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Abstract
This thesis proposes a new iterative algorithm for the simultaneous computation of lin-
ear least-squares estimates and error variances. There exist many iterative methods for
computing only estimates. However, most of these will not also compute error variances.
A popular method for computing only estimates is the conjugate gradient algorithm.
The algorithm proposed in this thesis for the simultaneous computation of estimates
and error variances is a variant of the conjugate gradient algorithm for computing es-
timates. The convergence of the proposed algorithm is extensively characterized both
analytically and experimentally.

Variants of*the proposed estimation algorithm are applied to two other statistical
problems. The first is that of realization. Specifically, an iterative al orithm is devel-
oped for the simultaneous generation of a sample path of a given Gaussian random
process and a low-rank approximation to the covariance matrix of a given process. The
algorithm is compared to existing algorithms for realization in terms of an analytical
estimate of computational cost and an experimental characterization of overall perfor-
mance. The second statistical problem is that of space-time estimation. This thesis
proposes an implementation of the Kalman filter and smoother in which each step of
these recursive algorithms is solved iteratively. The resulting space-time estimation al-
gorithm is especially suited for remote sensing problems. In particular, the algorithm
is applied to the assimilation of measurements of sea surface height into a model of the
ocean, the dynamics of which are given by a Rossby wave equation.

Lastly, this thesis examines the stability of infinite-dimensional discrete-time Kalman
filters of a type arising in remote sensing problems. This is accomplished by developing
a Lyapunov theory for infinite-dimensional linear systems whose states are elements in
a Hilbert space. Two theorems, proved in this thesis, provide sufficient conditions for
the state trajectories to converge either strongly or weakly to 0. This general theory
is then used to establish sufficient conditions for strong and weak stability of infinite-
dimensional Kalman filters.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

This thesis focuses on the computation of linear least-squares estimates and the associ-
ated error variances. The error variances provide an important measure of the quality
of the estimates. In particular, theerror variances are useful for subsequent analysis of
the estimates and for fusing the estimates with new data.

The int erest here is in methods for simultaneously computing both the linear least-
squares estimates and the associated error variances. Most existing methods are re-
cursive in nature. That is, the algorithms break the computation down into a finite
sequence of steps, after the completion of which the algorithm terminates with an exact
solution. This class of algorithms includes Kalman filtering and Cholesky factorization.

For computing just estimates, on the other hand, there exist many iterative methods.
These algorithms will compute a sequence of approximations to the exact solution. This
approach can often lead to the computation of a good approximation with less work
that an exact solution. One such method frequently used for computing estimates is
the conjugate gradient algorithm [33]. This algorithm is a type of Krylov subspace
method. Krylov subspace methods perform computations using quantities that lie in
a type of subspace known as a Krylov subspace. Krylov subspace methods have been
developed not just for computing linear least-squares estimates but also for performing
many other linear algebra computations, particularly eigenanalysis.

In this thesis, a new Krylov subspace iterative method is proposed for the simulta-
neous computation of linear least-squares estimates and error variances. This Krylov
subspace estimation algorithm is a variant of the standard conjugate gradient algorithm
for computing estimates. The new method is widely applicable and is especially suited
for estimation problems in which the quantity to be estimated is smoothly varying over
space, and the data are mostly taken pointwise. Such problems arise in geophysical
remote sensing, among other fields.

The Krylov subspace estimation algorithm can also be applied to the problems of
synthesizing sample paths of a stochastic process and to the estimation of processes
varying in both space and time. This thesis discusses the connection that both of these
problems have to the static estimation problem for which the Krylov subspace esti-
mation algorithm is initially developed. The resulting Krylov subspace algorithms for
realization and space-time estimation estimation are characterized with various exam-
ples in this thesis. In particular, the algorithm for space-time estimation is used to
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16 CHAPTER 1. INTRODUCTION

analyze some oceanographic data.
The algorithms for static and space-time estimation are also characterized analyt-

ically in this thesis. In particular, a convergence theory is developed for the Krylov
subspace estimation algorithm. The theory bounds convergence rates in terms of fun-
damental quantities in the estimation problem being solved. In addition, an analysis is
carried out of how approximations made at various steps of the space-time estimation
algorithm affect the final solution.

E 1.1 Problems Addressed

There are principally three problems addressed in this thesis. Specifically, methods are
developed for the computation of estimates and error variances for static estimation
problems, the realization of random processes, and the computation of estimates and
error variances for space-time estimation problems. Each of these problems is elaborated
on next.

N 1.1.1 Computation of Estimates and Error Variances for Large Static Lin-
ear Estimation Problems

One of the primary problems addressed in this thesis is that of computing estimates
and error variances for large static linear estimation problems of a type arising in geo-
physics. The estimation problems considered in this thesis generally involve estimating
a physical quantity smoothly varying over space from many irregularly spaced point
measurements. An example of such a problem would be the estimation of sea surface
temperature from satellite data.

The general static estimation problem has been considered by many others for cer-
tain types of prior models of the quantity to be estimated. In particular, a variety of
techniques have been developed for cases were the prior models have some Markovian
structure. The Markovianity of the models implies that inverses of covariance matrices
in the estimation problem are sparse. The sparsity can be exploited by various recur-
sive methods such as Kalman filtering and Cholesky factorization. More details on such
existing methods are presented in Chapter 2.

In contrast, the estimation problems considered in this thesis are generally not
Markov and the algorithmic focus is not on recursive methods, but iterative ones.
Many existing iterative methods in numerical linear algebra assume the existence of
efficient routines for multiplying vectors by matrices in the linear algebra problem.
Such routines exist for the estimation problem if the covariance matrices can be made
sparse in special bases. For example, covariance matrices of stationary processes can be
factorized into a product of a diagonal matrix and discrete Fourier transform matrices.
Thus, this thesis examines estimation problems for which the inverses of covariance
matrices are not necessarily sparse, but the covariance matrices can be made sparse in
bases associated with fast transforms.

This thesis contains not only a derivation of an iterative method for computing
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estimates and error variances but also an extensive analysis of its convergence. The
analysis is statistical and involves characterizing the behavior of extreme values of
certain random processes. The analysis is important for two reasons. First, it indicates
how the convergence rate will change as parameters in the estimation problem vary.
Second, the analysis suggests methods for accelerating convergence.

The issue of how to accelerate convergence is addressed in this thesis, as well. In
particular, some simple preconditioners are developed and characterized experimentally
for some test estimation problems. The goal of this work is not necessarily to find the
best preconditioner but is to establish that convergence of the method for computing
error variances can be accelerated.

Finally, the utility of the method is investigated by applying it to a static oceano-
graphic estimation problem. Specifically, the algorithm is used to interpolate sea surface
temperature from ATSR satellite data [29]. The data coverage tends to be sparse and ir-
regular because measurements cannot be made through cloud cover. The error variances
for this problem are important because they provide a quantitative characterization of
the quality of estimates over the regions with no data.

E 1.1.2 Realization Of Gaussian Processes

Another problem addressed in this thesis is that of approximate realization of Gaussian
random processes. For this problem, one is given the covariance of a Gaussian random
process. Then, one is interested in generating sample paths of an approximating random
process and a representation of its covariance so that the approximating covariance
closely matches the given one.

Realizations are important for many reasons. Although not explored in this thesis,
the sample paths can be used for Monte Carlo studies. The other quantity generated
by the realization algorithm, the approximate covariance, can be used for simplifying
estimation problems. This application is considered in this thesis in the context of
space-time estimation, which is discussed subsequently in Section 1.1.3.

There exist a variety of algorithms that can be used for realization. In particular, an
eigendecomposition of the given covariance matrix can be used to perform approximate
realization. Thus, many algorithms for eigenanalysis can be modified for approximate
realization. Moreover, if the process to be realized is stationary, one can often use
FFT's to generate approximate realizations [23] .

In this thesis, the previously mentioned Krylov subspace estimation algorithm is
considered for addressing the realization problem. This is possible because of the close
connections between realization of Gaussian random processes and linear least-squares
estimation. The Krylov subspace estimation algorithm has the potential to offer key
advantages over existing algorithms. Specifically, the error variances calculated by the
Krylov subspace estimation algorithm have the interpretation of approximation error
in the context of realization. Thus, the Krylov subspace realization algorithm provides
the approximation error and does so at every iteration. The approximation error would
be more difficult to obtain, at every iteration, from iterative eigenanalysis algorithms
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such as the Lanczos algorithm. Moreover, the Krylov subspace realization algorithm is
not restricted to realizing stationary processes, as are the FFT methods.

A variety of random processes are considered as test cases for the Krylov subspace
realization algorithm. One of these is a fractional Brownian motion. Fractional Brow-
nian motions have also been used to test other realization algorithms and so serve as
a good test case [30]. Yet another test case is an isotropic two-dimensional random
known as the spherical covariance in the geostatistical community [23,44].

N 1.1.3 Computation of Estimates and Error Variances for Space-Time Es-
timation

Many estimation problems arising in remote sensing involve estimating quantities vary-
ing over both space and time. This is especially true for oceanographic estimation
problems. An example of such a problem is the estimation of sea surface anomaly,
which is the deviation of sea surface height from a mean. Measurements of sea surface
anomaly are taken pointwise by satellite altimeters, but the coverage of the ocean may
be sparse. One is interested in estimating sea surface anomaly on a fine grid using
current and past data.

The focus in this thesis is on iterative methods that can be used for computing both
estimates and a representation of the error covariances. As for the static estimation
problem, the error covariances are important for assessing the quality of the estimates
and for fusing the estimates with new data. This may be especially important for a
space-time estimation problem where new data are constantly being acquired.

A variety of'methods have been developed for computing just estimates. These in-
clude the iterative methods of Bennett [4,6]. These methods use the conjugate gradient
algorithm to solve linear estimation problems. The problems are solved in batch. That
is, data at all points in time are used to compute the estimates at every time point.
This approach is often a very efficient one for computing estimates given �a block of
data. However, it is not a good approach if one is acquiring new data. This is due to
the fact that one has to reprocess all of the data to get new estimates since the error
covariancos have not been computed to allow for efficient data fusion.

The method for space-time estimation proposed in this thesis is not a batch method
but an implementation of a Kalman filter. The Kalman filter processes the data se-
quentially, one time step at a time, computing both estimates and error covariances.
The issue addressed in this thesis is how to make use of the Krylov subspace methods
for estimation and realization, previously discussed, for accelerating the processing of
the Kalman filter steps. Although using the Kalman filter generates an estimate of
the state at a given time using data from previous times, one can also consider using a
smoothing algorithm to generate an estimate at each time step that uses all of the given
data. This thesis also examines the issue of how to accelerate smoothing algorithms
using the Krylov subspace estimation and realization algorithms.

The algorithms for space-time estimation developed in this thesis are tested on an
oceanographic problem with real data. Specifically, the algorithm is used to estimate



Sec. 1.2. Thesis Organization and Main Contributions 19

sea surface anomaly from TOPEX/ POSEIDON altimeter da 'ta [28]. The prior model
for the estimation problem assumes that the sea surface anomalies propagate in time as
a particular type of ocean waves, Rossby waves. Although the problem considered in
this thesis is small, the model has a relatively high degree of statistical sophistication
that makes it a good test problem.

Since the method proposed in this thesis for solving space-time estimation problems
involves approximating steps of a Kalman filter, an important issue is the stability of
the filter for space-time estimation problems. The degree of stability determines how
the approximation errors propagate through the filter dynamics. Most existing stability
studies have focused on proving a strict form of stability such as exponential stability [43]
or on empirical results [74]. This thesis addresses the problem of establishing a form
of stability, weaker than exponential stability, for infinite-dimensional Kalman filters.
The theoretical framework captures the behavior of the high-dimensional Kalman filters
used for certain remote sensing problems such as those considered in this thesis.

N 1.2 Thesis Organization and Main Contributions

The remainder of this thesis is organized as follows.

Chapter 2, Linear Least-squares Estimation, Markovianity, and Sparse Lin-
ear Systems Solvers

This chapter provides some background and context for the results in the subse-
quent chapters. The linear least-squares estimation equations are derived in a general
setting. Then, some classical techniques for computing the estimates are discussed.
These include the conjugate gradient method and a recursive estimation algorithm.
The context for the algorithmic discussion is Markovian estimation problems. Such
problems have motivated the development of many existing algorithms. In contrast,
the new algorithms proposed in this thesis are suitable for estimation problems that
typically are not Markov.

Chapter 3, Krylov Subspace Estimation
The core Krylov subspace estimation algorithm and two different stopping criteria

are derived in Chapter 3. The algorithm's convergence is extensively analyzed. The
analysis necessitates the development of new results on the extreme values of random
processes, which are contained in the chapter. The convergence analysis naturally leads
to a consideration of two methods for accelerating convergence. Specifically, block and
preconditioned forms of the algorithm are presented. The algorithm is characterized
with various numerical examples. These include the results of applying the algorithm
to the estimation of sea surface temperature.

Chapter 4, Krylov Subspace Realization
Chapter 4 contains a derivation of the Krylov subspace realization algorithm. The
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algorithm is compared to existing techniques for realization, particularly Lanczos and
FFT-based methods. The performance of the Krylov subspace realization algorithm is
characterized with a set of numerical examples. These include a fractional Brownian
motion and a two-dimensional isotropic random field that has been used for geophysical
modeling.
Chapter 5, The Krylov Subspace Method for Space-Time Estimation

Chapter 5 describes how the Krylov subsp ace methods for estimation and realiza-
tion can be used to implement the Kalman filter for space-time estimation problems.
A perturbation analysis of the Kalman filter is carried out. The analysis examines
how the approximations made by the Krylov subspace methods affect the filter results.
The chapter also contains a description of how these Krylov subspace methods can be
used for smoothing. The computational complexity of the Krylov subspace methods
for filtering and smoothing are analyzed and compared to straightforward implementa-
tions. The proposed methods are characterized with two sets of numerical examples.
For the first set, the state obeys a stochastic heat equation, and the measurements are
s' nthetic. For the second set, the state obeys a stochastic Rossby wave equation, and
the measurements are real data of sea surface anomaly.

Chapter 6, Stability of Kalman Filters for Space-Time Estimation
Chapter 6 contains a study of the stability of the Kalman filters for space-time'

estimation considered in Chapter 5. This theoretical study is performed in an infinite-
dimensional Hilbert space framework. Sufficient conditions for both strong and weak
stability of the filters are provided. Proofs that the conditions are sufficient rely on a
Lyapunov -theory for infinite-dimensional time-varying linear systems that is developed
in the chapter.

Chapter 7, Conclusions
The main contributions are summarized in Chapter 7. Directions for further research

in the area of iterative methods for estimation are also suggested.



Chapter 2

Linear Least-Squares Estimation,
Markovianity, and Sparse Linear

Systems Solvers

This chapter presents background material from estimation theory and numerical linear
algebra. Specifically, the linear least-squares estimation equations are derived, and
three methods for solving the equations are briefly discussed. These include a recursive
estimation algorithm, Cholesky factorization, and conjugate gradient. The conjugate
gradient algorithm is presented in more detail than the other two methods since it plays
an important role in subsequent chapters.

The presentation in this chapter focuses on Markovian estimation problems. Many
existing estimation algorithms have been developed primarily for Markovian problems.
The discussion of Markovianity provides some context for subsequent chapters in the
thesis. Those chapters focus on estimation problems that are not necessarily Markov.

N 2.1 Linear Least-Squares Estimation

Consider two zero-mean random vectors x and y with known covariances A, and AY
and cross-covariance Axy, Let the n components of x be quantities one would like to
estimate and the m components of y be data. Let L denote the set of estimates linear
in the data:

L = {Ay : A E R7x-) (2.1)

The linear least-squares estimate ,�(y), is the linear estimator that minimizes the ex-
pected squared error:

[IIX 1112].�(y) = argminE (2.2)
1EL

This problem is best viewed in an inner-product space framework. The underlying
real vector space is the set of all random variables that can be expressed as a linear
combination of the random variables x1, . . x, and yl, y, the components of x

2 1
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and y. The inner product between any two random variables u and v is given by their
correlation: (u, v) = E[uv]. Now, consider the problem of estimating only XI and not
all of X. Then, the estimator can be written ,�, (y) = ITy where1

2]
11 = argmin E [ (XI ITY)

I (2-3)

= argmin 11 XI -I y 112

where is the norm induced by the correlation inner product. This is a standard
projection problem, 'Which can be solved with the aid of the following theorem [52,
Theorem I in Section 3.3].

Theorem 2.1-1. Let S be a subspace and x an element in an inner-product space.
Then, for a fixed so E S,

IIX - 8011 :�, lix - s1l Vs E S -,#� x - -so _L- s Vs E S. (2.4)

In the case of estimating XI, from y, the subspace -is the span of the components of
y. Thus, one would like to find an 11 such that

(XI _ 1TY, Y,) = 0 i = I.... M. (2-5)

This can be rewritten as
1T A (2.6)

Axly I Y,

Thus, -�I(y) = AxyA-ly. Since the problem of estimating all of x can be solved com-y
ponentwise,

A-' (2.7)
.�(y) = Axy y Y_

Note that the linear least-squares estimate only depends on the covariance matrices and
not on higher-order statistics.

The quality of the estimate can be measured with the covariance of the error, x -
(y). Now,

(Cov (X - --� (y))) ((X - --� M) i, (X - --� MY (X - J� M) i, xj) (2.8)

because the error, x -. ,�(y), is uncorrelated with linear functions of y. Thus,

(Cov(x - -�(y)))ij = (xi, xj) - ((AxyA-'y)i, xj)y (2.9)
= (Ax)ij - (AxyA-1A T ),j

y XY

So, the error covariance is given by

A, Ax A,;yA-'A T (2.10)
y xy,
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The expressions for the estimate (2.7) and error covariances (2.10) just derived
are convenient, but they are often written in a different form. Write y as a linear
measurement of x embedded in uncorrelated additive noise:

Y = Cx+n. (2.11)

Then, Axy AxCT, and Ay = CAxCT + An. If Ax and An are invertible, one can write

J CT CT(y) = Ax (CAx + An) y (2.12)

= (A-' + CT A-'C)-' CT A- 1Yx n n

and

A, = Ax - Ax CT (CAx CT + An CAx
(2.13)

= (A-' + CT A-1C)_1x n

by using the identity

-1 -1B (DA-1B + C-1) _' DA7'.

(A + BCD) A A (2.14)

The latter forms are frequently used because A` and A` are often sparse as discussedx n
next.

0 2.2 Graphical Representations of Markovianity

Figure 2.1. Th is sparsity graph is of the matrix A in (2.15).

Both Markovianity of a process and sparseness of a covariance matrix are best

described with graphs [32, 66]. The sparsity graph of a symmetric matrix A has as

many nodes as rows in the matrix, and the nodes are numbered accordingly. An edge

exists between two nodes i y�- 3' if and only if Aij =A 0. An example is given by the graph

in Figure 2.1 for the matrix

1 0 1/2

A 0 1 1/2 (2.15)

1/2 1/2 1

A similar graph can be used to describe the Markovian structure of a process x 1, Xn

The graph has n nodes labeled 1 through n. An edge exists between nodes i and j if and
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only if xi and xj are not conditionally independent given f xi, x, xi, xj As it
turns out, these graphs are closely connected, as described by the Hammersley-Clifford
Theorem specialized to Gaussian processes. We specialize to Gaussian processes because
they have the characteristic that conditional independence is equivalent to conditional
decorrelation, the structure of which is wholly captured by the covariance matrix.

Theorem 2.2.1 (Hammersley-Clifford [8]). For a finite-length Gaussian process
the graph of the Markovian structure is the same as the sparsity graph of the inverse of
the covariance matrix.

The Hammersley-Clifford Theorem has important computational implications. In
particular, it shows that for the important class of Gauss-Markov processes, one can
compute the linear least-squares estimate by solving the sparse system of equations in
(2.12). The degree of sparsity will depend on the structure of the Markovianity. Con-
versely, any method for computing the linear least-squares estimate of a Gauss-Markov
process can be used to solve a sparse symmetric positive-definite system of equations.
As it turns out, many methods for computing the linear least-squares estimate have
exactly the same structure, as modeled by operations on'the associated graph. In par-
ticular, recursive estimation and Cholesky factorization (Gaussian elimination) are the
same structurally for graphs with no cycles; although the methods make very different
intermediate calculations when computing the linear least-squares estimate.

N 2.3 Graph-Based Algorithms for Estimation

There are many methods for recursively computing estimates on graphs. One such is
as follows [2, 15]. The linear least-squares estimation problem considered here is that
of estimating a zero-mean Gaussian process xi. x,, which is Markov on a cycle-
free graph G, from measurements yi = Cixi + ni such that the ni are independent
and independent of the xi. The algorithm then consists of the following operations.
The first step is to find a node with only one neighbor. Such a node is termed a leaf
node. Then, for any leaf node i with neighbor j, one computes the linear least-squares
estimate, _1-(iji), of xi given yi and the estimate of xj given yi, denoted by -�(jji).
Next, one modifies the graph G by eliminating node i and adding the measurement
.�(jji) = xj + ej to node j. The algorithm iterates until there are no nodes le (see
Figure 2-2). A second sweep of the algorithm computes the linear least-squares estimate
of each xi given all of the yi. The structure of the primary sweep consists of visiting
consecutive leaf nodes in the graph and deleting them. This is the same structure one
finds in Cholesky factorization.

Of the many implementations of Cholesky factorization, the following is a useful one
for the estimation problem described above [22]. Specifically, if we group the xi, yi, and
Ci to a create a system of equations of the form (2.12), the matrix A` + CTA-C will
have the same sparsity graph as that describing the Markovian structure of x 1, Xn

Thus, the graph is cycle-free. Cholesky factorization consists of finding a leaf node i
and its neighbor j and then performing one elementary operation on A` + CTA-1CX n
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YI Y3 Y4

XI Ah X4
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Y3 Y4

311) ...... Y3

Y4
X3

i (31 1) ...... X4

X3
X2

Y2 (312)
(2)

Y4

(413) ...... X4

(3)

Figure 2.2. The structure of the recursive estimation algorithm is illustrated here for the the estimation
of Xj) X2, X3, X4 from associated measurements Y1, Y2, Y3, Y4. At top is the conditional decorrelation
graph. Measurements axe connected to their associated nodes by a dotted line. A single recursive
estimation sweep consists of three steps. One possible set of associated modifications to the graph is
shown here.

to eliminate the ij-th entry. Then, one deletes node i from the graph. The procedure
iterates until there are no nodes left, as illustrated in Figure 2.3. At this point, one
has completed the Cholesky factorization. The estimate of x given y can be computed
by back-substitution. Note that this Cholesky factorization procedure has exactly the
same structure as recursive estimation in that leaf nodes are visited and deleted from

the same graph.
One consequence of both recursive estimation and Cholesky factorization having the

same structure is that the two algorithms have the same limitations. In particular, if the
graph has cycles, applying the algorithms may become computationally intensive. One
method for applying both algorithms in this setting is to group nodes together to form
a cycle-free graph and then apply block forms of recursive estimation and Cholesky
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3 4

2
3 4

0

2

3 4
(2) 0 0

4
(3) 0 0

0

Figure 2.3. The structure of Cholesky factorization is illustrated here for the matrix structure at top.
This matrix has the structure of A,-,' + CTA-'C for the example in Figure 2.2. The three elimination
steps and associated graph manipulations are illustrated here. For each step, the matrix is illustrated
by indicating the non-zero entries with * and eliminated (zeroed) entries with O's. Notice that the
graphs in each step are the same as those in Figure 2.2.

factorization. One example of how nodes in a square n x n grid could be grouped
together is illustrated for a 5 x 5 grid in Figure 2.4. Notice that the largest node
is formed by grouping together 0(n) nodes, creating a rather large vector. However,
one can't group nodes so as to have a maximal grouping involving fewer than 0(n)
nodes [32]. Thus, these methods are of limited value when the graph contains many
cycles, as often arises in the modeling of spatially-varying processes. In these cases,
iterative techniques may be of more value.

E 2.4 The Conjugate Gradient Algorithm

One approach to solving a general symmetric positive definite system of equations,
Ax b, is to use a Krylov subspace iterative method. Such methods compute, at



Sec. 2.4. The Conjugate Gradient Algorithm' 27

r - - - - - - - - - - r - - - - 7 r - - - - - - - - - -
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L -- - - - - - - - - - -1 F - - - - - - - - -

r - - - - - - - - - -,, r- -- - - - - - -3Ah .1k

Ah
IRV Mr

L --------- JL ---- JL --------- J

Figure 2.4. The nodes and edges in an n x n grid can be grouped together to form a tree. In the 5 x 5
case illustrated here, the state at the root of the tree consists of the middle random variables, and the
states at the four children consist of the groupings of the four corner random variables.

iteration k, a vector x* that minimizesk

JJA(Xk + XO) - blIA-1 (2.16)

over all Xk in a Krylov subspace of dimension k generated by A, where xO is an initial
guess. The Krylov subspace of dimension k generated by the matrix A and a vector s
is the span of products of the vector s and powers of the matrix A:

K (A, s, k) _' span (81 As, A 28, ... A k-18) (2.17)

The implicit assumption is that s does not lie in a proper eigenspace of the matrix A.
These Krylov subspaces have a structure that is useful for solving certain linear systems.
In particular, one can update x*_I to obtain x* with relatively few computations. Thek k
workload is dominated by the multiplication of a vector by the matrix A. When this is
efficient, e.g. if A is sparse, then each iteration is efficient.

The conjugate gradient iteration is one method for computing the x* [33, Sectionk
10.21. The Krylov subspace used is the one generated by A and the initial residual
ro =: b - AxO. The method computes bases PI, - - - , Pk for IC (A, s, k) such that the pi
are A-conjugate, i.e. 7Apj Jij. Then, computing x* boils down to finding a z* thatPZ k k
minimizes

JJA(PZk + XO) - bllA-�, (2-18)

where

Pk [P I ... Pk] (2.19)
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The solution is z* = pT (b - Axo). Thus, one has the following simple recursion fork k
x* in terms of the pi: x* = x* + PkP Tb. The vectors P1, P2, known as conjugatek k k k
search directions, are computed, in turn, with the following iteration:

ro
Pi - (2.20)

�[rOTAro

rk = b -Ax* (2-21)k

Vk+1 =rk - (r'APk)Pk (2.22)
Vk+1

Pk+1 = � � (2.23)
VI-v-k+,Avk+l

That the pi computed by this recursion span Krylov subspaces and are A-conjugate

is not immediately obvious. The following proofs establish both facts(c.f. [33, Section

10.2.4]).

Proposition 2.4.1. The k-th estimation residual is in a (k + l)-dimensional Krylov

subspace: rk G I'C(A,,ro, k + 1). The k-th direction is in a k-dimensional Krylov subspace:

Pk E /C (A, ro, k).

Proof. The proof is by induction.

First, note that PI oc ro E /C(Aro, 1), and r, = b-A(p1pTb+xo) C K(Aro,2) since1
p, oc b.

Now, suppose that Pk-1 E IC(A, ro, k - 1) and rk-1 E K(A, ro, k). Then, Pk oc rk-1 -

(rT IAPk-l)Pk-1 E K(A, ro, k). Furthermore, rk = b - A(P1PT b+...+ kPT b + X0) Ek- 1 P k
K(Aro, k + 1).

Proposition 2.4-2. The p7,y are A-conjugate. In other words, pTAP, 0 for i < k.k

TProof. Fix k, and consider pk+ipi for i < k.

Note that

IIA(Pkzk + X0) - blIA-1 = IlPkzk + XO - X* 11A (2.24)

where x* A-1b. By the orthogonality principle, A-1rk = Pkz* + x0 - x* is A-k
conugate to every vector in K(Arok). Thus, rk is A-conjugate to P1, .,Pk-1 since

AP1, APk-1 E K(A, ro, k). Since Pk+1 is rk made A-conjugate to Pk via (2.22) and

(2.23), Pk+1 is A-conjugate to pi for i < k. 0

Not only is each iteration of conjugate gradient often efficient, but one also requires

typically few iterations to achieve convergence. The standard convergence theory for

conjugate gradient makes use of an analysis involving matrix polynomials [22, Section

6.6.4]. The polynomials arise because the structure of the Krylov subspaces allows one

to write rk = qk(A)ro, where qk is a k-th order polynomial such that qk(O) = L It turns

out that conjugate gradient picks the best polynomial for minimizing squared error, as

stated in the following theorem [22, p. 313].
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Theorem 2.4.1. The k-th residual, rk, of the conjugate gradient method for solving
Ax = b satisfies

llrkIIA-�< min max lq(Ai)l
llroIIA-� qE!2k AiEa(A)

(2.25)

Tk

where a(A) is the spectrum of A, Qk is the set of all k-th order polynomials taking on
the value 1 at 0, Tk is the k-th Chebyshev polynomial, and n is the condition number of
A.

The implication of this convergence theory is that convergence speed increases as
the eigenvalues become clustered. As a result, much research has been focused on
preconditioning the system of equations to cluster the eigenvalues. Preconditioning
involves transforming a system Ax = b by a matrix B to yield (BABT)(B-TX) = Bb.

A good preconditioner B is one for which matrix-vector multiplies are efficient and for
which the condition number of BABT is close to 1. For many estimation problems
with Markovian (hence, sparse) structure, one can find good preconditioners. Thus,
conjugate gradient is a popular choice for computing estimates.

One can also precondition the iterative methods for computing error variances pro-
posed in subsequent chapters. The convergence theory established in Section 3.3 sug-
gests a different kind of preconditioning, however. The goal of preconditioning for
error variance computations is to separate the eigenvalues of the preconditioned ma-
trix, BABT. Thus, the classical result on preconditioning stated here for solving linear
systems of equations with conjugate gradient differs from those in this thesis.

The next chapter focuses on how conjugate gradient can be used to compute es-
timation error variances for static estimation problems, albeit for ones that are not
necessarily Markov.
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Chapter 3

A Krylov Subspace Method for
Static Estimation Problems

The subject of this chapter is finite-dimensional linear least-squares estimation of an I-
dimensional random vector x from an m-dimensional random vector y. The relationship
between x and y is written as y == z + n, where n is noise uncorrelated with x and

z = CX (3-1)

for a matrix C reflecting the type of measurements of x. In the Bayesian framework
considered here, x, z, and n have known means and covariances. The covariance ma-
trices are denoted by Ax, A�,, and An, respectively, and, without loss of generality, the
means are assumed to be zero. Recall from Chapter 2 that the linear least-squares
estimate (LLSE) of x given y is

CT:�(y) = Ax A-'y (3.2)Y

CTwhere Ay = A, + An = CAx + A, is the covariance of y.
Direct computation of :��(y) is difficult if x and y are of high dimension. In par-

ticular, the work in this chapter was motivated by problems in which x represents
a spatially-distributed phenomenon and y measurements encountered in applications
ranging from image processing to remote sensing. For example, when x and y represent
natural images, they typically consist of 256 x 256 = 65536 pixels. In problems from
physical oceanography, the dimensions of x and y are typically upwards of 105 and
104 , respectively (e.g. see [29]). Furthermore, in applications such as remote sensing
in which the measurement sampling pattern is highly irregular, A, is typically a full
matrix that is far from Toeplitz. This prevents one from solving the linear system (3.2)
by spectral or sparse matrix methods. However, A often has a considerable amount
of structure. For example, the covariance, Ax, of the full spatial field, is often either
Toeplitz or well-approximated by a very sparse matrix in an appropriate basis, such
as a local cosine basis [53]. The measurement matrix C is often sparse, and the noise
covariance An is often a multiple of the identity. Thus, multiplying vectors by Ay is
often efficient, and an iterative method for solving linear systems that makes use of
Ay-multiplies, such as a Krylov subspace method, could be used to compute -�(y).

