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Abstract

The focus of this thesis is approximate inference in Gaussian graphical models.
A graphical model is a family of probability distributions in which the structure of
interactions among the random variables is captured by a graph. Graphical models
have become a powerful tool to describe complex high-dimensional systems specified
through local interactions. While such models are extremely rich and can represent a
diverse range of phenomena, inference in general graphical models is a hard problem.

In this thesis we study Gaussian graphical models, in which the joint distribution
of all the random variables is Gaussian, and the graphical structure is exposed in the
inverse of the covariance matrix. Such models are commonly used in a variety of fields,
including remote sensing, computer vision, biology and sensor networks. Inference in
Gaussian models reduces to matrix inversion, but for very large-scale models and for
models requiring distributed inference, matrix inversion is not feasible.

We first study a representation of inference in Gaussian graphical models in terms
of computing sums of weights of walks in the graph – where means, variances and corre-
lations can be represented as such walk-sums. This representation holds in a wide class
of Gaussian models that we call walk-summable. We develop a walk-sum interpretation
for a popular distributed approximate inference algorithm called loopy belief propaga-
tion (LBP), and establish conditions for its convergence. We also extend the walk-sum
framework to analyze more powerful versions of LBP that trade off convergence and
accuracy for computational complexity, and establish conditions for their convergence.

Next we consider an efficient approach to find approximate variances in large scale
Gaussian graphical models. Our approach relies on constructing a low-rank aliasing
matrix with respect to the Markov graph of the model which can be used to compute
an approximation to the inverse of the information matrix for the model. By designing
this matrix such that only the weakly correlated terms are aliased, we are able to
give provably accurate variance approximations. We describe a construction of such
a low-rank aliasing matrix for models with short-range correlations, and a wavelet-
based construction for models with smooth long-range correlations. We also establish
accuracy guarantees for the resulting variance approximations.

Thesis Supervisor: Alan S. Willsky
Title: Professor of Electrical Engineering and Computer Science
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Notational Conventions

Symbol Definition

General Notation

| · | absolute value

xi the ith component of the vector x

Xij element in the ith row and jth column of matrix X

(·)T matrix or vector transpose

(·)−1 matrix inverse

det(·) determinant of a matrix

tr(·) trace of a matrix

R real numbers

R
N vector space of real-valued N -dimensional vectors

I identity matrix

p(x) probability distribution of a random vector x

pi(xi) marginal probability distribution of xi

p(x | y) conditional probability distribution of x given y

E[·] expected value

Ex[·] expected value, expectation is over p(x)

%(·) spectral radius of a matrix

Graph theory

G undirected graph

V vertex or node set of a graph

E edge set of a graph

|V | number of nodes, i.e. cardinality of the set V

2V set of all subsets of V

A\B set difference

V \i all vertices except i, shorthand for V \{i}
{i, j} an undirected edge in a graph (unordered pair)

(i, j) a directed edge (ordered pair)

N (i) set of neighbors of node i

H hypergraph

F the collection of hyperedges in a hypergraph

5



6 NOTATIONAL CONVENTIONS

Symbol Definition

Graphical models

ψi single-node potential

ψij edge potential

ψF factor potential

Z normalization constant

F factor, a subset of nodes

xF subvector of x index by elements of F

mi→j message from i to j in BP

mA→i, mi→A messages in factor graph version of BP

∆Ji→j , ∆hi→j messages in Gaussian BP

∆JA→i, ∆hA→i messages in Gaussian FG-LBP

T
(n)
i n-step LBP computation tree rooted at node i

T
(n)
i→j n-step LBP computation tree for message mi→j

N (µ, P ) Gaussian distribution with mean µ and covariance P

J Information matrix for a Gaussian distribution

h potential vector for a Gaussian distribution

JF a submatrix of J indexed by F

[JF ] JF zero-padded to have size N × N

λmin(J) smallest eigenvalue of J

rij partial correlation coefficient

Walk-sums

R partial correlation matrix

R̄ matrix of elementwise absolute values of R

w a walk

w : i → j set of walks from i to j

w : ∗ → j set of walks that start anywhere and end at j

w : i
l→ j set of walks from i to j of length l

φ(w) weight of a walk

W a collection of walks

W(i → i) self-return walks

W(i
\i→ i) single-revisit self-return walks

W(∗ \i→ i) single-visit walks
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Symbol Definition

walk-sums (continued)

φ(W) walk-sum

φ(i → i) self-return walk-sum

φh(W) input reweighted walk-sum

R
(n)
i partial correlation matrix for computation tree T

(n)
i

%∞ limit of the spectral radius of R
(n)
i

QG set of block-orthogonal matrices on G

SG set of block-invertible matrices on G

φ̄k a matrix of absolute walk-sums for walks of length k

Low-rank variance approximation

P̂ approximation of P

Pi ith column of P

vi ith standard basis vector

BBT low-rank aliasing matrix

B a spliced basis

bi ith row of B corresponding to node i

Bk kth column of B

Rk solution to the system JRk = Bk

σi random sign for node i

E error in covariance, P̂ − P

C(i) set of nodes of the same color as i

V ar(·) variance of a random variable

φs,k(t) kth wavelet function at scale s

ψs,k(t) kth scaling function at scale s

W a wavelet basis
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Chapter 1

Introduction

Analysis and modeling of complex high-dimensional data has become a critical research
problem in the fields of machine learning, statistics, and many of their applications.
A significant ongoing effort has been to develop rich classes of statistical models that
can represent the data faithfully, and at the same time allow tractable learning, esti-
mation and sampling. Graphical models [13,35,78,83] constitute a powerful framework
for statistical modeling that is based on exploiting the structure of conditional indepen-
dence among the variables encoded by a sparse graph. Certain examples of graphical
models have been in use for quite a long time, but recently the field has been gaining
momentum and reaching to an ever increasing and diverse range of applications.

A graphical model represents how a complex joint probability distribution decom-
poses into products of simple local functions (or factors) that only depend on small
subsets of variables. This decomposition is represented by a graph: a random variable
is associated with each vertex, and the edges or cliques represent the local functions. An
important fact that makes the framework of graphical models very powerful is that the
graph captures the conditional independence structure among the random variables. It
is the presence of this structure that enables the compact representation of rich classes
of probability models and efficient algorithms for estimation and learning. The applica-
tions of graphical models range from computer vision [51,100,121], speech and language
processing [14, 15, 114], communications and error control coding [29, 52, 55, 91], sensor
networks [24, 66, 96], to biology and medicine [54, 84, 137], statistical physics [93, 104],
and combinatorial optimization [94, 112]. The use of graphical models has led to revo-
lutionary advances in many of these fields.

The graph in the model is often specified by the application: in a genomic applica-
tion the variables may represent expression levels of certain genes and the edges may
represent real biological interactions; in computer vision the nodes may correspond to
pixels or patches of an image and the edges may represent the fact that nearby nodes
are likely to be similar for natural images. The graph may also be constructed for
the purpose of efficiency: e.g., tree-structured and multiscale models allow particularly
efficient estimation and learning [33,135]. In this case nodes and edges may or may not
have direct physical meaning. The use of graphical models involves a variety of tasks –
from defining or learning the graph structure, optimizing model parameters given data,
finding tractable approximations if the model is too complex, sampling configurations

15
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G = (V, E)

B

C

A

Figure 1.1. Markov property of a graphical model: graph separation implies conditional independence.

of the model, and finally doing inference – estimating the states of certain variables
given possibly sparse and noisy observations. In this thesis we focus mostly on the last
problem – doing inference when the model is already fully defined. This is an important
task in and of itself, but in addition inference can also be an essential part of learning
and sampling.

Graphical models encompass constructions on various types of graphs (directed and
undirected, chain-graphs and factor-graphs), and in principle have no restrictions on the
state-space of the random variables – the random variables can be discrete, continuous,
and even non-parametric. Of course, with such freedom comes responsibility – the most
general form of a graphical model is utterly intractable. Hence, only certain special cases
of the general graphical models formalism have been able to make the transition from
theory into application.

¥ 1.1 Gaussian Graphical Models

In this thesis we focus on Gaussian graphical models, where the variables in the model
are jointly Gaussian. Also, for the most part we restrict ourselves to Markov random
fields (MRF), i.e. models defined on undirected graphs [110]. We will use acronyms
Gaussian graphical model (GGM) and Gaussian Markov random field (GMRF) inter-
changeably. These models have been first used in the statistics literature under the
name covariance selection models [43, 115]. A well-known special case of a GGM is a
linear state-space model – it can be represented as a graphical model defined on a chain.

As for any jointly Gaussian random variables, it is possible to write the probability
density in the conventional form:

p(x) =
1

√

(2π)N det(P )−1
exp(−1

2
(x − µ)T P−1(x − µ)) (1.1)

where the mean is µ = E[x], and the covariance matrix is P = E[xxT ]. What makes the
GGM special is a structure of conditional independence among certain sets of variables,
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Figure 1.2. (a) A GMRF on a grid graph. (b) A sample from the GMRF.

also called the Markov structure, which is captured by a graph. Given a Markov graph
of the model the conditional independence relationships can be immediately obtained.
Consider Figure 1.1. Suppose that removing a set of nodes B separates the graph into
two disconnected components, A and C. Then the variables xA and xC (corresponding
to nodes in A and C) are conditionally independent given xB. This generalizes the
well-known property for Markov chains: the past is independent of the future given
the current state (removing the current state separates the chain into two disconnected
components).

For GGM the Markov structure can be seamlessly obtained from the inverse covari-
ance matrix J , P−1, also called the information matrix. In fact, the sparsity of J
exactly matches the Markov graph of the model: if an edge {i, j} is missing from the
graph then Jij = 0. This has the interpretation that xi and xj are conditionally inde-
pendent given all the other variables in the model. Instead of (1.1) we will extensively
use an alternative representation of a Gaussian probability density which reveals the
Markov structure, which is parameterized by J = P−1 and h = Jµ. This representation
is called the information form of a Gaussian density with J and h being the information
parameters:

p(x) ∝ exp(−1

2
xT Jx + hT x) (1.2)

GMRF models are used in a wide variety of fields – from geostatistics, sensor net-
works, and computer vision to genomics and epidemiological studies [27, 28, 36, 46, 96,
110]. In addition, many quadratic problems arising in machine learning and optimiza-
tion may be represented as Gaussian graphical models, thus allowing to apply methods
developed in the graphical modeling literature [10,11,128]. To give an example of how
a GMRF might be used we briefly mention the problem of image interpolation from
sparse noisy measurements. Suppose the random variables are the gray-levels at each
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Figure 1.3. Samples from a chain GMRF, and the correlations between the center node and the other
nodes.

of the pixels in the image, and we use the thin-plate model which captures smoothness
properties of natural images (we discuss such models in more detail in Chapter 2). The
Markov graph for the thin-plate model is a grid with connections up to two steps away,
see Figure 1.2 (a). In Figure 1.2 (b) we show a random sample from this model, which
looks like a plausible geological surface. A typical application in geostatistics would try
to fit model parameters such that the model captures a class of surfaces of interest, and
then given a sparse set of noisy observations interpolate the surface and provide error
variances. For clarity we show a one-dimensional chain example in Figure 1.3. In the
top left plot we show a number of samples from the prior, and in the top right plot we
show several conditional samples given a few sparse noisy measurements (shown in cir-
cles). The bottom left plot displays the long correlation in the prior model (between the
center node and the other nodes), and the bottom right plot shows that the posterior
variances are smallest near the measurements.

As we discuss in more detail in Chapter 2 the prior model p(x) specifies a sparse
J matrix. Adding local measurements of the form p(y|x) =

∏

p(yi|xi), the posterior
becomes p(x|y) ∝ p(y|x)p(x). The local nature of the measurements does not change
the graph structure for the posterior – it only changes the diagonal of J and the h-vector.

¥ 1.2 Inference in Gaussian Models

Given a GGM model in information form, we consider the problem of inference (or
estimation) – i.e. determining the marginal densities of the variables given some ob-



Sec. 1.2. Inference in Gaussian Models 19

servations. This requires computing marginal means and variances at each node. In
principle, both means and variances can be obtained by inverting the information ma-
trix: P = J−1 and µ = Ph. The complexity of matrix inversion is cubic in the number
of variables, so it is appropriate for models of moderate size. More efficient recursive
calculations are possible in graphs with very sparse structure—e.g., in chains, trees
and in graphs with “thin” junction trees [83] (see Chapter 2). For these models, belief
propagation (BP) or its junction tree variants [35,103] efficiently compute the marginals
in time linear in the number of variables1. In large-scale models with more complex
graphs, e.g. for models arising in oceanography, 3D-tomography, and seismology, even
the junction tree approach becomes computationally prohibitive. Junction-tree versions
of belief propagation reduce the complexity of exact inference from cubic in the num-
ber of variables to cubic in the “tree-width” of the graph [83]. For square and cubic
lattice models with N nodes this leads to complexity O(N3/2) and O(N2) respectively.
Despite being a great improvement from brute-force matrix inversion, this is still not
scalable for large models. In addition, junction-tree algorithms are quite involved to
implement. A recent method, recursive cavity modeling (RCM) [76], provides tractable
computation of approximate means and variances using a combination of junction-tree
ideas with recursive model-thinning. This is a very appealing approach, but analytical
guarantees of accuracy have not yet been established, and the implementation of the
method is technically challenging. We also mention a recently developed Lagrangian
relaxation (LR) method which decomposes loopy graphs into tractable subgraphs and
uses Lagrange dual formulation to enforce consistency constraints among them [73,75].
LR can be applied to both Gaussian and discrete models, and for the Gaussian case it
computes the exact means and provides upper bounds on the variances.

Iterative and multigrid methods from numerical linear algebra [126, 127] can be
used to compute the marginal means in a sparse GMRF to any desired accuracy, but
these methods do not provide the variances. In order to also efficiently compute vari-
ances in large-scale models, approximate methods have to be used. A wide variety of
approximate inference methods exists which can be roughly divided into variational in-
ference [95,131,136] and Monte Carlo sampling methods [57,108]. In the first part of the
thesis we focus on an approach called loopy belief propagation (LBP) [103,111,133,138],
which iteratively applies the same local updates as tree-structured belief propagation
to graphs with loops. It falls within the realm of variational inference. We now briefly
motivate LBP and tree-structured exact BP. Chapter 2 contains a more detailed pre-
sentation.

1For Gaussian models these methods correspond to direct methods for sparse matrix inversion.
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i mij j

Figure 1.4. BP figure.

¥ 1.3 Belief Propagation: Exact and Loopy

In tree-structured models belief propagation (or the sum-product algorithm) is an exact
message-passing algorithm to compute the marginals2. It can be viewed as a form of
variable elimination – integrating out the variables one by one until just the variable
of interest remains. To naively compute all the marginals, simple variable elimination
would have to be applied for each variable, producing a lot of redundant repeated
computations. Belief propagation eliminates this redundancy by processing all variables
together and storing the intermediate computations as messages. Consider Figure 1.4:
a message mij from i to j captures the effect of eliminating the whole subtree that
extends from i in the direction away from j – this message will be used to compute all
the marginals to the right of node i. By passing these messages sequentially from the
leaves to some designated root and back to the leaves, all marginals can be computed in
O(N) message updates. Message updates can also be done in parallel: all messages are
first initialized to an uninformative value, and are repeatedly updated until they reach
a fixed point. In tree-structured models parallel form of updates is also guaranteed to
converge and provide the correct marginals after a fixed number of iterations.

Variable elimination corresponds to simple message updates only in tree-structured
graphs. In presence of loops it modifies the graph by introducing new interactions
(edges) among the neighbors of the eliminated variables. This can be resolved by
merging variables together until the graph becomes a tree (form a junction tree), but,
as we mentioned, for grids and denser graphs this quickly becomes computationally
intractable.

Alternatively, one could ignore the loops in the graph and still carry out local BP
message updates in parallel until they (hopefully) converge. This approach is called
loopy belief propagation (LBP). LBP has been shown to often provide excellent approx-
imate solutions for many hard problems, it is tractable (has a low cost per iteration)
and allows distributed implementation, which is crucial in applications such as sensor
networks [96]. However, in general it ’double counts’ messages that travel multiple

2A version of belief propagation called max-product also addresses MAP estimation, but for Gaussian
models the two algorithms are essentially the same.
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times around loops which may in certain cases give very poor approximations, and it is
not even guaranteed to converge [101].

There has been a significant effort to explain or predict the success of LBP for both
discrete and Gaussian models: in graphs with long loops and weak pairwise interactions,
errors due to loops will be small; the binary MRF max-product version of loopy belief
propagation is shown to be locally optimal with respect to a large set of local changes
[134] and for the weighted matching problem the performance of LBP has been related
to that of linear programming relaxation [112]; in GMRFs it has been shown that upon
convergence the means are correct [129,133]; sufficient conditions for LBP convergence
are given in [69, 99, 124]; and there is an interpretation of loopy belief propagation
fixed points as being stationary points of the Bethe-free energy [138]. However despite
this progress, the understanding of LBP convergence and accuracy is very limited, and
further analysis is an ongoing research effort. Analysis of LBP using the walk-sum
framework for Gaussian inference [74, 86] is the subject of Chapters 3 and 4 of this
thesis. This analysis provides much new insight into the operation of Gaussian LBP,
gives the tightest sufficient conditions for its convergence, and suggests when LBP may
be a suitable algorithm for a particular application.

There are some scenarios where the use of LBP to compute the variances is less
than ideal (e.g. for models with long-range correlations): either LBP fails to converge
or converges excruciatingly slowly or gives very inaccurate approximations for the vari-
ances. In Chapter 5 we propose an efficient method for computing accurate approximate
variances in very large scale Gaussian models based on low-rank approximations.

¥ 1.4 Thesis Contributions

This thesis makes two main contributions: a graph-theoretic framework for interpreting
Gaussian loopy belief propagation in terms of computing walk-sums and new results on
LBP convergence and accuracy, and a low-rank approach to compute accurate approxi-
mate variances in large-scale GMRF models. We now introduce these two contributions
in more detail.

¥ 1.4.1 Walk-sum Analysis of Loopy Belief Propagation

We first describe an intuitive graphical framework for the analysis of inference in Gaus-
sian models. It is based on the representation of the means, variances and correlations
in terms of weights of certain sets of walks in the graph. This ’walk-sum’ formulation of
Gaussian inference originated from a course project in [72] and is based on the Neumann
series (power-series) for the matrix inverse:

P = J−1 = (I − R)−1 =
∞

∑

k=0

Rk, if ρ(R) < 1. (1.3)

Suppose that J is the normalized (unit-diagonal) information matrix of a GMRF, then
R is the sparse matrix of partial correlation coefficients which has zero-diagonal, but
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the same off-diagonal sparsity structure as J . As we discuss in Chapter 3, taking k-th
power of R corresponds to computing sums of weights of walks of length k. And we
show that means, variances, and correlations are walk-sums (sums of weights of the
walks) over certain infinite sets of walks.

This walk-sum formulation applies to a wide class of GMRFs for which the expansion
in (1.3) converges (if the spectral radius satisfies ρ(R) < 1). However, we are interested
in a stricter condition where the result of the summation is independent of its order
– i.e. the sum over walks converges absolutely. We call models with this property
walk-summable. We characterize the class of walk-summable models and show that it
contains (and extends well beyond) some “easy” classes of models, including models on
trees, attractive, non-frustrated, and diagonally dominant models. We also show that
walk-summability is equivalent to the fundamental notion of pairwise-normalizability.

We use the walk-sum formulation to develop a new interpretation of BP in trees and
of LBP in general. Based on this interpretation we are able to extend the previously
known sufficient conditions for convergence of LBP to the class of walk-summable mod-
els. Our sufficient condition is tighter than that based on diagonal dominance in [133] as
walk-summable models are a strict superset of the class of diagonally dominant models,
and as far as we know is the tightest sufficient condition for convergence of Gaussian
LBP3.

We also give a new explanation, in terms of walk-sums, of why LBP converges to the
correct means but not to the correct variances. The reason is that LBP captures all of
the walks needed to compute the means but only computes a subset of the walks needed
for the variances. This difference between means and variances comes up because of
the mapping that assigns walks from the loopy graph to the so-called LBP computation
tree: non-backtracking walks (see Chapter 3) in the loopy graph get mapped to walks
that are not ’seen’ by LBP variances in the computation tree.

In general, walk-summability is sufficient but not necessary for LBP convergence.
Hence, we also provide a tighter (essentially necessary) condition for convergence of LBP
variances based on a weaker form of walk-summability defined on the LBP computation
tree. This provides deeper insight into why LBP can fail to converge—because the LBP
computation tree is not always well-posed.

In addition to scalar walk-summability we also consider the notions of vector and
factor-graph walk-summability, and vector and factor-graph normalizability. Any Gaus-
sian model can be perfectly represented as a scalar pairwise MRF, but using LBP on
equivalent scalar and factor-graph models gives very different approximations. Using
factor-graph models with larger factors provides the flexibility of being able to trade
off complexity versus accuracy of approximation. While many of our scalar results do

3In related work [97] (concurrent with [86]) the authors make use of our walk-sum analysis of LBP,
assuming pairwise-normalizability, to consider other initializations of the algorithm. Here, we choose
one particular initialization of LBP. However, fixing this initialization does not in any way restrict the
class of models or applications for which our results apply. For instance, the application considered
by [96] can also be handled in our framework by a simple reparameterization. However, the critical
condition is still walk-summability, which is presented in [86].
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Figure 1.5. Aliasing of the covariance matrix in a 2D GMRF model. For large-scale GMRF models
this allows tractable computation of approximate variances.

carry over to these more general conditions, some of the results become more involved
and many interesting open questions remain.

The intuitive interpretation of correlations as walk-sums for Gaussian models begs
the question of whether related walk-sum interpretation exists for other graphical mod-
els. While the power-series origin of the walk-sum expansion (1.3) is limited to Gaussian
models, related expansions (over paths, self-avoiding walks, loops, or subgraphs) have
been developed for other types of models [23,30,49,77,122], and exploring possible con-
nections to Gaussian walk-sums is an exciting direction for further work. In addition,
Gaussian walk-sums have potentials to develop new algorithms which go beyond LBP
and capture more of the variance-walks in loopy graphs. We suggest these and other
directions for further research in Chapter 6 of the thesis.

¥ 1.4.2 Variance Approximation

Error variances are a crucial component of estimation, providing the reliability infor-
mation for the means. They are also useful in other respects: regions of the field where
residuals exceed error variances may be used to detect and correct model-mismatch
(for example when smoothness models are applied to fields that contain abrupt edges).
Also, as inference is an essential component of learning a model (for both parameter
and structure estimation), accurate variance computation is needed when designing and
fitting models to data. Another use of variances is to assist in selecting the location of
new measurements to maximally reduce uncertainty.

We have already discussed the difficulties of computing the variances in large-scale
models: unless the model is ’thin’, exact computations are intractable. The method
of loopy belief propagation can be a viable solution for certain classes of models, but
in models with long-range correlations it either does not converge at all, or gives poor
approximations.

We propose a simple framework for variance approximations that provides theo-
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retical guarantees of accuracy. In our approach we use a low-rank aliasing matrix to
compute an approximation to the inverse J−1 = P . By designing this matrix such that
only the weakly correlated terms are aliased (see Figure 1.5), we are able to give prov-
ably accurate variance approximations. We propose a few different constructions for the
low-rank matrix. We start with a design for single-scale models with short correlation
length, and then extend it to single-scale models with long correlation length using a
wavelet-based aliasing matrix construction. GMRFs with long correlation lengths, e.g.
fractional Gaussian noise, are often better modeled using multiple scales. Thus we also
extend our wavelet based construction to multi-scale models, in essence making both
the modeling and the processing multi-scale.

¥ 1.5 Thesis Outline

We start by providing a more detailed introduction to graphical models and GMRF
models in Chapter 2. We discuss directed and undirected models and factor-graph
formulations, and provide a detailed discussion of LBP and the computation-tree in-
terpretation of LBP. In Chapter 3 we describe the walk-sum framework for Gaussian
inference, and use it to analyze the LBP algorithm for Gaussian models, providing the
best known sufficient conditions for its convergence. In Chapter 4 we generalize the
walk-sum framework to vector and factor-graph models, and extend some of the re-
sults from the scalar ones. We also outline certain combinatorial ideas for computing
walk-sums. In Chapter 5 we move on to describe the low-rank approach to compute
approximate variances in large-scale GMRF models. We first describe the time-domain
short-correlation approach, and then describe the wavelet-based long-range correlation
version. In Chapter 6 we discuss open problems and suggestions for further work.

Bibliographic notes Parts of this thesis are based on our publications [74, 85–88] re-
flecting research done in collaboration with J. Johnson.



Chapter 2

Background

In this chapter we give a brief self-contained introduction to graphical models, includ-
ing factorizations of probability distributions, their representations by graphs, and the
Markov (conditional independence) properties. We start with general graphical models
in Section 2.1, and then specialize to the Gaussian case in Section 2.3. We outline ap-
proaches to inference in graphical models, both exact and approximate. We summarize
exact belief propagation on trees and the junction tree algorithm in Section 2.2, and
the approximate loopy belief propagation on general graphs in Section 2.2.2.

¥ 2.1 Preliminaries: Graphical Models

In this Section we formalize the concept of a graphical model, describe several types of
graphical model such as MRFs, factor graphs and Bayesian networks, their graphical
representation, and the implied conditional independence properties. First we briefly
review some basic notions from graph theory [8, 12,16], mainly to fix notation.

¥ 2.1.1 Graph Theory

A graph G = (V, E) is specified as a collection of vertices (or nodes) V together with a
collection of edges E ⊂ V ×V , i.e. E is a subset of all pairs of vertices. In this thesis we
mostly deal with simple undirected graphs, which have no self-loops, and at most one
edge between any pair of vertices. For undirected edges we use the set notation {i, j}
as the ordering of the two vertices does not matter. Unless we state otherwise, we will
assume by default that all edges are undirected. In case we need to refer to directed
edges we use the ordered pair notation (i, j).

The neighborhood of a vertex i in a graph is the set N (i) = {j ∈ V | {i, j} ∈ E}.
The degree of a vertex i is its number of neighbors |N (i)|. A graph is called k-regular
if the degree of every vertex is k. A subgraph of G is a graph Gs = (Vs, Es), where
Vs ⊂ V , and Es ⊂ Vs × Vs. We also say that G is a supergraph of Gs and that Gs is
embedded in G. A clique of G is a fully connected subgraph of G, i.e. C = (Vs, Es) with
every pair of vertices connected: i, j ∈ Vs ⇒ {i, j} ∈ Es. A clique is maximal if it is
not contained within another clique. A walk w in a graph G is a sequence of vertices
w = (w0, w1, ..., wl), wi ∈ V , where each pair of consequent vertices is connected by an
edge, {wi, wi+1} ∈ E . The length of the walk is the number of edges that it traverses;

25
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the walk w in our definition has length l. A path is a walk where all the edges and all
the vertices are distinct. A graph is called connected if there is a path between any two
vertices. The diameter of a graph diam(G) is the maximum distance between any pair
of vertices, where distance is defined as the length of the shortest path between the pair
of vertices.

A chain is a connected graph where two of the vertices have one neighbor each, and
all other vertices have two neighbors. A cycle is a connected graph, where each vertex
has exactly two neighbors. A tree is a connected graph which contains no cycles as
subgraphs. A graph is called chordal if every cycle of the graph which has length 4 or
more contains a chord (an edge between two non-adjacent vertices of the cycle). The
treewidth of a graph G is the minimum over all chordal graphs containing G of the size
of the largest clique in the chordal graph minus one. As we explain later, treewidth of
a graph is a measure of complexity of exact inference for graphical models.

A hypergraph H = (V,F) is a generalization of an undirected graph which allows
hyper-edges F ∈ F connecting arbitrary subsets of vertices, rather than just pairs of
vertices. Here F ⊂ 2V is a collection of hyper-edges, i.e. arbitrary subsets of V .

¥ 2.1.2 Graphical Representations of Factorizations of Probability

Graphical models are multivariate statistical models defined with respect to a graph.
The main premise is that the joint density of a collection of random variables can be
expressed as a product of several factors, each depending only on a small subset of the
variables. Such factorization induces a structure of conditional independence among
the variables. The graph encodes the structure of these local factors, and, importantly,
it gives a very convenient representation of the conditional independence properties,
thus enabling efficient algorithms which have made graphical models so popular.

There are various ways to use graphs to represent factorizations of a joint density
into factors: Bayesian networks are based on directed graphs [35, 71], Markov random
fields (MRF) are based on undirected graphs [9, 28, 110], and factor graphs [82] use
hypergraphs (encoded as bipartite graphs with variable and factor nodes). We now
describe these graphical representation of factorization, and how they relate to condi-
tional independence properties of the graphical model. We focus on factor graph and
MRF representation first, and later comment on their relation to the directed (Bayesian
network) representation.

Suppose that we have a vector of random variables, x = (x1, x2, ..., xN ) with
discrete or continuous state space xi ∈ X . Suppose further that their joint density
p(x) can be expressed as a product of several positive functions (also called factors or
potentials1) ψF ≥ 0, indexed by subsets F ⊂ {1, .., N} over some collection F ∈ F .
Each of the functions ψF only depends on the subset of random variables in F , i.e.

1To be precise, it is actually the negative logarithms of ψF that are usually referred to as potentials
in the statistical mechanics literature. We abuse the terminology slightly for convenience.
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Figure 2.1. An undirected graph representation and two possible factor graphs corresponding to it.
See Exaple 1 for an explanation.

ψF = ψF (xF ), where we use xF to denote the variables in F , i.e. xF = {xi, i ∈ F}:

p(x) =
1

Z

∏

F∈F
ψF (xF ), F ∈ F . (2.1)

Z is a normalizing constant, also called the partition function, which makes p(x) in-
tegrate (or sum) to 1, Z =

∑

x

∏

F∈F ψF (xF ), F ∈ F . Typically the factors ψF

depend only on a small subset of variables, |F | ¿ |V |, and a complicated probability
distribution over many variables can be represented simply by specifying these local
factors.

A factor graph summarizes the factorization structure of p(x) by having two sets of
vertices: variable-nodes Vv = {1, ..., N} and factor-nodes Vf = {1, ..., |F|}. The graph
has an edge between a variable-node i ∈ Vv and a factor-node F ∈ Vf if i ∈ F , i.e. if
ψF does depend on xi. The factor graph has no other edges2. Two examples with 4
variables are displayed in Figure 2.1, middle and right plots, with circles representing
variables and squares representing the factors.

Another way to encode the structure of p(x) is using undirected graphs, G = (V, E),
which is referred to as the Markov random field (MRF) representation. Each vertex i
corresponds to a random variable xi, and an edge {i, j} appears between nodes i and j
if some factor ψF depends on both xi and xj . It is clear that each subset F ∈ F of nodes
is a clique in G. Thus instead of using special factor-nodes, an MRF representation
encodes factors by cliques. However, the representation is somewhat ambiguous as
some cliques may not correspond to a single factor but to several smaller factors, which
together cover the clique. Hence, the fine details of the factorization of p(x) in (2.1)
may not be exposed just from the undirected graph and only become apparent using a
factor graph representation. We explain these ideas in Example 1 below. The undirected
graph representation is however very convenient in providing the Markov (conditional
independence) properties of the model.

The mapping from the conditional independence properties of an MRF model to the
structure of the graph comes from the concept of graph separation. Suppose that the

2A factor graph is bipartite: the vertices are partitioned into two sets Vv and Vf , and every edge
connects some vertex in Vv to a vertex in Vf .
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set of nodes is partitioned into three disjoint sets V = A ∪B ∪C. Then B separates A
from C if any path from a vertex in A to a vertex in C has to go through some vertex in
B. A distribution p(x) is called Markov with respect to G if for any such partition, xA

is independent of xC given xB, i.e. p(xA, xC |xB) = p(xA|xB)p(xC |xB). The connection
between factorization and the Markov graph is formalized in the theorem of Hammersley
and Clifford (see [21,59,83] for a proof):

Theorem 2.1.1 (Hammersley-Clifford Theorem). If p(x) = 1
Z

∏

F∈F ψF (xF ) with
ψF (xF ) ≥ 0, then p(x) is Markov with respect to the corresponding graph G. Conversely,
if p(x) > 0 for all x, and p(x) is Markov with respect to G, then p(x) can be expressed
as a product of factors corresponding to cliques of G.

Example 1 To illustrate the interplay of density factorization, Markov properties and
factor graph and MRF representation, consider the undirected graph in Figure 2.1 on
the left. The graph is a 4-node cycle with a chord. The absence of the edge {2, 4} implies
that for any distribution that is Markov with respect to G, x2 and x4 are independent
given x1 and x3. However, x2 and x4 are not independent given x1 alone, since there is
a path (2, 3, 4) which connects them, and does not go through x1.

The graph has two maximal cliques of size 3: {1, 2, 3}, and {1, 3, 4}, and five cliques
of size 2: one for each of the edges. By Hammersley-Clifford theorem, any distri-
bution that is Markov over this graph is a product of factors over all the cliques.
However, for a particular distribution some of these factors may be trivially equal to
1 (and can be ignored). Hence, there may be a few different factor graphs associ-
ated with this graph. Two possibilities are illustrated in Figure 2.1, center plot, with
p(x) = ψa(x1, x2)ψb(x2, x3)ψc(x3, x4)ψd(x1, x4)ψe(x1, x3), and right plot with p(x) =
ψf (x1, x2, x3)ψg(x1, x3, x4). The variable-nodes are denoted by circles, and the factor-
nodes are denoted by squares. The example shows that the undirected representation
is useful in obtaining the Markov properties, but a factor graph can serve as a more
accurate (more restrictive) representation of the factorization. ¤

It is convenient to restrict attention to models with pairwise interactions – i.e.
models where all the factors depend on at most two variables (i.e. all ψF satisfy |F | ≤ 2,
for example see Figure 2.1 middle plot). By merging some of the variables together
(thereby increasing the state space) any MRF can be converted into a pairwise MRF.
In the sequel, unless stated otherwise, we use pairwise MRFs. When dealing only
with pairwise MRFs there is little benefit in using the factor graph representation,
since it does nothing except adding factor-nodes in the middle of every edge. An
MRF representation carries exactly the same information for the pairwise case. The
factorization of a density for a pairwise MRF has the following form:

p(x) =
1

Z

∏

i∈V

ψi(xi)
∏

{i,j}∈E
ψi,j(xi, xj) (2.2)

where ψi(xi) are the self-potentials, and ψi,j(xi, xj) are the pairwise or edge potentials.
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Tree-structured MRF models A very important subclass of MRF models is based on
tree-structured graphs which have no loops (we include chains and forests, i.e. collec-
tion of disjoint trees, into this category). Many of the computational tasks including
inference, learning, and sampling are extremely efficient on trees. Thus trees are both
popular models themselves, and also are used in various ways as approximations or
as embedded structures to ease the computational burden for models defined on more
general graphs [33,120,129,130,135].

In general MRFs the potentials need not have any connection to edge or clique
marginals. However for trees a specification of potentials is possible which correspond
to probabilities:

p(x) =
∏

i∈V

pi(xi)
∏

{i,j}∈E

pij(xi, xj)

pi(xi)pj(xj)
(2.3)

This corresponds to a pairwise MRF in (2.2) with ψi(xi) = pi(xi), and ψij(xi, xj) =
pij(xi,xj)

pi(xi)pj(xj)
. Another representation is obtained by picking a designated root, and an

ordering of the variables (based on distance from the root), such that a parent-child
relationship can be established between any pair of vertices connected by an edge. The
following factorization then holds3:

p(x) = p1(x1)
∏

{i,j}∈E, i<j

p(xi | xj) (2.4)

Here we arbitrarily pick node 1 to be the root, and the notation i < j represents that
j is a parent of i. A more general directed representation is the base for Bayesian
networks.

Bayesian networks: models on directed graphs In this thesis we use MRF and factor
graph models, which are closely related to another graphical representation of probabil-
ity factorization based on directed acyclic graphs, called Bayesian networks [71]. These
models are particularly useful when there are causal relationships among the variables.

Bayesian networks specify for each vertex j a (possibly empty) set of parents π(j) =
{i | (i, j) ∈ E}, i.e. vertices corresponding to tails of all the directed edges that point
to j. The acyclic property forbids the existence of directed cycles, and hence there
exists a partial order on the vertices. The joint density p(x) factorizes into conditional
probabilities of variables given their parents:

p(x) =
∏

i

p(i | π(i)). (2.5)

This is in contrast to MRFs, where the factors are arbitrary positive functions, and
in general do not correspond to probabilities. The absence of directed cycles ensures
that p(x) is a valid probability consistent with the conditional probabilities p(i | π(i)).

3This is essentially the chain rule for probabilities, which uses the Markov properties of the graph
to simplify the conditioning. The factorization in (2.3) can be obtained from it by simple algebra.
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Another important distinction from MRFs is the absence of the normalization constant
in (2.5), as the density p(x) integrates to 1 as specified.

The Markov properties of Bayesian networks are related to a notion of D-separation
[13,83], which is markedly different from graph separation for undirected graphs that we
have described earlier. The classes of conditional independence properties that directed
and undirected representations capture are not the same (there is an intersection, but
in general neither class is contained in the other). However, at the cost of losing some
structure it is easy to convert from directed graphs to undirected by interconnecting
each set {i, π(i)} into a clique, and replacing all directed edges with undirected ones [78].

Exponential families The formalism of graphical models applies to models with arbi-
trary state spaces, both discrete and continuous. However, in order to be amenable to
computations – these models need to have a finite representation, and allow efficient nu-
merical operations such as conditioning and marginalization. Predominantly graphical
models are chosen from the exponential family [6], a family of parameterized probability
densities, which has the following form:

p(x) =
1

Z(θ)
exp(

∑

k

θkfk(xFk
)). (2.6)

Each fk(xFk
) (for k ∈ {1, .., K}) is a feature function that depends only on the subset of

variables xFk
, Fk ⊂ V . The function fk maps each possible state of xFk

to a real value.
To each feature fk there is an associated weight θk, also called a canonical or exponential
parameter. The model is parameterized by θ = (θ1, ..., θK). Z(θ) normalizes the
density, and the valid set of θ is such that Z(θ) < ∞, i.e. the model is normalizable.
Note that by using ψFk

(xFk
) = exp(θkfk(xFk

)) we recover the probability factorization
representation in (2.1) which shows how exponential families may be described in the
language of graphical models.

The exponential family includes very many common parametric probability dis-
tributions, both continuous and discrete, including Gaussian, multinomial, Poisson,
geometric, exponential, among many others. There is a rich theory describing the
exponential family with connections to diverse fields ranging from convex analysis to
information geometry [1, 2, 131]. Some of the appealing properties of the exponential
family include the maximum-entropy interpretation, moment-matching conditions for
maximizing the likelihood, and the fact that features fF (xF ) are sufficient statistics.
We refer the interested reader to [6] for a thorough presentation of the exponential
family.

Note that from (2.6), conditioning on one of the variables can be easily done in
any exponential family model, and the resulting conditional distribution belongs to
a lower-order family of the same form. However, in general this does not hold for
marginalization, apart from two exceptions: discrete multinomial and Gaussian densi-
ties. As computing marginals is one of the key tasks in graphical models, it comes as
no surprise that these two models are the most convenient for computations – at least
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in principle computing marginals does not require approximations4.
In this thesis we mostly use Gaussian graphical models (GGM), where the random

variables are jointly Gaussian, and have a finite parameterization. We introduce Gaus-
sian graphical models in Section 2.3. Note that both conditionals and marginals remain
Gaussian, so GGM are very attractive computationally.

¥ 2.1.3 Using Graphical Models

Applying graphical models to model natural phenomena and to make predictions in-
volves a number of steps. First one needs to specify the structure of the graph – this may
come either directly from an application (e.g. grid graphs for images in computer vi-
sion), from expert knowledge – Bayesian networks for expert systems [35], or this struc-
ture must be learned from the data – as in genetic regulatory networks [41,46,92,132].
In addition, we may choose the model structure to balance how well it models the data
versus the ease of computation that it provides. If computational cost is critical and the
model contains many variables then we may be forced to restrict the class of structures
to tree-structured [33], thin graphs [5, 117], or multi-scale approximations [31,32,135].

After deciding on the graphical structure of the model, one must learn the param-
eters of the model to best fit the observed data. When all the variables are observed
the maximum likelihood (ML) estimates of the parameters can be obtained by vari-
ous optimization methods, or by iterative updates such as iterative proportional fitting
(IPF) [70] and generalized iterative scaling [38,40]. In case of unobserved variables, the
EM algorithm and its variants have to be used [44]. Alternatively, one may chose to
work in the Bayesian setting, with the parameters themselves being treated as random
variables, and assigning a prior for them.

