations.

In the second phase of each Gibbs sampling iteration, we fix feature depths uz and
object assignments t, and consider potential reinterpretations of each instance t using a
new global object category ojt. Because this stage fixes the world coordinates associated
with each feature, no changes to the sampling updates derived in Sec. 6.3.1 are needed.
Importantly, our use of continuous, Gaussian position densities avoids an expensive
discretization of 3D world coordinates. Finally, we again place vague gamma priors on
the three TDP concentration parameters, and resample them at each iteration.
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Figure 6.22. Visual object categories learned from stereo images of office scenes containing computer
screens (red), desks (green), bookshelves (blue), and background clutter (black). Covariance ellipses
model 3D part geometry, and are positioned at their mean transformed locations. Bar charts show
posterior probabilities for all instantiated global categories. Left: Simplified TDP model which describes
object shape via a single Gaussian cluster. We show the seven most likely visual categories (top), and a
close–up view of the screen and desk models (bottom). Right: Multiple part TDP model as in Fig. 6.21.
For clarity, we show the most likely parts (those generating 85% of observed features) for the five most
common non–background categories (top). The close–up view shows a five–part screen model, and a
four–part desk model (bottom).

¥ 6.4.4 Scale–Invariant Analysis of Office Scenes

We now consider a dataset of stereo office scenes containing four labeled objects: com-
puter screens, desks, bookshelves, and background clutter. With 120 training images
segmented as in Fig. 6.20, we used the Gibbs sampler of Sec. 6.4.3 to learn TDP scene
models. Fig. 6.22 shows the visual categories created by the full TDP model of Fig. 6.21,
and a simpler model which constrains each category to a single part, after 100 sampling
iterations. While the single–part TDP captures coarse geometric relationships, parts
allow more accurate descriptions of object structure. Note, for example, that the screen
model defines parts characterizing each of its four corners.

As in Sec. 6.3.2, the Gibbs sampler allows each manually labeled object category to
be associated with several visual categories. For the 3D office scene dataset, both TDP
models learn (without supervision) two shapes for bookshelves, one horizontal and the
other vertical. Note that our allowance for transformations causes the TDP to model
scaling via 3D translations, rather than by creating multiple visual categories.

In Fig. 6.24, we show several typical test image interpretations for the part–based
TDP scene model. For stereo test images, TDP depth estimates consistently improve on
the raw estimates of Fig. 6.20. In addition, as shown by the ROC curves of Fig. 6.23,
the TDP more accurately segments features into object categories than a histogram
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Figure 6.23. ROC curves for the segmentation of features corresponding to computer screens (red),
desks (green), and bookshelves (blue). Using stereo test images, we compare the single and multiple
part TDPs of Fig. 6.22 to a classifier based on feature appearance.

model based solely on feature appearance. Parts improve segmentation performance
for monitors, but not for the less structured desk and bookshelf categories.

Fig. 6.24 also shows preliminary inference results for monocular test images. For
these results, we set depth likelihoods to slightly favor features which are placed farther
from the camera. This heuristic avoids a degenerate configuration sometimes seen with
uninformative depth likelihoods, in which a single object instance is placed very close to
the camera and used to explain all observed features. By running the Gibbs sampler on
monocular images, we detect monitors at multiple scales, and thus approximately infer
scene geometry via the presence of familiar objects. Although the TDP produces more
false alarms for monocular scenes than for stereo test images, the overall scene inter-
pretation is often still consistent. Further investigation of the accuracy and robustness
of the TDP’s 3D reconstructions from monocular scenes is ongoing.

¥ 6.5 Discussion

By coupling Dirichlet processes with spatial transformations, we have developed flexi-
ble, hierarchical descriptions of multiple object scenes. Our results clearly demonstrate
that simple bag of features models neglect valuable spatial relationships, which may
dramatically improve object localization performance. Importantly, our use of non-
parametric priors leads to algorithms which automatically partition scenes into visual
objects categories, and objects into parts. Furthermore, using stereo training images we
have learned effective 3D scene models which jointly recognize objects and reconstruct
geometric structures. These TDP models suggest several promising research directions,
which Chap. 7 discusses in more detail.