31
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For linear least-squares estimation problems, one is often interested not only in com-
puting the estimates but also some portion of the estimation error covariance matrix.
Recall from Chapter 2 that the covariance of the estimation error,

A,,. (Y) A,: CT A - 1 CA, (3-3)Y

is the difference between the prior covariance and the error reduction. The terms on the
diagonal of this matrix are the estimation error variances, the quantities most sought
after for characterizing the errors in the linear estimate. A natural question to ask is
whether a Krylov subspace method for computing the linear estimate ,�(y), such as the
method of conjugate gradients (CG) outlined in Section 2.4, could be adapted for com-
puting portions of the error covariance matrix. This chapter presents an interpretation
of CC in the context of linear least-squares estimation that leads to a new algorithm
for computing estimation error variances.

Many researchers in the geosciences have used CC for computing LLSEs. In partic-
ular, Bennett, Chua, and Leslie [4-6] and da Silva and Guo [19] use CC for computing
LLSEs of atmospheric variables. The structures of these estimation problems are very
similar to the ones considered here. In particular, the quantities to be estimated, X,
are spatially-varying processes, and the measurement matrices, C, are sparse. However,
they do not consider using a Krylov subspace method for the computation of error vari-
ances. We not only propose such a method in this chapter but also provide a detailed
convergence analysis.

Paige and Saunder's [63] and Xu, Kailath, et al. [79-82] have developed Krylov
subspace methods for solving statistical problems that are closely related to linear
least-squares estimation. The LSQR algorithm of Paige and Saunders solves a regres-
sion problem and can compute approximations to the standard errors. The regression
problem is a more general version of linear least-squares estimation in which a prior
model is not necessarily specified. In the special case of linear least-squares estimation,
the standard errors of the regression problem are the estimation error variances. Thus,
LSQR can compute approximations to the error variances. The novelty of our work is
that it focuses specifically on linear least-squares estimation and takes advantage of the
structure inherent in many prior models for image processing problems. In particular,
many such prior models imply a covariance of the data, A = A, + A, in which theY
signal covariance matrix, A, has eigenvalues that decay rapidly to zero and the noise
covariance matrix, A, is a multiple of the identity. Such properties are exploited by our
algorithm. These assumptions were also made in the work of Xu, Kailath, et al. for sig-
nal subspace tracking. For that problem, one is interested in computing the dominant
eigenvectors and eigenvalues of A,,. Although computing the dominant eigenvectors
and eigenvalues of A, is sufficient to compute an approximation to the estimation error
variances, it is not necessary. We do not explicitly compute eigenvectors or eigenvalues.
This provides us with the opportunity to exploit preconditioning techniques in a very
efficient manner.

Section 3.1 discusses our interpretation of CC as used to compute LLSEs. This
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naturally leads to the presentation of a new iterative algorithm for computing estima-
tion error variances. Section 3.2 proposes two alternative stopping criteria. The main
convergence result is presented in Section 3.3. Techniques for accelerating convergence,
including preconditioned and block algorithmic forms, are discussed in Section 3.4.
The main convergence result is proved in Section 3.5. Finally, Section 3.6 illustrates
the proposed techniques with various numerical examples.

N 3.1 The Estimation Algorithm

The primary difficulty in computing the LLSE ,�(y) in (3.2) is the large dimension of
the data y. The signal in the data, however, typically lies primarily in a much lower'
dimensional subspace. One can take advantage of this fact to compute an approxima-
tion to -,^,(y) by computing, instead of �(y), the LLSE of x given a small number of

T T Tlinear functionals of'the data, P1 Y, P2 Y, Pky- For a particular sequence of linearly
T T T Jindependent linear functionals, pl ,P2, '' -,Pk, let -4 (y) denote the LLSE of x given

T T T
Pi Y, P2 y, Pk y. If most of the signal components in y lie in the span Of P1, P2, - - - , Pk,

then the estimate :4(y) approximates -�(y). In this case, the covariance of the error in
the estimate --Wy), A,.Xlk(Y) COV(X - ik(y)), approximates the optimal error covari-
ance, A,. (y) _' Cov (x - -� (y)).

The principal novelty of the algorithm we propose in this chapter is the use of lin-
ear functionals that form bases for Krylov subspaces. The use of Krylov subspaces for
solving linear algebra problems is not new, but the application of Krylov subspaces to
the computation of error covariances is new. Recall from Section 2.4 that a Krylov
subspace of dimension k, generated by a vector s and the matrix A., is the span of
s, A Ak-1 s and is denoted by /C(A,,,5,k). The advantage of using linear func-Y Y
tionals that form bases for Krylov subspaces is twofold. One reason is theoretical.
Specifically, one can consider the behavior of the angles between )C(Aysk) and the
dominant eigenvectors, ui, of AY: arcsin I I (_T - 7rk) Ui I I / I I Ui I 1, where 7rk is t he orthogonal
projection onto IC(AY, s, k). As noted in [70], these angles. are rapidly decreasing as
k increases. Thus, linear functionals from Krylov subspaces will capture most of the
dominant components of the data. Another reason for using functionals from Krylov
subspaces is computational. As discussed in the introduction, the structure of Ay.in
many problems is such that multiplying a vector by A. is efficient. A consequence of
this fact is that one can generate bases for the Krylov subspaces efficiently.

The specific linear functionals used in this chapter are the search directions gen-
erated by standard CG for solving a linear system of equations involving the matrix
A The conjugate search directions, P1, Pk, form a basis for IC (A s, k) and areY, Y)
A -conjugate (see Section 2.4). The A -conjugacy of the search directions implies thatY Y
Cov(p7'y, �'y) = �ij; so, these linear functionals of the data are white. Thus, we can2 pi
draw the novel conclusion that CG whitens the data. The whiteness of the linear
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functionals of the data allows one to write

k

X, k W (A. C'pi) pTy (3-4)
j=1

k
Ae CTP,) (Ax CTP,)T

xk(Y) A. - E (Ax (3-5)
j=1

which follows from Cov(pTy'...,PTY) = I. 1 One can now write recursions for the

estimates and error variances in terms of the quantities byk = Ax CTPk - We call these the
filtered backprojected search directions because the prior covariance matrix Ax typically
acts as a low-pass filter and CT is a backprojection (as the term is used in tomography)
since C is a measurement matrix. In terms of the byk, the recursions have the following
form:

T
�k (Y) = L-4-1 (Y) + bykPk Y (3-6)

(Ae�,k(y))ii = (As,.,k-1(Y))ii ((byk) )2 (3.7)

with initial conditions

,�O(Y) 0 (3-8)
(Ae,;,O(y))ii (A.)ii (3-9)

where i = 1, 1. Unfortunately, the vectors P1, P2, - generated by standard C G are
not Ay-conjugate to a reasonable degree of precision because of the numerical properties
of the method.

The numerical difficulties associated with standard CG can be circumvented us-
ing a Lanczos iteration, combined with some form of reorthogonalization, to generate
the conjugate search directions [33, §9.1 and §9.2]. The Lanczos iteration generates a
sequence of vectors according to the following recursion:

ak = qTAyqk (3-10)

k Ayqk - Cekqk - �kqk-l (3-11)

0k+1 = JJhk11 (3-12)
hk

qk+1 = (3.13)
0k+1

which is initialized by setting q, equal to the starting vector s, q0 0, and 01 0. The
Lanczos vectors, qi, q2, are orthonormal and such that

[ql q2 ... qk ]T Ay [q, q2 ... qk] (3.14)

'Specifically (3.4) and (3-5) follow from (3-2) and (3-3) with the substitution of I for A, and
[PTC ... PTC] for C.

I k
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is tri-diagonal for all k. Let Tvk denote this tri-diagonal matrix and Lyk the lower
bi-diagonal Cholesky factor. Then, the vectors defined by

-T[PI P2 ... Pk] = [ql q2 ... qk] L (3-15)

are equal, up to a sign, to the conjugate search directions generated by CG in exact
arithmetic. That Lyk is lower bi-diagonal allows one to use a simple one-step recursion
to compute the pi from the qi. Note also that the byk = A,,CTp, can be computed
easily in terms of a recursion in A,,CTqi. These latter quantities are available since the
computation of qk+l requires the product Ayqk = C(A' CT

X )qk + A.qk-
One of the main advantages to using the Lanczos iteration followed by Cholesky

factorization is that one can use a variety of reorthogonalization schemes to ensure that
the Lanczos vectors remain orthogonal and, in turn, that the associated conjugate search
directions are A -conjugate. The simplest scheme is full orthogonalization [22, §7.41.Y
This just recomputes hk as

hk := hk - [ql ... qk] [ql ... qk ]T hk (3-16)

between the steps in (3. 1 1) and (3.12). This is typically sufficient to ensure orthogonality
among the qi. However, one can also use more complicated schemes that are more
efficient such as selective orthogonalization [65]. A discussion of the details can be
found in Appendix B. We have found that the type of orthogonalization used does not
significantly affect the quality of the results.

Although one must use an orthogonalization scheme in conjunction with the Lanczos
iteration, the added complexity is not prohibitive. Specifically, consider counting the
number of floating 'oint operations (flops) required to perform k iterations. We will
assume that full orthogonalization is used and that the number of flops required for
A.-vector multiplies is linear in either the dimension m of the data or the dimension-
I of the estimate. Then, the only contribution to the flop count that is second order
or higher in k, 1, and m is from orthogonalization, 2mk 2. For comparison, consider a
direct method for computing the error variances that uses Gaussian elimination to invert
the symmetric positive definite Ay, The flop count.is dominated by the elimination,
which requires m 3 /3. flops [33, p. 146]. Thus, our algorithm typically provides a gain if
k < m/6. For many estimation problems, a reasonable degree of accuracy is attained
for k < m. Some examples are given in Section 3.6.

A summary of the steps outlined above to compute an approximation to the optimal
linear least-squares estimate and associated estimation error variances is as follows.

Algorithm 3.1.1. A Krylov Subspace Method for Static Estimation.

I - Initialize J�o (y) = 0, (Aexo (y)) ii = (A.) ii for i = 1, . . . , 1.

2. Generate a random vector s to initialize the Lanczos iteration.

3. At each step k,
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(a) comp ute the conjugate search direction Pk and filtered backprojection byk

using a reorthogonalized Lanczos iteration, and

(b) update

T
(Y) = 'k- I (Y) + bykPk Y (3-17)

(Ae,,,,k(y))ii= (A,,,k-1(Y))ii-((byk)i)' f0'ri=1,---,l- (3-18)

0 3.2 Stopping Criteria

A stopping criterion is needed to determine when a sufficient number of iterations has

been run to obtain an adequate approximation to the error variances. Two alternative

stopping criteria are proposed in this section. The first is a simple scheme that we have

found works well. However, there is no systematic method for setting the parameters

of the criterion to guarantee that a specified level of accuracy is achieved. The second

stopping criterion is a more complicated scheme for which one can establish bounds

on the approximation error. However, the criterion tends to be overly conservative in

establishing the number of iterations needed to achieve a specified level of accuracy.

0 3.2.1 Windowed-Maximal-Error Criterion

Under this first criterion, the algorithm stops iterating after k steps if

'rk,,- m i nA max max ((byj)i)' - < -'tol (3-19)
k-Kin<j<k i max((A,.,k(Y))ii'EMi-)

where Ki.,,, Emini and Et,,l are parameters. This criterion guarantees that no components

of the error variances have been altered over the last Kin + I iterations by more than

Et,,l relative to the current approximation to the error variances. The motivation for this

criterion is the analysis in Section 3.3 which suggests that the vectors byk, representing

the contribution to error reduction from y, get smaller as k increases. However,

this behavior is not always monotone; so, the criterion takes into account gains over a

window of the last few iterations.

0 3.2.2 Noiseless-Estimation-Error Criterion

The second stopping criterion examines how well the Krylov subspace at the kth step,

)C (Ay 7 s, k - 1), captures the significant components of the signal z, as defined in (3. 1). As

for the first stopping criterion, the motivation for the second criterion is Theorem 3.3.1

in Section 3-3. The theorem relates the optimal error covariance for estimating z from y,
A,;, (y). to the optimal error covariance for estimating z from PT T y, Ae

ly, ... Pk ,,k (y). The

implication is that as A,,,,k (Y) - A,� (y) gets smaller, the difference between A,,,;,k (y) and

A,�,; (y) also decreases, albeit possibly at a slower rate. So, a relatively small difference

between A,,,,k (y) and A,,, (y) implies a relatively small difference between A,.,,k (y) and
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A,,,; (y) This fact motivates the interest in efficiently computable bounds for A,_k (Y)

A,., (y). One such bound can be written, as follows, in terms of the error covariance for
the noiseless estimation problem of estimating z from T T Z.PI Z, ... Pk

Proposition 3.2.1. Suppose A, = u 21 for u 2 > 0. Let A,,,,,k(z) be the optimal estima-
tion error covariance for estimating z from p T Z, ... I Tz Then, the difference betweenI Pk
the error covariance for estimating z from y and z from T T y is bounded by:PI Y, ... Pk

Ae.v,k(Y) - A, T (3.20)(y) < A,., k (Z) + A fk

where

11fk112 < JjAzPk-1 112 + jjAzPk 112 + jjAzPk+1 112 + JjAzPk+2 112. (3.21)

Proof. The proof makes use of the Lanczos vectors qi discussed at the end of Section 3.1.

The Lanczos vectors are useful because they form bases for the Krylov subspaces, and

they tri-diagonalize both A and Az since A,, = a 2 1, by assumption. The LanczosY
vectors tri-diagonalizing A Y implies that qTy is correlated with qj7y if and only if i

and j differ by at most one. Let A,7 ) denote the error reduction obtained from

estimating z with k+2yqk+3y, .... Furthermore, let A'rzk+l(y) denote the error re-

duction obtained from estimating z with the random variable formed by making qT lyk+
uncorrelated with qTy for i :A k + I. Then,

A,.,: (y) - Azk (Y) = Arzk+ 1 (Y) + A' (3.22)

Since y is simply a noisy version of z, Arzk+l(Y) < Arzk+l(z), where Azk+I(Z)

is the error reduction obtained from estimating z with q T z, q T z,.... Furthermore,k+2 k+3

Ar,,,k+l (z) < A,,,k (z) because A,,, (z) = 0 and qTz is uncorrelated with qj7z if i and j2
differ by more than one. Combining the last two inequalities with (3.22) yields

Aezk (y) - Aez (Y) < A,.,k (Z) + A' (3.23)

The matrix Arzk+l(y) in (3.23) is bounded above by the optimal error reduction

for estimating z from qT y, q T y, and q Tk+2Y since Ak k+ rzk+l(y) is the error reduction for

an estimator that is linear in these three functionals of y. Furthermore, A'rz k+1 (Y) is
T Tbounded above by the optimal error reduction for estimating z from pk-ly, Pk+2Y

since qk, qk+l, and qk+2 are linear combinations Of Pk-1, - - - , Pk+2. Now, write the rank-
one matrix A' fk T Then the latter bound on A'

rzk+l (y) as r,,k+l (Y) implies (3.21).

Fl

Although Proposition 3.2.1 provides a bound on 11fkJ12, the argument in the proof

suggests that the bound is very weak. Recall from the proof that fk T Al I (y), thefk r,.,,k+
error reduction obtained for estimating z from the random variable formed by making
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qT y uncorrelated with q T y and qT

k+ k k+2y. Both qk and qk+2, as vectors from a Krylov
subspace generated by A are such that q T y and Y7 k k+2y are significantly correlated with

T T Tz. Thus, making qk+ly uncorrelated with qk y and qk+2y will often significantly reduce
the correlation of the resulting quantity with z. As a result, A 1 (y) is typically muchrzk+

smaller than the error reduction for estimating z from q T ly alone, which, in turn, isk+
smaller than the right-hand side of (3.21). Thus, the bound on 11fkJ12 is weak, and
A,,,,k(Z), the dominant term in (3.20), could be used alone as the basis of a stopping
criterion.

One of the main advantages of the bound in Proposition 3.2.1 is that the diagonal el-
ements of A,,,,k (z) are easily computable. As discussed in the proof of Proposition 3.2. 1,
the Lanczos vectors qj, q2.... generated by Algorithm 3.1.1 not only tri-diagonalize Ay,
they tri-diagonalize A,:

[qj q2 ... qk] ' A_� [q, q2 ... qk] = T�,k- (3.24)

Let L,,k be the lower bi-diagonal Cholesky factor of T,,k, and let the vectors rl, r2,

be defined by

Irl r2 ... rk] = [q, q2 ... qk] L-T (3.25)zk'

Then, the linear functionals of the signal, r T Z. rT z, . . . are white. So, a simple recursion
can be used to compute A,.zk W:

(Ae,,k(z))jj = (A,�,,k-1(Z))ii - ((bzk ),)2 (3.26)

with the initialization

(Ae,-,,0(z))jj = (Az)ii (3.27)

where i' = 1,...,m and bzk = Azrk. Note that bzk can be computed without an

additional-multiply by A, since Algorithm 3.1.1 computes Aqi. The computations for

calculating A,,,,,k(z) are summarized as follows:

Algorithm 3.2.1. A Method for Calculating (Ae,k)ii

1. Initi alize (A,,,j(z))jj = (A.)jj.

2. At each iteration k:

(a) compute bzk using qk and the one-step recursion specified by LTZ'k, and

(b) update

(Ae,,,k(Z))ii (Ae;,,k-1(Z))ii ((bzk)i)'- (3.28)
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Stopping Algorithm 3.1.1 when a function of (Azk(Z))ii falls below some threshold
has a variety of advantages and disadvantages. Although it may appear that one of
the main disadvantages is the requirement that A, must be a multiple of the identity,
this is not the case. There is an extension to the non-white case that makes use of
preconditioning ideas, as discussed in Section 3.4. In fact, the main disadvantage stems
from the bound in Proposition 3.2.1 being based on the noiseless estimation problem
(i. e. A,, = 0). If A, is not small, the bound may not be tight. Thus, a stopping
criterion based on Azk W may be conservative in determining the number of iterations
needed to guarantee a specified level of accuracy. On the other hand, the bound is easy
to compute and provides a good indication of the fraction of error reduction that has
been attained by a specific iteration.

0 3.3 The Main Convergence Result

In this section, we state the main convergence result. It establishes a bound on the
rate at which the approximation to the error variances, in exact arithmetic, converges
to the optimal estimation error variances. The result leads naturally to a consideration
of the two acceleration techniques discussed in the next section. The proof of the main
result is left for Section 3.5.

Establishing the convergence result requires making a few assumptions concerning
the estimation problem and starting vector for the algorithm. The first is that the
starting vector s in Algorithm 3.1.1 is a zero-mean Gaussian random vector. This
assumption is needed to guarantee the independence of uncorrelated components of
s. The covariance matrix of s, A, is assumed to equal Ay or be proportional to the
identity. As regards the estimation problem for the purposes of this section, A,,, is not
necessarily a multiple of the identity. However, we do assume that Ay and A, have
the same eigenvectors U1,U2,-..,um and that the corresponding eigenvalues \,,l >
Ay,2 >_ > Ay,, and Aj > \z,2 > ... > A,,m satisfy the inequality, Azi/,\ Y', < �,/(T2

for some a2 > 0 and sequence �i. Note that both of these statements would hold
for �i Azi if A,, were U2 1. The conditions are stated this generally because A,
may not be a multiple of the identity if some of the preconditioning techniques of
Section 3.4.1 are used. We also assume that the 'eigenvalues of Ay are distinct and have
a relative separation (AY'i - Ayi+i)/(Ayi+i - Ay,,) that is bounded below by a constant
Asep > 0. Furthermore, the Ayi are assumed to decrease slowly enough (not faster than
a geometric decay) that one can find constants � > 0 and 0 < I' < I of reasonable
magnitude (( not much larger than IlAyll) for which 1/(Xyk7k) < jk' where

2(Asep �,,p + X2'e,) (3.29)

This last assumption is a very weak assumption that is almost never violated. All

of these assumptions concerning the estimation problem are not restrictive because

they can be guaranteed using appropriate preconditioning techniques, as described in

Section 3.4. The assumptions are summarized as follows.
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Assumptions

1. The starting vector s in Algorithm 3.1.1 is a zero-mean Gaussian random vector,
and A, = Ay or A, cc 1,

k) k,2. There exist constants ( > 0 and 0< r < i suchthat I / (AykY < (r
3. A and A, have the same eigenvectors,Y

2 Y', < 0-2,4. There exists a constant u > 0 and a sequence �j such that A,,i/A

5. There exists a constant Aep > 0 such that (Ayi-Ayi+1)/(Ayi+1-/\-ym) > Asep > 0.

These assumptions lead to the main convergence result, as stated next in Theo-
rem 3.3-1. The theorem consists of two bounds, one concerning the error variances for
estimating x and one, the error variances for estimating only the measured components
of x, z = Cx. Two bounds are given because one may need fewer iterations to obtain
a good estimate of z than of x. Moreover, the rate of convergence of the error variance
for estimating z is of interest since z is often a subsampled version of x.2

Theorem 3.3.1. If Assumptions 1-5 hold, then

M M-1
Jjsjj'�,qjjAxjjjjAyjj JjAxjj

E(Aexk (y) - Aex (Y)) < -k/4 + E(i k +4)-J3 92 '4
j=1 072(l T=Y i=k L'J

(3-30)

and

M IISI12

(Aezk(y) A, < �7111AYII ly -k/2+(y))33

j=1
M-1 L

(i k + 4) min fl Z'L (3-31)
0_2

i=k

where -y is given by (3.29) and 97 is a random variable whose statistics depend only on

,Xep, -y, andr .
The bounds in Theorem 3.3.1 provide a characterization of the difference between

the optimal error variances and the computed approximation. The bounds are a sum

of two terms. The first terms on the right-hand sides of (3.30) and (3.31) characterize

how well the Krylov subspaces have captured the dominant components of Ay, The

bigger A,,,p is, the larger -y is, and the smaller the first terms in .(3.30) and (3.31)

become. Thus, the more separated the eigenvalues (as measured by Aep), the better

2That the two bounds differ is a consequence of the fact that, for a given number of iterations k, we
are not computing the best k linear functionals of the data for estimating x.
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the algorithm will perform. The second term is a sum of bounds \i on the ratio of
eigenvalues \,,i/Ayi. The sum is over those �i corresponding to eigenvectors of A, that
are not well-captured by the Krylov subspaces at step k. Note that the sum Js over the

more rapidly decreasing A Li/4j -Xz, Li/4j in (3-3 I).
The bounds are useful principally for two reasons. First, they indicate how the

errors will scale as s, a2, 11A.11, IlAyll, and the eigenvalues of A, change. In particular,
note that the only dependence on the starting vector s is through the norm 11sil. Thus,
the performance of the algorithm does not depend strongly on s. Second, the bounds
indicate that the rate of convergence can be increased by transforming the estimation

_problem in order to make 7 big enough so that the second terms in (3.30) and (3.31)
dominate. Such transformations are discussed next in Section 3.4.1.

0 3.4 Techniques for improving convergence properties

This section presents two different techniques for improving the convergence properties
of the proposed algorithm for computing error variances. These techniques can be used
to guarantee convergence in the case that a given estimation problem violates any of
the assumptions of Theorem 3.3.1. One can af�o use these techniques to increase -Y so
as to improve the theoretical convergence rates.

0 3.4.1 Preconditioning

In the estimation context, preconditioning consists of determining an invertible trans-
formation B such that estimating x from the transformed data By can be theoretically
done more efficiently by the proposed algorithm than estimating x directly from y.
This will be the case if the covariances of the transformed data, BA BT , and of they

Ttransformed signal, BAB. , satisfy Assumptions 3 and 5 of Theorem 3.3.1 but Ay
and A, don't. The convergence properties will also be improved if -Y for the trans-
formed problem is higher than for the untransformed problem. The principal novelty
of the preconditioning approaches described here is that they focus on these particular
goals, which are very different than those of standard CC preconditioning and differ
significantly from those of preconditioning for eigenvector algorithms [71, Chapter 8].
Although the goals of the preconditioning discussed here are different than for standard
CC, the implementation details are very similar. In particular, explicit specification of
a transformation B is not necessarily required for preconditioning techniques because

Tpreconditioning can be implemented in such a way that only B B-vector multiplies are
needed instead of B- and B T_vector multiplies.

There are three different implementations of preconditioning, each of which is math-
emetically equivalent in exact arithmetic. Symmetric preconditioning simply consists of
applying the Krylov subspace algorithm to estimating x from By = BCx + Bn. Essen-
tially, x is estimated given linear functionals from Krylov subspaces IC(BAyB T, Bs, k)
applied to By. There are also left and right preconditioning techniques. The follow-
ing discussion focuses on right preconditioning, and analogous statements can be made
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concerning left preconditioning. Right preconditioning differs from symmetric precon-
ditioning in that it involves estimating x given linear functionals from the Krylov sub-
spaces K(A B T B, s, k) applied to B TBy. Note that this is equivalent to the estimationY
performed in the case of symmetric preconditioning. Although A B TB is not symmet-Y
ric, it is self-adjoint with respect to the B TB inner product. As in Algorithm 3.1.1, we
do not compute the conjugate search directions for the preconditioned estimation prob-
lem using a standard preconditioned CG iteration. Instead, we use Lanczos iterations
that compute a series of B T B-conjugate vectors that tri-diagonalize BTBAYB TB, as
follows:

�T
Cek = Lk Aytk (3-32)

hk = Aytk.- Cekqk Aqk-l (3-33)
T

dk = B Bhk (3-34)

0k+1 = Vgk hk (3.35)

hqk+1 = - k (3-36)
,3k+1

tk+1 = - dk (3-37)
0k+1

where t, B T Bs, q, s, q0 = 0, and 01 0. The qk are the BTB-conjugate
Lanczos vectors that tri-diagonalize B T BAYB TB, and the tk = BTBqk tri-diagonalize
Ay, This latter tri-diagonal matrix can be factored, as in Algorithm 3.1.1, to compute
the Ay-conjugate search directions Pk. The only difference is that the tk replace the
qk in (3.14) and (3.15). Moreover, one can compute the filtered backprojected search
directions byk = A,;CTPk as a by-product. Overall, the steps of the preconditioned
Krylov subspace algorithm are the same as those in Algorithm 3.1.1 except that a
preconditioned Lanczos iteration replaces the normal Lanczos iteration. Note that the
Lanczos method for tri-diagonalizing a left-preconditioned system is the same as the
generalized Lanczos algorithm for solving generalized eigenvalue problems [64, §15.11].

I TB that oneWhat follows are some examples of preconditioners in squared up form, B
can consider using in various contexts.

One choice for a preconditioner when the noise covariance A, is not a multiple of
the identity but is invertible is to choose B T B = A - 1 - This choice of preconditioner willn
effectively shape the noise covariance to be a multiple of the identity. The transformed

T Tdata covariance, BAYB , and signal covariance, BAB , will then satisfy Assumption 3.
Multiplying a vector by A` is often easy because A,, is often diagonal.n

If the noise covariance is, or has been transformed to be, a multiple of the iden-
tity, one can consider preconditioners that will maximally separate the eigenvalues of

TAy, Such preconditioners can guarantee that the transformed data covariance, BAYB
satisfies Assumption 5 and can increase -/ to improve the bounds in Theorem 3.3.1.
Note that such preconditioning will do little to change the bound �i on /\,,i//\yi in
Assumption 4 because the preconditioner will transform both Azi and Ayi. The ideal
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preconditioner would simply operate on the spectrum of Ay and force a geometric decay
in the eigenvalues to the noise level a 2. The geometric decay guarantees a constant rel-
ative separation in the eigenvalues as measured by the ratio in Assumption 5. However,
operating on the spectrum is difficult because one doesn't know the eigendecomposition,
of Ay, When the rows of C are orthogonal (which is often the case in the applications
mentioned in the introduction) and the eigendecomposition of A,, is known, one practi-
cal preconditioner is the following. Let AP be a matrix whose eigenvectors are the same
as those of Ax and whose eigenvalues decay geometrically. Then, let the preconditioner
be given by B TB = CAP CT. Although this preconditioner has worked well in practice,
as described in Section 3.6, we have no theoretical results concerning the properties of
the transformed estimation problem.

One can use extensions of each of the stopping criteria of Section 3.2 in conjunction
with preconditioning; however, the preconditioner must satisfy certain assumptions for
the extension of the noiseless-estimation stopping criterion of Section 3.2.2 to be used.
What follows is a discussion of the extension and the underlying assumptions concern-
ing the preconditioner for the right-preconditioned case. Recall that the discussion in
Section 3.2.2 assumes that the noise covariance is a multiple of the identity. This as-
sumption ensures that the Lanczos vectors tri-diagonalize both Ay and A, so that one
can compute A,,,,k(z) efficiently. Now, suppose one is using a preconditioning trans-

_ (BTformation B. Let A,, = A, B)-'. Assume that A,, is positive semi-definite so
that it is a valid covariance matrix. Let n' be a random vector with covariance A,, and
uncorrelated with z. Then, z' = z + n' has covariance Az, = A, + A,,. One can compute
A,.,,k(z') efficiently because the tk in (3.32)-(3.37) tri-diagonalize both A. and A,,. For
A, -signal z' should not have any significant components

,,k(z') to be useful, the pseudo
not in z. Note that an example of a preconditioner satisfying the above two assump-
tions is given by B T B = A-'. For this preconditioner, A,,, = O- so, A,,,,k(z) = A, &').n Z
Thus, one can use A,;,,k (Y) as part of a stopping criterion in conjunction with pre-
conditioning provided that the preconditioner satisfies the two assumptions outlined
above.

0 3.4.2 Using multiple starting vectors

Another technique for improving convergence properties in the case where Ay has re-
peated eigenvalues is to use a block form of Algorithm 3.1-1. Block Krylov subspace
algorithms have been developed for other computations, particularly eigendecomposi-
tions [33, §9.2.61. The principal novelty of the algorithm we present here is the appli-
cation to estimation.

Now, consider the subspace spanned by the columns of

[S A S A2S ... Ak-IS (3.38)
y y y

where S is an m x r matrix of independent identically distributed random starting
vectors whose marginal statistics satisfy the restrictions for Algorithm 3.1.1 start-
ing vectors. Denote this subspace by K(AyAk). Then, one can consider forming
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m x r matrices Pi, Pk whose columns form bases for �C (Ay 7 S, k) and which satisfy
pTA R 6ijI. As for the single starting vector case in Section 3.1, the LLSE ofi y 3
x given the random vectors pT Ty and the associated error variances can be1 Y, ... I Pk'
computing using a recursion:

(Y) = ik- I (Y) + Byk pT (3-39)
k Y

r

(Ae.,,k(y))jj = (Axk-1(Y) )ii _ j:((Byk)ij)' (3-40)

j=1

with initial conditions

:Ny) = 0 (3-41)

(Ae,,;,0(y))jj = (A.)jj (3-42)

where i I and Byk A. CTpk.