Finally, once the model is fully specified then it can be used for inference – making
predictions of certain variables in the model based on observations of some other ones,
and to draw samples from the model. In this thesis we focus on the problem of inference
– we assume the model has been already fully specified, both the graph structure and
the parameters. Typically inference in the field of graphical models refers to computing
marginal densities or to finding the MAP (max a-posteriori) assignment of a subset of
variables given observations of another subset. Inference is an important task in and of
itself, but it can also appear as an essential component of parameter learning: in the
exponential family the gradient of the log-likelihood with respect to the parameters θ in
(2.6) depends on the difference of the observed moments from the data and the moments
under θ, Eθ[fk(xFk

)]. Hence learning model parameters also involves inference.

4Other classes of MRF models with continuous state-spaces and non-Gaussian interactions are often
used for MAP estimation (e.g. Laplacian priors in the context of edge-preserving image restoration), but
finding exact marginals is intractable in such models (and requires various approximations). Graphical
models with mixed state-spaces [83] are also common, and even graphical models with non-parametric
density representation are also starting to be subjected to practical use [119]. Again, these models only
allow approximate inference.
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¥ 2.2 Inference Problems in Graphical Models

Inference (or estimation) refers to making predictions about the state of unobserved
random variables x given the values of some other random variables y in the model.
In the field of graphical models inference has become synonymous with either finding
the marginals p(xi | y) =

∫

p(x | y)dxV \i, or with finding the MAP assignment, x̂ =
arg maxx p(x | y), (here ’\’ represents set difference, and we write V \i as a shorthand
for V \{i}, so xV \i stands for all the variables except xi).

In graphical models observations are often introduced by combining a prior model
p(x) for the hidden variables with observations y whose likelihood is given by p(y|x).
This gives the following posterior:

p(x|y) ∝ p(x)p(y|x). (2.7)

It is most convenient when the observations are local5, i.e. that given the state of
xi, each yi is independent of the other variables xj and observations yj for j 6= i. In
this case, the likelihood of the observations can be factorized: p(y|x) ∝ ∏

i∈V p(yi|xi).
If we now modify the self-potentials (factors depending only on one node) as follows:
ψi(xi, yi) = ψ(xi)p(yi|xi), then the graph structure of the model does not change upon
incorporating local observations. Now the posterior density for a pairwise MRF can be
written as:

p(x|y) ∝ p(x)p(y|x) =
∏

i∈V

ψi(xi, yi)
∏

{i,j}∈E
ψi,j(xi, xj) (2.8)

A notational simplification comes from the fact that once y is observed, it no longer
varies, so we can redefine p̃(x) , p(x|y), and compute the unconditional marginals or
MAP estimates in the model p̃(x). The self-potentials for this model can be defined
as ψ̃(xi) = ψ(xi, yi), and their dependence on yi does not need to be present in the
notation. Hence the problems of computing conditional and unconditional marginals
(or MAP estimates) are essentially equivalent, and for simplicity of notation we will use
the latter from now on.

An MRF is specified by giving a list of potentials, e.g., ψi for i ∈ V and ψij {i, j} ∈ E
in the pairwise case. The normalization constant Z is typically not available, and is
only defined implicitly. To compute the marginal densities the knowledge of Z is not
necessary – if one can obtain an unnormalized marginal (a function of just one variable)
then its normalization constant can be found by one-dimensional integration. Likewise,
Z is not needed to find the MAP estimate.

The complexity of brute-force inference increases rapidly with the number of vari-
ables in a graphical model. In the discrete case, to compute either the marginal density
or the MAP estimate for a model with |V | variables each having S states requires ex-
amining every one of the possible S|V | states (to either compute the sum or to find

5Non-local observations may induce ’fill’ and produce a posterior which has a more dense Markov
graph than the prior.
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the maximum). Clearly, brute-force inference is infeasible for discrete graphical mod-
els with even a moderate number of variables. For the Gaussian case, exact inference
involves computing an inverse of a |V | × |V | matrix, which scales as a cubic in |V |.

This seems trivial when compared with the exponential complexity in the discrete
case, but for models involving lattices, or volumes, with the number of nodes exceeding
millions, exact calculation also becomes intractable. Brute-force calculation is agnostic
of the structure of the graph – it does not take advantage of the main asset of a
graphical model. Next we discuss how graph-structure can be used for possibly dramatic
reductions in computational complexity.

¥ 2.2.1 Exact Inference: BP and JT

Suppose that p(x) is given by an MRF with pairwise interactions and |V | = N nodes.
The marginal at node i can be computed as pi(xi) =

∑

xj ,j 6=i p(x) (for continuous vari-

ables the summation is replaced by an integral). In this section we focus on computing
the marginals, but by replacing the summation by maximization one obtains algorithms
for MAP estimation6. Take i = 1, then we need to compute:

p1(x1) =
∑

x2,...,xN

p(x) =
∑

x2

∑

x3

...

[

∑

xN

p(x1, ..., xN )

]

=
∑

x2,..,N−1

pV \N (xV \N ) (2.9)

Recall that V \N represents all nodes except N . The action of summing over xN

(marginalizing out xN ) is equivalent to variable elimination. This reduces the problem
of computing the marginal of p(x) in an N -node graph to computing the marginal of
pV \N (xV \N ) in a (N − 1)-node graph. Let us take a closer look at variable elimination
for a pairwise MRF:

∑

xN

p(x1, ..., xN ) =
1

Z

∑

xN

∏

i∈V

ψi(xi)
∏

{i,j}∈E
ψi,j(xi, xj) = (2.10)

1

Z

∏

i∈V,i6=N

ψi(xi)
∏

{i,j}∈E,i,j 6=N

ψi,j(xi, xj)
∑

xN



ψN (xN )
∏

i:{i,N}∈E
ψi,N (xi, xN )





The complexity of eliminating one variable depends on the number of neighbors

that the variable has in G. Computing the sum
∑

xN

[

ψN (xN )
∏

i:{i,N}∈E ψi,N (xi, xN )
]

induces a new potential in the subgraph V \N , which depends on all the neighbors
N (N) of node N . This adds new edges to the graph, between each pair of neighbors of
N . The same occurs for N − 1, N − 2, and so forth. However, for the case of singly-
connected graphs (chains and trees), by eliminating variables one by one starting from
the leaves, each eliminated node has exactly one neighbor, so no new edges are induced.

6Instead of marginals such algorithms compute max-marginals Mi(xi) = maxxV \i
p(x), which provide

the MAP estimate.
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A message mi→j passed from node i
to node j ∈ N (i) captures the effect
of eliminating the subtree rooted at i.
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Once all the messages are received at
node i, the marginal can be computed
as pi(xi) = ψi(xi)

∏

j∈N (i) mj→i. This
can be seen as fusing the information
from each subtree of i with the local
information ψi(xi).

Figure 2.2. An illustration of BP message-passing on trees.

This makes the computation extremely efficient: for discrete models with S states at
every node, variable elimination requires N calculations of complexity S2 each, whereas
brute force calculation involves SN terms. Well-known examples of algorithms defined
on chains which take advantage of this structure include the Kalman filter [80], and
the forward-backward algorithm for hidden Markov models [106]. We now present this
computation as sequential message-passing which will allow us to seamlessly introduce
BP on trees.

Suppose xN is a leaf-node which is connected to xN−1. The newly induced potential
in (2.10) is

mN→N−1(xN−1) ,
∑

xN

ψN (xN )ψN−1,N (xN−1, xN ) (2.11)

This can be viewed as a message that the variable xN sends to xN−1 reflecting its belief
about the state of xN−1. Now the self-potential of xN−1 in pV \N (xV \N ) gets modi-
fied to ψN−1(xN−1)mN→N−1(xN−1). Suppose the time comes to eliminate a variable
i, a leaf in the current reduced graph, which has already had all its neighbors elimi-
nated except neighbor j. The self-potential for node i has already been modified to
ψi(xi)

∏

k∈N (i)\j mk→i(xi). Now when we eliminate the variable xi, we pass a message
from i to j as follows:

mi→j(xj) ,
∑

xi

ψi,j(xi, xj)ψi(xi)
∏

k∈N (i)\j
mk→i(xi) (2.12)

The message µi→j passed from node i to node j ∈ N(i) captures the effect of
eliminating the whole subtree rooted at i which extends in the direction opposite of j,
see Figure 2.2, top plot. Variable elimination terminates once only the desired node
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remains (see Figure 2.2, bottom plot), at which point we can obtain the marginals:

pi(xi) = ψi(xi)
∏

k∈N (i)

mk→i(xi). (2.13)

Equations (2.12) and (2.13) summarize the steps of sequential variable elimination to
obtain the marginal at one node. However, if we are interested in the marginals at all
the nodes, then blindly applying this sequential variable elimination procedure for each
node separately repeats many of the computations thus being very redundant.

BP on trees Belief propagation (BP) on trees is a message-passing algorithm that
computes the marginals at all the nodes in the tree simultaneously. It can be interpreted
as a sequential or iterative solution of the fixed point equations in (2.12).

The sequential version of BP on trees is equivalent to an efficient implementation
of variable elimination done for all the nodes in parallel, but avoiding the redundant
computations. BP does this by storing the results of these intermediate computations
(the messages). Consider Figure 2.2, top plot. The message mi→j is needed to compute
the marginals at all the nodes to the left of j. Instead of computing it for each such
node separately, we can compute it once and store it. A message is passed from i to
j once all the messages from other neighbors of i, k ∈ N (i)\j have been received. BP
starts from the leaves, passes messages towards some designated root, and back to the
leaves, thus computing all the messages (two for each edge – one for each direction). It
is easy to check that all the necessary messages are computed after 2|E| steps, and all
the marginals can then be computed by a local operation at each node.

Summary: pairwise MRF BP on trees

1. (Message update) Pass message mi→j from i to j once i receives messages from
all of its other neighbors, k ∈ N(i)\j:

mi→j(xj) ,
∑

xi

ψi(xi)ψi,j(xi, xj)
∏

k∈N (i)\j
mk→i(xi) (2.14)

2. (Compute marginals) For any node i that has received all the messages com-
pute the marginals:

pi(xi) = ψi(xi)
∏

k∈N (i)

mk→i(xi) (2.15)

In addition to the sequential version of the algorithm, it is also possible to use an
iterative version. Instead of viewing BP message updates (2.14) as a sequence of steps
needed to compute a marginal, we can view them as a set of fixed point equations (one
for each message) that we would like to satisfy. To solve them we arbitrarily initialize
the messages (e.g. to 1) and iteratively apply the message updates in parallel, or
according to some other message schedule, until convergence. In tree-structured graphs
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mA→i
mi→B

i

A B

Two types of messages in factor
graph BP: factor-to-variable mA→i

and variable-to-factor mi→B. Message
mA→i captures the effect of eliminat-
ing the subtree rooted at i extending
in the direction of A.

Figure 2.3. Illustration: factor graph version of BP.

it is easy to show that the parallel version of these updates converges to the correct
answers (same as sequential) after diam(G) steps. The parallel version of BP is less
efficient than the serial one, but it opens the door to a whole new world of approximate
inference in graphs with loops via loopy belief propagation (LBP), which we describe
in Section 2.2.2.

BP on tree-structured factor graphs A simple extension of the above algorithm can also
be used to compute the marginals in a graphical model represented by a tree-structured
factor graph. Suppose p(x) ∝ ∏

i ψi(xi)
∏

F ψF (xF ), and the associated factor graph is
tree-structured, see Figure 2.3 for an example. We explicitly separate the single-node
factors ψi from higher-order factors ψF (here all |F | > 1) for convenience, and omit
the single-node factors in the figure. Recall that a factor graph has two type of nodes:
variable-nodes denoted by circles and factor-nodes denoted by squares. We use symbols
i, j, k for variable-nodes and A, B for factor-nodes. For tree factor graphs we can do
sequential variable elimination akin to the one in (2.10). We call a variable-node a leaf
if it has only one neighboring higher-order factor-node. Sequential variable elimination
can be done analogous to the pairwise case by repeatedly eliminating the leaves until
the variable of interest remains.

For factor graph models it is convenient to view variable elimination as consisting
of groups of two steps: eliminating a variable-node, and eliminating a factor-node. By
eliminating a leaf variable-node i which is connected to A, we are fusing the factor ψA

with the local self-potential ψi for i, and the incoming messages into i,
∏

mB→i(xi).
By eliminating a factor-node A (when all but one of the variable-neighbors of A have

already been eliminated) we compute the sum
∑

xA\i
ψA(xA)

∏

mk→A(xk) thus reduc-

ing ψA into a function of a single variable xi and fusing it with the self-potential ψi of
i. The procedure starts by eliminating all leaf-variable-nodes, and then all leaf-factor-
nodes repeatedly until just the variable of interest remains. Of course, to compute all
the marginals efficiently we compute all them in parallel – analogous to the previous
section for a pairwise MRF: first we compute all the messages, and then combine them
to obtain the marginals. This is the factor graph version of BP.

Summary: BP on tree-structured factor graphs

1. (Factor-variable message update) Pass message mA→i once factor A has re-
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ceived messages from all of its other variable-neighbors, j ∈ N (A)\i:

mA→i(xi) =
∑

xA\i

ψA(xA)
∏

j∈N (A)\i
mj→A(xj) (2.16)

2. (Variable-factor message update) Pass message mi→A once variable i has
received messages from all of its other factor-neighbors, B ∈ N (i)\A:

mi→A(xi) = ψi(xi)
∏

B∈N (i)\A
mB→i(xi) (2.17)

3. (Compute the marginals) For any variable-node i or for any A ∈ F compute
the marginals:

pi(xi) = ψi(xi)
∏

A∈N (i)

mA→i(xi) pA(xA) = ψA(xA)
∏

i∈A

mi→A(xi) (2.18)

Exact inference via junction trees For graphs (or factor graphs) with loops, variable
elimination necessarily induces new edges in the graph G. For each eliminated variable,
all its remaining neighbors become fully connected (a clique is formed) and a new factor
is induced which depends on all the variables in the clique. If we decide on an ordering
of the variables, and eliminate variables one by one according to this ordering, then
the complexity will depend on the size of the largest clique encountered (exponential
in the discrete case, and cubic in the Gaussian case). The size of the largest such
clique in general depends on the ordering of the nodes. The minimum over all possible
elimination orders of the size of the largest clique, minus one, is called the treewidth of
the graph. Treewidth serves as a lower bound on the complexity of exact inference. For
tree-structured models, by always eliminating one of the remaining leaves, the largest
clique is always of size 2 (and treewidth is 1). For more general graphs picking an order
to minimize the treewidth is NP hard [3]; however, approximate procedures exist which
pick a good suboptimal ordering [62].

To find all the marginals in parallel, there exists an efficient analogue of BP which
operates on the junction tree of the graph – a tree whose nodes are the maximal cliques
of the graph, connected in a way to satisfy certain consistency requirements. In order to
construct the junction tree we first add all the edges that would have been introduced
by variable elimination following some elimination order. This creates a chordal graph7.

Next, a clique-tree is constructed which links maximal cliques sharing common nodes
into a tree. The clique-tree must be chosen to satisfy a consistency requirement called
the running intersection property: for any two cliques C1 and C2 in the clique-tree,

7See the definition in Section 2.1.1. A chordal graph has a perfect elimination ordering – a variable
elimination following this ordering does not add new edges to the graph. Clearly, from our construction
the graph is chordal, as we have added all the missing edges for some particular elimination order.
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Figure 2.4. (left) A grid graph. (middle) A chordal supergraph corresponding to elimination order
(a, c, b, d, e, f, j, l, k, g, i). (right) A junction tree.

all the cliques Ci on the unique path connecting the two contain all the nodes in the
intersection C1 ∩ C2 ∈ Ci. A clique-tree with the running-intersection property is called
a junction tree. It is guaranteed to exist in chordal graphs. See an illustration in Figure
2.4.

Once a junction-tree is defined, a message passing generalization of BP which passes
messages between cliques of the junction tree (corresponding to eliminating a subtree of
the junction tree) can be defined [83,131]. This algorithm computes the exact marginals
on all the cliques of the junction tree after passing all the messages. Note that the
complexity of the junction tree algorithm is lower bounded by the treewidth of the graph
(the bound is tight if an optimal elimination order is found). Hence, the algorithm is
only attractive for thin graphs – chains, trees, and graphs with small treewidth.

For general discrete problems and large-scale Gaussian problems there are no tractable
approaches for exact inference, and approximations have to be used. We focus here on
a method that has received much attention recently, loopy belief propagation (LBP)8.

¥ 2.2.2 Loopy Belief Propagation

Loopy belief propagation was described in [103] as a heuristic approach to tractable
approximate inference in loopy graphs. The BP update equations (2.14) and (2.15)
derived for trees are purely local and only depend on the immediate neighborhood of a
node. Hence, they are completely agnostic to the presence of cycles in the graph, and
can also be applied to models defined on graphs with cycles, even though this no longer
corresponds exactly to variable elimination in the graph.

Of course in this case, since there are cycles in the graph, only iterative message-
scheduling forms can be defined. To be precise, a message schedule {M(n)} specifies

which messages m
(n)
i→j , corresponding to directed9 edges (i, j) ∈ M(n), are updated at

8For alternative approaches to approximate inference in graphical models we refer the reader to
[95,131,136] (variational methods) and [57,108] (Monte Carlo sampling methods).

9For each undirected edge {i, j} ∈ E there are two messages: mi→j for direction (i, j), and mj→i for
(j, i).
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step n. The messages in M(n) are updated using

m
(n)
i→j(xj) =

∫

ψij(xi, xj)ψi(xi)
∏

k∈N (i)\j
m

(n−1)
k→i (xi) dxi (2.19)

and m
(n)
i→j = m

(n−1)
i→j for the other messages. For example, in the fully-parallel case all

messages are updated at each iteration whereas, in serial versions, only one message
is updated at each iteration. We initialize LBP messages with non-informative values
mi→j = 1. As is well-known, LBP may or may not converge, and if it does, in general,
will not yield the correct values for the marginal distributions.

Theoretical understanding of LBP performance has been lagging well behind its
success in practical applications. The ultimate goal for such analysis is being able
to predict for a given problem whether LBP is a suitable approach – this involves
developing necessary and sufficient conditions for its convergence, and understanding
the quality of approximations.

For graphs which are tree-like, i.e. where the loops are long, one can argue that
the effect of the loops should be negligible if there is sufficient mixing10 (or decay of
correlation for far away vertices). This approach is taken in the coding literature, where
various tools have been developed to analyze the performance of iterative BP decoding
for LDPC codes with large girth (long minimum cycles) [107, 125]. However LBP has
been successfully applied even to models which contain many short loops [51, 53, 101].
The existing theoretical analysis of loopy BP does not explain this aspect of BP fully.

Much insight into the structure of LBP (and max-product) comes from considering
its computation tree that captures the history of message updates since the first iteration.
It has been used to develop sufficient conditions for LBP convergence in the discrete [124]
and Gaussian case [133], to develop accuracy guarantees for max-product [134], and in
the analysis of max-product for matching and independent-set problems [112,113]. We
give a detailed description of the computation tree in Section 2.2.3, as it will serve an
important role in our analysis of LBP based on walk-sums in Chapter 3.

Another powerful interpretation of LBP comes from the statistical physics literature
[138,139]. We only give a gist of this connection here, and refer to [138] for details. The
interpretation comes from the variational formulation of inference, where the correct
marginals can be computed by minimizing the so-called Gibbs free energy, which is in
general intractable for models on graphs with loops. By using simpler approximate free
energies or constraining the feasible set to have tractable structure one can get lower
bounds and approximations. Mean-field, Bethe and Kikuchi approximations and the
recent tree-reweighted approaches all fall into this general variational framework [131].
Belief propagation has been shown to be related to Bethe free energy approximation:
fixed points of LBP are stationary points of the Bethe free energy [63, 138, 139]. This
is a powerful connection, but of course it depends on how close Bethe free energy
approximates the correct free energy, which is not in general known.

10Also, [69] and [99] develop sufficient conditions for LBP convergence based on mixing which use
bounds on the dynamic ranges of the pairwise potentials and node degrees, rather than girth.
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Figure 2.5. (a) Graph of a Gauss-Markov model with nodes {1, 2, 3, 4} and with edge-potentials as
shown. (b) The parallel LBP message passing scheme. In (c), we show how, after 3 iterations, messages

link up to form the computation tree T
(3)
1 of node 1 (the subtree T

(3)
4→1, associated with message m

(3)
4→1, is

also indicated within the dotted outline). In (d), we illustrate an equivalent Gauss-Markov tree model,
with edge-potentials copied from (a), which has the same marginal at the root node as computed by
LBP after 3 iterations.

For the particular case of Gaussian LBP it has been established that upon conver-
gence the means are correct (although the variances are not), and sufficient conditions
for convergence have been established [98, 111, 129, 133]. While clearly there has been
considerable work on analyzing the convergence of LBP in general and for GMRFs in
particular, the story is still far from being complete. A major contribution of Chapters
3 and 4 of this thesis is analysis that both provides new insights into LBP for Gaussian
models and also brings the Gaussian story several steps closer to completion.

¥ 2.2.3 Computation Tree Interpretation of LBP

A key component of our analysis is the insightful interpretation of LBP in terms of the
computation tree [124, 133], which captures the structure of LBP computations. The

basic idea is that a computation tree T
(n)
i is constructed by “unwinding” the loopy

graph intro a tree starting from node i. First node i is selected to be the root of the

tree, and its neighbors as leaves in the tree – this creates T
(1)
i . Then for each leaf of the

tree we add their neighbors from G as new nodes, except for their immediate parent in
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the tree. This is repeated n times. Importantly, nodes and edges of the original graph
may be replicated many times in the computation tree, but in a manner which preserves
the local neighborhood structure. By assigning potential functions to the nodes and

edges of T
(n)
i , copying these from the corresponding nodes and edges of the original

loopy graphical model, we obtain a Markov tree model in which the marginal at the

root node is precisely p
(n)
i as computed by LBP. We illustrate the computation tree T

(3)
1

for a 4-cycle with a chord in Figure 2.5(d), and the graph itself in plot (a).
For our analysis in Chapter 3 we will need a more detailed description of how the

computation trees grow with the LBP message updates. In addition to T
(n)
i , we also

introduce T
(n)
i→j which summarizes the pedigree of message m

(n)
i→j . Initially, the trees

T
(n)
i and T

(n)
i→j are just single nodes. When message m

(n)
i→j is computed, its computation

tree T
(n)
i→j is constructed by joining the trees T

(n−1)
k→i , for all neighbors k of i except j, at

their common root node i and then adding an additional edge (i, j) to form T
(n)
i→j rooted

at j. When marginal estimate p
(n)
i is computed, its computation tree T

(n)
i is formed by

joining the trees T
(n−1)
k→i , for all neighbors k of i, at their common root. An illustration

appears in Figure 2.5.
In the case of the fully-parallel form of LBP, this leads to a collection of “balanced”

computation trees T
(n)
i (assuming there are no leaves in G) having uniform depth n,

as the one in Figure 2.5. The same construction applies for other message schedules
with the only difference being that the resulting computation trees may grow in a
non-uniform manner. Our walk-sum analysis of LBP in Chapter 3, which relies on
computation trees, applies for general message passing schedules.

¥ 2.3 Gaussian Graphical Models

In this section we give a brief background on Gaussian graphical models and inference,
describe a Gaussian version of both exact and loopy belief propagation (Section 2.3.1)
and relate them to Gaussian elimination.

A Gaussian graphical model (GGM), which we also refer to as a Gaussian MRF
(GMRF), is defined by an undirected graph G = (V, E), and a collection of jointly
Gaussian random variables x = (xi, i ∈ V ). The probability density is given by11

p(x) ∝ exp{−1
2xT Jx + hT x} (2.20)

where J is a symmetric, positive definite matrix (J Â 0), which is sparse so as to respect
the graph G: if {i, j} 6∈ E then Jij = 0. The condition J Â 0 is necessary so that (2.20)
defines a valid (i.e., normalizable) probability density. This is the information form of
the Gaussian density. We call J the information matrix and h the potential vector. They

11The constant of proportionality is exp
`

− 1
2
(|V | log(2π) − log |J | + hT J−1h)

´

. Note that it does
depend on the parameter h, while in the parameterization by P and µ the normalization constant is
independent of µ: p(x) = 1√

(2π)|V | det(P )
exp(− 1

2
(x − µ)T P−1(x − µ)).
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are related to the standard Gaussian parameterization in terms of the mean µ , E{x}
and covariance P , E{(x − µ)(x − µ)T } as follows:

µ = J−1h and P = J−1

The class of densities in (2.20) is precisely the family of non-degenerate Gaussian dis-
tributions which are Markov with respect to the graph G [115]: since J is sparse,
one can decompose xT Jx into terms that only depend on nodes and edges of G, e.g.
xT Jx =

∑

i Jiix
2
i +2

∑

{i,j}∈E Jijxixj , and appeal to the Hammersley-Clifford theorem,
as we explain in more detail shortly.

The information parameterization reveals the conditional structure: if the joint den-

sity for x and y has information matrix J =
[

Jx Jx,y

Jy,x Jy

]

, then the conditional density

of x given y = ỹ has information matrix Jx|y = Jx, i.e. it is simply a submatrix of
J , and hx|y = hx − Jx,yỹ. However, working with marginals in information param-

eterization requires more work: the marginal information matrix Ĵx of x is given by
Ĵx = Jx − Jx,yJ

−1
y Jy,x (a Schur complement computation [64] which follows from the

matrix inversion lemma) and ĥx = hx − Jx,yJ
−1
y hy. This is the opposite from the pa-

rameterization by P where the marginal covariance for x is a submatrix of P , while
computing the conditionals requires Schur complements12.

Recall the local Markov property: conditioned on N (i), the variable xi is indepen-
dent of the rest of the variables in the graph. The conditional variance of xi given xN (i)

is given by the inverse of the i-th diagonal entry of J :

var(xi | xN (i)) = (Ji,i)
−1. (2.21)

The partial correlation coefficient between variables xi and xj measures their conditional
correlation given the values of the other variables xV \ij , (xk, k ∈ V \ {i, j}). These
are computed by normalizing the off-diagonal entries of the information matrix [83]:

rij ,
cov(xi; xj |xV \ij)

√

var(xi|xV \ij)var(xj |xV \ij)
= − Jij

√

JiiJjj

. (2.22)

We observe that i and j are conditionally independent given V \{i, j} if Jij = 0, illus-
trating the relation between the sparsity of J and conditional independence properties
of the model. We now relate the information form of a Gaussian model in (2.20) with the
pairwise factorization of p(x). In agreement with the Hammersley-Clifford theorem13

we can use a decomposition

p(x) ∝
∏

i∈V

ψi(xi)
∏

{i,j}∈E
ψij(xi, xj)

12Compare: if P =
h

Px Px,y

Py,x Py

i

, then P̂x = Px, and Px|y = Px − Px,yP−1
y Py,x. For the means,

µ̂x = µx, and µx|y = µx − Px,yP−1
x (ỹ − µy).

13Since a Gaussian model is inherently pairwise (the quadratic form in the exponent can be decom-
posed into pairwise interactions

P

Jijxixj), a stronger form of the Hammersley-Clifford holds that only
requires pairwise factors rather than factors on maximal cliques.



Sec. 2.3. Gaussian Graphical Models 43

...

5 10 15

5

10

15
 

 

5 10 15

5

10

15
1

2

3

4

0 5 10 15
0

1

2

3

4

5

(a) (b) (c) (d)

Figure 2.6. (a) A chain with N = 16 nodes. (b) The matrix J is tri-diagonal reflecting the chain
structure of G. (c) The covariance matrix is not sparse – correlations decay away from the diagonal, but
are never exactly zero. (d) A plot of a correlation of the central node with the other nodes (a column
of P ).

in terms of node and edge potential functions:

ψi(xi) = exp{−1
2Aix

2
i + hixi} and ψij(xi, xj) = exp{−1

2 [ xi xj ] Bij

[ xi
xj

]

} (2.23)

Here, Ai and Bij must add up to J such that:

xT Jx =
∑

i

Aix
2
i +

∑

{i,j}∈E
( xi xj ) Bij

( xi
xj

)

The choice of a decomposition of J into such Ai and Bij is not unique: the diagonal
elements Jii can be split in various ways between Ai and Bij , but the off-diagonal
elements of J are copied directly into the corresponding Bij . It is not always possible
to find a decomposition of J such that both Ai > 0 and Bij Â 0.14 We call models
where such a decomposition exists pairwise-normalizable.

Our analysis in Chapter 3 is not limited to pairwise-normalizable models. Instead

we use the decomposition Ai = Jii and Bij =
[

0 Jij

Jij 0

]

, which always exists, and leads

to the following node and edge potentials:

ψi(xi) = exp{−1
2Jiix

2
i + hixi} and ψij(xi, xj) = exp{−xiJijxj} (2.24)

Note that any decomposition in (2.23) can easily be converted to the decomposition in
(2.24). Now to build intuition we consider several examples of GMRFs.

Example GMRFs First consider a model defined on a simple chain, with Jii = 1,
Ji,j = −ρ for |i − j| = 1 and Ji,j = 0 otherwise. We set ρ = 0.49. Figure 2.6(a)
shows the chain, and plot (b) shows the corresponding sparse matrix J . The covariance
P = J−1 is not sparse: correlations decay away from the diagonal, but are never exactly

14For example the model with J =
h

1 0.6 0.6
0.6 1 0.6
0.6 0.6 1

i

is a valid model with J Â 0, but no decomposition

into single and pairwise positive definite factors exists. This can be verified by posing an appropriate
semidefinite feasibility problem [20], or as we discuss in Chapter 3 through walk-summability.
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zero, see plot (c) and (d). Such chain models arise in auto-regressive modeling15, with
xi = αxi−1 + ni, and white Gaussian noise ni.

Next, we illustrate the GMRF framework with a prototypical estimation problem.
Consider the thin-membrane prior, commonly used for data interpolation:

p(x) ∝ exp



−α

2

∑

{i,j}∈E
(xi − xj)

2



 . (2.25)

This prior enforces leveled fields, i.e. it favors neighbors having similar values. As writ-
ten in (2.25), this prior is degenerate (non-integrable), because any constant field x has
the same probability. This degeneracy disappears once we condition on observations,
or if small regularization −γ

∑

i x
2
i is added in the exponent. The J matrix can be

readily deduced from (2.25): Jij = 0 for i 6= j with {i, j} /∈ E , Jij = −α for {i, j} ∈ E ,
and Jii = αdi. Here di is the degree of node i, di = |N(i)|. Another common prior in
image-processing is the thin-plate prior:

p(x) ∝ exp



−α

2

∑

i∈V

(xi −
1

di

∑

j∈N(i)

xj)
2



 . (2.26)

The thin-plate prior enforces that each node is close to the average of its neighbors16,
and penalizes curvature.

We can easily incorporate local observations yi, with Gaussian p(yi|xi). Assume that
yi is independent of xj and other yj for j 6= i: p(y|x) =

∏

i∈V p(yi|xi). The posterior is
now p(x|y) ∝ p(y|x)p(x), which is a GMRF that is Markov on the same graph (recall
that we do not add new nodes for y’s because they are observed and do not change).
Hence, adding local observations only modifies the diagonal of J and the vector h.

For a concrete example, consider the linear Gaussian problem, with observations
y = Hx + n, where x is zero-mean with covariance P , and independent noise n is zero-
mean and with covariance Q. Then the Bayes least-squares estimate x̂ = E[x|y] and its
error covariance P̂ = cov[x − x̂] are given by:

(P−1 + HT Q−1H) x̂ = HT Q−1y,

P̂ = (P−1 + HT Q−1H)−1.
(2.27)

If Jprior = P−1 is a sparse GMRF prior on x, and y are local conditionally indepen-
dent observations, then J = (P−1 + HT Q−1H) has the same sparsity as Jprior, with
only the diagonal terms being modified. Now J and h = HT Q−1y are the information
parameters specifying the conditional model given the observations.

15A more general class of models used in the GMRF context are the conditionally auto-regressive
models (CAR) [9] that specify that Ax ∝ N (0, σ2I), where x are the random variables of interest, and
A is some linear transformation.

16A thin plate model on a square grid has a more dense Markov graph: neighbors up to two steps
away are connected by an edge.
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Given a model in information form specified by (J, h), it is of interest to estimate
the (conditional) means µ and the variances Pii for all xi. As we have discussed in
Section 1.2, efficient direct matrix inversion methods [48,110] are possible for moderate-
size examples, but for large-scale GMRFs exact computation of P and µ using matrix
inversion is intractable. We now take a closer look at BP and LBP in the context of
Gaussian models.

¥ 2.3.1 Belief Propagation and Gaussian Elimination

We now consider BP in the context of Gaussian graphical models. We describe how BP
message updates reduce to simple algebraic manipulations of the information parame-
ters of the messages. After presenting the connection of BP on tree-structured models
to Gaussian elimination, we make some remarks on loopy BP and its computation tree
in this context.

Belief Propagation on Trees For GMRFs, as we have discussed, there are a variety of
ways in which the information matrix can be decomposed into edge and node potential
functions, and each such decomposition leads to BP iterations that are different in
detail.17 In our development we will use the simple decomposition in (2.24), directly in
terms of the elements of J .

For Gaussian models in information form variable elimination/marginalization cor-
responds to Gaussian elimination. For example, if we wish to eliminate a single variable,
i, from a GMRF to obtain the marginal over U = V \i, the formulas yielding the infor-
mation parameterization for the marginal on U are:

ĴU = JU,U − JU,iJ
−1
ii Ji,U and ĥU = hU − JU,iJ

−1
ii hi

Here ĴU and ĥU specify the marginal density on xU , whereas JU,U and hU are a sub-
matrix and a subvector of the information parameters on the full graph. The messages
in Gaussian models can be parameterized in information form

mi→j(xj) , exp{−1
2∆Ji→jx

2
j + ∆hi→jxj}, (2.28)

so that the fixed-point equations (2.19) can be stated in terms of these information
parameters. We do this in two steps. The first step corresponds to preparing the
message to be sent from node i to node j by collecting information from all of the other
neighbors of i:

Ĵi\j = Jii +
∑

k∈N (i)\j
∆Jk→i and ĥi\j = hi +

∑

k∈N (i)\j
∆hk→i (2.29)

The second step produces the information quantities to be propagated to node j:

∆Ji→j = −JjiĴ
−1
i\j Jij and ∆hi→j = −JjiĴ

−1
i\j ĥi\j (2.30)

17One common decomposition for pairwise-normalizable models selects Ai > 0 and Bij Â 0 in
(2.23) [96,105,133].
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Figure 2.7. (a) Graph of a Gauss-Markov model with nodes {1, 2, 3, 4} and with edge weights (partial
correlations) as shown. (b) LBP computation tree for node 1, after 3 iterations.

As before, these equations can be solved by various message schedules, ranging from leaf-
root-leaf Gaussian elimination and back-substitution to fully parallel iteration starting
from the non-informative messages in which all ∆Ji→j and ∆hi→j are set to zero. When
the fixed point solution is obtained, the computation of the marginal at each node is
obtained by combining messages and local information:

Ĵi = Jii +
∑

k∈N (i)

∆Jk→i and ĥi = hi +
∑

k∈N (i)

∆hk→i (2.31)

which can be easily inverted to recover the marginal mean and variance:

µi = Ĵ−1
i ĥi and Pii = Ĵ−1

i

In general, performing Gaussian elimination corresponds, up to a permutation, to
computing an LDLT factorization of the information matrix – i.e., QJQT = LDLT

where L is lower-triangular, D is diagonal and Q is a permutation matrix corresponding
to a particular choice of elimination order. The factorization exists if J is non-singular.
As we have discussed, in trees the elimination order can be chosen such that at each
step of the procedure, the next node eliminated is a leaf node of the remaining subtree.
Each node elimination step then corresponds to a message in the “upward” pass of the
leaf-root-leaf form of Gaussian BP. In particular, Dii = Ĵi\j at all nodes i except the last

(here, j is the parent of node i when i is eliminated) and Dii = Ĵi for that last variable
corresponding to the root of the tree. It is clear that Dii > 0 for all i if and only if J
is positive definite. We conclude that for models on trees, J being positive-definite is
equivalent to all of the quantities Ĵi\j and Ĵi in (2.29),(2.31) being positive, a condition
we indicate by saying that BP on this tree is well-posed. Thus, performing Gaussian
BP on trees serves as a simple test for validity of the model. The importance of this
notion will become apparent in Chapter 3.

Loopy Belief Propagation and Gaussian models For GMRFs the application of LBP
updates in (2.19) reduces to iterative application of equations (2.29) and (2.30). We
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Figure 2.8. (left) Single-scale model. (center) Tree-structured multi-scale model. (right) Loopy
multi-scale model on a pyramidal graph.

parameterize the messages m
(n)
i→j as in (2.28), and we denote the information parameters

at step n by ∆J
(n)
i→j and ∆h

(n)
i→j . We initialize LBP with non-informative zero values for

all of the information parameters in these messages.
Gaussian LBP has received some attention in the literature. Sufficient conditions

for its convergence in a turbo-decoding graph are given in [111] and for a multi-user
detection problem in [98]. Sufficient conditions for LBP convergence for arbitrary graphs
based on diagonal dominance of J are obtained in [133]. It is known [111, 129, 133]
that if LBP converges, it yields the correct mean values but, in general, incorrect
values for the variances. In Chapter 3 we use the walk-sum framework for Gaussian
inference in conjunction with the computation tree construction to derive tighter results
for Gaussian LBP.

As we have mentioned, BP on trees, which corresponds to performing Gaussian
elimination, is well-posed if and only if J is positive-definite. LBP on Gaussian models
corresponds to Gaussian elimination in the computation tree, which has its own in-
formation matrix composed by adding local terms for each node and edge in the tree.
It corresponds to the unfolding illustrated in Figure 2.7 that involves replication of
information parameters of the original loopy graphical model. Consequently, LBP is
well-posed, yielding non-negative variances at each stage of the iteration, if and only if
the model on the computation tree is valid, i.e., if and only if the information matrix for
the computation tree is positive-definite. Very importantly, this is not always the case
(even though the matrix J on the original graph is positive-definite). The analysis in
Chapter 3 (in particular in Section 3.3) makes this point clear by considering situations
in which LBP converges and when it fails to converge.

¥ 2.3.2 Multi-scale GMRF Models

Single-scale models with only local interactions, such as thin membrane and thin plate
models have limitations on the kind of fields that they represent. In particular, the tails
of the correlation for such models fall-off exponentially fast. To represent long-range
correlations with slower decay other models are needed. One can certainly accomplish
this by using far denser single-scale graphs, with long-range interactions, but this defeats
the sparsity needed for efficient algorithms. An alternative is to make use of multi-scale
models which represent the phenomenon of interest at multiple scales or resolutions.
Coarser scales correspond to local aggregates of finer scales: coarse-scale variables cap-
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ture summaries of local regions at the finer scale. The multiple scales may represent
physically meaningful quantities with measurements acquired at different scales. Al-
ternatively, coarser scale may be artificially introduced hidden variables without mea-
surements, which facilitate more efficient estimation. The scales may be disjoint, with
estimates in coarser scales used to simplify estimation in the finer scales [56, 126], or
they may be linked together into a coherent statistical model, with either deterministic
or stochastic interactions between scales [19,31,32,135]. A significant effort has been de-
voted to the development of extremely efficient tree-structured (see Figure 2.8, center)
multiscale models [135]. The main draw-back of tree-structured models is that certain
neighbors in the fine-scale model may become quite distant in the tree-structured model,
which leads to blocky artifacts in the estimates. To avoid these artifacts, multi-scale
models which allow loops have also received attention, e.g. [19, 120].

In Chapter 5, Section 5.2.3, we consider a class of multi-scale models on pyramidal
graphs with loops described in [31, 32]. The different scales in this model constitute a
coherent statistical model with non-deterministic inter-scale interactions. The Markov
graph for the model is illustrated in Figure 2.8 (right). In the picture we show each scale
to be one-dimensional, but they can also be two- and three-dimensional. The model has
a pyramidal structure including interactions within the scale, and between neighboring
scales. The model has many short loops, so exact methods for tree-structured graphs
do not apply, but the model is much richer representationally than tree-structured ones.
The motivation for this multi-scale model is to represent or approximate a single-scale
model with long correlation length. The correlations in the single-scale model get dis-
tributed among scales in the multi-scale model, and the long correlations are mostly ac-
counted for through coarse-scale interactions. Conditioned on the coarse-scale variables
the conditional correlations among the fine-scale variables are more local. In Section
5.2.3 we describe an extension of our low-rank variance approximation framework to
find variances when such a model is specified.



Chapter 3

Walksum analysis of Gaussian Belief
Propagation

In this chapter we present a new framework for analysis of inference in Gaussian graph-
ical models based on walks in a graph. We decompose correlations between variables as
a sum of weights over all walks between those variables in the graph, with the weight of
each walk being given by the product of partial correlations on its edges. In Section 3.1
we set the stage by defining walk-sums, and characterizing the class of models where the
decomposition holds – we call such models walk-summable. In Section 3.2 we provide
an interpretation of Gaussian LBP in terms of computing certain walk-sums, and derive
powerful sufficient conditions for LBP convergence. Finally in Section 3.3 we consider
LBP outside the class of walk-summable models, and derive (almost) necessary and
sufficient conditions for LBP convergence based on the validity (positive-definiteness)
of the LBP computation tree.