Stereo Test Images

Monocular Test Images

Figure 6.24. Analysis of stereo (top) and monocular (bottom) test images using the 3D, part–based
TDP model of Fig. 6.22. For comparison, the first monocular test image is the same as the first
stereo image, but ignores the disparity–based depth likelihoods. Each result group (left, clockwise)
shows the test image, a segmentation based solely on feature appearance, a TDP segmentation, and
corresponding TDP depth estimates (green features are near, red far). We also show transformed
3D parts corresponding to non–background object instances inferred by the TDP (right), and overlay
perspective projections of these parts on the test image (center).



Chapter 7

Contributions and

Recommendations

PRECEDING chapters developed statistical methods for the visual detection, cate-
gorization, and tracking of objects. We now survey the principal contributions

underlying our results, and outline several promising avenues for further research.

¥ 7.1 Summary of Methods and Contributions

Computer vision systems must be robust to wide variations in object appearance, the
often small size of training databases, and ambiguities induced by articulated or par-
tially occluded objects. We believe that structured statistical models, which explicitly
characterize the uncertainties inherent in natural scenes, will play an important role in
addressing these challenges. This thesis develops several models which integrate graph-
ical representations with nonparametric statistical methods. This approach allows us
to minimize potentially damaging assumptions about the often uncertain statistics of
visual scenes, while still permitting efficient learning and inference algorithms.

We examine these general themes in the context of two particular computer vision
tasks. The first half of this thesis considers distributed representations for articulated
objects, and in particular develops a Monte Carlo method for tracking hand motion from
video sequences. We then turn to the problem of object detection and categorization,
and develop methods for learning hierarchical models of objects, the parts composing
them, and the scenes surrounding them. These applications raise different and comple-
mentary issues: the hand tracker estimates the pose of a particular high–dimensional
geometric model, while our scene hierarchy learns less precise visual descriptions of en-
tire object categories. Nevertheless, we show that nonparametric methods can flexibly
exploit the local, geometric structure characterizing both applications.

Motivated by visual tracking problems, Chap. 3 first considers more general infer-
ence tasks defined in graphical models containing continuous, non–Gaussian random
variables. We formulate a nonparametric belief propagation (NBP) algorithm which ap-
proximates continuous sufficient statistics via nonparametric, sample–based messages.
NBP updates the particles underlying these messages using a very flexible family of
Monte Carlo methods, and can thus be easily adapted to a huge range of applications.

271
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Moreover, we use multiscale, KD–tree density representations to derive sampling algo-
rithms which efficiently and accurately fuse information during each message update.

Turning to the hand tracking application, Chap. 4 begins by developing a dis-
tributed, graphical representation of the hand’s kinematic, structural, and dynamic
characteristics. We also provide a set of auxiliary occlusion masks which permit consis-
tent, local decompositions of color and edge–based likelihoods. Applying NBP to this
model, we develop a tracking algorithm which enforces global constraints via lower–
dimensional estimates of the rigid bodies composing the hand. In particular, by locally
propagating information among the hand’s fingers, we avoid explicitly considering the
high–dimensional pose space which plagues traditional articulated trackers. Via an ad-
ditional analytic approximation, the NBP algorithm also consistently infers occlusion
events in a distributed fashion.

In many vision applications, precise geometric models like the one used in our hand
tracker are unavailable. Chap. 5 thus considers the complementary problem of learning
descriptions of object categories from training images. In particular, we define a hier-
archical model which describes several related object categories via a common set of
shared parts. This approach couples topic models originally used for text analysis with
spatial transformations, and thus describes the geometric structure underlying image
features. We show that geometric relationships encode important information, and that
shared representations improve performance when few training images are available. In
addition, by adapting the Dirichlet process we develop learning algorithms which auto-
matically identify an appropriate number of latent parts. Empirical results then show
that these nonparametric methods desirably increase the learned model’s complexity as
additional training images become available.