The Pi and Byi can be computed using a reorthogonalized block Lanczos algorithm

[33, §9.2.6]. The block Lanczos iteration generates, according to the following recursions,

a sequence of orthogonal matrices Qj that are orthogonal to each other:

T
Ak = Qk AyQk (3.43)

Hk = AyQk - QkAk - Qk-,Rk (3-44)

Qk+,Rk+l = Hk (QR factorization of Hk) (3.45)

where Q, and R, are a QR factorization of the starting matrix S, and Q0 0. The Qi

block tri-diagonalize Ay; so, one can write

[Q1 ... Qk ]T Ay [Q1 ... Qk] = Tyk (3.46)

where Tyk is a block tri-diagonal matrix. Let Lyk be the lower block bi-diagona I

Cholesky factor of Tyk. Then, the Pi are defined by

T
[PI ... Pk] [Q1 ... Qkj Lyk' (3.47)

Thus, the Pi can be computed from the Qi using a one-step recursion.- Moreover, the

Bi = A.,CTPi can be computed as a by-product, as with a single starting vector.

As for the single starting vector case in Section 3.1, the block Lanczos iteration must

be combined with some form of reorthogonalization. Unlike the previous case, howev-

er, there are not as many methods for reorthogonalizing the block Lanczos iteration.

Full orthogonalization is very common and is the method we have used. This simply

recomputes Hk as

]T Hk
Hk := Hk - [Q1 ... Qk] [Q1 ... Qk (3.48)

between steps (3.43) and (3.44)

The algorithm is summarized as follows.
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Algorithm 3.4.1. A Block Krylov Subspace Method for Static Estimation.

1. Initialize J�o (y) = 0, (A,.,o (y)) ii = (A.) ii for i 1, . . .

2. Generate a random m x r matrix S to initialize the block Lanczos iteration.

3. At each step k,

(a) compute the block of search directions Pk and filtered backprojections Byk

using a reorthogonalized block Lanczos iteration, and

(b) update

(Y) = --4-1 (y) + Byk pT (3.49)k Y

(Ae:,,k(Y))ii = (Ae:,:,k-1(Y))ii -E((Byk)ij )2 fori=1'...'l. (3.50)

j=1

The advantage of using the block form is that there may be small angles between the
subspaces �C (Ay I S, k) and multiple orthogonal eigenvectors of Ay asso�iated with the
same repeated eigenvalue, even in exact arithmetic. This is because each of the columns
of S may have linearly independent projections onto the eigenspace associated with a
repeated eigenvalue. The following theorem establishes convergence rates for the block
case when there may be repeated eigenvalues. It isan extension of Theorem 3.3.1 to the
block case. The proof of both theorems are very similar; so, the proof of Theorem 3.4.1
is omitted here but provided in Appendix A.

Theorem 3.4.1. Suppose that

1. There exists a constant A,,p,, > 0 such that (Ay'i - Ayi+r)/(I\yi+r - AYIM) > Alepr,

2. There exist constants > 0 and O< r < 1 such that 1/(/\yi-y.) < (r' where

7r A I + 2(/\sepr + _Pr). (3.51)

3. A and A,, have the same eigenvectors,y

24. There exists a constant cr > 0 and a sequence �i such that A,,i/A Y', < /,72

5. (Ayi - Ayi+)/(,\yi+ - Ay,,) is bounded away from zero, where i+ is the index of
the next smallest distinct eigenvalue of Ay after i, and

Then,

M 7711AxIIIJAY11 k/4 M-1T - E (i k+4)-(Ae,,,,k (y) Ae. (Y))jj < U2(1 1 + 0`2 ALI]
j=1 i=k

(3-52)
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and

M 771JAY11 -k/2
,(Ae,,k(y) - A,,, (y))jj < +

j=1
2M-1

4) min (3-5 3)
i=k

where the statistics of the random variable R depend on the starting matrix S.

There are two key differences between the statements of Theorems 3.3.1 and, 3.4.1.
The first addresses the possibility of repeated eigenvalues. Specifically, the bounds in
Theorem 3.4.1 depend on the eigenvalue separation through Aepr, which measures the
relative separation between eigenvalues whose indices differ by r. Thus, the proposition
establishes a convergence rate in the case where there may be groups of up to r repeated
or clustered eigenvalues. The second key difference is that the bounds in Theorem 3.4.1
may have a strong dependence on the starting matrix through S.- This contrasts with
the bounds in Theorem 3.3.1 which depend on the starting vector s only through the
norm JJsJJ. However, our numerical results have not indicated that the block algorithm's
performance depends strongly on the starting matrix S.

One can use natural extensions of the preconditioning techniques and either of
the stopping criteria of Section 3.2 with Algorithm 3.4-1. Thus, Algorithm 3.4.1 is a
simple replacement for Algorithm 3.1.1 that can be used to obtain better convergence
properties when A has repeated eigenvalues.Y

0 3.5 Convergence Analysis

The bounds in Theorem 3.3.1 are proved in this section in several steps. The first
few steps place bounds on the norms of the filtered backprojected conjugate search
directions, JJA__CTpiJJ and JJCA,,CTpJJ. The bounds are proved using Saad's conver-
gence theory for the Lanczos algorithm [70]. These bounds are stated in terms of an
extremum of independent random variables. The extremum arises because the starting
vector affects the angles between the Krylov subspaces and the dominant components
of Ay, However, we prove that the extremum is part of a sequence of extrema that
are converging in probability to a finite random variable (,n in Theorem 3.3.1). Thus,
the starting vector has no strong effect on the quality of the approximation to the er-
ror variances. This result is the principal novelty of our convergence analysis. After
establishing the convergence of the extrema, we prove Theorem 3.3.1.

N 3.5.1 Bounds on the filtered backprojected search directions

One is interested in bounding the norms of the filtered backprojected search directions
because the quality of the approximation to the error variances depends on the norms
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as follows:
E(Ae.,,k (y) Ae. (Y))jj CTP, I

IIA. (3.54)
j=I i=k+l

112.
(Ae,,,k(y) - A,.� (y))jj = E IICA.,CTpi (3-55)

j=1 i=k+l
2 asis of eigenvectors

Proposition 3.5.1. Write the conjugate search directions in the b'
of Ay, as follows:

Pi = Vi'lul + - - - + vi'mum- (3-56)

Then
M

IIA. CTP, 11 2 < 11A.11 E A"iV?%J) (3-57)
j=I

and
M

JJCA. CTP,112 T ,\2,jV?.
, Z Z 13' (3-58)

j=1

Proof. IIA.CTpiII2 < 11A.1111A 1,2 CTPi 11 2 = 11A.11 Em 1 A.-,jv?

x j= JI This proves the first
inequality. The second inequality follows from Parseval's Theorem.

As we now show, one can bound the coefficients vij in terms of 11 (I - 7ri) uj 11 7ri uj

where 7ri is the operator that produces the orthogonal projection onto IC (Ay, s, i) with

respect to the standard inner-product.

Proposition 3.5.2. Write, pi = vijul + + vimum as in Proposition 3.5. I. Then,

y 1/2 7r,) Uj IIIIA

IVi+1'jI < AYJ 117riujll (3-59)

Proof. Note that

A IPT A UjIYjlvi+ljl = i+ y

= IPT A T 1AY(I - -,Ti)ujl (3.60)i+ YTiuj +pi+
T

= JPi+ I Ay (I - 7ri) Uj

since pi+, is A te to vectors in the range of 7ri. Thus, AyJJvi+1jJ < IlAypi+111

II(-r-7ri)ujll <_ IIA y 11 1/2 11 (I - -7ri)uj 11 because of the Cauchy-Schwartz inequality and the

fact that pi+, is Ay-normal. The inequality in (3-59) then follows from 11-7riuj 11 < O
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The bound in Proposition 3.5.2 can be refined. In particular, a theorem due to Saad
[70, Theorem 1] implies the following result concerning the ratio II(I 7ri)ujIJ/II-7riujII,

which we state without proof

Theorem 3.5.1. Let -y be defined by (3.29) and Kj, by

A fail I\yk-,\y,,nI if ' =, 4 1
Kj - k=1 \yk-,\ylj 3 (3.61)

1 if j 1.

Then,

(T - -xi)uj 2Kj 1
< (3-62)

II-xiUjII -Yi-i II7riUjII'

Recall, from the definition of angles between subspaces given in Section 3.1, that
II(1-,xi)ujIJ/II7riujIJ is the tangent of the angle between the Krylov subspace "C(Ay, 8,i)
and the eigenvector uj. Theorem 3.5.1 bounds the rate at which these angles decrease
as the subspace dimension i increases. The bound has three components. The rate
of decay is -y, the relative separation between eigenvalues as defined in (3.29). The
constant in the numerator, 2Kj, depends on the eigenvalues according to (3.61). The
numerator, 117riuj II, is the norm of the projection of the starting vector, s, onto uj. The
primary importance of the theorem is that is establishes the decay rate -Y.

One can refine the bound in Proposition 3.5.2 by splitting the coefficients 'Uij into
two groups: those that are getting small by Proposition 3.5.2 and Theorem 3.5.1 and
those that may be large but do not significantly affect IIA,,CTp,11 because the corre-
sponding eigenvalues of A, are small. This idea leads to the following proposition.

Proposition 3.5.3.

Ll I - 00
CTP,+ I 11 2 2 ZJIIA. < 411A.111JAyll E K. + IIA.11 E (3-63)

3 ly 2(i-i)II7r1UjII2 YJ Y,3.j=1 i= Ll I
and

L I - 1 A2 00'Z I z \2
I I CA., CTp,+ 1 11 2< 41JAyll K? 13+ ZJ (3.64)

31� 2(i-j) I I �Tl Uj 11 2A2 E A
YJ -_ LJ Y,3

Proof. The first term in each of (3.63) and (3.64) follows immediately from Proposition-
s 3.5.1 and 3.5.2 and Theorem 3.5.1. The second term follows from Proposition 3.5.1

t T 2
and the fact tha Pi+lAypi+i = Ejm=l Ayljvi+lj = 1. 0

The first terms in the bounds of Proposition 3.5.3 may get large if j / (-yi 11 71 Uj 11 2) or

Ki are not well-behaved. However, the standing assumptions concerning the eigenvalues
Iof A A, and A, imply that Kj and 1/(-yII7rJUj 112 are bounded by quantities of aY 7
reasonable magnitude, as we now show.
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E 3.5.2 Convergence of infinite products and extrerna of independent se-
quences

The main result regarding the convergence of infinite products and extrema of indepen-
dent sequences is the following.

Proposition 3.5.4. Let Fj (v), i = 1, 2,. be a sequence of functions such that:

1. 1 - Fi(v) is a cumulative distribution function, i.e. right-continuous and mono-
tonically increasing from zero to one,

2. For every interval [V, oo) over which 1 - Fj (v) are positive, there exists a constant
A(V) and an' absolutely summable sequence Pi(V) such that Fj(V) < Pj(V) <
A(V) < 1 Vi; and

3. lim,-,,, E- 1 Fj (v) = 0

Then, F(v) = rl'I(I - Fi(v)) is a distribution function. Moreover, F(v) is positive
over every interval such that 1 - Fi(v) is positive Vi.

Proof. For F(v) to be a distribution function, it must be right-continuous and mono-
tonically increasing from zero to one.

Consider the interval [V, oo). Now, Iog(I - Fj (v)) is right-continuous for each
I since each Fi(v) is right-continuous. Furthermore,

00 00
log(F(v)) - log (I -Fi (v)) log (1 - Fj (v)) <_ log(I -Pi (V))

00 00 00Fj (V) Fj(V)E - ij < E (3-65)i=l+l j=1 i=i+l 1 - A(V�

Since Pi (V) is absolutely summable, log(I - Fj (v)) converges to log(F(v)) uni-
formly for v C- [V, oc) - Thus, log(F(v)) and, in turn, F(v) are right-continuous.

That F(v) is monotonic follows from the monotonicity of the 1 - Fi(v). Now,
limv,-,,o F(v) = 0 since limv,-,,o (I - F, (v)) = 0. Moreover,

00 Fj (v)lim log(F(v)) > lim 0, (3.66)V +00 V_+00 A(V)

where V is such that I - Fi (v) is positive over [V, oo) Vi. So, lim,,,,O F (v) 1.
Furthermore, if I - Fj (v) is positive Vi over an interval [V, oo), then

00log(F(v)) > - Fj (V) _ > _ c'O. (3-67)
1 - A(V)

Hence, F(v) is positive over every interval such that I - Fi(v) is positive Vi. 0
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A particular example of such a sequence of functions Fi (v) satisfying the assumptions

of Proposition 3.5.4 is

1 V < 0
V (1-0' 0<V<1 (3.68)

0 V > 1.

Thus, any product of numbers converging geometrically fast towards one is bounded
away from zero, and the product is continuously varying from zero to one as the ge-
ometric rate chan es from one to zero. This fact is used in the proof of the following9
proposition, which bounds the constants Kj.

Proposition 3.5.5. There exists a function K(v) which is continuous and monotoni-
cally decreasing from infinity to one. as v ranges from zero to infinity and satisfies

Kj < K (A,,p).. (3-69)

Proof.

1 A yk Ayj

Kj k=1 yk /\ym
(3.70)

j-1

11 1 I + /Nsep
k=1

where the inequality follows from Assumption 5. By Proposition 3.5.4, the product is
monotonically decreasing to a limit as j tends to infinity. The limit is a continuous
function Of /\,ep that varies monotonically from zero to one as Aep increases from zero
to infinity. Denote the limit by 1/K(A,,p). Then, Kj < K(/\,ep), as desired. 0

The bound on 1/(-y'jj,7rjujjj') is stochastic because -xi = s where s is the
starting vector. By Assumption 1, one can write 117rlujll' = ),,jjwjj'1jjsjj', where
1\,,j are eigenvalues of A, and wj are independent, zero mean, unit variance Gaussian
random variables. Thus,

<_ 118112 Max (3.71)
yij I 7r, Uj 11 2 - I<k<m Ask-1 k jWk 121

for m > i > Sup'ose that the Ayk satisfy

< Uk (3.72)
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for constants ( > 0 and 0< r< 1. Then, (3-72) holds for A,,k for the same andr if
As = Ay and for a different C andr =1/-y if A, oc 1. Let

ri
Pk = max (3-73)1< 2_j<k Wj

The quantityAk is an extremum. of an independent, non-identically distributed sequence
of random variables. Bounding the rate at which extrema grow is a classic problem in
statistics [51]. The following result states that the Pk don't grow without bound but
converge in probability.

Proposition 3.5.6. Suppose W1, W2, W3, is an independent sequence of zero mean,
unit variance Gaussian random variables. Let Pk be as in (3- 73). Then, the Pk converge
in probability to a finite-valued random variable.

Proo First, we show the Pk converge in distribution.

k
PI Pk < ml P 1wi I > r (3-74)

M

Let

Fj (M) P 1wi (3-75)

Then,

r
Fj (M) < (3.76)

M,

which satisfy the conditions of Proposition 3.5.4. Thus, liMk,,, PI Pk < MI F(M),
for some distribution function F.

To show that the Pk converge in probability, consider the following. For n > k and
> 0,

PIP, - Pk > EI PIPn > 6 + VlAk = vjdGk(V) (3.77)

where Gk is the distribution Of Pk. Now,

ri E + v
PIP, > 6 + VjPk VI = P max � � 1,

1<j<n-k+l jWjJ2 rk-1 (3.78)

< 1 -F 6 +V
rk-1
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Let V be such that 1 - F(V) < e/2 and N such that

E + V E
1 - F < - for k > N. (3.79)

rk-1 2

For n > k > N,
V

Pf An > E + VIYk vjdGk (V) P f /-in > E + V IYk vjdGk (V) +

00

PfA, > E + VlAk = vjdGk(V) (3-80)

V
< -dGk (V) + dGk (V) < 6-

2

Thus, the Ak satisfy the Cauchy criterion and converge in probability to a random
variable whose distribution function is F [26, pp.226-7].

0 3.5.3 Proof of Theorem 3.3.1

The results of the preceding two subsections combine to form a proof of Theorem 3.3.1,

as follows.

Proof. By Propositions 3.5.3 and 3.5-5,

M M
T T CTP,111(A'�. (P1Y7 .... Pky))jj - (A,. (y))jj 11A.

j=1 i=k+l

M-1 M-1 M

< 4jjA.jjjJAyjjjjsjj'K 2 (,Xsep)�Pn + 11A.11 (3-8 1)T, 1\2 . /(i-2j)
i=k j=1 Y11 i=k YJ

and

M M(A T Ty))jj - (Ae 112
P1 Y, -,Pk _.�(y))jj IIA.CTpi

j=1 i=k+l

M-1 'Z 2 M-1 M \2
2(, Zj -23< 411A Y 11 11.3 11 2K \.'�P) (Am E E 2j) + E E . (3-82)

1\2 . 7(i- \Yj
i=k j=1 Y,3 i=k j=L'Z'i

< �j/U2By Assumptions 4 and 2, \,,j/Ayj and �j Avj) < for a constant

Moreover, /\,,,i/Ayj < 1, in general. Thus

M M
T T 112

(pi Y, - -- , P y))jj - (Ae .(y))jj IIA.CTpi
j=1 i=k+l

411A.1111A Y11118112 K2(/\.e,)(/Zm6 I 11A.11 M-1< + T
T/_4 92 (i k+4)� (3-83)

012(l
i=k i=k
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and

M M
T T(pi Y, P y))jj - (y))jj IICA.Cpill'

j=1 i=k+l

411AY11118112K2(),.,�P)�Mm m-1 I M-I L 4 I L -I I< 71-2 + Y (i - k + 4) min 92 L4 I
i=k i=k

(3.84)

The increasing pm converge in probability to a.random variable A by Proposition 3.5.6.
Equations (3.30) and (3.31) follow immediately from (3-83) and (3-84).

The analysis presented here predicts actual convergence behaviors, as illustrated
next with the numerical examples in Section 3.6.

0 3.6 Numerical Examples

The following numerical examples illustrate the actual performance of the algorithm
in relation to the theory of the previous sections. There are four different examples.
Each one illustrates a different aspect of the theory. The estimation problems in each
of the examples is different. The breadth of estimation problems provides a glimpse at
the range of applicability of the Krylov subspace estimation algorithm. For each of the
following problems, full orthogonalization was used, except as noted.

The results in Figure 3.1 illustrate the relationship between the actual performance
of the algorithm and that predicted by Theorem 3.3-1. The estimation problem consists
of estimating 1024 samples of a stationary process, x, on a I-D torus from 512 consec-
utive -point measurements, y. The power spectral density (PSD) of x has a geometric
decay, S.,x(w) oc (0.3)1'1 and is normalized so that the variance of x is one. Depicted in
Figure 3.1 are the fractions of error reduction obtained for estimating x,

(Axk(Y) - Ax(y))ij
(3-85)

(Ax - A, (y)) ii

and z,

(A,;,,k (Y) - A,.,� (y)) ii
(3-86)

(A.:, - Az (y))ij

where A,, a 21 for U2 I and U2 = 10-8. Note that the numerators in (3.85)

and (3.86) are the terms bounded in Theorem 3.3.1 and that the denominators are

independent of the iteration' index, k. The reference values A,,,,(y) and A,.,(y) are

computed using direct methods in MATLAB. The numerical errors in these direct
2methods tend to dominate after several iterations especially for a 10-8. Note that

the eigenvalues of Ax and A_. satisfy A.,,i > Azi > /\x,,-m+i as a consequence of Cauchy's
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Performance Comparison for 1-1) Processes with Geometric PSD
lo'

2
W
15
C -10.2 i 0

X, a1=1
U_ Z, 01=1

2
X, a =10
Z, (Y2= 1 0-8

10-15

0 5 10 15 20 25 30 35
Iteration

Figure 3.1. The four curves plotted here show the convergence behaviors when computing error
variances for estimating two different quantities in two slightly different estimation problems. One of
the quantities to be estimated is a I-D process, x, and the other is a subsampled version of the same
process, z. Both quantities are estimated from measurements consisting of z embedded in additive
noise. The only difference between the two estimation problems is the variance of the noise, 0,2, which
is 1 in one case and 10-3 in the other. The curves indicate that convergence is slower for lower 0,2 and

for estimating x, as predicted by Theorem 3.3.1.

interlace theorem [40, Theorem 4.3.15] and the rows of the measurement matrix C being
orthogonal. Since the PSD (collection of eigenvalues) display a two-sided geometric
decay, Az and, in turn, A = A, + u 2_T, may have eigenvalue multiplicities of order two.Y
However, the plots show a geometric rate of convergence consistent with a geometrical
decay of Ay despite the fact that the block form of the algorithm is not used. A
block'form is not necessary because roundoff error will introduce components of the
eigenvectors of A into the Krylov subspaces that are not present in the starting vectorY
[65, pp. 228]. Note also that, as suggested by Theorem 3.3.1, the rate of convergence
is faster for the error variances at measurement locations, i.e. for estimates of z, than
away from measurement locations, i.e. for estimates of all of x. The theorem also

2suggests that convergence is slower for smaller u , which is evident in Figure 3.1. Thus,
Theorem 3.3.1 accurately predicts convergence behavior.

Figure 3.2 depicts how the two stopping criteria relate to the difference between the
computed approximation to the error covariance for estimating x at iteration k and the
optimal error covariance, A,,,,,k (Y) - A,� (y). The process to be estimated is the same one
previously described. The measurement locations are chosen randomly. At any given
location, the chance that there is a measurement is 50% and is independent of there
being a measurement at any other sample point. The measurement noise covariance
matrix is a diagonal matrix whose elements vary according to the following triangle
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topping Criteria for 1-D Processes with Geometric PSID
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Figure 3.2. The results plotted here indicate how the computable quantities making up the two
stopping criteria of Section 3.2 relate to the difference between the computed approximation'to the
error covariance for estimating x at iteration k and the optimal error covariance, A, zr', k (y) -A, � (y). The
solid line is the maximal difference between the computed and optimal error ��riances for estimating
x, maxi (A,,,,k (Y) - Azr, (y))ii. Each of the other two curves plot the quantities making up the two
stopping criteria. The dashed line is the maximal error variance for estimating z, maxi (A, -, k (z)) ji, and

the dotted line is the maximum change made to the error variances at the current iteration, rk,0, as
defined in (3-19), for Kwin 0-

function:

9 + i for 1 < i < Lm/2]
Lm/2j - 1

(3.87)M-T + I for Lm/2] + I < i < m.m- Lm/2j - 1

A whitening preconditioner, A-', is used. The figure contains plots of the maxi-n
mal difference between the computed and optimal error variances for estimating x,

maxi(Aexk(y) - A,�x (y))ii. There are also plots of the two quantities making up each

of the two stopping criteria. One is of the maximal error variance for estimating z,

maxi(Ae,,k(z))jj, and the other is of the maximum change made to the error variances

at the current iteration, rko -as defined in (3-19). Note that A,.,,k(z) is a bound on

Aexk(y) - A,.(y), but that the rates of convergence of these two quantities are dif-

ferent. The Tko, on the other hand, are more erratic but decrease at a rate close to

Aexk(y) - A,,.(y). Stopping when -rk,, ' falls below a threshold has been the most
Mip

successful criterion because the give a good indication of the rate of decrease'rkEmin
of maxi(Aexk(Y) - Ax(y))ii. However, stopping when maxj(Az'k(�))jj falls below a

threshold is a preferable criterion when the noise intensity is small primarily because
maxi (Ae - Ae

,zk(z))ii provides a tight bound on maxi(A,.,;,k(Y) . (y))ii.

A comparison among various techniques to accelerate convergence is provided in

Figure 3.3. The estimation problem consists of estimating a stationary random field, x,

on a 32 x 32 toroidal grid from point measurements, y, of equal quality taken over one
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Acceleration Techniques for a 2-13 Process with Hyperbolic PSD
10'

KSE
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.2 BoundonGain
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lo-'
0 20 40 60 80 100 120

Subspace Dimension

Figure 3.3. The results plotted here indicate that various acceleration techniques can be used to
achieve nearly o timal performance. The curves depict the fract ion of error reduction for estimating
x for different methods of choosing linear functionals of the data. The 4ure shows the results for the
standard Krylov subspace estimation algorithm (KSE), a block form with a block size of 2 (BKSE),
and a preconditioned block form (PBKSE) also with a block size of 2. For comparison, the figure shows
two additional curves. One (Start Vector) is of the results for Algorithm 3.1.1 modified to start with a
linear combination of the first 60 eigenvectors of A,. The other (Bound on Gain) is of the fraction of
error reduction attained by using the optimal linear functionals of the data.

32 x 16 rectangle. The PSD of x is proportional to 1AIWI + 1)3 and is normalized so that
the variance of x is one. The measurement noise covariance matrix, A, = 4I. The plots
are of the fraction of error reduction attained for estimating x, as defined by (3.85),
versus the Krylov subspace dimensions. Both a right-preconditioned and block form are
considered. The preconditioner has the form CA CT, as described in Section 3.4.1. AP
simple block algorithm (BKSE) with a block size of 2 does not do much better than the
standard algorithm (KSE). However, a preconditioned block form (PBKSE) requires
considerably fewer iterations to achieve a given level of accuracy than the standard
algorithm. The error reduction attained by using the optimal linear functionals of the
data; (referred to as "Bound on Gain" in Figure 3.3) is also plotted in Figure 3.3. The
performance of PBKSE is close to the optimal performance. Figure 3.3 also shows the
results of an experiment to determine whether one can gain much by picking a good
starting vector. A starting vector with components in each of the first 60 eigenvectors
of Ay was used to start a run. The results are plotted in Figure 3.3 and are comparable
to those of BKSE, indicating that one does not gain much by picking a good starting
vector. That the' choice of starting vector should have little impact on the results is a
consequence of Proposition 3.5.6.

Lastly, Figure 3.5 shows how the number of iterations grows with the region size
for the problem of estimating deviations from mean sea surface temperature, x, from
the satellite data, y, in Figure 3.4 [29]. The temperature deviations are estimated on a
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Figure'3.4. These data are satellite measurements of sea surface temperature. Measurements are
taken only along satellite tracks with no obscuring cloud cover.
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Figure 3.5. The number of iterations required for a practical 2-D problem of interest is not very large
and grows no more than linearly with the area of the region of interest.

rectangular grid and are assumed to be stationary with a Gaussian-shaped covariance
is 9 X 104function. The width of the Gaussian is 60 pixels, and the height . The

measurements are very scattered because they only exist along the satellite tracks where

there is no obscuring cloud cover (see Figure 3.4). The measurement noise coVariance,

A, = 4001. Figure 3.5 shows how the number of iterations needed to satisfy k'10-2 <
10-2

for Kwi,, = 8 grows as a re-ion of interest grows. Note that the measurement

density in these regions varies from approximately 10 - 20%. The growth in the number

of iterations is less than linear as the area of the region grows. One expects this

behavior because one should need an increasing number of linear functionals as the

region grows, but the growth should be no more than linear in the area, provided that
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Figure 3.6. The Krylov subspace estimation algorithm generated these error variances on a 1/6-degree
grid.

the process is stationary (as it is in this case). Figure 3.6 shows the error variances
for estimating sea surface temperature given all 42,298 measurements in Figure 3.4. A
selective orthogonalization scheme was used to generate this result (see Appendix B).
Although the number of iterations is growing with problem size, the number of iterations
needed for this moderately large 320,400-dimensional estimation problem is 249. That
only a relatively small number of iterations were used indicates that the algorithm has
found a very low rank, but very good, estimator. Hence, the algorithm described here
can. be used to solve high-dimensional, practical problems with relatively few iterations.

0 3.7 Summary

In this chapter, a statistical interpretation of CG has been used to derive a Krylov
subspace estimation algorithm. The algorithm computes a low-rank approximation to
the linear least-squares error reduction term which can be used to recursively compute
linear least-squares estimates and error variances. An analysis of the convergence prop-
erties explains behaviors of the algorithm. In particular, convergence is more rapid at
measurement locations than away from them when there are scattered point measure-
ments. Furthermore, the analysis indicates that a randomly generated vector is a good,
starting vector. The theory also suggests preconditioning methods for accelerating con-
vergence. Preconditioning has been found to increase the rate of convergence in those
cases where convergence is not already rapid.

The low-rank approximation to the error reduction term is a very useful statistical
object. The computation of estimates and error variances is just one application. An-
other is the simulation of Gaussian random processes. Simulation typically requires the
computation of the square root of the covariance matrix of the process, a potentially
costly procedure. However, the Krylov subspace estimation algorithm can be adapted
to generate a low-rank approximation to the square root of the covariance matrix. Yet
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another application is the fusion of existing estimates with those generated by addi-
tional data. The resulting fusion algorithm can also be used as the engine of a Kalman
filtering routine, thereby 'allowing the computation of estimates of quantities evolving
in time. These are the subjects of Chapters 4-6.
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Chapter 4

A Krylov Subspace Method for
Realization

The Krylov subspace algorithm for estimation can also be used for realization. In
the realization problem, as considered here, one is given the covariance A., of an I-
dimensional zero-mean random vector x, which is often referred to, in this chapter, as
the process of interest. Then, one is interested in computing two quantities. The first is
the synthesis of a zero-mean random vector x' whose covariance Ax, matches the given
covariance Ax, either exactly or approximately. The second quantity of interest is a
low-rank approximation to the covariance. That is, one is interested in computing a
reasonably small number of vectors, a,, . a, such that

r
Taia. �z-, Ax. (4.1)

For performing both sets of computations, one would like an algorithm that is as com-
putationally efficient as possible. In this chapter, we demonstrate how one can use a
variant of the Krylov subspace algorithm for estimation to solve both aspects of the re-
alization problem efficiently. This variant is a new approach to the realization problem.

0 4.1 Existing Approaches to Realization

There are many existing methods for solving the realization problem. Three such are
summarized here to provide a context in which to understand the proposed algorithm.
The first makes use of eigendecompositions; the second, FFTs; and the third, Lanczos
iterations. In each case, one is trying to realize a zero-mean random variable x with
covariance A,,.

N 4.1.1 Karhunen-Lo6ve Bases

One approach to approximate realization involves solving the following optimization
problem. Consider finding a linear least-squares estimate of x given x such that the

61
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estimator is of rank less than or equal to r. That is, consider finding such that

[11X _ _argmin E q2] (4.2)
j:i=Axj rank(A)<r}

Now,

112]E [jjx - Ax = Tr(Cov((I - A)x)) (4.3)

= Tr((1 - A)Ax(I - A)T) (4.4)

= Tr ((1- - A) UEUT(_r - A)T) (4.5)

where Ax UEUT is the eigendecomposition of Ax (Karhunen-Lo6ve decomposition

of x). Thus, x = UUrTx where the columns of Ur are the ortho.normal eigenvectors

corresponding to the r largest eigenvalues.

The resulting covariance of J� is an optimal rank r approximation to Ax. This

covariance is A,� = UrErUT, where E, is the diagonal matrix with the dominant r

eigenvalues of Ax on the diagonal. Moreover, the product of UrvfE-r with a random

vector that has identity covariance, is a synthesis of a random vector with covariance

A,�. This is one approach to realization.