¥ 3.1 Walk-Summable Gaussian Models

We now describe our walk-sum framework for Gaussian inference. It is convenient to
assume that we have normalized our model (by rescaling variables) so that Jii = 1 for
all i. Then, J = I−R where R has zero diagonal and the off-diagonal elements are equal
to the partial correlation coefficients rij in (2.22). Note that R inherits the sparsity
from J : an off-diagonal element of R is non-zero only if there is a corresponding edge
in G. We label each edge {i, j} of the graph G with partial correlations rij as edge
weights (e.g., see Figures 3.1 and 3.3). In this chapter we often refer to valid models –
we call a model valid if its information matrix J is positive-definite, J Â 0.

¥ 3.1.1 Walk-Summability

Recall from Chapter 2 that a walk of length l ≥ 0 in a graph G is a sequence w =
(w0, w1, . . . , wl) of nodes wk ∈ V such that each step of the walk (wk, wk+1) corresponds
to an edge of the graph {wk, wk+1} ∈ E . Walks may visit nodes and cross edges multiple
times. We let l(w) denote the length of walk w. We define the weight of a walk to be

49
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the product of edge weights along the walk:

φ(w) =

l(w)
∏

k=1

rwk−1,wk

We also allow zero-length “self” walks w = (v) at each node v for which we define φ(w) =
1. To make a connection between these walks and Gaussian inference, we decompose
the covariance matrix using the Neumann power series for the matrix inverse:1

P = J−1 = (I − R)−1 =
∞

∑

k=0

Rk, for %(R) < 1

Here %(R) is the spectral radius of R, the maximum absolute value of eigenvalues of R.
The power series converges if %(R) < 1.2 The (i, j)-th element of Rl can be expressed
as a sum of weights of walks w that go from i to j and have length l (we denote this

set of walks by w : i
l→ j):

(Rl)ij =
∑

w1,...,wl−1

ri,w1rw1,w2 ...rwl−1,j =
∑

w:i
l→j

φ(w)

The last equality holds because only the terms that correspond to walks in the graph
have non-zero contributions: for all other terms at least one of the partial correlation
coefficients rwk,wk+1

is zero. The set of walks from i to j of length l is finite, and the
sum of weights of these walks (the walk-sum) is well-defined. We would also like to
define walk-sums over arbitrary countable sets of walks. However, care must be taken,
as walk-sums over countably many walks may or may not converge, and convergence
may depend on the order of summation. This motivates the following definition:

We say that a Gaussian distribution is walk-summable (WS) if for all i, j ∈ V the
unordered sum over all walks w from i to j (denoted w : i → j)

∑

w:i→j

φ(w)

is well-defined (i.e., converges to the same value for every possible summation order).
Appealing to basic results of analysis [58,109], the unordered sum is well-defined if and
only if it converges absolutely, i.e., iff

∑

w:i→j |φ(w)| converges.
Before we take a closer look at walk-summability, we introduce additional notation.

For a matrix A, let Ā be the element-wise absolute value of A, i.e., Āij = |Aij |. We

1The Neumann series holds for the unnormalized case as well: J = D −K, where D is the diagonal
part of J . With the weight of a walk defined as φ(w) =

Ql(w)
k=1 Kwk−1,wk

/
Ql(w)

k=0 Dwk,wk
, all our analysis

extends to the unnormalized case. We will say more about this in Section A.2.1 of Chapter 4.
2Note that %(R) can be greater than 1 while I − R Â 0. This occurs if R has an eigenvalue less

than −1. Such models are not walk-summable, so the analysis in Section 3.3 (rather than Section 3.2.2)
applies.
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use the notation A ≥ B for element-wise comparisons, and A º B for comparisons
in positive-definite ordering. The following version of the Perron-Frobenius theorem
[64, 127] for non-negative matrices (here R̄ ≥ 0) is used on several occasions in our
analysis:

Perron-Frobenius theorem There exists a non-negative eigenvector x ≥ 0 of R̄ with
eigenvalue %(R̄). If the graph G is connected (where rij 6= 0 for all edges of G) then
%(R̄) and x are strictly positive and, apart from γx with γ > 0, there are no other
non-negative eigenvectors of R̄.

In addition, we often use the following monotonicity properties of the spectral radius:

(i) %(R) ≤ %(R̄) (ii) If R̄1 ≤ R̄2 then %(R̄1) ≤ %(R̄2) (3.1)

We now present several equivalent conditions for walk-summability:

Proposition 3.1.1 (Walk-Summability). Each of the following conditions are equiv-
alent to walk-summability:

(i)
∑

w:i→j |φ(w)| converges for all i, j ∈ V .

(ii)
∑

l R̄
l converges.

(iii) %(R̄) < 1.

(iv) I − R̄ Â 0.

The proof appears in Appendix A.1. It uses absolute convergence to rearrange walks
in order of increasing length, and the Perron-Frobenius theorem for part (iv). The con-
dition %(R̄) < 1 is stronger than %(R) < 1. The latter is sufficient for the convergence of
the walks ordered by increasing length, whereas walk-summability enables convergence
to the same answer in arbitrary order of summation. Note that (iv) implies that the
model is walk-summable if and only if we can replace all negative partial correlation
coefficients by their absolute values and still have a well-defined model (i.e., with infor-
mation matrix I − R̄ Â 0). We also note that condition (iv) relates walk-summability
to the so-called H-matrices in linear algebra [65, 127].3 As an immediate corollary, we
identify the following important subclass of walk-summable models:

Corollary 3.1.1 (Attractive Models). Let J = I −R be a valid model (J Â 0) with
non-negative partial correlations R ≥ 0. Then, J = I − R is walk-summable.

A superclass of attractive models is the set of non-frustrated models. A model is non-
frustrated if it does not contain any frustrated cycles, i.e. cycles with an odd number
of negative edge-weights. We show in Appendix A.1 (in the proof of Corollary 3.1.2)

3A (possibly non-symmetric) matrix A is an H-matrix if all eigenvalues of the matrix M(A), where
Mii = |Aii|, and Mij = −|Aij | for i 6= j, have positive real parts. For symmetric matrices this is
equivalent to M being positive definite. In (iv) J is an H-matrix since M(J) = I − R̄ Â 0.
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Figure 3.1. Example graphs: (a) 4-cycle with a chord. (b) 5-cycle.
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Figure 3.2. Critical regions for example models from Figure 3.1. (a) 4-cycle with a chord. (b) 5-cycle.

that if the model is non-frustrated, then one can negate some of the variables to make
the model attractive4. Hence, we have another subclass of walk-summable models (the
inclusion is strict as some frustrated models are walk-summable, see Example 1):

Corollary 3.1.2 (Non-frustrated models). Let J = I − R be valid. If R is non-
frustrated then J is walk-summable.

Example 1. In Figure 3.1 we illustrate two small Gaussian graphical models, which
we use throughout this chapter. In both models the information matrix J is normal-
ized to have unit diagonal and to have partial correlations as indicated in the figure.
Consider the 4-cycle with a chord in Figure 3.1(a). The model is frustrated (due to the
opposing sign of one of the partial correlations), and increasing r worsens the frustra-
tion. For 0 ≤ r ≤ 0.39039, the model is valid and walk-summable: e.g., for r = 0.39,
λmin(J) = 0.22 > 0, and %(R̄) ≈ 0.9990 < 1. In the interval 0.39039 ≤ r ≤ 0.5
the model is valid, but not walk-summable: e.g., for r = 0.4, λmin = 0.2 > 0, and
%(R̄) ≈ 1.0246 > 1. Also, note that for R (as opposed to R̄), %(R) ≤ 1 for r ≤ 0.5

4This result is referred to in [81]. However, our proof, in addition to proving that there exists such
a sign similarity, also gives an algorithm which checks whether or not the model is frustrated, and
determines which subset of variables to negate if the model is non-frustrated.
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and %(R) > 1 for r > 0.5. Finally, the model stops being diagonally dominant5 above
r = 1

3 , but walk-summability is a strictly larger set and extends until r ≈ 0.39039. We
summarize various critical points for this model and for the model in Figure 3.1(b) in
the diagram in Figure 3.2.

Here are additional useful implications of walk-summability, with proof in Appendix
A.1:

Proposition 3.1.2 (WS Necessary Conditions). All of the following are implied
by walk-summability:

(i) %(R) < 1.

(ii) J = I − R Â 0.

(iii)
∑

k Rk = (I − R)−1.

Implication (ii) shows that walk-summability is a sufficient condition for validity of
the model. Also, (iii) shows the relevance of walk-sums for inference since P = J−1 =
(I − R)−1 =

∑

k Rk and µ = J−1h =
∑

k Rkh.

¥ 3.1.2 Walk-Sums for Inference

Next we show that, in walk-summable models, means and variances correspond to
walk-sums over certain sets of walks.

Proposition 3.1.3 (WS Inference). If J = I − R is walk-summable, then the co-
variance P = J−1 is given by the walk-sums:

Pij =
∑

w:i→j

φ(w)

Also, the means are walk-sums reweighted by the value of h at the start of each walk:

µi =
∑

w:∗→i

h∗φ(w)

where the sum is over all walks which end at node i (with arbitrary starting node), and
where ∗ denotes the starting node of the walk w.

Proof. We use the fact that (Rl)ij =
∑

w:i
l→j

φ(w). Then,

Pij =
∑

l

(Rl)ij =
∑

l

∑

w:i
l→j

φ(w) =
∑

w:i→j

φ(w)

and
µi =

∑

j

hjPji =
∑

j

∑

w:j
l→i

hjφ(w) =
∑

w:∗→i

h∗φ(w) ¤

5The definition of diagonal dominance appears before Proposition 3.1.9.
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2 3

1

r2,3

r1,2 r1,3

Single walk: w = (1, 2, 3). Weight: φ(w) = r1,2r2,3,
φh(w) = h1r1,2r2,3.

Self-return walks, W(1 → 1): {(1), (1, 2, 1), (1, 3, 1),
(1, 2, 3, 1), (1, 3, 2, 1), (1, 2, 1, 2, 1), ...}
P1,1 = φ(1 → 1) = 1 + r1,2r2,1 + r1,3r3,1 + r1,2r2,3r3,1 + ....

Set of walks W(∗ → 1): {(1), (2, 1), (3, 1), (2, 3, 1),
(3, 2, 1), (1, 2, 1)(1, 3, 1), ...}
µ1 = φh(∗ → 1) = h1 + h2r2,1 + h3r3,1 + h2r2,3r3,1 + ....

Figure 3.3. Illustration of walk-sums for means and variances.

Walk-Sum Notation We now provide a more compact notation for walk-sets and walk-
sums. In general, given a set of walks W we define the walk-sum:

φ(W) =
∑

w∈W
φ(w)

and the reweighted walk-sum:

φh(W) =
∑

w∈W
hw0φ(w)

where w0 denotes the initial node in the walk w. Also, we adopt the convention that
W(. . . ) denotes the set of all walks having some property . . . and denote the associated
walk-sums simply as φ(. . . ) or φh(. . . ). For instance, W(i → j) denotes the set of all
walks from i to j and φ(i → j) is the corresponding walk-sum. Also, W(∗ → i) denotes
the set all walks that end at node i and φh(∗ → i) is the corresponding reweighted
walk-sum. In this notation, Pij = φ(i → j) and µi = φh(∗ → i). An illustration of
walk-sums and their connection to inference appears in Figure 3.3 where we list some
walks and walk-sums for a 3-cycle graph.

Walk-Sum Algebra We now show that the walk-sums required for inference in walk-
summable models can be significantly simplified by exploiting the recursive structure
of walks. To do so, we make use of some simple algebraic properties of walk-sums. The
following lemmas all assume that the model is walk-summable.

Lemma 3.1.1. Let W = ∪∞
k=1Wk where the subsets Wk are disjoint. Then, φ(W) =

∑∞
k=1 φ(Wk).

Proof. By the sum-partition theorem for absolutely convergent series [58]:
∑

w∈W φ(w) =
∑

k

∑

w∈Wk
φ(w). ¤
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Lemma 3.1.2. Let W = ∪∞
k=1Wk where Wk ⊂ Wk+1 for all k. Then, φ(W) =

limk→∞ φ(Wk).

Proof. Let W0 be the empty set. Then, W = ∪∞
k=1(Wk \Wk−1). By Lemma 3.1.1,

φ(W) =
∞

∑

k=1

φ(Wk \Wk−1) = lim
N→∞

N
∑

k=1

(φ(Wk) − φ(Wk−1)) = lim
N→∞

(φ(WN ) − φ(W0))

where we use φ(W0) = 0 in the last step to obtain the result. ¤

Given two walks u = (u0, . . . , un) and v = (v0, . . . , vm) with un = v0 (walk v
begins where walk u ends) we define the product of walks uv = (u0, . . . , un, v1, . . . , vm).
Let U and V be two countable sets of walks such that every walk in U ends at a
given node i and every walk in V begin at this node. Then we define the product set
UV = {uv | u ∈ U , v ∈ V}. We say that (U ,V) is a valid decomposition if for every
w ∈ UV there is a unique pair (u, v) ∈ U × V such that uv = w.

Lemma 3.1.3. Let (U ,V) be a valid decomposition. Then, φ(UV) = φ(U)φ(V).

Proof. For individual walks it is evident that φ(uv) = φ(u)φ(v). Note that UV =
∪u∈U uV, where the sets uV , {uv|v ∈ V} are mutually disjoint. By Lemma 3.1.1,

φ(UV) =
∑

u∈U
φ(uV) =

∑

u∈U

∑

v∈V
φ(uv) =

∑

u∈U

∑

v∈V
φ(u)φ(v) =

(

∑

u∈U
φ(u)

) (

∑

v∈V
φ(v)

)

where we have used φ(uV) =
∑

v∈V φ(uv) because uV is one-to-one with V. ¤

Note that W(i → i) is the set of self-return walks at node i, i.e., walks which begin
and end at node i. These self-return walks include walks which return to i many times.

Let W(i
\i→ i) be the set of all walks with non-zero length which begin and end at i

but do not visit i in between. We call these the single-revisit self-return walks at node
i. The set of self-return walks that return exactly k times is generated by taking the

product of k copies of W(i
\i→ i) denoted by Wk(i

\i→ i). Thus, we obtain all self-return
walks as:

W(i → i) = ∪k≥0Wk(i
\i→ i) (3.2)

where W0(i
\i→ i) , {(i)}.

Similarly, recall that W(∗ → i) denotes the set of all walks which end at node i.

Let W(∗ \i→ i) denote the set of walks with non-zero length which end at node i and do
not visit i previously (we call them single-visit walks). Thus, all walks which end at i
are obtained as:

W(∗ → i) =

(

{(i)} ∪W(∗ \i→ i)

)

W(i → i) (3.3)



56 CHAPTER 3. WALKSUM ANALYSIS OF GAUSSIAN BELIEF PROPAGATION

which is a valid decomposition.
Now we can decompose means and variances in terms of single-visit and single-revisit

walk-sums, which we will use in Section 3.2.1 to analyze BP:

Proposition 3.1.4. Let αi = φ(i
\i→ i) and βi = φh(∗ \i→ i). Then,

Pii =
1

1 − αi
and µi =

hi + βi

1 − αi

Proof. First note that the decomposition of Wk(i
\i→ i) into products of k single-

revisit self-return walks is a valid decomposition. By Lemma 3.1.3, φ(Wk(i
\i→ i)) =

φk(i
\i→ i) = αk

i . Then, by (3.2) and Lemma 3.1.1:

Pii = φ(i → i) =
∑

k

αk
i =

1

1 − αi

Walk-summability of the model implies convergence of the geometric series (i.e., |αi| <
1). Lastly, the decomposition in (3.3) implies

µi = φh(∗ → i) = (hi + φh(∗ \i→ i))φ(i → i) =
hi + βi

1 − αi
¤

¥ 3.1.3 Correspondence to Attractive Models

We have already shown that attractive models are walk-summable. Interestingly, it
turns out that inference in any walk-summable model can be reduced to inference in
a corresponding attractive model defined on a graph with twice as many nodes. The
basic idea here is to separate out the walks with positive and negative weights.

Specifically, let Ĝ = (V̂ , Ê) be defined as follows. For each node i ∈ V we define
two corresponding nodes i+ ∈ V+ and i− ∈ V−, and set V̂ = V+ ∪ V−. For each edge
{i, j} ∈ E with rij > 0 we define two edges {i+, j+}, {i−, j−} ∈ Ê , and set the partial
correlations on these edges to be equal to rij . For each edge {i, j} ∈ E with rij < 0 we
define two edges {i+, j−}, {i−, j+} ∈ Ĝ, and set the partial correlations to be −rij . See
Figure 3.4 for an illustration.

Let (R+)ij = max{Rij , 0} and (R−)ij = max{−Rij , 0}, then, R can be expressed as
the difference of these non-negative matrices: R = R+−R−. Based on our construction,

we have that R̂ =
(

R+ R−
R− R+

)

and Ĵ = I − R̂. This defines a unit-diagonal information

matrix Ĵ on Ĝ. Note that if Ĵ Â 0 then this defines a valid attractive model.

Proposition 3.1.5. Ĵ = I − R̂ Â 0 if and only if J = I − R is walk-summable.

The proof relies on the Perron-Frobenius theorem and is given in Appendix A.1.
Now, let h = h+ − h− with (h+)i = max{hi, 0} and (h−)i = max{−hi, 0}. Define

ĥ =
(

h+

h−

)

. Now we have the information form model (ĥ, Ĵ) which is a valid, attractive
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Figure 3.4. (a) A frustrated model defined on G with one negative edge (r > 0). (b) The corresponding
attractive model defined on Ĝ.

model and also has non-negative node potentials. Performing inference with respect to

this augmented model, we obtain the mean vector µ̂ =
(

µ̂+

µ̂−

)

, Ĵ−1ĥ and covariance

matrix P̂ =
(

P̂++ P̂+−
P̂−+ P̂−−

)

, Ĵ−1. From these calculations, we can obtain the moments

(µ, P ) of the original walk-summable model (h, J):

Proposition 3.1.6. P = P̂++ − P̂+− and µ = µ̂+ − µ̂−.

The proof appears in Appendix A.1. This proposition shows that estimation of
walk-summable models may be reduced to inference in an attractive model in which all
walk-sums are sums of positive weights. In essence, this is accomplished by summing
walks with positive and negative weights separately and then taking the difference,
which is only possible for walk-summable models.

¥ 3.1.4 Pairwise-Normalizability

To simplify presentation we assume that the graph does not contain any isolated nodes
(a node without any incident edges). Then, we say that the information matrix J is
pairwise-normalizable (PN) if we can represent J in the form

J =
∑

e∈E
[Je]

where each Je is a 2× 2 symmetric, positive definite matrix.6 The notation [Je] means
that Je is zero-padded to a |V | × |V | matrix with its principal submatrix for {i, j}
being Je (with e = {i, j}). Thus, xT [Je]x = xT

e Jexe. Pairwise-normalizability implies
that J Â 0 because each node is covered by at least one positive definite submatrix
Je. Let JPN denote the set of n×n pairwise-normalizable information matrices J (not
requiring unit-diagonal normalization). This set has nice convexity properties. Recall
that a set X is convex if x, y ∈ X implies λx + (1 − λ)y ∈ X for all 0 ≤ λ ≤ 1 and is a
cone if x ∈ X implies αx ∈ X for all α > 0. A cone X is pointed if X ∩ −X = {0}.

6An alternative definition of pairwise-normalizability is the existence of a decomposition J = cI +
P

e∈E [Je], where c > 0, and Je º 0. For graphs without isolated nodes, both definitions are equivalent.
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Proposition 3.1.7 (Convexity of PN models). The set JPN is a convex pointed
cone.

The proof is in Appendix A.1. We now establish the following fundamental result:

Proposition 3.1.8 (WS ⇔ PN). J = I − R is walk-summable if and only if it is
pairwise-normalizable.

Our proof appears in in Appendix A.1. An equivalent result has been derived in-
dependently in the linear algebra literature: [18] establishes that symmetric H-matrices
with positive diagonals (which is equivalent to WS by part (iv) of Proposition 3.1.1)
are equivalent to matrices with factor width at most two (PN models). However, the
result PN ⇒ WS was established earlier by [72]. Our proof for WS ⇒ PN uses the
Perron-Frobenius theorem, whereas [18] use the generalized diagonal dominance prop-
erty of H-matrices. Also our proof reveals the following connection between the two
notions: define the strength of walk-summability as εWS = 1 − %(R̄) and the strength
of pairwise-normalizability as εPN = maxc such that J = cI +

∑

e∈E [Je] with Je º 0.
Strength of WS and PN measure how much the model can be perturbed while still
being WS or PN, respectively. Then:

Corollary 3.1.3. For normalized (unit-diagonal) J we have εWS = εPN.

Equivalence to pairwise-normalizability gives much insight into the set of walk-
summable models. For example, the set of unit-diagonal J matrices that are walk-
summable is convex, because it is the intersection of JPN with an affine space. Also,
the set of walk-summable J matrices that are sparse with respect to a particular graph
G (with some entries of J are restricted to 0) is convex.

Another important class of models are those that have a diagonally dominant in-
formation matrix, i.e., where for each i it holds that

∑

j 6=i |Jij | < Jii.

Proposition 3.1.9. Diagonally dominant models are pairwise-normalizable (walk-summable).

A constructive proof is given in Appendix A.1. The converse does not hold: not
all pairwise-normalizable models are diagonally dominant. For instance, in our 4-cycle
with a chord example, Figure 3.1(a), with r = .38 the model is not diagonally dominant
but is walk-summable and hence pairwise-normalizable.

¥ 3.2 Walk-sum Interpretation of Belief Propagation

In this section we use the concepts and machinery of walk-sums to analyze belief prop-
agation. We begin with models on trees, for which, as we show, all valid models are
walk-summable. Moreover, for these models we show that exact walk-sums over infinite
sets of walks for means and variances can be computed efficiently in a recursive fashion.
We show that these walk-sum computations map exactly to belief propagation updates.
These results (and the computation tree interpretation of LBP recursions) then provide
the foundation for our analysis of loopy belief propagation in Section 3.2.2.
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Figure 3.5. Illustration of the subtree notation, Ti→j and Ti\j .

¥ 3.2.1 Walk-Sums and BP on Trees

Our analysis of BP makes use of the following property:

Proposition 3.2.1 (Trees are walk-summable). For tree structured models J Â
0 ⇔ %(R̄) ≤ 1 (i.e., all valid trees are walk-summable). Also, for trees %(R̄) = %(R) =
λmax(R).

Proof. The proof is a special case of the proof of Corollary 3.1.2. Trees are non-
frustrated (as they contain no cycles, and hence no frustrated cycles) so they are walk-
summable. Negating some variables makes the model attractive and does not change
the eigenvalues. ¤

The proposition shows that walk-sums for means and variances are always defined
on tree-structured models, and can be reordered in arbitrary ways without affecting
convergence. We rely on this fact heavily in subsequent sections. The next two results
identify walk-sum variance and mean computations with the BP update equations. The
ingredients for these results are decompositions of the variance and mean walk-sums
in terms of sums over walks on subtrees, together with the decomposition in terms of
single-revisit and single-visit walks provided in Proposition 3.1.4.

Walk-Sum Variance Calculation Let us look first at the computation of the variance at
node j, which is equal to the self-return walk-sum φ(j → j), and which from Proposition

3.1.4 can be computed directly from the single-revisit walk sums αj = φ(j
\j→ j). This

latter walk-sum can be further decomposed into sums over disjoint subsets of walks each
of which corresponds to single-revisit self-return walks that exit node j via a specific
one of its neighbors, say i. In particular, as illustrated in Figure 3.5, the single-revisit
self-return walks that do this correspond to walks that live in the subtree Ti→j . Using

the notation αi→j , φ(j
\j→ j | Ti→j) for the walk-sum over the set of all single-revisit

walks which are restricted to stay in subtree Ti→j we see that

αj = φ(j
\j→ j) =

∑

i∈N (j)

φ(j
\j→ j | Ti→j) =

∑

i∈N (j)

αi→j
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Moreover, every single-revisit self-return walk that lives in Ti→j must leave and return
to node j through the single edge (i, j), and between these first and last steps must
execute a (possibly multiple-revisit) self-return walk at node i that is constrained not
to pass through node j, i.e., to live in the subtree Ti\j indicated in Figure 3.5. Thus

αi→j = φ(j
\j→ j | Ti→j) = r2

ijφ(i → i | Ti\j) , r2
ijγi\j (3.4)

We next show that the walk-sums αj and αi→j (hence variances Pj) can be efficiently
calculated by a walk-sum analog of belief propagation. We have the following result:

Proposition 3.2.2. Consider a valid tree model J = I − R. Then αi→j = −∆Ji→j

and γi\j = Ĵ−1
i\j , where ∆Ji→j and Ĵ−1

i\j are the quantities defined in the Gaussian BP

equations (2.29) and (2.30).

See Appendix A.1 for the proof. This gives us a walk-sum interpretation of LBP
message updates for variances.

Walk-Sum Mean Calculation We extend the above analysis to calculate means in trees.
Mean µj is the reweighted walk-sum over walks that start anywhere and end at node
j, µj = φh(∗ → j). Any walk that ends at node j can be expressed as a single-visit
walk to node j followed by a multiple-revisit self-return walk from node j: φh(∗ → j) =
(

hj + φh(∗ \j→ j)

)

φ(j → j), where the term hj corresponds to the length-0 walk that

starts and ends at node j.
As we have done for the variances, the single-visit walks to node j can be partitioned

into the single-visit walks that reach node j from each of its neighbors, say node i and
thus prior to this last step across the edge (i, j), reside in the subtree Ti\j , so that

βi→j , φh(∗ \j→ j | Ti→j) = rijφh(∗ → i | Ti\j)

Proposition 3.2.3. Consider a valid tree model J = I − R. Then βi→j = ∆hi→j,
where ∆hi→j is the quantity defined in the Gaussian BP equation (2.30).

The proof appears in Appendix A.1. Now we have a complete walk-sum interpre-
tation of Gaussian LBP message updates.

¥ 3.2.2 LBP in Walk-Summable Models

In this subsection we use the LBP computation tree to show that LBP includes all
the walks for the means, but only a subset of the walks for the variances. This allows
us to prove LBP convergence for all walk-summable models. In contrast, for non-
walksummable models LBP may or may not converge (and in fact the variances may
converge while the means do not). As we will see in Section 3.3, this can be analyzed
by examining not the walk-summability of the original model but the walk-summability
(and hence the validity) of the computation tree.
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As we have discussed in Section 2.2.3, running LBP for some number of iterations
yields identical calculations at any particular node i to the exact inference calculations

on the corresponding computation tree rooted at node i. We use the notation T
(n)
i for

the depth-n computation tree at node i, Ti for the full computation tree (as n → ∞)

and we assign the label 0 to the root node. P0(T
(n)
i ) is the variance at the root node of

the nth computation tree rooted at node i in G. The LBP variance estimate at node i
after n steps is equal to:

P̂
(n)
i = P0(T

(n)
i ) = φ(0 → 0 | T

(n)
i )

Similarly, the LBP estimate of the mean µi after n steps of LBP is:

µ̂
(n)
i = µ0(T

(n)
i ) = φh(∗ → 0 | T

(n)
i )

As we have mentioned in Section 2.2.3, the definition of the computation trees T
(n)
i

depends upon the message schedule {M(n)} of LBP, which specifies which subset of
messages are updated at iteration n. We say that a message schedule is proper if every
message is updated infinitely often, i.e., if for every m > 0 and every directed edge
(i, j) in the graph there exists n > m such that (i, j) ∈ M(n). Clearly, the fully-parallel
form is proper since every message is updated at every iteration. Serial forms which
iteratively cycle through the directed edges of the graph are also proper. All of our
convergence analysis in this section presumes a proper message schedule. We remark
that as walk-summability ensures convergence of walk-sums independent of the order
of summation, it makes the choice of a particular message schedule unimportant in our
convergence analysis. The following result relating walks in the loopy graph G and
walks in the computation tree Ti is proven in Appendix A.1.

Lemma 3.2.1 (Walks in G and in Ti). There is a one-to one correspondence between
finite-length walks in G that end at i, and walks in Ti that end at the root node. In

particular, for each such walk in G there is a corresponding walk in T
(n)
i for n large

enough.

Now, recall that to compute the mean µi we need to gather walk-sums over all
walks that start anywhere and end at i. We have just shown that LBP gathers all of
these walks as the computation tree grows to infinity. The story for the variances is
different. The true variance Pii is a walk-sum over all self-return walks that start and
end at i in G. However, walks in G that start and end at i may map to walks that

start at the root node of T
(n)
i , but end at a replica of the root node instead of the

root. These walks are not captured by the LBP variance estimate.7 The walks for the

variance estimate P0(T
(n)
i ) are self-return walks W(0 → 0 | T

(n)
i ) that start and end at

7Recall that the computation tree is a representation of the computations seen at the root node of
the tree, and it is only the computation at this node—i.e., at this replica of node i that corresponds to
the LBP computation at node i in G.
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the root node in the computation tree. Consider Figure 2.7. The walk (1, 2, 3, 1) is a
self-return walk in the original graph G but is not a self-return walk in the computation
tree shown in Figure 2.7(d). LBP variances capture only those self-return walks of the
original graph G which are also self-return walks in the computation tree—e.g., the
walk (1, 3, 2, 3, 4, 3, 1) is a self-return walk in both Figures 2.7(a) and (d). We call such
walks backtracking. Hence,

Lemma 3.2.2 (Self-return walks in G and in Ti). The LBP variance estimate
at each node is a sum over the backtracking self-return walks in G, a subset of all
self-return walks needed to calculate the correct variance.

Note that back-tracking walks for the variances have positive weights, since each
edge in the walk is traversed an even number of times. With each LBP step the compu-
tation tree grows and new back-tracking walks are included, hence variance estimates
grow monotonically.8

We have shown which walks LBP gathers based on the computation tree. It remains
to analyze the convergence of the walk-sums for these walks. In walk-summable models
the answer is simple:

Lemma 3.2.3 (Computation trees of WS models are WS). For a walk-summable

model all its computation trees T
(n)
i (for all n and i) are walk-summable and hence valid

(positive-definite).

Intuitively, walks in the computation tree T
(n)
i are subsets of the walks in G, and

hence they converge. That means that the computation trees are walk-summable, and
hence valid. This argument can be made precise, but a shorter formal proof using
monotonicity of the spectral radius (3.1) appears in Appendix A.1. Next, we use these
observations to show convergence of LBP for walk-summable models.

Proposition 3.2.4 (Convergence of LBP for walk-summable models). If a
model on a graph G is walk-summable, then LBP is well-posed, the means converge
to the true means and the LBP variances converge to walk-sums over the backtracking
self-return walks at each node.

Proof. Let W(i
BT→ i) denote the back-tracking self-return walks at node i. By

Lemmas 3.2.1 and 3.2.2, we have:

W(∗ → i) = ∪nW(∗ → 0|T (n)
i )

W(i
BT→ i) = ∪nW(0 → 0|T (n)

i )

8Monotonically increasing variance estimates is a characteristic of the particular initialization of
LBP that we use, i.e., the potential decomposition (2.24) together with uninformative initial messages.
If one instead uses a pairwise-normalized potential decomposition, the variances are then monotonically
decreasing.
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Figure 3.6. (a) LBP variances vs. iteration. (b) %(Rn) vs. iteration.

We note that the computation trees T
(n)
i at node i are nested, T

(n)
i ⊂ T

(n+1)
i for all n.

Hence, W(∗ → 0|T (n)
i ) ⊂ W(∗ → 0|T (n+1)

i ) and W(0 → 0|T (n)
i ) ⊂ W(0 → 0|T (n+1)

i ).
Then, by Lemma 3.1.2, we obtain the result:

µi = φh(∗ → i) = lim
n→∞

φh(∗ → 0|T (n)
i ) = lim

n→∞
µ̂

(n)
i

P
(BT )
i , φ(i

BT→ i) = lim
n→∞

φ(0 → 0|T (n)
i ) = lim

n→∞
P̂

(n)
i . ¤

Corollary 3.2.1. LBP converges for attractive, non-frustrated, and diagonally domi-
nant models. In attractive and non-frustrated models LBP variance estimates are less
than or equal to the true variances (the missing non-backtracking walks all have positive
weights).

In [133] Gaussian LBP is analyzed for pairwise-normalizable models. They show
convergence for the case of diagonally dominant models, and correctness of the means
in case of convergence. The class of walk-summable models is strictly larger than the
class of diagonally dominant models, so our sufficient condition is stronger. They also
show that LBP variances omit some terms needed for the correct variances. These terms
correspond to correlations between the root and its replicas in the computation tree. In
our framework, each such correlation is a walk-sum over the subset of non-backtracking
self-return walks in G which, in the computation tree, begin at a particular replica of
the root.

Example 2. Consider the model in Figure 3.1(a). We summarize various critical
points for this model in Figure 3.7. For 0 ≤ r ≤ .39039 the model is walk-summable
and LBP converges; then for a small interval .39039 ≤ r ≤ .39865 the model is not
walk-summable but LBP still converges, and for larger r LBP does not converge. We
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apply LBP to this model with r = 0.39, 0.395 and 0.4, and plot the LBP variance
estimates for node 1 vs. the iteration number in Figure 3.6(a). LBP converges in the
walk-summable case for r = .39, with %(R̄) ≈ .9990. It also converges for r = 0.395 with
%(R̄) ≈ 1.0118, but soon fails to converge as we increase r to 0.4 with %(R̄) ≈ 1.0246.

Also, for r = .4, we note that %(R) = .8 < 1 and the series
∑

l R
l converges (but

∑

l R̄
l does not) and LBP does not converge. Hence, %(R) < 1 is not sufficient for

LBP convergence showing the importance of the stricter walk-summability condition
%(R̄) < 1.

¥ 3.3 LBP in Non-Walksummable Models

While the condition in Proposition 3.2.4 is necessary and sufficient for certain special
classes of models—e.g., for trees and single cycles—it is only sufficient more generally,
and, as in Example 2, LBP may converge for some non-walksummable models. We
extend our analysis to develop a tighter condition for convergence of LBP variances
based on a weaker form of walk-summability defined with respect to the computation
trees (instead of G). We have shown in Proposition 3.2.1 that for trees walk-summability
and validity are equivalent, and %(R̄) < 1 ⇔ %(R) < 1 ⇔ J Â 0. Hence our condition
essentially corresponds to validity of the computation tree.

First, we note that when a model on G is valid (J is positive-definite) but not
walk-summable, then some finite computation trees may be invalid (indefinite). This
turns out to be the primary reason why belief propagation can fail to converge. Walk-
summability on the original graph implies walk-summability (and hence validity) on all
of its computation trees. But if the model is not walk-summable, then its computation
tree may or may not be valid.

We characterize walk-summability of the computation trees as follows. Let T
(n)
i be

the nth computation tree rooted at some node i. We define R
(n)
i , I − J

(n)
i where

J
(n)
i is the normalized information matrix for T

(n)
i and I is an identity matrix. The

nth computation tree T
(n)
i is walk-summable (valid) if and only if %(R

(n)
i ) < 1 due

to the fact that %(R̄
(n)
i ) = %(R

(n)
i ) for trees. We are interested in the validity of all

finite computation trees, so we consider the quantity limn→∞ %(R
(n)
i ). Lemma 3.3.1

guarantees the existence of this limit:

Lemma 3.3.1. The sequence {%(R
(n)
i )} is monotonically increasing and bounded above

by %(R̄). Thus, limn→∞ %(R
(n)
i ) exists, and is equal to supn %(R

(n)
i ).

In the proof we use k-fold graphs, which we introduce in Appendix A.1.1. The
proof appears in Appendix A.1. The limit in Lemma 3.3.1 is defined with respect to a
particular root node and message schedule. The next lemma shows that for connected
graphs, as long as the message schedule is proper, they do not matter.
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Lemma 3.3.2. For connected graphs and with a proper message schedule, the limit

%∞ , limn→∞ %(R
(n)
i ) is independent of i and the choice of proper message schedule.

This independence results from the fact that for large n the computation trees
rooted at different nodes overlap significantly. Technical details of the proof appear in
Appendix A.1. Using this lemma we suppress the dependence on the root-node i from
the notation to simplify matters. The limit %∞ turns out to be critical for convergence
of LBP variances:

Proposition 3.3.1 (LBP validity/variance convergence). (i) If %∞ < 1, then all
finite computation trees are valid and the LBP variances converge to walk-sums over
the back-tracking self-return walks. (ii) If %∞ > 1, then the computation tree eventually
becomes invalid and LBP fails (produces negative variances).

Proof. (i) Since %∞ = limn→∞ %(R(n)) < 1 and the sequence {%(R(n))} is mono-
tonically increasing, then there exists δ > 0 such that %(R(n)) ≤ 1 − δ for all n. This
implies that all the computation trees T (n) are walk-summable and that LBP variances
monotonically increase (since weights of backtracking walks are positive; see the dis-
cussion after Lemma 3.2.2). We have that λmax(R

(n)) ≤ 1 − δ, so λmin(J
(n)) ≥ δ and

λmax(P
(n)) ≤ 1

δ . The maximum eigenvalue of a matrix is a bound on the maximum

entry of the matrix, so (P (n))ii ≤ λmax(P
(n)) ≤ 1

δ . The variances are monotonically
increasing and bounded above, hence they converge.

(ii) If limn→∞ %(R(n)) > 1, then there exists an m such that %(R(n)) > 1 for all
n ≥ m. This means that these computation trees T (n) are invalid, and that the vari-
ance estimates at some of the nodes are negative. ¤

As discussed in Section 2.3.1, the LBP computation tree is valid if and only if the

information parameters Ĵ
(n)
i\j and Ĵ

(n)
i in (2.29), (2.31) computed during LBP iterations

are strictly positive for all n. Hence, it is easily detected if the LBP computation tree
becomes invalid. In this case, continuing to run LBP is not meaningful and will lead
to division by zero (if the computation tree is singular) or to negative variances (if it is
not positive definite).

Recall that the limit %∞ is invariant to message order by Lemma 3.3.2. Hence, by
Proposition 3.3.1, convergence of LBP variances is likewise invariant to message order
(except possibly when %∞ = 1). The limit %∞ is bounded above by %(R̄), hence walk-
summability in G is a sufficient condition for well-posedness of the computation tree:
%∞ ≤ %(R̄) < 1. However, the bound is not tight in general (except for trees and single
cycles). This is related to the phenomenon that the limit of the spectral radius of the
finite computation trees can be less than the spectral radius of the infinite computation
tree (which has no leafs). See [61] for analysis of a related discrepancy.

Means in non-WS models For the case in which ρ∞ < 1 < %(R̄), the walk-sums for
LBP variances converge absolutely (see proof of Proposition 3.3.1), but the walk-sums
for the means do not converge absolutely. The reason is that LBP only computes
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Figure 3.7. Critical regions for example models from Figure 3.1. (a) 4-cycle with a chord. (b) 5-cycle.

a subset of the self-return walks for the variances but captures all the walks for the
means. However, the series LBP computes for the means, corresponding to a particular
ordering of walks, may or may not still converge.

It is well-known [111] that once variances converge, the updates for the means follow
a linear system. Consider (2.29) and (2.30) with Ĵi\j fixed, then the LBP messages for
the means ∆h = (∆hi→j | {i, j} ∈ E) clearly follow a linear system update. For the
parallel message schedule we can express this as:

∆h(n+1) = L ∆h(n) + b (3.5)

for some matrix L and some vector b. Convergence of this system depends on the
spectral radius %(L). However, it is difficult to analyze %(L) since the matrix L depends
on the converged values of the LBP variances. To improve convergence of the means,
one can damp the message updates by modifying (2.30) as follows:

∆h
(n+1)
i→j = (1 − α)∆h

(n)
i→j + α(−Jij(Ĵ

(n)
i\j )−1ĥ

(n)
i\j ) with 0 < α ≤ 1 (3.6)

We have observed in experiments that for all the cases in which variances converge we
also obtain convergence of the means with enough damping of BP messages. We have
also tried damping the updates for the ∆J messages, but whether or not variances
converge appears to be independent of damping. Apparently, it is the validity of the
computation tree (ρ∞ < 1) that is essential for convergence of both means and variances
in damped versions of Gaussian LBP.