Generalizing these object models, Chap. 6 develops integrated, hierarchical repre-
sentations of multiple object scenes. We first develop a parametric, fixed–order model
which describes contextual relationships among known sets of objects. To model more
general scenes, we then propose a nonparametric framework which couples Dirichlet pro-
cesses with random sets of spatial transformations. The resulting transformed Dirichlet
process (TDP) provides a consistent, generative model for scenes in which the numbers
of parts composing each object, objects depicted in each image, and total object cat-
egories are all uncertain. Applied to a challenging dataset of street and office scenes,
the TDP automatically segments image features into object categories. Finally, using
binocular stereo images we extend the TDP to learn three–dimensional descriptions of
object categories. Efficient Monte Carlo methods then simultaneously recognize objects
and reconstruct scene geometry. Importantly, our use of nonparametric priors leads to
robust learning algorithms which require few manually specified parameters.

¥ 7.2 Suggestions for Future Research

We conclude by discussing a variety of open research directions suggested by our ap-
proaches to articulated tracking and scene understanding. In addition, we briefly survey
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potential implications of our statistical and computational methods for other applica-
tion domains.

¥ 7.2.1 Visual Tracking of Articulated Motion

The NBP algorithm uses random samples to approximate the true, continuous suffi-
cient statistics needed for optimal inference. As the number of samples becomes large,
standard asymptotics guarantee that these Monte Carlo methods provide accurate ap-
proximations (see Sec. 2.4). In practical applications, however, computational consid-
erations frequently limit NBP to more moderate sample sizes. For example, our hand
tracking results used a few hundred samples for each message update, which is in-
sufficient to densely populate the six–dimensional pose space of each hand component.
Because NBP propagates information among the hand’s fingers, it is less prone to global
tracking failures than traditional particle filters. Nevertheless, for rapid or partially oc-
cluded motion sequences, undersampled message approximations may produce noisy,
inaccurate pose estimates.

Because NBP places few restrictions on the potentials of the underlying graphical
model, these sampling issues are its main practical limitation. The brute force solu-
tion, of course, is to use more samples when approximating each message. Because
NBP may be easily parallelized, this approach is sometimes feasible. For example, the
computational cost of visual tracking is usually dominated by image–based likelihood
evaluations. Modern graphics hardware provides one natural candidate for more rapidly
evaluating particle likelihoods, and thus tractably representing each message by addi-
tional samples. More generally, one can consider modifications of NBP which construct
samples with improved statistical properties. The following sections describe several
variants of this idea in more detail.

Improved Proposal Distributions

In many applications of NBP, including our hand tracker, importance sampling methods
are used to correct for otherwise intractable analytic potential functions. As discussed in
Sec. 3.1, there is an extensive literature on improved proposal distributions for particle
filters [11, 70, 72, 183], which could be easily adapted to NBP. However, the image–based
likelihoods arising in visual tracking are typically too complex for these standard meth-
ods. Alternatively, image–based feature detectors could be used to identify candidate
hand configurations in a bottom–up fashion [261]. Because our graphical model uses a
distributed hand representation, these detectors would have the simpler task of finding
hand components, such as fingertips, rather than global hand configurations.