N 4.1.2 FFT Methods

Although one can, in principle, perform eigendecompositions to create realizations of

arbitrary accuracy, even exact ones, this is not always the best approach because of

the computational effort required to perform eigendecompositions. If there is special

structure in the covariance matrix, one may be able to find methods for computing a

realization that are more computationally efficient than methods based on computing

an eigendecomposition. In particular, one may be able to use FFTs if the process to be

realized consists of samples of a stationary process so that the covariance matrix A., is

Toeplitz.

Using FFTs for realization is similar to using FFTs for &,-vector multiplication,

i.e. convolution. First, one embeds Ax in a circulant embedding matrix C

Ax
C = (4.6)

that need be no larger than 2(1 - 1) x 2(1 - 1). Since C is circulant, it is diagonalized

by the DFT matrix F. That is, one can write

C = F*GF (4.7)

where G is a diagonal matrix. Interpreting the product Cz as the circular convolution

of z with the "impulse response" corresponding to the first row of C, one can think of
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the diagonal elements of G as defining the corresponding frequency response or transfer
function. From (4-6) and (4.7), one then has that

A., SF*GFST (4.8)

where

S = (I 0) (4.9)

selects the first I components of a vector. The factorization in (4-8) amounts to zero-
padding, performing a 2(l - 1) FFT, multiplying by the transfer function G, performing
an inverse FFT, and finally selecting the first I components of the result.

It would appear that one could synthesize a process by simply multiplying SF*V'G-F
by a random vector w that has identity covariance because the resulting product has
covariance

Cov(SF*-\I-GFw) -_ SF*vl'GFF*-\I-GFS = AX) (4.10)

as desired. However, the circulant matrix C, and hence G, may not be positive semi-
definite even if Ax is. So, one may not be able to form square roots of G. For those
processes which admit positive semi-definite embeddings, however, FFT-based methods
are efficient. The following theorem provides sufficient conditions for a Toeplitz covari-
ance matrix to have a positive semi-definite circulant embedding [23, Theorem 2]. The
statement is written in terms of the covariance function K[i] = (Ax)ij.

Theorem 4.1.1. If the values of the covariance function of an I-point random vector,
K[1], K[2],..., K[1], form a sequence that is convex', decreasing, and nonnegative, then
the associated 2(l - 1) x 2(l - 1) circulant matrix is positive semi-definite.

As an example, consider the situation where the vector to be synthesized, x, con-
sists of the increments between regularly spaced samples of fractional Brownian motion
(-fBm) [54] for Hurst parameter H C: (1/2, 1). The increments process is stationary with
covariance function

- 2 j2H (IM + 112H + 1,rn 12H 12H)KIM] - 1 - 21M (4.11)
2

where J is the sampling interval and o- 2 is a constant appearing in the definition of
fBm [1]. One can verify that the covariance of the increments, KIM], defined in (4.11),
is convex, decreasing, and nonnegative, as follows. To verify that KIM] is nonnegative,
note that

a 2j2H i2H 2H) '(IM12H
KIM] 2 ((IM + I - IMI IM _ 112H) (4.12)

'A convex sequence is one such that for any two integers m < n, AK[m] + (1 - A)K[n] > K[i] for

all A E [0, 1] and m < i < n.
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Since 2H > 1, (ITn + 112H IM121) > (IM12H _ IM _ 112H); so, K[m] > 0. To verify that
K[m] is convex, view m as a continuous parameter greater than zero, and note that

dK - a 2j2H 112-ff -1 112H-1 iMi2H -1)� � (2HIm + 2HIm - - 2(2H)drn 2

d2 K - 2j2H (2H(2H _ I) IM + 112H-2 + 2H(2H - 1)1m 11211-2
drn2 2

I)IM12H-2) (4.13)2 (2H) (2H -
O'2j2H

(2H(2H _ 1)IM + 112H-2 + 2H(2H _ 1)IM 112H-2
2
2H(2H - 1)12 1/(2H-2)Tnj2H-2).

Since -1 < 2H - 2 < 0, 21/(2H-2) < 1. This implies that

IM + 112H-2 1/(2H-2)Mj2H-2.
> 12 7 (4.14)

so, d2K/dM2 > 0, and K[m] is convex. That K is decreasing follows from the fact that
K is convex, nonnegative, and asymptotically approaching zero. Thus, FFTs can be
used to synthesize important processes such as fBm increments.

Although not commonly done, one can also consider using FFT methods to form
low-rank approximations to covariance matrices. One method for doing this is to pick
out terms from the expansion in (4.8). That is, one forms a rank min(,r, 1) approximation

r
Ax E (fj ST) Tgj (fj ST) (4.15)

j=1

(fj ST)where gi, > gi, > gi,(,_,) are the ordered elements of the diagonal of G and
are the corresponding Fourier vectors truncated by the selection matrix S. Hence, one
can use FFTs to solve both aspects of the realization problem.

0 4.1.3 Lanczos Algorithms

Yet another approach to realization is to use Lanczos methods for approximately com-
puting functions of matrices [12, 25, 76]. These methods approximate a function f
of a matrix A using Krylov subspace methods, specifically the Lanczos algorithm. As
described in Section 3.1, the Lanczos algorithm is iterative. At step k, the method com-
putes a set of orthonormal vectors qj, . . . , qk that form a basis for the Krylov subspace
of dimension k generated by q, and A. These vectors form a matrix

Qk = (q, ... qk) (4.16)

that tri-diagonalize A, i.e. QT AQk = Tk, where Tk is tri-diagonal. One can perform ank
efficient eigendecomposition of each of the Tk to yield the factorization SkDk ST = Tk-k
Then, the approximation of f (A) at the k-th step of Lanczos is

ST T
f (A) QkSkf (Dk) k Qk (4.17)
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For the realization problem, one is interested in using this method for the square-
root function, f (-) = -v/--. Specifically, the approximate synthesis of a random vector
with covariance Ax at the k-th step is

V/-D-kST T
QkSk kQkW (4.18)

for a random vector w that has identity covarian.e, and the approximation to A,, is

STQT
QkSkDk k k (4.19)

Although this approach to computing matrix approximations and square roots has not
2been widely used for realization , it has been used in other contexts [251. The algorithm

proposed in this chapter is a variation on the standard Lanczos approach that replaces
eigendecompositions of Tk with Cholesky factorizations. This makes the algorithm more
recursive in nature and more akin to conjugate gradient than Lanczos.

0 4.2 Krylov Subspace Realization

This section presents a new approach to realization that makes use of the Krylov sub-
space estimation algorithm. Approximate realization is related to estimation using
linear functionals in the following sense. Recall that the problem of interest is realizing
a zero-mean random vector with the same second-order statistics as a zero-mean ran-
dom vector x which has covariance Ax. Let TTx be linear functionals of x thatPI X, Pk

T Twhiten x, i.e. Cov(pTxpTx) = Jij. The best linear estimate of x given p, xi x is
3 k

k
J Pt

(X) (bi) ( Tx), (4.20)

where bi = Axpi are the filtered back-projected linear functionals (see Section 3-1).
Since the pTx are white, one can replace them with any other sequence of white random
variables WI, W2; Wk to obtain another random vector with the same second-order
statistics,

k

xi biwi. (4.21)

The covariance of x' isk

k

A,, bi bT (4.22)
k

2In fact, there appear to be no instances in the literature of the Lanczos method for function
approximation being used for realization.
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The vector x' is an approximate realization of x, and Ax, is an approximation to Ax.k k

We compute approximate realizations by picking linear functionals from Krylov sub-
spaces generated by the covariance of interest, Ax. This has the interpretation of using
the Krylov subspace estimation algorithm, described in Chapter 3, to estimate x from
x. The advantages of using Krylov subspaces are the same as for Krylov subspace
estimation. In particular, the realization algorithm will find a good low-rank approx-
imation to Ax if one exists since the Krylov subspaces generated by Ax are capturing
more and more of the dominant modes of Ax as the dimension of the Krylov subspaces
increases.

As for the Krylov subspace estimation algorithm, one of the advantage's of the
realization algorithm is that one can formulate a natural stopping criterion. The main
estimation algorithm stopping criterion, discussed in Section 3.2.1, makes use of the
quantity, -rk,, This quantity measures relative changes to the error reduction in

min'

the last few iterations. When -rk,, , falls below a threshold, the estimation algorithm
min

stops. However, -rk,, min is not necessarily the quantity to check for determining when to
stop the realization algorithm. For realization, rkemin would examine changes made to
Ax/ in previous iterations relative to the difference. in covariances A,,k = Ax - Ax/ . Yet,

k k
A,1k tends to zero as k increases. Thus, -rk,, may become large. Instead of -rk,,min min'
one can use

E(A,,k)ii (4.23)

as a basis for a stopping criterion. This measures the total difference in the variances

between x and x' . It is a useful measure of the quality of approximation of x' andk k
is easy to update at each iteration. Thus, one can use this Krylov subspace method

to compute an approximate realization of x and a low-rank approximation to A and

easily verify the quality of the approximation after each iteration. Summarizing, one

has the following:

Algorithm' 4.2.1. A Krylov Subspace Method for Realization.

1. Initialize x' = 0, (Ark)ii = (Ax)ii for i = 1,... , 1.0

2. Generate a zero mean Gaussian random vector s with identity covariance to

initialize the Krylov subspace.

3. Perform the following operations for each step k until 1/1 (A,k)ii falls below

a threshold X:

(a) Compute the conjugate search direction Pk and filtered backprojection bk

AxPk using a reorthogonalized Lanczos iteration, (3.10)-(3.13), as for the

Krylov subspace estimation algorithm of Section 3.1 with C I and An 0-
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(b) Generate an independent random number Wk and update

=X 1+bkWk (4.24)
),)2

(Ark)ii = (Ark-I)ii - ((bk (4.25)

Since the realization algorithm is an extension of the estimation algorithm, one
can consider applying the techniques in Section 3.4 to accelerate convergence of the
estimation algorithm. In particular, one can consider using preconditioning to separate
the eigenvalues, which will improve the theoretical error bounds in Theorem 3.3.1. The
preconditioning strategies in Section 3.4.1 can also be used for realization. In particular,
one can operate on the spectrum of the covariance matrix A, if one has approximations
to its eigenvectors. An example of how one can do this is presented later in Section 4.4.3

0 4.3 Computational Complexity

This sectio n examines the computational complexity of the four approaches to real-
ization discussed in this chapter. The focus is on the Krylov subspace realization
algorithm and the standard Lanczos iteration; however, the complexity of approaches
using Karhunen-Lo6ve bases and FFT methods are also examined.

0 4.3.1 Krylov Subspace Realization vs. Standard Lanczos

Note that the Krylov subspace realization algorithm and the standard Lanczos iteration
yield results that would be almost the same in exact arithmetic. Specifically, the co-
variance matrix approximation generated at step k by the Krylov subspace realization
algorithm is

QT
A.QkT�_' k A. (4.26)

where Qk and Tk are as in Section 4.1.3. The standard Lanczos algorithm for computing
matrix square roots, on the other hand, generates the following approximation at step
k:

T
QkTkQk (4.27)

These approximations are very similar.
To see this, consider running the Lanczos tri-diagonalization to completion. For any

k, then, one can write

Tk ET Q T
A. (Qk Qk') E T' (Qk k (4.28)

k
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where the columns of Q 1 are the Lanczos vectors generated after step k, T I is tri-k k
diagonal, and E is of the form

0 ... 0
0 ... 0 0

E (4.29)

0 0

Thus,

)T (Q, )T
A.Q, T-1 QT A. QT + QEQT + q�E T Q, + Q, ET�- 1 E T

k k k QkTk k k k k k k

(4.30)

So, the difference between the Krylov subspace realization algorithm approximation in
(4.26) and the Lanczos iteration approximation in (4.27) is at most rank 3 since E is
rank one' '

The primary advantage of the Krylov subspace realization algorithm is that it al-
lows for one to recursively update the synthesis and approximation error at each step
instead of having to recompute these quantities. The recursive structure also results in
a modest computational gain. The amount of reduction can be quantified, as follows, by
counting the number of multiplications required to perform most of the computation.
Suppose each A,;-vector multiply requires p,,l multiplications and that a preconditioner
is used that requires ppl multiplications for each preconditioning matrix-vector mul-
tiply. Suppose further that the algorithm is run for k iterations. Then, the Krylov
subspace realization algorithm performs (M., + pp)lk scalar multiplies to compute the
matrix-vector products and Ik 2 scalar multiplies to perform reorthogonalization. The
standard Lanczos method for computing a square root performs both of these com-
putations and must also recompute the variance differences at every iteration. This
requires an additional Ik 2/2 multiplications. The totals are provided in Table 4.1, and
the parameters are summarized in Table 4.2. Thus, the Krylov subspace realization

2algorithm achieves a modest computational gain of Ik /2 over the standard Lanczos
algorithm.

Scalar Multiplies
Krylov Subspace Realization (M. + pp)lk + Ik 2

Standard Lanczos Matrix Square Root , (pX + PP)lk + (3/2)1

Table 4. 1. Scalar Multiplies Required for Realization

0 4.3.2 Karhunen Lobve Bases

Any implementation of a realization algorithm using Karhunen-Lo6ve bases, as dis-
cussed in Section 4.1.1, requires a routine for computing partial eigendecompositions.
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Parameter Description

Px per sample work for Ax-vector multiplies

PP per sample work for preconditioner multiplies

I random vector dimension

k number of iterations

Table 4.2. Parameters in the Realization Algorithm Computational Complexity Analysis

One of the most popular iterative routines is the Lanczos algorithm [33, Chapter 9].

This method, at step k, will have computed a basis for a Krylov subspace of dimen-

sion k generated by the matrix of interest Ax, and some starting vector S. Then, one

computes approximate eigenvectors by selecting appropriate vectors from this Krylov

subspace.

Note that such an implementation of a realization algorithm using Karhunen-Lo6ve

bases will -always generate an approximation with worse mean-squared error for the

same computational effort than the Lanczos algorithms for function approximation

presented in Section 4.1.3. This follows from the fact that at iteration k, the function

approximation approach will project the covariance A., onto the entire Krylov subspace

IC(Ax7s7k) whereas the Karhunen-Lo6ve approach will project Ax onto the subspace

of K(Axsk) spanned by the approximate eigenvectors. Thus, the Karhunen-Lo6ve

approach to realization is not particularly practical and is considered in this chapter

only because it is optimal.

E 4.3.3 FFT Methods

Unlike approaches for realization using Karhunen Lo6ve bases, FFT methods may be

computationally competitive with the Krylov subspace realization algorithm. The com-

putation of an FFT method is dominated by the FFT. This can be implemented by an

algorithm that is O(Ilogl) where I is the dimension of the random vector to be real-

ized. Whether this is competitive or not with the Krylov subspace realization algorithm

depends on the problem.

Specifically, consider two different asymptotic scenarios. In each case, suppose one

is realizing samples of a continuous random process over a compact subset of Rd for

some dimension d.

In the first case, let the size of the subset grow but keep the sampling density fixed.

Then, as I increases, consider the behavior of the Krylov subspace realization algorithm.

The number of linear functionals of the process, k, needed to meet a desired level of

accuracy should grow linearly with 1. This is a consequence of the need to use more

linear functionals of the process to capture its behavior over the larger region. Since

the Krylov subspace realization algorithm has complexity 0(10), and the FFT method,

0 (I log 1), the FFT method will become more competitive as the region size grows.

Now consider the case where the region size is fixed, but the sampling density
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increases. Then, as I increases, the number k of linear functionals will remain constant.
Instead, one needs different linear functionals that capture the behavior on the refined
grid. The Krylov subspace realization algorithm will compute the appropriate linear
functionals for the grid size. In this case, the Krylov subspace realization algorithm will
be less computationally intensive than the FFT method for large 1.

The problem sizes at which one method becomes less intensive than the other depend
on the specific problem and implementations.

0 4.4 Numerical Examples

The performance of the Krylov subspace realization algorithm is illustrated in this sec-
tion with three examples. For each example, three sets of results are provided. First,
a high quality sample path generated by the Krylov su'bspace realization algorithm is
plotted along with a sample path whose statistics exactly match the given covariance.
Second, the difference between the true variances and those of the Krylov subspace real-
ization are plotted. Since the difference between the covariances is positive semi-definite,
the variances provide a good measure of the quality of the approximation. Lastly, the
fraction of total mean-squared error reduction of the Krylov subspace realization is plot-
ted versus approximation rank. For comparison, the error reduction obtained by the
optimal Karhunen-Lo6ve approach outlined in Section 4.1.1 is also plotted. All results
were generated using MATLAB on a Sun workstation with a floating point precision of
approximately 2 x 10-16.

E 4.4.1 Fractional Brownian Motion

The first example consists of realizing 1024 samples of a fractional Brownian motion
(fBm) with a Hurst parameter H 3/4. The covariance of fBm is given by

K.. (s, t) (It 12H + IS12H _ it _ Si2H) (4-31)
2

Recall from Section 4.1.2 that fBm has stationary increments, and for H = 3/4, the
covariance matrix of the increments process can be embedded in a positive semi-definite
circulant matrix which is not more than twice as large as the fBm increments covariance.
Thus, one can synthesize this fBm exactly with 2048-point FFTs and also generate good
finite-rank approximations to the covariance matrix. As a result, there is not necessarily
a need to use a Krylov subspace method to realize this Mm. However, the problem of
realizing Mm provides a good example of how the Krylov subspace realization algorithm
could be used to realize a non-stationary process. The example also illustrates the
algorithm's power in obtaining near-optimal low-rank covariance approximations.

Figure 4.1 presents the results. Part (a) of the figure shows sample paths gener-
ated using the exact FFT method and 50 iterations of the Krylov subspace method.
Note that the one generated with the Krylov subspace method looks similar to the
one generated with FFTs. One would expect this since the differences between the
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Figure 4.1. These results are for realizing 1024 samples of a fBm with Hurst parameter H 3/4.

Part (a) shows sample paths generated with FFTs (an exact method) and with 50 iterations of the
Krylov subspace realization (KSR) algorithm. The difference between the variances are plotted in paxt
(b). Note that the true fBm variances are given by t3/2 as t ranges from zero to one. The fraction of

error reduction obtained by each method as a function of approximation rank is plotted in paxt (C).
The optimal (KL) results are plotted for comparison.

exact and approximate variances are small, as indicated in part (b). There are'two
other interesting features of the variance differences. One is that, they are uniformly
small. The other is that they consist mostly of high frequency oscillations indicating
that higher frequency modes (and, hence, the least important ones) are the ones left
out of the approximation. Again, this is expected since, as indicated in part (c), the
Krylov subspace approach is picking linear functionals that are almost as good as pick-
ing the optimal ones, namely the'eigenvectors. Also, note that the Krylov subspace
approach does much better than the FFT-based approach outlined in Section 4.1.2 for
approximating the covariance matrix at any specified rank.
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0 4.4.2 Windowed Cosine Covariance

Eigenvalues of the Windowed Cosine Covariance Circulant Embedding
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Figure 4.2. The plot shows the eigenvalues of the 2048-point circulant embedding for the covariance
matrix of 1024 samples of a process with a windowed cosine covariance given by (4.32). There are both
positive and negative eigenvalues. The curve plots the magnitudes. Those plotted with a solid line are
negative- those, with a dashed line, positive.

For the second example, the random vector to be realized consists of 1024 samples
in the unit interval of a stationary process whose covariance function, K,,,,(-F), is a
Gaussian-windowed cosine:

,2

K�, , (-r) = e - 2 cos(27r-r). (4-32)

This process is interesting because the 2048-point circulant embedding matrix has a
substantial number of negative eigenvalues, as indicated in Figure 4.2. Thus, one can
not use this embedding and FFTs to generate realizations.

Results using the Krylov subspace realization algorithm are plotted in Figure 4.3.
Sample paths are plotted in part (a). The exact sample path is generated by forming
a square root of the covariance matrix. The approximate synthesis is generated usiwyl
only 14 iterations of the Krylov subspace realization algorithm. At this point, both
syntheses have similar structure. This is expected because the differences between the
approximate and exact realization variances are small, as indicated in part (b) of the
figure. Not many iterations are needed because the eigenvalues of the covariance matrix
are decreasing rapidly, and the Krylov subspace approach is near optimal, as indicated
in part (c) of the figure.

N 4.4.3 Two-Dimensional Spherical Covariance

Lastly, consider realizing a two-dimensional isotropic random field with radial covariance

'I-ri + 'I-rl3 0 < ITI < 1
K.. 2 2 (4-33)

0 otherwise.
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Figure 4.3. These results are for realizing 1024 samples of a process with a windowed cosine covariance
given by (4.32). Part (a) shows sample paths generated with a matrix square root computation (an exact
method) and with 14 iterations of the Krylov subspace realization (KSR) algorithm. The difference
between the variances are plotted in part (b). The true variance of the stationary process is 1. The
fraction. of error reduction obtained by each method as a function of approximation rank is plotted in
part (c). The optimal (KL) results are plotted for comparison.

This covariance function is known as the spherical covariance function in the geostatis-
tical community [23,44].. Partly due to its potential practical application, and partly,
its rich structure, the spherical covariance has been used by several to characterize
realization algorithms [23, 30, 77]. One can consider using two-dimensional FFTs to
realize samples of a field with spherical covariance. However, if the samples are tak-
en from a square grid that does not include the unit square, the minimal circulant
embedding is not positive semi-definite. In order to demonstrate the performance of
the Krylov subspace realization algorithm on a two-dimensional problem for which
FFT-based methods do not apply, this section considers realizations on a 33 x 33 grid
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Eigenvalues of the Two-Dimensional Spherical Covariance Embedding
104

10'

lo'

1 0-2 .............................

0 1000 2000 3000 4000 5000

Figure 4.4. The plot shows the eigenvalues of the circulant embedding for the covariance matrix of
samples on a 33 x 33 grid of a process with a two-dimensional spherical covariance given by (4.33).
There are both positive and negative eigenvalues. The curve plots the magnitudes. Those plotted with
a solid line are negative; those, with a dashed line, positive.

covering [0, 32/45] x [0, 32/45]. The 64 x 64 two-dimensional circulant embedding of
the covariance matrix of these samples has several negative eigenvalues as illustrated in
Figure 4.4.

A preconditioned Krylov subspace realization algorithm is applied to this realization
problem. Recall from Sections 4.2 and 3.4 that one strategy for preconditioning is to
use an approximation of the eigenvectors to form a matrix that separates out the eigen-
values of A,,. Since A., is stationary, the elements of the Fourier basis are approximate
eigenvectors. Thus, one can consider using a preconditioner of the form

SF'GpFS' (4-34)

where S* zero pads, F is the two-dimensional DFT operator for the zero-padded image,
GP is a diagonal matrix, F* is the inverse two-dimensional DFT, and S selects the
portion of the result of interest. Once again, the diagonal elements of GP can be
interpreted as a frequency response, which we use here to shape the preconditioning.
Specifically, in order to separate out eigenvalues, the diagonal elements of GP are chosen
to be

Gp(f) = 501 f 12(0 A)lf I + 1 (4-35)

where f E [0, 32] x [0, 32] is a two-dimensional frequency vector. The first term of (4.35)
tends to separate out mid-frequency eigenvalues, in the covariance of the process to be
realized. This is done because the high-frequency eigenvalues tend to be small, and
the low-frequency modes are difficult to separate out with a FFT-based precondition-
er because of edge effects. The second term of (4.35) introduces a shift so that the
preconditioner doesn't have a null space.
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Figure 4.5. These results are for realizing samples on a 33 x 33 grid of a process with a two-dimensional
spherical covariance given by (4.33). Part (a) shows a sample field generated with 14 iterations of
a preconditioned Krylov subspace realization (KSR) algorithm, and part (b) shows a sample field
generated with a matrix square root computation (an exact method). The difference between the
variance 's are imaged in part (c). The true variance of the stationary process is 1. The fractions of error
reduction obtained by both the preconditioned (PKSR) and ifn-preconditioned (KSR) Krylov subspace
realization algorithm are plotted in part (d) as a function of rank. The optimal (KL) results are plotted
for comparison.

Exact and approximate syntheses are pictured in parts (a) and (b) of Figure 4.5. The
exact synthesis is generated by computing a matrix square-root as for the windowed-
cosine covariance example. The approximate synthesis in part (a) is generated with 53
iterations of the preconditioned Krylov subspace realization algorithm. Note that the
approximate realization is much smoother than the exact one. For moderate quality
realizations, the Krylov subspace method tends to compute a very smooth one. This
may or may not be desirable for certain applications. That is, there are applications for
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which one would prefer to have a rough realization with a high mean -squared error to
one that has low mean-squared error and is smooth. However, for many applications,
the ability of the Krylov subspace algorithm to pick a close to optimal mean-squared-
error and, hence, smooth realization is desirable. Note that the differences in variances,
plotted in part (c) are, for the most part, uniformly low. They ripple in the interior,
indicating high-frequency terms have not been accounted for in the realization. The
variance differences are also high at the edges and corners, which are apparently difficult
to realize with finite-rank approximations.

Part (d) of Figure 4.5 shows how the preconditioned and un-preconditioned Krylov
subspace realization algorithms compare to the optimal (KL) approach to low-rank
realization. Note that the un-preconditioned algorithm is close to optimal but not as
close as for the other examples. The preconditioned algorithm does better as the number
of linear functionals used increases. This is because the preconditioner is primarily
acting to separate out mid-frequency modes. The preconditioned and un-preconditioned
algorithms are both far from optimal for ranks less than 20. The preconditioner doesn't
help in this region because the modes that need to be captured are strongly influenced
by edge effects, which the FFT-based preconditioner doesn't take into account. One
can consider modifying the preconditioner to take the edge effects into account, but
this hasn't been done here since it lies outside the scope of the thesis.

0 4.5 Methodological Comparisons

This chapter has presented four methods for obtaining low-rank realizations. The ap-
proach using Karhunen-Lo6ve bases is optimal but not competitive with other methods
in terms of computational complexity. The FFT-based methods tend to be the most
efficient for synthesis. However, their range of applicability is limited since not every
covariance matrix has a minimal circulant embedding that is positive semi-definite, as
demonstrated by the examples in Sections 4.4.2 and 4.4-3. Moreover, the low-rank
realizations generated by the FFT-based methods may not be as good as those gener-
ated by KL or Krylov subspace methods, as illustrated in Figure 4.1. Our proposed
Krylov subspace realization algorithm can efficiently synthesize a process and compute
low-rank approximations to covariance matrices provided that covariance matrix-vector
multiplies can be efficiently implemented. The algorithm provides certain advantages
over existing Lanczos methods for computing function of matrices. In particular, the
Krylov subspace realization algorithm recursively computes the synthesis and the dif-
ference between the variances of the approximation and exact realization. The variance
differences can be used as part of a stopping criterion. These differences would have to
be recomputed at every step by the existing Lanczos methods for computing functions
of matrices.



Chapter 5

A Krylov-Subspace Method for
Space-Time Estimation Problems

This chapter addresses the computational challenge of estimating physical phenomena
varying in space and time from remotely sensed data. The specific example of such
a problem. considered in this chapter is that of estimating sea surface anomaly, the
deviation of sea surface height from a mean, from data gathered by the TOPEX/
POSEIDON (T/P) altimeter. Although this specific example motivates much of the
work in this chapter, the techniques we propose are widely applicable to large-scale,
linear data assimilation problems.

The dynamics for the general class of problems under consideration can be written
in the standard state-space form

x(t + 1) = A(t)x(t) + w(t) (5-1)

where x(O) is zero mean with covariance Ax and w(t) is zero mean with covariance
Aw(t). Typically, x(t) is a vector of values of a physical quantity (such as sea surface
anomaly) sampled spatially. The dynamics may incorporate a variety of mixing and
transport terms. For example, a damped heat equation driven by noise w,

Xt = _V2X _ aX + W, (5.2)

when sampled, will lead to a dynamics matrix A(t) that is a spatial discretization of
_V2 + (1 - a). Although not always necessary, we generally assume that the dynamics
matrix in (5.1) is such that jjA(t)jj < 1, which ensures that the state of the unforced
system does not grow without bound. This is often the case for models of physical
phenomena. We also assume that the process noise w(t) is uncorrelated in time but
is spatially smooth. By spatially smooth, we mean that the process does not have a
significant amount of white noise in it. This ensures that the smallest eigenvalues of
A,,, (t) are much less than its largest eigenvalue (i.e. Aw (t) has a hig-h condition number).
This assumption is critical for our proposed techniques to work. However, it is not very
restrictive since the physical process being modeled is often smooth; so, the process
noise must also be smooth.

77
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The measurements we consider are linear with additive noise and so have the form

Y(t) = C(t)x(t) + n(t) (5-3)

where C(t) is the measurement matrix and n(t) is uncorrelated with x(t) and has zero
mean and covariance A,(t). For the T/P altimetric data, C(t) consists of rows of
the identity matrix because the data consist of point measurements taken only along
satellite tracks. In general, C(t) could take on a variety of structures. As for the
process noise, we assume that n(t) is temporally uncorrelated. Unlike the process noise,
however, we do assume that n(t) has a spatially white noise component in addition to
any spatially correlated components. This ensures that the eigenvalues of A,(t) are
bounded away from zero. This is not a very restrictive assumption since one rarely has
almost perfect observations along a particular direction in measurement space. Thus,
the class of problems we consider is very general.

Given dynamic and measurement models, we would like to produce linear least-
squares estimates of x(t) at each point in time given the data. The computational
difficulties are two-fold. First, the problems are typically large. The state dimension
is large because the state consists of samples of a process varying over space. State
dimensions of 103 - 105 and higher are common. Moreover, the measurement vectors
are also typically high-dimensional for satellite remote sensing problems. Dimensions of
10-100% of the state dimension are common. The size of the problems prevents one from
using standard techniques such as straightforward Kalman filter implementations [3,
Section 3-3] since these require multiplication, inversion, and storage of matrices of the
size of the state and measurement vector dimensions. Second, there is often a certain
degree of irregularity in the estimation problem that prevents one from using Fourier
methods [77, Section 2.2.3]. Specifically, the point measurements taken by satellite
are often sparse and irregularly spaced. Since standard approaches to computing the
desire d estimates aren't appropriate because of the high measurement dimension, one
must make use of efficient techniques that can exploit the structure' of the problem.

We propose a method for solving the space-time estimation problems that incorpo-
rates the Krylov subspace algorithm for solving static estimation problems from Chap-
ter 3. Recall that the Krylov subspace estimation algorithm com utes both estimates
and a representation of the error covariance matrix. The error covariance information is
essential for space-time problems because it allows one to merge current state estimates
with future data in an optimal manner.

Others have explored the use of Krylov subspace methods for solving Kalman fil-
tering subproblems. In particular, Cohn, Todling, and Sivakurnaran describe some
approaches for using Lanczos algorithms, Krylov subspace methods for computing par-
tial eigendecompositions, to compute reduced rank representations of the various error
covariance and transition matrices [16,74,75]. These representations are used to perform
some of the Kalman filte ring computations more efficiently. Specifically, the prediction
step of the Kalman filter, as described in the next section, is accelerated [16, pp. 64-66].
In contrast, our method focuses on using Krylov subspaces to perform all of the major
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computations in Kalman filtering. In particular, we use an algorithm similar to Lanczos
for computing approximations to the prediction error covariance, and we use our Krylov
subspace estimation algorithm, which is similar to conjugate gradient, for computing
both updated estimates and error covariances. In both cases, the algorithms we employ
are specialized to the estimation context and provide special advantages over Lanczos
and conjugate gradient. In particular, the ability to simultaneously compute updated
estimates and error covariances using a variant of conjugate gradient is new.