Example 3. We illustrate Proposition 3.3.1 on a simple example. Consider the
5-node cycle model from Figure 3.1(b). In Figure 3.6(b), for ρ = .49 we plot %(Rn)
vs. n (lower curve) and observe that limn→∞ %(Rn) ≈ .98 < 1, and LBP converges.
For ρ = .51 (upper curve), the model defined on the 5-node cycle is still valid but
limn→∞ %(Rn) ≈ 1.02 > 1 and LBP fails: it does not converge and eventually starts
producing negative variances.
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Figure 3.8. The 4-cycle with a chord example. (a) Convergence and divergence of the means near the
LBP mean critical point. (b) Variance near the LBP variance critical point: (top) number of iterations
for variances to converge, (bottom) true variance, LBP estimate and the error at node 1.

As we mentioned, in non-walksummable models the series that LBP computes for
the means is not absolutely convergent and may diverge even when variances converge.
For our 4-cycle with a chord example in Figure 3.1(a), the region in which variances
converge but means diverge is very narrow, r ≈ .39865 to r ≈ .39867 (we use the
parallel message schedule here; the critical point for the means is slightly higher using
a serial schedule). In Figure 3.8(a) we show mean estimates vs. the iteration number
on both sides of the LBP mean critical point for r = 0.39864 and for r = 0.39866. In
the first case the means converge, while in the latter they slowly but very definitely
diverge. The spectral radius of the linear system for mean updates in (3.5) for the two
cases is %(L) = 0.99717 < 1 and %(L) = 1.00157 > 1, respectively. In the divergent
example, all the eigenvalues of L have real components less than 1 (the maximum such
real component is 0.8063 < 1). Thus by damping we can force all the eigenvalues of L
to enter the unit circle: the damped linear system is (1 − α)I + αL. Using α = 0.9 in
(3.6) the means converge.

In Figure 3.8(b) we illustrate that near the LBP variance critical point, the LBP
estimates become more difficult to obtain and their quality deteriorates dramatically.
We consider the graph in Figure 3.1(a) again as r approaches 0.39867, the critical point
for the convergence of the variances. The picture shows that the number of iterations
as well as the error in LBP variance estimates explode near the critical point. In the
figure we show the variance at node 1, but similar behavior occurs at every node. In
Figure 3.7, we summarize the critical points of both models from Figure 3.1.
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¥ 3.4 Chapter Summary

We have presented a walk-sum interpretation of inference in Gaussian graphical models,
which holds for a wide class of models that we call walk-summable. We have shown that
walk-summability encompasses many classes of models which are considered “easy” for
inference—trees, attractive, non-frustrated and diagonally dominant models—but also
includes many models outside of these classes. A Venn diagram summarizing relations
between these sets appears in Figure 3.9. We have also shown the equivalence of walk-
summability to pairwise-normalizability.

We have established that in walk-summable models LBP is guaranteed to converge,
for both means and variances, and that upon convergence the means are correct, whereas
the variances only capture walk-sums over back-tracking walks. We have also used the
walk-summability of valid (positive-definite) models on trees to develop a more complete
picture of LBP for non-walksummable models, relating variance convergence to validity
of the LBP computation tree.

In the next chapter we use combinatorial ideas to compute walk-sums in regular
graphs, and develop vector and factor-graph extensions of walk-summability and their
connection to LBP. We describe possible directions for further work in Chapter 6,
including ideas based on walks or paths for inference in discrete models, and improve-
ments over LBP which attempt to capture more walks for variances. We also note that
walk-sum analysis has been applied to the analysis of the embedded trees algorithm for
Gaussian inference in [26].



Chapter 4

Extensions: Combinatorial, Vector
and Factor Graph Walk-sums

In this chapter we continue our study of the walk-sum framework presented in Chapter 3.
First we consider combinatorial ideas for calculating walk-sums in regular graphs, which
shed light on the stability of the computation trees in the difficult case with %∞ = 1,
and give insight into the accuracy of LBP variances. Next, we consider generalized
walk-sums in vector and factor graph Gaussian graphical models. The corresponding
vector and factor graph versions of LBP provide a rich class of algorithms with trade-
off between accuracy and convergence versus computational complexity. We develop
sufficient conditions for vector and factor graph walk-summability, and convergence of
LBP, and also show that these settings are inherently more complex than the scalar
walk-sum framework in Chapter 3. Finally we talk about a rich class of factor graph
normalizable models, and show that this condition is sufficient to guarantee convergence
of the variances. We also relate this factor graph normalizable condition to a recently
proposed complex-valued version of Gaussian LBP.

¥ 4.1 Combinatorial Walk-sum Analysis

In this section we apply some basic counting ideas to analyze Gaussian walk-sums
in regular graphs. Recall that a graph is k-regular if the degree of every vertex is
k. In addition, we call the edge-weights homogeneous if they are all the same. First
we use counting ideas to give insight into LBP variance behaviour in the critical case
with %∞ = 1. Then, we analyze the accuracy of LBP variances in regular graphs
with homogeneous weights (we may also negate some or all of the edge-weights on
occasion). And finally we derive an approximate expression for expected walk-sums
using a stochastic model for edge-weights in regular graphs with non-homogeneous
weights.

¥ 4.1.1 LBP Variance Estimates for %∞ = 1

Recall Proposition 3.3.1 in Chapter 3 regarding convergence of LBP variances in non-
walk-summable models. It states that LBP variances converge if %∞ < 1, and that they

69
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...r r

Figure 4.1. (top) One sided infinite chain, with homogeneous weights r. The root node is filled.

diverge if %∞ > 1, but leaves the case %∞ = 1 open. A reasonable conjecture may be
that in this case LBP variances stay positive but diverge to infinity as LBP progresses.
Below we analyze this conjecture from a combinatorial perspective, and show that for
single cycles with homogeneous weights the conjecture holds, but that in general for
more complex graphs it does not, and LBP variances may approach a finite limit when
%∞ = 1.

The LBP variance walk-sum is a multivariate power-series in the edge-weights.
Suppose there are M edges in the graph, with weights re. Let α be a multi-index,
α = (α1, ..., αM ), with αe ∈ N . Then φ(i → i) =

∑

α wαrα, where rα =
∏

rαe
e , and wα

is the number of walks which go αe times across each edge e. The power series converges
for r in the interior of its region of convergence1, but it may or may not converge on its
boundary: for example consider the univariate power series

∑

k
1
krk, and

∑

k
1
k2 rk. The

radius of convergence is r = 1 for both. However, for r = 1 the series
∑

k
1
k2 is finite,

whereas
∑

k
1
k diverges. We are interested if these two cases are possible for convergence

of walk-sums.
Next we use combinatorics to analytically compute self-return walk-sums at the root

node of some simple graphs: a single-sided chain, a k-tree, a two-sided chain, and a
computation tree of a k-regular graph. We will pay particular attention to the critical
case where the models are near-singular, and this will give insight into the behavior of
variances for LBP. We assume that all the edge-weights are set to r. We also note that
in tree-structured models (including computation trees) the self-return walk-sums will
not get affected by negating weights on some of the edges: every edge appears an even
number of times in each walk, and hence, the signs cancel out. Thus, our calculations
apply not only to regular chains and trees with homogeneous weights r, but also to
the case where edge-weights are ±r. However, in loopy graphs negating some of the
edge-weights may change the self-return walk-sums, and may even affect the validity
(positive-definiteness) of J = I − R. We will see the implications of this fact for loopy
graphs and their computation trees.

One-sided infinite chain. First, we consider an infinite homogeneous chain rooted
at node 0 and extending in one direction, with all the edge-weights set to r, see Figure
4.1. The infinite single-sided chain is not a computation tree for any finite graph, but

1For univariate power series expansion around 0, the region of convergence is a disk of some radius
r0 around 0, with its interior being the open disk |r| < r0. For multivariate power series, the region of
convergence is a more complicated object – a log-convex set.



Sec. 4.1. Combinatorial Walk-sum Analysis 71

...

...

...
...
...

(a) (b) (c)

Figure 4.2. (a) A 2-tree, i.e. binary tree, (b) the computation tree for a 3-regular graph and (c)
example 3-regular graphs which both generate the computation tree in (b).

we will shortly use it to find walk-sums for computation trees of regular graphs. The
number of walks of length 2n that start and end at node 0, i.e. the self-return walks,
can be calculated analytically (note there are no self-return walks of odd length). It is
described by Catalan numbers [118]2: Cn = 1

n+1 ( 2n
n ). The weight of a walk of length

2n in a homogeneous chain is equal to r2n. Hence the walk-sum is equal to

φa(0 → 0) =
∑

n

Cnr2n =
∑ r2n

n + 1
( 2n

n ) (4.1)

Using the Stirling approximation for the factorial [22], n! ≈
√

2πn
(

n
e

)n
, which is asymp-

totically accurate, we have:

φa(0 → 0) ≈
∑

n

(4r2)n

n3/2
√

π
(4.2)

The critical value is r = 1
2 , at which the sum

∑

n
1

n3/2
√

π
is convergent. Hence, at the

critical value of r, as the single-sided chain grows, the self-return walk-sum at the root
(the variance) does not keep growing without bound, but instead converges to a finite
value. In fact, the expression for φa(0 → 0) is precisely the generating function3 for
Catalan numbers [118], and can be computed analytically. In the region of convergence,
for r < 1

2 we have

φa(0 → 0) =
∑ r2n

n + 1
( 2n

n ) =
1 −

√
1 − 4r2

2r2
(4.3)

Infinite k-tree. Next we analyze a k-tree, where each node has k children, shown
in Figure 4.2 (a). A k-tree is also not a computation tree for any finite graph (the
neighborhood structure at the root-node is different from the rest of the nodes), but it
will be used in the analysis of computation trees for (k+1)-regular graphs. To compute

2One interpretation of Catalan numbers is the number of ways to arrange n left parenthesis and n
right parenthesis, such that the sequence is proper – i.e. ’()’ is proper ’)(’ is not. In our problem we
have steps to the right and to the left instead of the parentheses.

3The generating function for a sequence an is the formal power series Ga(r) =
P

anrn.
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Figure 4.3. (a) Two sided infinite chain, with homogeneous weights r. The root node is filled. (b)
example homogeneous cycles which generate the computation tree.

the number of self-return walks of length 2n starting from the root node in a k-tree we
reduce the problem to the single-sided chain. We encode every step down into the tree,
i.e. away from the root, as +1, and every step up, or towards the root, as −1. The
number of such encodings is 1

n+1 ( 2n
n ) from our earlier calculation with one-sided chain.

For every such encoding of ±1 there are kn possible walks in the k-tree: each step
down can go along one of the k branches, whereas each step up is uniquely determined.
Hence, the number of self-return walks of length 2n in a k-tree is kn

n+1 ( 2n
n ). Using a

homogeneous weight r on all the edges, and the Stirling approximation for factorials
this translates into the following approximate walk-sum:

φb(0 → 0) ≈
∑

n

(4kr2)n

n3/2
√

π
(4.4)

The critical value in comparison to the one-sided chain changes to 1
2
√

k
, but for this

critical value the sum reduces to
∑

n
1

n3/2
√

π
, similar to the one-sided chain, and the

self-return walk-sums stay bounded. The generating function valid in the region of con-

vergence is φb(0 → 0) = 1−
√

1−4kr2

2kr2 . At the critical value the k-tree behaves similarly
to the one-sided chain.

Two-sided infinite chain. Next, we consider a two-sided infinite homogeneous
chain, which is a computation tree for a homogeneous single-cycle with any number of
nodes, see Figure 4.3. Thus, the self-return walk-sum at the root node in the two-sided
chain is also the LBP variance estimate in the single-cycle model. The behavior at the
critical value of r is different from the previous two examples. The number of self-return
walks of length n is now ( 2n

n ), this is the number of ways to pick n pluses out of 2n
pluses and minuses, with pluses and minuses corresponding to forward and reverse steps
in the chain. This makes the walk-sum grow as

φc(0 → 0) ≈
∑

n

(4r2)n

n1/2
√

π
(4.5)

So, the critical value is r = 1
2 , and as r → 1

2 , the LBP variance does increase without
bound, because

∑

n
1

n1/2
√

π
diverges. So, for single homogeneous cycles at the critical



Sec. 4.1. Combinatorial Walk-sum Analysis 73

value of r, as the computation tree grows, the variances do increase without bound. The
corresponding generating function for self-return walks in a two-sided infinite chain,
which applies for r < 1

2 is:

φc(0 → 0 | BT ) =
1√

1 − 4r2
(4.6)

In agreement with our analysis, as r → 1
2 , the expression increases without bound.

Computation trees for regular graphs. Finally, we consider (k + 1)-regular
graphs, where each node has k + 1 neighbors. The computation tree for a (k + 1)-
regular graph looks almost like a k-tree, except at the root node, which has no parent,
it has k +1 branches instead of k. See Figure 4.2 for an illustration with k = 2. We can
use the expression for walk-sums in k-trees to find the walk-sums in the computation
tree for a (k + 1)-regular graph. The root node has k + 1 neighbors, each of which
are the roots of k-trees. Using our recursive walk-sum update equations for trees from
Chapter 3, the self-return walk-sum at the root node is equal to

φd(0 → 0) =
1

1 − (k + 1)r2φd(1 → 1\0)
=

1

1 − (k + 1)r2 1−
√

1−4kr2

2kr2

(4.7)

where our expression for φd(1 → 1\0), the walk-sum in the subtree rooted at the
neighbor of 0, simply equals φb(0 → 0) for k-trees. Note that all the three neighbors of
the root node have the same subtrees, so we just use the expression for node 1 and add
it k + 1 times. Upon simplification, we have

φd(0 → 0) =
2k

k − 1 + (k + 1)
√

1 − 4kr2
(4.8)

Apart from the case k = 1 which is equivalent to the 2-sided chain, for critical values
of r = 1

2
√

k
the above expression is finite. Hence, for k + 1 regular graphs with k > 1,

as the computation tree at the critical value of r grows, the variances stay bounded.
We need to point out a potential pitfall in applying this analysis. Recall our remark

about negating some of the edge-weights at the beginning of the section. In computa-
tion trees both the self-return walk-sums and the validity of the tree do not get affected
by changing the signs of some or all of the edge-weights (see the proof of Proposi-
tion 3.2.1). However, for loopy graphs in general both are affected by changing signs.
Thus the attractive k-regular graph (with all edge-weights positive) and the frustrated
k-regular graph (in which some or all of the edge-weights may be negative) produce
equivalent computation trees. It turns out that at the critical value of r the frustrated
k-regular model with all but one edge-weight positive and equal to r, and one equal to
−r, is valid. However, for k > 2, at the same value of r the attractive k-regular model
with all edge-weights equal to r corresponds to an invalid information matrix J with
negative eigenvalues. The attractive model is valid for smaller values of r, but, as r
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Figure 4.4. (a) 3-regular graph (a cube). Note that it is frustrated (one of the edges has weight
−r). (b) LBP variances as a function of iteration. For r = 1

2
√

2
− ε variances converge (top), but for

r = 1

2
√

2
+ ε, LBP fails (variances become negative and oscillate). Here, ε = 10−5.

increases, becomes invalid earlier than its computation tree. Hence, when investigating
the critical value of the computation tree we must assume that the underlying k-regular
graph is frustrated.

Example 1. In Figure 4.4 we show a frustrated 3-regular graph, a cube (note that
k = 2, and k +1 = 3). The information matrix at the critical value r = 1

2
√

2
is positive-

definite with λmin ≈ 0.0421. We apply LBP for r = 1
2
√

2
− ε, just below our computed

threshold, and for r = 1
2
√

2
+ε, just above the threshold. In the first case LBP variances

converge, but in the second case LBP fails – variances eventually become negative and
start to oscillate. These observations agree with our computed critical value of r. Also
note that as r approaches the critical value, the LBP variance estimate approaches a
finite value 4, in agreement with (4.8), and does not explode to infinity.

In conclusion, the behaviour of LBP variances for critical computation trees with
%∞ = 1 depends on the model: for some models the variances keep growing without
bound, while for other models they converge to a finite value. Thus we leave the
statement of Proposition 3.3.1 as is, and %∞ = 1 case has to be considered for each
specific model.

¥ 4.1.2 Assessing the Accuracy of LBP Variances

There is experimental evidence that far from the boundary of computation-tree validity,
for %∞ ¿ 1, LBP variances tend to approximate the true variances well. We show this
for small regular graphs with homogeneous weights where both the LBP walk-sums and
the complete variance walk-sums can be calculated analytically.

Consider an attractive 3-node cycle with all edge-weights set to r > 0. The corre-
sponding computation tree is a two-sided infinite chain, see Figure 4.3. The expression
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Figure 4.5. LBP variances and true variances vs. r. (a) 3-node cycle. (b) Frustrated 4-clique.

we derived for φc(0 → 0) in (4.6) is also the LBP variance estimate in the 3-node cycle,
φ(0 → 0 | BT ), i.e. the walk-sum over backtracking walks in the 3-cycle. The expression
for the correct variance, i.e. the walk-sum over all self-return walks, not just backtrack-

ing walks, can be obtained by inverting the 3 × 3 matrix J = I − R =
[ 1 −r −r
−r 1 −r
−r −r 1

]

. We

have:

Pii =
1 − r

1 − r − 2r2
(4.9)

The same two-sided infinite chain is also equivalent to the computation tree of a frus-
trated 3-node cycle, with weights r, r and −r, as the edges in the computation tree
can be negated without affecting the variances. The correct variance in this 3-node
frustrated cycle is P f

i = 1+r
1+r−2r2 .

In Figure 4.5 (a) we plot the LBP variance estimate φ(0 → 0 | BT ) and the true

variances Pii and P f
i for both the attractive and the frustrated model. We see that LBP

underestimates the variances in the attractive model, and overestimates the variances
in the frustrated model. For small values of r LBP gives a good approximation, while
for values closer to 1

2 , LBP is very inaccurate. We expect to observe a similar behaviour
for all models: when the model has %∞ ¿ 1, short walks matter the most, and back-
tracking walks constitute a large fraction of short walks. However, when %∞ approaches
1, long walks start to have non-negligible weights, and since the fraction of back-tracking
walks among long walks is much smaller, this leads to very inaccurate answers.

Accuracy of variances for fully-connected graphs. Next, we consider a frustrated4 fully-
connected graph with homogeneous weights: all edge-weights are set to −r. A fully-
connected graph with (k +2) vertices is the simplest (k +1)-regular graph. All (k +1)-
regular graphs share the same computation tree, and in (4.8) we derived the expression
for LBP variances, or equivalently, the self-return walk-sum at the root node in the

4Recall that the attractive fully-connected models is not valid at the critical value of r, as we
discussed in Section 4.1.1.
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computation tree:

φd(0 → 0) =
2k

k − 1 + (k + 1)
√

1 − 4kr2
(4.10)

Now we compute the correct variances. The frustrated fully-connected homogeneous
graph has information matrix J = I − R with 1 on the diagonal, and r elsewhere
(Rij = −r and Jij = r). We can analytically calculate the variances5:

Pii =
1

k + 2

(

k + 1

1 − r
+

1

(k + 1)r + 1

)

(4.11)

In Figure 4.5 (b) we plot the LBP variances and the true variances for a 4-clique, i.e.
k = 2. For small values of r the LBP answer is a good approximation, while for values
closer to the critical, r = 1

2
√

2
, LBP (in the walk-sum form) noticeably overestimates

the variance in this model.

¥ 4.1.3 Finding the Expected Walk-sum with Stochastic Edge-weights

We next consider an application of combinatorics to approximately computing walk-
sums in a probabilistic setting. While it may or may not result in a practical approach,
it does bring up interesting ideas.

First we remark that combinatorial ideas can be used to compute not only the back-
tracking LBP walk-sums, but also the correct walk-sums for the variance in certain
regular loopy graphs. For example, in an infinite 2D lattice, the number of walks of
length 2n that start and end at the origin equals ( 2n

n )2. Hence, the correct variance
in a homogeneous attractive lattice with edge-weight r is equal to Pii =

∑

n ( 2n
n )2 r2n.

When r is small, this expression can serve as a good approximation for nodes that are
far from the boundary in a finite lattice.

Now suppose that we know the numbers of self-return walks of length n, but the
edge-weights are non-homogeneous. Furthermore, suppose that the edge-weights can be
modeled as i.i.d. random variables. Then we can make an approximation that each step
in a walk is i.i.d.,6 which allows us to calculate the expected walk-sum for self-return
walks at node i. This approximation can be used to gauge the rough scale of the true
self-return walk-sum in models where LBP variances are very inaccurate.

Suppose for simplicity that all edge-weights are positive. We model the log-weights
as Gaussian with mean µ and variance σ2, i.e. log(rij) ∼ N (µ, σ2). Since partial
correlations rij are all bounded by 1 in magnitude, µ has to be negative. For a walk of

5The eigenvalues of this J matrix are (k + 1)r + 1 and k + 1 repeated copies of 1 − r. Hence the
eigenvalues of P are 1

(k+1)r+1
and k+1 repeated copies of 1

1−r
. The trace of P is equal to (k+2)Pii, since

all the variances are the same. It is also the sum of the eigenvalues of P , i.e. tr(P ) = k+1
1−r

+ 1
(k+1)r+1

.
6Clearly, this is an approximation: the same edge may be traversed many times by a walk, while

the probability that a real value appears twice in a finite sample of a continuous distribution is 0.
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length n, the weight of the walk is the product of edge-weights. Hence

log E[φ(w)] = log E[
∏

e∈w

re ] =
∑

e∈w

log E[re ] =

∑

e∈w

log E[exp(log(re))] =
∑

e∈w

log exp(µ +
σ2

2
) = n(µ +

σ2

2
) (4.12)

Here we have used the moment-generating function of a normal random variable: if
x ∼ N (µ, σ2) then E[exp(x)] = exp(µ + σ2

2 ).

Thus the expected weight of a walk of length n is E[φn(w)] = exp(n(µ+ σ2

2 )). Given
the number of self-return walks of length n and the expected weight of a walk of length
n, we can calculate the expected walk-sum. For example, for our infinite 2D lattice
Pii ≈ ∑

n ( 2n
n )2 exp(n(µ + σ2

2 )). Recall that µ is negative, so for µ negative enough
and σ small enough, the expression converges. Also, by setting σ = 0 we recover the
expression for walk-sums in the homogeneous deterministic setting, with r = exp(µ).

¥ 4.2 Vector-LBP and Vector Walk-summability

We now consider Gaussian graphical models with vector variables and later, in Section
4.3, models defined with respect to a factor graph. It is true that the scalar pairwise
form of Gaussian models is sufficient to describe all possible Gaussian models, so no
richness in representation is lost by limiting to that case. The main reason to consider
vector and factor graph representations of Gaussian models is that the corresponding
versions of LBP can have much stronger convergence properties and provide much
more accurate variances compared to scalar LBP, at the cost of more computational
complexity. For example, in the extreme case of grouping all the variables into one node,
or grouping enough variables together into blocks such that they form a tree, there are
no convergence issues as BP on trees is exact and terminates in a finite number of
steps. This is essentially the same idea as the junction tree algorithm. Of course,
when the number of variables is large, this is not feasible because the computational
complexity will be too high. Hence, a compromise which involves loopy graphs with
blocks of variables may be necessary. We will see that there are many parallels between
the vector and scalar walk-sum analysis, but there are also significant differences, and
the story is much more involved. We now consider vector-LBP, and later in Section 4.3
move on to factor graph LBP and walk-summability.

¥ 4.2.1 Defining Vector Walk-summability

In the vector representation we have a graph G = (V, E) where each node i ∈ V corre-
sponds to a vector variable xαi for some αi ⊂ {1, .., N}. The sets αi form a partition
of the scalar variables, and J is a block-matrix. The graph G can be thought of as
a coarsening of the graph in the scalar case of Chapter 3, which has a node for every
scalar variable. For i, j ∈ V we use the notation Jij , Jαi,αj and hi , hαi . An example
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Figure 4.6. (left) Graph of a model with vector-variables, and (right) the graph of the corresponding
scalar model.

appears in Figure 4.6 – by blocking the variables of the complicated scalar model (right
plot) into pairs α1 = {1, 2}, α2 = {3, 4}, α3 = {5, 6}, and α4 = {7, 8}, the correspond-
ing vector-model is a 4-cycle with a chord (left plot).

Roadmap for vector-WS. For a vector model there is a rich class of possible
walk-sum decompositions. We first assume that J is normalized to have identities on
the diagonal blocks, the matrix7 R = I − J has zero diagonal blocks, and the corre-
sponding graph G has no self loops. We show that such normalization is not unique,
and also that, while vector walk-summability does not depend on the choice of normal-
ization, sufficient conditions for it do. We also consider transformations of the variables
in the model (or not normalizing the model) to give other decompositions J = I − R
where the matrix R has non-zero diagonal blocks, and the graph G has self-loops. We
define a notion of generalized vector walk-summability that takes such transformations
into account. We study the relationship between vector and generalized vector walk-
summability, and their implications for the vector version of LBP – while we make
significant progress in this regard, these notions are inherently more complex than the
scalar ones, and several questions remain open.

Let R = I −J , and define Rij , Rαi,αj . For this section we assume that J has been
normalized to have its block-diagonal elements corresponding to blocks {αi} equal to
identity, and diagonal blocks Rii are zero. This is easily accomplished via the Cholesky
decomposition of block-diagonal elements8, but unlike in the scalar case, the normal-
ization is not unique, and any J̃ = QJQT with block-orthogonal Q = blockdiag(Qi),
QT

i Qi = I, also has its diagonal blocks equal to identity.

7Without loss of generality, we only consider decompositions of the form J = I − R, instead of the
more general ones based on J = D−K, with D block-diagonal. Please see a discussion in Section A.2.1
of Appendix A.

8The block-diagonal entries Jii are positive-definite, hence we can use Cholesky decomposition:
Jii = LiL

T
i where Li Â 0. Let L = blockdiag(Li) for i ∈ V . Applying L−1 whitens the block-diagonal

elements of J̃ = L−1JL−T as L−1
i JiiL

−T
i = I. Now J̃ has identities on the diagonal and R̃ = I − J̃ has

zero-blocks on the diagonal.
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We assign matrix edge-weights Rij (possibly non-symmetric and in general non-
square) to each edge {i, j} of G. With our normalization the block-diagonal entries of
R are zero, and there are no self-loops (i, i). To each walk w we assign a weight φ(w)
to be the product of the edge-weight matrices in the order of traversal of the walk (the
product is formed from left to right):

φ(w) =

l(w)
∏

k=1

Rwk−1,wk
(4.13)

Hence, φ(w) is itself a matrix. For a walk w of length 0, the weight is φ(w) = I, an
identity matrix (instead of 1 in the scalar case). A walk-sum φ(W) for a set of walks
is defined exactly as in Chapter 3; it is the sum of walk weights over the walks in the
set, φ(W) =

∑

w∈W φ(w). It is also a matrix. Provided that these walk-sums are well-
defined, as we describe next, we also have the walk-sum interpretation for covariances,
and the means:

Pii =
∑

w:i→i

φ(w), and µT
i =

∑

w:∗→i

hT
∗ φ(w) (4.14)

where Pii is a block of the covariance matrix corresponding to αi, and µi , µαi .

Definition: Vector-WS. We call a vector model with blocks {αi} and with information
matrix J = I − R vector walk-summable if for all pairs of vertices i and j the absolute
walk-sum φ̄(i → j) ,

∑

w∈W(i→j) |φ(w)| converges, and hence φ(i → j) is independent
of the order of summation of the walks. The absolute value |φ(w)| is taken element-wise.

We stress that φ̄(i → j) ≥
∣

∣

∣

∑

w∈W(i→j) φ(w)
∣

∣

∣
, and equality does not hold in general.

This is an abstract definition of walk-summability, and we are interested in relating it
to an easily testable condition (recall that in the scalar case walk-summability exactly
corresponds to %(R̄) ≤ 1 by Proposition 3.1.1). We will see in this chapter that the
story for vector walk-summability is more complicated, and there may not be a simple
characterization. Instead we develop a family of sufficient conditions.

¥ 4.2.2 Sufficient Conditions for Vector Walk-summability

Our first sufficient condition comes from considering the relationship between vector
and scalar walk-summability. To any vector model on G = (V, E) with blocks αi there
corresponds a scalar model on Gs = (V s, Es) which has a node for every scalar variable.
A node i in the vector model corresponds to a group of nodes is ∈ αi in the scalar
model. Suppose that the vector model is specified by J = I − R. Then the same
matrix J = I − R also defines a scalar model on Gs. If this scalar model is scalar
walk-summable, i.e. %(R̄) < 1, then the vector model is vector walk-summable – i.e.
scalar walk-summability is a sufficient (but not in general necessary) condition for vector
walk-summability:
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Lemma 4.2.1 (Scalar and vector WS). Suppose that J = I − R is scalar walk-
summable on Gs. Group the variables into blocks {αi} and define the vector model with
the same matrix R on G. Then the vector model is vector walk-summable.

Proof. The walk-sum φ(i → j | G) in the vector model is a matrix. Its en-
tries correspond to walk-sums in the scalar model φ(is → js | Gs) where is ∈ αi,
and js ∈ αj . Vector walk-summability requires convergence of

∑

w∈W(i→j) φ̄(w) =
∑

w∈W(i→j) |
∏

e∈w Re|, with absolute values taken elementwise. Scalar walk-summability

condition is equivalent to convergence of
∑

w∈W(is→js)

∏

e∈w R̄e, because the matrix
sum converges if and only each of its entries converge. Now, for any walk w, we
have

∏

e∈w R̄e ≥ |∏e∈w Re|, so vector walk-summability is implied by scalar walk-
summability. ¤

In the vector case an important role will be played by transformations of the vari-
ables: now we are not limited to mere scaling the variables but also can consider
block-diagonal transformation conforming to the sizes of the blocks αi. Such transfor-
mations leave the Markov structure of the vector model the same. We now consider
block-orthogonal transformations Q = blockdiag(Qi), with QT

i Qi = I, and show that
they do not affect vector walk-summability:

Lemma 4.2.2. Take any block-orthogonal matrix Q = blockdiag(Q1, ..., Q|V |), where Qi

are compatible with the blocks αi (i.e. have size |αi|), and QT
i Qi = I. Then J̃ = QJQT

is vector walk-summable if and only if J is.

Proof. Since J̃ = QJQT , we also have R̃ = I − J̃ = QRQT . Take any walk w
and consider φ(w) = Ri1,i2Ri2,i3Ri3,i4 ...Rin−1,in . With an orthogonal transformation of

the blocks we have R̃ij = QiRijQ
T
j . Hence the corresponding walks in the transformed

model has weight φ̃(w) = R̃i1,i2 ...R̃in−1,in = Qi1Ri1,i2Q
T
i2

Qi2Ri2,i3 ...Q
T
in−1

Qin−1Rin−1,inQT
in

=

Qi1φ(w)QT
in

. Now ˜̄φ(i → j) =
∑

w∈W(i→j) Qiφ(w)QT
j ≤ Q̄i

(

∑

w∈W(i→j) φ̄(w)
)

Q̄T
j .

Hence, the series ˜̄φ(i → j) converges if φ̄(i → j) =
∑

w∈W(i→j) φ̄(w) converges. The

converse follows because we also have R = QT R̃Q. ¤

Since arbitrary block-orthogonal transformations do not change vector walk-summability,
we get a tighter sufficient condition extending Lemma 4.2.1:

Lemma 4.2.3 (Sufficient condition for vector-WS). Let QG be the set of block-
orthogonal matrices on G with respect to blocks {αi}, i.e. Q = blockdiag(Qi) for i ∈ V ,
QiQ

T
i = I. Then minQ∈QG

%(QRQT ) < 1 is a sufficient condition for vector walk-
summability.

Proof. Block-orthogonal change of variables does not affect vector walk-summability.
For each Q ∈ QG the condition %(QRQT ) < 1 is sufficient for vector walk-summability
of QRQT and of R. Taking the minimum over all QG our condition follows. ¤
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An interesting but hard question is whether minQ %(QRQT ) < 1 is also necessary
for vector walk-summability. We have not yet answered it. We describe the difficulties
with characterizing the notion of vector walk-summability next.

K-step conditions So far, we have developed conditions based on scalar walk-summability
which in turn implied vector walk-summability. The novelty beyond the scalar case has
been the freedom to optimize over various transformations. Now we consider conditions
which go beyond scalar walk-summability.

Vector walk-summability is an inherently more complicated condition to check. The
convenient property of scalar walk-sums φ̄(w) = |∏e∈w re| =

∏

e∈w |re| does not carry
over to the vector case as |∏e∈w Re| 6= ∏

e∈w |Re|. Absolute convergence of vector

walk-sums does not correspond to the spectral radius of a matrix: neither R̄k nor Rk

correspond to absolute walk-sums
∑

w∈W(i
k→j)

|φ(w)| = φ̄(i
k→ j) over length-k walks9.

Denote the matrix of absolute walk-sums of length k by φ̄k: the (i, j)-th block of φ̄k

contains φ̄(i
k→ j). We have Rk ≤ φ̄k ≤ R̄k. The scalar walk-summability condition

%(R̄) < 1 is sufficient for vector walk-summability, but it can be loose. However, we
can take advantage of the following k-step expansion:

∞
∑

l=0

Rl = (I + R + ... + Rk−1)
∞

∑

l=0

(Rk)l (4.15)

which converges if %(R) < 1. Now if k = l+m, then Rk = RlRm, and φ̄k ≤ φ̄lφ̄m. Apply
the k-step expansion to vector walk-summability:

∑

l φ̄l ≤ (I+φ̄1+ ..+φ̄k−1)
∑

l(φ̄kl) ≤
(I+φ̄1+ ..+φ̄k−1)

∑

l(φ̄k)
l. Convergence of the first series is implied by the convergence

of the second, which in turn depends on %(φ̄k) < 1. This gives a family of sufficient
conditions for vector walk-summability based on %(φ̄k). For k = 1 it recovers our first
sufficient condition for vector walk-summability10 based on %(R̄) because %(φ̄1) = %(R̄).
As k → ∞ the condition becomes tight – in essence it reduces to calculating absolute
vector walk-sums:

Lemma 4.2.4 (K-step sufficient conditions for vector WS). If %(φ̄k) < 1 for
some k then the model is vector walk-summable.

We could also consider K-step conditions after a block-orthogonal transformation
Q, which, for a good choice of Q, may give tighter sufficient condition. Next, we shift
gears, and define generalized walk-summability, and consider its implications for scalar
and vector models.

9Note the difference from
˛

˛

˛

P

w∈W(i
k→j)

φ(w)
˛

˛

˛
≤ φ̄(i

k→ j). Equality does not hold in general. To

calculate φ̄(i
k→ j) in the vector case we need to find the weight of each individual walk, take its absolute

value, and add to the sum. Thus the absolute walk-sum is only computable for small values of k, as the
computation (the number of walks) grows exponentially with k. We stress that neither Rk nor (R̄)k

compute this absolute walk-sum.
10In the scalar case all k-step conditions simply reduce to %(R̄) < 1, because there it does hold that

φ̄k = R̄k.
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Generalized Vector Walk-summability. Let us consider a class of transformations that
is richer than the set of block-orthogonal transformations: let S be a block-invertible
matrix S = blockdiag(Si), with blocks {αi}, det(Si) 6= 0. Define x̃ = S−T x, then
J̃ = SJST . Here J may or may not be normalized to have diagonal blocks equal to
identity matrices – this does not matter because the class of block-invertible matrices
contains the normalizing transformations as special cases. Consider the power-series
expansion of J̃ , by defining R̃ = I − J̃ = I − SJST :

J̃−1 =
∑

k

R̃k =
∑

k

(I − SJST )k. (4.16)

Here the matrix R̃ does not have the interpretation of partial correlation coefficients, J̃
need not be unit-diagonal, and the matrix R̃ may have non-zero entries in its diagonal
blocks. We need to slightly extend our walk-sum representation to accommodate these
non-zero diagonal blocks: we now introduce self-loops with weights R̃ii, and allow walks
to make steps (i, i) which follow the self-loop. With this provision, the definitions of
weights of the walks and walk-sums remain the same as in Section 4.2.1, and the walk-
sum interpretation of BP in trees and of LBP both carry through with self loops. We
discuss this in Section A.2.1 of Appendix A. Note that the convergence of vector walk-
sums based on the expansion in (4.16) will in general depend on S – they may converge
for some choices of S and diverge for others. This leads us to define generalized vector
walk-summability:

Definition: Generalized WS. If there exists an S such that the expansion based
on R̃ = I − SJST is vector walk-summable, then we call J generalized vector walk-
summable.

We could in principle also consider generalized scalar walk-summability, by allowing
non-unit diagonal scaling DJD and matrices R̃ = I − DJD with non-zero diagonals.
The necessary and sufficient condition for absolute convergence of the corresponding
scalar walk-sums is %(I − DJD) < 1. In Section A.2.1 of Appendix A we show that the
canonical zero-diagonal decomposition (where D is simply identity) gives the tightest
sufficient condition in the scalar case, obviating the need for generalized scalar walk-
summability. However, in the vector case this does not appear to be true: in Section
4.2.5 we present numerical evidence that a model which does not satisfy %(QRQT ) < 1
for any choice of block-orthogonal Q may still be generalized walk-summable. Another
numerical study in Section 4.2.5 shows that for a block-tree model (the vector-variables
form a tree) %(QRQT ) < 1 may not be satisfied, while generalized walk-summability
holds; also vector pairwise-normalizability (to be defined shortly in Section 4.2.4) is
more closely related to generalized vector walk-summability, rather than ordinary vector
walk-summability. Hence, generalized vector walk-summability appears to be a more
fundamental notion. Next, we relate ordinary and generalized vector walk-summability
to convergence of vector-LBP.
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¥ 4.2.3 Vector-LBP.

Vector LBP involves passing messages between nodes that represent vector variables.
These messages can be parameterized in information form similar to the scalar case
(2.28), but with ∆hi→j being a vector and ∆Ji→j a matrix. The message update equa-
tions in (2.29-2.30) apply to the vector case without any changes. The computation tree
interpretation in Section 2.2.3 still applies for the vector case, with the understanding
that its nodes correspond to vector variables and the edges have vector weights. We now
apply vector walk-sum analysis to have more insight into the behavior of vector-LBP
on graphs with loops.

As scalar walk-summability is a sufficient condition for the scalar version of LBP to
converge, similarly, we now show that vector walk-summability is a sufficient condition
for the convergence of vector-LBP. Throughout this section we assume the walk-sum
potential decomposition for LBP in (2.24) with the understanding that now Jii =
Jα(i),α(i), and Jij = Jα(i),α(j). For the most part our proofs for the scalar case generalize
to the vector case, but some of the details are quite different.

In the scalar case the weight of a back-tracking self-return walk is positive, so one
may conjecture that in the vector case the weight of a back-tracking self-return walk
has to be positive semi-definite. This is not true. In fact the weight does not even have
to be symmetric. Take a self-return walk w and the reverse walk −w, which traverses
the same steps as w but in the opposite direction. Then, even φ(w) + φ(−w) does
not have to be positive-semi-definite. As a simple example, the walk w = (i, j, i, k, i)
has weight φ(w) = RijRjiRikRki and φ(w) + φ(−w) is not in general positive-semi-
definite, and can have negative eigenvalues. However, when a new node is added to the
computation tree, the sum over all new self-return walks at the root node does in fact
have a positive-semi-definite weight (proof is in Appendix A):

Lemma 4.2.5 (Monotonicity of LBP covariances). As the LBP computation tree
grows, the self-return walk-sums at the root node increase monotonically in the positive-
definite sense.

This allows us to prove that vector-WS is sufficient for convergence of vector-LBP
for both the covariances and the means (the proof appears in Appendix A):

Proposition 4.2.1 (LBP in vector-WS models). Vector-LBP converges in vector-
WS models: LBP means converge to correct mean estimates, and LBP covariances
converge to a walk-sum over back-tracking self-return walks.

A non-orthogonal transformation of the variables may change the convergence of
the walk-sum decomposition: a non-walk-summable decomposition may become walk-
summable, and vice versa. We now show that arbitrary block-invertible transformations
do not affect convergence and estimates of vector-LBP: if we rescale the variables x̃ =
S−T x and perform vector-LBP, this is equivalent to first performing vector-LBP and
then rescaling the estimates by S−T .
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Lemma 4.2.6 (Invariance of LBP to block transformations). Consider a block-
invertible transformation S = blockdiag(Si), with i ∈ V , and Si invertible. Then,
vector-LBP converges for the model SJST if and only if it converges for J , and the
LBP covariance estimates for SJST are scaled versions of the ones for vector-LBP on
J .

Proof. Consider an n-step LBP computation trees for models J and J̃ = SJST ,
with the information matrices J (n) and J̃ (n), respectively. One is obtained from the
other by J̃ (n) = S(n)J (n)(S(n))T , where S(n) = blockdiag(Si) for i ∈ V (n) (the ver-
tices of the computation tree). Now the covariance estimate at the root node of the
computation tree T̃ (n) is equal to P̃0 = [S−1J−1S−T ]0 = S−1

0 [J−1]0S
−T
0 = S−1

0 P0S
−T
0 .

Here P0 is the root-node covariance estimate in the computation tree for the model J .
Thus as n → ∞, P̃0 converges if and only if P0 converges, and the covariance estimate
in the scaled model is a scaled version of the covariance estimate in the original model. ¤

Using this invariance we obtain a tighter sufficient condition for convergence of LBP:

Lemma 4.2.7 (Sufficient condition for vector-LBP convergence). Let SG be
the set of block-invertible transformations G. Then minS∈SG

%(I − SJST ) < 1 is a
sufficient condition for vector LBP convergence.