In Sec. 3.2.4, we contrasted two forms of the NBP message updates. The second,
“belief sampling” form reduces computational costs by reusing a common sample set
among several outgoing messages. However, in applications such as our hand tracker,
this approach shows increased sensitivity to outlier particles, and may exhibit instability.
While Alg. 4.2 heuristically addressed this issue by thresholding particle weights, a
complete conceptual understanding of this phenomenon remains to be developed.
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Informative Kinematics and Dynamics

Although the graphical model developed in Chap. 4 captures the hand’s kinematic
constraints, it assumes all kinematically valid poses are equally likely. In contrast,
biomechanical [333] and empirical [293, 334] studies have shown strong dependencies
among the hand’s various joints. Hand motion also exhibits a great deal of temporal
structure, particularly when application domains such as sign language recognition are
considered [333]. While these relationships are difficult to express analytically, there are
a variety of statistical methods for learning improved kinematic and dynamic models
from training data. For example, kernel density estimates of these relationships could
be easily incorporated into an NBP tracking algorithm, and thus better focus samples
on likely hand poses.

Alternative Density Representations

The NBP algorithm developed in Chap. 3 constructs continuous message functions by
convolving each particle with a Gaussian smoothing kernel. As described in Sec. 2.4.2,
asymptotically motivated methods then automatically determine this kernel’s variance.
Empirically, however, these bandwidth selection rules are sometimes unstable given
small sample sets. The robustness of NBP might thus be improved by considering
other approaches to nonparametric density estimation, like those surveyed in Sec. 2.5.
For example, a Dirichlet process prior could be used to summarize the samples from each
message or belief update by a smaller Gaussian mixture. This approach would allow the
expected scale of the true beliefs to be encoded via the Dirichlet process’ base measure.
Furthermore, reductions in outgoing message size may lower the computational cost of
the sampling iterations employed by subsequent message updates.

¥ 7.2.2 Hierarchical Models for Objects and Scenes

Our hierarchical scene models use nonparametric, Dirichlet process priors to robustly
learn data–driven appearance models, and transfer knowledge among object categories.
The following sections discuss potential generalizations which capture additional prop-
erties of real scenes, and alternative frameworks for learning and inference.

Transferring Knowledge Among Object Categories

In Chap. 5, we adapted the hierarchical Dirichlet process (HDP) [289] to describe
several object categories via a common set of shared parts. The experimental results
of Sec. 5.6 then revealed an interesting tradeoff. Given few training images, shared
parts lead to substantial gains for a detection task, in which objects are distinguished
from background clutter. Conversely, for a recognition task in which one of several
object categories is chosen, the HDP is slightly less effective than a set of independent,
unshared Dirichlet process mixtures. This degradation is caused by additional confusion
between pairs of categories which reuse shared parts in similar proportions. Of course,
one would ideally like to learn shared representations which perform well for both tasks.
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One potential solution considers an alternative learning criterion. In particular, the
Gibbs sampler derived in Sec. 5.5.1 explores the HDP parameters’ posterior distribu-
tion, and favors parameters which assign high likelihood to the training images. If two
categories are visually similar, the Dirichlet process’ stick–breaking prior will then favor
simpler models which associate them with similar parts. Alternatively, one could con-
sider discriminative learning techniques which optimize the conditional probability of
each object category label, given its associated training image [304]. In principle, such
approaches might allocate additional parts to better distinguish visually similar cate-
gories. However, while discriminative methods are widely used for parametric learning,
they do not seem to have been previously adapted to Dirichlet processes. Variational
methods, which have been used for generative learning of Dirichlet process mixtures [29],
may provide a useful starting point to further develop these ideas.

Another explanation for the HDP’s performance degradation is that object cate-
gories reuse identical parts in different proportions. Adapting ideas from Chap. 6, if
categories instead reused transformed parts, they might become more distinguishable
while still transferring useful information. In the simplest case, such transformations
could shift the position of each part, as in Sec. 5.2. However, we expect that appear-
ance transformations, which account for the unique “style” of different categories [291],
would provide greater benefits. Note that this approach would require an alternative,
continuous feature appearance descriptor.