Another notable approach to solvinu large dynamical estimation problems is the
work of Jaimoukha and Kassenally on using Krylov subspaces to solve large algebraic
Riccati. equations [42]. An algebraic Riccati equation is a nonlinear matrix equation
whose solution is the error covariance matrix for a steady-state space-time estimation
problem whose parameters do not vary in time. Jaimoukha and Kassenally consider
solving large problems by projecting both the equation and the solution onto rela-
tively low-dimensional Krylov subspaces. The methods proposed in this chapter are
more widely applicable sinc e they can be used to compute error covariance matrices
for space-time estimation problems whose parameters are varying in time. Another
difference between the work in this chapter and that of Jaimoukha and Kassenally is
that the matrices used t� generate the Krylov subspaces have different structure. In

1/2
particular, they make use of the block Krylov subspaceOC(A, A "' ,k) (see Section 3.4.2
for an introduction to block Krylov subspaces), which can be considered reachability
Gramians for the system (5.1). Note that these subspaces do not depend on the form
of the measurements. In contrast, the Krylov subspaces used in this chapter do depend
on the measurements, as one would expect would be necessary to compute accurate
approximations for various types of measurements.

The details of how we propose to use Krylov subspace methods for solving space-
time estimation problems are presented in two parts, in Sections 5.1 and 5.3. Some
numerical stability issues are discussed in Section 5.2. The computational complexity
is analyzed in Section 5.4. Finally, the performance of the algorithm is characterized in
Section 5.5.

0 5.1 Krylov Subspace Kalman Filtering

The starting point for the derivation of our algorithm for solving the space-time esti-
mation problem outlined in the introduction is the standard discrete-time Kalman fil-
ter [43,47]. Recall that the Kalman filter recursively computes a sequence of estimates
of x(t) given data up to time t, :�(tlt), termed updated estimates; another sequence of
estimates of x(t) but given data up to time t � 1, _-�(tlt - 1), termed predicted estimates;
and the associated error covariances A,(tlt) and A,(tit - 1). The recursion is a two-step
procedure, involving an update and prediction step at each point in time. The update
is typically written in terms of the innovation

VW Y(t) - C(t).-*lt - 1), (5.4)
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which is the residual in the predicted measurement given data up to time t - 1. The
covariance of the innovation,

A,(t) = C(t)A,(tit - I)CT(t) + A,,(t). (5-5)

Each update estimates the error in the predicted estimate from the innovation and adds
the correction:

gt1t) =.gt1t 1) + A,(tlt _ 1)CT(t)A-1 (t)v(t) (5-6)

1) CTA,(tlt) = A,(tlt - 1) - A,(tjt - (t)A-'-(t)C(t)A,(tlt - 1). (5.7)

Each prediction propagates the updated estimate one time step:

J.�(t + lit) = A(t),-�(tjt) (5-8)

A,(t + lit) = A(t)A,(tlt)A T (t) + A,, (t). (5-9)

These recursions are initialized with :�(01 - 1) := 0, the the prior mean on x(O), and
A,(01 - 1) = Ax, a prior covariance on x(O) that needs to be specified. We will perform
each of the steps using the Krylov subspace methods outlined in Chapters 3 and 4.

Since the first update is a straightforward static estimation problem, one can make
use of the Krylov subspace estimation algorithm, Algorithm 3.1.1 described in Sec-
tion 3.1. This approach will be efficient provided that Ax-, C(O)-, and A,,,-vector mul-
tiplies are efficient and that not too many iterations are required. After k,(O) itera-
tions, the algorithm has computed an estimate of x(O), -'4.(0)(010); linear functionals
U1 (0), Uk,,, (0) (0) and the filtered backprojected linear functionals r, (0).... , rk,,, (0) (0)

The filtered backprojected linear functionals are then used in the subsequent prediction
step.

In terms of the r, (0).... 7 rku(0) (0), the approximation to the update error covariance
at time 0 is

k,,, (0)

Ax ri(O)rT(0). (5-10)

Propagating this one step ahead yields:

k,,, (0)

A(O)(Ax rj(0)rT(0))A T (0) + A,, (0). (5.11)

Computing this explicitly is not feasible because of the size of the problem, nor is an
explicit representation useful for subsequent update steps. Instead, we use the Krylov
subspace realization algorithm, Algorithm 4.2.1 described in Section 4.2, to generate a
low-rank approximation to the matrix in (5. 1 1). Each iteration of the algorithm requires
multiplying this matrix by a vector. Thus, each iteration is efficient provided that A(O),
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A, and A,, (0)-vector multiplies are efficient and k,,,(0) is reasonably small. The entire
procedure is efficient if, in addition, the number of iterations required, kp(I), is not too
large. If that is the case, then the filtered backprojected linear functionals generated
by the algorithm, f, (1), fk,(,) (1), form a low-rank approximation to the prediction
error covariance:

kp (1)
(110) T

Aekp(l) A (1) (5-12)

This can be used in the subsequent update step.
One can again use the Krylov subspace estimation algorithm to perform the second

update. The prior covariance is the low-rank approximation to the prediction error co-
variance (5.12). Each iteration of the algorithm is efficient provided that C(l)-, A,(I)-,
and Aek,,(1)(IJ0)-vector multiplies are efficient. The last multiplication is efficient pro-
vided the rank of the approximation in (5.12), kp(I), is not too large. The algorithm
will generate an estimate of x(l) given data up to time 1, linear func-
tionals U1 (1), - -- , Uku (1) (1); and a sequence of filtered back projected search directions
ri (1), . . . I rku (1) (1). These search directions�are used in the subsequent prediction step.

In terms of ri (1), . . . 7 rku (1) (1), the approximation to the update error covariance at
time 1 is

kP (1) ku (1)

fi (1) fT (1) ri(I)rT(1). (5-13)

Propagating this one step ahead yields:

kp (1) ku (1)

A( 1) fi (1) fT (1) ri(l)rT(I) A T (1) + A. (1). (5-14)

Again, this is too large and complicated a matrix to compute explicitly. However, one
can use the Krylov subspace realization algorithm again to find a low-rank approxima-
tion to the matrix in (5.14). For each iteration of the algorithm to be efficient, A(I)
and A,, (I)-vector multiplies must be efficient. Moreover, the ranks of the two previ-
ously approximated matrices, kp(l) and ku(1), must not be too large so that vectors
can be efficiently multiplied by the corresponding matrices. The filtered backproject-
ed search directions generated by this algorithm, f, (2),. fkp (2) (2), form a low-rank
approximation to the predicted error covariance:

kp (2)
) TA e, kp (2)(21 1) fi (2 f� (2). (5.15)

One can then continue in this manner to perform updates and predictions. The
algorithm is summarized, as follows.
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Algorithm 5.1.1. Krylov subspace Kalman filter.

1. Initialize:

(a) Update. Compute initial estimate -'4.(0)(010); search directions

U1 (0), - -- , Uku (0) (0); and filtered back-projected search directions
ri(O),... rk,,,(O)(0) using the Krylov subspace estimation routine for prior
covariance A, measurement matrix C(O), and noise covariance An(O).

(b) Predict. Compute -_4 (1)(110) = A(0)-_4,,,(0)(0I0). Generate filtered back-

projected search directions fi(l),... fk,(,)(1) by using the Krylov subspace

realization algorithm to compute a low-rank approximation to the covariance

matrix

k,, (0)

A(O) Ao - ri(O) r7'(0) AT (0) + Aw (0).

2. Repeat at each time step:

(a) Update. Compute updated estimate ,�(tlt); search directions
U I (t), -- - , Uku (t) (t); and filtered back-projected search directions
ri (t),... 7 rku (t) W using the Krylov subspace estimation routine for prior Co-

�p W T, Z r n evar ance measurement matr'x C(t), and noise cova ia c
A, (t).

(b) Predict- Compute -_�kp(t+,) (t + 1 It) = A(t),_4,,(t)(tI* Generate filtered back-
projected search directions fl(t + 1), .. .,fk,(t+l)(t + 1) by using the Krylov
subspace realization algorithm to compute a low-rank approximation to the
covariance matrix

k,(t) ku (t)
A(t) T T(t)fi (t) fT (t) ri (t)rT(t) A + Aw (t).

N 5.2 Error Analysis

The Krylov subspace method for Kalman filtering outlined in the previous section
introduces approximations to exact Kalman filtering steps at various points. One would
like to know how these approximations propagate through the filter. The subsequent
analysis characterizes the error propagation. The theory provides some guarantees of
stability and suggests how good the approximations need to be at every time step to
guarantee good overall performance.
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M 5.2.1 Predicted Error Covariance Perturbations

An important aspect in the application of the Krylov subspace method for Kalman
filtering is the specification of the quality of approximation to..the predicted error co-
variance. This is especially true for the remote sensing problems that motivate the
development of the algorithm. These problems tend to have irregularly spaced, incom-
plete measurements of very good quality. This structure can lead to the propagation of
significant approximation errors if too few iterations of the Krylov subspace method are
used. The errors occur when performing an update after generating an approximation
to the prediction error covariance that is too poor. This behavior is best understood
by analyzing how the linear least-squares estimate and error covariance for a static
estimation problem change as the prior covariance is perturbed.

Specifically, consider the static linear least-squares estimation problem of estimating
x from measurements

Y = Cx + n (5-16)

where x and n are uncorrelated and have zero mean and covariances Ax and A, re-
spectively. Now, suppose that Ax is perturbed additively by a matrix A. One can then
calculate approximations to the perturbed estimate and error covariance by ignoring
terms that are second-order or higher in A. In particular, one can approximate the
inverse of M + A for a given matrix M by

M-1 - M-1AM-1. (5.17)

Now, the perturbed estimate is given by

- A)CT + A)CT + A)CT CT(Ax + (C(Ax + A,,)-'y (Ax ((CAx +A,,)-' -

(CAx CT + A,,)-' CACT (CAx CT + An)-1) Y

Ax CT (CAx CT + A,)-ly +

ACT (CAx CT + A,,)-ly -

+ A)CT CT CACT X
(Ax (CAx + A,,)-'

(CAx CT + A,.)-')y

A xCT (CAx CT + A,)-ly +

ACT (CAx CT + An) _'Y -

Ax CT (CAx CT + A,,)-' CACT X

(CAx CT + A,)-')y.

(5-18)

The first term of the final approximation in (5.18) is the correct estimate, and the other

terms are the resultant perturbation. A sufficient condition to keep the error terms in
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(5.18) small is to require that

11AII < (),mj.(A,)) 2 (5.19)

Likewise, the perturbed error covariance is given by

(A:, + A) - (A, + A) CT (C (A,; + A) CT + An) - 1 C (A,; + A)

,;z:� (A, + A) - (A, + A)CT X

CT CT CACT CT((C&, + An) (CA, + A,,)-' (CA, + A,,,) C (A, + A)
CT CTA., - A,; (CA�, + An) -'CA,; +

'A _ A CT ((CA,, CT + An) (CA,, CT + An) - I C A CT (CA,, CT + An) -') C (A�, + A)

CT CACT CT(A., + A)CT((CA,,CT + A,)-' - (CA, + A,)-' (CA,� + A,)-') CA

Ax CT((CA.,CT + A,,,)-'CACT(CA,,CT + An)-')CA�,

;z:� A�, - A,; C T(CA,; CT + An) -'CA., +

A ACT (CA,; CT + An) - 1 CA� - A�, CT (CA,: CT + A,)-'CA

A,; CT ((CA,; CT + A,)-' CACT (CA,; CT +A,)-1)CA,�. (5.20)

For the perturbation in (5.20) to be small, one needs only that (5.19) hold again.

The unusual implication of the analysis is that A must be small not only relative to

the matrix A,, being perturbed, but also to the minimal noise variance represented by

-Xmin (An)

The following example illustrates how the perturbation may come about and pro-

vides some insight into the behavior of the Krylov subspace method for Kalman filtering

when applied to remote sensing problems. The scenario is as follow s. Suppose X(t) is

a stationary process on [0, 1] with covariance function

COV(X(t), X(t + T)) = e-_2. (5.21)

Let the vector x consist of I samples of X(t) taken at intervals it > 0

T
X = [X(O) xpt)] (5.22)

Furthermore, suppose y consists of two measurements taken at consecutive sampling

points with measurement noise n whose components are uncorrelated and of equal
2intensity a , much less than one:

(X(O)
Y_ �X (it) + n. (5.23)

These statistics of x and y are similar to those appearing in the update step of a Kalman

filter for a remote sensing problem. In particular, the prediction errors are often smooth,

and the measurements taken are pointwise and clustered in certain regions.
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How the estimate of x given y behaves given these statistics is the subject of the
following analysis. The intuition in this example is that, in the limit of low measurement
noise, the estimator will simply extrapolate the two almost perfect measurements of x
using a Tavlor series expansion. The behavior of the'estimator is very much like that of
a linear extrapolation of two data points which are much closer to each other than to
the points at which one is evaluating the extrapolation. In particular, the estimate. of
x will be a low-frequency function that is highly dependent on the differences between
the two data points, yo and yl. The details are as follows.

The covariance of the measured piece of x is

XCT e-jt2
CA e _Jt2 (5.24)

and the data covariance is

Jt2
+ U2 e-

Ay e-jt2 + U 2 (5.25)

Let A = eI be a perturbation of Ax, and

jt2
+ cr2 + E e-

A' jt2 (5.26)Y e- I + a 2 + E

be the perturbed measurement covariance. Then,

I + O'2+
(A') jt2 2 Jt2 (5-27)Y e- + 07 + 6 (e- )2 + (E + U2) (2 + E + U2)

Fix Jt and a 2 with u 2 < I - e jt2 < I and consider the behavior of the perturbed
estimation problem as E varies near 0. The product

(A' )-'y YO - Y1 (5.28)Y (e- Jt2 ) 2 + (6 + U2) (2 + E + U2) y, - yo

which consists of approximate first differences of the data. Note that this product is
highly dependent on the value of - through the denominator in (5.28). In particular,
a perturbation E - a 2 will perturb. (A')-' significantly, which, in turn, will alter theY
perturbed estimate of x,

(A. + A)(A')-'y. (5.29)Y

The effect on the estimate is minimal if

)2A < (A,.) (5-30)
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in accordance with the previous general discussion.
2Note that for 6 - u , the perturbation A will not significantly affect the estimate of

x0 and xj, the two quantities being directly measured. This follows from the fact that
the perturbed estimates V and _-V are given by0 1

V + A)CT
10 = C (A., (A' y P:,- y (5-31)

.�i Y

2 jt2since E, c < e- . One will only observe perturbations in the estimates of com-
ponents of x not directly measured. Thus-, these effects are especially prominent in
applications with scattered point measurements and low measurement noise.

The consequence of this analysis for applying the Krylov subspace method for
Kalman filtering is that one must ensure that the perturbation in the prediction er-
ror covariance is at least kept smaller than (Ami,,(A,,(t)))2' in order to ensure that
perturbations in the update results are kept small. In the case for which A, (t) = a 21 at
every time step, one can keep the perturbation small by stopping the Krylov subspace
realization algorithm at the prediction steps when the quality of the approximation,

2as measured by (4.23), falls significantly below a . In some cases, one may be able to
exploit structure in the problem to arrive at a modified form of the Krylov subspace
method for Kalman filtering that introduces less perturbation into the prediction error
covariance. Such an approach is used in the oceanographic example in Section 5.5.2.

m 5.2.2 Filter Stability

In addition to understanding how the approximations in the Krylov subspace method
for Kalman filtering affect each update step, one is interested in how the approximations
propagate through the dynamics of the filter. The updated estimates obey the following
dynamics

1) CT -'(t)CT (5-32).�(t + 11t + 1) = A,(tlt - (t)AI/ (t)A(t).-�(tjt) + f (t)

where f (t) is a forcing term proportional to the data. The approach taken here to un-
derstanding how the effect of approximations propagate through the filter is to examine
the unfor'ced dynamics,

z(t + 1) = A,(tlt - j)CT(t)A-1(t)CT(t)A(t)z(t). (5.33)V

where z(t) starts off in some state z(O).
There is an extensive theory built up that provides conditions for stability of the

Kalman filter dynamics [43,45,46]; however, much of it does not apply to the scenario
under consideration. Most of the existing stability theory focu ses on exponential sta-
bility. The dynamics are exponentially stable if there exist positive constants cl and C2

such that

11 Z(t)jj < Cle-121. (5-34)
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for all z(O) where z(t) obeys (5.33). Commonly stated sufficient conditions for expo-
nential stability include that the system be uniformly reachable from the noise, i.e.,
there exist positive constants T, ce, to such that

t+T

E (D (t +T, -r) A,, (-r) (I) T (t + T, -r) > cel (5-35)
,r=t

for all t > to, where (D (t, -r) is the state transition matrix of (5. 1). However, the driving
noise in remote sensing problems is often spatially smooth at every time. Thus, some
of the eigenvalues of A,, may be very small. The system may be technically reachable
from the noise; however, the constant a in (5.35) may have to be very close to zero.
Moreover, the resulting system may technically be exponentially stable, but the decay
rate C2 in (5.34) may be very slow.

This behavior is a consequence of the e 'stimation problem being fundamentally in-
finite dimensional. One needs to consider the situation in which the quantity to be
estimated, x(t), is not just samples of a process varying in space, but is a process
varying in space. In this setting, one can precisely state the type of stability that the
Kalman filter exhibits.

The specific setting is a Hilbert space framework. Let the Hilbert space X be the
space in which the state of the system, x(t), takes on values. This is typically a space
of functions over a two or higher dimensional region, such as an L2 space. Let the
Hilbert space Y represent the measurement space, which might be be finite or infinite
dimensional. The operators A: X F4 X, C : X F-� Y, A,,, : Y �-+ Y, and A,, : X �-+ X
are all assumed to be bounded linear mappings and have the same roles as in the finite
dimensional setting. In addition, the operator A,,(t) is assumed to have a bounded
inverse for each time t. In this framework, a symmetric operator M is considered to be
positive-definite if

(Z" MZI) > 0 Vz' :A 0, (5.36)

and a' artial ordering on symmetric positive-definite operators is given by

M > N -�-=* M - N > 0. (5-37)

The type of convergence that will be studied in this chapter is strong convergence.
sequence ui converges to appoint %, strongly if

lim Ilui - U" II = 0. (5.38)
Z_+00

Thus, a system is considered strongly stable if its state z(t) converges strongly to 0, i.e.

lim IJz(t) II 0. (5-39)
t �00
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Additionally, a sequence of linear operators Ui is said to converge to a operator U.,
strongly if

lim II (Ui - U-VII 0 VZ/ E X. (5.40)i-+00

The Hilbert space framework used in this chapter can capture the behavior of the
Kalman filter for many types of estimation problems under consideration, but there
is one important exception. That is, isolated point measurements are not necessarily
included in the theory when X is an L 2 space on an open subset of a finite-dimensional
real space. This is because evaluating a function at a point is not a bounded linear
mapping. An example of a measurement structure that is included in this framework
for such a space is the following. Suppose X is an L 2(0) space where 0 is an open
subset of a finite-dimensional real space. Moreover, suppose that measurements are
taken pointwise over a set M C 0:

ys = x. + n. s E M (5.41)

wherd'y is the measurement, x is the quantity to be measured, and n is noise. Then, this
type of measurement is included in the framework of this chapter provided M is open.
That M is open implies that no measurements are made at isolated points. Examples
of measurement structures for which M is open are data of ocean state (such as sea
surface temperature) taken along swaths of the ocean by a satellite.

The following result guarantees stability of the Kalman filter given lower and upper
bounds on the measurement quality. The measurement quality over an interval [t - T, t]
is measured by the observability Grammian

t
_T(t't-T) (5.42)

-r=t-T

where -1> (7-, t), again, is the state transition operator of (5. 1).
The proof of the following result and more discussion of stability issues regarding

the filter dynamics are left for Chapter 6.

Theorem 5.2.1. Suppose that the dynamics matrix is bounded above and below, i.e.
that there exist constants -yl,-y2 > 0 such that

IIA-1(t)II < Vt (5.43)

IIA(t) II < -y2 Vt (5.44)

and suppose that the system is uniformly observable, i.e. that there exist constants
,81,,82, T > 0 such that

,61I < 1(t, t - T) < �21 Vt > T (5-45)
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Moreover, suppose that the prior covariance on x is positive-definite:

A, > 0, (5.46)

and that the measurement noise covariance is bounded below, i.e. that there exists a
constant o, 2 > 0 such that

An (t) > cr 2i Vt. (5.47)

Then, the dynamics of the Kalman filter are strongly stable, i.e.

lim JJZ(t)JJ = 0 (5.48)
t--+Cc

where z(t) obeys. the dynamics (5-33).

Theorem 5.2.1 characterizes the propagation of the errors in the estimates but not
the error covariances. The error covariances are much more difficult to analyze, and
no proof of stability in their dynamics is offered here. However, we do conjecture that
for time-invariant problems, the error covariances tend to a fixed point under mild
conditions.

Conjecture 5.2.1. Consider a time-invariant system, i.e. one such that A(t), C(t),
A,,(t), and A,,(t) are constant over time. Suppose that the dynamics matrix is bounded
�above and below, i.e. that there exist constants -yl,-y2 > 0 such that

IIA-1(t)II < Vt (5.49)

IIA(t) 11 < y2 Vt (5-50)

and suppose that the system is uniformly observable, i.e. that there exist constants
,61,,62, T > 0 such that

oil < _T(t, t - T) < 021 Vt > T (5.51)

Moreover, suppose that the prior covariance on x is positive-definite:

Ax > 0, (5-52)

and that the measurement noise covariance is bounded below, i.e. that there exists a

constant cr 2 > 0 such that

An (t) > 01 2i Vt. (5-53)

Then, the error covariance A,(tlt) tends to a steady-state A,(00) strongly, i.e.

lim I (A, (t I t) - A, (oo)) z'I I 0 VZI E X. (5-54)
t �00
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Were this conjecture correct, one implication would be that perturbations in the
error covariance computations would be damped out over time. Specifically, if the
updated error covariance were perturbed slightly only at one time step, the perturbed
resulting error covariance, A'(tlt) would have the same limit as the unperturbed errore
covariance:

lim (A' (t I t) - A, (oo)) z'J I = lim I I (A, (t I t) - Ae (oo)) z'J I = 0 Vz'E X. (5.55)
t-+00 e t--+Co

Thus, the error covariance calculations would damp out perturbations when the Matri-
ces in the estimation problem are time-invariant. We have, in fact, observed this in our
numerical work.

0 5.3 Smoothing

One is sometimes interested not only in the filtered estimates of x(t) but also the
smoothed estimates over a given period of time. The smoothed estimate :�(tJT) is the
estimate of x(t) given data y(s) for s E [0, T] for a fixed maximum time T, and A,(tlT)
is the associated error covariance. One can compute ::�(tJT) and A,(tlT) in terms of
quantities already computed by the Kalman filter as it proceeds up to time T.

The modified Bryson-Frazier smoother [10] is considered to be the most efficient
recursive smoothing algorithm for many applications [9,11,49]. The smoothed estimate
is written as a sum of the predicted estimate, summarizing data from the past, and
another quantity b(tlT) that summarizes information from the future:

,�(tJT) = _-�(tlt - 1) + A,(tlt - 1)0(tJT). (5-56)

One computes 0(tIT) using the following backwards recursion:

T(t _ + CT(t -1(t - 1)v(t - 1)�(t - 11T) = F 1),b (t I T) 1)A (5-57)

where F(t) is the Kalman filter error dynamics matrix,

1) CTF(t) = A(t)(I - A,(tlt - (t)A-1(t - I)C(t)), (5-58)

A, (t - 1) is the innovation covafiance defined by (5.5), and v(t - 1) is the innovation
defined by (5.4). The recursion forb(tJT) is initialized with

,D(TIT) = CT(T)A-'(y(T) - C(T).-�(TJT - 1)). (5-59)

Likewise, the smoothed error variances are written as the difference between the pre-
dicted errors and terms V(t, T) that summarize the reduction from the future:

A,(tlT) = A,(t[t - 1) - A,(tlt - 1)V(tT)A,(tlt - 1). (5-60)

The following backwards recursion computes V (t, T):

V(t - 1,T) F T(t 1)V(t, T)F(t 1) + CT(t 1)AZ-1 (t - 1)C(t - 1) (5-61)
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for the initialization

V(TT) = CT(T)A-'(T)C(T). (5.62)V

One can approximate matrices in the recursion for the smoothed estimates, (5-56)-
(5.59), in terms of quantities computed by the Krylov subspace Kalman filtering algo-
rithm, Algorithm 5.1.1. In pa rticular,

r,(t)UT(
F (t) A (t) I - i t) C (t) Fk,,,, (t) W (5.63)

and

ku (t)

A-' (t) ui (t) J(t) A-lu(t)w (5.64)vk

where ui(t), are the search directions generated at the update step, and ri(t) are the as-

sociated filtered back-projected search directions, as described in Section 5.1. The latter

approximation means that the two matrices are approximately equal when restricted

to the subspace of primary interest when estimating x(t). Specifically

A,(tlt - 1) CT (t)A-1(t) ;zz� A,(tlt - 1) CT (t) A (t) (5-65)V vk

This follows from the fact that the matrix on the left in (5-65) is the gain matrix for

the update step at time t, and the matrix on the right would be the approximation

generated by the Krylov subspace estimation algorithm if A,(tIt - 1) = A,,k,(t)(tIt - 1).

The approximation in (5.65) is useful provided terms depending on CT (t) A - 1 (t) are pre-

multiplied by matrices whose dominant eigenspaces are the same as those of A, (tit - 1).

For the computation of -�(tIT), the matrix CT (t)A-1(t) in (5.57) is pre-multiplied by

A, (t It - 1) in (5-56). However, earlier estimates :� (s IT) for s < t involve pre-multiplying

CT(t)A-1(t) by

A,(sls - I)F T (s)F T(S + 1) ... F T(t _ 1) (5.66)

via (5.56) and the recursion (5.57). Thus, one can use the approximation (5.65) to

compute smoothed estimates only if the matrices F T (t) do not significantly alter the

dominant eigenspace of A,(tIt - 1) and the dominant eigenspaces of A,(tlt - 1) do not

change significantly from time step to time step. This does appear to be the case for

the examples in Section 5.5.

For such cases, one can use these approximations of terms in (5-56)-(5-59) to approx-

imate the smoothed estimates, as follows. First, one can compute an approximation to

,6(tIT) with the recursion

Ok. (t- 1) (t - 1 IT) = F T (t-1)(t - 1)'ku(t)(tIT) +kt,
CT(t

1)A-1 1)(y(t 1) C(t 1).-�(t 11t 2)) (5-67)



92 CHAPTER 5. A KRYLOV SUBSPACE METHOD FOR SPACE-TIME ESTIMATION PROBLEMS

for the initialization

'bk.,,(T) (TIT) = CT(T)A,,k,,,(T)(y(T) - C(T).-�(TIT - 1)). (5-68)

Then,

k,(t)

-'�k.(t)(tjT) = -'4,(t) (tit - 1+ fi M AT W f)k,,, (t) (t I T) (5-69)

is an approximation to the smoothed estimate at t given all data up to time T.
Computing an approximation to the smoothed errors can also be done in a fashion

that reuses quantities already computed by the Krylov subspace- Kalman filtering algo-
rithm. However, one must perform an additional Krylov subspace computation at each
time step to reduce the dimensionality of the approximation to the covariance matrix
V (t, T). Unfortunately, V (t, T) is not approximately low-rank. However, only relatively
few modes of V (t, T) are needed to compute the reduction to A, (t, t - 1) in (5.60) since
A,(tlt - 1) can be approximated by a low-rank matrix as is done for the filtering step
described in Section 5.1. Let

k,, (t)

Vk, (t) (t I T) vi (t) J (t) (5.70)

be the approximation to V(tIT). Now, note that

A,(t - 11T) = A,(t - lit - 2) - (A,(t - lit - 2)V(t - 1,T))V-l(t - 1,T)

(V(t-1,T)A,(t-1It-2)), (5.71)

and that V(t - 1, T) can be written in terms of V(t, T) using (5-61). One can ap-
proximate the reduction term in (5.71), i.e. the second term, by applying the Krylov
subspace estimation algorithm to an estimation problem with data covariance

F T (t-,)(t-I)Vk,,(t)(tlT)Fk,,,(t-,)(t-,)+CT(t_I)A-".(t_,)(t-I)C(t-1) (5.72)k, vk

and signal-data cross-covariance

Tekp(t) F (t-,)(t-I)Vk,,(t)(tlT)Fk,,,(t-,)(t-l)+A (tit - 1) ( k,,,

CT(t_I)A-",�,(t-,)(t-l)C(t-1))- (5-73)vk

The variances of the reduction term for this estimation problem are an approximation
to those appearing in the smoothed error variance calculation (5.60).

Moreover, the k,(t - 1) vectors

Vi (t - 1) F T (t 1) (t - 1) Vk,, (t) (t I T) Fk.,, (t - 1) (t - 1) +

CT(t 1)A-""(t- (t - 1)C(t - 1)) pi, (5.74)vk I
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where pi are the search directions generated by the Krylov subspace estimation algo-
rithm, are such that

k,(t-1)

V(t - 11T) - Vi (t - 1 ) VT (t - 1 Vk�, (t - 1) (t - 1 1 T) (5-75)

The approximation is made in a similar sense as for approximating A,(t) in (5.64).
Specifically,

A,(t - lit - 2)V(t - 1,T)A,(t - lit - 2)

A,(t-llt-2)Vk.,(t-,)(t-1,T)A,(t-Ilt-2). (5.76)

The advantage of calculating an approximation to V(tlT) in this fashion is that one can
use the stopping criteria of Section 3.2 to determine the necessary number of iterations
and, hence, rank of the approximation.

This approach to computing an approximation to V(tlT) may not always work.
Specifically, one of the assumptions of the Krylov subspace estimation algorithm, when
applied to computing the reduction term in (5.71), is that V (t - 1, T) and

V(t - 1, T)A,(t - lit - 2)V(t - 1, T) (5.77)

have the same eigenvectors. This may not always be the case, but, as discussed in
Section 3.4.1, one can transform the problem using an appropriate preconditioner, to
achieve convergence. For all of the examples in Section 5.5, however, no preconditioning
was required.

A preconditioner that may work well is

k,(t-1)

A M a kP(t-1)-i+1 ff (t) + I (5.78)RTS

for so 'me constant aRTS > 1. This preconditioner will tend to accentuate those modes
relevant to reducing the error in -�(tjt - 1) by placing more weight on the filtered
backprojected search directions fi(t) for smaller i. The preconditioning transformation
in (5-78) has not been extensively tested, however.1

The smoothing algorithm is summarized, as follows.

Algorithm 5.3.1. Krylov subspace smoother.