Proof. To each invertible transformation S there is a corresponding walk-sum de-
composition: R = I −SJST . If this R matrix is scalar walk-summable then it is vector
walk-summable and hence vector-LBP converges. We take the tightest sufficient con-
dition over all such walk-sum decompositions. ¤

¥ 4.2.4 Connection to Vector Pairwise-normalizability.

We have seen the importance of the notion of pairwise-normalizability (PN) in the
scalar case in Chapter 3. The definition of pairwise-normalizability extends seamlessly
to the vector case: a model is vector-PN if

J =
∑

e∈E
[Je], with Je Â 0 (4.17)

Here the edges E correspond to the vector model with blocks {αi}, and Je are the
corresponding off-diagonal blocks of J . Recall that [Je] represents Je zero-padded to
match the size of J . The strength of vector-PN, which measures how much the model
can be perturbed while still satisfying vector-PN, is defined as

εvec
max , max{ε | J = εI +

∑

e∈E
[Je], Je º 0} (4.18)

The superscript vec stands for ’vector’, and distinguishes vector-PN strength εvec
max from

the scalar one εmax.
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In the scalar case we have seen the equivalence of PN and walk-summability (WS)
in Proposition 3.1.8, and it even holds that the strength of PN is equivalent to the
strength of WS: εmax = 1 − %(R̄), see Corollary 3.1.3. For the vector case we have not
related vector-WS and vector-PN directly, but we can show that sufficient conditions
for vector-WS imply vector-PN:

Lemma 4.2.8 (Vector walk-summability and vector-PN). Let QG and SG be the
sets of block-orthogonal, and block-invertible matrices with respect to blocks αi. If
minQ∈QG

%(QRQT ) < 1 then the model is vector-PN. If minS∈SG
%(I − SJST ) < 1,

then the model is vector-PN. Also, εvec
max ≤ 1 − minQ∈QG

%(QRQT ).

The proof appears in Appendix A, it is based on the fact that if a model is vector-
PN then it is vector-PN after any block-invertible transformations, and also that if J is
scalar-PN, then it is also vector-PN. We do not know whether the converse holds, i.e.
that vector-PN implies vector-WS, but in Section 4.3.3 we will see that vector-PN by
itself guarantees convergence of vector-LBP covariances. Next, we show that block-trees
(trees where each variable is a vector) are guaranteed to be vector-PN:

Lemma 4.2.9 (Block-trees are vector-PN). A valid block-tree model is vector
pairwise-normalizable.

Proof. We use the directed factorization which holds for tree-structured models:
p(x) = p(x1)

∏

i p(xi | xπ(i)). Consider any pair (xπ(i), xi), and rename these variables
xA and xB for convenience. Then the joint marginal p(xA, xB) is given by

p(xA, xB) ∝ exp

{

−1

2
( xA xB )

(

JA JA,B

JB,A JB

)

( xA
xB )

}

= (4.19)

exp

{

−1

2
xT

AĴAxa

}

exp

{

−1

2
( xA xB )

(

JA,BJ−1
B JB,A JA,B

JB,A JB

)

( xA
xB )

}

(4.20)

where the two terms in the second line are p(xA) and p(xB | xA). The quadratic form in
the second term in the second line is positive-semi-definite (p.s.d.), as JB Â 0 and the
Schur complement JA,BJ−1

B JB,A−JA,BJ−1
B JB,A = 0 is trivially p.s.d. Hence p(xB | xA)

is based on a quadratic form with a p.s.d. matrix. Since this holds for all p(xi|xπ(i)),

and Ĵ1 Â 0, we have a pairwise-normalizable decomposition. ¤

This lemma generalizes the scalar case, where we have seen that valid trees are both
PN and walk-summable. Interestingly, based on numerical evidence in Section 4.2.5,
the block-orthogonal sufficient condition minQ∈QG

%(QRQT ) < 1 may not be satisfied
for tree-structured models. However, again through numerical experiments, it appears
that for valid trees it holds that minS∈SG

%(I − SJST ) < 1 with S block-invertible, thus
illustrating the importance of generalized vector walk-summability. Based on simultane-
ous diagonalization of a pair of matrices it is easy to establish a much simpler statement
that any valid model consisting of a pair of vector nodes is vector walk-summable (proof
appears in Appendix A):
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Lemma 4.2.10 (Walk-summability of two-node vector models). Any vector
model with J Â 0 with 2 vector nodes is vector walk-summable.

Unfortunately, in general it is impossible to jointly diagonalize more than two vari-
ables simultaneously, so the question of whether block-trees are vector-WS or general-
ized vector-WS, and their exact relation to vector-PN, remains unresolved. Next we
investigate this and related questions through numerical experiments.

¥ 4.2.5 Numerical Studies.

In this section we study vector-LBP and vector walk-summability on numerical exper-
iments. We first show that using vectorization can greatly improve LBP performance.
Then we conduct numerical studies to get intuition for the relationship among the dif-
ferent conditions for vector walk-summability, and to provide numerical evidence for
various conjectures made in Section 4.2.

Example 1. (Vector LBP convergence and accuracy). We consider a thin-plate
model on a 120×120 grid, with small regularization 0.2I added to make the model non-
singular. We have λmin(J) = 0.2. However, the model is severely non-walk-summable
with %(R̄) ≈ 1.7507. Scalar LBP fails - it quickly starts to oscillate and produce negative
variances. We use the vector version of LBP, grouping the variables into L × L blocks,
for L ∈ {2, 3, 4, 6, 8, 12}. Vector LBP converges for each of these block sizes. The
norm of the errors in variances and the number of LBP iterations to converge to some
specified tolerance is displayed in Figure 4.7 (a) and (b) as a function of L. We see
that accuracy in variances improves consistently with larger blocks, while the number
of iterations improves at first and then levels out. In Figure 4.7(c) we display the errors
in variances spatially: these are mostly negligible except where groups of 4 blocks meet.
In these locations some of the non-backtracking walks not captured by vector LBP are
not negligible. To get uniformly accurate variances we could offset the blocks by L/2
such that we get accurate variances in the troublesome regions, and use them in place
of the first set of estimates. At any rate, it is clear that vector-LBP provides significant
advantages over scalar LBP which simply fails for this example.

Example 2 (a). Next, we study the relationship between the block-orthogonal suffi-
cient condition minQ %(QRQT ) < 1, the block-invertible condition minS %(I − SJST ) <
1 and pairwise-normalizability. We use the 4-cycle with a chord shown in Figure 4.6.
Each vertex in the graph corresponds to a vector of size 2; the blocks are {1, 2}, {3, 4},
{5, 6}, {7, 8}. The graph over the blocks along with its original scalar variable ver-
sion appear in the figure. We pick a positive-definite unit-diagonal information matrix
J̃ (the pairwise potentials are picked randomly and the matrix is then normalized).
The sufficient condition for scalar walk-summability is not satisfied for J̃ = I − R̃:

%(R̃) ≈ 1.2117 > 1. The model is far from being walk-summable, and scalar LBP
quickly starts to oscillate producing negative variances, and diverges for the means.



Sec. 4.2. Vector-LBP and Vector Walk-summability 87

2 4 6 8 10 12
0

5

10

15

20

25

30

block size

error in variances

2 4 6 8 10 12
20

40

60

80

100
number of iterations

block size

 

 

20 40 60 80 100 120

20

40

60

80

100

120 0

0.02

0.04

0.06

0.08

0.1

0.12

(a) (b) (c)

Figure 4.7. Vector-LBP performance on a 120× 120 thin-plate model. (a) Norm of error in variances
and (b) number of LBP iterations as a function of block-size. (c) Errors in variances on a 2D grid for
block-size 12: errors are mostly negligible except at the junction of 4 blocks.
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Figure 4.8. Histograms of %(QRQT ) for example 2(a) and 2(b). In (a), the histogram extends below
1, showing that the model is vector-WS. In (b) the minimum value is well above 1, hence the sufficient
condition is not informative. However, both models are vector-PN with εvec

max = 0.0100.

We apply block-whitening transformations so that J = T J̃T T not only has unit
diagonal, but also has identity matrices in each diagonal block. The matrix R =
I − J has zeros on the block diagonal. As the whitening transformation is not unique
(it is invariant to block-orthogonal transformations) we investigate the dependence of
%(QRQT ) on the choice of Q. In Figure 4.8, left plot, we show a histogram of values
of %(QRQT ), with a uniform random sampling of block-orthogonal matrices11. The
distribution of %(QRQT ) over 100000 random samples of block-orthogonal Q is very
wide, with some rare choices of Q making the model walk-summable. The minimum
value of over the samples is %(QRQT ) ≈ 0.990, which is in fact the optimum for the
problem, as the vector pairwise-normalizability index in (4.18) is εvec

max = 0.0100 for
this model. From Lemma 4.2.8 we have seen that εvec

max ≥ 1 − minQ %(QRQT ). Thus
the model is vector walk-summable, and vector LBP converges. We also use local
optimization12 over block-invertible matrices S with 100 random starting points (to
combat non-convexity) to find a matrix S with %(I − SJST ) ≈ 0.990. Hence, there

11To get uniform sample from the set of orthogonal matrices (for each block) we use the QR decom-
position of a random Gaussian matrix, and adjust the signs. This can be done by the following matlab
code: [Q, R] = qr(randn(L)); Qs = Q ∗ diag(sign(diag(R)));.

12Sampling over block-invertible matrices is not realistic as the set is high-dimensional and non-
compact.
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Figure 4.9. (left) A chain with vector variables and (right) the graph of the corresponding scalar
model.

is numerical evidence that for this problem minQ %(QRQT ) = minS %(I − SJST ) =
1 − εvec

max. Unfortunately, as we see next, this may not hold in general.
Example 2 (b). We next repeat this example with the same graph but with an-

other choice of a unit-diagonal positive-definite matrix J̃ , which has %(R̃) ≈ 1.4244 > 1.
We again block-whiten this matrix to get R with zero diagonal blocks, and plot a his-
togram of %(QRQT ) over 500000 uniform samples of block-orthogonal Q in Figure 4.8,
right plot. None of the samples fall below 1 – in fact the minimum value is 1.06523.
However, this model is also vector-PN with εvec

max = 0.0100. As the number of samples
is very large, and the set of block-orthogonal matrices is compact, this strongly sug-
gests that in contrast to the scalar case, in general εvec

max ≥ 1 − minQ %(QRQT ) is not
tight, and the two notions are not equivalent. In example 2 (a) we have seen that in
some cases the equality may hold, but example 2 (b) shows that it does not hold in
general. Continuing with example 2 (b), we next perform local numerical optimiza-
tion over block-orthogonal S with 5000 random initial conditions to find a choice of
S with %(I − SJST ) ≈ 0.9901. This is a difficult global optimization problem, and
finding such S is challenging, requiring many random restarts. However, the existence
of such S shows that the model is generalized walk-summable. We conjecture that
the set of block-orthogonal transformations is not enough to capture generalized walk-
summability, but that block-invertible transformations may be sufficient. Proving these
results appears challenging.

Example 3. We now apply similar analysis to the chain-graph in Figure 4.9,
with vector variables. Of course, vector-LBP in this model will terminate finitely and
give exact answers. We are interested to see if vector walk-summability is powerful
enough to guarantee this fact (vector walk-summability is sufficient but not necessary
for vector-LBP convergence). We pick a unit-diagonal positive-definite information
matrix (again the edge-weights are chosen randomly, and then the matrix is normalized).
From Lemma 4.2.9 tree-structured models are vector-PN. The index of vector-PN is
εvec
max = 0.9900. We took 500000 uniform samples of block-orthogonal Q and observed

the minimum to have %(QRQT ) ≈ 1.05206 which is well above 1. Although the sufficient
condition for vector walk-summability does not hold, we can not conclude whether or
not the model is vector walk-summable. However, using local optimization over block-
invertible matrices with 100 random starting points, we obtain %(I − SRST ) ≈ 0.9902,
which shows that J is generalized vector walk-summable. This leads us to a conjecture
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Figure 4.10. Inter-relation of various conditions for vector LBP convergence.

that the sufficient condition %(I − SRST ) < 1 is always satisfied for tree-structured
models, and such models are not only vector-PN but also generalized vector-WS.

¥ 4.2.6 Remarks on Vector-WS

We have seen from our sufficient conditions and from the numerical experiments that
the vector case is much more involved than the scalar case. In the scalar case walk-
summability is equivalent to %(R̄) < 1, which is in turn equivalent to pairwise-normalizability.
Also, in the scalar case there is never any need to consider generalized walk-summability
(that leads to R matrices with non-zero diagonals) as the best sufficient conditions are
obtained from 0-diagonal matrices. In the vector case we do not have a simple charac-
terization of vector walk-summability, only a family of sufficient conditions. In addition,
in the vector case allowing R matrices with non-zero block-diagonal (generalized walk-
summability) is more powerful than ordinary vector walk-sum decompositions. Finally
the precise relationship between vector-PN and vector-WS is not entirely clear. We
summarize various sufficient conditions for vector walk-summability and vector LBP
convergence in Figure 4.10. We also have a family of interesting conjectures which
appear challenging to prove:

1. Is generalized vector-WS equivalent to vector-PN?

2. Are tree-structured models generalized vector-WS?

3. Is minQ %(QRQT ) < 1 equivalent to vector-WS? (we established sufficiency, but
not necessity.)

4. Is minS %(I − SJST ) < 1 equivalent to generalized vector-WS?

Despite the list of unsolved conjectures, it is clear from this section that vector
walk-summability is a useful notion, and it justifies a powerful family of vector-LBP
algorithms which allows one to balance convergence and accuracy versus computational
complexity.
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¥ 4.3 Factor Graph LBP and FG Walk-summability

Next, we investigate a factor graph (FG) representation of Gaussian models, where the
information matrix J admits a decomposition into a set of matrices JF over factors
F . This representation is important as in some applications Gaussian models may
be conveniently specified in a factor graph form – this includes the thin-plate model,
and the multi-user detection problem that we mention in Section 4.3.4. In addition,
similar to using vector-variables, factor graph representation provides a more general
version of LBP, which allows one to trade-off computational complexity of inference for
accuracy of the results. We discussed factor graphs in Section 2.1.2, but to remind the
reader we briefly review our notation. Let V be a set of vertices13, and F ⊂ 2V be a
collection of subsets of V . The pair, (V,F) defines a hypergraph, a generalization of
undirected graphs which allows ’hyper-edges’ F ∈ F (edges which join vertex-sets of
size greater than two). A convenient representation of a hypergraph is a factor graph
– a bipartite graph with factor and variable nodes, and edges indicating which vertices
belong to which factor. A probability density factorizes over a factor graph if it can be
represented as a product of local potential functions ψF which depend only on xF , the
variables corresponding to the factor:

p(x) ∝
∏

F∈F
ψF (xF ) (4.21)

A Gaussian density in a factor graph form has potentials of the form

ψF (xF ) = exp{−1

2
xT

F JF xF + hT
F xF }.

The information parameters associated with these potentials must satisfy:

xT Jx =
∑

F∈F
xT

F JF xF , and hT x =
∑

F∈F
hT

F xF , (4.22)

i.e. local information parameters must add up to the global ones.

¥ 4.3.1 Factor Graph LBP (FG-LBP) Specification

Recall the factor graph version of belief propagation from Chapter 2. For convenience,
we separate the factors into single-node factors ψi and higher-order factors ψF (with
|F | > 1): p(x) ∝ ∏

i∈V ψi(xi)
∏

F∈F ψF (xF ). We summarize FG-LBP message up-
dates, for both factor-to-variable messages, and variable-to-factor messages, described

13The random variable xi at a vertex i is in general allowed to be vector-valued, although here we
only consider the scalar case for simplicity.
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in Chapter 2. We use i and j to refer to variables and A and B to refer to factors:

mi→A(xi) = ψi(xi)
∏

B∈N (i)\A
mB→i(xi) (4.23)

mA→i(xi) =

∫

xA\xi

ψA(xA)
∏

j∈N (A)\i
mj→A(xj) (4.24)

The beliefs are calculated by fusing all the incoming messages:

bi(xi) ∝ ψi(xi)
∏

A∈N (i)

mA→i(xi) and bA(xA) ∝ ψA(xA)
∏

i∈N (A)

mi→A(xi) (4.25)

Let us specialize the above message updates to the Gaussian case. We parameterize
both types of messages in information form:

mA→i(xi) ∝ exp(−1

2
xT

i ∆JA→i xi + ∆hT
A→ixi) (4.26)

mi→A(xi) ∝ exp(−1

2
xT

i ∆Ji→A xi + ∆hT
i→Axi) (4.27)

Marginalization corresponds to taking Schur complements of the information pa-
rameters, so belief propagation equations reduce to the following:

ĴA\i = [JA]A\i +
∑

j∈N (A)\i
∆Jj→A (4.28)

ĥA\i = [hA]A\i +
∑

j∈N (A)\i
∆hj→A

∆JA→i = [JA]i − [JA]i,A\i Ĵ−1
A\i [JA]A\i,i

∆hA→i = [hA]i − [JA]i,A\i Ĵ−1
A\i [hA]A\i

∆Ji→A = Ji +
∑

B∈N (i)\A
∆JB→i

∆hi→A = hi +
∑

B∈N (i)\A
∆hB→i

The notation [JA] represents the local size |A| square matrix JA zero-padded to
have size |V |, and [JA]A\i represents the submatrix of JA corresponding to the variables
A\i. FG-LBP starts with non-informative messages (all information parameters being
set to zero). Upon convergence the marginals at each variable and each factor can be
evaluated by

Ĵi = Ji +
∑

A∈N (i)

∆JA→i and ĥi = hi +
∑

A∈N (i)

∆hA→i (4.29)

ĴA = JA +
∑

j∈N (A)

∆Jj→A and ĥA = hA +
∑

j∈N (A)

∆hj→A (4.30)



92 CHAPTER 4. EXTENSIONS: COMBINATORIAL, VECTOR AND FACTOR GRAPH WALK-SUMS

32

1

B

C

1
BA

3 3

B

2

C CAC

A

Figure 4.11. A simple factor graph, and its computation tree rooted at variable-node 1.

The marginal covariance and means can then be evaluated by:

P̂i = Ĵ−1
i , P̂A = Ĵ−1

A , and µ̂i = Ĵ−1
i ĥi, µ̂A = Ĵ−1

A ĥA (4.31)

The history of message updates in FG-LBP can be captured by the computation tree,
which is constructed by “unwinding” the factor graph, analogous to the pairwise-MRF
computation tree construction. An illustration of a computation tree rooted at variable-
node 1 appears in Figure 4.11. The root-node estimates in an N -step computation tree
rooted at variable-node i correspond to FG-LBP estimates at variable-node i after N
steps.

¥ 4.3.2 Factor Graph Walk-summability

We now describe a walk-sum representation of inference in factor graph representations
of Gaussian models. We decompose the information matrix: J = I − R, with R =
∑

F [RF ]. This decomposition is not unique, and finding a good decomposition will
play an important role in our analysis. For simplicity we set hF = 0, and only use
self potentials hi. We define a walk in a factor graph as a sequence of connected steps
(i, F, j), where i, j ∈ F , and the weight of a step to be [RF ]i,j . The matrices RF may
in general have entries on the diagonal, so a step (i, F, i), i.e. a self-loop, may also
carry non-zero weight. Define the weight of a walk to be φ(w) =

∏

(i,F,j)∈w[RF ]i,j ,
and for a set of walks W, φ(W) =

∑

w∈W φ(w). Also we define the reweighted walk-
sum φh(W) =

∑

w∈W hw0φ(W ), where w0 is the starting variable-node of the walk w.
Consider the power series expression for the inverse of J :

P = J−1 = (I −
∑

F

[RF ])−1 =
∑

k

(
∑

F

[RF ])k

Entry (i, j) of the matrix (
∑

F [RF ])k is a walk-sum over walks that start at variable-
node i, finish at variable-node j and make k steps in between, switching from one factor
to another (from one matrix RF to another) in between. In parallel to the scalar case
we have a walk-sum formulation for inference: Pi,j = φ(Wi→j), and µi = φh(W∗→j)
provided that these walk-sums are well-defined, i.e. converge independent of the order
of summation.
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Definition: FG-WS. We call a model factor graph walk-summable if for all pairs
of vertices i and j the walk-sum φ(i → j) ,

∑

w∈W(i→j) φ(w) converges, and is in-

dependent of the order of summation of the walks, or alternatively if φ̄(i → j) ,
∑

w∈W(i→j) |φ(w)| converges.
We have a simple characterization for FG walk-summability with scalar variables:

Proposition 4.3.1 (Sufficient condition for FG walk-summability). A decom-
position R =

∑

F [RF ] is factor graph walk-summable if and only if %(
∑

F [R̄F ]) < 1.

Proof. We have φ̄(i
k→ j) =

∑

w∈W(i
k→j)

|φ(w)| =
(

(
∑

F [R̄F ])k
)

i,j
, and φ̄(i → j) =

∑

k φ̄(i
k→ j) =

(
∑

k(
∑

F [R̄F ])k
)

i,j
. The convergence of the latter is determined by

%(
∑

F [R̄F ]) < 1. ¤

The scalar sufficient condition %(R̄) < 1 is in general not sufficient for factor graph
walk-summability, and a stronger condition is required: %(

∑

F [R̄F ]) < 1. Note that
by triangle inequality %(

∑

F [R̄F ]) ≥ %(R̄), so the factor graph condition appears more
restrictive.

However, the advantage of using the factor graph representation over the scalar one
comes from allowing various splitting R =

∑

F RF , and transformations over certain
blocks of variables14. Thus, one is interested to find the best decomposition which leads
to the most general sufficient condition. Finding the best walk-sum decomposition is
even more challenging than in the vector-LBP case. We do not pursue this analysis
further here, but we will see from examples in Section 4.3.4 that the factor graph
version of LBP can be much more powerful than scalar LBP. We now state the relation
between factor graph walk-summability and factor graph LBP, with details described
in the appendix.

Walk-sum interpretation of FG-BP in trees The message updates of the factor graph
version of BP can be related to computing walk-sums in subtrees of the model illustrated
in Figure 4.12. We only state the general result here, and refer to Section A.2.3 in
Appendix A for a detailed statement and the proof.

Lemma 4.3.1 (Walk-sum interpretation of FG-BP). Messages in the factor graph
version of BP in tree-structured models correspond to computing walk-sums in certain
subtrees of the model.

The convergence of FG-LBP for both means and variances is guaranteed by factor
graph walk-summability. The proof is provided in Section A.2.3 of Appendix A.

14In order not to introduce additional fill in the model, the allowed transformations are over blocks
which are fully contained in each of the factors that they intersect. Consider the factor graph in Figure
4.11. Block {2, 3} is fully contained in factors A and C, but it is not contained in B even though it
intersects B. The same happens for blocks {1, 2} and {1, 3}, so only scalar transformations are allowed
for this factor graph.
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A

i

Tj\A
B

TA→i

TA\ij

Figure 4.12. Subtrees used in the analysis of FG-BP: TA→i and TA\i. See Section A.2.3 in Appendix
A.1 for definitions.

Proposition 4.3.2 (Convergence of FG-LBP). FG-LBP converges in factor graph
walk-summable models: the means are correct, and the variances correspond to the
walk-sum over back-tracking walks in the factor graph computation tree.

Note that back-tracking walks in a factor graph computation tree are different from
the back-tracking walks in the scalar one: if we construct an equivalent scalar version
of the factor graph by interconnecting the variables belonging to each factor, then
walks that were back-tracking in the factor graph may no longer be back-tracking in
this scalar graph. Next, we consider factor graph normalizability and its relation to
FG-LBP. Instead of attempting to establish connections between FG-normalizability
and FG-WS, we will see that FG-normalizability by itself can guarantee convergence of
FG-LBP variances, although damping may be needed to also obtain convergence of the
means.

¥ 4.3.3 Factor Graph Normalizability and its Relation to LBP

We have seen the importance of pairwise-normalizability for the scalar and vector ver-
sions of LBP. We now investigate the related notion of factor graph normalizability,
and show that it is sufficient for FG-LBP variance convergence, but may not guarantee
convergence of the means for some models.

We say that a Gaussian model is factor graph normalizable if

J =
∑

F∈F
[JF ], where JF Â 0 (4.32)

The matrix JF is a local |F | × |F | matrix. We use the notation [JF ] to denote a
zero-padded matrix of size |V | × |V | , whose principle submatrix for xF is JF .

For the analysis of factor graph normalizable models we use a decomposition of J
into the following factor and node potentials: J =

∑

i Ji +
∑

F JF , where Jf Â 0 and
Ji > 0. In this section we also use these potentials to specify FG-LBP, instead of our
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usual walk-sum potentials in (2.24) with zero-diagonal Jf , and Ji = 1. We start by
establishing convergence of LBP variances in FG-normalizable models.

Proposition 4.3.3 (LBP variances in FG-normalizable models). FG-LBP vari-
ances converge in FG-normalizable models.

The proof appears in Section A.2.4 in Appendix A. The key idea is that as the
computation tree grows, its information matrix gets appended with positive-definite
(p.d.) terms, so it monotonically increases in the p.d. sense. Hence, the corresponding
computation tree covariance matrix monotonically decreases in the p.d. sense, and the
LBP variance estimate at the root node monotonically decreases. Since the computation
trees for FG-normalizable models are always valid, LBP variances are always positive,
hence bounded below by zero, and must converge. We note that in the walk-sum de-
composition the variances are monotonically increasing, whereas in an FG-normalizable
decomposition of the same model the variances are monotonically decreasing!15

Unfortunately, this simple proof does not extend to the convergence of the means,
which does not hold in general. We now provide an example of an FG-normalizable
model where FG-LBP means do not converge.

Example 4. We provide a simple model with two factors over variables {1, 2, 3}, J =
J1 + J2, where J1 Â 0 and J2 Â 0. They are

J1 =
( 510.9423 −549.4371 341.4739

−549.4371 604.3130 −384.2904
341.4739 −384.2904 253.6471

)

, and J2 =
(

283.1945 161.4936 −196.3614
161.4936 377.9960 88.1683
−196.3614 88.1683 316.1255

)

. (4.33)

The model is FG-normalizable, variances converge, but means diverge. The splitting
is a valid FG-normalizable splitting, but it is not a wise splitting – combining the two
factors into a single one, J , makes the model trivial, containing just one factor, and
inference is exact at no additional computational cost. Also note that the model is in
fact scalar walk-summable, with %(R̄) ≈ 0.7085, so even scalar LBP converges for this
model. Thus the splitting into factors is indeed very unfortunate, but it illustrates the
point that FG-normalizability does not guarantee convergence of the means in FG-LBP.

Recall that once the variances converge, the mean updates follow a linear system,
see (4.28). We have observed that we can force the means to converge by sufficient
damping of this linear system, similar to what we have seen for scalar LBP. Since
damping does not change the LBP fixed points, this still provides the correct means. In
the next section we describe an application where FG-LBP representation dramatically
outperforms scalar LBP.

15The difference between these two versions of FG-LBP stems from the choice of decomposition of
the matrix J into terms JF and Ji. In the interior of the computation tree the potentials for all the
neighbors are added, and the choice of a decomposition is unimportant. However, at the leaves some
of the terms are missing, and hence the behaviour of FG-LBP depends on the potential decomposition.
This can also be thought of as changing the initial conditions.
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¥ 4.3.4 Relation of Factor Graph and Complex-valued Version of LBP

Montanari, Prabhakar and Tse [98] described a generalized complex-valued version of
Gaussian LBP and used it for inference in hard Gaussian models for multi-user detection
problems where regular scalar pairwise LBP fails. We describe their approach and show
that it is closely related to a real-valued factor graph version of LBP.

Suppose y = Hx + n, where x and n are 0-mean Gaussian random vectors with
information matrices J and Q, respectively. Then, the posterior distribution of x con-
ditioned on y has information parameters ĥ = HT Qy and Ĵ = HT QH + J . When the
noise is small, the matrix Ĵ = HT QH + J may be highly ill-conditioned, and scalar
LBP fails to compute the marginals of the posterior of x given y.

Montanari et al. [98] instead use a complex-valued form of LBP. The paper does
not provide the details of the derivation. We provide our derivation here for com-
pleteness. The joint density of x and n conditioned on y is degenerate: p(x, n | y) ∝
e−

1
2
xT Jxe−

1
2
nT Qnδ(y−Hx−n), where δ(x) is the Dirac delta function16. Thus p(x, n | y)

is non-zero only on the subspace y = Hx + n. We use the identity δ(n − n0) =
∫

w ejw(n−n0)dw, with j =
√
−1, to do the following:

p(x | y) ∝
∫

e−
1
2
xT Jxe−

1
2
nT Qnδ(y − Hx − n)dn = (4.34)

∫

e−
1
2
xT Jxe−

1
2
nT Qn

∫

w
ejωT (y−Hx−n)dw dn = (4.35)

∫

w
e−

1
2
xT JxejωT (y−Hx)

∫

n
e−

1
2
nT Qne−jωT ndn dw (4.36)

The integral
∫

n e−
1
2
nT Qn+jωT ndn is equal17 to

√

(2π)n|J |−1/2e−
1
2
wT Q−1w. Now we

have:

p(x | y) ∝
∫

w
e−

1
2
xT JxejωT (y−Hx)e−

1
2
wT Q−1w dw (4.37)

Note that the quantity inside the integral is complex, and is not a probability density
in the standard sense. However, by integrating out w, the corresponding marginal
p(x | y) is an ordinary real-valued probability density. This can be written in information
form as follows:

p(x | y) ∝
∫

w
e
− 1

2 [
x
w ]

T
„

J jHT

jH Q−1

«

[ x
w ] +

h

0
jy

iT
[ x
w ]

dw (4.38)

The corresponding information matrix is Jx = J − j2HT QH = J + HT QH, and hx =
0 − j2HT Qy = HT Qy – both are real-valued, and Jx is positive-definite.

16Here, δ(x) is a generalized function, with the defining property
R ∞
−∞ f(x)δ(x − x0)dx = f(x0) for

any continuous f(x). Refer to [102,140] for details.
17Using

R

e−
1

2
xT Jx+hT xdx =

p

(2π)n|J |−1/2e
1

2
hT J−1h.



Sec. 4.3. Factor Graph LBP and FG Walk-summability 97

x1

x4 x5

F1 F2
w2w1

x3 x4 x5

w3

x1

x3

F3

(a) (b)

Figure 4.13. (a) The computation tree for complex-valued LBP, with filled nodes corresponding to x
and unfilled nodes corresponding to w. (b) The corresponding real-valued factor graph.

We do not consider such models in full generality, but rather make a restriction that
both J and Q are diagonal. This restriction still represents a very wide class of models:
for example the conditionally auto-regressive (CAR) models [110] fall into this class.
A CAR models for x is specified by listing a consistent set of conditional probabilities
p(xi | xV \i) for all i. The thin-plate model described in Chapter 2 belongs to the class
of CAR models, and admits the representation in (4.38) with diagonal blocks, as we
describe in Section A.2.5 of Appendix A. The multi-user detection problem described
in [98] is also in the block-diagonal form with both x and n i.i.d. We use J = I and
Q = σ−2I. The information parameters for the pair (x, w) is

J̃ =
(

I jHT

jH σ2I

)

and h̃ =
[

0
jy

]

(4.39)

Given these information parameters J̃ and h̃ one can apply Gaussian LBP equations
in (2.29, 2.30, 2.31) to find the marginal means and variances of x. The graph corre-
sponding to J̃ is bipartite, with two components x and w, and the edges connecting
variables in x to variables in w, and no edges within each component.

We note that although some of the entries of J̃ and h̃ are complex-valued, the
message updates for variances only involve passing real-valued quantities. For example,
every quantity Ĵa\b is real-valued at the start (here we use a and b to denote variable
nodes, because i, j would interfere with the complex number notation). The messages
∆Ja→b = −Jb,aĴ

−1
a\bJab are also real-valued: these messages are only passed between

the two bipartite components, hence ∆Ja→b = −(jHb,a)Ĵ
−1
a\b(jHa,b) = Hb,aĴ

−1
a\bHa,b is

also real-valued. Thus the subsequent quantities Ĵa\b = Jii +
∑

k∈N (a)\b ∆Jk→a and
the subsequent messages ∆Ja→b are also real-valued. Similarly all the messages ∆hb→a

coming to nodes a that correspond to the x component, and all ĥa\b are real-valued.
Thus the means and variances of x obtained by the complex-valued version of LBP are
guaranteed to be real-valued. However, for the nodes that are in the w component the
quantities ∆hb→a and ĥa\b are purely imaginary.

Equivalence of the complex-valued and factor graph forms of LBP Now consider the
computation tree for the complex version of LBP displayed in Figure 4.13(a). The
computation tree is bipartite with alternating levels corresponding to variables in x
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Figure 4.14. Convergence of FG-LBP variances (top) and means (bottom) for the multi-user detection
example.

and in w. If we marginalize out variable wk we induce a factor F depending on all
of its neighbors in x. The induced factor will have information parameters JF =
−(jHk)σ

−2(jHk)
T = σ−2HkH

T
k and hF = −(jHk)σ

−2(jyk) = σ−2Hkyk.
Hence, the computation tree from the point of view of the root node is equivalent to

the factor graph computation tree depicted in Figure 4.13(b), with factors F replacing
variables w. This computation tree corresponds to the factor graph LBP applied to
the factorization of Ĵ into rank-1 potentials JF = σ−2HkH

T
k and self-potentials Ji = 1.

We note that convergence of the variances for this factor-graph LBP is guaranteed by
factor graph normalizability, as the rank-1 matrices HkH

T
k are positive-semi-definite.

The paper [98] proves convergence of the variances directly from LBP updates, without
making a connection to factor graphs. They also are able to establish convergence of
LBP means with high probability as the number of variables tends to infinity.

Example 5. (Factor-graph LBP for multi-user detection). We consider the Gaussian
multi-user detection problem described in [98]. Suppose each of K users would like to
transmit a symbol xi, and encodes it with a signature vector Hi ∈ R

N . The received
signal is a linear combination

y =
K

∑

i=1

Hixi + n = Hx + n, (4.40)

where we define H = [H1, ..., HK ], and n is additive Gaussian noise. We assume that
x ∼ N (0, I) and n ∼ N (0, σ2I). This fits exactly in the form described in (4.39).
Following [98], we pick the matrix H to have i.i.d. ±1 entries with equal probability.
We use N = 50 receivers, and K = 40 users.
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First we apply scalar LBP to compute marginals of the posterior of x given y with
information parameters J = I + 1

σ2 HT H, and h = 1
σ2 HT y. By normalizing J to have

unit diagonal (and 0-diagonal R), we have %(R̄) ≈ 4.4173. This model is severely
non-walk-summable, and scalar LBP quickly fails.

Next, we apply the factor graph factorization to the problem, with factor potentials
JF = σ−2HkH

T
k , self-potentials Ji = 1, and hi = ( 1

σ2 HT y)i. In agreement with our
sufficient condition, FG-LBP variances converge. The LBP means also converge in this
example (and, of course, converge to the correct values). This is in line with the high-
probability convergence results for the means in [98], which use random matrix theory.
The plot of convergence of FG-LBP variances and means appears in Figure 4.14: after
about 50 iterations both means and variances reach fixed points18.

This demonstrates that a judicious choice of a factor graph representation may lead
to much better performance of FG-LBP in comparison with scalar LBP.

¥ 4.4 Chapter Summary

In this chapter we continued our study of the walk-sum interpretation of Gaussian
inference. We started with a combinatorial analysis of walk-sums in regular graphs with
homogeneous weights, and used it to give insight into the behaviour of LBP variances.
We then explored more general notions of walk-summability geared towards models with
vector variables and models defined with respect to factor graphs. Walk-summability
can be successfully extended to these scenarios, and we have shown that it guarantees
convergence of the corresponding versions of LBP. However, walk-summability itself
becomes harder to characterize, and we only developed sufficient conditions. Finally we
have considered factor graph normalizability, established that it guarantees convergence
of the variances for FG-LBP, and related FG-LBP to an intriguing complex-valued
version of LBP.

18FG-LBP fixed points for means and variances are all non-zero. This is hard to see from the plot
because of its dynamic range.
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Chapter 5

Low-rank Variance Approximation in
Large-scale GMRFs

We now make a departure from the walk-sum framework described in Chapters 3 and 4,
and consider the problem of computing accurate approximate variances in very large-
scale GMRFs. Such large-scale problems with 2D or 3D fields with millions of vari-
ables appear in image-processing and remote sensing. Since exact approaches are not
tractable for this setting, and no guarantees are available for the accuracy of LBP vari-
ances, we propose a new approach, which, in addition to its efficiency and simplicity,
also provides accuracy guarantees.

Our approach relies on constructing a low-rank aliasing matrix with respect to the
Markov graph of the model which can be used to compute an approximation to the
inverse J−1 = P . By designing this matrix such that only the weakly correlated terms
are aliased, we are able to give provably accurate variance approximations. The method
uses iterative solutions of sparse linear systems, and it is scalable.

We introduce our low-rank variance approximation approach, apply it to short-
correlation models, and establish accuracy guarantees in Section 5.1. We then describe
the spliced-wavelet extension for models with long correlation lengths in Section 5.2,
and in Section 5.2.3 we apply the construction to multi-scale models. In Section 5.3 we
test our approach with experiments, including estimation problems from oceanography
and gravity inversion.

¥ 5.1 Low-rank Variance Approximation

We devote an entire chapter to computing the variances in large-scale GMRFs firstly
because they serve a crucial role in estimation and learning, and secondly because com-
puting variances is a far harder problem than computing the means. In essence, to find
the means we need to solve a sparse linear system, while to obtain the variances we have
a much harder task of computing the diagonal of the inverse of a sparse positive-definite
matrix. Owing to the sparsity of the graph, approximate means can be computed with
linear complexity in the number of nodes using iterative solvers such as preconditioned
conjugate gradients, or multigrid [126]. Such methods do not provide the variances
of the estimates. LBP can be also used to obtain exact means, but has no accuracy

101
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guarantees on the variances.
The primary reason why variances are a crucial component of estimation, and their

computation can not simply be sidestepped, is that they give the reliability informa-
tion for the means. They are also useful in other respects: regions of the field where
residuals exceed error variances may be used to detect and correct model-mismatch
(for example when smoothness models are applied to fields that contain abrupt edges).
Also, as inference is an essential component of learning a model (for both parameter
and structure estimation), accurate variance computation is needed when designing and
fitting models to data. Yet another use of variances is to assist in selecting the location
of new measurements to maximally reduce uncertainty.

¥ 5.1.1 Introducing the Low-rank Framework

Finding the means of a GMRF corresponds to solving the linear equations Jµ = h. For
sparse graphs, a variety of efficient, iterative algorithms exist for solving such equations
with complexity that grows roughly linearly with the number, N , of nodes in the graph
(see Section 5.4 for details) [116]. However, except for models on trees, such linear
complexity is not readily available for the computation of the covariance matrix. One
way in which one might imagine performing this computation is to embed it in a set of
N linear equation solvers. Let vi ∈ R

N be the i-th standard basis vector, then the i-th
column of P can be obtained by solving

JPi = vi (5.1)

To get all N columns of P , this would have to be done N times, once at each node
in the graph: JP = [v1, ..., vN ] = I with complexity O(N2). This is still intractable
for large-scale models with millions of variables. Note that the full P matrix has N2

elements, so quadratic complexity is a lower-bound to compute all of P .
However, in many cases we are most interested only in the diagonal elements, Pii,

of P (i.e., the individual variances)1, and this raises the question as to whether we can
compute or approximate these elements with procedures with only linear complexity.
Of course the direct computation diag(P ) = diag(J−1I) is costly. Instead we propose
to design a low-rank matrix BBT , with B ∈ R

N×M and M ¿ N , and use it instead of
I. The system JP̂ = BBT can be solved with O(MN) complexity in two steps: first
we solve JRB = B using iterative solvers2. Then, we post-multiply RB by BT , i.e.
P̂ii = [RBBT ]ii (which requires MN operations, as we only need the diagonal).

To get accurate variance approximations, B must be designed appropriately, taking
the graph and the correlation structure of the model into consideration. Let all rows bi

of B have unit norm: bT
i bi = 1. Consider the diagonal of P̂ = J−1(BBT ):

P̂ii , [J−1(BBT )]ii = Pii +
∑

i6=j

Pij bT
i bj . (5.2)

1It is also possible to use our approach to find accurate approximations of the elements of the
covariance which correspond to nearby nodes. For sparse models there are O(N) of such elements.