Richer Descriptions of Visual Scenes

Chap. 6 develops a pair of 2D visual scene models with complementary strengths.
The parametric, fixed–order model of Sec. 6.1 describes contextual correlations in the
positions at which objects are observed, but assumes each image depicts some fixed,
known set of objects. Conversely, the nonparametric, TDP model of Sec. 6.3 allows
uncertainty in the number of object instances, but neglects contextual relationships.
Both models employ part–based descriptions of internal object structure.

While the fixed–order model’s assumptions are only appropriate for toy datasets,
it would be desirable to develop TDP models which also capture contextual relation-
ships. Recently, a correlated topic model [30] was proposed which generalizes LDA (see
Sec. 2.2.4) by modeling dependencies in the probabilities which documents associate
with different topics. Contextual relationships have a similar form: given that one
object category is present, certain other categories are also likely to be observed. How-
ever, we would additionally like to model correlations in the locations of those objects.
Currently, the extension of correlated topic models to nonparametric, Dirichlet process
priors remains an open problem.

Sec. 6.4 describes a TDP model for 3D scenes which raises several additional chal-
lenges. In particular, methods for recognizing objects from multiple viewpoints, and
dealing with partial occlusions, must play a role in any realistic scene model. One ap-
proach to modeling multiple viewpoints is to simply let the TDP partition those views
into several global, visual categories. However, we would expect better performance



276 CHAPTER 7. CONTRIBUTIONS AND RECOMMENDATIONS

from a generalized model which shares parts or features among views [299]. Alterna-
tively, we could consider more general spatial transformations which model viewpoint
via rotation of a single 3D model. This approach would require some method for dealing
with the self–occlusions induced by each object’s internal structure. It remains to be
seen whether the occlusion masks we proposed for articulated tracking could also be
adapted to such TDP scene models.

Finally, while we demonstrated promising reconstructions of 3D scenes from monoc-
ular test images, our current model is far less robust in this situation than when given
stereo pairs. Better models of background scene structure, and some description of
contextual relationships, will likely play an important role in improving these results.

Alternative Learning Algorithms and Nonparametric Methods

As discussed in Sec. 2.5, the Dirichlet process allows uncertainty in the number of
clusters associated with a given dataset, has desirable asymptotic guarantees, and leads
to simple, effective learning algorithms. However, it is certainly not the only distribution
with these properties, and some alternative may prove more suitable for describing
visual scenes. Similarly, while our Rao–Blackwellized Gibbs samplers are often effective,
it would be interesting to consider generalizations based on the many other methods
for learning Dirichlet process mixtures, as reviewed in Sec. 2.5.3.

¥ 7.2.3 Nonparametric and Graphical Models

While we have focused on computer vision tasks, the statistical approaches developed in
this thesis are more broadly useful. One common theme running through our work is the
combination of variational and Monte Carlo methods for learning and inference. While
Monte Carlo methods have strong asymptotic guarantees, and can be applied to com-
plex models, in practice they are unreliable in high–dimensional spaces. We have thus
made extensive use of variational and analytic approximations to reduce dimensionality,
and combine local Monte Carlo estimates. For example, NBP uses a variational ap-
proximation to define factorized, local sufficient statistics, and then approximates those
statistics via importance sampling. Similarly, our TDP Gibbs samplers make extensive
use of Rao–Blackwellization to reduce model dimensionality and improve convergence.

A second theme is the integration of nonparametric statistical methods with graph-
ical models. Using graphical models, we are able to flexibly exploit domain knowledge,
and better utilize small, sparsely labeled training databases. Nonparametric methods
then lead to robust models whose complexity grows as additional data is observed, and
inference algorithms which consistently maintain complex, multimodal uncertainties.

While we are certainly not the first to utilize structured nonparametric models, we
believe they play a critical role in our results, and will prove useful in other domains.
For example, NBP has already been applied to other tracking problems [261, 284], and
a challenging sensor network localization task [142]. The TDP generalizes models used
for text analysis [31, 289], and would likely prove effective in a range of applications
arising in speech processing, bioinformatics, and remote sensing.
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