I. Initialize:

Ok,,,(T)(TjT) = CT(T)A,,k,,,(T)(y(T) - C(T):�(TJT - 1)). (5.79)

A preconditioner of this form was used successfully for some preliminary attempts at processing
some oceanography data. However, the data and model were poorly matched; so, the experiment is not
discussedin Section 5.5.
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2. At each step, compute

T'bku (t- 1) (t - 1 1 T) F (t - 1) Oku (t) (t T) +

CT(t ')A-'u(t_,)(t - 1)(y(t - 1) C(t 1):��(t - lit - 2)) (5.80)vk

and

:4,,,(t-1)(t 1IT) = -'�k,(t-1)(t - lit - 2) + A,,k,(t-l)(t - lit - 2)Oku(t-1)(t lIT)

(5-81)

for

ku (t)
Fku (t) (t) A A (t) I - ri (t) UT (t) C (t) (5.82)

and

A
A,,ku Ui (t) UT (t). (5.83)

3. Initialize,
ku (T)

Vk,,(T)(TIT) CT(T)ui(T) UT (T) C (T) (5-84)

4. At each step,

(a) Compute VI (t), - - - , Vk�, (t) (t) using the Krylov subspace estimation algorithm
for data covariance

T 1) + CT (tF (t-,)(t-l)Vk,,(t)(tlT)Fk.(t-,)(t- I)A I)C(t - 1),k,, vk u (t- 1) (t

(5-85)

and signal-data cross-covariance

Aek"(t) (tIt - 1)F t - 1) Vk, (t) (t I T) Fk,, (t- 1) (t - 1) +

CT(t - 11)Avk"'(tj)(t-1)C(t-l), (5.86)

possibly using the preconditioner

kp(t-1)

fi (t) a (5.87)RTS ff(t)+l

(b) Compute smoothed error variances
k, (t) 2

(A e-,k, (t) (t It 1)),, E ((A,-,k,(t) (tIt I)Vj W) j) (5.88)
j=1
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parameter description

I state dimension
M measurement dimension

k,, number of iterations at update step

kp number of iterations at predict step
k, number of iterations at smoothing step

Table 5.1. Parameters in the Computational Complexity Analysis

0 5.4 Computational Complexity

The Krylov subspace methods for Kalman filtering and smoothing can provide a sub-
stantial. speedup relative to standard implementations. The degree depends on the
specific problem. In this section, we count the number of multiplication operations for
each update, predict, and smoothing step. Recall that each of these steps is solved with
a Krylov subspace iterative method. Thus, the multiplication count is a function of the
number of iterations run at each update step, k,,; the number of iterations run at each
predict step, kp; and the number of each iterations run at each smoothing step, k, in
addition to the state dimension, 1, and the measurement dimension, M (see Table 5.1).
Each of these parameters is assumed to be constant for all time. The focus of the
operation count is on-terms which are cubic or higher in these parameters. Note that
a standing assumption is that A,-, A,,,,-, and C-vector products can all be performed
using a number of multiplications that scales only linearly in either I or m.

N 5.4.1 Comparison of Techniques

The analysis of filtering complexity is carried out in the next section. The conclusion is
that the computational gain of using the Krylov subspace method over straightforward
direct methods is

M'/6 + 2M21

mk2 + 1k2 + 21kp(kp + k.) + 2kpk,,,I' (5-89)U P

Thus, one has a gain if

2 M2kP + 2 kp (kp + k,,,) + 2 kp k,,, < 2 (5.90)

and
2

2 M
ku < - (5.91)

6

The latter constraint implies ku ;!� 0.41m. Since one expects k, < kp, a worst case
scenario for constraint (5.90) is tCat ku = kp, in which case one requires

k-P < -m ;z�; 0.53m. (5-92)
7
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Matrix-vector products Back orthogonalization
Update 21 k k,,, mk2P U

2Predict 21(kp + ku)kp .1kP

Table 5.2. Matrix Multiplications Required for Krylov Subspace Kalman Filtering

If k,,, < kp, a best case scenario, then (5-90) reduces to

kp -m �� 0.82m. (5.93)
3

In other words, one expects gains if one can obtain a good approximate estimator
with a number of iterations that is significantly less than the number of measurements.
Moreover, one may be able to exploit additional structure in the problem to obtain
additional gains, as illustrated by the oceanographic example in Section 5.5.2.

The computation of smoothed estimates and error covariances requires an additional
sweep through the data after filtering. The conclusions of the complexity analysis
in Section 5.4.3 is that this additional sweep tends to dominate the computational
workload. The computational gain resulting from using the Krylov subspace method
for the sweep is

313/2 + 212M
(5.94)

(5km + k,,,l + 2kpl)k, + k2lS

Since a typical remote sensing problem has k,,,, kp, k, < m < 1, the gain is generally
lower than for filtering. Gains for specific examples are worked out in Section 5.5.

0 5.4.2 Analysis of the Filter

Consider a step of the Krylov subspace method for Kalman filtering after the initial time
with no preconditioning. The two major contributions to the computational workload
are matrix-vector products and back orthogonalization. The cubic terms in the number
of multiplications needed for matrix-vector products and back orthogonalization for
both the current update and the next predict are listed in Table 5.2. The total number
of operations for a combined update and predict step is

rnk2+ Ik 2 + 21 kp (kp + k,,,) + 2 kp k,, 1. (5-95)U P

For comparison, the work in standard implementations of the Kalman filter is dom-
inated by matrix-matrix products and matrix inversions. Recall, however, that there
are efficient routines for matrix-vector products involving the A, A, and C matrices.
Then, the cubic terms in the number of multiplications needed for a standard imple-
mentation can be broken down as in Table 5.3, following [24]. This leads to a total
of

rh 3
- + 2m 2i (5-96)
6

multiplications. The ratio of (5-96) and (5-95) leads to (5.89).
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F�� I Expression -T-Work
CA C(t) - A,(tlt - 1)
Apr [CA] - (C (t))"' + A, (t)

A(t) - [CA]"' - A-' M3/6 + m
A,(t + 11t) (A(t) - A,(tjt - 1) - K - CA) - (A(t))"� + A,, IM2

.�(t + 11t) A(t) - (.-�(tjt - 1) - Ku(C(t) -.,�(tjt - 1) - y(t)))

Table 5.3. Number of Multiplications Required for a Standard Implementation of Kalman Filtering

0 5.4.3 Analysis of the Smoother

Operation Work

Fk.(tj)(t-1)-multiply k,,(m+l)k,
Vk,(t)(tlT)-multiply k,, mk,

(t - *multiply k,,,mk,

Aek,(t) (tit - *multiply 2kpl
21Back orthogonalization ks

Table 5.4. Matrix Multiplications Required for Krylov Subspace Smoothing

The workload of the Krylov subspace method for smoothing is dominated by the
matrix-vector products in (5.85) and (5-86) as well as back orthogonalization. The
cubic terms in the numbers of multiplications required for these operations are listed
in Table 5.4. The total is

(5km + k,,,l + 2kpl)k, + k 21. (5.97)

Operation Wor7k
(t ------ 2-

I)V(tT) ..... .. ..
(P�(t - I)V(t, T))F(t - 1) M

C' (t - I)A-1 (t - 1)
(C"(t - I)A-1(t - 1))C(t - 1)

A,(tlt - 1)V(tT) I
_(A,(tjt-1)V(tT))A,(tjtE1) -IT/-2

Table 5.5. Number of Multiplications Required for a Standard Implementation of a Modified Bryson-
Frazier Smoother

The workload for a standard implementation of the modified Bryson-Frazier s-
moother is dominated by the matrix-matrix products in (5-60) and (5.61). The cu-
bic terms in the numbers of multiplications required for these operations are listed in
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Table 5.5. Note that products involving the matrix

F(t) = A(t)(1 - A,(tlt - j)CT(t)A-1(t 1)C(t)) (5-98)

are relatively efficient since A(t)- and C(t)-vector products can be done efficiently and
part of the product in (5.98) is already formed as part of the filtering step (see Table 5.3).
The total of the cubic terms in Table 5.5 is

313 /2 + 212M. (5-99)

The ratio of (5-99) and (5.97) leads to (5.94).

0 5.5 Numerical Examples

In this section, the performance of the Krylov subspac e method for Kalman filtering
is characterized with two sets of numerical examples. The state being estimated prop-
agates differently in time for each set of examples. In the first, the state propagates
according to a damped heat equation, and, in the second, a Rossby wave equation. The
dynamics of a damped heat equation are chosen because such dynamics have been used
previously to test approximate Kalman filtering problems [36-39]. The Rossby wave
equation dynamics have also been used previously to test Kalman filter methodology
and are more relevant to oceanographic remote sensing [31]. Thus, these examples are
interesting of themselves, and the differences between them provide an indication of the
generality of the proposed method for filtering.

0 5.5.1 Damped Heat Equation Dynamics

The dynamics of the first set of two examples obey a stochastic damped heat equation
on a ring. Specifically, the state x obeys a spatially and temporally discretized version
of

Xt = _V2X _ aX + W, (5.100)

where w is the driving noise. The discretization leads to dynamics of the form

x(t + 1) = Ax(t) + w(t) (5.101)

where

A = (I - aft)l + &L (5-102)

for a time step constant Jt and approximation to the Laplacian, L. The form of L used
here is a simple three-point approximation that uses the kernel

[-1 2 -1] (5-103)
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to compute an approximation to the second derivative. For each of the two examples in
this subsection, the damping coefficient a = 0.2, the time step Jt = 0.1, and the state
dimension is 1024. The statistics of the driving noise w(t) and initial state x(O) differ
for each example.

The first example is a simple one that illustrates some typical behaviors of the Krylov
subspace method. In this example, the driving noise is stationary on the discretized
ring, and the statistics do not change in time. The power spectral density S"""(W) of
the noise decays exponentially with rate 0.3, i.e.

S,,w(w) oc (0-3)lu'l. (5-104)

The variance of the noise is set to 0.02. The initial state x(O) has the same statistics
as w(t). Measurements are taken pointwise everywhere in space and time and are

2embedded in additive white noise of intensity 640. The update iterations were stopped
when Tk'10-6 < 10-6 for Kwin = 8, where Tk'10-6 and Kwin are defined in (3.19). The
stopping criterion of Algorithm 4.2.1 was used for the prediction steps with a threshold
X = 1 o-4.

The re sults for this example are displayed in Figures 5.1 and 5.2. In Figure 5.1,
outputs of the Krylov subspace method are compared against exact solutions computed
using FFTs. Relative mean-squared error in the filtered and smoothed estimates and
error variances are plotted as a function of time step. The errors increase sharply after
the first step and then level off below 1%. The increase is largely due to the fact that
the dominant source of approximation error is from the prediction step. That the errors
level off is a consequence of the time-invariance of the parameters in the problem and
the state dynamics being stable in the sense that 11AII < 1.

For each of the update, predict, and smoothing steps, the numbers of iterations
required to achieve these levels of approximation are plotted in Figure 5.2. These
numbers tend to remain constant over time. There is, however, a certain degree of
oscillatory behavior, reflecting the interplay between the state dynamics and the predict
and update approximation algorithms. One can use the median numbers of iterations
and the results of Section 5.4 to calculate approximately the amount of speedup offered
by the Krylov subspace method as compared to a straightforward implementation of

2Note that this corresponds to an intensity of 5/8 if the problem were continuous spatially. Specifi-
cally, the measurement noise n of the continuous problem would have a covariance function

Cov (n,,, (t), n., (t)) =5J(U - V). (5.105)

Since 5(u - v) is approximated by

J(U - V) '-Z� lu - VI < (5-106)

where I is the number of points in the spatial discretization, the discretized measurement noise has
variance 15/8. For our example, I = 1024; so the variance of the measurement noise for the discretization
is 640. This value of the noise vaxiance was chosen so that the error variances would be at intermediate
values, neither too close to 0 nor too close to the a priori variance of the state, x(t)-



100 CHAPTER 5. A KRYLOV SUBSPACE METHOD FOR SPACE-TIME ESTIMATION PROBLEMS
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Figure 5.1. The curves plot the approximation errors for the Krylov subspace method applied to
the.damped heat equation problem with driving noise that has exponentially decaying power spectral

density. Each curve plots the mean-squared differences between results computed using the Krylov
subspace method and an exact FFT method. The four sets of results are for the filtered and smoothed
estimates and error variances.
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Figure 5.2. The curves plot the numbers of iterations needed to meet the stopping criteria for the

Krylov subspace method applied to the damped heat equation problem with driving noise that has
exponentially decaying power spectral density.
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Measurement Locations at Each Time Step
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Figure 5.3. The image shows the measurement locations for the damped heat equation problem with
driving noise that has a polynornially decaying power spectral density. Measurements axe white.

the filter and smoother. The median numbers of iterations for the update, predict,

and smoothing steps are 21, 12, and 37, respectively. The resulting speedups are 1200

for filtering and 680 for smoothing. Thus, the results for this first example indicate

that the errors and iteration counts of the Krylov subspace method behave reasonably

well and that the method can be substantially faster than a standard Kalman filter

implementation.

The second example demonstrates some of the issues in using preconditioners to

accelerate convergence of the Krylov subspace method. As for the first example, the

driving noise in this second example is stationary on the discretized ring, and the

statistics do not change in time. The power spectral density of the driving noise S"""(W)

falls off only polynomially. Specifically,

1
S�"" (W) 0C (5-107)

(IWI + C)"

where c = 1/1024. The variance of the noise is set to 1. The statistics of the initial

state x(O) are the same as those of the driving noise. Measurements consist of scattered

point measurements embedded in additive white noise. The intensity of the noise is

640. Figure 5.3 indicates the locations of the measurements at each point in time. The

locations were chosen randomly in such a manner that they tend t o cluster spatially,

as often happens in remote sensing problems. The exact numbers of measurements are

plotted in Figure 5.4. The number of Krylov subspace iterations within each update

step is fixed at 20, and the number of predict iterations is fixed at 100.
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Measurement Dimension at Each Time Step
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Figure 5.4. The image shows the measurement dimensions for the damped heat equation problem
with driving noise that has a polynomially decaying power spectral density.

A simple update preconditioner is considered for this problem. At each time step,

it has the form

C (t) AP" CT (t) + 1 (5.108)

where C(t) is the measurement matrix, i.e. the matrix that selects elements of a vector

at measurement locations; and Ap,, is a stationary covariance matrix Corresponding to

the power spectral density 108 (0-5)1'1. As discussed previously in Section 3.4.1, the

first term in (5.108) is trying to induce a geometric separation in the eigenvalues of

the predic 'tion error covariance (which acts as the prior in the update step). The shift

by the identity in (5.108) ensures that no modes of the prediction error covariance get

annihilated by the preconditioner.

The results in Figure 5.5 illustrate the effectiveness of this preconditioner. Re-

sults for both a preconditioned and non-preconditioned Krylov subspace method for

filtering are compared to an exact calculation done with direct methods. The relative

mean-squared errors of the error variances are plotted in Figure 5.5. Note that the

preconditioner reduces the error by about half an order of magnitude at the initial time

step but leaves the errors essentially unchanged at every subsequent time step. Thus,

the preconditioner is ineffective after the first time step. There are two possible reasons

for this behavior. The first is that the errors are dominated by the contributions from

the predict steps. The other possible reason for the ineffectiveness of the preconditioner

is that the matrix Ap,,, is Toeplitz. The preconditioner can separate out modes at the

initial time step since the initial covariance is stationary, but the preconditioner is in-
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Approximation Errors for Error Variances
i o-I

-21 0

0

W
3

10-

cc

4
10 7

Not Preconditioned
Preconditioned

10-5 1

2 4 6 8 1 0
Time Step

Figure 5.5. The curves plot the approximation errors for both a preconditioned and non-
preconditioned Krylov subspace method applied to the damped heat equation problem with driving
noise that has polynornially decaying power spectral density. Each curve plots the mean-squared dif-
ferences between error variances computed using the Krylov subspace method and an exact solution
computed using direct methods.

effective at subsequent steps because the prediction error covariance is non-stationary
and changing from time step to time step because of the measurement structure. Al-
though this single example is not conclusive by itself, the results suggest that update
preconditioning may only be effective if the prediction errors are smaller than the gain
provided by the preconditioner and the update preconditioner is adoptively matched to
the measurement structure. The development of such an adaptive preconditioner is left
for future work.

M 5.5.2 Rossby Wave Dynamics

This section presents the results of applying the Krylov subspace method for Kalman
filtering to the estimation of sea surface anomaly from real data gathered by the T/P
altimeter. The region of interest is 25.125' - 28-875'N and 212.5' - 220'E, which lies in
the Pacific, west of North America. The altimetric data over this region are displayed
in Figure 5.6. Since we are interested in comparing our algorithm's results with those
of direct methods, we chose the size of the region to be relatively small.

Each data point in this region is a measurement of sea surface anomaly: the height
with a mean and ocean tide effects removed [27,50]. Data has been grouped into 10 day
repeat cycles. Although the satellite repeats its orbit approximately every IO days, the
measurement locations from each 10 day period are a little different for various reasons.
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Note that the coverage of the data is fairly sparse.
The goal of the algorithm is to assimilate the data into a model to' provide an

interpolated map of sea surface anomaly. The model comes from a variety of statistical
and physical considerations. A variety of models and assimilation methods have been
proposed for processing satellite altimetry [14, 28, 31, 73]. The model we used and
describe subsequently is very similar to that used in [31]. However, the details of the
model we used were chosen more to illustrate the performance of the algorithm than
for their faithfulness' to the data. Although the model has realistic components, the
emphasis is on the algorithmic performance and not on the modeling.

The Statistical Model

We model the ocean using a linearized Rossby wave equation with stochastic forcing.
This has the form

a 02o 2o
- _ + a + P 19'0 + W (5-109)
let aX2 qy2 p,9Z S (9Z -X

where o is the sea surface anomaly, w is the stochastic forcing, p is the density, S is a
parameter varying as a function of depth (z) that measures the effect of stratification
in the ocean, and � is a constant that measures the effect of the Coriolis force in the
latitude range of interest. A detailed discussion of the homogeneous equation's solution
and properties can be found in [67, Section 6.12]. A brief summary is given here.

There are a countable infinite number of solutions to the homogeneous equation.
Solutions can be written as a wave in the x-y plane with frequency a, whose amplitude

varies with depth:

ikj x+k2Y-O-,,,tRe e `Dn (Z) n = 0, 1, 2,... (5-110)

The amplitude 'Dn (Z) will depend on S(z). The exact dependence of '% (z) on S(z) is
not important here because we are only interested in solutions evaluated at the surface
(z = 0), which can be written as waves in the x-y plane:

iklx+k2Y-0-ntRe e n = 0, 1, 2,... . (5-111)

The frequency of the wave, o-,, varies as a function of wavenumbers k, and k2 according
to the dispersion relation

Oki
0-n = k2+ k 2 + I /R2 n = 0, 1, 2,... (5-112)

1 2 n

where R,, is a constant that depends on S(z) and is termed the Rossby radius of defor-

mation of the nth vertical mode. The exact dependence of Rn on S(z) is complicated

and not directly of interest here since only the values of Rn are needed to form solutions

to (5.109), and estimates of the values can be found in the literature for certain n [13].
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Figure 5.6. Each image shows the T/P sea surface anomaly data over a 10 day repeat cycle

In particular, the zeroth vertical mode always has an infinite radius of deformation, in-
dependent of S(z), and is known as the barotropic mode. This mode is also the solution
to the Rossby wave equation assuming that the pressure is linear in depth. The other
modes are called baroclinic. In the region of interest, the radius of deformation for the
first baroclinic mode, R1, has been calculated from data in [13] to be approximately
36km.
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We model the ocean as a sum of two sets of plane waves, one with frequency cro and
the other with a,. Note that only the plane waves with frequency go are included in
the model in [31]. The addition of plane waves with frequency U, is one of the principal
differences between the model used here and in [31]. In what follows, 'Oo (x, y, t) denotes
the contribution to the ocean surface anomaly at (x, y) and time t from those waves
with frequency co, and V), (x, y, t), with frequency al - The anomaly at (x, y) and time
t is V)o (x, y, t) +,01 (x, y, t). The functions V)o (x, y, t) and 01 (xl y, t) are often written as
,00 (t) and 01 (t), in the subsequent discussion.

Since we are interested in the ocean state at discrete time instants, we arrive at the
following recursion

00.(t + Jt) = Ao0o(t) + wo(t)
(5-113)

01 (t + Jt) = A1,01 (t) + w, (t)

where it is the difference between times of interest. The operators AO and Al are
all-pass filters that perform the appropriate phase shifts:

k2 + k 2 (5.114)
1 2

for AO and

-)3kl it (5-115)
k2 + k2 + 11R 21 2 1

for Al where k, and k2 range over all wavenumbers in the x-y plane. The random
vectors wo (t) and w, (t) are the stochastic forcing terms of each set of plane waves.

The statistics of the stochastic forcing terms wo(t) and wi(t), as well as the initial
conditions V)o(O) and ipj(0), are chosen to match ocean statistics. We assume that the
sea surface anomaly is stationary over the region of interest. Then, if we choose wo,
wi, Oo(O), and 01(0) to be stationary, both V;O(t) and 01(t) will also be stationary.
Moreover, if we set the power spectral densities (PSDs) of V)O(0), �bj(0), wo, and wl
all proportional to a common PSD Spp(w), then 00(t) + 01(t) will also have a PSD
proportional to Spp(w) because of the all-pass nature of AO and Al. Since we would
like Oo (t) + 01 (t) to have a statistical structure similar to the ocean, we choose Spp (W)
to have the same shape as the ocean PSD. Stammer has conducted studies of one-
dimensional ocean spectra along satellite tracks [72]. He determined that the spectra did
not vary significantly from track to track or region to region, and that the spectra obeyed
different power laws over different wavenumber intervals approximately as outlined in
Table 5.6. From the spectra not varying significantly from track to track, he concluded
that the two-dimensional spectra are reasonably isotropic. Unfortunately these spectra
are one-dimensional spectra, which are line integrals of the full two-dimensional spectra.
However, noting that the asymptotic decay of a two-dimensional power law decay is also
a power law of one less degree,

0C
VTW �2� dw, oc n-1 (5-116)1 + .22)n

1 2 2
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Wavenumber (cycles/ km) T�Power Law
2.5 x 10-' - 2.4 x 10-3 0.5
2.4 x 10-3 - 1.0 X 10-2 3.0
1.0 X 10-2 10-2- 8.3 x 4.0

Table 5.6. Power Laws of One-dimensional Ocean Spectra

Wavenumber (cycles/ km) I Power Law
2.5 x 10-5 - 2.4 X 10-3 1.5
2.4 x 10-3 - 1.0 X 10-2 4.0
1.0 X 10-2 10-2- 8.3 x 5.0

Table 5.7. Power Laws of Two-dimensional Ocean Spectra

one can assume that the power laws in two dimensions are one order higher, as listed
in Table 5.7. This is the two-dimensional power spectrum we chose for each of �bo(O),
01 (0), wo (t), and w, (t). We then normalize the overall variance so that the variance of

2each of 00 (0) and 01 (0) is half that of a steady-state ocean, 5m , and the variance of
each of wo (t) and w, (t) is half that of the 10-day variability in the ocean, 10-3MI.

We reduce (5.113) to a finite-dimensional state-space model for implementation on
a computer by propagating only some of the plane waves corresponding to each depth
mode. Specifically, we propagate only plane waves whose wavenumbers are harmonics
of a region which is double the size in each dimension of the region of interest. We
propagate more than just the harmonics of the region of interest because doing so
would imply a periodicity in the model. A more in-depth motivation and discussion of
the implications of the approximation on the model accuracy follow'the discretization
details, which are provided next.

The region of interest in the discretized model is gridded to 16 x 8 pixels. The dis-
crefized states, Qt) and O' (t), consist of samples of the barotropic and first baroclinic
modes, respectively, over a region twice the size of the region of interest, gridded to
32 x 16 pixels. The recursion for the discretized model is given by

,0' (t + Jt) A',O' (t) + w' (t) (5.117)
0 0 0 0
(t + Jt) A' O' (t) + w' (t). (5-118)

The operators A' and A' act on Qt) and 0'(t), by performing the same phase shifts0 1 0 1
as AO and Al, respectively, on those plane waves present in the discretized model, i.e.
the harmonics of the 32 x 16 grid. The covariances of the process noises, A' and A', are0 1
equal, as for the non-discretized problem. The discretized processes are chosen to be
stationary on a torus so that the covariances axe diagonalized by the DFT. The power
spectral densities have the decays given in Table 5.7. This does not set the DC terms
of the power spectral densities, however. To set the DC terms, we note that for the
continuous spectrum in Table 5.7, 80% of the power is in the lowest wavenumber band.



108 CHAPTER 5. A KRYLOV SUBSPACE METHOD FOR SPACE-TIME ESTIMATION PROBLEMS

Thus, the DC terms of the discrete spectra are set so that 80% of the power is contained
in the DC terms plus those wavenumbers in the band of the slowest decay. This has
the effect of modeling the real ocean variability of the very lowest wavenumbers by an
aggregate DC variability.

The motivation for incorporating extract harmonies into the. model and the impli-
cations on its accuracy are as follows. Consider the following state-space model of the
barotropic mode that differ slightly from the previous model. Let 0`(t), like '0'(t) de-
fined previously, be a state vector consisted of samples on a regular grid of the barotropic
mode in a region twice the size of the region.of interest. A discrete-time state-space
model foro"(t) is given by0

011(t + Jt) = All�bff(t) + w11(t). (5.119)
0 0 0 0

Here, A" is the same as A' in the previously discussed model. In other words, A"
0 0 0

acts on 00"(t) by performing the same phase shifts as AO on those plane waves in the
discretized model. However, the covariance A" of the driving noise w"(t) differs from A'0 0 01
Specifically, suppose that the Toeplitz covariance matrix AO of samples of the driving
noise wo (t) in (5.113) over the region of interest can be embedded into a positive definite
circulant matrix of twice the dimension (note that this is similar to zero padding for
performing convolutions with an FFT, and is often possible [23]). Then, A" is given
by this embedding matrix. The resulting state-space model has some nice properties
because of the all- ass nature of A". In particular, the covariance of the portion of 0"(t)

p 0 0
corresponding to samples over the region of interest is exactly the same as the covariance
of the samples in this region as specified by (5.113). This guarantees that one has not
introduced any periodicity into the covariances over the region of interest. However,
the cross-covariances between states �b`(t) and �b"(t') for t =A t' will not be exactly the
same as those specified by (5.113). This is because the full infinite-dimensional state
represents the ocean as an infinite plane, and non-zero anomalies far away from the
region of interest may eventually propagate, according to the Rossby wave dynamics,
into the region of interest. Yet, the cross-covariances not being the same for the infinite
and finite models should not cause significant differences in the estimates provided by
the two models. This is because data are confined to the region of interest so non-zero
estimates of anomaly will tend to be confined to lie within the area captured by the
finite state 0". This approach to formin a model by keeping a region twice as large0 9
in each dimension as the region of interest motivates our state-space model consisting
of modes which are harmonics of the larger region. As noted previously, however, the
actual process noise covariance A' used in the numerical work differs from the covariance0
A" in the motivating discussion here. This is because AO is not known exactly. Only0
portions of the continuous power spectral densities are given. Thus, A' can be computed
while A", even if it were to exist, cannot be computed exactly.0

The measurement noise model we use is motivated by that used in [31] to analyze
GEOSAT data. In particular, we assume that the noise is uncorrelated from track to
track. 'As noted in [31], this assumption is a worst-case scenario made more because
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it implies a Markov model than because it is realistic. Along track, we assume the
presence of both long-range and short-range correlated noise components. The long-
range components are meant to model satellite tracking errors that can be fairly large.
As in [31], the noise is assumed stationary with a correlation function of the form:

noe-1-1/1. (5.120)

We set no 2.2m 2 and I = 3.1 X 103 km to match the variance and variance of the
3derivatives of the noise model in [28]. Since each measurement is spaced approximately

7km apart, this yields a significantly long-range correlated noise. The short-range
2component we model as white noise with intensity 25cm - This is set a little higher

than the 9cm 2 used for static estimation in [28] to allow for modeling errors in the
dynamics.

The Numerical Results

We apply the general Krylov subspace method described in the previous sections to the
problem of assimilating data into this model with only one minor modification to the
method. Specifically, we use the Krylov subspace realization algorithm to compute an
approximation only to the error reduction term of the prediction error covariance and
not the full error covariance, which adds in the prior covariance of the state. That is,
at step t, the updated error covariance is app roximated by

kp (t)
E f, (t) TA,� (t) - h W (5-121)
i=1 -

where A,,(t) is the exact covariance of x(t) and fi(t) are described subsequently. The
prediction error covariance at time t + 1 is then approximated by

kp (t)
A�,(t + 1) - A (t) fi (t) T(t) A T (t). (5.122)

A

this approximation is used to perform matrix-vector multiplies in the Krylov subspace
estimation algorithm at the next update step. This yields and update error covariance
of

kp (t) k,,, (t+ 1)

A�(t + 1) - A(t) (t) T (t) A T (t) ri(t+l)rT(t+l) (5-123)

where ri (t + 1) are the filtered back projected search directions generated by the Krylov
subspace estimation algorithm. The Krylov subspace realization algorithm is then run

3The noise model in [28] is linear. Specifically, the noise along a track is modeled as a + bD where
a and b are random variables and D is the distance along track.
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to yield a low-rank approximation to

kp (t) k,,, (t+ 1)
E f, (t) T T (t) + (t + 1) (t + 1).A(t) (t) A (5.124)

Then, the update error covariance at step t + 1 is approximated by

kp(t+l)

A�(t + 1) - Mt + 1)ff (t + 1) (5-125)

where fi (t + 1) are the filtered back projected search directions generated by the Krylov
subspace realization algorithm. Note that we know the covariance of the state, A, (t), at
every time in part because the state at every time step remains stationary. By not trying
to approximate the whole prediction error covariance, we avoid some of the potential
numerical problems caused by not computing enough terms in the approximation, as
discussed in Section 5.2-1.

Other than this minor algorithmic change, the algorithm implementation is straight-
forward. The matrix-vector products are implemented with FFTs. Since the measure-
ment noise is not white, we use a whitening preconditioner at the update steps, as
described in Section 3.4.1. The preconditioner consists of circulant approximations to
the inverse of the along-track measurement noise covariances. Thus, the preconditioner
is also implemented with FFTs.

For comparison purposes, we assimilated the data into the model exactly using
direct methods in MATLAB. The interpolated grid for the region of interest is 16 x 8,
yielding a state dimension of 1024. The number of measurements in this region is 373
on every repeat cycle except for two, on which the number is 341 and 369. The exact
smoothed estimates of sea surface anomaly (the estimates of the sum of the barotropic
and first baroclinic modes) are displayed in Figure 5.7. Figure 5.8 displays the error
variances of the smoothed estimates. The variances are lower along tracks. They also
decrease over time in the East, presumably because the group delay for many of the
modes is eastward traveling.