2We note that the matrix RB is not related to the decomposition J = I − R in Chapters 3 and 4.
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To force P̂ii to be accurate approximations of the variances we need the aliased terms
Pij bT

i bj to be nearly zero for all pairs of nodes. We analyze two different cases. For
models with short-range correlations Pij decays fast and is nearly zero for most pairs,
so we only have to take care of the nearby nodes. In the long-range correlation case
we use a wavelet decomposition to decompose the correlation across several scales, thus
producing several problems with short correlation length. Moreover, by adding ran-
domness to the choice of B (and perhaps computing approximations with several such
random choices), we can obtain unbiased approximations of the true covariances. We
describe the short-range correlation construction next, and a wavelet-based extension
for models with long correlations in Section 5.2.

¥ 5.1.2 Constructing B for Models with Short Correlation

The key idea here is that to make Pijb
T
i bj small, we need either Pij or bT

i bj to be small.
Suppose that Pij decays fast with distance from node i to j. Then, for nodes that are
far apart in the graph (further than the correlation length3), the correlation Pij and
the corresponding error-terms in (5.2) are negligible. For pairs of nodes i and j that
are nearby, we have to design B such that bi and bj are orthogonal: this is a problem
of designing an overcomplete basis {bi ∈ R

M} that is nearly orthogonal with respect
to a graph G. We describe such a construction for chains and rectangular lattices, and
suggest an approach for arbitrary sparse graphs.

For the sake of clarity we start with a simple 1D chain example4. We assume
that the correlation between nodes decays rapidly with distance (e.g., in many models
correlation decays exponentially with distance d(i, j) between i and j: |Pij | ≤ A βd(i,j)

with 0 ≤ β < 1). Consider Figure 5.1(a) and (b). We plot the i-th standard basis
vector vi with i = 50 in plot (a), and the i-th column Pi of P , the solution to the
system JPi = vi in plot (b). There is a spike of Pij at j = i, a fast decaying response
for j near i, and most of other entries are nearly zero. Now let z = vi1 + vi2 + ...viK ,
where all indices ik’s are mutually well-separated. In Figure 5.1(c) and (d) we show z
and the solution w to Jw = z. We also show Pii (dashed). At each ik we have a spike
and a fast-decaying response. This operation can be seen as a convolution of a spike-
train with a time-varying kernel. If the spikes are well-separated, then the interference
from other spikes is small, and wik ≈ Pik,ik for each k. This is the basic idea behind
the construction of our B matrix for the short-range correlation case.

Now to find such groups of well-separated nodes, we partition the nodes into classes,
which we call colors, such that nodes of the same color are a distance M apart. For
chains this can be done simply by periodically cycling through the M colors. We will

3We define the correlation length to be a distance in the graph beyond which the correlation coef-
ficient between any two nodes becomes negligible (smaller than some specified threshold). For models
with exponential decay this is consistent with the conventional definition, but it also applies to models
with other modes of correlation decay.

4Here we consider a chain in a generalized sense, meaning that the nodes have an inherent 1D
ordering, but the Markov graph does not have to be a chain and may have links a few steps away in
the ordering.
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Figure 5.1. An illustration of the low-rank matrix construction for a 1D chain: (a) Single spike vi

results in (b) fast-decaying response J−1vi. Next, in (c) we add together several well-separated spikes,
z =

P

i∈c vi and in (d) show the resulting response J−1z, which at the peaks is close to the correct
variances Pii (dashed). Next, we introduce random sign-flips σi. In (e) we plot Bc =

P

i∈c σivi, and in
(f) we show the response Rc = J−1Bc.

have a column Bc of B for each color c. We assign Bc(i) = σi = ±1 i.i.d. random signs
for each node i of color c, and Bc(j) = 0 for other nodes. An illustration appears in
Figure 5.1(e), (and Figure 5.3). We assign random signs to entries of Bc in order to
have destructive interference between the error terms, and we later show that it leads
to unbiased variance approximations. In Figure 5.1(e) we plot a column Bc of B, and
in plot (f) Rc = J−1Bc. Next we apply BT

c thus selecting the entries for nodes of color
c. After repeating these steps for all the colors, and adding them together we get our
approximation P̂ .

For rectangular-grid models the idea is very similar, we partition the nodes into
several color classes such that nodes of the same color have a certain minimum distance
between them. One such construction with 8 colors appears in Figure 5.2. By off-setting
the blocks in a checker-board pattern the minimum distance can be increased to twice
the dimension of each square. The rest of the procedure is the same as in 1D case: we
assign Bc(i) to be ±1 randomly (i.i.d. flips of a fair coin) for each node i of color c, and
solve JRc = Bc for all c.

For chains and lattices the nodes are easy to color by inspection. For arbitrary
sparse graphs we suggest to use approximate graph-coloring to define B. To get a
minimum distance l, one could augment the graph by connecting nodes up to l steps
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Figure 5.2. Local 2x2 regions for square lattice. Colors: {A, .., H} with first 4 colors in shaded blocks
and last 4 colors in transparent blocks. The blocks appear in a checkerboard pattern.

away, and solve the graph-coloring problem on it (assigning colors such that nodes of
the same color do not share an edge). Finding an optimal coloring is very hard, but
approximate solutions (allowing for some violations, and using more than the minimum
number of colors) can be approached using spectral methods [4], or the max-product
form of belief propagation. Upon defining the colors, we can follow the same steps as
we have described for chains and grids.

Next we analyze the diagonal elements of P̂ , and show that they are unbiased and
that the errors can be made arbitrarily small by increasing the minimum separation.

¥ 5.1.3 Properties of the Approximation P̂

Our construction of B can be viewed as aliasing of the columns of the standard basis I:
groups of columns that correspond to nodes of the same color are added together. We
refer to this process as splicing. It can be represented as B = IC. Here the c-th column
Cc contains non-zero entries only for nodes of color c. The exact covariance P is the
solution to linear system JP = I. We approximate it by solving JP̂ = BBT = ICCT I,
i.e. P̂ = J−1CCT , and the error is

E = P̂ − P = J−1(CCT − I). (5.3)

The matrix (CCT −I) serves the role of a signed adjacency matrix, showing which pairs
of columns of I are aliased together. Let C(i) be the set of nodes of the same color as
i, then:

(CCT − I)i,j =

{

σiσj , if i ∈ C(j), j 6= i

0, otherwise.
(5.4)
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We are interested in the diagonal entries of E:

Eii =
(

P (CCT − I)
)

ii
=

∑

j

Pij(CCT − I)ji

=
∑

j∈C(i)\i
σiσjPij = P T

i δC(i)\i.
(5.5)

The term δC(i)\i is a signed indicator of the components aliased to i: i.e. δC(i)\i(j) =
σiσj = ±1 if j ∈ C(i)\i, and 0 otherwise.

Unbiased. The approximations P̂ii are unbiased. The expectation of P̂ over {σi} is
Eσ[P̂ii] = Pii + Eσ[Eii]. We have Eσ[Eii] =

∑

j∈C(i)\i PijEσ[σiσj ] = 0, as σi and σj are

independent, and zero-mean. Hence Eσ[P̂ii] = Pii. We stress that unbiasedness involves
averaging over choices of σ. However, if the variance of P̂ is small then even one sample
σ provides accurate approximations P̂ .

Variance of the approximations. Suppose that the correlations Pij fall off expo-
nentially with the distance d(i, j) between i and j, i.e. |Pij | ≤ A βd(i,j), with 0 ≤ β < 1.
This is true for a wide class of models including Markov models on bipartite graphs.
Now, Var(P̂ii) = Eσ[(P̂ii − Pii)

2] = Eσ[E2
ii] = Eσ[(

∑

j∈C(i)\i σiσjPij)
2]. We have

Var(P̂ii) = Eσ











∑

j∈C(i)\i
σiσjPij





2




(5.6)

=
∑

j,j′∈C(i)\i
E

{

σ2
i σjσj′

}

PijPij′ =
∑

j∈C(i)\i
P 2

ij .

In the second line we use the fact that σ2
i = 1, and that E

{

σjσj′
}

= 1 if j = j′ and 0
otherwise.

In a 2D lattice model with our construction, the number of nodes of a given color that
are (2l)n steps away is 8n (all the distances between nodes of the same color are integer
multiples of 2l). Using the exponential decay bound, for nodes j with d(i, j) = 2nl,
Pij = A β2nl. Hence,

∑

j∈C(i)\i
P 2

ij ≤
∞

∑

n=1

8nA2 β4nl = 8A2 β4l

(1 − β4l)2
. (5.7)

We have used the following series:
∑∞

n=1 nβn = β
(1−β)2

. Thus, Var(P̂ii) ≤ 8A2 β4l

(1−β4l)2
.

Since, |β| < 1, we can choose l large enough such that the variance of the approximation
is below any desired threshold.
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Now let us repeat the analysis for 2D lattices with a slower, power-law rate of decay:
i.e. Pij ≤ A d(i, j)−p, where p > 0. Then the sum in (5.7) changes to:

∑

j∈C(i)\i
P 2

ij ≤ A2
∞

∑

n=1

8n

(4nl)2p
=

8A2

(4l)2p

∑

n

n1−2p. (5.8)

If p > 1, then the sum
∑

n n1−2p converges (and is equal to ζ(2p − 1), the Riemann
zeta function), and the errors can be made arbitrarily small by increasing l. However, if
p ≤ 1, then for any l the sum diverges5. In Section 5.2 we show that the wavelet-based
construction can dramatically reduce the errors for such power-law decay, and can go
beyond these limitations.

Remarks. In general there is a tradeoff concerning the size of the local region – one
could pick a small local region, leading to high variance of P̂ , and average over many
choices of σi. Alternatively, one could pick a larger local region, leading to small variance
of P̂ and average over few choices of σi (or not average at all). The second approach
is more effective, as the variance decreases exponentially with separation length, while
only as 1

T with T repeated experiments. Hence, we suggest that in practice l should be
chosen to be comparable to the correlation length of the model. However, in case the
correlation length is not known exactly, repeated trials over choices of random signs
can also be useful – they can be used to obtain empirical variances of P̂ .

We can also bound the absolute error itself (rather than its variance): |Eii| ≤
∑

j∈C(i)\i |Pij |. For example, with exponential decay of Pij , we have |Eii| ≤ 8A β2l

(1−β2l)2
.

The stochastic bound on Eσ[E2
ii] in (5.6) is tighter, but the deterministic one does not

involve expectation over the random signs σ. Hence, the two bounds are not redundant.

¥ 5.2 Constructing Wavelet-based B for Models with Long Correlation

In our construction of matrix B in the last section we set the separation length be-
tween nodes of the same color to be comparable to the correlation length in the model.
When the correlation length is short, the approach is very efficient. However, when the
correlation length is long the approach is no longer attractive: making the separation
length long will make the computational complexity high. Alternatively, if we violate
the correlation length and use a short separation, then the method still gives unbiased
variance approximations, but the variance of these variance approximations becomes
very high (see examples in Section 5.3).

To address long-range correlations we propose using wavelets to decompose the
aliasing matrix B across several scales, so that the correlation length in each scale is
short. Note that in this section the GMRF model has just one scale. Multiple scales

5Here we are focusing on 2D models. More generally, the required p depends on the dimension of the
lattice. In d dimensions, there are O(nd−1) aliased terms at distance n, and the sum in (5.8) becomes
∝ P

n(d−1)−2p. Thus, we need p > d/2 for convergence.
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Figure 5.3. (left) identity and (right) locally orthogonal B matrix formed by adding certain columns
of I together and changing signs randomly.

come from the wavelet decomposition. In Section 5.2.3 we apply the method to a
multi-scale model, where the GMRF has hidden variables representing coarser scales
and allows sparse representation of processes with slow correlation fall-off.

We start with one-dimensional wavelets in continuous time to simplify discussion
and analysis. We briefly review the basics of wavelet decompositions mainly to set
notation. A wavelet decomposition is specified by a scaling function φ(t) and a wavelet
function ψ(t), which generate a family of dilations and translations [89]:

φs,k(t) =
1

2s/2
φ(2−st − k),

ψs,k(t) =
1

2s/2
ψ(2−st − k).

(5.9)

For a fixed scale s, the set {φs,k(t)}k generates the approximation space Vs. These spaces
Vs are nested: V1 ⊃ V2 ⊃ V3 ..., with higher s corresponding to coarser scales. The
span of the wavelets {ψs,k(t)}k at a given scale s gives the detail space Ws = Vs−1 ªVs

(we use ª to denote the orthogonal complement of Vs in Vs−1). We can decompose the
fine scale V1 over Nsc scales:

V1 = W1 ⊕W2 ⊕ ... ⊕WNsc ⊕ VNsc . (5.10)

We focus on orthogonal6 wavelet families with compact support where ψs,k(t) is orthog-
onal to all other translations and dilations of ψ(t), and to scaling functions at scale s
and coarser.

To deal with discrete-time signals, we make the standard assumption that discrete
samples fk are the scaling coefficients 〈φs1,k, f(t)〉 of a continuous wavelet transform of

6One could also use biorthogonal wavelets [89] in our approach: instead of having an orthogonal
wavelet basis W , we would have an analysis basis Wa and a synthesis basis Ws, such that WaW T

s = I.
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Figure 5.4. (left) A discrete wavelet basis, with columns corresponding to wavelets at different scales
and translations, and (right) B matrix obtained by aliasing certain columns of W within each scale. In
the wavelet basis W the number of columns doubles with each finer scale, but in B it stays constant.

some smooth function f(t) at scale s1 [89]. Let s1 = 1 without loss of generality. Now, a
discrete wavelet basis for the space V1 is constructed by collecting the scaling functions
at the coarsest scale, and the wavelet functions at all finer scales as columns of a matrix
W . Let Ss and W s contain the scaling and wavelet functions, respectively, at scale s. In
general we do not need to go all the way to the coarsest scale Nsc = log2(N). Stopping
the decomposition earlier with Nsc < log2(N) also provides an orthogonal basis for the
space V1. Our orthogonal basis is7:

W = [W 1 W 2 .... WNsc−1 SNsc ]. (5.11)

An illustration of a Haar wavelet basis for N = 32 is given in Figure 5.4 (left). Columns
(wavelets) are grouped by scale, and horizontal axis corresponds to translation. At scale
s we have 2Nsc−s possible translations, hence that many columns in W s.

¥ 5.2.1 Wavelet-based Construction of B

There is now a well-established literature [45,47,50,90] describing that for many classes
of random processes their wavelet coefficients have faster decaying correlation than the
original process itself. In our approach we do not transform the random process –
instead, we consider solutions Rk to JRk = Wk (Wk is a column of W ), and show that
Rk exhibits fast decay (we also say correlation decay), which will allow compression of
B and computational efficiency. Roughly speaking, we create a scale-dependent B, with

7Ideally one would use boundary wavelets at the edges of the signal [89]. We do not pursue this:
we use Nsc < log2(N), and assume that the support of the wavelets at the coarsest scale Nsc is small
compared to the size of the field, and hence edge-effects have negligible impact in our approach.



110 CHAPTER 5. LOW-RANK VARIANCE APPROXIMATION IN LARGE-SCALE GMRFS

a construction similar to Section 5.1 at each scale. We now present our wavelet-based
construction, and then analyze it.

In the original single-scale construction we find an approximation P̂ to P by solving
JP̂ = BBT instead of JP = IIT = I. The matrix B is an aliased version of I, with
B = IC. For the multi-scale construction we start by expressing the exact covariance as
the solution to the system JP = WW T = I. We approximate it by applying the aliasing
operation at each scale, Bs = W sCs (note, we do not alias wavelets across scales). We
call this aliasing operation wavelet splicing. The k-th column of W s contains ψs,k(t),
and corresponds to the k-th wavelet at scale s. We group these coefficients, and hence,
the columns, into M s groups (colors) such that any two coefficients of the same color
are well separated with respect to the correlation length at scale s (i.e. correlation
length for Rk at scale s). Each column of Cs contains non-zero entries only for nodes
of a particular color. Similar to Section 5.1, we set Cs

c (k) = σs
k = ±1, for k ∈ c, and 0

otherwise. The signs σs
k are equiprobable and i.i.d. Combining all the scales together,

this gives:
B = WC, (5.12)

where B = [B1, ...BNS ], W = [W 1, ..., WNsc−1, SNsc ], and C = blockdiag([C1, ..., CNsc ]).
We illustrate matrices W and B in Figure 5.4 (left) and (right) respectively. The rest of
the procedure follows the one for the short correlation length: we solve for the diagonal
of P̂ using JP̂ = BBT , as described in Section 5.1.

In the wavelet decomposition, the majority of the coefficients are at fine scales. In
the next section we describe that for well-behaved GMRFs Rk decays faster at finer
scales8. While at the finer scales in W there are more coefficients (and columns), they
can be aliased together more aggressively, see Figure 5.4 (right). We show that under
certain assumptions the correlation length can be assumed to decrease two-fold with
each finer scale, so the resulting number of columns of Bs stays the same for all scales.
In this manner, the number of columns of B is O(log2(N)) instead of N for the wavelet
basis W , giving significant computational savings in our approach.

Construction of B for 2D. We use the separable wavelet construction, which takes
products of 1D functions to create a family of two-dimensional triplets [89]9:

ψ
(1)
s;k1,k2

(x, y) = φs,k1(x)ψs,k2(y),

ψ
(2)
s;k1,k2

(x, y) = ψs,k1(x)φs,k2(y), (5.13)

ψ
(3)
s;k1,k2

(x, y) = ψs,k1(x)ψs,k2(y).

8We measure distance and separation relative to scale: separation of K at scale s corresponds to
separation of K2s−1 at scale 1.

9This is different from taking outer products between each pair of columns of W in (5.11). It would
also give an orthogonal basis, but has the undesirable effect of mixing wavelets from different scales.
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Figure 5.5. Errors with the aliased standard basis: the error is obtained by an inner product between
Pi and δC(i)\i (both signals are a function of j). Here i = 50. We set all the signs σj = 1 for simplicity.

Stacking ψ
(i)
s;k1,k2

as columns of a matrix creates an orthogonal basis W̄ for two-

dimensional fields. To produce the corresponding aliasing matrix B̄ as in (5.12), we
first create one-dimensional spliced matrices Bs = W sCs and B̃s = SsCs containing
linear combinations of wavelet and scaling functions at each scale. Then we create
triplets using columns of Bs and B̃s in the same manner as in (5.13).

¥ 5.2.2 Error Analysis.

In Section 5.1.2 we have analyzed the errors in the single scale construction, Eii =
P T

i δC(i)\i. When the separation between nodes of the same color is smaller than the
correlation length, the errors are significant (see Figure 5.5). We will now justify why
the wavelet construction can dramatically reduce the errors for models with long-range
correlations.

The variance approximation in the wavelet-based construction of B is P̂ = J−1BBT =
J−1WCCT W T . The aliasing matrix C is block diagonal with a block for each scale.
Let RW = J−1W . Its k-th column Rk = J−1Wk is the response of the linear system
JRk = Wk to the wavelet Wk. An illustration appears in Figure 5.6. We show the
response Rk = PWk, for wavelets Wk at two different scales, s = 6 and s = 5. We also
show the wavelets Wl that are aliased to k with dashed lines. It is clear that Rk decays
much faster than Pi in Figure 5.5. We discuss this decay in more detail later in this
section. The regions where Rk and Wl overlap contribute to the errors in P̂i for i falling
in the support of Wl. The error is:

E = P̂ − P = J−1W (CCT − I)W T = RW (CCT − I)W T . (5.14)

We have (CCT −I)k,l = σkσl = ±1 only if k 6= l and the wavelets Wk and Wl are aliased
together. In particular, if k and l belong to different scales, then (CCT − I)k,l = 0.
Now the errors in variances are:

Eii =
∑

k

∑

l

Rik(CCT − I)klWil

=
∑

k

∑

l∈Cs(k)\k
σkσlRikWil.

(5.15)
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Figure 5.6. Rk, and Wl for l ∈ C(k)\k. (top) Scale 6. (bottom) Scale 5. Regions where Rk and Wl

overlap contribute to the errors in P̂i for i in the support of Wl. The original Pi is shown in Figure 5.5

We will analyze Eσ[E2
ii] in Proposition 5.2.1, and show that the interference of Rk

and Wl decays fast with separation. We will show that for large fields, as N → ∞ the
error is stable (i.e. bounded), the approximation can be made accurate to any desired
level by controlling aliasing, and that the multi-scale construction is much more accurate
than the single-scale one for GMRFs which have substantial energy over multiple scales.

We can also bound |Eii| (and hence the `∞-norm of e , diag(E), ‖e‖∞ = maxi |Eii|):

|Eii| =

∣

∣

∣

∣

∣

∣

∑

k

∑

l∈Cs(k)\k
σkσlRikWil

∣

∣

∣

∣

∣

∣

≤
∑

k

∑

l∈Cs(k)\k
|Rik||Wil|

(5.16)

This bound is not as tight as the stochastic one we will get in (5.19), but on the other
hand, it does not require taking expectations over the random signs σ.

Correlation decay. We now analyze the decay of Rk(i). Note that, while there are
similarities of spirit in this analysis and other work involving wavelets and covariance
matrices, our objectives and indeed our analysis differ in significant ways. In particu-
lar, conventional analysis focuses on the covariance matrix of the wavelet coefficients,
i.e., PW = W T PW . In contrast, our analysis is based on viewing the rows of P as
deterministic signals and considering their transforms – i.e., on the matrix RW = PW .
That said, we will comment on possible ties to more conventional wavelet analysis at
the end of this section.
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We first recall some relevant facts from wavelet analysis [89]. Suppose a continuous-
time function f(t) is α-Lipschitz10 (this is related to how many times f(t) is contin-
uously differentiable). Also suppose that the wavelet family ψs,k(t) has m vanishing
moments11, with m > α. Then the wavelet coefficients Wf(s, k) = 〈ψs,k(t), f(t)〉 sat-
isfy |Wf(s, k)| = O(2s(m+1/2)). If m ≥ 1 then the magnitude of the wavelet coefficients
in smooth regions drops fast for each finer scale.

However, this fast decay does not happen near a point of singularity of f(t), say t0.
Suppose that the wavelet at scale 1 has support K. At a coarser scale, s, the support
is K2s−1. To avoid the point of singularity, the wavelet at scale s has to be outside the
interval t0 ± K2s−1, which gets twice wider with each coarser scale. This set over all
scales is called the ’cone of influence’, and it contains unusually high values of wavelet
coefficients, a region of disturbance caused by the singular point [89].

For our analysis, we view P as samples of a continuous-time function, and assume
that the correlation function Pij may have a singularity at i = j, and that it is smooth
otherwise. Consider scale s, Rs = PW s. The i-th row of Rs contains the scale-s
wavelet coefficients of the i-th row of P . The singularity of Pij at i = j will produce a
disturbance region with high wavelet coefficients near that value of k for which Wk peaks
at row i. Recall that the rows of Rs are indexed by nodes, and the columns correspond
to wavelet coefficients. The disturbance region at node i in Rs will be roughly K2s

rows wide, and K columns wide (since wavelet coefficients involve downsampling by
2s). When columns of Ws are aliased together, we have to make sure that the cones of
influence do not overlap. The region of disturbance is twice narrower (in terms of the
number of rows) at each finer scale, so roughly twice as many wavelets can be aliased
with each finer scale.

As an illustration consider Figure 5.6. The region of disturbance of Rk(i) near i = 50
can be seen in Figure 5.6 for scales 6 and 5. The original Pi is shown in Figure 5.5 and
has a singularity at i = 50. It is evident that by going to a finer scale, from s = 6 to
s = 5, Rk(i) decays faster, and more columns of W can be aliased without sacrificing
the accuracy.

Properties of the wavelet-based approximation P̂ . In the single-scale case we
showed that P̂ is unbiased, and bounded the variance of the errors. We extend these
results to our wavelet-based approximation. The total error is equal to

E = P − P̂ = P
(

WW T − BBT
)

. (5.17)

Unbiased. Let C(k) be the set of columns that get merged with column k. Then taking
an expectation over {σk}, Eσ[BBT ] = WW T +

∑

k

∑

l∈C(k)\k WkW
T
l Eσ[σkσl] = WW T .

10A function is pointwise α-Lipschitz [89] at t0 if there exists γ > 0, and a polynomial pv of degree
m = bαc such that, ∀t ∈ R, |f(t)−pv(t)| ≤ γ|t− t0|α, (α > 0). It is uniformly Lipschitz over an interval
if it is pointwise Lipschitz with γ not dependent of t.

11A wavelet with n vanishing moments is orthogonal to polynomials of degree n − 1, i.e.
R ∞
−∞ tkψ(t)dt = 0 for 0 ≤ k < n.
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The error terms cancel out because Eσ[σkσl] = 0 for k 6= l. Thus, the approximation P̂
is unbiased.

Variance of the approximations. We now obtain a bound based on the expression
in (5.15). Since P̂ is unbiased, we have Var(P̂i) = Eσ[E2

ii]. Using (5.15) it follows:

Eσ[E2
ii] = E









∑

l

∑

k∈C(l)\l
σkσlRikWil





2

 . (5.18)

The terms σkσl and σk′σl′ are uncorrelated unless (k, l) = (k′, l′) or (k, l) = (l′, k′), so
this expectation reduces to Eσ[E2

ii] =
∑

l

∑

k∈C(l)\l R
2
ikW

2
il+

∑

l

∑

k∈C(l)\l RikWilRilWik.
Also, the second term is zero, as we require that the supports of the aliased terms Wl

and Wk do not overlap, i.e. WilWik = 0 for k ∈ C(l)\l. Hence,

Eσ[E2
ii] =

∑

l

∑

k∈C(l)\l
R2

ikW
2
il. (5.19)

To bound this sum we consider a model with exponential and power-law decay of
correlations, and assume that the wavelet has m vanishing moments. Also, we do not
use Nsc = log2(N) scales in the decomposition, but rather set Nsc ∝ log2(L), where L
is the correlation length of the model. Once the size of the field exceeds L, there is no
advantage in including coarser scales that contain negligible energy.

Proposition 5.2.1 (Bounded errors). Suppose for a 1D GMRF, Pij ∼ βd(i,j) or
Pij ∼ d(i, j)−p. Then, as the size of the field tends to infinity, the errors in (5.19)
stay bounded, provided that the number of vanishing moments of the wavelet function
satisfies m ≥ 1. Also, by increasing the separation length, i.e. the distance between
nearmost aliased terms, the errors can be made arbitrarily small.

We establish this stability property in Appendix A.3. We avoid the issue of bound-
ary effects as we fix the number of scales of the wavelet decomposition when the field
size tends to infinity. In the appendix we show that the errors in the wavelet-based
construction can be much smaller than in the single-scale one, if the GMRF has power
distributed over multiple scales. For higher-dimensional lattices with power-law rate of
decay, the required number of vanishing moments also has to satisfy m + p > d

2 , where
d is the dimension.

Alternative variance analysis. We also consider another line of analysis which makes
ties to covariances of wavelet coefficients P s

W , (W s)T PW s (rather than Rs = PW s).
It is important to emphasize that this analysis is approximate and does not lead to
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bounds. Consider tr(E), and decompose it by scale. We have:

tr(Es) = tr
[

P (W s(W s)T − Bs(Bs)T )
]

=

tr
[

(W s)T PW s − (Bs)T PBs
]

=

tr
[

(W s)T PW s − (Cs)T (W s)T PW sCs
]

=

tr
[

P s
W (I − Cs(Cs)T )

]

. (5.20)

Then, via the same analysis as in Section 5.1.3 we have:

Var
(

tr
[

P s
W (I − Cs(Cs)T )

])

=
∑

k

∑

l∈C(k)\k
((P s

W )k,l)
2. (5.21)

Putting all the scales together, Var(tr(E)) =
∑

s

∑

k

∑

l∈C(k)\k((P
s
W )k,l)

2. This equality
holds since the signs σk at different scales are independent. Now, assuming that the
errors at different nodes are only weakly correlated, which we justify with experiments in
Section 5.3, we have

∑

i Var(Eii) ≈ Var(
∑

Eii) = Var(tr(E)) =
∑

s

∑

k

∑

l∈C(k)\k((P
s
W )k,l)

2.
We obtain an estimate of the variance of our approximation that explains how the er-
rors are decomposed across scale. The accuracy of this approach relies on more detailed
knowledge of the structure of the covariance than the bound we have presented earlier.
That said, since the statistics of wavelet coefficients of various random processes have
been analyzed in prior work [45, 47, 50, 90], there are certainly classes of processes in
which this alternate variance approximation can be quite accurate. Moreover, taking
advantage of such additional knowledge of covariance structure may suggest alternative
bases to W , and in turn to B, that are adapted to the process structure and yield
tighter bounds12.

¥ 5.2.3 Multi-scale Models for Processes with Long-range Correlations

In our analysis the errors in variance approximations mainly depend on the covariance
structure of P , and the information matrix J does not play a direct role. However, J
plays a crucial role during estimation – the model has to be Markov with respect to a
sparse graph to be able to store it efficiently, and to solve the linear system Jµ = h
efficiently. Some processes with slow correlation fall-off do not have a sparse information
matrix in a one-scale representation, so they do not fit well into our approach. However,
slow correlation fall-off can be modeled using sparse multi-scale representations with
hidden variables, as we discussed in Section 2.3.2. A pyramidal model with a stochastic
relationship between scales was proposed in [31,32]. We consider the problem of finding
approximate variances in such a model.

A representative structure for the model is illustrated in Figure 5.7 for both 1D
and 2D fields. The variables in the bottom (fine) scale correspond to some physical
phenomenon that is being modeled. The variables at coarser scales represent aggregates

12For example, one could use partial wavelet decompositions that stop at intermediate scales, and
more generally wavelet packets [89] adapted to the statistics of wavelet coefficients at different scales.
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Figure 5.7. (left) 1D multi-scale model (right) 2D multi-scale model (colors serve to make the plot
better interpretable by distinguishing inter and intra scale edges).

over local regions. They may or may not be of interest in the estimation, but they serve
to induce a sparse graph structure (once they are integrated out, the fine-scale model in
general has a complete, non-sparse, information matrix). Aggregation can mean that
the coarser scale variable represents an average, or some weighted combination of the
variables in the finer scale over a small region. However, the relationship across scale is
non-deterministic, allowing for uncertainty. The graph is sparse, but has many loops.

The structure of the information matrix is such that variables in one scale are only
connected to nearby scales. Hence the J matrix for a multi-scale model with 4 scales has
the following chain structure (with scale 1 being the finest, and scale 4 – the coarsest):

J =

(

J1 J12
J21 J2 J23

J32 J3 J34
J43 J4

)

. (5.22)

Suppose that we are mainly interested in computing the variances of the variables at
the finest scale (the other ones are auxiliary), i.e. in the block of J−1 corresponding to
scale 1. Hence in our approach we only need to approximate blockdiag(I, 0, 0, 0), and
not the full I matrix. We use the matrix B =

(

B1
0

)

, with 0 for all coarser scales13. Here
B1 is a spliced wavelet basis corresponding to variables at scale 1 (the same construction
as in Section 5.2).

Our error analysis takes into account only the covariance structure of the fine scale
variables, P1 = [J−1]1. Hence, it is oblivious to the hidden variables representation,
and only depends on the properties of the marginal covariance block P1. Experimen-
tal results with this multi-scale model for processes with long-range correlations are
presented in Section 5.3.

13Alternatively, if the variances at coarser scales are of interest, we use the matrix
blockdiag(B1, B2, B3, B4), where Bi is a spliced wavelet bases corresponding to scale i. The errors
are decoupled: errors from Bi at scale i are not propagated to other scales.
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Figure 5.8. (top) Correlation Pij from the center node. (bottom) Errors in variances (mean absolute
error, in percent) vs. separation length l.
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Figure 5.9. 1D example with long-correlation. (top) Correlation Pij from the center node. (center)
True variance, and low-rank approximate variance using one scale. (bottom) True variance, and low-
rank wavelet-based approximate variance.

¥ 5.3 Computational Experiments

Our first experiment involves a 1D thin-membrane model with length N = 256, with
nearest neighbor connections. Noisy observations are added at a few randomly selected
nodes. This model has a short correlation length, see Figure 5.8 (top). We apply the
single-scale low-rank method from Section 5.1.2, and we plot the errors in variances
(absolute error in percent, averaged over all nodes) versus the separation length in
Figure 5.8 (bottom). The errors decay fast with separation length, in line with our
analysis in Section 5.1.3.

Next we consider a 1D thin-membrane model with connections from each node
to nodes up to 4 steps away. The J matrix is close to singular, and the correlation
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Figure 5.10. 2D thin-membrane example: (top) approximate variances, (bottom left) errors, and
(bottom right) 2D auto-correlation of errors. The approximations are accurate (errors are much smaller
than the variances), and the errors are weakly correlated.

length in the model is long, see Figure 5.9 (top). We illustrate the results using both
the single-scale (middle plot) and the wavelet-based (bottom plot) low-rank methods.
We use M = 32 for the single-scale approach, which is too small compared to the
correlation length. While the approximation is unbiased, its high variance makes it
practically useless. For the wavelet-based case, using a smaller matrix B with M = 28,
constructed by splicing a Coifman wavelet basis (coiflet basis) [42], we are able to find
very accurate variance approximations as seen in Figure 5.9 (bottom).

Next we apply the approach to a 2D thin-membrane model of size 256 × 256, with
correlation length about 100 pixels, and with sparse noisy measurements taken at ran-
domly selected locations. The underlying true field is flat. We use separable Coifman
wavelets, and the resulting sparse B matrix has size 65536 × 304. This is a very sig-
nificant reduction in the number of columns, compared to W . The results appear in
Figure 5.10: the errors (bottom left) are small compared to the variances (top). Our
approximate solution is a close match to the exact solution, which can still be com-
puted for models of this size. The 2D auto-correlation of the errors appears in Figure
5.10 (bottom right): the errors are weakly correlated, supporting our alternative error
analysis based on PW in Section 5.2.2.

Next, we apply our low-rank variance approximation method to ocean surface height



Sec. 5.3. Computational Experiments 119

 

 

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000
0

50

100

150

200

Figure 5.11. Approximate uncertainty (mm) of Pacific ocean surface height based on measurements
along satellite tracks, 1024 × 1024 grid.

data collected along the tracks of Jason-1 satellite14 over the Pacific ocean region. The
data are sparse and highly irregular. We use the thin-plate model for ocean surface
height15. The measurements in general fall between the grid points, and they are mod-
eled as bilinear interpolation yk = hkx + nk, of the nearest 4 nodes in the grid (hk

has 4 non-zero entries) with added white Gaussian noise nk ∼ N (0, γ). The poste-
rior information matrix combining the thin-plate prior Jtp with the measurements is
J = Jtp + 1

γ HT H, and it is still sparse because the measurements only induce local
connections within each cell in the grid.

The size of the field is 1024 × 1024, i.e. over a million variables. Computing the
variance in a model of this size is beyond what is practical with exact methods on a single
workstation. We use our approximate variance calculation method. The correlation
length is moderate, so using just 2 wavelet scales suffices, and the B matrix has only
448 columns. The resulting approximate variances using a version of the embedded
trees (ET) iterative solver described in Section 5.4, appear in Figure 5.11. The regions
over land are ignored (in black). The variances are lowest near the measurements (along
the tracks) as expected.

Next, we consider a gravity inversion problem, where one is interested in estimating
the underground geological structure of a 3D-volume based on gravity measurements

14This altimetry dataset is available from the Jet Propulsion Laboratory http://www.jpl.nasa.gov.
It is over a ten day period beginning 12/1/2004. The altimetry data are normalized to remove seasonal
spatially varying average sea levels.

15We refer to [76] for how to chose the parameters balancing the prior and the likelihood in this model.
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Figure 5.12. Gravity inversion example: (a) Markov graph of the posterior density has edges from
the thin-plate model and edges induced by observations (b) exact variances (c) accurate approximate
variances using the wavelet-based low-rank approach. The variances increase with depth.

on its surface. As we now describe, this problem is more general than what we have
considered so far, due to sparse but non-local measurements. For simplicity we consider
a 2D version of this problem. We divide the 2D subsurface region into small blocks, and
model the mass x in the blocks as a thin-plate GMRF. The gravity measurements y on
the surface come from a discretization of Newton’s law of universal gravitation. They
are linear in the unknowns x, but non-local – they couple all the nodes in the GMRF:

yi = G
∑

j

uij xj/d2
ij + ni. (5.23)

Here yi is the 2-component (horizontal and vertical) gravity measurement at point i
on the surface, xj is the unknown mass at the j-th subsurface node, see Figure 5.12(a).
Also, G is the gravitational constant, dij and uij are respectively the distance and the
unit vector from the location of the j-th node to i-th measurement point, and ni is
Gaussian noise with diagonal covariance Q. Combining the linear measurement model
y = Hx+n with the thin-plate prior Jtp for the unknown field x, the posterior variance
that we would like to approximate is:

P = (Jtp + HT Q−1H)−1. (5.24)

Note that this problem does not simply correspond to a sparse matrix J : in addition
to the sparse component Jtp there is also a low-rank non-sparse component HT Q−1H
due to the non-local measurements. However, using a version of block Gauss-Seidel
described in Section 5.4, we still obtain fast solution of the resulting linear system. We
consider a square region with 64× 64 nodes, with gravity measurements at 64 locations
at the top16. We plot the true variances, and the ones obtained using a wavelet-based
low-rank approach with 4 scales and 206 columns of B (instead of 4096). Despite the

16We assume that the density is approximately known outside the square region (this is not required,
but it simplifies the problem).
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Figure 5.13. Multi-scale example: (a) conditional and (b) marginal correlation at the fine scale. (c)
approximate variances using the low-rank approach: spliced standard basis. (d) accurate approximate
variances using the wavelet-based low-rank approach.

long-range correlation induced by the observation model, and the addition of the non-
sparse HT Q−1H term, the method still gives accurate variances, as we show in Figure
5.12.

Finally, we apply our reduced-rank approach to a multi-scale model on a pyramidal
graph as described in Section 2.3.2. The model has 256 variables in the finest scale, and
5 coarser levels, with the number of variables decreasing two-fold for each coarser level.
The total number of variables is 496. In Figure 5.13 (a) we show the fast-decaying
conditional correlation at the fine scale (conditioned on the coarser scales), and in
plot (b) the slow-decaying marginal correlation at the fine scale. The fast decay of
conditional correlations allows efficient solutions of the linear systems in our approach.
However, the errors in our low-rank variance approximations depend on the long-range
marginal correlations, requiring the use of the wavelet-based approach. In Figure 5.13
we show the results of computing approximate variance using the single-scale approach
in plot (c), and the wavelet-based approach in plot (d). The sizes of the resulting aliasing
matrices B are 496 × 32 and 496 × 28 respectively. It can be seen that the single-scale
approach is inadequate, while the wavelet-based B yields very accurate variances, even
though it uses an aliasing matrix B with fewer columns. This is as expected – the model
has a long marginal correlation length at the fine scale, which only the wavelet-based
approach is able to handle.

¥ 5.4 Efficient Solution of Linear Systems

In our approach we compute the variances by solving a small number, M ¿ N , of
linear systems JRi = Bi all sharing the same matrix J . Whenever a fast solver for J is
available, the overall variance approximation scheme is also fast.
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Figure 5.14. Block Gauss-Seidel with thin induced trees. Exact estimation is linear in the length of
the strip using block-LBP.

Iterative approaches such as Richardson iterations and conjugate gradient methods
are very appropriate for our approach, as multiplication by a sparse J is very efficient,
so the cost per iteration is low. The number of iterations can be controlled by using
a good preconditioner for J , one which is easy to evaluate, and which serves as an
approximation of J−1.

An efficient set of preconditioners based on embedded trees (ET) has been developed
in [120] for the lattice GMRF model. The idea is that for models with a tree-structured
graph G, solving the system Jµ = h (i.e. applying J−1 to a vector) is highly efficient – it
can be done in O(N) operations. Hence, for general graphs G, [120] uses spanning trees
T ⊂ G with preconditioner J−1

T . We use a similar strategy based on block Gauss-Seidel
iterations that uses thin induced17 subgraphs as blocks. We partition the lattice into
narrow overlapping horizontal and vertical strips. Estimation in the strip (conditioned
on other variables being fixed) can be done efficiently with the cost linear in the length
and cubic in the width of the strip. By iterating over the strips convergence to the
correct means is guaranteed18. An illustration of this procedure appears in Figure 5.14,
where we divided all horizontal strips into two groups, such that strips do not overlap
within the group. This way estimation can be performed for all the strips in a group
in parallel. We use this approach in the experiments in Section 5.3.