The exact results provide a reference against which the results of the Krylov subspace
method can be compared. The Krylov subspace method was applied to exactly the same
problem as the reference. The update iterations were stopped when -T k'J (_, < 10-2 for
Ki,, = 8, where -rk'10-2 and Kin are defined in (3.19). Between 76 and 100 iterations
were required to meet this requirement; the median number of iterations was 95-5.
The stopping criterion of Algorithm 4.2.1 was used for the prediction steps with a
threshold x = 2 x 10-2 . Between 103 and 197 iterations were required to meet this;
the median number of iterations was 163. The stopping criterion for the smoothing
steps were the same as for the update steps. Between 108 and 269 iterations were
required; the median number was 196. Figure 5.9 shows the relative mean squared
error between the exact results and the Krylov subspace method results for the filtered
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Figure 5.7. Each image shows the smoothed estimates of sea surface anomaly computed using direct

methods in MATLAB

and smoothed full state estimates and error variances. The approximation errors in the

estimates are no bigger than 22%, and error variances, no bigger than 1%. Although

a computational error of 22% in the estimates may seem large, it is not necessarily so

since there are many factors that contribute to the real quantity of interest, the error

between the estimates and actual sea surface anomaly. Modeling error, in particular, is
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Repeat Cycle 1 Repeat Cycle 6

W
-0 28 -0 28 0.60.8

'Z6 26 0.6 '�6 26 0.4

215 2 0 0.4 215 220

longitude 0.2 longitude 0.2

Repeat Cycle 2 Repeat Cycle 7

0.628 0.8 28
'-R 0.6
;- 26 1� 26 0.4

0.4
215 220 215 220 0.2
longitude 0.2 longitude

Repeat Cycle 3 Repeat Cycle 8

0.8 0.6
2'8 _0 28

0.6 -R 0.4
26 26

0.4
215 220 215 220 0.2
longitude 0.2 longitude

Repeat Cycle 4 0.8 Repeat Cycle 9 0.6

ID
28 28

0.6

CZ 26 11� 26 0.4
0.4

215 220 0.2 215 220 0.2
longitude longitude

Repeat Cycle 5 0.8 Repeat Cycle 1 0

0.628 28

'Z6 26 0.4 'rz 26 0.4

215 220 215 220
longitude 0.2 longitude 0.2

Figure 5.8. Each image shows the error variances of the estimates of sea surface anomaly computed
using direct methods in MATLAB

a major factor. Moreover, note that the true error variances for the given the model,

displayed in Figure 5.8, can exceed 1, giving a sense of the variability one expects in

the estimates. Now, note that the filtered approximation errors in the estimates and

error variances increase, at first, but then they level out. One expects this since the

system is strongly stable, as described in Section 5.2.2. The smoothed approximation



Sec. 5.5. Numerical Examples 113

0 Approximation Errors
10

- - - - - - - - - - - - - - -

10

0 -2
- 10
W

....................

CZ -3
6 10
CC

4 Filtered Estimates
10 Smoothed Estimates

.... Filtered Error Variances
Smoothed Error Variances -

lo-51 1 I

0 2 4 6 8 10
Repeat Cycle

Figure 5.9. The solid line plots total relative computational errors for the filtered estimates; dashed
line, smoothed estimates; dotted line, filtered error variances; and dashed-dot line, smoothed error
variances.

Matrix-vector products Back orthogonalization

Update 21kpku mkU
Predict 41kukp Ik2

P

Table 5.8. Matrix Multiplies Required for Krylov Subspace Kalman Filtering As Applied to the
Oceanographic Data Assimilation Problem

errors do not increase significantly on the backward sweep, and thus, remain almost
constant across repeat cycles. Note that the approximation errors for computing the
error variances remain lower than for the estimates. Since the matrices in the estimation
problem do not change to a large extent from time step to time step, one expects that,
given Conjecture 5.2-1, the error covariance will tend towards a steady-state value.
The dynamics of the filter will, thus, damp out perturbations in the error covariance
by driving the error covariance to this steady-state. Hence, one expects computational
errors in the error variances to be lower than for the estimates since the dynamics of the
estimates are only strongly stable so that perturbations in their values may accumulate
slowly over time.

One can obtain a rough estimate of computational gains using the analysis of Sec-
tion 5.4, as follows. Note that the numbers of multiplications needed for filtering listed
in Table 5.2 needs to be modified since the algorithm.we used for this oceanographic
data assimilation problem differs slightly from the general algorithm. Table 5.8 lists the
computational work for our modified Krylov subspace method for filtering. For itera-
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tion and problem size, we'll use the median values: k,,, = 95.5, kp = 163, 1 = 1024, and
m = 3736. Then, the approximate multiplication count per time step for the Krylov
subspace method is 21kpk,, + 41kpk,,, + mk' + IkP2 = 1.26 x 10'. An exact implementation
requires approximately m'/6 + 2M21 = 2.94 x 108 multiplications. Thus, the speed-up
is approximately a factor of 2.3. The additional number of multiplications required for
the Krylov subspace method for smoothing is (5kum + kul + 2kpl)k, + k 21 = 1.59 x 108.S
The exact implementation requires approximately 313 /2 + 212M = 2.39 x 109 additional
multiplies. The final speedup is 9.4 for smoothing. Although this 'order of magnitude
speedup may not be enough to, on today's computers, feasibly assimilate global da-
ta sets' into models of the moderate complexity used here, the speedup significantly
stretches the capability of modern computers to solve small to moderately sized data
assimilation problems.

N 5.6 Summary

This chapter presents an approach to implementing a Kalman filter and modified
Bryson-Frazier smoother insert after smoothing. using Krylov subspace methods. This
approach is applicable to a wide variety of space-time estimation problems, including
many from remote sensing. Our approach to assimilating real oceanographic data into
a model with many realistic components yielded a speedup, particularly for smoothing.



Chapter 6

Stability of Kalman Filters for
Space-Time Estimation

This chapter contains a proof of the stability of the Kalman filter for a class of space-
time estimation problems. Specifically, a proof of Theorem 5.2.1 is provided. The proof
requires the development of new results on the stability of infinite-dimensional linear
systems. A discussion of the results and their proofs is given in this chapter.

0 6.1 The Framework

In the framework of this chapter, the states and measurements in the estimation problem
take on values in Hilbert spaces. The discussion in this chapter makes use of two
different topologies, strong and weak, and associated notions of convergence [69, Section
3. 1 1] . A sequence f ui I is said to converge in the strong topology, or strongly, to a point
U" if

jim Ijui - U" II = 0 (6-1)
2-->00

where is the standard norm induced by the inner product. A sequence juil is said
to converge in the weak topology, or weakly, to a point u,, if

lim (V, Ui - U") = 0 (6.2)
i �00

for all vectors v in Hilbert space where is the inner product. The discussion in this
chapter also makes use of a notion of positive definiteness. Specifically, a symmetric
operator M is positive definite if

(V, MV) > -0 (6.3)

for all vectors v -7� 0 in the Hilbert space.
The remainder of this chapter considers two Hilbert Spaces X and Y. The states

x(t) take on values in X, and measurements y(t) take on values in Y. The operators
A: X �-+ X, C : X �-+ Y, A, : Y �-4 Y, and A,,,, X �-+ X are all assumed to be bounded
linear mappings and play the same roles as in the finite dimensional settin s of (5.1)

115
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and'(5.3). In addition, the operator A,,, (t) is assumed to have a bounded inverse for each
t. The filtering equations are still given by (5.6)-(5-9) [34, p. 297]. Of principal interest
is the stability of the recursion for the updated estimates. The unforced dynamics are
given by

,�(t + 11t + 1) = A,(tlt - 1)C'(t)(C(t)A,(tlt - I)C (t) + A, (t)) C (t) A (t) (t t).
(6.4)

The stability results discussed in this chapter make various assumptions concerning
certain reachability and observability grammians. The reachability grammian of interest
is defined by

(t, 8) (D (t, -r + 1) A,,, (-r) (D * (t, T + 1). (6-5)
7=8

This grammian measures how much noise has entered the state between times S and t.
The observability grammian of interest is defined by

- t
1(t, S) lb (T, t) C* (T) A- 1 (T) C (T) 1) (T, t). (6-6)

This grammian measures the quality of the measurements between times 8 and t.
In finite dimensions, there are a variety of existing results concerning the stability

of the Kalman filter. The following theorem states that the filter is exponentially stable
if there are uniform upper and lower bounds on the reachability and observability
grammians [43,45,46].

Theorem 6. 1. 1. Suppose the filtering problem is finite dimensional and that there exist
constants 01,a2,,6l,,82,T > 0 such that

all < R(t, t - T) < a2I Vt > T (6.7)

,811 < _E(t, t - T) < P21 Vt > T. (6-8)

Then, there exist constants C1,C2 > 0 such that

C21jjz(t)jj < cle (6-9)

where z(t) follows the dynamics (6-4). Moreover, the constants cl and C2 are indepen-
dent of the initial condition for z(t).

Hager and Horowitz have considered a slightly different stability issue but in an
infinite-dimensional settin [34]. Their focus is on the stability of the filter error dy-
namics, i.e. the dynamics of e(t) = x(t) -:�(tjt). These are given by

e(t + 1.) = (I - A,(tlt - 1)C'(t)(C(t)A,(tlt - 1)C'(t) + A,(t))-lC(t))A(t)e(t). (6.10)

The main result regards the time-invariant case and states the following [34, Theorem
9].
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Theorem 6.1.2. Consider the time-invariant case for which A(t) A, C(t) = C,
An (t) = An, and Aw(t) = A, Now, suppose

1. The measurement noise is uniformly positive definite, i.e. there exists a constant

n oc such that

An > 9 2i (6-11)
n

2. The system is observable in the sense that there exists an integer r > 0 and
constant 0 < a < oo such that

r

EA'C*C(A*)" > al (6-12)
i=O

3. The system is reachable in the sense that exists an integer s > 0 and constant
0 < 0 < oo such that

S
1:(A*)'AwA'x) > OI. (6-13)
i=O

Then, there exist constants C1, C2 > 0 such that

jIZ(t)II < Clel2t (6-14)

where z(t) follows the dynamics (6.10). Moreover, the constants cl and C2 are indepen-
dent of the initial condition for z(t).

The goal of this chapter is to establish stability of the Kalman filter dynamics that
relies on assumptions weaker than the uniform reachability and observability criteria of
(6.7), (6-8), (6-13), and (6.12). The reason for doing this is that (6.7) and (6.13) may
not hold in a remote sensing space-time estimation problem. This follows from the fact
that the driving noise A,,(t) may be smooth. Imposing the weaker condition that the
reachability grammian (6.7) be positive definite, we are able -to prove strong stability
of the filter. By strong stability of the filter dynamics, we mean that z(t) converges
strongly to 0,

lim IIz(t) II = 0, (6-15)
t +00

where z(t) follows the dynamics (6.4). By relaxing the assumptions further and only
requiring that the observability grammian (6.8) be positive definite, we are able to prove
weak stability of the filter. By weak stability, we mean that z(t) converges weekly to 0,

lim (z(t), Y) 0 Vz' E X, (6-16)
t-->oo
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where, again, z(t) follows the dynamic's (6.4).
The proofs of our results are extensions of those given in [43,45,46] for the finite-

dimensional case rather than those in [34] for the infinite-dimensional case. In partic-
ular, we make use of Lyapunov functions. This has necessitated the development of
an appropriate Lyapunov theory for infinite-dimensional linear systems. The standard
proofs relating Lyapunov functions to asymptotic stability in finite dimensions [47,48]
rely on closed and bounded sets being compact [47, 3791. This property, charac-
teristic of all finite-dimensional topological vector spaces, does not necessarily hold in
infinite dimensions [69, p. 9 and 16-18].

Many others have extended various aspects of Lyapunov theory to infinite-dimension-
al dynamical systems. Some references include [7,20,21,35,55-60,68]. However only
two of these references consider strong or weak stability. In particular, Ross states a
theorem concerning weak stability of time-invariant linear systems [68, Theorem 2.1.2].
This theorem does not apply to the dynamics of the Kalman filter because of the the-
orem's assumption concerning the time-invariance of the system whose stability is in
question. Massera and Schdffer state a theorem concerning strong stability of time-
varying systems [58, Theorem 4.1]. This theorem does not apply to the case under
consideration for a more subtle reason than for Ross's theorem. Specifically, Massera
and SchWer require that the Lyapunov function, V(x, t), have what they term "an
infinitely small upper bound". This means that there must exist a continuous function
a such that

V(xt) < a(jjxjj) VX, t. (6-17)

The existence of the infinitely small upper bound guarantees that the Lyapunov function
is bounded over every closed ball centered at the origin and that the bound changes
continuously with the radius of the ball. We will need to relax this restriction.

We develop these ideas more fully over the next few sections. In Section 6.2, theo-
rems regarding the boundedness of the error covariances are stated and proved. Then,
a Lyapunov theory for strong stability is developed in Section 6.3. This is applied to
demonstrate strong stability of the filter in Section 6.4. Next, a Lyapunov theory for
weak stability is developed in Section 6.5. Finally, this is applied in Section 6.6 to
demonstrate weak stability of the filter under more relaxed restrictions than those in
Section 6.4.

0 6.2 Boundedness of the Error Covariances

The first step to proving the stability of the Kalman filter is to bound the update error
covariance. The following two theorems provide such bounds given conditions on the
reachability and observability grammians, (6.5) and (6-6). The development follows
that of [45,46].
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Theorem 6.2.1. Suppose there exist constants 01 02 i 01;,62, T > 0 such that

cell < R(t, t - T) <_ a2l Vt > T (6.18)

I < I(t, t - T) < 821 Vt > T. (6-19)

Then, the update error covariance of the Kalman filter satisfies

A,(tlt) < +T 1. (6.20)02
'31 1

A proof of the upper bound in Theorem 6.2.1 for finite-dimensional systems is given
in [45]. The proof extends to the infinite-dimensional setting here, without modification.
The next theorem provides a lower bound on the update error covariance.- The theorem
statement and proof are modifications of those in [46] that take into account the errors
cited in [45].

Theorem .6.2.2. Suppose that Vt A,, (t) and Ax have bounded inverses. Moreover,
suppose that there exist constants Cel, Ce2, 01, 02, 71, -y2, T > 0 such that

ail < R(t, t - T - 1) < a2I Vt > T + 1 (6.21)

oil < _T(t - 1, t - T) _< 021 Vt > T (6.22)
1

IIA(t)-111 <_ Vt (6.23)
IYl

IIA(t)II <-y2 Vt. (6.24)

Then, the update error covariance of the Kalman filter satisfies

a 271
A,(tlt) > 1 + 02 1. (6.25)

a,-/, + Tce2 022

Proo Consider the system
x'(t) + A (t) C' (t) wl (t)

X'(t + 1) = A (6.26)

Y'(t) = x'(t) + n'(t) (6.27)
where Cov(w'(t)) = A-1(t), Cov(n'(t)) A-l(t - 1), and the system is initialized

n W
at time 0 with no measurement and Ax, A-'. The reachability and observability
grammians for this system are

1,-r)C*(-r)A-'(-r)C(-r),D-'(,r + +

(6.28)
t

(t, 3) (D -r, t) A -r - 1) (D -r, t). (6.29)W
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One can rewrite the reachability grammian as

(t
R'(t, s) A` - 1) E -I)*(Tt-l)C*(-r)A-'(T)C(-r)(D(-rt-1) A-1(t-i)n

A` (t - 1) _E(t - 1, s)A_1 (t - 1),
(6-30)

and the observability grammian as

t
V (t, 8) AW

T=S
t_1 (6-31)

R(t, S - 1).

By (6.21), (6.22), and (6.23),

01 82
I < R'(t, t - T) - Vt > T (6-32)

'Y2 71

< V(t, t - T) < a2l Vt > T. (6-33)

Theorem 6.2.2 then implies that the error covariance of the new system satisfies

A' (t I t) :< + T I (6-34)
al a2 711

andthus,

a 271
(A')-'(tlt) > - --I L (6.35)

e ajyj + Ta2,82
2

Now, the recursions for the Kalman filter error covariances for the new system are

(A')-'(tit) = (A')-' (tit - 1) + Aw(t - 1) (6.36)e e
A'(t + 11t) = A-'A' (tlt)A-1(t) +A--C-(t)A-1(t)C(t)A-1(t). (6.37)

e n

Comparing this with the recursions for A,(tit), the Kalman filter error covariances of

the original system, one notices that

(A')-'(tit) -� C-(t)A-1(t)C(t). (6.38)e e n

By (6.35) and (6.23),

a 21/1
Ae(t1t) > (A')-' > +,82 I. (6-39)

e 2,82
alyi + Tce2
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Figure 6.1. This figure illustrates a possi ble behavior of Lyapunov functions used for proving strong
stability. Specifically, the Lyapunov function may grow unbounded in certain directions. This is illus-
trated here by showing coordinate slices of increasing curvature from a candidate quadratic Lyapunov
function.

0 6.3 Lyapunov Theory for Strong Stability

In finite dimensions, the Lyapunov function used to establish exponential stability of
the Kalman filter dynamics is the quadratic form associated with the inverse of the
update error covariance, A-1(t1t). One would like to use this same, natural Lyapunov
function to establish stability for the space-time filtering problems. For these problems,
however, A-'(tlt) is typically an unbounded operator. Thus, A-'(tlt) is not defined

e e
on all of X. Yet, A-'(tlt) should still work as a Lyapunov function provided one can
establish descent along state trajectories.

The general situation is illustrate in Figure 6.1. The figure shows coordinate slices of
increasing curvature for a candidate quadratic Lyapunov function. Since the curvature
may become arbitrarily large, the Lyapunov function may take on arbitrarily large
values for initial states lying in a bounded set. Thus, given only that the successive
differences of the Lyapunov function along state trajectories are bounded from below,
one can not expect that the state will converge to zero at a uniform rate across all initial
conditions in a bounded set. This would be necessary for exponential stability. However,
one does still expect the state to head to zero if trajectories are always decreasing fast
enough. One method for doing this is to find a sequence of Lyapunov functions with
bounded curvature that converge to the unbounded Lyapunov function. This idea is
made more precise in the following theorem.

Theorem 6.3.1. Let X be a real Hilbert space, and B(X), the set of bounded linear
operators on X.

Let z(t) E X evolve according to

z(t + 1) = F(t)z(t) (6.40)

with F(t) E B(X) - Consider a family of approximations to z(t), z, (t) E X for o7 E Rt,
evolving according to

Z' (t + 1) F, (t) z (t) (6.41)
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with z,(O) = z(O) and F,(t) E B(X) and converging pointwise in time for all t,

lim 11z' (t) - Z(t) 11 = 0. (6.42)
a_�00

Now, let U,(t) E B(X) be a family of symmetric, positive definite operators, and let

V, (Z' (t), t) = (Z' (t), U, (t) Z' (0) (6.43)

be the associated Lyapunov functions.
Suppose there exists a constant T, symmetric operators W,(t) E B(X) and a sym-

metric positive definite (but not necessarily bounded) operator U such that

1. V, (z, (t + 1), t + 1) - V, (z, (t), t) < 0 and V, (z, (t), t) - V, (z, (t - T), t - T) <

(Z' (t), W, (t) z, (t)) for al I t > T -

2- (Z' (t), W, (t) Z' (t)) > I Z' (t) 11 2for all o- and t > T

3. liml-4 - (Z (0) I U, W z (0)) = (z (0), UZ (0)) Vz (0) E D (U),

Then,

lim IIz(t)II = 0 Vz(0) E D(U). (6.44)
t 400

Proof. Note that for any s E [0, T),

NV J
0 < V, (z, (t), t) < V, (z (0), 0) (z, (-rT + s), W, (,rT + s) z, (-rT + s)) Vt.

(6.45)

Thus,

00
S)II2 < V (Z (0), 0).IIz,(-rT + (6.46)

By Fatou's lemma [78, Theorem 10.29],

00 00
77 lim inf II z, (-rT +8)112 < 'q lim inf HZ, (-FT + S)II2 <?7liminfV,(z(0),0). (6-47)

17_�00 9-+00 0'__+00

Thus,

00
77 IIz(,rT + S) 11 2 < (Z (0), UZ (0)) < 00 (6.48)

and

liM IIZ(t)112 0 Vz(0) E D(U). (6.49)
t--+00
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0 6.4 Strong Stability of the Kalman Filter for Space-Time Estimation

Theorem 6.3.1 can be used to prove strong stability of the Kalman filter under the
conditions stated in Theorem 5.2.1, which is restated here for convenience.

Theorem 5.2.1 Suppose that the dynamics matrix is bounded above and below, i.e.
that the�e exist constants 71,-y2 > 0 such that

IIA(t)-111 < Vt (6-50)

IIA(t)II < -Y2 Vt. (6-51)

and suppose that the system is uniformly observable, i.e. that there exist constants
01, 02, T > 0 such that

81I < _E(t, t - T) < 621 Vt > T (6-52)

Moreover, 'suppose that the prior covariance on x is positive-definite:

Ax > 0, (6-53)

and that the measurement noise covariance is bounded below, i.e. that there exists a
2constant u > 0 such that

An (t) >_ Or 2 i Vt. (6-54)

Then, the dynamics of the Kalman filter are strongly stable, i.e.

lim IIz(t) II = 0 (6.55)
t-+00

where z(t) obeys the dynamics (6-4).

Proof. The proof of Theorem 5.2.1 primarily involves constructing a sequence of systems

and associated Lyapunov functions so that Theorem 6.3.1 can be applied.

Specifically, consider adding white noise to the process noise and initial covariance,

thereby shifting the covariances by a multiple of the identity. For a shift of (1/a 2)i

with a 2 > 1, the new covariances will be

A' (t) = A,, (t) + 1 (6.56)W

and

Al =A,+ I 1. (6-57)x 92

For this new system, all other matrices remain unaltered, i.e. C, (t) C (t), A' (t)n
An (t), A'(t) A (t). Let z, (t) be.a sequence of states propagating according to the filter
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dynamics for the new system, and z(t) for the original system. Then, for each time
point t,

lim liz, (t) - Z(t) 0 (6-58)
9-+00

if z,(O) = z(O) by the continuous dependence on a of the filtering dynamics (6.4). Thus,
Z,(t) provides information about z(t) for large u. One can use Lyapunov functions and
Theorem 6.3.1 to establish a precise link.'

Now, since C(t) = C(t), A' (t) = A,, (t), A'(t) = A(t), the observability grammiann
of the new system, is the same as the original, _T(t, s). By the assumptions of
Theorem 5.2. 1,

,81 I < -T' (t, t - T) < 82I Vt > T. (6-59)0,

The reachability grammian of the new system is also bounded above and below due to
the shift (6.56). Specifically, there exists a constant Ce2 such that Vt > T.

1 1 < R' (tt - T) (6-60)T2 - a' -

T + 1) A' (-r) (V) (t, T + 1) (6.61)W
-r=t-T

t

< T + 1) A' (-F) (d)') (t, -F + 1) (6.62)W
-r=t-T

< a21- (6.63)

Moreover, since

R' (t + 1, t - T) A (t) E V(t, 7 + 1) A' (r) (V) (t, -r + 1) A (t) (6-64)
T=t-T

R' (t + 1, t - T) can be bounded as follows:0,

12
I < (t + 1, t - T) < 722Ce2l Vt > T. (6.65)

U2

By Theorems 6.2.1 and 6.2.2, the upda te error covariance of the modified system,
Ale,,(tlt), is bounded above and below as follows:

5
71 T

,4 +,82 < A",(tlt) < +T I Vt > T.U2 ' + (T + l)U4a2 e 02
71 2,827� 1

(6-66)

Hence, one can consider using

V, (x, t) (x, (A',, (t t)) x) t > T (6.67)e
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as candidate Lyapunov functions for the dynamics of the Kalman filter for the modified
system.

In order to use this 'sequence of systems and associated Lyapunov functions to
establish strong stability of the original filter dynamics (6.4), one needs to verify each of
the three major conditions of Theorem 6.3.1 for U,(t) = (A',,(tIt))-1, U = A-,(TIT),e e
and W,(t) = 1(t, t - T). The verification follows. Note that in what follows, the
trajectories of the Lyapunov functions are examined starting at time T, not 0.

1. In [46, p. 764], a bound on the differences of V,(z,(t),t) is established in finite
dimensions. The derivation of the bound holds in general Hilbert spaces. The
bound states that

V, (z, (t + 1), t + 1) - V, (z, (t), t) < 0 (6-68)

t

V, (z, (t), t) - V, (z, (t - T), t - T) < E (z (T), C* (T) A (T) C (-r) z (-F)). (6.6 9)n
-r=t-T

Since

t
(z(,r),C*(T)A-1(T)C(,T)z(T))n

-r=t-T

t

(T, t) z (t), C* (-r) A (,T) C (T) (D (T, t) z (t))n
-r=t-T

(z(t),_E(tt-T)z(t)), (6-70)

one has that

V, (z, (t), t) - V, (z, (t - T), t - T) < (z (t), T (t, t - T) z (t)). (6.71)

2. (z, (t), I (t, t - T) z (t)) > '81 11 Z, (t) 11 2for all (7 and t > T by (6.52).
3. Finally, lim,,,,(z(T), (A',,(TJT))-1z(T)) = (z(T), A` (TIT)z(T)) for all initial

li e e

conditions z(O). The mit follows simply from the fact that the estimator is
a continuous function of o7. That z(T) E D(A-(TJT)) follows from the facte
that z(T) C: R(Ae,(TIT - 1)) by (6.4) and that A-'(TIT) A-'(TIT - 1) +e e
C*(T)A-1(T)C(T) where

C*(T)A-1(T)C(T) < _T(T, 0) <,62I. (6.72)n

Now, Theorem 6.3.1 implies that

lim JIz(t)JI 0 (6-73)
t >00

where z(t) follows the filter dynamics (6.4).
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Figure 6.2. This figure illustrates the behavior of Lyapunov functions that may be used for proving
weak but not strong stability. The graphs depict coordinate slices of the bounds on the negative
magnitude of successive differences of a candidate Lyapunov function. These are guaranteed to be
positive, but the curvature may be arbitrarily small.

E 6.5 Lyapunov Theorem for Weak Stability

The focus of the previous sections is on sufficient conditions for strong stability. A
natural question to ask is whether one can guarantee weak stability, as defined in (6.16),
under relaxed versions of the conditions in Theorems 6.3.1 and 5.2.1. In this section, a
Lyapunov theory is developed for weak stability when Condition 2 in Theorem 6.3.1 is
relaxed so that W, need only be positive definite and not bounded below by a multiple
of the identity.

Tigure 6.2 provides some intuition as to why W, being positive definite is sufficient
for establishing weak stability but not strong stability of a given system. The figure
depicts the quadratic form associated with W, which provides a lower bound on the
negative magnitude of successive differences of the Lyapunov function. Each graph in
Figure 6.2 plots a different coordinate slice of the quadratic function. That the function
is positive away from the origin implies that each coordinate of the state of the given
system, z(t), is tending to zero. Thus, one expects

lim (Z" Z(t)) 0 VZ, G X. (6-74)
t +00

However, the curvature of each slice may be arbitrarily small so that 11z(t)JI is not
necessarily tending to zero.

These ideas are made precise in the following theorem. The statement is almost'
the same as that of Theorem 6.3.1. The primary difference is that the lower bound on
W,(t) is replaced by a weaker condition in terms of the ranges of the limiting operator
W(t). This is motivated by Ross's work on using Lyapunov functions to establish weak
stability of time-invariant systems [68, Theorem 2.1.21.

Theorem 6.5.1. Let X -be a real Hilbert space, and B(X), the set of bounded linear
operators on X.

Let z(t) E X evolve according to

z(t + 1) F(t)z(t) (6.75)
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with F(t) E B(X) - Consider a family of approximations to z(t), Z, (t) E X for O' E Rt,
evolving according to

Z, (t + 1) = F, (t)z(t) (6.76)

with Z,(O) = z(O) and F,(t) E B(X) and converging pointwise in time for all t,

lim jjz,(t) - Z(t)ll = 0. (6.77)
U_�00

Now, -let U, (t) E B(X) be a family of symmetric, positive definite operators, and let

VI (ZI (t) I t) = (ZI M I U, (t) ZI (0) (6-78)

be the associated Lyapunov functions.
Suppose there exists constants T and q; bounded symmetric positive definite op-

erators W,(t), W(t), G(t); a symmetric positive definite (but not necessarily bounded)
operator U; and real-valued function M(-) on D(U) such that

1. V, (z, (t + 1), t + 1) - V, (z, (t), t) < 0 and V, (z, (t), t) - V, (z, (t - T), t - T) <

(z, (t), W, (t) Z, M)

2. lim,, (z (0), U, (t) z (0)) = (z (0), Uz (0)) Vz(O) E D(U),

3. (z', U, (0) z') < M (z') Vz' e D (U)

4 -lim,, W, W, (t) z') = W, W (t) z') Vz'E X

5.. G2 (t) W(t) andntR(G(t)) = X, where the bar denotes closure in the strong
topology 1

6. (ZI, U, (t) ZI) > I ZI 11 2 for all o-, t an d all z' E X

Then,

lim (Z(t), Z') = 0 Vz (0) E D (U), z' E X. (6-79)
t �00

Proof. The proof is broken down into three steps.

1. The first step is to note that

L I
0 < V, (z, (t), t) < V, (z'O) -, 0) - (z, (rT + s), W, (-rT + s) z, (-rT + s)) <

VI (Z (0) I 0) Vt. (6.80)

'Note that every bounded symmetric positive definite operator has a bounded symmetric positive
definite square root [69, pp. 330-331].



128 CHAPTER 6. STABILITY OF KALMAN FILTERS FOR SPACE-TIME ESTIMATION

2. The next step is to show that

lim (z (t), W (t) z (t)) = 0 Vz (0) E D (U). (6.81)
t +M

To see this, note that by Fatou's lemma [78, Theorem 10.29] and (6.80),

00 00

lim inf (z, W, (-rT + s) z, (TT + s)) < lim inf E (ZO- I W, (rT + s') z, (,rT + s))
01--+00 9__�00

1 T=1

(6.82)

< lim inf V, (z (0), 0). (6.83)
0'_+00

for any 8 E [0, T). Thus,

00
(z (-rT + s), W (,rT + s) z (-rT + s)) < (z (0), Uz (0)) < oo (6.84)

and (6.81) follows.

3. Lastly, weak stability is established. Now, one can rewrite (6.81) as

lim JIG(t)z(t) 112 = 0 Vz (0) E D (U) (6.85)
t +00

by Condition 5. That G (t) z (t) converses to zero strongly implies it converges to
zero weakly, i.e.

lim (G (t) z (t), z') = 0 Vz' E X, z (0) E D (U). (6-86)
t-+00

Fix z' E X. Let fz,,,,i c nt R(G(t)) be a sequence converging to z' strongly. One
can do this by Condition 5. Then,

I (Z (t), Z') I (Z (t), Z' - Z"'-� + Zm') I (6.87)

(Z (O'. Z"") I + I (Z (t), Z' - Z' (6-88)

< I (Z (t), Zm') I + 11 Z(t) Z' Zr'n 11 (6-89)

< I (Z (t), Z' ) I + 71 11Z Z (6-90)

where the second to last step follows from the Cauchy-Schwartz inequality, and
the last step follows from Conditions 3 and 6. Fix E > 0. Then, there exists mo
such that

M (Z (0))
11Z Zrn, 11 < 2' (6-91)
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Moreover, there exists a to such that

(Z (t) I Z'1"O < - (6.92)2

for all t > to and hence

(Z (t), Z') < E (6.93)

for all t > to. Since this holds for all > 0,

lim I (z (t), z' 0 Vz' E D (u). (6.94)
t-+00

0 6.6 Weak Stability of the Kalman Filter for Space-time Estimation,

Theorem 6.5.1 can be used to establish weak stability of the Kalman filter when the
observability condition (6.52) of Theorem-5.2.1 is weakened. The condition (6.52) is
replaced with two mild restrictions on the observability grammian _T(ts). The first
requirement is that there exists a T for which _E(t, t - T) is positive definite for all
t > T. This merely requires that there exist measurements of the entire state over an
interval of time T. These measurements need not have a lower bound on their quality,
however, because _T(t, t - T) is not required to be bounded from below by a multiple of
the identity. The other principal restriction is that

nR ((I(t, t - T)) 1/2) X (6-95)

t>T

1/2 ishold. This is a fairly mild restriction. In particular, the range of (_T(t, t - T))
dense if _T(t, t - T) is positive definite [69, Theorem 12.12b]. Moreover, the ranges of

1/2(T(t, t - T)) , for all times t, will overlap significantly in many cases. In particular,
this will hold for satellite measurements, which tend to repeat on cycles dictated by the
orbit of the satellite. Thus, the following theorem can provide a useful characterization
of Kalman filter stability when measurements are not of uniform quality.