There are several directions for designing potentially even more efficient precondi-
tioners. Recently, [26] proposed an adaptive scheme based on ET that picks the span-
ning trees adaptively to have the most impact in reducing the error. This should be
beneficial within the context of block Gauss-Seidel as well. Also, for single-scale models
with long-range correlations, using multi-scale solvers such as [126] can dramatically
improve convergence. Alternatively, when the MRF model itself has multiple scales (as
in Section 5.2.3), then estimation approaches in [31,32] can be used. There the model is
decomposed into a tractable tree-structured component, and disjoint horizontal compo-
nents (one for each scale), which, conditioned on the coarser scale variables, have short
conditional correlations and are also tractable. By iterating between these two tractable

17A subgraph of G is induced if it has a subset of vertices of G and all the edges of G that connect
them. A spanning tree is not induced: it has all the vertices of G but only a subset of the edges.

18We note that in general the convergence of ET iterations is not guaranteed. By also requiring the
subtrees to be induced, we force ET to be equivalent to Gauss-Seidel, guaranteeing its convergence.
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subproblems, estimation in the whole multi-scale model can be done efficiently.

¥ 5.5 Chapter Summary

We have presented a simple computationally efficient scheme to compute accurate vari-
ance approximations in large-scale GMRF models. The scheme involves designing a low-
rank aliasing matrix which is used during matrix inversion. By a judicious choice of the
aliasing matrix the errors in the approximation can be made unbiased and with small
variances. We have designed aliasing matrices for both the short-range and smooth
long-range correlation cases, and applied them to single and multi-scale GMRF models.

There are many interesting directions for further research: using wavelet packets
to better adapt to the statistics of the GMRF; using diffusion wavelets [34] to extend
the wavelet-based construction of B to arbitrary (non-regular) graphs; finding an in-
terpretation of this approach in the walk-sum framework presented in Chapters 3 and
4. In addition, for multi-scale GMRF models we are interested to find ways to design
a low-rank aliasing matrix that exploits the short correlation length of the conditional
model within each scale, rather than using wavelet-based constructions.
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Chapter 6

Conclusion

This thesis makes contributions in the area of approximate inference in Gaussian graph-
ical models. In our first contribution we presented a walk-sum framework for Gaussian
inference, and applied it to analyze Gaussian loopy belief propagation, establishing new
results on its convergence. We also considered more general vector and factor graph ver-
sions of LBP, and extended the walk-sum framework to give insight into their behavior.
In our second contribution we described an efficient approach to compute approximate
variances in large-scale Gauss-Markov random fields and analyzed its accuracy. We
started by considering models with short-range correlations, and then used wavelet
analysis to extend the approach to handle models with smooth long-range correlations.
Next we highlight the main contributions in each chapter, and then in Section 6.2
we discuss interesting questions raised in the thesis, and suggest directions for further
research.

¥ 6.1 Contributions

We now outline the main contributions of each chapter.

Chapter 3: Walk-sum analysis of Gaussian BP

• Walk-summable models. We have shown that in a large class of Gaussian graphi-
cal models, which we call walk-summable, inference can be interpreted in the language
of walks and sums of weights over walks: means, variances and correlations corre-
spond to walk-sums over certain sets of walks. We established that attractive mod-
els, tree-structured models, non-frustrated models, diagonally-dominant and pairwise-
normalizable models are all walk-summable. We also showed that the class of pairwise-
normalizable models is in fact equivalent to walk-summable models.

• Walk-sum interpretation of LBP. We have shown that BP message updates in a
tree-structured model can be viewed as calculating walk-sums in subtrees of the model.
Using the LBP computation tree we also presented a walk-sum interpretation of LBP.

• Convergence of LBP. We have shown that LBP converges in walk-summable mod-
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els, and captures all the walks for the means, but only a subset of walks for the variances,
the so-called back-tracking walks.

• LBP in non-walk-summable models. We also established an almost1 necessary
and sufficient condition for convergence of LBP variances based on the validity of the
computation tree. While convergence of the variances in this setting does not guarantee
convergence of the means, we observed empirically that means can always be forced to
converge with sufficient damping.

Chapter 4: Extensions of walk-sum analysis

• Combinatorial ideas for walk-sums. We applied simple ideas from combinatorics
to compute exact root-node self-return walk-sums in the computation trees for regular
graphs, giving insight into the behavior of LBP variances.

• Walk-sums for models with vector variables. We extended the walk-sum frame-
work for models with vector variables, and related it to convergence of vector-LBP.
Along the way we formulated a multitude of conjectures.

• Walk-sums for factor graph models. We also extended the walk-sum framework
for Gaussian models defined on factor graphs, and applied it to develop a sufficient
condition for convergence of factor graph LBP.

• Factor graph normalizable models. As an alternative to factor graph walk-summability,
we also considered the notion of factor graph normalizability, which guarantees con-
vergence of FG-LBP variances. We also related FG-LBP with the recently proposed
complex-valued version of LBP.

Chapter 5: Low-rank Variance approximation

• Low-rank approximation. We presented an approach that uses low-rank aliasing
matrices to enable efficient computation of approximate variances in large-scale GMRF
models by reducing the problem to a sequence of solutions of sparse linear problems.

• Aliasing matrix for models with short-range correlation. We described how to
construct a low-rank aliasing matrix for models with short-range correlations, and es-
tablished accuracy guarantees: the resulting variance approximations are unbiased, and
their error variances can be made small.

• Wavelet-based aliasing matrix for models with smooth long-range correlations. By
a non-trivial use of wavelet bases we were able to construct an aliasing matrix that is

1Our result here did not address the exact behavior of the variances for the special case with %∞ = 1.
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geared towards models with smooth long-range correlations. We also derived accuracy
guarantees for this wavelet-based approach – again the resulting variance approxima-
tions are unbiased, and the variance of the errors can be made small.

¥ 6.2 Recommendations

In this section we highlight some of the questions raised in the thesis, and suggest
directions for further research. The discussion ranges from concrete problems that were
encountered in the thesis, to more general open-ended topics.

¥ 6.2.1 Open Questions Concerning Walk-sums

LBP Means in Non-Walk-summable Models. We discussed non-walk-summable models
in Section 3.3 and established that while variances converge when %∞ < 1, the means
may or may not converge. A related phenomenon was observed in Section 4.3.3 concern-
ing factor graph normalizable models: in such models FG-LBP variances are guaranteed
to converge, but in some cases (which are rather difficult to find) means may still fail
to converge. Empirically, in both of these scenarios we have seen that one can always
force the means to converge by sufficient damping of the message updates. We mention
some ideas that may be useful in formally proving this observation.

Recall that once variances converge, the updates for the means follow a linear sys-
tem. This happens both for scalar LBP (2.29 - 2.30) and for factor graph LBP (4.28).
Consider the scalar case, and define ∆h = (∆hi→j | {i, j} ∈ E). Then with all quantities
Ĵi\j fixed, the vector ∆h follows a linear system:

∆h(n+1) = L ∆h(n) + b (6.1)

for some matrix L and some vector b. This system converges if its spectral radius
satisfies %(L) < 1. Characterizing %(L) is quite difficult because the matrix L depends
on the converged values of the LBP variances.

One can attempt damping the message updates by using the following update:

∆h(n+1) = (1 − α)∆h(n) + α(L ∆h(n) + b) with 0 < α ≤ 1 (6.2)

This system converges if % ((1 − α)I + αL) < 1. Consider Figure 6.1. We display the
eigenvalues of the undamped matrix L, and of the damped matrix Lα , (1−α)I + αL
as α ranges from 0 to 1. Since L is not symmetric, the eigenvalues are in general
complex-valued. If some eigenvalues of L are outside the unit circle, but there exists
0 < α < 1 such that the eigenvalues of Lα are inside the unit circle then the damped
linear system will converge. From the figure it is clear that if Re(λi) < 1 for all the
eigenvalues, then there exists a sufficiently small α such that all the eigenvalues of Lα

enter the unit circle. This condition is equivalent to Lyapunov stability condition for
a continuous dynamical system ẋ(t) = (L − I)x(t), namely Re(λi(L − I)) < 0 (which
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Figure 6.1. The effect of damping on convergence of the means: if Re(λi) < 1, then means will
converge with sufficient damping.

reduces to Re(λi(L)) < 1) [39]. An equivalent condition is the existence of a positive-
definite matrix Q such that

(I − L)T Q + Q(I − L) Â 0. (6.3)

If one can design Q Â 0 which depends on L (and hence on the converged variances), and
show that (6.3) is satisfied whenever %∞ < 1 in the scalar case, or for FG-normalizable
models in the factor graph case, then the question of mean convergence with damping
would be resolved.

A more challenging question is whether it is possible to modify LBP to obtain
means and variances when %∞ > 1. As we have mentioned in Chapter 3, damping
of the variance updates does not help. However, one may consider methods in the
field of divergent series [60], such as Aitken sequence transformation, to attempt to to
accelerate convergence when LBP has slow convergence, and perhaps to extract the
answers from divergent series.

Yet another question is to develop a walk-sum interpretation for LBP with damping
– for both means and variances. The computation tree interpretation of LBP does not
easily accommodate damping.

Characterizing Vector Walk-summability Recall that in Section 4.2 we introduced several
sufficient conditions for vector walk-summability and generalized walk-summability, and
established that these sufficient conditions also imply vector pairwise-normalizability.
Reconciling all these notions and showing whether these sufficient conditions are also
necessary, or finding counterexamples, will provide a much better understanding of
vector walk-summability. We have listed a number of conjectures in Section 4.2.6. To
add to the difficulty, numerical studies of these conjectures require either extensive
sampling or challenging optimization over sets of block-orthogonal and block-invertible
matrices.
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¥ 6.2.2 Extending the Walk-sum Framework

Walk-sum interpretation of GBP In Chapter 4 we have considered pairwise MRF
LBP with vector variables, and factor graph LBP, as examples of approaches which
can get increasingly more accurate approximations at the cost of more computation.
They are both special cases of the more general class of LBP-like message-passing
schemes that are referred to as generalized belief propagation (GBP). GBP methods
include as special cases the cluster-variational method, the junction graph method, and
the more general region graph method [139]. The idea of the region graph method
is to create a hierarchy of regions (each region containing some subset of factors and
variables), subregions, and their subregions, connect regions to their subregions by
directed links, and associate counting numbers with each region, such that the total
number of appearances of each variable and each factor, including the counting numbers,
is equal to 1. Then GBP is specified as a set of message-passing updates between regions
and their subregions, iterated until convergence. These message-passing updates can
be motivated by minimizing a certain region graph free energy (a generalization of
the Bethe free energy) subject to consistency constraints on the beliefs of overlapping
regions [139].

All the versions of LBP considered in Chapters 3 and 4 are special case of the more
flexible and more powerful GBP formalism. They can be viewed as GBP with two
levels of hierarchy, with large regions roughly corresponding to edges (or hyper-edges)
and small regions to variables. It is of interest to develop a walk-sum interpretation
of the more general versions of GBP with more than two levels of hierarchy, e.g. the
cluster variational method, or the more general region graph method. The walk-sum
perspective may provide insight into convergence and accuracy of these methods, and
suggest solutions to the open question of how to design region graphs for better GBP
performance.

Improving LBP – adding memory, alternate expansions In this thesis we have used
walk-sums to analyze LBP and its variants. However, the walk-sum interpretation may
also suggest ways to improve upon LBP – to either speed up convergence by gathering
more of the walks faster, to find more accurate variances by taking into account some
of the walks that LBP misses, or even to suggest entirely different inference approaches.

For example, we have seen in Chapter 3 that LBP variance estimates do not in-
clude walk-sums over non-backtracking walks. By explicitly adding walk-sums over the
shortest non-backtracking walks we can get more accurate LBP variances. This sug-
gests investigating LBP with more memory, where the nodes are not simply combining
messages from the neighbors and passing them on, but are also able to take advantage
of the recent history of message updates, or perhaps the knowledge of local graph struc-
ture to make more accurate assessments of the marginals, or to improve the speed of
convergence. Vector, factor-graph and generalized LBP can be thought of as versions
of LBP with more memory, but there may also be radically different approaches, for
example ones based on cycle bases [16,123], which expose the structure of the cycles of
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the graph, and perhaps use walks on cycles as the basic building blocks to generate all
walks.

We also note that the walk-sum framework has already been applied to analyze
other inference algorithms for Gaussian graphical models – in particular the embedded
trees (ET) algorithm, and to suggest their improvements [25,26].

Walk-sum framework for log-determinants In the thesis we have described a walk-
sum representation for means, variances and covariances. There also exists a walk-sum
expansion for the the log-partition of a Gaussian graphical model:

log Z = log

∫

exp(−1

2
xT Jx + hT x)dx (6.4)

The log-partition is given by:

log Z = −1

2
(|V | log(2π) − log det(J) + hT J−1h). (6.5)

The main challenge in evaluating the log-partition for large-scale models is the log-
determinant of J ; all the remaining terms are easily computable. Suppose J = I − R.
Then the following expansion can be used to evaluate log det(J):2

log det(J) = −tr

( ∞
∑

l=1

Rl/l

)

(6.6)

We see the familiar terms Rl inside the summation, but they are now weighted by 1
l .

What this means is that we have a walk-sum interpretation with a different definition
of weight:

φd(w) =
1

l(w)

l(w)
∏

k=1

rwk−1,wk

The weight of each walk is scaled by the length of the walk, l(w). With these definition,

log det(J) =
∑

i∈V

∑

w:i→i

φd(w) (6.7)

The addition of scaling by the length of the walk seems like an innocuous enough
change, but unfortunately it significantly complicates the walk-sum algebra. Take walks
u = (u0, . . . , un) and v = (v0, . . . , vm) with un = v0 (walk v begins where walk u ends)
and consider their concatenation, i.e. the walk uv = (u0, . . . , un, v1, . . . , vm). Its length
is l(uv) = l(u) + l(v) = n + m. Now

φd(uv) =
nφd(u) + mφd(v)

n + m
, (6.8)

2Consider log det(I −R) = −tr
`
P∞

l=1 Rl/l
´

. Differentiating both sides with respect to R, we obtain

−(I − R)−1 = −P∞
l=1 lRl−1/l = −P∞

l=0 Rl, which recovers the walk-sum expansion of J = I − R.
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which is a more complicated operation compared to the one for ordinary walk-sums:
there we simply have φ(uv) = φ(u)φ(v). Many of the walk-sum manipulations done
in Chapter 3 become much more difficult, for instance the operation of going from
single-revisit to multiple-revisit walk-sums, which for regular walks is a simple scalar
mapping, is no longer tractable for the length-scaled walk-sums.

Thus, an interesting but nontrivial problem is developing recursive walk-sum cal-
culations for log-determinants in tree structured models, and in computation trees of
loopy graphs, and perhaps relating the latter to the Bethe approximation of the free
energy.

Walk-summability of random graphs Random graphs arise in many important applica-
tions such as sensor networks, where the nodes may be deployed randomly over a field,
or in the analysis of the Internet, or social networks. In these applications, in particular
in sensor networks, one may be interested in applying distributed inference algorithms,
such as LBP. Assuming a model for the random graph, e.g. Erdos-Renyi graphs or unit-
disk graphs [17], and a model for the edge-weights, an interesting question is whether
the resulting graphical model is walk-summable (with high probability, or in the large
system limit), which would guarantee convergence of LBP. Another interesting question
is whether a random or a regular structure of the graph may allow to approximately
correct LBP variances to give closer approximations to the true variances. For example,
in grid models it is often the case that LBP variances are roughly similar to the true
variances scaled by some unknown constant. This suggests a simple way to improve
LBP variances by finding this constant and rescaling them.

¥ 6.2.3 Relation with Path-sums in Discrete Models

Our Gaussian walk-sum framework is built upon the power-series expansion of the
matrix inverse, which is the basis for inference in Gaussian models. It does not directly
apply to graphical models with discrete state spaces, in which inference is not described
by matrix inversion. However, in the literature there have been a variety of graph-based
ideas involving sums over paths, self-avoiding walks, and loops, to analyze inference in
discrete models, which we now briefly mention.

For binary Ising models the paper [49] proposes an expansion of correlations in
terms of so-called polygons, which is then approximated by sums of weights of self-
avoiding walks in the graph. The weight of each walk is the product of certain scalar
edge-weights. Another use of self-avoiding walks appears in [67,79], where exact MAP
estimates for binary models can be found by building a self-avoiding walk tree, and
doing exact estimation in the tree. A recent work [30] proposes improving LBP in
discrete models by so-called loop-series corrections3. It is interesting to compare these
ideas with our walk-sum framework, perhaps find parallels or explore possibilities for
cross-fertilization. Also, these graph-based ideas may inspire new inference algorithms

3These are very different from our simple idea of adding the weights of missing non-backtracking
loops to LBP variances described in Section 6.2.2.
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in discrete models, and may also be used to give new insight into LBP or max-product
algorithms, e.g. [122].

We mention another possible connection to discrete models. The papers [69,99] de-
veloped convergence conditions for discrete LBP, which depend on the spectral radius
of a certain weighted sparse message-to-message adjacency matrix, which has resem-
blance to our scalar walk-summability condition. This resemblance may not be purely
superficial, and may give a deeper insight into discrete LBP [68].

¥ 6.2.4 Extensions for Low-rank Variance Approximation

There are many important extensions to the low-rank variance approximation frame-
work that wait to be developed. For example, we have considered only two classes
of GMRFs: ones with short-range correlations, and ones with smooth long-range cor-
relations. In some remote sensing applications the GMRF models may not fall into
either of these classes. For example, the data collected for seismic inversion involves
convolutions of the unknown seismic field with the so-called seismic wavelet, an oscilla-
tory acoustic test signal. This convolution induces rather long oscillatory correlations,
which do not fall into either of our short-range or smooth long-range cases. Extending
our approach so that it can take advantage of this and other sensing modalities is an
important problem.

Some more broad problems include developing very fast and accurate coarse-resolution
variance approximations: instead of finding an approximation of the individual vari-
ances at every node of the GMRF, one could attempt to find accurate approximations
of a coarse summary of these variances (e.g. of low-pass filtered and subsampled vari-
ances). The hope is that such a rough evaluation of the variances could be obtained
rapidly even for very large fields. Another important question is how to adapt our
low-rank approximation approach to efficiently generate samples from large-scale non-
homogeneous fields with irregular measurements. Standard MCMC approaches such as
Gibbs sampling may be too slow for such scenarios.

Diffusion wavelets We mention a very interesting idea that comes from the diffusion
wavelet literature [34]. Suppose that H is a diffusion operator (mapping from R|V | →
R|V | on a graph). Consider the following expansion of the Green’s function for this
operator:

Pg = (I − H)−1 =
∞
∏

l=0

(I + H2l
) (6.9)

This multiplicative decomposition converges fast, so a very accurate approximation of
Pg can be obtained by keeping only a few terms H2l

. A key observation made in [34]

is that for certain classes of H, as l increases, the terms H2l
have progressively smaller

effective rank (i.e. many eigenvalues fall below a small threshold and can be discarded),
so these terms can be represented compactly. Using this insight the authors proposed
a multi-resolution recursive decomposition of H2l

into the so-called diffusion wavelet
basis, that allows the computation of the matrix-vector product Pgh in linear time.
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We note that the expansion in (6.9) has intimate parallels to our walk-sum expansion
of covariance, P = J−1 = (I − R)−1 =

∑∞
l=0 Rl. Reorganizing the terms we have

P = (I − R)−1 =
∞

∑

l=0

Rl =
∞
∏

l=0

(I + R2l
) (6.10)

Now if we consider R to be the diffusion operator, then the covariance P is the corre-
sponding Green’s function. This suggests an alternative method to evaluate µ = Ph
for discrete graphs through diffusion-wavelet like expansion, instead of solving sparse
linear systems Jµ = h, as we have done in Chapter 5.

On another note, this also brings up the very general question of relating our work on
finite graphs to fields defined on continuous manifolds – as many GMRFs are obtained
by discretization of the corresponding stochastic processes on continuous manifolds. In
that setting covariances are not matrices but rather continuous functions, and the role
of information matrices is taken by differential operators.
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Appendix A

Proofs and details

¥ A.1 Proofs for Chapter 3

Proof of Proposition 3.1.1 Proof of (i) ⇒ (ii). We examine convergence of the matrix
series in (ii) element-wise. First note that (R̄l)ij is an absolute walk-sum over all walks
of length l from i to j:

(R̄l)ij =
∑

w:i
l→j

|φ(w)|

(there are a finite number of these walks so the sum is well-defined). Now, if (i) holds
then using properties of absolute convergence we can order the sum

∑

w:i→j |φ(w)|
however we wish and it still converges. If we order walks by their length and then
group terms for walks of equal lengths (each group has a finite number of terms) we
obtain:

∑

w:i→j

|φ(w)| =
∑

l

∑

w:i
l→j

|φ(w)| =
∑

l

(R̄l)ij (A.1)

Therefore, the series
∑

l(R̄
l)ij converges for all i, j.

Proof of (ii) ⇒ (i). To show convergence of the sum
∑

w:i→j |φ(w)| it is sufficient to

test convergence for any convenient ordering of the walks. As shown in (A.1),
∑

l(R̄
l)ij

corresponds to one particular ordering of the walks which converges by (ii). Therefore,
the walk-sums in (i) converge absolutely.

Proof of (ii) ⇔ (iii). This is a standard result in matrix analysis [127].
Proof of (iii) ⇔ (iv). Note that λ is an eigenvalue of R̄ if and only if 1−λ is an eigen-

value of I−R̄ (R̄x = λx ⇔ (I−R̄)x = (1−λ)x). Therefore, λmin(I−R̄) = 1−λmax(R̄).
According to the Perron-Frobenius theorem, %(R̄) = λmax(R̄) because R̄ is non-negative.
Thus, %(R̄) = 1 − λmin(I − R̄) and we have that %(R̄) < 1 ⇔ λmin(I − R̄) > 0. ¤

Proof of Corollary 3.1.2 We will show that for any non-frustrated model there exists a
diagonal D with Dii = ±1, i.e. a signature matrix, such that DRD = R̄. Hence, R and
R̄ have the same eigenvalues, because DRD = DRD−1 is a similarity transform which
preserves the eigenvalues of a matrix. It follows that I − R Â 0 implies I − R̄ Â 0 and
walk-summability of J by Proposition 3.1.1(iv).

135
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Now we describe how to construct a signature similarity which makes R attractive
for non-frustrated models. We show how to split the vertices into two sets V + and
V − such that negating V − makes the model attractive. Find a spanning tree T of the
graph G. Pick a node i. Assign it to V +. For any other node j, there is a unique
path to i in T . If the product of edge-weights along the path is positive, then assign
j to V +, otherwise to V −. Now, since the model is non-frustrated, all edges {j, k} in
G such that j, k ∈ V + are positive, all edges with j, k ∈ V − are positive, and all edges
with j ∈ V + and k ∈ V − are negative. This can be seen by constructing the cycle that
goes from j to i to k in T and crosses the edge {k, j} to close itself. If j, k ∈ V + then
the paths j to i and i to k have a positive weight, hence in order for the cycle to have
a positive weight, the last step {k, j} must also have a positive weight. The other two
cases are similar. Now let D be diagonal with Dii = 1 for i ∈ V +, and Dii = −1 for

i ∈ V −. Then DRD =
[

RV + −RV +,V −
−RV −,V + RV −

]

≥ 0, i.e. DRD = R̄. ¤

Proof of Proposition 3.1.2 Proof of WS ⇒ (i). WS is equivalent to %(R̄) < 1 by
Proposition 3.1.1. But %(R) ≤ %(R̄) by (3.1). Hence, %(R̄) < 1 ⇒ %(R) < 1.

Proof of (i) ⇒ (ii). Given J = I − R, it holds that λmin(J) = 1 − λmax(R). Also,
λmax(R) ≤ %(R). Hence, λmin(J) = 1 − λmax(R) ≥ 1 − %(R) > 0 for %(R) < 1.

Proof of (i) ⇒ (iii). This is a standard result in matrix analysis. ¤

Proof of Proposition 3.1.5 Assume that G is connected (otherwise we apply the proof
to each connected component, and the spectral radii are the maxima over the respec-
tive connected components). We prove that %(R̄) = %(R̂). By the Perron-Frobenius
theorem, there exists a positive vector x such that R̄x = %(R̄)x. Let x̂ = (x; x). Then
R̂x̂ = %(R̄)x̂ because

(R̂x̂)± = (R+ + R−)x = R̄x = %(R̄)x

Hence, %(R̄) is an eigenvalue of R̂ with positive eigenvector x̂. First suppose that Ĝ
is connected. Then, by the Perron-Frobenius theorem, %(R̄) = %(R̂) because R̂ has a
unique positive eigenvector which has eigenvalue equal to %(R̂). Now, Ĵ = I − R̂ Â 0 ⇔
Ĵ is WS ⇔ %(R̂) < 1 ⇔ %(R̄) < 1 ⇔ J = I −R is WS. If Ĝ is disconnected then R̂ is a
block-diagonal matrix with two copies of R̄ (after relabeling the nodes), so %(R̂) = %(R̄).
¤

Proof of Proposition 3.1.6 We partition walk-sums into sums over “even” and “odd”
walks according to the number of negative edges crossed by the walk. Thus a walk w
is even if φ(w) > 0 and is odd if φ(w) < 0. The graph Ĝ is defined so that every walk
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from i+ to j+ is even and every walk from i+ to j− is odd. Thus,

Pij =
∑

even w:i→j

φ(w) +
∑

odd w:i→j

φ(w)

=
∑

w:i+→j+

φ̂(w) −
∑

w:i+→j−

φ̂(w)

= P̂i+,j+ − P̂i+,j−

The second part of the the proposition follows by similar logic. Now we classify a walk
as even if hw0φ(w) > 0 and as odd if hw0φ(w) < 0. Note also that setting ĥ = (h+; h−)
has the effect that all walks with hw0 > 0 begin in V+ and all walks with hw0 < 0 begin
in V−. Consequently, every even walk ends in V+ and every odd walk ends in V−. Thus,

µi =
∑

even w:∗→i

h∗φ(w) +
∑

odd w:∗→i

h∗φ(w)

=
∑

w:∗→i+

ĥ∗φ̂(w) −
∑

w:∗→i−

ĥ∗φ̂(w)

= µ̂i+ − µ̂i− ¤

Proof of Proposition 3.1.7 Take J1 and J2 pairwise-normalizable. Take any α, β ≥ 0
such that at least one of them is positive. Then αJ1 +βJ2 is also pairwise-normalizable
simply by taking the same weighted combinations of each of the Je matrices for J1 and
J2. Setting β = 0 shows that JPN is a cone, and setting β = 1 − α shows convexity.
The cone is pointed since it is a subset of the cone of semidefinite matrices, which is
pointed [7]. ¤

Proof of Proposition 3.1.8 Proof of PN ⇒WS. It is evident that any J matrix which is
pairwise-normalizable is positive definite. Furthermore, reversing the sign of the partial
correlation coefficient on edge e simply negates the off-diagonal element of Je which
does not change the value of detJe so that we still have Je º 0. Thus, we can make
all the negative coefficients positive and the resulting model I − R̄ is still pairwise-
normalizable and hence positive-definite. Then, by Proposition 3.1.1(iv), J = I − R is
walk-summable.

Proof of WS ⇒PN. Given a walk-summable model J = I − R we construct a
pairwise-normalized representation of the information matrix. We may assume the
graph is connected (otherwise, we may apply the following construction for each con-
nected component of the graph). Hence, by the Perron-Frobenius theorem there exists
a positive eigenvector x > 0 of R̄ such that R̄x = λx and λ = %(R̄) > 0. Given (x, λ)
we construct a representation J =

∑

e[Je] where for e = {i, j} we set:

Je =

( |rij |xj

λxi
−rij

−rij
|rij |xi

λxj

)
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This is well-defined (there is no division by zero) since x and λ are positive. First,
we verify that J =

∑

e∈E [Je]. It is evident that the off-diagonal elements of the edge
matrices sum to −R. We check that the diagonal elements sum to one:

∑

e

[Je]ii =
1

λxi

∑

j

|rij |xj =
(R̄x)i

λxi
=

(λx)i

λxi
= 1

Next, we verify that each Je is positive-definite. This matrix has positive diagonal and
determinant:

det Je =

( |rij |xj

λxi

) ( |rij |xi

λxj

)

− (−rij)
2 = r2

ij

(

1

λ2
− 1

)

> 0

The inequality follows from walk-summability because 0 < λ < 1 and hence
(

1
λ2 − 1

)

>
0. Thus, Je Â 0. ¤

Proof of Proposition 3.1.9 Let ai = Jii −
∑

j 6=i |Jij |. Note that ai > 0 follows from
diagonal-dominance. Let deg(i) denote the degree of node i in G. Then, J =

∑

e∈E [Je]
where for edge e = {i, j} we set

Je =

(

|Jij | + ai
deg(i) Jij

Jij |Jij | + aj

deg(j)

)

with all other elements of [Je] set to zero. Note that:

∑

e

[Je]ii =
∑

j∈N (i)

(

|Jij | +
ai

deg(i)

)

= ai +
∑

j∈N (i)

|Jij | = Jii

Also, Je has positive diagonal elements and has determinant det(Je) > 0. Hence, Je Â 0.
Thus, J is pairwise-normalizable. ¤

Proof of Proposition 3.2.2 To calculate the walk-sum for multiple-revisit self-return
walks in Ti\j , we can use the single-revisit counterpart:

γi\j = φ(i → i | Ti\j) =
1

1 − φ

(

i
\i→ i | Ti\j

) (A.2)

Now, we decompose the single-revisit walks in the subtree Ti\j in terms of the
possible first step of the walk (i, k), where k ∈ N (i)\j. Hence,

φ(i
\i→ i | Ti\j) =

∑

k∈N (i)\j
φ(i

\i→ i | Tk→i) (A.3)
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Using (3.4), (A.2), and (A.3), we are able to represent the walk-sum φ(j
\j→ j | Ti→j) in

Ti→j in terms of the walk-sums φ(i
\i→ i | Tk→i) on smaller subtrees Tk→i. This is the

basis of the recursive calculation:

αi→j = r2
ij

1

1 − ∑

k∈N (i)\j αk→i

These equations look strikingly similar to the belief propagation updates. Combining
(2.29) and (2.30) from Section 2.3.1 we have:

−∆Ji→j = J2
ij

1

Jii +
∑

k∈N (i)\j ∆Jk→i

It is evident that the recursive walk-sum equations can be mapped exactly to belief
propagation updates. In normalized models Jii = 1. We have the message update
αi→j = −∆Ji→j , and the variance estimate in the subtree Ti\j is γi\j = Ĵ−1

i\j . ¤

Proof of Proposition 3.2.3 A multiple-revisit walk in Ti\j can be written in terms of
single-visit walks:

φh(∗ → i | Ti\j) =

(

hi + φh(∗ \i→ i | Ti\j)
)

φ(i → i | Ti\j)

We already have γi\j = φ(i → i | Ti\j) from (A.2). The remaining term φh(∗ \i→ i | Ti\j)
can be decomposed according to the subtrees in which the walk lives:

φh(∗ \i→ i | Ti\j) =
∑

k∈N (i)\j
φh(∗ \i→ i | Tk→i)

Thus we have the recursion:

βi→j = rijγi\j(hi +
∑

k∈N (i)\j
βk→i)

To compare this to the Gaussian BP updates, let us combine (2.29) and (2.30) in Section
2.3.1:

∆hi→j = −Jij Ĵ
−1
i\j



hi +
∑

k∈N (i)\j
∆hk→i





Thus BP updates for the means can also be mapped exactly into recursive walk-sum
updates via βi→j = ∆hi→j . ¤
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Proof of Lemma 3.2.1 First, we note that for every walk w which ends at the root

node of T
(n)
i there is a corresponding walk in G which ends at i. The reason is that the

neighbors of a given node j in T
(n)
i correspond to a subset of the neighbors of j in G.

Hence, for each step (wk, wk+1) of the walk in T
(n)
i there is a corresponding step in G.

Next, we show that every walk w = (w0, . . . , wl) in G is contained in T
(n)
wl for some

n. First consider the parallel message schedule, for which the computation tree T
(n)
wl

grows uniformly. Then for any walk in G that ends at wl and has length n there is a

walk in T
(n)
wl that ends at the root.

The intuition for other message schedules is that every step (i, j) of the walk will
appear eventually in any proper message schedule M. A formal proof is somewhat
technical. First we unwrap the walk w into a tree Tw rooted at wl in the following way:
start at wl, the end of the walk, and traverse the walk in reverse. First add the edge
{wl, wl−1} to Tw. Now, suppose we are at node wk in Tw and the next step in w is
{wk, wk−1}. If wk−1 is already a neighbor of wk in Tw then set the current node in Tw

to wk−1. Otherwise create a new node wk−1 and add the edge to Tw. It is clear that
loops are never made in this procedure, so Tw is a tree.

We now show for any proper message schedule M that Tw is part of the compu-

tation tree T
(n)
wl for some n. Pick a leaf-edge {i1, j1} of Tw. Since {M(n)} is proper,

there exist n1 such that (i1, j1) ∈ M(n1). Now (i1, j1) ∈ T
(n1)
i1→j1

, and the edge appears

at the root of T
(n1)
i1→j1

. Also, T
(n1)
i1→j1

⊂ T
(m)
i1→j1

for m > n1, so this holds for all subsequent
steps as well. Now remove {i1, j1} from Tw and pick another leaf edge {i2, j2}. Again,
since {M(n)} is proper, there exist n2 > n1 such that (i2, j2) ∈ M(n2). Remove {i2, j2}
from Tw, and continue similarly. At each such point nk of eliminating some new edge
{ik, jk} of Tw, the whole eliminated subtree of Tw extending from {ik, jk} has to belong

to T
(nk)
ik→jk

. Continue until just the root of Tw remains at step n. Now the computation

tree T
(n)
wl (which is created by splicing together T

(n)
i→j for all edges (i, j) coming into the

root of Tw) contains Tw, and hence it contains the walk w. ¤

Proof of Lemma 3.2.3 This result comes as an immediate corollary of Proposition

A.1.1, which states that %(R
(n)
i ) ≤ %(R̄) (here R

(n)
i is the partial correlation matrix for

T
(n)
i ). For WS models, %(R̄) < 1 and the result follows. ¤

Proof of Lemma 3.3.1 The fact that the sequence {%(R
(n)
i )} is bounded by %(R̄) is a

nontrivial fact, proven in Appendix A.1.1 using a k-fold graph construction. To prove

monotonicity, note first that for trees %(R
(n)
i ) = %(R̄

(n)
i ). Also, note that all of the

variables in the computation tree T
(n)
i are also present in Tn+1

i . We zero-pad R̄
(n)
i to

make it the same size as R̄
(n+1)
i (this does not change the spectral radius). Then it

holds that R̄
(n)
i ≤ R̄

(n+1)
i element-wise. Using (3.1), it follows that %(R̄

(n)
i ) ≤ %(R̄

(n+1)
i ),

establishing monotonicity. ¤



Sec. A.1. Proofs for Chapter 3 141

Proof of Lemma 3.3.2 Let T
(n)
i (M) denote the n-th computation tree under a proper

message schedule M rooted at node i. We use the following simple extension of Lemma

3.2.1: Let T
(n)
i (M1) be the nth computation tree rooted at i under message schedule

M1. Take any node in T
(n)
i (M1) which is a replica of node j in G. Then there exists m

such that T
(n)
i (M1) ⊂ T

(m)
j (M2), where M2 is another message schedule. The proof

parallels that of Lemma 3.2.1: the tree T
(n)
i (M1) has a finite number of edges, and we

use induction adding one edge at a time.

Consider message schedule M1. By Lemma 3.3.1, %i , limn→∞ %(R
(n)
i (M1)) ex-

ists. For any ε pick an L such that for n ≥ L it holds that |%(R
(n)
i (M1)) − %i| ≤ ε

2 .

Pick a replica of node j inside T
(L)
i (M1). Then using the property from the pre-

vious paragraph, there exists M such that T
(L)
i (M1) ⊂ T

(M)
j (M2). Similarly there

exists N such that T
(M)
j (M2) ⊂ T

(N)
i (M1). It follows that R̄

(L)
i (M1) ≤ R̄

(M)
j (M2) ≤

R̄
(N)
i (M1), where we zero-pad the first two matrices to have the same size as the last

one. Then, %(R̄
(L)
i (M1)) ≤ %(R̄

(M)
j (M2)) ≤ %(R̄

(N)
i (M1)). Then it holds that %i − ε

2 ≤
%(R̄

(M)
j (M2)) ≤ %i +

ε
2 . Hence, |%(R̄

(M)
j (M2))−%i| ≤ ε, and limn→∞ %(R̄

(n)
j (M2)) = %i.

¤

¥ A.1.1 K-fold Graphs and Proof of Boundedness of %(R
(n)
i ).

Consider an arbitrary graph G = (V, E). Suppose that we have a pairwise MRF defined
on G with self potentials ψi(xi), for vi ∈ V and pairwise potentials ψij(xi, xj) for
(vi, vj) ∈ E . We construct a family of K-fold graphs based on G as follows:

1. Create K disconnected copies Gk, k ∈ {1, .., K} of G, with nodes v
(k)
i , and edges

(v
(k)
i , v

(k)
j ). The nodes and the edges of Gk are labeled in the same way as the

ones of G. The potentials ψi and ψij are copied to the corresponding nodes and
edges in all Gk.

2. Pick some pair of graphs Gk, Gl, and choose an edge (vi, vj) in G. We interconnect

the corresponding edges in Gk and Gl: edges (v
(k)
i , v

(k)
j ) and (v

(l)
i , v

(l)
j ) become

(v
(k)
i , v

(l)
j ) and (v

(l)
i , v

(k)
j ). The pairwise potentials are adjusted accordingly.

3. Repeat step 2 an arbitrary number of times for a different pair of graphs Gk, or
a different edge in G.

An illustration of the procedure appears in Figure A.1. The original graph G is a
4-cycle with a chord. We create a 2-fold graph based on G by flipping the edges (1, 2)
in G1 and (1′, 2′) in G2.
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G G1 G2

1′ 2′

3′4′

1 2

4 3

1 2

34

(a) (b)

Figure A.1. Illustration of (a) graph G and (b) a 2-fold graph of G.

Now we apply the K-fold graph construction to Gaussian MRF models. Suppose
that we have a model with information parameters J and h on G. Suppose that J
is normalized to have unit-diagonal. Let GK be a K-fold graph based on G with the

information matrix JK (which is also unit-diagonal by construction). Also, let T
(n)
i be

the nth computation tree for the original graph, and J
(n)
i the corresponding information

matrix (also unit-diagonal). Let R = I − J , RK = IK − JK , and R
(n)
i = I(n) − J

(n)
i

(here I, IK , and I(n) are identity matrices of appropriate dimensions).

Lemma A.1.1 (Spectral radii of R and RK). For any K-fold graph GK based on
G: %(R̄K) = %(R̄).

Proof. Suppose that G is connected (otherwise apply the proof to each connected
component of G, and the spectral radius for G will be the maximum of the spectral
radii for the connected components).

Then, by the Perron-Frobenius theorem there exists a vector x > 0 such that
R̄x = %(R̄)x. Create a K-fold vector xK by copying entry xi into each of the K corre-
sponding entries of xK . Then xK is positive, and it also holds that R̄KxK = %(R̄)xK

(since the local neighborhoods in G and GK are the same). Now R̄K is a non-negative
matrix, and xK is a positive eigenvector, hence it achieves the spectral radius of R̄K by
the Perron-Frobenius theorem. Thus, %(R̄) = %(R̄K). ¤

The construction of a K-fold graph based on G has parallels with the computation
tree on G. The K-fold graph is locally equivalent to G and the computation tree, except
for its leaf-nodes, is also locally equivalent to G. We show next that the computation

tree T
(n)
i is contained in some GK for K large enough.

Lemma A.1.2 (K-fold graphs and computation trees). Consider a computation

tree T
(n)
i corresponding to graph G. There exists a K-fold graph GK , which contains

T
(n)
i as a subgraph, for K large enough.

Proof. We provide a simple construction of a K-fold graph, making no attempt

to minimize K. Let T
(n)
i = (Vn, En). Each node v′ ∈ Vn corresponds to some node
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v ∈ V in G. We create a K-fold graph GK by making a copy Gv′ of G for every node

v′ ∈ T
(n)
i . Hence K = |Vn|. For each edge (u′, v′) ∈ En in the computation tree, we

make an edge flip between nodes in graphs Gu′ and Gv′ that correspond to u and v

in G. This operation is well-defined because edges in T
(n)
i that map to the same edge

in G do not meet. Thus, the procedure creates GK which contains T
(n)
i as a subgraph. ¤

Finally, we use the preceding lemmas to prove a bound on the spectral radii of the

matrices R
(n)
i for the computation tree T

(n)
i .

Proposition A.1.1 (Bound on %(R
(n)
i )). For computation tree T

(n)
i : %(R

(n)
i ) ≤ %(R̄).