Theorem 6.6.1. Suppose that there exist constants 02,,yj,-y2T such that

0 < 1(t, t - T) < 821 Vt > T (6-96)

-yll <A(t) < -y2l Vt (6.97)

and that the square-root of 1(t, t - T) satisfies

nR ((I (t, t - T)) 1/2) X. (6-98)

t>T
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Moreover, suppose that the prior covariance on x is positive definite:

Ax > 0. (6-99)

Then, the dynamics of the Kalman filter are weakly stable, i.e.

lim (z(t), z') 0 Vz'E X (6.100)
t +00

where z(t) obeys the dynamics (6-4).

Proof. The proof of Theorem 6.6.1 makes use of the same sequence of systems and
associated Lyapunov functions used in the proof of Theorem 5.2.1.

The differences between the proofs of Theorems 5.2.1 and 6.6.1 start with the bounds
on the update error covariance for the modified system. Specifically, by Theorem 6.2.2,
the update error covariance of the modified system, A",(tlt), is bounded below as
follows:

5
71 - +,62 1 < A',I(tit). (6.101)

0_2 3 + (T + 1)074 (a' )2,yi 2 �2 -Y22

Moreover,'the error covariance A", (tIt) is always bounded above by the prior covariance
of the state. Hence, one can consider using

V,(xt) = (x, (A',,(tIt))_'x) t > T (6-102)

as candidate Lyapunov functions for the dynamics of the Kalman filter for the modified
system.

In order to use this sequence of systems and associated Lyapunov functions to
establish strong stability of the original filter dynamics (6.4), one needs to verify each
of the six major conditions of Theorem 6.3.1 for U,(t) (A',,(tJt))-1, U = A-'(TIT),
W, (t) = W = T(t, t - T), G (t) = (_E (t, t - T)) 1/2, M(ZI) max,> 1 (z', (A',, (T I T)) z'
and 77 =,82. The verification follows. Note that, in what follows, the trajectories of the
Lyapunov function are examined starting at time T, not 0.

1. As in the proof of Theorem 5.2.1,

V, (z, (t + 1), t + 1) - V, (z, (t), t) < 0 (6.103)

V, (z, (t), t) - V, (z, (t - T), t - T) < (z (t), _T (t, t - T) z (t)). (6.104)

2. Also for the same reasons as in the proof of Theorem 5.2.1,

lim (z(T), (A',, (TIT))-1z(T)) = (z(T), A-' (TIT)z(T)) (6.105)a-*00 e e

and z(T) c D(A-1 (TIT)) for all initial conditions z(O).e
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3. Now,

max (z', (A", (T IT))-', z') (6.106)
O->1 e

exists for all z' E D(A-I(TIT)) by continuity of (A",)-l as a function of a and
the existence of a limit as cr tends to infinity. Thus,

V, (A',, (T I T)) -Y) < max (z', (A',, (T I T)) z') Vz1 E D(A-1(TjT)).
e e

(6-107)

4. lim,-,,, (z', T( t, t - T) z') = (z', _E(t, t - T) z') identically.

5. nt>T R((I(t, t - T)) 1/2) = X by the assumptions of Theorem 6.6.1

6. (z', (A',, (t I t)) -Y) > 02 11 Z' 112 for all t > T b (6-101).

Now, Theorem 6.5.1 implies that

lim (Z(t), Z') 0 Vz, E X (6.108)
t +co

where z(t) follows the filter dynamics (6.4). F-1

0 6.7 Summary

The set of theorems presented in this chapter establish stability of the Kalman filter
under restrictions mild enough that they apply to scenarios arising in remote sensing.
In particular, the numerical examples in Section 5.5 have positive definite driving noise
and measurement structures such that the observability grammian is bounded below
by a multiple of the identity. Thus, the Kalman filters for these problems are strongly
stable. In the dual case for which the measurements are of poorer quality but the
observa'bility grammian is still positive definite, the Kalman filter would be weakly
stable.
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Chapter 7

Conclusions -and Open Problems

The contributions of this thesis center on the development of three algorithms as well
as a Lyapunov theory for Audying the stability of infinite-dimensional linear systems.
Although each of these algorithms and the Lyapunov theory have been extensively
researched and discussed in this thesis, there remain several open problems. These
contributions and open problems are discussed in the remainder of the chapter in more
detail.

N 7.1 Contributions

The major contributions for each chapter are summarized, as follows.

E 7.1.1 Krylov Subspace Estimation Algorithm

One of the major contributions of this thesis is the derivation of a Krylov subspace
algorithm for linear least-squares estimation. The algorithm is a variant of the conjugate
gradient algorithm that simultaneously computes both linear least-squares estimates
and error variances. Moreover, there are two natural criteria that can be used for
determining when to stop the algorithm.

The convergence of the Krylov subspace estimation algorithm is extensively ana-
lyzed in this thesis. The convergence analysis has contributed not only to a better
understanding of the algorithm but also to a fundamental characterization of random
processes. In particular, the analysis has necessitated the development of new results
concerning the extrema of sequences of independent random variables. The final conclu-
sions of the convergence analysis, however, are very specific to, and provide important
insight into, the Krylov subspace estimation algorithm. Specifically, they suggest two
different methods for accelerating convergence. The first is to use preconditioning, and
the second, multiple starting vectors.

The Krylov subspace estimation algorithm, in its standard, preconditioned, and
block forms, has been extensively characterized with numerical examples in this thesis.
The examples include ones with both synthetic and real data. The conclusion is that
the Krylov subspace estimation algorithm is an efficient method for simultaneously
computing both linear least-squares estimates and error variances for many problems.
Moreover, use of preconditioning or a block form may decrease the computational work

133
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required to achieve a given level of accuracy.

0 7.1.2 Krylov Subspace Realization Algorithm

This thesis also presents a Krylov subspace algorithm for realization. It is a variant of
the Krylov subspace estimation algorithm that can simultaneously compute a sample
path of a given Gaussian stochastic process a's well as a low-rank approximation to the
covariance matrix of the given process. The convergence analysis of the Krylov subspace
estimation algorithm applies to the realization algorithm, as well. As a consequence of
this, one can use preconditioning to accelerate the convergence of the Krylov subspace
realization algorithm.

The realization algorithm is characterized in this thesis both analytically and numer-'
ically. The analytical characterization consists primarily of the comparison of compu-
tational work between the Krylov subspace realization algorithm and other realization
algorithms. The algorithms used for comparison include FFT-based approaches as well
as iterative approaches. The Krylov subspace realization algorithm is also compared
against these alternative algorithms in numerical experiments. The conclusion is that,
in many cases, the Krylov subspace realization algorithm is an"efficient method for si-
multaneously computing sample paths and low-rank approximations to the covariance
matrix of a given process.

0 7.1.3 A Krylov Subspace Method for Space-Time Estimation

The problem of space-time estimation is also addressed in this thesis. The Krylov
subspace estimation and realization algorithms have been combined to form recursive
algorithms for both filtering and smoothing. The algorithms are modifications of the
standard Kalman filtering and modified Bryson-Frazier smoothing algorithms. As such,
they simultaneously compute both estimates and error variances for, respectively, either
the filtering or smoothing problems.

The computational cost and stability of the Krylov subspace algorithms for filtering
and smoothing are analyzed in this thesis. The stability of the algorithms is analyzed
so as to determine how the approximations made to the Kalman filtering and modified
Bryson-Frazier smoothing algorithms propagate through the recursions. The conclusion
is that, by following some guidelines on the numbers of update and predict iterations,
one can keep the perturbations small. As long as the numbers of iterations required
to meet these guidelines is not excessively large, the cost analysis in this thesis demon-
strates that the Krylov subspace algorithms provide a computational gain over standard
implementations of the Kalman filter and modified Bryson-Frazier smoother.

Numerical examples using both synthetic and real oceanographic data are used to
characterize the Krylov subspace algorithms. The synthetic data are generated by
a relatively simple heat equation model. The oceanographic data are of sea surface
anomaly, the deviations of sea surface height from a mean. The model that is used in this
thesis for studying the sea surface anomaly data is based on models developed by others
for analyzing similar data. We model the ocean as propagating in time according to a
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Rossby wave equation and being forced by stationary noise whose power spectral density
obeys power laws derived from data. The Krylov subspace algorithms successfully
processed both this oceanographic data as well as the synthetic data. However, the
computational gains are much greater for the synthetic data. The conclusion is that
the Krylov subspace algorithms provide a computational gain which may be substantial
but depends on the details of the model.

N 7.1.4 Stability of Kalman Filters for Space-Time Estimation

Studying the stability of the Krylov subspace algorithms for filtering and smoothing ne-
cessitates the study, in this thesis, of the stability of infinite-dimensional Kalman filters.
The types of stability studied are strong and weak stability. This is done by developing
a Lyapunov theory for studying strong and weak stability in infinite-dimensional linear
systems. The theorems proved in this thesis provide sufficient conditions for such sta-
bility. Specifically, the existence of sequences of Lyapunov functions satisfying specified
propertiescan demonstrate strong or weak stability. Ar

There exist sequences of Lyapunov functions satisfying the appropriate conditions
needed for establishing stability of Kalman filters for certain types of space-time estima-
tion problems. In particular, if sufficient measurements of good quality exist that the
observability Grammian is bounded away from zero, the Kalman filter may be strongly
stable. However, if the observability Grammian is only positive definite, the Kalman
filter, may only be weakly stable.

0 7.2 Open Problems

There are number of open problems. A sampling follows, organized by topic.

0 7.2.1 Krylov Subspace Estimation

Local Functionals of the Data

One of the factors limiting the computational gain of the Krylov subspace estimation
T Talgorithm is that the linear functionals, pl ,P2 used to reduce the dimensionality

of the data are not local (sparse) when measurements are taken pointwise. The lack of
2locality is the main reason that the computational workload grows as mk , where m is

the dimension of the data and k is the number of iterations. This workload growth rate
is large if k is proportional to m. Local linear functionals would reduce this workload.
Moreover, this is a natural step to take from an estimation-theoretic point of view: the
estimate at a point should depend mostly on the data taken near it.

One potential solution to this problem would be to break down the estimation prob-
lem into a set of overlapping subproblems. Specifically, points at which one is computing
estimates are divided up into contiguous, disjoint regions. Each of these estimation re-
gions is then matched to a set of measurements needed to form estimates within the
estimation regions to the desired level of accuracy. Although the estimation regions



136 CHAPTER 7. CONCLUSIONS AND OPEN PROBLEMS

are disjoint, the sets of measurements associated with them, may not be. Provided the
sets of measurements are strictly proper subsets of all of the data, this procedure will
force the linear functionals used in each subproblem to be local. Then, as the overall
estimation problem grows, the computational workload will only grow linearly with
the problem size, provided the size of the subproblems can remain fixed to achieve the
desired level of accuracy. This and-9ther possibly more efficient solutions are subjects
for future research.

Statistics of Constants in the Convergence Analysis

The convergence analysis in this thesis provide bounds on the computational error of
the Krylov subspace estimation problem in terms of a finite random variable 77, whose
statistics are not studied in this thesis. The finiteness of �7 ensures that these bounds
decrease as the number of iterations increase. Moreover, one can compute convergence
rates for a problem that are independent of 77. However, there may be variability in the
performance of the algorithm from run to run for a given estimation problem, depending
on the initial starting vector. The degree of variability is reflected in the statistics of
77. Thus, computing, or just bounding, the mean and variance would be useful. This is
left as an open problem.

Matrix-Vector Products

The application of the Krylov subspace estimation algorithm to a particular estimation
problem requires the development of an efficient routine for multiplying vectors by the
prior covariance matrix. The development of such routines is an open research problem.
When the prior covariance is stationary, one can use FFTs to implement the matrix-
vector products, as was done for the results in this thesis. Moreover, if the process
is stationary in local regions, one may be able to use local cosine bases to implement
the matrix-vector products, using the decomposition in [53]. If the prior is truly non-
stationary, developing a routine for computing matrix-vector products is much more
challenging.

Preconditioning

Preconditioning can accelerate the convergence of the Krylov subspace estimation algo-

rithm. A methodology for developing effective preconditioners is an open research topic,

however. The simple preconditioners discussed in this thesis were not developed in a

methodical fashion, and the performance could be much improved upon. Developing

effective preconditioners is especially important for estimation problems with spatial

priors since there may be many repeated or clustered eigenvalues as a consequence of

the covariance having some type of invariance (e.g. it may be isotropic).
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Data Sets

The Krylov subspace estimation algorithm can be applied to the processing of many
different types of data. Determining to what types of data the algorithm can be ap-
plied is another open research topic. One type of data that the algorithm may be
especially suited for processing is hyperspectral imagery [41]. Hyperspectral imagery
consists of electromagnetic intensity measurements typically taken over 2-dimensional
fields (such as a patch of the earth) - Associated with each pixel in the image is a vector
of measurements (typically in the hundreds). The elements of the measurement vector
at a pixel are measurements of electromagnetic intensity taken over disjoint narrow
spectral bands for a small patch in the 2-dimensional field. Processing hyperspectral
imagery often requires data reduction because of the large volumes of data. Thus, the
Krylov subspace estimation algorithm may be well suited to estimating quantities from
hyperspectral imagery.

0 7.2.2 Space-Time Estimation

Numbers Of Iterations for Predict and Update Steps

One of the observations acquired from repeatedly running the Krylov subspace al-
gorithms for space-time estimation is that the total computational error tends to be
dominated by the approximations made at only one of the following three recursive
steps: predicting, updating, or smoothing. Thus, the Krylov subspace algorithms for
filtering and smoothing may do more work than is necessary to get the desired level of
computational accuracy, depending on the stopping criteria used. For example, if the
Krylov subspace algorithm for Kalman filtering is run to obtain excellent prediction ap-
proximations but only moderately accurate update approximations, extra work is being
done at the prediction steps with no gain in overall accuracy of the filtered estimates
and error variances. Hence, one would like to know how to specify stopping criteria
for each step so as to minimize the total number of iterations, summed over time and
steps. Some analysis is done in Section 5.2.1. However, one would like a more complete
set of guidelines.

Nonlinear Time Dynamics

Although the space-time estimation problems considered in Chapter 5 are linear, there
are many space-time estimation problems that involve nonlinear dynamics. In partic-
ular, most of the problems in meteorology and oceanography have a nonlinear compo-
nent. If a nonlinear space-time estimation problem can be approximately solved with
an extended Kalman filter, however, one may be able to adapt the Krylov subspace
techniques for space-time estimation to approximately solve the nonlinear estimation
problem. Specifically, the extended Kalman filter computes a sequence of filtered esti-
mates by solving a set of linear estimation problems arising from linearized dynamics.
Each of these linear estimation problems could be approximated using the Krylov sub-
space techniques in Chapter 5. However, the approximation errors may grow quickly in
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time depending on the nonlinear dynamics in the space-time estimation problem. The
feasibility of such a Krylov subspace approach is a topic for future research.

Statistics of the Noise Driving Rossby Waves

The statistics of the noise driving Rossby waves in the model of Section 5.5.2 are derived
from altimeter data of sea surface height. These data capture physical phenomena
occurring at a wide range of spatial and temporal scales. One would like to alter the
statistics of the driving noise so that the resulting model is only accounting for Rossby
waves at specified spatial and temporal scales. The result of altering the statistics
should be a less complex model that would allow the Krylov subspace algorithms for
space-time estimation to process more data for the same computational effort. How to
develop -appropriate statistics is an open question.

0 7.2.3 Lyapunov Theory for Infinite-Dimensional Linear Systems

Converses

Chapter 6 introduces a Lyapunov theory for infinite-dimensional linear systems. Specif-
ically, Theorems 6.3.1 and 6.5.1 detail sufficient conditions for a linear system to be,
respectively, strongly and weakly stable. Most other Lyapunov theorems in the litera-
ture have converses. That is, the conditions are not only sufficient but also necessary,
under mild restrictions. Theorems 6.3.1 and 6.5.1 may also have converses. To prove
these, however, one may need to restrict the notions of stability. Specifically, one may
need to consider systems that are not only strongly or weakly stable but also have state
trajectories, z(t), that sum absolutely so that

llz(-r)ll < 00 (7.1)

or

(z (-r), Z') I < 00 Vz" (7.2)

respectively. Formulating detailed converses and proving them is left for future research.

Continuous-Time Theory

All of the results in Chapter 6 are for the discrete-time setting. Versions of all of these

results may exist in a continuous-time setting. However, the proofs would become much

more technical. In particular, the type of derivative would need to be specified. The

natural derivative may be the weak one, i.e. the derivative i(t) of the function z(t) is

the vector that satisfies

d
(t), Z') - (z (t), z Vz (7-3)

dt

As for the converse theorems, formulating detailed continuous-time theorems, and prov-

ing them is left for future research.
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Robustness of Space-Time Filters

In this thesis, the stability of space-time filters has motivated the study of general
infinite-dimensional linear systems. The theory developed in this thesis establishes the
stability of a class of space-time filters. A stable system, in this analysis, refers to one
whose unforced state tends to zero irrespective of the initial condition. However, one
is also interested in the robustness of space-time filters. Specifically, one is interested
in determining whether the state, when driven by bounded perturbations, remains
bounded over all time. One may be able to establish robustness using the stability
theory developed in this thesis. How to do this is an open problem.
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Appendix A

Proof of Convergence for the Block
Krylov Subspace Estimation

Algorithm

The proof of the block Krylov subspace estimation algorithm convergence result, The-
orem 3.4-1, is almost the same as for the standard Krylov subspace estimation algo-
rithm convergence result, Theorem 3.3-1. The primary difference is in the bound on
11 (I - 7ri)uj 11, the norm of the residual of the projection of the eigenvector uj onto the ith
Krylov subspace. For the standard Krylov subspace estimation algorithm, the bound is
given by Theorem 3.5. L Saad generalized Theorem 3.5.1 to the block case [70, Theorem
5]. -

0 A.1 Angles Between Eigenspaces and Krylov Subspaces

In the generalization of Theorem 3.5.1, there is the need to define and redefine some
notation. In particular, the projection operators 7ri, for the block case, project onto the
ith Krylov subspace, )C(AY, S, i), of dimension ir. The vector fti is the vector in S such
that

(iti, Uj) = Jij for j = i, i + 1, . . . , i + (A. 1)

That is, f1i is the residual of projecting ui onto S and orthogonalizing it against the
proj ections Of Ui+ 1, Ui+r - 1:

1�i 0C 7r, Ui - Ui (UT Ui) '71 Ui (A.2)

where

Ui (-IrlUi+l -7rlUi+,-l,) (A.3)

and
11f i)T U, (UT T

till 117rlU,112 (,7rU" i Ui) Ui 7rJUi. (A. 4)
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(Note that Ilftill may get very large if the projections of r consecutive eigenvectors

onto S get close together.) Using this notation, one can write the generalization of

Theorem 3.5-1, as follows.

Theorem A.I.I. Let -y, be defined by (3.51), and Kj by

\Y'i-,Y,- if j ZA IKj (A-5)

where di is the set of indices of the first j - 1 distinct eigenvalues. Then,

11 (1, - 70 Uj II < 2Kj II ui

117riUjIF- - '-j (A-6)

Theorem A.1.1, like Theorem 3.5.1, provides a bound on II(I - 7ri)ujII/II7riujJJ, the
tangent of the angle between the Krylov subspace K(Ay, S, i) and the eigenvector uj.

This bound in (A.6) has three components. The rate of decay as i increases is given

by -y,. The constant in the numerator, 2Kj, depends on the distribution of distinct

eigenvalues as specified by (A.5). The third term, Ilui - fLjII depends on the starting

matrix S, as already discussed.

N A.2 Proof of Convergence for the Block Case

Now, the proof in Section 3.3 of Theorem 3.3.1, establishing convergence for the stan-

dard Krylov subspace estimation algorithm, extends to the block case with minimal

changes. First, each of Propositions 3.5.1 and 3.5.2 holds for the block case; only the

meaning of 7ri has changed. Moreover, Proposition 3.5.3 also holds in the block case

with 1/117ruj 112 replaced by IIUj _ fLjII2. The bound on Kj in Proposition 3.5.5 also

extends to the block case, but the proof is slightly different; so it is stated separately

here.

Proposition A.2.1. There exists a function K(v) which is continuous and monoton-

ically decreasing from infinity to one as v ranges from zero to infinity and satisfies

Kj < K(Asep)- (A. 7)

Proof.

Ayk - Ayj

Ayk - Ay,-
kEdj (A.8)

I k

1 + Asep,+
kEdj

where the inequality follows from Condition 5 of Theorem 3.4-1. The remainder of the

proof is the same as that of Proposition 3.5-5.
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Now, the inequalities in Section 3.5.3 that finish the proof of Theorem 3.3.1 also
finish the proof of Theorem 3.4.1. However, M, must be replaced by

max IIUj - ftj 11 (A.9)
I<j<_ y3

Proposition 3.5.6 establishes a n extreme value result that shows that the statistics of
M, depend only on the eigenvalue decay rates and not on the size of the problem. No
similar result exists for (A.9) since ftj is a very complicated random variable. Thus, the
constant q appearing in Theorem 3.4.1 may depend on problem size resulting in a strong
dependence on the starting matrix S for large problems. This was never observed in
numerical results, however. Thus, a conjecture is that (A.9) is a well-behaved extremum
that converges in distribution with increasing m for constant eigenvalue decay rates.
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Appendix B

Orthogonalization Techniques

For each of the algorithms presented in this thesis, a Lanczos iteration, given by (3.10)-
(3-13), is used to compute orthonormal bases, f qj, - -. , qk 1, for the Krylov subspaces
�C(Ayl s, k). Unfortunately, the Lanczos iteration has some poor numerical properties.
In particular, the bases tend to lose their orthogonality as k increases in finite-precision
arithmetic. A variety of schemes have been proposed for altering the Lanczos iteration
so as to maintain orthogonality of the qj [17,18,61,62,64,65]. Full orthogonalization
is discussed briefly in Sections 3.1 and 3.4.2. The presentation is expanded upon here,
and a second scheme, selective orthogonalization is also put forth. These two schemes
are the ones that have been used to generate the results in this thesis. The discussion
of these schemes is followed by the details of a test used to detect loss of orthogonality
(breakdown) in the context of the statistical applications addressed in this thesis.

N B.1 Full Orthogonalization

The simplest orthogonalization technique is to remove components of qj, qk from
hk between the computations in (3.11) and (3.12). Specifically,

]T
hk := hk - [q, ... qk] [q, ... qk hk (B. 1)

where denotes reassignment. The qi, themselves, are not reorthogonalized since it
is assumed that the Lanczos iteration with the added full orthogonalization step (B.1)
will yield bases that remain orthogonal. The technique tends to work very well. The
additional number of multiplications required by the kth step is approximatel 'mk 2 for
qi E Wn.

This technique extends to the block case. The block Lanczos iteration is given
by (3.43)-(3.45). Full orthogonalization consists of subtracting out components of
Q1, Qk from Hk'as follows:

] T Hk.
Hk := Hk - [Q1 ... Qk] [Q1 ... Qk (B.2)

Pull orthogonalization is the only method used in this thesis to guarantee orthogonality
in the block algorithm.

Full orthogonalization is only slightly different for left- and right-preconditioned
systems. The difference is a consequence of the different inner-products being used

145
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to formulate the preconditioned algorithms. For a preconditioning transformation B,
T TB)-1 inner-B B inner-products are used in right-preconditioned algorithms, and (B

products are used in left-preconditioned algorithms. The following focuses on right-
preconditioned standard Lanczos iterations; although all of the concepts extend to the
left-preconditioned and block forms of the algorithm.

Recall that the right-preconditioned Lanczos iteration is given by (3-32)-(3.37). Full
orthogonalization is performed between steps (3.33) and (3.34) as follows:

hk := hk - [q, ... qk] [q, ... qk] Tdk (B.3)

where dk = B TBhk. For the preconditioned algorithm, one must recompute dk by
either performing an additional orthogonalization or B T B matrix-vector product. The
recomputation is necessary because dk is used in a subsequent Lanczos step. The
additional orthogonalization would be performed as follows:

T
dk := dk - [tj ... tk] [q, qk dk (B.4)

Twhere ti = B Bqi. Note that this second orthogonalization requires an additional
mk 2 /2 multiplies at step k for qi G R' as compared to ppmk multiplies for an additional
matrix-vector product. The more efficient approach depends on Mp and the number of
iterations required. If k grows with the problem size, however, computing the additional
matrix-vector product is asymptotically more efficient; so this approach is assumed
when calculating computational complexity in the thesis.

Thus, one can use full orthogonalization to guarantee numerical stability of the
Lanczos iteration and any of the preconditioned block variants.

0 B.2 Selective Orthogonalization

One may not need to orthogonalize the hk against all of the qi for i 1, k. In
exact arithmetic, the hk would be orthogonal to each of the qi, and in finite-precision
arithmetic', the hk are orthogonal to a significant subspace of the span of the qi. This
subspace is specified by the following theorem due to Paige [64, Section 13-4].

Theorem B.2.1. At step k of the standard Lanczos iteration (without orthogonaliza-
tion) given by let Tk QT AyQk be the tri-diagonalization of Ay, and letk
si be the eigenvectors of Tk. Then,

(Qk Sj qk+l < gi (B.5)
Oki

where Oki = OkSki and gi is a floating point. error.

Theorem B.2.1 provides bounds on the inner products between the next Lanczos
vector qk+l and vector s in the span of the columns Of Qk in terms of the computable
quantities Oki and an unknown floating point error gi. Although there exist bounds on
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the gi, Parlett notes that these bounds are not tight but that typically gi is of the order
of Eflo,,t 11 Ay 11 where afloat is the floating point precision for the computations [64, p. 268].

One can use Theorem B.2.1 to determine those linear combinations of the qi that
need to be removed from hk c< qk+1 at each step. Specifically, let

Ok i E f 1, . . . , k I : JOki I < Eorth N�Efloat Omax (B.6)

where,8ki and afloat are as in Theorem B-2-11 Om,,,, is the maximum eigenvalue of Tk and
serves as an approximation to 11AY111 and Eoth is a parameter of the algorithm. Then,
Ok indexes linear combinations Qk8i that need to be removed from hk between steps
(3.11 and (3.12):

hk hk - E (Qk Si) (Qk 8,)Thk- (B.7)

iEOk

One can also use selective orthogonalization with the preconditioned Lanczos iterations.
In the case of right preconditioning, this amounts to deflating hk between steps (3-33)
and (3.34) by

hk := hk - Y, (Qk8i) (Qk sJ dk (B -8)

iE0k

where Ok is the same as in (B.6); although, Oma,, now serves as an approximation to
IIAYIIBTB. The validity of this technique follows from a straightforward extension of
Theorem B.2.1, as follows.

Theorem B.2.2. At step k of the preconditioned Lanczos iteration (without orthogo-
nalization) given by (3-32)- (3.37), let Tk = QTB T BAvB TBQk be the tri-diagonalizationk
of B TBA B TB, and let Si be the eigenvector's of Tk- Then,y

(Qk SJ BTBqk+l < gi (B.9)
Oki

where Oki = OkSki and gi is a floating point error.

As in Theorem B.2.1, the bound in Theorem B.2.2 is in terms of a computable
quantity, Oki and an unknown floating point error. Although no extensive study of the
properties of i has been made, gi is conjectured to be of the order of -fl,,,,tllAyIIBTB
in analogy to the assumptions concerning floating point error for the standard Lanczos
iteration. Also note that Theorem B.2.2 is specific to right preconditioning, but a
similar result holds for left preconditioning.

Selective orthogonalization is particu larly advantageous when convergence of the
Krylov subspace algorithms is slow. This follows from the fact that, in exact arithmetic
for the standard Lanczos iteration,

JJAyQkSi OiQkSi11 10kil (B. 1 0)
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where Oi is the ith eigenvalue of Tk [64, p. 266]. In other words, a newly computed hk

will not be orthogonal to large fractions of the kth Krylov subspace if and only if almost
k eigenvectors of Ay are well-approximated in that Krylov subspace. The latter holds
when convergence is rapid. Thus, selective orthogonalization offers advantages when
convergence is slow. The same is true for the preconditioned algorithms since (B.10)
generalizes. In particular, for the right-preconditioned algorithm,

JjAy (BTB) QkSi - OiQkSiIIBTB = PO (B. 1 1)

Although selective orthogonalization can be very advantageous, it also has a dis-
advantage. Namely, the qj may lose orthogonality after many iterations because the
orthogonalization is not being done precisely enough. This is usually not an issue,
though, when striving for only moderately low levels of error, on the order of a few per
cent.

M B.3 Breakdown Test

The Lanczos iteration may breakdown even if an orthogonalization sch6ne is used. This
is especially true.in the estimation setting when the Krylov subspaces are generated
by the covariance of the data Ay, which is often a shifted matrix, i.e. of the form

2IAy = A, + a for some covariance A,. When the eigenvalues of the signal covariance,
A, fall off rapidly, A, may be effectively low-rank in finite-precision arithmetic. In
particular, the Krylov subspaces generated by AY may effectively include the column
space of A,, at some Krylov subspace dimension k < m. If the Lanczos iteration is
continued past this point, the algorithm will generate results dominated by roundoff
error. Thus, one must use a test to determine when this situation has occurred.

A simple test used for the results in this thesis can be described as follows. Recall
that for the standard Lanczos recursion, AyQk QkTA, where Tk is the tri-diagonal
matrix,

al 02

82 a2

Tk (B. 12)

Ok

A ak)

whose entries axe given by (3.10)-(3.13). Now, the column space of A, is contained in

the kth Krylov subspace if Ayqk cc qk, i.e. if Ok ,z:� 0 relative to the norm of Tk. Thus,

the Krylov subspace algorithms for estimation presented in this thesis are terminated

if

6k+l
Omax < EbreakdownEfloat (B. 13)
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where 0,,,,, is the maximum eigenvalue of Tk, eflo,,,t is the floating point precision, and
Ebreakdown is a parameter of the algorithm. The same test can be used for the precon-
ditioned and block (with 1IRk+111 replacing Ok+j) forms. For all of the results in this
thesis, Ebreakd , was set to 10.

M BA Summary

Both full and selective orthogonalization were used to generate results in this thesis.
However, selective orthogonalization for Eorth = 200 was used for most results. Unless
otherwise noted, this was the technique used. The breakdown test of the previous
section for Ebreakdown 10 was employed throughout the th i
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