Proof. Consider a computation tree T
(n)
i . Recall that %(R

(n)
i ) = %(R̄

(n)
i ), since T

(n)
i

is a tree. Use Lemma A.1.2 to construct a K-fold graph GK which has T
(n)
i as a sub-

graph. Zero-padding R̄
(n)
i to have the same size as R̄K , it holds that R̄

(n)
i ≤ R̄K . Since

R̄
(n)
i ≤ R̄K , using (3.1) and Lemma A.1.1 we have: %(R

(n)
i ) ≤ %(R̄K) = %(R̄). ¤

¥ A.2 Proofs and Details for Chapter 4

¥ A.2.1 Scalar Walk-sums with Non-zero-diagonal

In Chapter 3 we have worked with the normalized matrix J , such that in the decompo-
sition J = I − R, the matrix R is zero-diagonal. We now show that in the scalar case
using other decompositions does not improve performance of LBP, and does not give
better sufficient conditions for its convergence. This will also introduce walk-sums on
graphs with self-loops which we use in Chapter 4.

Consider an arbitrary decomposition J = D − K, where we only require that D is
diagonal with strictly positive elements (and, of course, J Â 0). In particular, J may
have unnormalized diagonal, i.e. diagonal elements not equal to 1, and K may have
non-zero elements on its diagonal. One can use a more general version of Neumann
power series:

J−1 = (D − K)−1 = D−T/2

(

∑

k

(D−1/2KD−T/2)k

)

D−1/2. (A.4)

If we normalize J by D−1/2, then we get J̃ = D−1/2JD−T/2 = I − D−1/2KD−T/2 ,

I − R̃. Note that the expansion in (A.4) depends precisely on powers of R̃, hence it is
just a rescaling of the power series for J̃ . Thus, without loss of generality, we limit the
discussion to the decomposition J = I − R. This applies to both the scalar and the
vector case (with D block-diagonal).

We have another degree of freedom – whether or not to allow R to have non-
zero diagonal entries. Starting from J = I − R with zero-diagonal R, we obtain such
alternative decompositions by J̃ = SJS, and R̃ = I − J̃ = I − SJS, where S is some
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positive diagonal scaling. Note that in this case J is not unit-diagonal, and R̃ is not
the matrix of partial correlation coefficients.

Walk-summability with self-loops and LBP Suppose J = I − R, and R has non-zero
diagonal entries. As we have done in Chapter 3, we assign weights rij to edges in the
graph. To account for the non-zero diagonal entries of R, we introduce self-loops with
weight rii at each node i, and allow walks to make a step (i, i). The necessary and
sufficient condition for walk-summability of the non-zero diagonal decomposition is still
%(R̄) < 1.

It is an easy exercise to extend the recursive walk-sum calculations from Section
3.2.1 to the non-zero diagonal case. We restrict the single-revisit self-return walks at
node i not to take the self-loop step i-i. Multiple revisit self-return walks are allowed to
follow the self-loop. With this definition, the only change in the equations for recursive
variance and mean calculation (A.2) is the introduction of rii in the formula which
computes multiple-revisit self-return walk-sums based on single-revisit ones:

φ(i → i | Ti\j) =
1

1 − rii − φ

(

i
\i→ i | Ti\j

) (A.5)

All other equations in the proofs of Propositions 3.2.2, and 3.2.3 in Appendix A.1 are
the same using the new definition of φ

(

i → i | Ti\j
)

.
We use the following potential specification for LBP: Jv = 1 − rv, and Je =

[
0 −rij

−rij 0 ]. With these definitions, all the results for zero-diagonal scalar case immedi-
ately extend to the non-zero diagonal case: if the model is walk-summable then LBP
converges, and if the computation tree is valid, then variances converge. We next con-
sider whether allowing R to have non-zero diagonal may improve the sufficient condition
for LBP convergence.

Optimality of whitening for scalar-WS Suppose that the zero-diagonal model is J =
I − R, and we rescale the variables: x̃ = D−1x, with D diagonal. Then J̃ = DJD,
and R̃ = I − D(I − R)D has a non-zero diagonal. The condition for walk-summability

becomes %(R̃) = %(I − DJD) < 1. We now show that if the zero-diagonal model is
walk-summable (WS), then allowing diagonal transformations can only increase the
spectral radius; if the zero-diagonal model is not WS, then the model obtained by
any diagonal transformations is also non-WS. Thus arbitrary diagonal scaling does not
improve the sufficient condition for walk-summability in the scalar case1:

Lemma A.2.1 (Optimal diagonal scaling). Let R have zero diagonal. Then for any
diagonal matrix D: if %(R̄) < 1, then %(R̄) = %(I − J) ≤ %(I − DJD). If %(R̄) ≥ 1,
then %(I − DJD) ≥ 1.

Proof. Consider the objective function that we would like to minimize:

min
D

%(I − DJD), where D is diagonal. (A.6)

1Furthermore, in Lemma 4.2.6 in Chapter 4 we show that LBP is invariant to such rescalings.
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Since R has zeros on the diagonal, we have:

%(I − DJD) = %(I − D(I − R)D) = %(I − D2 + DRD) = %(I − D2 + DRD) (A.7)

The last equality holds because the matrix I−D2 is diagonal, and the matrix DRD
is zero-diagonal, therefore their non-zero entries do not overlap. First, we restrict the
diagonal matrices D = diag([d1, ..., dn]) to have di ≥ 0. This does not change the value
of the optimization problem in (A.6): neither D2 nor DRD are affected by the change
of sign of any di.

In addition, we can restrict di ≤ 1, without affecting the optimum value of the
optimization problem in (A.6): suppose some di > 1, i.e. di = 1 + ei, with ei > 0. Let

d̃i = 1− ei, and define D̃ = diag(d̃). Then I − D2 = I − D̃2, because |1−di| = |− ei| =

ei, and |1 − d̃i| = |ei| = ei. However, DRD ≥ D̃RD̃ (elementwise), and thus

I − D2 + DRD ≥ I − D̃2 + D̃RD̃ (A.8)

and

%(I − D2 + DRD) ≥ %(I − D̃2 + D̃RD̃) (A.9)

Hence whenever some di = 1 + ei > 1, a better solution can be found by taking
di = 1−ei < 1. Therefore we can assume di ∈ [0, 1]. This means that I − D2 = I −D2.
Next, we recall that for positive matrices the spectral radius % is achieved at λmax, the
maximum eigenvalue:

%(I − D2 + DR̄D) = λmax(I − D2 + DRD) = 1 + λmax(D(R̄ − I)D) (A.10)

Our problem reduces to minimize λmax(D(R̄−I)D), where di ∈ [0, 1]. Now consider
two cases:

(1) If %(R̄) < 1, then R̄ − I ≺ 0, and the optimal D is obtained by maximizing all
di, i,e, D = I.

(2) If %(R̄) ≥ 1, then λmax(R̄ − I) ≥ 0, i.e. ∃ x such that xT (R̄ − I)x ≥ 0. Then,
since di ≥ 0, we have xT D(R̄ − I)Dx ≥ 0 and λmax(D(R̄ − I)D) ≥ 0. Thus, if J is
non-walk-summable, then any DJD is also non-walk-summable. ¤

¥ A.2.2 Proofs for Section 4.2.3

Proof of Lemma 4.2.5 Suppose we have some finite computation tree T with the
information matrix J . We use 0 to denote the root-node. The self-return walk-sum at
the root node in the tree is equal to the marginal covariance block at the root. Using
hat notation ’̂ ’ to denote marginal quantities, we have that P̂0 = (Ĵ0)

−1.
Now, suppose we add a new node j to the tree and connect it with node i in the

tree by a new edge (i, j) with weight Rij . Then the information matrix of this updated
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tree T u is Ju =
[

J −Rij

−Rji I

]

. The root-node marginal of the new tree P̂ u
0 = (Ĵu

0 )−1

is the self-return walk-sum at the root in the new tree. By integrating out the new
variable we do not change the marginal at the root node: Ĵu

T u\j = J − RijRji (here

T u\j = T ). We have that J − RijRji ¹ J , hence P̂ u
T º P . Hence the same inequality

holds for the principal submatrices corresponding to the root-node: P̂ u
0 º P̂0. Thus

φ(0 → 0 | T u) º φ(0 → 0 | T ). This means that the walk-sum over the additional walks
is positive-semi-definite. ¤

Proof of Proposition 4.2.1 Our proof of Proposition 3.2.4 based on the sum-partition
theorem can be extended to the vector case as well. Here we provide an alternative
proof which gives more insight into vector-LBP.

Covariances. We first show that the LBP covariance estimates (i.e. covariances over
the diagonal blocks) are monotonically increasing and bounded above in the positive-
definite sense, and hence converge, as in the scalar case. LBP covariance estimates after
k-steps correspond to the root-node covariances in the k-step computation tree. We have
shown in Lemma 4.2.5 that after adding a new node the covariances at the root node
increase. When going from k-step computation tree to a k + 1-step computation tree,
we are adding one or more nodes (depending on the message schedule), so covariances
increase.

Since the model is vector walk-summable, the absolute walk-sum φ̄(i → i) converges
and is finite. Hence, the absolute walk-sum is an upper bound on the the walk-sum
over back-tracking (BT) walks: φ̄(i → i,BT) ≤ φ̄(i → i), where the inequality is el-
ementwise. Note a slight discrepancy – monotonicity is in terms of a positive-definite
ordering, while boundedness is in terms of the elementwise ordering. However, if 0 ≤ A,
and A ≤ B, then A ¹ B by the Perron-Frobenius theorem. Thus we have monotonic-
ity and boundedness in the same positive-definite ordering which immediately implies
convergence of self-return walk-sums for the covariances.

Means. Now we establish convergence of the means. In walk-summable models the

series
∑∞

l=0 φ̄h(∗ l→ i) converges absolutely, as it contains linear combinations of the

terms of the absolutely convergent series
∑∞

l=0 φ̄(j
l→ i):

∞
∑

l=0

φ̄h(∗ l→ i) =
∑

j∈V

∞
∑

l=0

φ̄(j
l→ i)|hj | (A.11)

Therefore, the tail of the series,
∑

l>n φ̄h(i
l→ i), containing walk-sums for walks of

length exceeding n, approaches zero as n increases: limn→∞ φ̄h(∗ l>n→ i) = 0.
The walks which are missing after n steps of LBP are a subset of walks with length

exceeding n:2

W(∗ → i) \ W(∗ → i | T
[n]
i ) ⊂ W(∗ l>n→ i) (A.12)

2After n steps LBP captures all walks of length n as well as many longer walks (which live in T
(n)
i ).
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This implies that the absolute walk-sum over missing walks is bounded above by

φ̄h(∗ l>n→ i):

∣

∣

∣
φh(∗ → i) − φh(∗ → i | T

[n]
i )

∣

∣

∣
≤ φ̄h(∗ → i) − φ̄h(∗ → i | T

[n]
i ) ≤ φ̄h(∗ l>n→ i) (A.13)

As n → ∞, the error bound φ̄h(∗ l>n→ i) approaches zero proving that belief propagation
mean estimates converge and are correct in the limit.3 ¤

Proof of Lemma 4.2.8 Let Q̂ = arg minQ %(QRQT ), and RQ̂ = Q̂RQ̂T . If minQ %(QRQT ) <
1 then RQ̂ is scalar walk-summable and by Proposition 3.1.8 it is also scalar-PN with

%(R̄Q̂) = 1 − εmax(I − RQ̂) < 1.
A model which is scalar-PN is also vector-PN, and the strength of PN can only

increase by blocking: εvec
max(I − RQ̂) ≥ εmax(I − RQ̂). To see this, let ẽ ∈ Ẽ be the

vector edges, and e ∈ E the scalar edges. Hence Ẽ is a partition of E , i.e. each
scalar edge belongs to one and only one vector edge, e ∈ ẽ. Now J = εI +

∑

ẽ[Jẽ] =
εI +

∑

ẽ

(
∑

e∈ẽ[Je]
)

. And Jẽ =
∑

e∈ẽ[Je]ẽ º 0.
Finally, the strength of vector-PN is invariant to block-orthogonal transformations:

εvec
max(I −RQ̂) = εvec

max(I − Q̂RQ̂T ) = εvec
max(I −R) > 0. To see this, take J = εI +

∑

e[Je],

then QJQT = εQQT +
∑

e Q[Je]Q
T = εI +

∑

e[QeJQT
e ], with QeJQT

e º 0. We conclude
that the model I − R is vector-PN.

For the case of arbitrary block-invertible transformations a similar proof applies. If
minS %(I − SJST ) < 1 then the model SJST is scalar walk-summable and hence scalar-
PN with εmax(SJST ) > 0. This implies vector-PN: εvec

max(SJST ) > 0. The strength of
vector-PN does depend on the transformation for non-orthogonal case, but if the model
is vector-PN then it remains vector-PN after arbitrary block-invertible transformations.
To show this we consider an equivalent definition of vector-PN: a model is vector-PN
if there exists a decomposition J =

∑

[Je] with Je Â 0. Now apply the transformation:
SJST =

∑

[SeJeS
T
e ], with SeJeS

T
e Â 0. Thus if there exists a PN decomposition of J

then there also exists one for SJST . This implies that εvec
max(J) > 0. ¤

Proof of Lemma 4.2.10 We use canonical correlation analysis. Since we are dealing
with J instead of P we refer to it as canonical partial correlation analysis. Suppose

J =
[

J11 J12
J21 J22

]

. We can rotate each of the vector-variables to bring the model into

the form which displays the canonical partial correlations. Compute the singular value
decompositions of the diagonal blocks: J11 = S1D1S

T
1 and J22 = S2D2S

T
2 . Whiten the

diagonal blocks by D
−1/2
i ST

i JiiSiD
−1/2
i = I. Now compute the SVD of the resulting

whitened off-diagonal block: D
−1/2
1 ST

1 J12S2D
−1/2
2 = Q1DQT

2 . Now −D is the (in

3The proof applies to the serial version of LBP with computation trees of non-uniform depth: the
walks which LBP misses after n steps are all longer than the minimum depth, which grows to ∞ as
n → ∞.
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A

i

Tj\A
B

TA→i

TA\ij

B

j

(a) (b)

Figure A.2. (a) Illustration of the subtree notation, TA→i and TA\i. (b) B is a leaf-factor node.

general rectangular) matrix with canonical partial correlations on the diagonal, and

zeros elsewhere. Let T = blockdiag(QiD
−1/2
i ST

i ) then

TJT T =
[

I D
DT I

]

(A.14)

Now R̄ = I − TJT T =
[

0 D̄
D̄T 0

]

. The eigenvalues of R̄ are the diagonal elements of

D̄. Thus, since canonical partial correlations for a valid model are strictly below 1, we
have %(R̄) < 1. ¤

¥ A.2.3 Walk-sum Interpretation of FG-LBP in Trees

For simplicity we assume that J is normalized to have unit-diagonal, with R and all RF

being zero-diagonal. Also, we use the factorization which separately lists single-node
and higher-order factors: p(x) ∝ ∏

i∈V ψi(xi)
∏

F∈F ψF (xF ), with |F | > 1. We use
the following potential specification for LBP: J =

∑

i[Ji] +
∑

F [JF ], with JF = −RF ,
and Ji = 1. The vector h can in principle be partitioned arbitrarily among the single
and higher-order factors, but for convenience, in the following derivations we only use
single-node factors for h, and set hF = 0.

Proof of Lemma 4.3.1 First we consider the variances in a tree-structured factor
graph model. We show the equivalence of messages in FG-LBP to walk-sums in certain
subtrees. Refer to Figure A.2 (a) for the definition of various subtrees. We do not show
the self-factors in the figure. We say that a variable node is a leaf if it is connected
to at most one higher-order factor. We say that a higher-order factor is a leaf, if it is
connected to at most one non-leaf variable node, see Figure A.2 (b). Note that we do
not use the term leaf to refer to singleton factors.

Suppose B is a leaf-factor, which is connected to the non-leaf variable j. Using our
definition of potentials, and the FG-LBP equations (4.28), the message ∆JB→j is equal
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to

∆JB→j = [JB]j − [RB]j,B\j Ĵ−1
B\j [RB]B\j,j = −[RB]j,B\j Ĵ−1

B\j [RB]B\j,j (A.15)

Here ĴB\j is equal to I − [RB]B\j since each of the leaf nodes contributes 1 to the

diagonal of ĴB\j . We have [JB]j = 0 since J is normalized and RB has zero-diagonal.4

The variance estimate at node j in the subtree TB→j is equal to

Pj(TB→j) = (Jj − [RB]j,B\j Ĵ−1
B\j [RB]B\j,j)

−1 =
1

1 − [RB]j,B\j Ĵ−1
B\j [RB]B\j,j

(A.16)

The variance is equal to the multiple-revisit self-return walk-sum in the subtree: Pj(TB→j) =

φ(j → j | TB→j). This means that the single-revisit walk-sum is φ(j
\j→ j | TB→j) =

[RB]j,B\j Ĵ−1
B\j [RB]B\j,j = −∆JB→j .

Now consider the factor graph in Figure A.2 (a), and suppose that B is some internal
(i.e. non-leaf) factor. We use induction: we assume that all the incoming messages
∆JB→j for B ∈ N (j)\A to node j correspond to single-revisit walk-sums in the subtree
TB→j (we have already shown this for leaf-factors). We then show that the outgoing
messages ∆Jj→A and ∆JA→i have a walk-sum interpretation as well, thus inductively
proving the walk-sum interpretation for FG-LBP.

Combining the single-revisit walk-sums over all subtrees TB→j for B ∈ N (j)\A, we
get the single revisit walk-sum at node j in Tj\A:

φ(j
\j→ j | Tj\A) =

∑

B∈N (j)\A
φ(j

\j→ j | TB→j) (A.17)

We also have ∆Jj→A = 1 +
∑

B∈N (j)\A ∆JB→j , where ∆JB→j = −φ(j
\j→ j | TB→j).

Hence, ∆Jj→A = 1 − φ(j
\j→ j | Tj\A).

Next we compute the multiple-revisit self-return walk-sums at j ∈ A\i in the subtree
TA\i. Each eliminated subtree Tj\A introduces a self-loop at node j in [RA]j – every
time the self-loop is traversed, it contributes the weight of all single-revisit walks in the
eliminated subtree:

φ(j → j | TA\i) =



(I − [RA]A\i −
∑

j∈N (A)\i
φ(j

\j→ j | Tj\A))−1





j,j

(A.18)

The matrix P̂A\i =

(

I − [RA]A\i −
∑

j∈N (A)\i φ(j
\j→ j | Tj\A)

)−1

contains these walk-

sums for all pairs j1, j2 ∈ A\i. Finally, the single-revisit walk at node i in TA→i is

4Note that Jj 6= [JB ]j . The first term corresponds to a self-factor, whereas the later is a diagonal
element of a higher-order factor.
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obtained by adding the first and last step to multiple-revisit walks in TA\i, so the

walk-sum is φ(i
\i→ i | TA→i) = [RA]i,A\i P̂A\i [RA]A\i,i. Now we compare this to the

expression for ∆JA→i in (4.28):

∆JA→i = [JA]i − [JA]i,A\i Ĵ−1
A\i [JA]A\i,i (A.19)

The term [JA]i = 0 due to our normalization, [JA]i,A\i = −[RA]i,A\i, and ĴA\i =
([JA]A\i+

∑

j∈N (A)\i[∆Jj→A]A\i)−1. Making these substitutions, we obtain that ∆JA→i =

−φ(i
\i→ i | TA→i), thus establishing the walk-sum interpretation for FG-LBP variances.

Now we repeat the same analysis for the means. The message ∆hB→j = −φh(∗ \j→
j | TB→j) – this is the single-visit walk-sum to node j in TB→j . Combining the sub-
trees TB→j for all B ∈ N (i)\A, we obtain ∆hj→A = hj +

∑

B∈N (j)\A ∆hB→j . Hence,

∆hj→A = hi − φ(∗ \j→ j | Tj\A).
To get the multiple-revisit walk-sums at node j in TA\i we combine the single-visit

walks terminating at j which have walk-sums φh(∗ \j→ j|TA\i) and the 0-walk starting
at j with weight hj , with the multiple-revisit self-return walks in TA\i. We use the

vector ĥA\i, which contains hj + φh(∗ \j→ j|TA\i) in entry corresponding to j. Then,

φh(∗ → j | TA\i) = [P̂A\i ĥA\i]j . It is equal to [µ̂A\i]j .

Finally, the walk-sum φ(∗ \i→ i | TA→i) = [RA]i,A\iµ̂A\i is obtained by appending
a single step (j, A, i) to any multiple-visit walk in TA\i. This walk-sum is equal to
−∆hA→i = [JA]i,A\iµ̂A\i. This completes the argument. ¤

Proof of Proposition 4.3.2 The proof parallels the proof of the result in the scalar case.
First we note that walks in the factor graph which end at node i have a one-to-one
correspondence to walks in the FG computation tree which end at the root in the
computation tree. All walks for the means are captured in the computation tree, while
only those walks for the variances are captured that both start and end at the root in
the computation tree – these are the factor graph analog of back-tracking self-return
walks. We omit the the proofs of these results, as they closely follow the proofs of
Lemmas 3.2.1 and 3.2.2 in the scalar case.

Let W(i
BT→ i) denote the back-tracking self-return walks at node i (again we stress

that these back-tracking walks are defined with respect to the factor graph computa-

tion tree – they have to start and end at the root node). Let T
(n)
i denote the n-step

computation tree rooted at node i. In the same way as we have done in Sections 3.2.1
and 3.2.2, we can express walk-sums for FG-LBP means and variances as:

W(∗ → i) = ∪nW(∗ → 0 | T
(n)
i )

W(i
BT→ i) = ∪nW(0 → 0 | T

(n)
i )
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The computation trees T
(n)
i at node i are nested, T

(n)
i ⊂ T

(n+1)
i for all n. Hence,

W(∗ → 0|T (n)
i ) ⊂ W(∗ → 0|T (n+1)

i ) and W(0 → 0|T (n)
i ) ⊂ W(0 → 0|T (n+1)

i ). Then,
since our model is factor graph walk-summable, by Lemma 3.1.2, we obtain the result:

µi = φh(∗ → i) = lim
n→∞

φh(∗ → 0|T (n)
i ) = lim

n→∞
µ̂

(n)
i

P
(BT )
i , φ(i

BT→ i) = lim
n→∞

φ(0 → 0|T (n)
i ) = lim

n→∞
P̂

(n)
i . ¤

Note that although the theorem parallels the scalar case, there are some differences:
unlike the scalar case, in the FG-case some self-return walks in the computation tree
may not have positive weights. It is still true however, that as the computation tree
grows, the variances at the root-node monotonically increase.

¥ A.2.4 Factor Graph Normalizability and LBP

Proof of Proposition 4.3.3 We prove convergence of the variances by showing that they
decrease monotonically, and are bounded below.

Step 1. (Boundedness from below) Let T (n) denote the n-step computation tree,
and J (n) denote the corresponding information matrix. At each step we are adding
positive-definite factors Jf corresponding to the added edges. So the computation tree
always has a positive-definite5 information matrix, J (n) Â 0. It follows that the variance
at the root, and hence LBP variance estimates, are bounded below by zero.

Step 2. (Monotonic decrease) Consider the computation tree as it increases from
depth n to depth n + 1. At step n the information matrix is J (n). Let us decompose
the variables in the tree into internal variables and the leaves at step n, denoted by

xI(n) and xL(n). Then J (n) =
[

JI(n) JI(n),L(n)

JL(n),I(n) JL(n)

]

. At step n + 1 new leaves L(n + 1)

are introduced, and the previous leaves become internal nodes: I(n + 1) = I(n)∪L(n).
The information matrix at step n + 1 becomes:

J (n+1) =

[

JI(n) JI(n),L(n)

JL(n),I(n) JL(n)+J+
L(n)

JL(n),L(n+1)

JL(n+1),L(n) JL(n+1)

]

, where

[

J+
L(n)

JL(n),L(n+1)

JL(n+1),L(n) JL(n+1)

]

Â 0

(A.20)
The second matrix is composed of all the factor potentials that are added from step n
to n + 1. It is positive-definite since every variable is covered by at least one positive-
definite factor potential. We need to show that the variance at the root node decreases
when going from n to n + 1.

Marginalize all the leaves at step n + 1 to get the information matrix Ĵ
(n+1)
I(n+1). The

matrix Ĵ
(n+1)
I(n+1) has the same size as J (n), and gives the same marginal variance at the

5The computation tree is connected, so the case J(n) being positive semi-definite but not strictly
positive-definite is ruled out.
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root node as J (n+1). Now

Ĵ
(n+1)
I(n+1) =

[

JI(n) JI(n),L(n)

JL(n),I(n) JL(n)+A

]

, where A = J+
L(n)−JL(n),L(n+1) J−1

L(n+1) JL(n+1),L(n) Â 0

(A.21)
Here, A is obtained by the Schur complement-formula. A Â 0 since the update matrix

(second matrix in (A.20)) is positive-definite. We have shown that Ĵ
(n+1)
I(n+1) º J (n).

The corresponding covariance matrices (their inverses) for the computation tree satisfy

P̂
(n+1)
I(n+1) ¹ P (n). Thus the principal submatrices (in particular at the root node of the

computation tree) satisfy the same relationship: P̂
(n+1)
0 ¹ P̂

(n)
0 . Hence variances de-

crease from step n to step n + 1. In summary, variances decrease monotonically, and
are bounded from below, hence they converge. ¤

¥ A.2.5 Complex Representation of CAR Models

We show how to formulate a thin-plate model (an example of a CAR model) in the
complex-valued Gaussian framework of [98] described in Section 4.3.4. The thin plate
model is:

p(x) ∝ exp



−
∑

i

1

2σ2
y

(yi − xi)
2 − 1

2σ2
z

∑

i∈V

(xi −
1

di

∑

j∈N(i)

xj)
2



 . (A.22)

We introduce an auxiliary variable zi = (xi − 1
di

∑

j∈N(i) xj). Hence z = Hx. Now

we can construct an equivalent model as follows: x ∼ N (y, σ2
yI), z ∼ N (0, σ2

zI), and
we have a hard constraint: z = Hx. So the joint density can be written as

p(x, z) ∼ p(y | x)p(z)δ(Hx − z) (A.23)

Changing the sign on the term Hx, and following the same steps as in Section 4.3.4,
we get a model in the following form:

p(x) ∝
∫

w
e
− 1

2 [
x
w ]

T

 

1

σ2
y

I −jHT

−jH σ2
zI

!

[ x
w ] + [ y

0 ]
T
[ x
w ]

dw (A.24)

Upon marginalizing w out of the complex-valued joint function p(x, w) we obtain the
correct real-valued marginal density for x. The graph in the above model is bipartite,
with edges connecting x variables to w variables.
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¥ A.3 Details for Chapter 5

Stability of errors in wavelet based approximation We provide the analysis for Proposition
5.2.1. Recall the expression for Eσ[E2

ii] that we obtained in (5.19), and decompose it
according to scale, s:

Eσ[E2
ii] =

∑

s

∑

l∈s

∑

k∈C(l)\l
R2

ikW
2
il.

Since Wl has compact support, Wil is non-zero only for some constant (independent of
N and s) number of wavelets at each scale that contain i in the support. Let K be an
upper bound on this constant. Also, W 2

il at scale s is bounded by 2−s since ‖Wl‖2 = 1,
and ψs,k(t) = 1

2s/2 ψ(2−st − k). Thus we have:

Eσ[E2
ii] ≤ K

∑

s

∑

k∈C(l∗s)\l∗s

R2
ik2

−s. (A.25)

Here l∗s is the index that achieves the maximum sum over k at scale s. We bound the
other terms in the summation over l by this maximum, giving the factor of K in front.

First, suppose that we are dealing with a one-dimensional GMRF, and that outside
the region of disturbance Pij decays exponentially with d(i, j), i.e. Pij = Aβd(i,j),
|β| < 1. Then the response Rk(i) also decays exponentially with the same decay rate
outside the region of disturbance, Rk(i) = Asβ

d(i,j(k)), where j(k) corresponds to the
peak of Wk. This happens because exponentials are eigen-functions of LTI filters.
However, the constant As decreases rapidly with each finer scale. If our wavelet has
m vanishing moments then As = O(2((s−Nsc)(m+1/2)) for k that belongs to scale s,
s ∈ {1, ..., Nsc}. Recall that Nsc is the number of scales we use in the wavelet basis,
which depends on the correlation length L of the procees: we set Nsc ∝ log2(L).

We can write
∑

k R2
ik = A2

sQβ(s), where we define Qβ(s) =
∑

k∈C(ls)\ls β2d(i,j(k)) =
∑

n6=0 β2ds|n|, with n indexing the aliased terms, and we use ds to denote the separation
length at scale s. Consider how Qβ(s) depends on s. The separation length in our
construction is ds = d12

s−1, where d1 is the separation at the finest scale. The number
of aliased terms doubles with each finer scale, and the distance between them decreases
by a factor of two. For one-dimensional signals this (un-scaled) error roughly doubles
with each finer scale: Qβ(s) =

∑

n 6=0 β(|n|d12s) satisfies Qβ(s + 1) ≤ 1
2Qβ(s).

Hence Qβ(s) ≤ 2−(s−1)Qβ(1). Note that the term Qβ(1) is equal to the error in the
original (wavelet-less) construction with separation distance d1. Putting all the pieces
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together, the total error becomes:

K

Nsc
∑

s=1

2−s
∑

k

R2
ik ≤ K

∑

s

2−sA2
sQβ(1)2(1−s)

≤ 2KQβ(1)
∑

s

2−2s2(s−Nsc)(2m+1)

≤ 2KQβ(1)2−2Nsc

Nsc
∑

s=1

2(s−Nsc)(2m−1)

≤ 4KQβ(1)2−2Nsc , if m ≥ 1. (A.26)

In the last line, if the number of vanishing moments satisfies m ≥ 1 then the sum
∑Nsc

s=1 2(s−Nsc)(2m−1) ≤ 2 for any Nsc. That means that the total error is bounded by a
constant multiple of 2−2NscQβ(1). Since Nsc ∝ log2(L), this is roughly L−2Qβ(1). As
we mentioned Qβ(1) roughly corresponds to the error in the standard basis construction
(without wavelets). From Section 5.1 we know that Qβ(1) is bounded so the errors in
wavelet-based construction are also bounded, and it can be seen that using wavelets
we get a much smaller error. We also know that by controlling d1 the error Qβ(1) can
be made arbitrarily small. Hence, the same is true for the error in the wavelet-based
construction.

Now let us consider power-law decay of correlations (again outside of the disturbance
region), Pij = Ad(i, j)−p, with p > 0. In contrast to the exponential decay, the power-
law decay changes when wavelets are applied. A wavelet with m vanishing moments
acts as local smoothing followed by m-th order differentiation [89], so if Pij decays as
d(i, j)−p, then Rk(i) decays as d(i, j(k))−(p+m). This means that the tails of Rk(i)
decay faster than the tails of Pij . We define Qp(s) =

∑

n(2ds|n|)−(p+m). The bound
for Qp(s) in terms of Qp(1) changes:

∑

n((ds/2)|n|)−(p+m) = 2(p+m)
∑

n(ds|n|)−(p+m),
hence Qp(s) = 2−(p+m)(s−1)Qp(1). Putting everything together, we have:

K

Nsc
∑

s=1

2−sR2
ik ≤ K

∑

s

2−sA2
sQp(1)2(p+m)(1−s)

≤ KQp(1)2p
∑

s

2−(p+m+1)s2(s−Nsc)(2m+1)

≤ KQp(1)2p2−(p+m+1)Nsc

Nsc
∑

s=1

2(s−Nsc)(m−p)

≤ KQp(1)2p+12−(p+m+1)Nsc , if m > p + 1. (A.27)

In the last line if m > p+1 then the sum
∑Nsc

s=1 2(s−Nsc)(m−p) ≤ 2, and the total error
is bounded by a constant multiple of 2−(p+m+1)NscQp(1), or roughly L−(p+m+1)Qp(1).

If 1 ≤ m < p, then the sum is dominated by the largest term,
∑Nsc

s=1 2(s−Nsc)(m−p) ≈
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2(p−m)Nsc , and the total error is a constant multiple of 2−(p+m+1)Nsc2(p−m)NscQp(1) =
2(−2m−1)NscQp(1), or roughly L−2mQp(1).

In either case, the total error is bounded by a small multiple of Qp(1). For the
power-law decay, Qp(1) is in fact smaller than the error using the standard basis, as
using wavelets we change the power of decay from p to p + m. Hence Qp(1) roughly
corresponds to the error in the single-scale construction with p replaced by p+m. Using
our results for the standard basis in Section 5.1 we can conclude that the total errors
are bounded, and can be made arbitrarily small by controlling d1.

Also note that wavelet-based construction is especially advantageos in lattices of
higher dimension (with d dimensions): there, the convergence of Qp(1) requires p > d

2 ,
see footnote after equation (5.8). However, with the wavelet construction we only need
p + m > d

2 . This means, that for the case where the errors in the standard-basis
construction diverge, we can still make them converge using wavelets with sufficient
number of vanishing moments.
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Appendix B

Miscelaneous appendix

¥ B.1 Properties of Gaussian Models

In this section we summarize some useful facts about Gaussian random vectors, and
list important identities from linear algebra.

Gaussian density An N -dimensional jointly Gaussian random vector x ∼ N (µ, P ) has
probability density given by:

p(x) =
1

√

(2π)N det(P )
exp(−1

2
(x − µ)T P−1(x − µ)) (B.1)

The information form of this density, with information parameters J = P−1 and h =
P−1µ, is given by:

p(x) =
1

Z
exp{−1

2xT Jx + hT x} (B.2)

where Z = exp
(

1
2(N log(2π) − log det(J) + hT J−1h)

)

.

The entropy is equal to

H(p) = −
∫

p(x) log p(x)dx =
1

2
log

[

(2πe)N det(P )
]

(B.3)

The Kullback-Leibler divergence between two Gaussian random vectors x1 ∼ N (µ1, P1),
x2 ∼ N (µ2, P2) is given by:

D(p1 ‖ p2) =

∫

p1(x) log

(

p1(x)

p2(x)

)

dx = (B.4)

1

2

[

log
(

det(P2P
−1
1 )

)

+ tr(P−1
2 P1) + (µ2 − µ1)

T P−1
2 (µ2 − µ1) − N

]

(B.5)

Marginal and conditional densities. Suppose that we have a pair of jointly Gaussian
random vectors (x, y), with mean and covariance

µ = E[( x
y )] =

[ µx
µy

]

and P = E[( x
y ) (x y) ] =

[

Px Px,y

Py,x Py

]

(B.6)

157
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Then the marginal density of x is specified by µ̂x = µx and P̂x = Px, i.e. marginal
mean and covariance are submatrices of µ and P . However, the conditional density of
x given y is specified by:

Px|y = Px − Px,yP
−1
y Py,x and µx|y = µx − Px,yP

−1
x (y − µy) (B.7)

Now consider the same operations in information form. Suppose that the information
parameters of the joint density of x and y are given by:

h =
[

hx
hy

]

and J =
[

Jx Jx,y

Jy,x Jy

]

(B.8)

Then the conditionals have simple expressions:

Jx|y = Jx, and hx|y = hx − Jx,yy. (B.9)

However, the marginals are more complicated:

Ĵx = Jx − Jx,yJ
−1
y Jy,x and ĥx = hx − Jx,yJ

−1
y hy (B.10)

Matrix identities. Consider a partitioned matrix:

P =
[

Px Px,y

Py,x Py

]

(B.11)

Let M = Px − Px,yP
−1
y Py,x. The matrix M is called the Schur complement of y. The

inverse of P is given by

P−1 =
[

M−1 −M−1Px,yP−1
y

−P−1
y Py,xM−1 P−1

y +P−1
y Py,xM−1Px,yP−1

y

]

(B.12)

Also, the following determinant decomposition holds:

det(P ) = det(Px) det(Py − Py,xP−1
x Px,y) (B.13)

Finally, we mention the matrix inversion lemma:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (B.14)

¥ B.2 Bethe Free Energy for Gaussian Graphical Models

We briefly summarize the variational formulation of inference, the Bethe free energy
approximation, and the Gaussian Bethe free energy.
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Overview: variational inference and Bethe free energy Consider a factor graph specifi-
cation of a Gaussian graphical model:

p(x) =
1

Z

∏

i

ψi(xi)
∏

F

ψF (xF ) (B.15)

with variables xi, i ∈ V with V = {1, .., N}. Here ψi(xi) are single-variable factors, and
ψF (xF ) are higher-order factors, with F ⊂ V and |F | > 1. We define local energies

Ei(xi) = − log(ψi(xi)), and EF (xF ) = − log(ψF (xF )), (B.16)

and the total energy E(x) =
∑

F EF (xF ) +
∑

i Ei(xi). For an arbitrary probability
distribution b(x) over x define the average energy to be U(b(x)) = Eb[E(x)] (expectation
is taken under b(x)), and let H(b(x)) = −

∫

b(x) log b(x)dx denote the entropy of b(x).
Consider the following functional of a trial probability distribution b(x), called the
Gibbs free energy:

FGibbs(b(x)) = U(b(x)) − H(b(x)) (B.17)

It can be shown [138] that the minimum of FGibbs(·) is achieved with b(x) = 1
Z exp(−E(x)),

i.e. this optimization recovers p(x) in (B.15), and the minimum is − log(Z). This sug-
gests a variational principle for inference: given ψi and ψF one can optimize (B.17) and
obtain the marginals of p(x). While this variational approach is intractable for general
graphs, it suggests a variety of principled approximations [131]. We describe the Bethe
free energy approximation, which has been shown to have ties to LBP [138].

Instead of optimizing over full joint distribution b(x), we consider single node beliefs
bi(xi) and factor beliefs bF (xF ). While there may or may not exist a joint distribution
b(x) with these beliefs as its marginals, we require that at least these beliefs are consis-
tent. We require that if i ∈ F then

∫

pF (xF )dxF\i = pi(xi) for every variable in each
factor. Also,

∫

pi(xi)dxi = 1 and
∫

pF (xF )dxF = 1 for every variable and factor.
Bethe free energy is an approximation of the Gibbs free energy, and it is only a

function of these local beliefs. Bethe free energy consists of a local average energy
term, and an approximate entropy term:

FBethe(bi, bF ) = UBethe(bi, bF ) − HBethe(bi, bF ) (B.18)

The Bethe average energy term is

UBethe =
∑

F

∑

xF

bF (xF )EF (xF ) +
∑

i

∑

xi

bi(xi)Ei(xi) (B.19)

The Bethe entropy term, HBethe, is given by:

HBethe = −
∑

i

(1 − zi)
∑

xi

bi(xi) log bi(xi) −
∑

F

bF (xF ) log bF (xF ) (B.20)

Here zi is the number of higher-order factors ψF which depend on the variable xi. Belief
propagation has been shown to be related to Bethe free energy: fixed points of LBP
are stationary points of the Bethe free energy [63,138,139].
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Gaussian Bethe free energy We now describe the Bethe free energy for a Gaussian
graphical model. Consider a Gaussian distribution in the information form:

p(x) =
1

Z
exp(−1

2
xT Jx + hT x) (B.21)

We consider factorizations of the density according to a factor graph, as described in
Section 2.3:

p(x) =
1

Z

∏

i

ψi(xi)
∏

f

ψF (xF ) =
1

Z

∏

i

exp(−1

2
Aix

2
i + hixi)

∏

F

exp(−1

2
xT

F BF xF )

(B.22)
where xT Jx =

∑

i Aix
2
i +

∑

F xT
F BF xF .

To obtain the Bethe free energy, introduce Gaussian beliefs bi(xi) ∝ N (xi; µ̂i, P̂i),
bF (xF ) ∝ N (xF ; µ̂F , P̂F ), where the notation N (x; µ, P ) represents a Gaussian density
with mean µ and covariance P written explicitly as a function of x. The Gaussian
Bethe free energy, FBethe = UBethe − HBethe, reduces to:

FBethe =
1

2

∑

F

(

tr[BF P̂F ] + µ̂T
F BF µ̂F

)

+
∑

i

(

1

2
Ai(P̂i + µ̂2

i ) − µ̂ihi

)

(B.23)

−
∑

F

1

2
log det(P̂F ) +

1

2

∑

i

(zi − 1) log P̂i + const (B.24)

Recall that zi is the number of higher-order factors ψF which depend on the variable
xi. The Bethe free energy is minimized subject to consistency constraints on the beliefs;
for the Gaussian case that translates into the requirements [P̂F ]i = P̂i, and [µ̂F ]i = µ̂i,
i.e. the diagonal elements of P̂F have to agree with the corresponding P̂i, and the
vectors µ̂F have to agree with µ̂i.

We mention that [37] has considered the Bethe free energy for fractional Gaussian
belief propagation (which includes ordinary Gaussian belief propagation as a special
case) in the scalar pairwise case, and has shown that when the model is pairwise nor-
malizable, then the Bethe free energy is bounded below, and when the model is not
PN, then the Bethe free energy is unbounded.
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